1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===----------------------------------------------------------------------===// 34 // ConstStructBuilder 35 //===----------------------------------------------------------------------===// 36 37 namespace { 38 class ConstExprEmitter; 39 class ConstStructBuilder { 40 CodeGenModule &CGM; 41 ConstantEmitter &Emitter; 42 43 bool Packed; 44 CharUnits NextFieldOffsetInChars; 45 CharUnits LLVMStructAlignment; 46 SmallVector<llvm::Constant *, 32> Elements; 47 public: 48 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 49 ConstExprEmitter *ExprEmitter, 50 llvm::ConstantStruct *Base, 51 InitListExpr *Updater, 52 QualType ValTy); 53 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 54 InitListExpr *ILE, QualType StructTy); 55 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 56 const APValue &Value, QualType ValTy); 57 58 private: 59 ConstStructBuilder(ConstantEmitter &emitter) 60 : CGM(emitter.CGM), Emitter(emitter), Packed(false), 61 NextFieldOffsetInChars(CharUnits::Zero()), 62 LLVMStructAlignment(CharUnits::One()) { } 63 64 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 65 llvm::Constant *InitExpr); 66 67 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 68 69 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 70 llvm::ConstantInt *InitExpr); 71 72 void AppendPadding(CharUnits PadSize); 73 74 void AppendTailPadding(CharUnits RecordSize); 75 76 void ConvertStructToPacked(); 77 78 bool Build(InitListExpr *ILE); 79 bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base, 80 InitListExpr *Updater); 81 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 82 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 83 llvm::Constant *Finalize(QualType Ty); 84 85 CharUnits getAlignment(const llvm::Constant *C) const { 86 if (Packed) return CharUnits::One(); 87 return CharUnits::fromQuantity( 88 CGM.getDataLayout().getABITypeAlignment(C->getType())); 89 } 90 91 CharUnits getSizeInChars(const llvm::Constant *C) const { 92 return CharUnits::fromQuantity( 93 CGM.getDataLayout().getTypeAllocSize(C->getType())); 94 } 95 }; 96 97 void ConstStructBuilder:: 98 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 99 llvm::Constant *InitCst) { 100 const ASTContext &Context = CGM.getContext(); 101 102 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 103 104 AppendBytes(FieldOffsetInChars, InitCst); 105 } 106 107 void ConstStructBuilder:: 108 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 109 110 assert(NextFieldOffsetInChars <= FieldOffsetInChars 111 && "Field offset mismatch!"); 112 113 CharUnits FieldAlignment = getAlignment(InitCst); 114 115 // Round up the field offset to the alignment of the field type. 116 CharUnits AlignedNextFieldOffsetInChars = 117 NextFieldOffsetInChars.alignTo(FieldAlignment); 118 119 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 120 // We need to append padding. 121 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 122 123 assert(NextFieldOffsetInChars == FieldOffsetInChars && 124 "Did not add enough padding!"); 125 126 AlignedNextFieldOffsetInChars = 127 NextFieldOffsetInChars.alignTo(FieldAlignment); 128 } 129 130 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 131 assert(!Packed && "Alignment is wrong even with a packed struct!"); 132 133 // Convert the struct to a packed struct. 134 ConvertStructToPacked(); 135 136 // After we pack the struct, we may need to insert padding. 137 if (NextFieldOffsetInChars < FieldOffsetInChars) { 138 // We need to append padding. 139 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 140 141 assert(NextFieldOffsetInChars == FieldOffsetInChars && 142 "Did not add enough padding!"); 143 } 144 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 145 } 146 147 // Add the field. 148 Elements.push_back(InitCst); 149 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 150 getSizeInChars(InitCst); 151 152 if (Packed) 153 assert(LLVMStructAlignment == CharUnits::One() && 154 "Packed struct not byte-aligned!"); 155 else 156 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 157 } 158 159 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 160 uint64_t FieldOffset, 161 llvm::ConstantInt *CI) { 162 const ASTContext &Context = CGM.getContext(); 163 const uint64_t CharWidth = Context.getCharWidth(); 164 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 165 if (FieldOffset > NextFieldOffsetInBits) { 166 // We need to add padding. 167 CharUnits PadSize = Context.toCharUnitsFromBits( 168 llvm::alignTo(FieldOffset - NextFieldOffsetInBits, 169 Context.getTargetInfo().getCharAlign())); 170 171 AppendPadding(PadSize); 172 } 173 174 uint64_t FieldSize = Field->getBitWidthValue(Context); 175 176 llvm::APInt FieldValue = CI->getValue(); 177 178 // Promote the size of FieldValue if necessary 179 // FIXME: This should never occur, but currently it can because initializer 180 // constants are cast to bool, and because clang is not enforcing bitfield 181 // width limits. 182 if (FieldSize > FieldValue.getBitWidth()) 183 FieldValue = FieldValue.zext(FieldSize); 184 185 // Truncate the size of FieldValue to the bit field size. 186 if (FieldSize < FieldValue.getBitWidth()) 187 FieldValue = FieldValue.trunc(FieldSize); 188 189 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 190 if (FieldOffset < NextFieldOffsetInBits) { 191 // Either part of the field or the entire field can go into the previous 192 // byte. 193 assert(!Elements.empty() && "Elements can't be empty!"); 194 195 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 196 197 bool FitsCompletelyInPreviousByte = 198 BitsInPreviousByte >= FieldValue.getBitWidth(); 199 200 llvm::APInt Tmp = FieldValue; 201 202 if (!FitsCompletelyInPreviousByte) { 203 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 204 205 if (CGM.getDataLayout().isBigEndian()) { 206 Tmp.lshrInPlace(NewFieldWidth); 207 Tmp = Tmp.trunc(BitsInPreviousByte); 208 209 // We want the remaining high bits. 210 FieldValue = FieldValue.trunc(NewFieldWidth); 211 } else { 212 Tmp = Tmp.trunc(BitsInPreviousByte); 213 214 // We want the remaining low bits. 215 FieldValue.lshrInPlace(BitsInPreviousByte); 216 FieldValue = FieldValue.trunc(NewFieldWidth); 217 } 218 } 219 220 Tmp = Tmp.zext(CharWidth); 221 if (CGM.getDataLayout().isBigEndian()) { 222 if (FitsCompletelyInPreviousByte) 223 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 224 } else { 225 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 226 } 227 228 // 'or' in the bits that go into the previous byte. 229 llvm::Value *LastElt = Elements.back(); 230 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 231 Tmp |= Val->getValue(); 232 else { 233 assert(isa<llvm::UndefValue>(LastElt)); 234 // If there is an undef field that we're adding to, it can either be a 235 // scalar undef (in which case, we just replace it with our field) or it 236 // is an array. If it is an array, we have to pull one byte off the 237 // array so that the other undef bytes stay around. 238 if (!isa<llvm::IntegerType>(LastElt->getType())) { 239 // The undef padding will be a multibyte array, create a new smaller 240 // padding and then an hole for our i8 to get plopped into. 241 assert(isa<llvm::ArrayType>(LastElt->getType()) && 242 "Expected array padding of undefs"); 243 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 244 assert(AT->getElementType()->isIntegerTy(CharWidth) && 245 AT->getNumElements() != 0 && 246 "Expected non-empty array padding of undefs"); 247 248 // Remove the padding array. 