1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/APValue.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalVariable.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 //===----------------------------------------------------------------------===//
34 //                            ConstStructBuilder
35 //===----------------------------------------------------------------------===//
36 
37 namespace {
38 class ConstExprEmitter;
39 class ConstStructBuilder {
40   CodeGenModule &CGM;
41   ConstantEmitter &Emitter;
42 
43   bool Packed;
44   CharUnits NextFieldOffsetInChars;
45   CharUnits LLVMStructAlignment;
46   SmallVector<llvm::Constant *, 32> Elements;
47 public:
48   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
49                                      ConstExprEmitter *ExprEmitter,
50                                      llvm::Constant *Base,
51                                      InitListExpr *Updater,
52                                      QualType ValTy);
53   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
54                                      InitListExpr *ILE, QualType StructTy);
55   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
56                                      const APValue &Value, QualType ValTy);
57 
58 private:
59   ConstStructBuilder(ConstantEmitter &emitter)
60     : CGM(emitter.CGM), Emitter(emitter), Packed(false),
61     NextFieldOffsetInChars(CharUnits::Zero()),
62     LLVMStructAlignment(CharUnits::One()) { }
63 
64   void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
65                    llvm::Constant *InitExpr);
66 
67   void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
68 
69   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
70                       llvm::ConstantInt *InitExpr);
71 
72   void AppendPadding(CharUnits PadSize);
73 
74   void AppendTailPadding(CharUnits RecordSize);
75 
76   void ConvertStructToPacked();
77 
78   bool Build(InitListExpr *ILE);
79   bool Build(ConstExprEmitter *Emitter, llvm::Constant *Base,
80              InitListExpr *Updater);
81   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
82              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
83   llvm::Constant *Finalize(QualType Ty);
84 
85   CharUnits getAlignment(const llvm::Constant *C) const {
86     if (Packed)  return CharUnits::One();
87     return CharUnits::fromQuantity(
88         CGM.getDataLayout().getABITypeAlignment(C->getType()));
89   }
90 
91   CharUnits getSizeInChars(const llvm::Constant *C) const {
92     return CharUnits::fromQuantity(
93         CGM.getDataLayout().getTypeAllocSize(C->getType()));
94   }
95 };
96 
97 void ConstStructBuilder::
98 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
99             llvm::Constant *InitCst) {
100   const ASTContext &Context = CGM.getContext();
101 
102   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
103 
104   AppendBytes(FieldOffsetInChars, InitCst);
105 }
106 
107 void ConstStructBuilder::
108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
109 
110   assert(NextFieldOffsetInChars <= FieldOffsetInChars
111          && "Field offset mismatch!");
112 
113   CharUnits FieldAlignment = getAlignment(InitCst);
114 
115   // Round up the field offset to the alignment of the field type.
116   CharUnits AlignedNextFieldOffsetInChars =
117       NextFieldOffsetInChars.alignTo(FieldAlignment);
118 
119   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
120     // We need to append padding.
121     AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
122 
123     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
124            "Did not add enough padding!");
125 
126     AlignedNextFieldOffsetInChars =
127         NextFieldOffsetInChars.alignTo(FieldAlignment);
128   }
129 
130   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
131     assert(!Packed && "Alignment is wrong even with a packed struct!");
132 
133     // Convert the struct to a packed struct.
134     ConvertStructToPacked();
135 
136     // After we pack the struct, we may need to insert padding.
137     if (NextFieldOffsetInChars < FieldOffsetInChars) {
138       // We need to append padding.
139       AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
140 
141       assert(NextFieldOffsetInChars == FieldOffsetInChars &&
142              "Did not add enough padding!");
143     }
144     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
145   }
146 
147   // Add the field.
148   Elements.push_back(InitCst);
149   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
150                            getSizeInChars(InitCst);
151 
152   if (Packed)
153     assert(LLVMStructAlignment == CharUnits::One() &&
154            "Packed struct not byte-aligned!");
155   else
156     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
157 }
158 
159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
160                                         uint64_t FieldOffset,
161                                         llvm::ConstantInt *CI) {
162   const ASTContext &Context = CGM.getContext();
163   const uint64_t CharWidth = Context.getCharWidth();
164   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
165   if (FieldOffset > NextFieldOffsetInBits) {
166     // We need to add padding.
167     CharUnits PadSize = Context.toCharUnitsFromBits(
168         llvm::alignTo(FieldOffset - NextFieldOffsetInBits,
169                       Context.getTargetInfo().getCharAlign()));
170 
171     AppendPadding(PadSize);
172   }
173 
174   uint64_t FieldSize = Field->getBitWidthValue(Context);
175 
176   llvm::APInt FieldValue = CI->getValue();
177 
178   // Promote the size of FieldValue if necessary
179   // FIXME: This should never occur, but currently it can because initializer
180   // constants are cast to bool, and because clang is not enforcing bitfield
181   // width limits.
182   if (FieldSize > FieldValue.getBitWidth())
183     FieldValue = FieldValue.zext(FieldSize);
184 
185   // Truncate the size of FieldValue to the bit field size.
186   if (FieldSize < FieldValue.getBitWidth())
187     FieldValue = FieldValue.trunc(FieldSize);
188 
189   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
190   if (FieldOffset < NextFieldOffsetInBits) {
191     // Either part of the field or the entire field can go into the previous
192     // byte.
193     assert(!Elements.empty() && "Elements can't be empty!");
194 
195     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
196 
197     bool FitsCompletelyInPreviousByte =
198       BitsInPreviousByte >= FieldValue.getBitWidth();
199 
200     llvm::APInt Tmp = FieldValue;
201 
202     if (!FitsCompletelyInPreviousByte) {
203       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
204 
205       if (CGM.getDataLayout().isBigEndian()) {
206         Tmp.lshrInPlace(NewFieldWidth);
207         Tmp = Tmp.trunc(BitsInPreviousByte);
208 
209         // We want the remaining high bits.
210         FieldValue = FieldValue.trunc(NewFieldWidth);
211       } else {
212         Tmp = Tmp.trunc(BitsInPreviousByte);
213 
214         // We want the remaining low bits.
215         FieldValue.lshrInPlace(BitsInPreviousByte);
216         FieldValue = FieldValue.trunc(NewFieldWidth);
217       }
218     }
219 
220     Tmp = Tmp.zext(CharWidth);
221     if (CGM.getDataLayout().isBigEndian()) {
222       if (FitsCompletelyInPreviousByte)
223         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
224     } else {
225       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
226     }
227 
228     // 'or' in the bits that go into the previous byte.
229     llvm::Value *LastElt = Elements.back();
230     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
231       Tmp |= Val->getValue();
232     else {
233       assert(isa<llvm::UndefValue>(LastElt));
234       // If there is an undef field that we're adding to, it can either be a
235       // scalar undef (in which case, we just replace it with our field) or it
236       // is an array.  If it is an array, we have to pull one byte off the
237       // array so that the other undef bytes stay around.
238       if (!isa<llvm::IntegerType>(LastElt->getType())) {
239         // The undef padding will be a multibyte array, create a new smaller
240         // padding and then an hole for our i8 to get plopped into.
241         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
242                "Expected array padding of undefs");
243         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
244         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
245                AT->getNumElements() != 0 &&
246                "Expected non-empty array padding of undefs");
247 
248         // Remove the padding array.
249         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
250         Elements.pop_back();
251 
252         // Add the padding back in two chunks.
253         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
254         AppendPadding(CharUnits::One());
255         assert(isa<llvm::UndefValue>(Elements.back()) &&
256                Elements.back()->getType()->isIntegerTy(CharWidth) &&
257                "Padding addition didn't work right");
258       }
259     }
260 
261     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
262 
263     if (FitsCompletelyInPreviousByte)
264       return;
265   }
266 
267   while (FieldValue.getBitWidth() > CharWidth) {
268     llvm::APInt Tmp;
269 
270     if (CGM.getDataLayout().isBigEndian()) {
271       // We want the high bits.
272       Tmp =
273         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
274     } else {
275       // We want the low bits.