249 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 250 Elements.pop_back(); 251 252 // Add the padding back in two chunks. 253 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 254 AppendPadding(CharUnits::One()); 255 assert(isa<llvm::UndefValue>(Elements.back()) && 256 Elements.back()->getType()->isIntegerTy(CharWidth) && 257 "Padding addition didn't work right"); 258 } 259 } 260 261 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 262 263 if (FitsCompletelyInPreviousByte) 264 return; 265 } 266 267 while (FieldValue.getBitWidth() > CharWidth) { 268 llvm::APInt Tmp; 269 270 if (CGM.getDataLayout().isBigEndian()) { 271 // We want the high bits. 272 Tmp = 273 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 274 } else { 275 // We want the low bits. 276 Tmp = FieldValue.trunc(CharWidth); 277 278 FieldValue.lshrInPlace(CharWidth); 279 } 280 281 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 282 ++NextFieldOffsetInChars; 283 284 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 285 } 286 287 assert(FieldValue.getBitWidth() > 0 && 288 "Should have at least one bit left!"); 289 assert(FieldValue.getBitWidth() <= CharWidth && 290 "Should not have more than a byte left!"); 291 292 if (FieldValue.getBitWidth() < CharWidth) { 293 if (CGM.getDataLayout().isBigEndian()) { 294 unsigned BitWidth = FieldValue.getBitWidth(); 295 296 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 297 } else 298 FieldValue = FieldValue.zext(CharWidth); 299 } 300 301 // Append the last element. 302 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 303 FieldValue)); 304 ++NextFieldOffsetInChars; 305 } 306 307 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 308 if (PadSize.isZero()) 309 return; 310 311 llvm::Type *Ty = CGM.Int8Ty; 312 if (PadSize > CharUnits::One()) 313 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 314 315 llvm::Constant *C = llvm::UndefValue::get(Ty); 316 Elements.push_back(C); 317 assert(getAlignment(C) == CharUnits::One() && 318 "Padding must have 1 byte alignment!"); 319 320 NextFieldOffsetInChars += getSizeInChars(C); 321 } 322 323 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 324 assert(NextFieldOffsetInChars <= RecordSize && 325 "Size mismatch!"); 326 327 AppendPadding(RecordSize - NextFieldOffsetInChars); 328 } 329 330 void ConstStructBuilder::ConvertStructToPacked() { 331 SmallVector<llvm::Constant *, 16> PackedElements; 332 CharUnits ElementOffsetInChars = CharUnits::Zero(); 333 334 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 335 llvm::Constant *C = Elements[i]; 336 337 CharUnits ElementAlign = CharUnits::fromQuantity( 338 CGM.getDataLayout().getABITypeAlignment(C->getType())); 339 CharUnits AlignedElementOffsetInChars = 340 ElementOffsetInChars.alignTo(ElementAlign); 341 342 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 343 // We need some padding. 344 CharUnits NumChars = 345 AlignedElementOffsetInChars - ElementOffsetInChars; 346 347 llvm::Type *Ty = CGM.Int8Ty; 348 if (NumChars > CharUnits::One()) 349 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 350 351 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 352 PackedElements.push_back(Padding); 353 ElementOffsetInChars += getSizeInChars(Padding); 354 } 355 356 PackedElements.push_back(C); 357 ElementOffsetInChars += getSizeInChars(C); 358 } 359 360 assert(ElementOffsetInChars == NextFieldOffsetInChars && 361 "Packing the struct changed its size!"); 362 363 Elements.swap(PackedElements); 364 LLVMStructAlignment = CharUnits::One(); 365 Packed = true; 366 } 367 368 bool ConstStructBuilder::Build(InitListExpr *ILE) { 369 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 370 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 371 372 unsigned FieldNo = 0; 373 unsigned ElementNo = 0; 374 375 // Bail out if we have base classes. We could support these, but they only 376 // arise in C++1z where we will have already constant folded most interesting 377 // cases. FIXME: There are still a few more cases we can handle this way. 378 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 379 if (CXXRD->getNumBases()) 380 return false; 381 382 for (RecordDecl::field_iterator Field = RD->field_begin(), 383 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 384 // If this is a union, skip all the fields that aren't being initialized. 385 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 386 continue; 387 388 // Don't emit anonymous bitfields, they just affect layout. 389 if (Field->isUnnamedBitfield()) 390 continue; 391 392 // Get the initializer. A struct can include fields without initializers, 393 // we just use explicit null values for them. 394 llvm::Constant *EltInit; 395 if (ElementNo < ILE->getNumInits()) 396 EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++), 397 Field->getType()); 398 else 399 EltInit = Emitter.emitNullForMemory(Field->getType()); 400 401 if (!EltInit) 402 return false; 403 404 if (!Field->isBitField()) { 405 // Handle non-bitfield members. 406 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 407 } else { 408 // Otherwise we have a bitfield. 409 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 410 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 411 } else { 412 // We are trying to initialize a bitfield with a non-trivial constant, 413 // this must require run-time code. 414 return false; 415 } 416 } 417 } 418 419 return true; 420 } 421 422 namespace { 423 struct BaseInfo { 424 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 425 : Decl(Decl), Offset(Offset), Index(Index) { 426 } 427 428 const CXXRecordDecl *Decl; 429 CharUnits Offset; 430 unsigned Index; 431 432 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 433 }; 434 } 435 436 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 437 bool IsPrimaryBase, 438 const CXXRecordDecl *VTableClass, 439 CharUnits Offset) { 440 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 441 442 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 443 // Add a vtable pointer, if we need one and it hasn't already been added. 444 if (CD->isDynamicClass() && !IsPrimaryBase) { 445 llvm::Constant *VTableAddressPoint = 446 CGM.getCXXABI().getVTableAddressPointForConstExpr( 447 BaseSubobject(CD, Offset), VTableClass); 448 AppendBytes(Offset, VTableAddressPoint); 449 } 450 451 // Accumulate and sort bases, in order to visit them in address order, which 452 // may not be the same as declaration order. 453 SmallVector<BaseInfo, 8> Bases; 454 Bases.reserve(CD->getNumBases()); 455 unsigned BaseNo = 0; 456 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 457 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 458 assert(!Base->isVirtual() && "should not have virtual bases here"); 459 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 460 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 461 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 462 } 463 std::stable_sort(Bases.begin(), Bases.end()); 464 465 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 466 BaseInfo &Base = Bases[I]; 467 468 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 469 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 470 VTableClass, Offset + Base.Offset); 471 } 472 } 473 474 unsigned FieldNo = 0; 475 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 476 477 for (RecordDecl::field_iterator Field = RD->field_begin(), 478 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 479 // If this is a union, skip all the fields that aren't being initialized. 480 if (RD->isUnion() && Val.getUnionField() != *Field) 481 continue; 482 483 // Don't emit anonymous bitfields, they just affect layout. 484 if (Field->isUnnamedBitfield()) 485 continue; 486 487 // Emit the value of the initializer. 488 const APValue &FieldValue = 489 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 490 llvm::Constant *EltInit = 491 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 492 if (!EltInit) 493 return false; 494 495 if (!Field->isBitField()) { 496 // Handle non-bitfield members. 497 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 498 } else { 499 // Otherwise we have a bitfield. 500 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 501 cast<llvm::ConstantInt>(EltInit)); 502 } 503 } 504 505 return true; 506 } 507 508 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 509 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 510 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 511 512 CharUnits LayoutSizeInChars = Layout.getSize(); 513 514 if (NextFieldOffsetInChars > LayoutSizeInChars) { 515 // If the struct is bigger than the size of the record type, 516 // we must have a flexible array member at the end. 517 assert(RD->hasFlexibleArrayMember() && 518 "Must have flexible array member if struct is bigger than type!"); 519 520 // No tail padding is necessary. 521 } else { 522 // Append tail padding if necessary. 523 CharUnits LLVMSizeInChars = 524 NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 525 526 if (LLVMSizeInChars != LayoutSizeInChars) 527 AppendTailPadding(LayoutSizeInChars); 528 529 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 530 531 // Check if we need to convert the struct to a packed struct. 532 if (NextFieldOffsetInChars <= LayoutSizeInChars && 533 LLVMSizeInChars > LayoutSizeInChars) { 534 assert(!Packed && "Size mismatch!"); 535 536 ConvertStructToPacked(); 537 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 538 "Converting to packed did not help!"); 539 } 540 541 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 542 543 assert(LayoutSizeInChars == LLVMSizeInChars && 544 "Tail padding mismatch!"); 545 } 546 547 // Pick the type to use. If the type is layout identical to the ConvertType 548 // type then use it, otherwise use whatever the builder produced for us. 549 llvm::StructType *STy = 550 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 551 Elements, Packed); 552 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 553 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 554 if (ValSTy->isLayoutIdentical(STy)) 555 STy = ValSTy; 556 } 557 558 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 559 560 assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) == 561 getSizeInChars(Result) && 562 "Size mismatch!"); 563 564 return Result; 565 } 566 567 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 568 ConstExprEmitter *ExprEmitter, 569 llvm::ConstantStruct *Base, 570 InitListExpr *Updater, 571 QualType ValTy) { 572 ConstStructBuilder Builder(Emitter); 573 if (!Builder.Build(ExprEmitter, Base, Updater)) 574 return nullptr; 575 return Builder.Finalize(ValTy); 576 } 577 578 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 579 InitListExpr *ILE, 580 QualType ValTy) { 581 ConstStructBuilder Builder(Emitter); 582 583 if (!Builder.Build(ILE)) 584 return nullptr; 585 586 return Builder.Finalize(ValTy); 587 } 588 589 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 590 const APValue &Val, 591 QualType ValTy) { 592 ConstStructBuilder Builder(Emitter); 593 594 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 595 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 596 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 597 return nullptr; 598 599 return Builder.Finalize(ValTy); 600 } 601 602 603 //===----------------------------------------------------------------------===// 604 // ConstExprEmitter 605 //===----------------------------------------------------------------------===// 606 607 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 608 CodeGenFunction *CGF, 609 const CompoundLiteralExpr *E) { 610 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 611 if (llvm::GlobalVariable *Addr = 612 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 613 return ConstantAddress(Addr, Align); 614 615 LangAS addressSpace = E->getType().getAddressSpace(); 616 617 ConstantEmitter emitter(CGM, CGF); 618 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 619 addressSpace, E->getType()); 620 if (!C) { 621 assert(!E->isFileScope() && 622 "file-scope compound literal did not have constant initializer!"); 623 return ConstantAddress::invalid(); 624 } 625 626 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 627 CGM.isTypeConstant(E->getType(), true), 628 llvm::GlobalValue::InternalLinkage, 629 C, ".compoundliteral", nullptr, 630 llvm::GlobalVariable::NotThreadLocal, 631 CGM.getContext().getTargetAddressSpace(addressSpace)); 632 emitter.finalize(GV); 633 GV->setAlignment(Align.getQuantity()); 634 CGM.setAddrOfConstantCompoundLiteral(E, GV); 635 return ConstantAddress(GV, Align); 636 } 637 638 /// This class only needs to handle two cases: 639 /// 1) Literals (this is used by APValue emission to emit literals). 640 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 641 /// constant fold these types). 642 class ConstExprEmitter : 643 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 644 CodeGenModule &CGM; 645 ConstantEmitter &Emitter; 646 llvm::LLVMContext &VMContext; 647 public: 648 ConstExprEmitter(ConstantEmitter &emitter) 649 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 650 } 651 652 //===--------------------------------------------------------------------===// 653 // Visitor Methods 654 //===--------------------------------------------------------------------===// 655 656 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 657 return nullptr; 658 } 659 660 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 661 return Visit(PE->getSubExpr(), T); 662 } 663 664 llvm::Constant * 665 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 666 QualType T) { 667 return Visit(PE->getReplacement(), T); 668 } 669 670 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 671 QualType T) { 672 return Visit(GE->getResultExpr(), T); 673 } 674 675 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 676 return Visit(CE->getChosenSubExpr(), T); 677 } 678 679 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 680 return Visit(E->getInitializer(), T); 681 } 682 683 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 684 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 685 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 686 Expr *subExpr = E->getSubExpr(); 687 688 switch (E->getCastKind()) { 689 case CK_ToUnion: { 690 // GCC cast to union extension 691 