276       Tmp = FieldValue.trunc(CharWidth);
277 
278       FieldValue.lshrInPlace(CharWidth);
279     }
280 
281     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
282     ++NextFieldOffsetInChars;
283 
284     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
285   }
286 
287   assert(FieldValue.getBitWidth() > 0 &&
288          "Should have at least one bit left!");
289   assert(FieldValue.getBitWidth() <= CharWidth &&
290          "Should not have more than a byte left!");
291 
292   if (FieldValue.getBitWidth() < CharWidth) {
293     if (CGM.getDataLayout().isBigEndian()) {
294       unsigned BitWidth = FieldValue.getBitWidth();
295 
296       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
297     } else
298       FieldValue = FieldValue.zext(CharWidth);
299   }
300 
301   // Append the last element.
302   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
303                                             FieldValue));
304   ++NextFieldOffsetInChars;
305 }
306 
307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
308   if (PadSize.isZero())
309     return;
310 
311   llvm::Type *Ty = CGM.Int8Ty;
312   if (PadSize > CharUnits::One())
313     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
314 
315   llvm::Constant *C = llvm::UndefValue::get(Ty);
316   Elements.push_back(C);
317   assert(getAlignment(C) == CharUnits::One() &&
318          "Padding must have 1 byte alignment!");
319 
320   NextFieldOffsetInChars += getSizeInChars(C);
321 }
322 
323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
324   assert(NextFieldOffsetInChars <= RecordSize &&
325          "Size mismatch!");
326 
327   AppendPadding(RecordSize - NextFieldOffsetInChars);
328 }
329 
330 void ConstStructBuilder::ConvertStructToPacked() {
331   SmallVector<llvm::Constant *, 16> PackedElements;
332   CharUnits ElementOffsetInChars = CharUnits::Zero();
333 
334   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
335     llvm::Constant *C = Elements[i];
336 
337     CharUnits ElementAlign = CharUnits::fromQuantity(
338       CGM.getDataLayout().getABITypeAlignment(C->getType()));
339     CharUnits AlignedElementOffsetInChars =
340         ElementOffsetInChars.alignTo(ElementAlign);
341 
342     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
343       // We need some padding.
344       CharUnits NumChars =
345         AlignedElementOffsetInChars - ElementOffsetInChars;
346 
347       llvm::Type *Ty = CGM.Int8Ty;
348       if (NumChars > CharUnits::One())
349         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
350 
351       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
352       PackedElements.push_back(Padding);
353       ElementOffsetInChars += getSizeInChars(Padding);
354     }
355 
356     PackedElements.push_back(C);
357     ElementOffsetInChars += getSizeInChars(C);
358   }
359 
360   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
361          "Packing the struct changed its size!");
362 
363   Elements.swap(PackedElements);
364   LLVMStructAlignment = CharUnits::One();
365   Packed = true;
366 }
367 
368 bool ConstStructBuilder::Build(InitListExpr *ILE) {
369   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
370   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
371 
372   unsigned FieldNo = 0;
373   unsigned ElementNo = 0;
374 
375   // Bail out if we have base classes. We could support these, but they only
376   // arise in C++1z where we will have already constant folded most interesting
377   // cases. FIXME: There are still a few more cases we can handle this way.
378   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
379     if (CXXRD->getNumBases())
380       return false;
381 
382   for (RecordDecl::field_iterator Field = RD->field_begin(),
383        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
384     // If this is a union, skip all the fields that aren't being initialized.
385     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
386       continue;
387 
388     // Don't emit anonymous bitfields, they just affect layout.
389     if (Field->isUnnamedBitfield())
390       continue;
391 
392     // Get the initializer.  A struct can include fields without initializers,
393     // we just use explicit null values for them.
394     llvm::Constant *EltInit;
395     if (ElementNo < ILE->getNumInits())
396       EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++),
397                                                 Field->getType());
398     else
399       EltInit = Emitter.emitNullForMemory(Field->getType());
400 
401     if (!EltInit)
402       return false;
403 
404     if (!Field->isBitField()) {
405       // Handle non-bitfield members.
406       AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
407     } else {
408       // Otherwise we have a bitfield.
409       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
410         AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI);
411       } else {
412         // We are trying to initialize a bitfield with a non-trivial constant,
413         // this must require run-time code.
414         return false;
415       }
416     }
417   }
418 
419   return true;
420 }
421 
422 namespace {
423 struct BaseInfo {
424   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
425     : Decl(Decl), Offset(Offset), Index(Index) {
426   }
427 
428   const CXXRecordDecl *Decl;
429   CharUnits Offset;
430   unsigned Index;
431 
432   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
433 };
434 }
435 
436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
437                                bool IsPrimaryBase,
438                                const CXXRecordDecl *VTableClass,
439                                CharUnits Offset) {
440   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
441 
442   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
443     // Add a vtable pointer, if we need one and it hasn't already been added.
444     if (CD->isDynamicClass() && !IsPrimaryBase) {
445       llvm::Constant *VTableAddressPoint =
446           CGM.getCXXABI().getVTableAddressPointForConstExpr(
447               BaseSubobject(CD, Offset), VTableClass);
448       AppendBytes(Offset, VTableAddressPoint);
449     }
450 
451     // Accumulate and sort bases, in order to visit them in address order, which
452     // may not be the same as declaration order.
453     SmallVector<BaseInfo, 8> Bases;
454     Bases.reserve(CD->getNumBases());
455     unsigned BaseNo = 0;
456     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
457          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
458       assert(!Base->isVirtual() && "should not have virtual bases here");
459       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
460       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
461       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
462     }
463     std::stable_sort(Bases.begin(), Bases.end());
464 
465     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
466       BaseInfo &Base = Bases[I];
467 
468       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
469       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
470             VTableClass, Offset + Base.Offset);
471     }
472   }
473 
474   unsigned FieldNo = 0;
475   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
476 
477   for (RecordDecl::field_iterator Field = RD->field_begin(),
478        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
479     // If this is a union, skip all the fields that aren't being initialized.
480     if (RD->isUnion() && Val.getUnionField() != *Field)
481       continue;
482 
483     // Don't emit anonymous bitfields, they just affect layout.
484     if (Field->isUnnamedBitfield())
485       continue;
486 
487     // Emit the value of the initializer.
488     const APValue &FieldValue =
489       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
490     llvm::Constant *EltInit =
491       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
492     if (!EltInit)
493       return false;
494 
495     if (!Field->isBitField()) {
496       // Handle non-bitfield members.
497       AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
498     } else {
499       // Otherwise we have a bitfield.
500       AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
501                      cast<llvm::ConstantInt>(EltInit));
502     }
503   }
504 
505   return true;
506 }
507 
508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
509   RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
510   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
511 
512   CharUnits LayoutSizeInChars = Layout.getSize();
513 
514   if (NextFieldOffsetInChars > LayoutSizeInChars) {
515     // If the struct is bigger than the size of the record type,
516     // we must have a flexible array member at the end.
517     assert(RD->hasFlexibleArrayMember() &&
518            "Must have flexible array member if struct is bigger than type!");
519 
520     // No tail padding is necessary.
521   } else {
522     // Append tail padding if necessary.
523     CharUnits LLVMSizeInChars =
524         NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
525 
526     if (LLVMSizeInChars != LayoutSizeInChars)
527       AppendTailPadding(LayoutSizeInChars);
528 
529     LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
530 
531     // Check if we need to convert the struct to a packed struct.
532     if (NextFieldOffsetInChars <= LayoutSizeInChars &&
533         LLVMSizeInChars > LayoutSizeInChars) {
534       assert(!Packed && "Size mismatch!");
535 
536       ConvertStructToPacked();
537       assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
538              "Converting to packed did not help!");
539     }
540 
541     LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
542 
543     assert(LayoutSizeInChars == LLVMSizeInChars &&
544            "Tail padding mismatch!");
545   }
546 
547   // Pick the type to use.  If the type is layout identical to the ConvertType
548   // type then use it, otherwise use whatever the builder produced for us.