assert(E->getType()->isUnionType() && 692 "Destination type is not union type!"); 693 694 auto field = E->getTargetUnionField(); 695 696 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 697 if (!C) return nullptr; 698 699 auto destTy = ConvertType(destType); 700 if (C->getType() == destTy) return C; 701 702 // Build a struct with the union sub-element as the first member, 703 // and padded to the appropriate size. 704 SmallVector<llvm::Constant*, 2> Elts; 705 SmallVector<llvm::Type*, 2> Types; 706 Elts.push_back(C); 707 Types.push_back(C->getType()); 708 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 709 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 710 711 assert(CurSize <= TotalSize && "Union size mismatch!"); 712 if (unsigned NumPadBytes = TotalSize - CurSize) { 713 llvm::Type *Ty = CGM.Int8Ty; 714 if (NumPadBytes > 1) 715 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 716 717 Elts.push_back(llvm::UndefValue::get(Ty)); 718 Types.push_back(Ty); 719 } 720 721 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 722 return llvm::ConstantStruct::get(STy, Elts); 723 } 724 725 case CK_AddressSpaceConversion: { 726 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 727 if (!C) return nullptr; 728 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 729 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 730 llvm::Type *destTy = ConvertType(E->getType()); 731 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 732 destAS, destTy); 733 } 734 735 case CK_LValueToRValue: 736 case CK_AtomicToNonAtomic: 737 case CK_NonAtomicToAtomic: 738 case CK_NoOp: 739 case CK_ConstructorConversion: 740 return Visit(subExpr, destType); 741 742 case CK_IntToOCLSampler: 743 llvm_unreachable("global sampler variables are not generated"); 744 745 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 746 747 case CK_BuiltinFnToFnPtr: 748 llvm_unreachable("builtin functions are handled elsewhere"); 749 750 case CK_ReinterpretMemberPointer: 751 case CK_DerivedToBaseMemberPointer: 752 case CK_BaseToDerivedMemberPointer: { 753 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 754 if (!C) return nullptr; 755 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 756 } 757 758 // These will never be supported. 759 case CK_ObjCObjectLValueCast: 760 case CK_ARCProduceObject: 761 case CK_ARCConsumeObject: 762 case CK_ARCReclaimReturnedObject: 763 case CK_ARCExtendBlockObject: 764 case CK_CopyAndAutoreleaseBlockObject: 765 return nullptr; 766 767 // These don't need to be handled here because Evaluate knows how to 768 // evaluate them in the cases where they can be folded. 769 case CK_BitCast: 770 case CK_ToVoid: 771 case CK_Dynamic: 772 case CK_LValueBitCast: 773 case CK_NullToMemberPointer: 774 case CK_UserDefinedConversion: 775 case CK_CPointerToObjCPointerCast: 776 case CK_BlockPointerToObjCPointerCast: 777 case CK_AnyPointerToBlockPointerCast: 778 case CK_ArrayToPointerDecay: 779 case CK_FunctionToPointerDecay: 780 case CK_BaseToDerived: 781 case CK_DerivedToBase: 782 case CK_UncheckedDerivedToBase: 783 case CK_MemberPointerToBoolean: 784 case CK_VectorSplat: 785 case CK_FloatingRealToComplex: 786 case CK_FloatingComplexToReal: 787 case CK_FloatingComplexToBoolean: 788 case CK_FloatingComplexCast: 789 case CK_FloatingComplexToIntegralComplex: 790 case CK_IntegralRealToComplex: 791 case CK_IntegralComplexToReal: 792 case CK_IntegralComplexToBoolean: 793 case CK_IntegralComplexCast: 794 case CK_IntegralComplexToFloatingComplex: 795 case CK_PointerToIntegral: 796 case CK_PointerToBoolean: 797 case CK_NullToPointer: 798 case CK_IntegralCast: 799 case CK_BooleanToSignedIntegral: 800 case CK_IntegralToPointer: 801 case CK_IntegralToBoolean: 802 case CK_IntegralToFloating: 803 case CK_FloatingToIntegral: 804 case CK_FloatingToBoolean: 805 case CK_FloatingCast: 806 case CK_ZeroToOCLEvent: 807 case CK_ZeroToOCLQueue: 808 return nullptr; 809 } 810 llvm_unreachable("Invalid CastKind"); 811 } 812 813 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) { 814 return Visit(DAE->getExpr(), T); 815 } 816 817 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 818 // No need for a DefaultInitExprScope: we don't handle 'this' in a 819 // constant expression. 820 return Visit(DIE->getExpr(), T); 821 } 822 823 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 824 if (!E->cleanupsHaveSideEffects()) 825 return Visit(E->getSubExpr(), T); 826 return nullptr; 827 } 828 829 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 830 QualType T) { 831 return Visit(E->GetTemporaryExpr(), T); 832 } 833 834 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 835 llvm::ArrayType *AType = 836 cast<llvm::ArrayType>(ConvertType(ILE->getType())); 837 llvm::Type *ElemTy = AType->getElementType(); 838 unsigned NumInitElements = ILE->getNumInits(); 839 unsigned NumElements = AType->getNumElements(); 840 841 // Initialising an array requires us to automatically 842 // initialise any elements that have not been initialised explicitly 843 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 844 845 QualType EltType = CGM.getContext().getAsArrayType(T)->getElementType(); 846 847 // Initialize remaining array elements. 848 llvm::Constant *fillC; 849 if (Expr *filler = ILE->getArrayFiller()) 850 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 851 else 852 fillC = Emitter.emitNullForMemory(EltType); 853 if (!fillC) 854 return nullptr; 855 856 // Try to use a ConstantAggregateZero if we can. 857 if (fillC->isNullValue() && !NumInitableElts) 858 return llvm::ConstantAggregateZero::get(AType); 859 860 // Copy initializer elements. 861 SmallVector<llvm::Constant*, 16> Elts; 862 Elts.reserve(NumInitableElts + NumElements); 863 864 bool RewriteType = false; 865 for (unsigned i = 0; i < NumInitableElts; ++i) { 866 Expr *Init = ILE->getInit(i); 867 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 868 if (!C) 869 return nullptr; 870 RewriteType |= (C->getType() != ElemTy); 871 Elts.push_back(C); 872 } 873 874 RewriteType |= (fillC->getType() != ElemTy); 875 Elts.resize(NumElements, fillC); 876 877 if (RewriteType) { 878 // FIXME: Try to avoid packing the array 879 std::vector<llvm::Type*> Types; 880 Types.reserve(NumInitableElts + NumElements); 881 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 882 Types.push_back(Elts[i]->getType()); 883 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 884 Types, true); 885 return llvm::ConstantStruct::get(SType, Elts); 886 } 887 888 return llvm::ConstantArray::get(AType, Elts); 889 } 890 891 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 892 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 893 } 894 895 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 896 QualType T) { 897 return CGM.EmitNullConstant(T); 898 } 899 900 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 901 if (ILE->isTransparent()) 902 return Visit(ILE->getInit(0), T); 903 904 if (ILE->getType()->isArrayType()) 905 return EmitArrayInitialization(ILE, T); 906 907 if (ILE->getType()->isRecordType()) 908 return EmitRecordInitialization(ILE, T); 909 910 return nullptr; 911 } 912 913 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 914 InitListExpr *Updater, 915 QualType destType) { 916 if (auto destAT = CGM.getContext().getAsArrayType(destType)) { 917 