549   llvm::StructType *STy =
550       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
551                                                Elements, Packed);
552   llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
553   if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
554     if (ValSTy->isLayoutIdentical(STy))
555       STy = ValSTy;
556   }
557 
558   llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
559 
560   assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) ==
561              getSizeInChars(Result) &&
562          "Size mismatch!");
563 
564   return Result;
565 }
566 
567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
568                                                 ConstExprEmitter *ExprEmitter,
569                                                 llvm::Constant *Base,
570                                                 InitListExpr *Updater,
571                                                 QualType ValTy) {
572   ConstStructBuilder Builder(Emitter);
573   if (!Builder.Build(ExprEmitter, Base, Updater))
574     return nullptr;
575   return Builder.Finalize(ValTy);
576 }
577 
578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
579                                                 InitListExpr *ILE,
580                                                 QualType ValTy) {
581   ConstStructBuilder Builder(Emitter);
582 
583   if (!Builder.Build(ILE))
584     return nullptr;
585 
586   return Builder.Finalize(ValTy);
587 }
588 
589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
590                                                 const APValue &Val,
591                                                 QualType ValTy) {
592   ConstStructBuilder Builder(Emitter);
593 
594   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
595   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
596   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
597     return nullptr;
598 
599   return Builder.Finalize(ValTy);
600 }
601 
602 
603 //===----------------------------------------------------------------------===//
604 //                             ConstExprEmitter
605 //===----------------------------------------------------------------------===//
606 
607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
608                                                     CodeGenFunction *CGF,
609                                               const CompoundLiteralExpr *E) {
610   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
611   if (llvm::GlobalVariable *Addr =
612           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
613     return ConstantAddress(Addr, Align);
614 
615   LangAS addressSpace = E->getType().getAddressSpace();
616 
617   ConstantEmitter emitter(CGM, CGF);
618   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
619                                                     addressSpace, E->getType());
620   if (!C) {
621     assert(!E->isFileScope() &&
622            "file-scope compound literal did not have constant initializer!");
623     return ConstantAddress::invalid();
624   }
625 
626   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
627                                      CGM.isTypeConstant(E->getType(), true),
628                                      llvm::GlobalValue::InternalLinkage,
629                                      C, ".compoundliteral", nullptr,
630                                      llvm::GlobalVariable::NotThreadLocal,
631                     CGM.getContext().getTargetAddressSpace(addressSpace));
632   emitter.finalize(GV);
633   GV->setAlignment(Align.getQuantity());
634   CGM.setAddrOfConstantCompoundLiteral(E, GV);
635   return ConstantAddress(GV, Align);
636 }
637 
638 static llvm::Constant *
639 EmitArrayConstant(CodeGenModule &CGM, const ConstantArrayType *DestType,
640                   llvm::Type *CommonElementType, unsigned ArrayBound,
641                   SmallVectorImpl<llvm::Constant *> &Elements,
642                   llvm::Constant *Filler) {
643   // Figure out how long the initial prefix of non-zero elements is.
644   unsigned NonzeroLength = ArrayBound;
645   if (Elements.size() < NonzeroLength && Filler->isNullValue())
646     NonzeroLength = Elements.size();
647   if (NonzeroLength == Elements.size()) {
648     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
649       --NonzeroLength;
650   }
651 
652   if (NonzeroLength == 0) {
653     return llvm::ConstantAggregateZero::get(
654         CGM.getTypes().ConvertType(QualType(DestType, 0)));
655   }
656 
657   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
658   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
659   if (TrailingZeroes >= 8) {
660     assert(Elements.size() >= NonzeroLength &&
661            "missing initializer for non-zero element");
662 
663     // If all the elements had the same type up to the trailing zeroes, emit a
664     // struct of two arrays (the nonzero data and the zeroinitializer).
665     if (CommonElementType && NonzeroLength >= 8) {
666       llvm::Constant *Initial = llvm::ConstantArray::get(
667           llvm::ArrayType::get(CommonElementType, NonzeroLength),
668           makeArrayRef(Elements).take_front(NonzeroLength));
669       Elements.resize(2);
670       Elements[0] = Initial;
671     } else {
672       Elements.resize(NonzeroLength + 1);
673     }
674 
675     auto *FillerType =
676         CommonElementType
677             ? CommonElementType
678             : CGM.getTypes().ConvertType(DestType->getElementType());
679     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
680     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
681     CommonElementType = nullptr;
682   } else if (Elements.size() != ArrayBound) {
683     // Otherwise pad to the right size with the filler if necessary.
684     Elements.resize(ArrayBound, Filler);
685     if (Filler->getType() != CommonElementType)
686       CommonElementType = nullptr;
687   }
688 
689   // If all elements have the same type, just emit an array constant.
690   if (CommonElementType)
691     return llvm::ConstantArray::get(
692         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
693 
694   // We have mixed types. Use a packed struct.
695   llvm::SmallVector<llvm::Type *, 16> Types;
696   Types.reserve(Elements.size());
697   for (llvm::Constant *Elt : Elements)
698     Types.push_back(Elt->getType());
699   llvm::StructType *SType =
700       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
701   return llvm::ConstantStruct::get(SType, Elements);
702 }
703 
704 /// This class only needs to handle two cases:
705 /// 1) Literals (this is used by APValue emission to emit literals).
706 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
707 ///    constant fold these types).
708 class ConstExprEmitter :
709   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
710   CodeGenModule &CGM;
711   ConstantEmitter &Emitter;
712   llvm::LLVMContext &VMContext;
713 public:
714   ConstExprEmitter(ConstantEmitter &emitter)
715     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
716   }
717 
718   //===--------------------------------------------------------------------===//
719   //                            Visitor Methods
720   //===--------------------------------------------------------------------===//
721 
722   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
723     return nullptr;
724   }
725 
726   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
727     return Visit(CE->getSubExpr(), T);
728   }
729 
730   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
731     return Visit(PE->getSubExpr(), T);
732   }
733 
734   llvm::Constant *
735   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
736                                     QualType T) {
737     return Visit(PE->getReplacement(), T);
738   }
739 
740   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
741                                             QualType T) {
742     return Visit(GE->getResultExpr(), T);
743   }
744 
745   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
746     return Visit(CE->getChosenSubExpr(), T);
747   }
748 
749   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
750     return Visit(E->getInitializer(), T);
751   }
752 
753   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
754     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
755       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
756     Expr *subExpr = E->getSubExpr();
757 
758     switch (E->getCastKind()) {
759     case CK_ToUnion: {
760       // GCC cast to union extension
761       assert(E->getType()->isUnionType() &&
762              "Destination type is not union type!");
763 
764       auto field = E->getTargetUnionField();
765 
766       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
767       if (!C) return nullptr;
768 
769       auto destTy = ConvertType(destType);
770       if (C->getType() == destTy) return C;
771 
772       // Build a struct with the union sub-element as the first member,
773       // and padded to the appropriate size.
774       SmallVector<llvm::Constant*, 2> Elts;
775       SmallVector<llvm::Type*, 2> Types;
776       Elts.push_back(C);
777       Types.push_back(C->getType());
778       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
779       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
780 
781       assert(CurSize <= TotalSize && "Union size mismatch!");
782       if (unsigned NumPadBytes = TotalSize - CurSize) {
783         llvm::Type *Ty = CGM.Int8Ty;
784         if (NumPadBytes > 1)
785           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
786 
787         Elts.push_back(llvm::UndefValue::get(Ty));
788         Types.push_back(Ty);
789       }
790 
791       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
792       return llvm::ConstantStruct::get(STy, Elts);
793     }
794 
795     case CK_AddressSpaceConversion: {
796       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
797       if (!C) return nullptr;
798       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
799       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
800       llvm::Type *destTy = ConvertType(E->getType());
801       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
802                                                              destAS, destTy);
803     }
804 
805     case CK_LValueToRValue:
806     case CK_AtomicToNonAtomic:
807     case CK_NonAtomicToAtomic:
808     case CK_NoOp:
809     case CK_ConstructorConversion:
810       return Visit(subExpr, destType);
811 
812     case CK_IntToOCLSampler:
813       llvm_unreachable("global sampler variables are not generated");
814 
815     case CK_Dependent: llvm_unreachable("saw dependent cast!");
816 
817     case CK_BuiltinFnToFnPtr:
818       llvm_unreachable("builtin functions are handled elsewhere");
819 
820     case CK_ReinterpretMemberPointer:
821     case CK_DerivedToBaseMemberPointer:
822     case CK_BaseToDerivedMemberPointer: {
823       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
824       if (!C) return nullptr;
825       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
826     }
827 
828     // These will never be supported.