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType)); 918 llvm::Type *ElemType = AType->getElementType(); 919 920 unsigned NumInitElements = Updater->getNumInits(); 921 unsigned NumElements = AType->getNumElements(); 922 923 std::vector<llvm::Constant *> Elts; 924 Elts.reserve(NumElements); 925 926 QualType destElemType = destAT->getElementType(); 927 928 if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base)) 929 for (unsigned i = 0; i != NumElements; ++i) 930 Elts.push_back(DataArray->getElementAsConstant(i)); 931 else if (auto Array = dyn_cast<llvm::ConstantArray>(Base)) 932 for (unsigned i = 0; i != NumElements; ++i) 933 Elts.push_back(Array->getOperand(i)); 934 else 935 return nullptr; // FIXME: other array types not implemented 936 937 llvm::Constant *fillC = nullptr; 938 if (Expr *filler = Updater->getArrayFiller()) 939 if (!isa<NoInitExpr>(filler)) 940 fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType); 941 bool RewriteType = (fillC && fillC->getType() != ElemType); 942 943 for (unsigned i = 0; i != NumElements; ++i) { 944 Expr *Init = nullptr; 945 if (i < NumInitElements) 946 Init = Updater->getInit(i); 947 948 if (!Init && fillC) 949 Elts[i] = fillC; 950 else if (!Init || isa<NoInitExpr>(Init)) 951 ; // Do nothing. 952 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 953 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType); 954 else 955 Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType); 956 957 if (!Elts[i]) 958 return nullptr; 959 RewriteType |= (Elts[i]->getType() != ElemType); 960 } 961 962 if (RewriteType) { 963 std::vector<llvm::Type *> Types; 964 Types.reserve(NumElements); 965 for (unsigned i = 0; i != NumElements; ++i) 966 Types.push_back(Elts[i]->getType()); 967 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 968 Types, true); 969 return llvm::ConstantStruct::get(SType, Elts); 970 } 971 972 return llvm::ConstantArray::get(AType, Elts); 973 } 974 975 if (destType->isRecordType()) 976 return ConstStructBuilder::BuildStruct(Emitter, this, 977 dyn_cast<llvm::ConstantStruct>(Base), Updater, destType); 978 979 return nullptr; 980 } 981 982 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 983 QualType destType) { 984 auto C = Visit(E->getBase(), destType); 985 if (!C) return nullptr; 986 return EmitDesignatedInitUpdater(C, E->getUpdater(), destType); 987 } 988 989 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 990 if (!E->getConstructor()->isTrivial()) 991 return nullptr; 992 993 // FIXME: We should not have to call getBaseElementType here. 994 const RecordType *RT = 995 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 996 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 997 998 // If the class doesn't have a trivial destructor, we can't emit it as a 999 // constant expr. 1000 if (!RD->hasTrivialDestructor()) 1001 return nullptr; 1002 1003 // Only copy and default constructors can be trivial. 1004 1005 1006 if (E->getNumArgs()) { 1007 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1008 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1009 "trivial ctor has argument but isn't a copy/move ctor"); 1010 1011 Expr *Arg = E->getArg(0); 1012 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1013 "argument to copy ctor is of wrong type"); 1014 1015 return Visit(Arg, Ty); 1016 } 1017 1018 return CGM.EmitNullConstant(Ty); 1019 } 1020 1021 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1022 return CGM.GetConstantArrayFromStringLiteral(E); 1023 } 1024 1025 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1026 // This must be an @encode initializing an array in a static initializer. 1027 // Don't emit it as the address of the string, emit the string data itself 1028 // as an inline array. 1029 std::string Str; 1030 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1031 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1032 1033 // Resize the string to the right size, adding zeros at the end, or 1034 // truncating as needed. 1035 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1036 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1037 } 1038 1039 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1040 return Visit(E->getSubExpr(), T); 1041 } 1042 1043 // Utility methods 1044 llvm::Type *ConvertType(QualType T) { 1045 return CGM.getTypes().ConvertType(T); 1046 } 1047 }; 1048 1049 } // end anonymous namespace. 1050 1051 bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter, 1052 llvm::ConstantStruct *Base, 1053 InitListExpr *Updater) { 1054 assert(Base && "base expression should not be empty"); 1055 1056 QualType ExprType = Updater->getType(); 1057 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1058 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1059 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1060 Base->getType()); 1061 unsigned FieldNo = -1; 1062 unsigned ElementNo = 0; 1063 1064 // Bail out if we have base classes. We could support these, but they only 1065 // arise in C++1z where we will have already constant folded most interesting 1066 // cases. FIXME: There are still a few more cases we can handle this way. 1067 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1068 if (CXXRD->getNumBases()) 1069 return false; 1070 1071 for (FieldDecl *Field : RD->fields()) { 1072 ++FieldNo; 1073 1074 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1075 continue; 1076 1077 // Skip anonymous bitfields. 1078 if (Field->isUnnamedBitfield()) 1079 continue; 1080 1081 llvm::Constant *EltInit = Base->getOperand(ElementNo); 1082 1083 // Bail out if the type of the ConstantStruct does not have the same layout 1084 // as the type of the InitListExpr. 1085 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1086 Layout.getFieldOffset(ElementNo) != 1087 BaseLayout->getElementOffsetInBits(ElementNo)) 1088 return false; 1089 1090 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1091 // we use values from the base expression. 1092 Expr *Init = nullptr; 1093 if (ElementNo < Updater->getNumInits()) 1094 Init = Updater->getInit(ElementNo); 1095 1096 if (!Init || isa<NoInitExpr>(Init)) 1097 ; // Do nothing. 1098 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1099 EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE, 1100 Field->getType()); 1101 else 1102 EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType()); 1103 1104 ++ElementNo; 1105 1106 if (!EltInit) 1107 return false; 1108 1109 if (!Field->isBitField()) 1110 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1111 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1112 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1113 else 1114 // Initializing a bitfield with a non-trivial constant? 