829     case CK_ObjCObjectLValueCast:
830     case CK_ARCProduceObject:
831     case CK_ARCConsumeObject:
832     case CK_ARCReclaimReturnedObject:
833     case CK_ARCExtendBlockObject:
834     case CK_CopyAndAutoreleaseBlockObject:
835       return nullptr;
836 
837     // These don't need to be handled here because Evaluate knows how to
838     // evaluate them in the cases where they can be folded.
839     case CK_BitCast:
840     case CK_ToVoid:
841     case CK_Dynamic:
842     case CK_LValueBitCast:
843     case CK_NullToMemberPointer:
844     case CK_UserDefinedConversion:
845     case CK_CPointerToObjCPointerCast:
846     case CK_BlockPointerToObjCPointerCast:
847     case CK_AnyPointerToBlockPointerCast:
848     case CK_ArrayToPointerDecay:
849     case CK_FunctionToPointerDecay:
850     case CK_BaseToDerived:
851     case CK_DerivedToBase:
852     case CK_UncheckedDerivedToBase:
853     case CK_MemberPointerToBoolean:
854     case CK_VectorSplat:
855     case CK_FloatingRealToComplex:
856     case CK_FloatingComplexToReal:
857     case CK_FloatingComplexToBoolean:
858     case CK_FloatingComplexCast:
859     case CK_FloatingComplexToIntegralComplex:
860     case CK_IntegralRealToComplex:
861     case CK_IntegralComplexToReal:
862     case CK_IntegralComplexToBoolean:
863     case CK_IntegralComplexCast:
864     case CK_IntegralComplexToFloatingComplex:
865     case CK_PointerToIntegral:
866     case CK_PointerToBoolean:
867     case CK_NullToPointer:
868     case CK_IntegralCast:
869     case CK_BooleanToSignedIntegral:
870     case CK_IntegralToPointer:
871     case CK_IntegralToBoolean:
872     case CK_IntegralToFloating:
873     case CK_FloatingToIntegral:
874     case CK_FloatingToBoolean:
875     case CK_FloatingCast:
876     case CK_FixedPointCast:
877     case CK_FixedPointToBoolean:
878     case CK_ZeroToOCLOpaqueType:
879       return nullptr;
880     }
881     llvm_unreachable("Invalid CastKind");
882   }
883 
884   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) {
885     return Visit(DAE->getExpr(), T);
886   }
887 
888   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
889     // No need for a DefaultInitExprScope: we don't handle 'this' in a
890     // constant expression.
891     return Visit(DIE->getExpr(), T);
892   }
893 
894   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
895     if (!E->cleanupsHaveSideEffects())
896       return Visit(E->getSubExpr(), T);
897     return nullptr;
898   }
899 
900   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
901                                                 QualType T) {
902     return Visit(E->GetTemporaryExpr(), T);
903   }
904 
905   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
906     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
907     assert(CAT && "can't emit array init for non-constant-bound array");
908     unsigned NumInitElements = ILE->getNumInits();
909     unsigned NumElements = CAT->getSize().getZExtValue();
910 
911     // Initialising an array requires us to automatically
912     // initialise any elements that have not been initialised explicitly
913     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
914 
915     QualType EltType = CAT->getElementType();
916 
917     // Initialize remaining array elements.
918     llvm::Constant *fillC = nullptr;
919     if (Expr *filler = ILE->getArrayFiller()) {
920       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
921       if (!fillC)
922         return nullptr;
923     }
924 
925     // Copy initializer elements.
926     SmallVector<llvm::Constant*, 16> Elts;
927     if (fillC && fillC->isNullValue())
928       Elts.reserve(NumInitableElts + 1);
929     else
930       Elts.reserve(NumElements);
931 
932     llvm::Type *CommonElementType = nullptr;
933     for (unsigned i = 0; i < NumInitableElts; ++i) {
934       Expr *Init = ILE->getInit(i);
935       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
936       if (!C)
937         return nullptr;
938       if (i == 0)
939         CommonElementType = C->getType();
940       else if (C->getType() != CommonElementType)
941         CommonElementType = nullptr;
942       Elts.push_back(C);
943     }
944 
945     return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts,
946                              fillC);
947   }
948 
949   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
950     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
951   }
952 
953   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
954                                              QualType T) {
955     return CGM.EmitNullConstant(T);
956   }
957 
958   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
959     if (ILE->isTransparent())
960       return Visit(ILE->getInit(0), T);
961 
962     if (ILE->getType()->isArrayType())
963       return EmitArrayInitialization(ILE, T);
964 
965     if (ILE->getType()->isRecordType())
966       return EmitRecordInitialization(ILE, T);
967 
968     return nullptr;
969   }
970 
971   llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base,
972                                             InitListExpr *Updater,
973                                             QualType destType) {
974     if (auto destAT = CGM.getContext().getAsArrayType(destType)) {
975       llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType));
976       llvm::Type *ElemType = AType->getElementType();
977 
978       unsigned NumInitElements = Updater->getNumInits();
979       unsigned NumElements = AType->getNumElements();
980 
981       std::vector<llvm::Constant *> Elts;
982       Elts.reserve(NumElements);
983 
984       QualType destElemType = destAT->getElementType();
985 
986       if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base))
987         for (unsigned i = 0; i != NumElements; ++i)
988           Elts.push_back(DataArray->getElementAsConstant(i));
989       else if (auto Array = dyn_cast<llvm::ConstantArray>(Base))
990         for (unsigned i = 0; i != NumElements; ++i)
991           Elts.push_back(Array->getOperand(i));
992       else
993         return nullptr; // FIXME: other array types not implemented
994 
995       llvm::Constant *fillC = nullptr;
996       if (Expr *filler = Updater->getArrayFiller())
997         if (!isa<NoInitExpr>(filler))
998           fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType);
999       bool RewriteType = (fillC && fillC->getType() != ElemType);
1000 
1001       for (unsigned i = 0; i != NumElements; ++i) {
1002         Expr *Init = nullptr;
1003         if (i < NumInitElements)
1004           Init = Updater->getInit(i);
1005 
1006         if (!Init && fillC)
1007           Elts[i] = fillC;
1008         else if (!Init || isa<NoInitExpr>(Init))
1009           ; // Do nothing.
1010         else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init))
1011           Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType);
1012         else
1013           Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType);
1014 
1015        if (!Elts[i])
1016           return nullptr;
1017         RewriteType |= (Elts[i]->getType() != ElemType);
1018       }
1019 
1020       if (RewriteType) {
1021         std::vector<llvm::Type *> Types;
1022         Types.reserve(NumElements);
1023         for (unsigned i = 0; i != NumElements; ++i)
1024           Types.push_back(Elts[i]->getType());
1025         llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
1026                                                         Types, true);
1027         return llvm::ConstantStruct::get(SType, Elts);
1028       }
1029 
1030       return llvm::ConstantArray::get(AType, Elts);
1031     }
1032 
1033     if (destType->isRecordType())
1034       return ConstStructBuilder::BuildStruct(Emitter, this, Base, Updater,
1035                                              destType);
1036 
1037     return nullptr;
1038   }
1039 
1040   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1041                                                 QualType destType) {
1042     auto C = Visit(E->getBase(), destType);
1043     if (!C) return nullptr;
1044     return EmitDesignatedInitUpdater(C, E->getUpdater(), destType);
1045   }
1046 
1047   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1048     if (!E->getConstructor()->isTrivial())
1049       return nullptr;
1050 
1051     // FIXME: We should not have to call getBaseElementType here.
1052     const RecordType *RT =
1053       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
1054     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1055 
1056     // If the class doesn't have a trivial destructor, we can't emit it as a
1057     // constant expr.
1058     if (!RD->hasTrivialDestructor())
1059       return nullptr;
1060 
1061     // Only copy and default constructors can be trivial.
1062 
1063 
1064     if (E->getNumArgs()) {
1065       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1066       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1067              "trivial ctor has argument but isn't a copy/move ctor");
1068 
1069       Expr *Arg = E->getArg(0);
1070       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1071              "argument to copy ctor is of wrong type");
1072 
1073       return Visit(Arg, Ty);
1074     }
1075 
1076     return CGM.EmitNullConstant(Ty);
1077   }
1078 
1079   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1080     return CGM.GetConstantArrayFromStringLiteral(E);
1081   }
1082 
1083   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1084     // This must be an @encode initializing an array in a static initializer.
1085     // Don't emit it as the address of the string, emit the string data itself
1086     // as an inline array.
1087     std::string Str;
1088     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1089     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1090 
1091     // Resize the string to the right size, adding zeros at the end, or
1092     // truncating as needed.
1093     Str.resize(CAT->getSize().getZExtValue(), '\0');
1094     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1095   }
1096 
1097   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1098     return Visit(E->getSubExpr(), T);
1099   }
1100 
1101   // Utility methods
1102   llvm::Type *ConvertType(QualType T) {
1103     return CGM.getTypes().ConvertType(T);
1104   }
1105 };
1106 
1107 }  // end anonymous namespace.
1108 
1109 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter,
1110                                llvm::Constant *Base,
1111                                InitListExpr *Updater) {
1112   assert(Base && "base expression should not be empty");
1113 
1114   QualType ExprType = Updater->getType();
1115   RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl();
1116   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1117   const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout(
1118       cast<llvm::StructType>(Base->getType()));
1119   unsigned FieldNo = -1;
1120   unsigned ElementNo = 0;
1121 
1122   // Bail out if we have base classes. We could support these, but they only
1123   // arise in C++1z where we will have already constant folded most interesting
1124   // cases. FIXME: There are still a few more cases we can handle this way.
1125   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1126     if (CXXRD->getNumBases())
1127       return false;
1128 
1129   for (FieldDecl *Field : RD->fields()) {
1130     ++FieldNo;
1131 
1132     if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field)
1133       continue;
1134 
1135     // Skip anonymous bitfields.
1136     if (Field->isUnnamedBitfield())
1137       continue;
1138 
1139     llvm::Constant *EltInit = Base->getAggregateElement(ElementNo);
1140 
1141     // Bail out if the type of the ConstantStruct does not have the same layout
1142     // as the type of the InitListExpr.
1143     if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() ||
1144         Layout.getFieldOffset(ElementNo) !=
1145           BaseLayout->getElementOffsetInBits(ElementNo))
1146       return false;
1147 
1148     // Get the initializer. If we encounter an empty field or a NoInitExpr,
1149     // we use values from the base expression.
1150     Expr *Init = nullptr;
1151     if (ElementNo < Updater->getNumInits())
1152       Init = Updater->getInit(ElementNo);
1153 
1154     if (!Init || isa<NoInitExpr>(Init))
1155       ; // Do nothing.
1156     else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init))
1157       EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE,
1158                                                        Field->getType());
1159     else
1160       EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType());
1161 
1162     ++ElementNo;
1163 
1164     if (!EltInit)
1165       return false;
1166 
1167     if (!Field->isBitField())
1168       AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit);
1169     else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit))
1170       AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI);
1171     else
1172       // Initializing a bitfield with a non-trivial constant?
1173       return false;
1174   }
1175 
1176   return true;
1177 }
1178 
1179 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1180                                                         AbstractState saved) {
1181   Abstract = saved.OldValue;
1182 
1183   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1184          "created a placeholder while doing an abstract emission?");
1185 
1186   // No validation necessary for now.
1187   // No cleanup to do for now.
1188   return C;
1189 }
1190 
1191 llvm::Constant *
1192 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1193   auto state = pushAbstract();
1194   auto C = tryEmitPrivateForVarInit(D);
1195   return validateAndPopAbstract(C, state);
1196 }
1197 
1198 llvm::Constant *
1199 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1200   auto state = pushAbstract();
1201   auto C = tryEmitPrivate(E, destType);
1202   return validateAndPopAbstract(C, state);
1203 }
1204 
1205 llvm::Constant *
1206 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1207   auto state = pushAbstract();
1208   auto C = tryEmitPrivate(value, destType);
1209   return validateAndPopAbstract(C, state);
1210 }
1211 
1212 llvm::Constant *
1213 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1214   auto state = pushAbstract();
1215   auto C = tryEmitPrivate(E, destType);
1216   C = validateAndPopAbstract(C, state);
1217   if (!C) {
1218     CGM.Error(E->getExprLoc(),
1219               "internal error: could not emit constant value \"abstractly\"");
1220     C = CGM.EmitNullConstant(destType);
1221   }
1222   return C;
1223 }
1224 
1225 llvm::Constant *
1226 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1227                               QualType destType) {
1228   auto state = pushAbstract();
1229   auto C = tryEmitPrivate(value, destType);
1230   C = validateAndPopAbstract(C, state);
1231   if (!C) {
1232     CGM.Error(loc,
1233               "internal error: could not emit constant value \"abstractly\"");
1234     C = CGM.EmitNullConstant(destType);
1235   }
1236   return C;
1237 }
1238 
1239 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1240   initializeNonAbstract(D.getType().getAddressSpace());
1241   return markIfFailed(tryEmitPrivateForVarInit(D));
1242 }
1243 
1244 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1245                                                        LangAS destAddrSpace,
1246                                                        QualType destType) {
1247   initializeNonAbstract(destAddrSpace);
1248   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1249 }
1250 
1251 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1252                                                     LangAS destAddrSpace,
1253                                                     QualType destType) {
1254   initializeNonAbstract(destAddrSpace);
1255   auto C = tryEmitPrivateForMemory(value, destType);
1256   assert(C && "couldn't emit constant value non-abstractly?");
1257   return C;
1258 }
1259 
1260 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1261   assert(!Abstract && "cannot get current address for abstract constant");
1262 
1263 
1264 
1265   // Make an obviously ill-formed global that should blow up compilation
1266   // if it survives.
1267   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1268                                          llvm::GlobalValue::PrivateLinkage,
1269                                          /*init*/ nullptr,
1270                                          /*name*/ "",
1271                                          /*before*/ nullptr,
1272                                          llvm::GlobalVariable::NotThreadLocal,
1273                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1274 
1275   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1276 
1277   return global;
1278 }
1279 
1280 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1281                                            llvm::GlobalValue *placeholder) {
1282   assert(!PlaceholderAddresses.empty());
1283   assert(PlaceholderAddresses.back().first == nullptr);
1284   assert(PlaceholderAddresses.back().second == placeholder);
1285   PlaceholderAddresses.back().first = signal;
1286 }
1287 
1288 namespace {
1289   struct ReplacePlaceholders {
1290     CodeGenModule &CGM;
1291 
1292     /// The base address of the global.
1293     llvm::Constant *Base;
1294     llvm::Type *BaseValueTy = nullptr;
1295 
1296     /// The placeholder addresses that were registered during emission.
1297     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1298 
1299     /// The locations of the placeholder signals.
1300     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1301 
1302     /// The current index stack.  We use a simple unsigned stack because
1303     /// we assume that placeholders will be relatively sparse in the
1304     /// initializer, but we cache the index values we find just in case.
1305     llvm::SmallVector<unsigned, 8> Indices;
1306     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1307 
1308     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1309                         ArrayRef<std::pair<llvm::Constant*,
1310                                            llvm::GlobalVariable*>> addresses)
1311         : CGM(CGM), Base(base),
1312           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1313     }
1314 
1315     void replaceInInitializer(llvm::Constant *init) {
1316       // Remember the type of the top-most initializer.
1317       BaseValueTy = init->getType();
1318 
1319       // Initialize the stack.
1320       Indices.push_back(0);
1321       IndexValues.push_back(nullptr);
1322 
1323       // Recurse into the initializer.
1324       findLocations(init);
1325 
1326       // Check invariants.
1327       assert(IndexValues.size() == Indices.size() && "mismatch");
1328       assert(Indices.size() == 1 && "didn't pop all indices");
1329 
1330       // Do the replacement; this basically invalidates 'init'.
1331       assert(Locations.size() == PlaceholderAddresses.size() &&
1332              "missed a placeholder?");
1333 
1334       // We're iterating over a hashtable, so this would be a source of
1335       // non-determinism in compiler output *except* that we're just
1336       // messing around with llvm::Constant structures, which never itself
1337       // does anything that should be visible in compiler output.
1338       for (auto &entry : Locations) {
1339         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1340         entry.first->replaceAllUsesWith(entry.second);
1341         entry.first->eraseFromParent();
1342       }
1343     }
1344 
1345   private:
1346     void findLocations(llvm::Constant *init) {
1347       // Recurse into aggregates.