1115 return false; 1116 } 1117 1118 return true; 1119 } 1120 1121 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1122 AbstractState saved) { 1123 Abstract = saved.OldValue; 1124 1125 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1126 "created a placeholder while doing an abstract emission?"); 1127 1128 // No validation necessary for now. 1129 // No cleanup to do for now. 1130 return C; 1131 } 1132 1133 llvm::Constant * 1134 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1135 auto state = pushAbstract(); 1136 auto C = tryEmitPrivateForVarInit(D); 1137 return validateAndPopAbstract(C, state); 1138 } 1139 1140 llvm::Constant * 1141 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1142 auto state = pushAbstract(); 1143 auto C = tryEmitPrivate(E, destType); 1144 return validateAndPopAbstract(C, state); 1145 } 1146 1147 llvm::Constant * 1148 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1149 auto state = pushAbstract(); 1150 auto C = tryEmitPrivate(value, destType); 1151 return validateAndPopAbstract(C, state); 1152 } 1153 1154 llvm::Constant * 1155 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1156 auto state = pushAbstract(); 1157 auto C = tryEmitPrivate(E, destType); 1158 C = validateAndPopAbstract(C, state); 1159 if (!C) { 1160 CGM.Error(E->getExprLoc(), 1161 "internal error: could not emit constant value \"abstractly\""); 1162 C = CGM.EmitNullConstant(destType); 1163 } 1164 return C; 1165 } 1166 1167 llvm::Constant * 1168 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1169 QualType destType) { 1170 auto state = pushAbstract(); 1171 auto C = tryEmitPrivate(value, destType); 1172 C = validateAndPopAbstract(C, state); 1173 if (!C) { 1174 CGM.Error(loc, 1175 "internal error: could not emit constant value \"abstractly\""); 1176 C = CGM.EmitNullConstant(destType); 1177 } 1178 return C; 1179 } 1180 1181 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1182 initializeNonAbstract(D.getType().getAddressSpace()); 1183 return markIfFailed(tryEmitPrivateForVarInit(D)); 1184 } 1185 1186 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1187 LangAS destAddrSpace, 1188 QualType destType) { 1189 initializeNonAbstract(destAddrSpace); 1190 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1191 } 1192 1193 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1194 LangAS destAddrSpace, 1195 QualType destType) { 1196 initializeNonAbstract(destAddrSpace); 1197 auto C = tryEmitPrivateForMemory(value, destType); 1198 assert(C && "couldn't emit constant value non-abstractly?"); 1199 return C; 1200 } 1201 1202 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1203 assert(!Abstract && "cannot get current address for abstract constant"); 1204 1205 1206 1207 // Make an obviously ill-formed global that should blow up compilation 1208 // if it survives. 1209 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1210 llvm::GlobalValue::PrivateLinkage, 1211 /*init*/ nullptr, 1212 /*name*/ "", 1213 /*before*/ nullptr, 1214 llvm::GlobalVariable::NotThreadLocal, 1215 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1216 1217 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1218 1219 return global; 1220 } 1221 1222 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1223 llvm::GlobalValue *placeholder) { 1224 assert(!PlaceholderAddresses.empty()); 1225 assert(PlaceholderAddresses.back().first == nullptr); 1226 assert(PlaceholderAddresses.back().second == placeholder); 1227 PlaceholderAddresses.back().first = signal; 1228 } 1229 1230 namespace { 1231 struct ReplacePlaceholders { 1232 CodeGenModule &CGM; 1233 1234 /// The base address of the global. 1235 llvm::Constant *Base; 1236 llvm::Type *BaseValueTy = nullptr; 1237 1238 /// The placeholder addresses that were registered during emission. 1239 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1240 1241 /// The locations of the placeholder signals. 1242 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1243 1244 /// The current index stack. We use a simple unsigned stack because 1245 /// we assume that placeholders will be relatively sparse in the 1246 /// initializer, but we cache the index values we find just in case. 1247 llvm::SmallVector<unsigned, 8> Indices; 1248 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1249 1250 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1251 ArrayRef<std::pair<llvm::Constant*, 1252 llvm::GlobalVariable*>> addresses) 1253 : CGM(CGM), Base(base), 1254 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1255 } 1256 1257 void replaceInInitializer(llvm::Constant *init) { 1258 // Remember the type of the top-most initializer. 1259 BaseValueTy = init->getType(); 1260 1261 // Initialize the stack. 1262 Indices.push_back(0); 1263 IndexValues.push_back(nullptr); 1264 1265 // Recurse into the initializer. 1266 findLocations(init); 1267 1268 // Check invariants. 1269 assert(IndexValues.size() == Indices.size() && "mismatch"); 1270 assert(Indices.size() == 1 && "didn't pop all indices"); 1271 1272 // Do the replacement; this basically invalidates 'init'. 1273 assert(Locations.size() == PlaceholderAddresses.size() && 1274 "missed a placeholder?"); 1275 1276 // We're iterating over a hashtable, so this would be a source of 1277 // non-determinism in compiler output *except* that we're just 1278 // messing around with llvm::Constant structures, which never itself 1279 // does anything that should be visible in compiler output. 1280 for (auto &entry : Locations) { 1281 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1282 entry.first->replaceAllUsesWith(entry.second); 1283 entry.first->eraseFromParent(); 1284 } 1285 } 1286 1287 private: 1288 void findLocations(llvm::Constant *init) { 1289 // Recurse into aggregates. 1290 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1291 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1292 Indices.push_back(i); 1293 IndexValues.push_back(nullptr); 1294 1295 findLocations(agg->getOperand(i)); 1296 1297 IndexValues.pop_back(); 1298 Indices.pop_back(); 1299 } 1300 return; 1301 } 1302 1303 // Otherwise, check for registered constants. 1304 while (true) { 1305 auto it = PlaceholderAddresses.find(init); 1306 if (it != PlaceholderAddresses.end()) { 1307 setLocation(it->second); 1308 break; 1309 } 1310 1311 // Look through bitcasts or other expressions. 1312 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1313 init = expr->getOperand(0); 1314 } else { 1315 break; 1316 } 1317 } 1318 } 1319 1320 void setLocation(llvm::GlobalVariable *placeholder) { 1321 assert(Locations.find(placeholder) == Locations.end() && 1322 "already found location for placeholder!"); 1323 1324 // Lazily fill in IndexValues with the values from Indices. 1325 // We do this in reverse because we should always have a strict 1326 // prefix of indices from the start. 1327 assert(Indices.size() == IndexValues.size()); 1328 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1329 if (IndexValues[i]) { 1330 #ifndef NDEBUG 1331 for (size_t j = 0; j != i + 1; ++j) { 1332 assert(IndexValues[j] && 1333 isa<llvm::ConstantInt>(IndexValues[j]) && 1334 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1335 == Indices[j]); 1336 } 1337 #endif 1338 break; 1339 } 1340 1341 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1342 } 1343 1344 // Form a GEP and then bitcast to the placeholder type so that the 1345 // replacement will succeed. 1346 llvm::Constant *location = 1347 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1348 Base, IndexValues); 1349 location = llvm::ConstantExpr::getBitCast(location, 1350 placeholder->getType()); 1351 1352 Locations.insert({placeholder, location}); 1353 } 1354 }; 1355 } 1356 1357 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1358 assert(InitializedNonAbstract && 1359 "finalizing emitter that was used for abstract emission?"); 1360 assert(!Finalized && "finalizing emitter multiple times"); 1361 assert(global->getInitializer()); 1362 1363 // Note that we might also be Failed. 