1348       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1349         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1350           Indices.push_back(i);
1351           IndexValues.push_back(nullptr);
1352 
1353           findLocations(agg->getOperand(i));
1354 
1355           IndexValues.pop_back();
1356           Indices.pop_back();
1357         }
1358         return;
1359       }
1360 
1361       // Otherwise, check for registered constants.
1362       while (true) {
1363         auto it = PlaceholderAddresses.find(init);
1364         if (it != PlaceholderAddresses.end()) {
1365           setLocation(it->second);
1366           break;
1367         }
1368 
1369         // Look through bitcasts or other expressions.
1370         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1371           init = expr->getOperand(0);
1372         } else {
1373           break;
1374         }
1375       }
1376     }
1377 
1378     void setLocation(llvm::GlobalVariable *placeholder) {
1379       assert(Locations.find(placeholder) == Locations.end() &&
1380              "already found location for placeholder!");
1381 
1382       // Lazily fill in IndexValues with the values from Indices.
1383       // We do this in reverse because we should always have a strict
1384       // prefix of indices from the start.
1385       assert(Indices.size() == IndexValues.size());
1386       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1387         if (IndexValues[i]) {
1388 #ifndef NDEBUG
1389           for (size_t j = 0; j != i + 1; ++j) {
1390             assert(IndexValues[j] &&
1391                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1392                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1393                      == Indices[j]);
1394           }
1395 #endif
1396           break;
1397         }
1398 
1399         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1400       }
1401 
1402       // Form a GEP and then bitcast to the placeholder type so that the
1403       // replacement will succeed.
1404       llvm::Constant *location =
1405         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1406                                                      Base, IndexValues);
1407       location = llvm::ConstantExpr::getBitCast(location,
1408                                                 placeholder->getType());
1409 
1410       Locations.insert({placeholder, location});
1411     }
1412   };
1413 }
1414 
1415 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1416   assert(InitializedNonAbstract &&
1417          "finalizing emitter that was used for abstract emission?");
1418   assert(!Finalized && "finalizing emitter multiple times");
1419   assert(global->getInitializer());
1420 
1421   // Note that we might also be Failed.
1422   Finalized = true;
1423 
1424   if (!PlaceholderAddresses.empty()) {
1425     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1426       .replaceInInitializer(global->getInitializer());
1427     PlaceholderAddresses.clear(); // satisfy
1428   }
1429 }
1430 
1431 ConstantEmitter::~ConstantEmitter() {
1432   assert((!InitializedNonAbstract || Finalized || Failed) &&
1433          "not finalized after being initialized for non-abstract emission");
1434   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1435 }
1436 
1437 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1438   if (auto AT = type->getAs<AtomicType>()) {
1439     return CGM.getContext().getQualifiedType(AT->getValueType(),
1440                                              type.getQualifiers());
1441   }
1442   return type;
1443 }
1444 
1445 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1446   // Make a quick check if variable can be default NULL initialized
1447   // and avoid going through rest of code which may do, for c++11,
1448   // initialization of memory to all NULLs.
1449   if (!D.hasLocalStorage()) {
1450     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1451     if (Ty->isRecordType())
1452       if (const CXXConstructExpr *E =
1453           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1454         const CXXConstructorDecl *CD = E->getConstructor();
1455         if (CD->isTrivial() && CD->isDefaultConstructor())
1456           return CGM.EmitNullConstant(D.getType());
1457       }
1458     InConstantContext = true;
1459   }
1460 
1461   QualType destType = D.getType();
1462 
1463   // Try to emit the initializer.  Note that this can allow some things that
1464   // are not allowed by tryEmitPrivateForMemory alone.
1465   if (auto value = D.evaluateValue()) {
1466     return tryEmitPrivateForMemory(*value, destType);
1467   }
1468 
1469   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1470   // reference is a constant expression, and the reference binds to a temporary,
1471   // then constant initialization is performed. ConstExprEmitter will
1472   // incorrectly emit a prvalue constant in this case, and the calling code
1473   // interprets that as the (pointer) value of the reference, rather than the
1474   // desired value of the referee.
1475   if (destType->isReferenceType())
1476     return nullptr;
1477 
1478   const Expr *E = D.getInit();
1479   assert(E && "No initializer to emit");
1480 
1481   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1482   auto C =
1483     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1484   return (C ? emitForMemory(C, destType) : nullptr);
1485 }
1486 
1487 llvm::Constant *
1488 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1489   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1490   auto C = tryEmitAbstract(E, nonMemoryDestType);
1491   return (C ? emitForMemory(C, destType) : nullptr);
1492 }
1493 
1494 llvm::Constant *
1495 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1496                                           QualType destType) {
1497   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1498   auto C = tryEmitAbstract(value, nonMemoryDestType);
1499   return (C ? emitForMemory(C, destType) : nullptr);
1500 }
1501 
1502 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1503                                                          QualType destType) {
1504   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1505   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1506   return (C ? emitForMemory(C, destType) : nullptr);
1507 }
1508 
1509 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1510                                                          QualType destType) {
1511   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1512   auto C = tryEmitPrivate(value, nonMemoryDestType);
1513   return (C ? emitForMemory(C, destType) : nullptr);
1514 }
1515 
1516 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1517                                                llvm::Constant *C,
1518                                                QualType destType) {
1519   // For an _Atomic-qualified constant, we may need to add tail padding.
1520   if (auto AT = destType->getAs<AtomicType>()) {
1521     QualType destValueType = AT->getValueType();
1522     C = emitForMemory(CGM, C, destValueType);
1523 
1524     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1525     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1526     if (innerSize == outerSize)
1527       return C;
1528 
1529     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1530     llvm::Constant *elts[] = {
1531       C,
1532       llvm::ConstantAggregateZero::get(
1533           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1534     };
1535     return llvm::ConstantStruct::getAnon(elts);
1536   }
1537 
1538   // Zero-extend bool.
1539   if (C->getType()->isIntegerTy(1)) {
1540     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1541     return llvm::ConstantExpr::getZExt(C, boolTy);
1542   }
1543 
1544   return C;
1545 }
1546 
1547 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1548                                                 QualType destType) {
1549   Expr::EvalResult Result;
1550 
1551   bool Success = false;
1552 
1553   if (destType->isReferenceType())
1554     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1555   else
1556     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1557 
1558   llvm::Constant *C;
1559   if (Success && !Result.HasSideEffects)
1560     C = tryEmitPrivate(Result.Val, destType);
1561   else
1562     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1563 
1564   return C;
1565 }
1566 
1567 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1568   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1569 }
1570 
1571 namespace {
1572 /// A struct which can be used to peephole certain kinds of finalization
1573 /// that normally happen during l-value emission.
1574 struct ConstantLValue {
1575   llvm::Constant *Value;
1576   bool HasOffsetApplied;
1577 
1578   /*implicit*/ ConstantLValue(llvm::Constant *value,
1579                               bool hasOffsetApplied = false)
1580     : Value(value), HasOffsetApplied(false) {}
1581 
1582   /*implicit*/ ConstantLValue(ConstantAddress address)
1583     : ConstantLValue(address.getPointer()) {}
1584 };
1585 
1586 /// A helper class for emitting constant l-values.
1587 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1588                                                       ConstantLValue> {
1589   CodeGenModule &CGM;
1590   ConstantEmitter &Emitter;
1591   const APValue &Value;
1592   QualType DestType;
1593 
1594   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1595   friend StmtVisitorBase;
1596 
1597 public:
1598   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1599                         QualType destType)
1600     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1601 
1602   llvm::Constant *tryEmit();
1603 
1604 private:
1605   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1606   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1607 
1608   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1609   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1610   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1611   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1612   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1613   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1614   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1615   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1616   ConstantLValue VisitCallExpr(const CallExpr *E);
1617   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1618   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1619   ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1620   ConstantLValue VisitMaterializeTemporaryExpr(
1621                                          const MaterializeTemporaryExpr *E);
1622 
1623   bool hasNonZeroOffset() const {
1624     return !Value.getLValueOffset().isZero();
1625   }
1626 
1627   /// Return the value offset.