1364 Finalized = true; 1365 1366 if (!PlaceholderAddresses.empty()) { 1367 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1368 .replaceInInitializer(global->getInitializer()); 1369 PlaceholderAddresses.clear(); // satisfy 1370 } 1371 } 1372 1373 ConstantEmitter::~ConstantEmitter() { 1374 assert((!InitializedNonAbstract || Finalized || Failed) && 1375 "not finalized after being initialized for non-abstract emission"); 1376 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1377 } 1378 1379 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1380 if (auto AT = type->getAs<AtomicType>()) { 1381 return CGM.getContext().getQualifiedType(AT->getValueType(), 1382 type.getQualifiers()); 1383 } 1384 return type; 1385 } 1386 1387 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1388 // Make a quick check if variable can be default NULL initialized 1389 // and avoid going through rest of code which may do, for c++11, 1390 // initialization of memory to all NULLs. 1391 if (!D.hasLocalStorage()) { 1392 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1393 if (Ty->isRecordType()) 1394 if (const CXXConstructExpr *E = 1395 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1396 const CXXConstructorDecl *CD = E->getConstructor(); 1397 if (CD->isTrivial() && CD->isDefaultConstructor()) 1398 return CGM.EmitNullConstant(D.getType()); 1399 } 1400 } 1401 1402 QualType destType = D.getType(); 1403 1404 // Try to emit the initializer. Note that this can allow some things that 1405 // are not allowed by tryEmitPrivateForMemory alone. 1406 if (auto value = D.evaluateValue()) { 1407 return tryEmitPrivateForMemory(*value, destType); 1408 } 1409 1410 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1411 // reference is a constant expression, and the reference binds to a temporary, 1412 // then constant initialization is performed. ConstExprEmitter will 1413 // incorrectly emit a prvalue constant in this case, and the calling code 1414 // interprets that as the (pointer) value of the reference, rather than the 1415 // desired value of the referee. 1416 if (destType->isReferenceType()) 1417 return nullptr; 1418 1419 const Expr *E = D.getInit(); 1420 assert(E && "No initializer to emit"); 1421 1422 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1423 auto C = 1424 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1425 return (C ? emitForMemory(C, destType) : nullptr); 1426 } 1427 1428 llvm::Constant * 1429 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1430 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1431 auto C = tryEmitAbstract(E, nonMemoryDestType); 1432 return (C ? emitForMemory(C, destType) : nullptr); 1433 } 1434 1435 llvm::Constant * 1436 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1437 QualType destType) { 1438 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1439 auto C = tryEmitAbstract(value, nonMemoryDestType); 1440 return (C ? emitForMemory(C, destType) : nullptr); 1441 } 1442 1443 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1444 QualType destType) { 1445 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1446 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1447 return (C ? emitForMemory(C, destType) : nullptr); 1448 } 1449 1450 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1451 QualType destType) { 1452 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1453 auto C = tryEmitPrivate(value, nonMemoryDestType); 1454 return (C ? emitForMemory(C, destType) : nullptr); 1455 } 1456 1457 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1458 llvm::Constant *C, 1459 QualType destType) { 1460 // For an _Atomic-qualified constant, we may need to add tail padding. 1461 if (auto AT = destType->getAs<AtomicType>()) { 1462 QualType destValueType = AT->getValueType(); 1463 C = emitForMemory(CGM, C, destValueType); 1464 1465 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1466 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1467 if (innerSize == outerSize) 1468 return C; 1469 1470 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1471 llvm::Constant *elts[] = { 1472 C, 1473 llvm::ConstantAggregateZero::get( 1474 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1475 }; 1476 return llvm::ConstantStruct::getAnon(elts); 1477 } 1478 1479 // Zero-extend bool. 1480 if (C->getType()->isIntegerTy(1)) { 1481 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1482 return llvm::ConstantExpr::getZExt(C, boolTy); 1483 } 1484 1485 return C; 1486 } 1487 1488 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1489 QualType destType) { 1490 Expr::EvalResult Result; 1491 1492 bool Success = false; 1493 1494 if (destType->isReferenceType()) 1495 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1496 else 1497 Success = E->EvaluateAsRValue(Result, CGM.getContext()); 1498 1499 llvm::Constant *C; 1500 if (Success && !Result.HasSideEffects) 1501 C = tryEmitPrivate(Result.Val, destType); 1502 else 1503 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1504 1505 return C; 1506 } 1507 1508 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1509 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1510 } 1511 1512 namespace { 1513 /// A struct which can be used to peephole certain kinds of finalization 1514 /// that normally happen during l-value emission. 1515 struct ConstantLValue { 1516 llvm::Constant *Value; 1517 bool HasOffsetApplied; 1518 1519 /*implicit*/ ConstantLValue(llvm::Constant *value, 1520 bool hasOffsetApplied = false) 1521 : Value(value), HasOffsetApplied(false) {} 1522 1523 /*implicit*/ ConstantLValue(ConstantAddress address) 1524 : ConstantLValue(address.getPointer()) {} 1525 }; 1526 1527 /// A helper class for emitting constant l-values. 1528 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1529 ConstantLValue> { 1530 CodeGenModule &CGM; 1531 ConstantEmitter &Emitter; 1532 const APValue &Value; 1533 QualType DestType; 1534 1535 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1536 friend StmtVisitorBase; 1537 1538 public: 1539 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1540 QualType destType) 1541 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1542 1543 llvm::Constant *tryEmit(); 1544 1545 private: 1546 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1547 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1548 1549 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1550 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1551 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1552 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1553 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1554 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1555 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1556 ConstantLValue VisitCallExpr(const CallExpr *E); 1557 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1558 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1559 ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); 1560 ConstantLValue VisitMaterializeTemporaryExpr( 1561 const MaterializeTemporaryExpr *E); 1562 1563 bool hasNonZeroOffset() const { 1564 return !Value.getLValueOffset().isZero(); 1565 } 1566 1567 /// Return the value offset. 