1628   llvm::Constant *getOffset() {
1629     return llvm::ConstantInt::get(CGM.Int64Ty,
1630                                   Value.getLValueOffset().getQuantity());
1631   }
1632 
1633   /// Apply the value offset to the given constant.
1634   llvm::Constant *applyOffset(llvm::Constant *C) {
1635     if (!hasNonZeroOffset())
1636       return C;
1637 
1638     llvm::Type *origPtrTy = C->getType();
1639     unsigned AS = origPtrTy->getPointerAddressSpace();
1640     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1641     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1642     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1643     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1644     return C;
1645   }
1646 };
1647 
1648 }
1649 
1650 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1651   const APValue::LValueBase &base = Value.getLValueBase();
1652 
1653   // Certain special array initializers are represented in APValue
1654   // as l-values referring to the base expression which generates the
1655   // array.  This happens with e.g. string literals.  These should
1656   // probably just get their own representation kind in APValue.
1657   if (DestType->isArrayType()) {
1658     assert(!hasNonZeroOffset() && "offset on array initializer");
1659     auto expr = const_cast<Expr*>(base.get<const Expr*>());
1660     return ConstExprEmitter(Emitter).Visit(expr, DestType);
1661   }
1662 
1663   // Otherwise, the destination type should be a pointer or reference
1664   // type, but it might also be a cast thereof.
1665   //
1666   // FIXME: the chain of casts required should be reflected in the APValue.
1667   // We need this in order to correctly handle things like a ptrtoint of a
1668   // non-zero null pointer and addrspace casts that aren't trivially
1669   // represented in LLVM IR.
1670   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1671   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1672 
1673   // If there's no base at all, this is a null or absolute pointer,
1674   // possibly cast back to an integer type.
1675   if (!base) {
1676     return tryEmitAbsolute(destTy);
1677   }
1678 
1679   // Otherwise, try to emit the base.
1680   ConstantLValue result = tryEmitBase(base);
1681 
1682   // If that failed, we're done.
1683   llvm::Constant *value = result.Value;
1684   if (!value) return nullptr;
1685 
1686   // Apply the offset if necessary and not already done.
1687   if (!result.HasOffsetApplied) {
1688     value = applyOffset(value);
1689   }
1690 
1691   // Convert to the appropriate type; this could be an lvalue for
1692   // an integer.  FIXME: performAddrSpaceCast
1693   if (isa<llvm::PointerType>(destTy))
1694     return llvm::ConstantExpr::getPointerCast(value, destTy);
1695 
1696   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1697 }
1698 
1699 /// Try to emit an absolute l-value, such as a null pointer or an integer
1700 /// bitcast to pointer type.
1701 llvm::Constant *
1702 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1703   auto offset = getOffset();
1704 
1705   // If we're producing a pointer, this is easy.
1706   if (auto destPtrTy = cast<llvm::PointerType>(destTy)) {
1707     if (Value.isNullPointer()) {
1708       // FIXME: integer offsets from non-zero null pointers.
1709       return CGM.getNullPointer(destPtrTy, DestType);
1710     }
1711 
1712     // Convert the integer to a pointer-sized integer before converting it
1713     // to a pointer.
1714     // FIXME: signedness depends on the original integer type.
1715     auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1716     llvm::Constant *C = offset;
1717     C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1718                                            /*isSigned*/ false);
1719     C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1720     return C;
1721   }
1722 
1723   // Otherwise, we're basically returning an integer constant.
1724 
1725   // FIXME: this does the wrong thing with ptrtoint of a null pointer,
1726   // but since we don't know the original pointer type, there's not much
1727   // we can do about it.
1728 
1729   auto C = getOffset();
1730   C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false);
1731   return C;
1732 }
1733 
1734 ConstantLValue
1735 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1736   // Handle values.
1737   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1738     if (D->hasAttr<WeakRefAttr>())
1739       return CGM.GetWeakRefReference(D).getPointer();
1740 
1741     if (auto FD = dyn_cast<FunctionDecl>(D))
1742       return CGM.GetAddrOfFunction(FD);
1743 
1744     if (auto VD = dyn_cast<VarDecl>(D)) {
1745       // We can never refer to a variable with local storage.
1746       if (!VD->hasLocalStorage()) {
1747         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1748           return CGM.GetAddrOfGlobalVar(VD);
1749 
1750         if (VD->isLocalVarDecl()) {
1751           return CGM.getOrCreateStaticVarDecl(
1752               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1753         }
1754       }
1755     }
1756 
1757     return nullptr;
1758   }
1759 
1760   // Otherwise, it must be an expression.
1761   return Visit(base.get<const Expr*>());
1762 }
1763 
1764 ConstantLValue
1765 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1766   return Visit(E->getSubExpr());
1767 }
1768 
1769 ConstantLValue
1770 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1771   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1772 }
1773 
1774 ConstantLValue
1775 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1776   return CGM.GetAddrOfConstantStringFromLiteral(E);
1777 }
1778 
1779 ConstantLValue
1780 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1781   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1782 }
1783 
1784 ConstantLValue
1785 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1786   auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString());
1787   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType()));
1788 }
1789 
1790 ConstantLValue
1791 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1792   if (auto CGF = Emitter.CGF) {
1793     LValue Res = CGF->EmitPredefinedLValue(E);
1794     return cast<ConstantAddress>(Res.getAddress());
1795   }
1796 
1797   auto kind = E->getIdentKind();
1798   if (kind == PredefinedExpr::PrettyFunction) {
1799     return CGM.GetAddrOfConstantCString("top level", ".tmp");
1800   }
1801 
1802   return CGM.GetAddrOfConstantCString("", ".tmp");
1803 }
1804 
1805 ConstantLValue
1806 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1807   assert(Emitter.CGF && "Invalid address of label expression outside function");
1808   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1809   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1810                                    CGM.getTypes().ConvertType(E->getType()));
1811   return Ptr;
1812 }
1813 
1814 ConstantLValue
1815 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1816   unsigned builtin = E->getBuiltinCallee();
1817   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1818       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1819     return nullptr;
1820 
1821   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1822   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1823     return CGM.getObjCRuntime().GenerateConstantString(literal);
1824   } else {
1825     // FIXME: need to deal with UCN conversion issues.
1826     return CGM.GetAddrOfConstantCFString(literal);
1827   }
1828 }
1829 
1830 ConstantLValue
1831 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1832   StringRef functionName;
1833   if (auto CGF = Emitter.CGF)
1834     functionName = CGF->CurFn->getName();
1835   else
1836     functionName = "global";
1837 
1838   return CGM.GetAddrOfGlobalBlock(E, functionName);
1839 }
1840 
1841 ConstantLValue
1842 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1843   QualType T;
1844   if (E->isTypeOperand())
1845     T = E->getTypeOperand(CGM.getContext());
1846   else
1847     T = E->getExprOperand()->getType();
1848   return CGM.GetAddrOfRTTIDescriptor(T);
1849 }
1850 
1851 ConstantLValue
1852 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1853   return CGM.GetAddrOfUuidDescriptor(E);
1854 }
1855 
1856 ConstantLValue
1857 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
1858                                             const MaterializeTemporaryExpr *E) {
1859   assert(E->getStorageDuration() == SD_Static);
1860   SmallVector<const Expr *, 2> CommaLHSs;
1861   SmallVector<SubobjectAdjustment, 2> Adjustments;
1862   const Expr *Inner = E->GetTemporaryExpr()
1863       ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1864   return CGM.GetAddrOfGlobalTemporary(E, Inner);
1865 }
1866 
1867 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
1868                                                 QualType DestType) {
1869   switch (Value.getKind()) {
1870   case APValue::Uninitialized:
1871     llvm_unreachable("Constant expressions should be initialized.");
1872   case APValue::LValue:
1873     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
1874   case APValue::Int:
1875     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
1876   case APValue::ComplexInt: {
1877     llvm::Constant *Complex[2];
1878 
1879     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
1880                                         Value.getComplexIntReal());
1881     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
1882                                         Value.getComplexIntImag());
1883 
1884     // FIXME: the target may want to specify that this is packed.
1885     llvm::StructType *STy =
1886         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
1887     return llvm::ConstantStruct::get(STy, Complex);
1888   }
1889   case APValue::Float: {
1890     const llvm::APFloat &Init = Value.getFloat();
1891     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
1892         !CGM.getContext().getLangOpts().NativeHalfType &&
1893         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1894       return llvm::ConstantInt::get(CGM.getLLVMContext(),
1895                                     Init.bitcastToAPInt());
1896     else
1897       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
1898   }
1899   case APValue::ComplexFloat: {
1900     llvm::Constant *Complex[2];
1901 
1902     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
1903                                        Value.getComplexFloatReal());
1904     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
1905                                        Value.getComplexFloatImag());
1906 
1907     // FIXME: the target may want to specify that this is packed.
1908     llvm::StructType *STy =
1909         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
1910     return llvm::ConstantStruct::get(STy, Complex);
1911   }
1912   case APValue::Vector: {
1913     unsigned NumElts = Value.getVectorLength();
1914     SmallVector<llvm::Constant *, 4> Inits(NumElts);
1915 
1916     for (unsigned I = 0; I != NumElts; ++I) {
1917       const APValue &Elt = Value.getVectorElt(I);
1918       if (Elt.isInt())
1919         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
1920       else if (Elt.isFloat())
1921         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
1922       else
1923         llvm_unreachable("unsupported vector element type");
1924     }
1925     return llvm::ConstantVector::get(Inits);
1926   }
1927   case APValue::AddrLabelDiff: {
1928     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1929     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1930     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
1931     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
1932     if (!LHS || !RHS) return nullptr;
1933 
1934     // Compute difference
1935     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
1936     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
1937     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
1938     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1939 
1940     // LLVM is a bit sensitive about the exact format of the
1941     // address-of-label difference; make sure to truncate after
1942     // the subtraction.
1943     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1944   }
1945   case APValue::Struct:
1946   case APValue::Union:
1947     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
1948   case APValue::Array: {
1949     const ConstantArrayType *CAT =
1950         CGM.getContext().getAsConstantArrayType(DestType);
1951     unsigned NumElements = Value.getArraySize();
1952     unsigned NumInitElts = Value.getArrayInitializedElts();
1953 
1954     // Emit array filler, if there is one.
1955     llvm::Constant *Filler = nullptr;
1956     if (Value.hasArrayFiller()) {
1957       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
1958                                         CAT->getElementType());
1959       if (!Filler)
1960         return nullptr;
1961     }
1962 
1963     // Emit initializer elements.
1964     SmallVector<llvm::Constant*, 16> Elts;
1965     if (Filler && Filler->isNullValue())
1966       Elts.reserve(NumInitElts + 1);
1967     else
1968       Elts.reserve(NumElements);
1969 
1970     llvm::Type *CommonElementType = nullptr;
1971     for (unsigned I = 0; I < NumInitElts; ++I) {
1972       llvm::Constant *C = tryEmitPrivateForMemory(
1973           Value.getArrayInitializedElt(I), CAT->getElementType());
1974       if (!C) return nullptr;
1975 
1976       if (I == 0)
1977         CommonElementType = C->getType();
1978       else if (C->getType() != CommonElementType)
1979         CommonElementType = nullptr;
1980       Elts.push_back(C);
1981     }
1982 
1983     // This means that the array type is probably "IncompleteType" or some
1984     // type that is not ConstantArray.
1985     if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
1986       const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
1987       CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
1988       llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
1989                                                     NumElements);
1990       return llvm::ConstantAggregateZero::get(AType);
1991     }
1992 
1993     return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts,
1994                              Filler);
1995   }
1996   case APValue::MemberPointer:
1997     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
1998   }
1999   llvm_unreachable("Unknown APValue kind");
2000 }
2001 
2002 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2003     const CompoundLiteralExpr *E) {
2004   return EmittedCompoundLiterals.lookup(E);
2005 }
2006 
2007 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2008     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2009   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2010   (void)Ok;
2011   assert(Ok && "CLE has already been emitted!");
2012 }
2013 
2014 ConstantAddress
2015 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2016   assert(E->isFileScope() && "not a file-scope compound literal expr");
2017   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2018 }
2019 
2020 llvm::Constant *
2021 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2022   // Member pointer constants always have a very particular form.
2023   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2024   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2025 
2026   // A member function pointer.
2027   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2028     return getCXXABI().EmitMemberFunctionPointer(method);
2029 
2030   // Otherwise, a member data pointer.
2031   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2032   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2033   return getCXXABI().EmitMemberDataPointer(type, chars);
2034 }
2035 
2036 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2037                                                llvm::Type *baseType,
2038                                                const CXXRecordDecl *base);
2039 
2040 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2041                                         const RecordDecl *record,
2042                                         bool asCompleteObject) {
2043   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2044   llvm::StructType *structure =
2045     (asCompleteObject ? layout.getLLVMType()
2046                       : layout.getBaseSubobjectLLVMType());
2047 
2048   unsigned numElements = structure->getNumElements();
2049   std::vector<llvm::Constant *> elements(numElements);
2050 
2051   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2052   // Fill in all the bases.
2053   if (CXXR) {
2054     for (const auto &I : CXXR->bases()) {
2055       if (I.isVirtual()) {
2056         // Ignore virtual bases; if we're laying out for a complete
2057         // object, we'll lay these out later.
2058         continue;
2059       }
2060 
2061       const CXXRecordDecl *base =
2062         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2063 
2064       // Ignore empty bases.
2065       if (base->isEmpty() ||
2066           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2067               .isZero())
2068         continue;
2069 
2070       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2071       llvm::Type *baseType = structure->getElementType(fieldIndex);
2072       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2073     }
2074   }
2075 
2076   // Fill in all the fields.
2077   for (const auto *Field : record->fields()) {
2078     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2079     // will fill in later.)
2080     if (!Field->isBitField()) {
2081       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2082       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2083     }
2084 
2085     // For unions, stop after the first named field.
2086     if (record->isUnion()) {
2087       if (Field->getIdentifier())
2088         break;
2089       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2090         if (FieldRD->findFirstNamedDataMember())
2091           break;
2092     }
2093   }
2094 
2095   // Fill in the virtual bases, if we're working with the complete object.
2096   if (CXXR && asCompleteObject) {
2097     for (const auto &I : CXXR->vbases()) {
2098       const CXXRecordDecl *base =
2099         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2100 
2101       // Ignore empty bases.
2102       if (base->isEmpty())
2103         continue;
2104 
2105       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2106 
2107       // We might have already laid this field out.
2108       if (elements[fieldIndex]) continue;
2109 
2110       llvm::Type *baseType = structure->getElementType(fieldIndex);
2111       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2112     }
2113   }
2114 
2115   // Now go through all other fields and zero them out.
2116   for (unsigned i = 0; i != numElements; ++i) {
2117     if (!elements[i])
2118       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2119   }
2120 
2121   return llvm::ConstantStruct::get(structure, elements);
2122 }
2123 
2124 /// Emit the null constant for a base subobject.
2125 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2126                                                llvm::Type *baseType,
2127                                                const CXXRecordDecl *base) {
2128   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2129 
2130   // Just zero out bases that don't have any pointer to data members.
2131   if (baseLayout.isZeroInitializableAsBase())
2132     return llvm::Constant::getNullValue(baseType);
2133 
2134   // Otherwise, we can just use its null constant.
2135   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2136 }
2137 
2138 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2139                                                    QualType T) {
2140   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2141 }
2142 
2143 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2144   if (T->getAs<PointerType>())
2145     return getNullPointer(
2146         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2147 
2148   if (getTypes().isZeroInitializable(T))
2149     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2150 
2151   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2152     llvm::ArrayType *ATy =
2153       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2154 
2155     QualType ElementTy = CAT->getElementType();
2156 
2157     llvm::Constant *Element =
2158       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2159     unsigned NumElements = CAT->getSize().getZExtValue();
2160     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2161     return llvm::ConstantArray::get(ATy, Array);
2162   }
2163 
2164   if (const RecordType *RT = T->getAs<RecordType>())
2165     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2166 
2167   assert(T->isMemberDataPointerType() &&
2168          "Should only see pointers to data members here!");
2169 
2170   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2171 }
2172 
2173 llvm::Constant *
2174 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2175   return ::EmitNullConstant(*this, Record, false);
2176 }
2177