1568 llvm::Constant *getOffset() { 1569 return llvm::ConstantInt::get(CGM.Int64Ty, 1570 Value.getLValueOffset().getQuantity()); 1571 } 1572 1573 /// Apply the value offset to the given constant. 1574 llvm::Constant *applyOffset(llvm::Constant *C) { 1575 if (!hasNonZeroOffset()) 1576 return C; 1577 1578 llvm::Type *origPtrTy = C->getType(); 1579 unsigned AS = origPtrTy->getPointerAddressSpace(); 1580 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1581 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1582 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1583 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1584 return C; 1585 } 1586 }; 1587 1588 } 1589 1590 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1591 const APValue::LValueBase &base = Value.getLValueBase(); 1592 1593 // Certain special array initializers are represented in APValue 1594 // as l-values referring to the base expression which generates the 1595 // array. This happens with e.g. string literals. These should 1596 // probably just get their own representation kind in APValue. 1597 if (DestType->isArrayType()) { 1598 assert(!hasNonZeroOffset() && "offset on array initializer"); 1599 auto expr = const_cast<Expr*>(base.get<const Expr*>()); 1600 return ConstExprEmitter(Emitter).Visit(expr, DestType); 1601 } 1602 1603 // Otherwise, the destination type should be a pointer or reference 1604 // type, but it might also be a cast thereof. 1605 // 1606 // FIXME: the chain of casts required should be reflected in the APValue. 1607 // We need this in order to correctly handle things like a ptrtoint of a 1608 // non-zero null pointer and addrspace casts that aren't trivially 1609 // represented in LLVM IR. 1610 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1611 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1612 1613 // If there's no base at all, this is a null or absolute pointer, 1614 // possibly cast back to an integer type. 1615 if (!base) { 1616 return tryEmitAbsolute(destTy); 1617 } 1618 1619 // Otherwise, try to emit the base. 1620 ConstantLValue result = tryEmitBase(base); 1621 1622 // If that failed, we're done. 1623 llvm::Constant *value = result.Value; 1624 if (!value) return nullptr; 1625 1626 // Apply the offset if necessary and not already done. 1627 if (!result.HasOffsetApplied) { 1628 value = applyOffset(value); 1629 } 1630 1631 // Convert to the appropriate type; this could be an lvalue for 1632 // an integer. FIXME: performAddrSpaceCast 1633 if (isa<llvm::PointerType>(destTy)) 1634 return llvm::ConstantExpr::getPointerCast(value, destTy); 1635 1636 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1637 } 1638 1639 /// Try to emit an absolute l-value, such as a null pointer or an integer 1640 /// bitcast to pointer type. 1641 llvm::Constant * 1642 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1643 auto offset = getOffset(); 1644 1645 // If we're producing a pointer, this is easy. 1646 if (auto destPtrTy = cast<llvm::PointerType>(destTy)) { 1647 if (Value.isNullPointer()) { 1648 // FIXME: integer offsets from non-zero null pointers. 1649 return CGM.getNullPointer(destPtrTy, DestType); 1650 } 1651 1652 // Convert the integer to a pointer-sized integer before converting it 1653 // to a pointer. 1654 // FIXME: signedness depends on the original integer type. 1655 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1656 llvm::Constant *C = offset; 1657 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1658 /*isSigned*/ false); 1659 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1660 return C; 1661 } 1662 1663 // Otherwise, we're basically returning an integer constant. 1664 1665 // FIXME: this does the wrong thing with ptrtoint of a null pointer, 1666 // but since we don't know the original pointer type, there's not much 1667 // we can do about it. 1668 1669 auto C = getOffset(); 1670 C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false); 1671 return C; 1672 } 1673 1674 ConstantLValue 1675 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1676 // Handle values. 1677 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1678 if (D->hasAttr<WeakRefAttr>()) 1679 return CGM.GetWeakRefReference(D).getPointer(); 1680 1681 if (auto FD = dyn_cast<FunctionDecl>(D)) 1682 return CGM.GetAddrOfFunction(FD); 1683 1684 if (auto VD = dyn_cast<VarDecl>(D)) { 1685 // We can never refer to a variable with local storage. 1686 if (!VD->hasLocalStorage()) { 1687 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1688 return CGM.GetAddrOfGlobalVar(VD); 1689 1690 if (VD->isLocalVarDecl()) { 1691 return CGM.getOrCreateStaticVarDecl( 1692 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1693 } 1694 } 1695 } 1696 1697 return nullptr; 1698 } 1699 1700 // Otherwise, it must be an expression. 1701 return Visit(base.get<const Expr*>()); 1702 } 1703 1704 ConstantLValue 1705 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1706 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1707 } 1708 1709 ConstantLValue 1710 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1711 return CGM.GetAddrOfConstantStringFromLiteral(E); 1712 } 1713 1714 ConstantLValue 1715 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1716 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1717 } 1718 1719 ConstantLValue 1720 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1721 auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString()); 1722 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType())); 1723 } 1724 1725 ConstantLValue 1726 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1727 if (auto CGF = Emitter.CGF) { 1728 LValue Res = CGF->EmitPredefinedLValue(E); 1729 return cast<ConstantAddress>(Res.getAddress()); 1730 } 1731 1732 auto kind = E->getIdentType(); 1733 if (kind == PredefinedExpr::PrettyFunction) { 1734 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1735 } 1736 1737 return CGM.GetAddrOfConstantCString("", ".tmp"); 1738 } 1739 1740 ConstantLValue 1741 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1742 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1743 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1744 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1745 CGM.getTypes().ConvertType(E->getType())); 1746 return Ptr; 1747 } 1748 1749 ConstantLValue 1750 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1751 unsigned builtin = E->getBuiltinCallee(); 1752 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1753 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1754 return nullptr; 1755 1756 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1757 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1758 return CGM.getObjCRuntime().GenerateConstantString(literal); 1759 } else { 1760 // FIXME: need to deal with UCN conversion issues. 1761 return CGM.GetAddrOfConstantCFString(literal); 1762 } 1763 } 1764 1765 ConstantLValue 1766 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 1767 StringRef functionName; 1768 if (auto CGF = Emitter.CGF) 1769 functionName = CGF->CurFn->getName(); 1770 else 1771 functionName = "global"; 1772 1773 return CGM.GetAddrOfGlobalBlock(E, functionName); 1774 } 1775 1776 ConstantLValue 1777 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 1778 QualType T; 1779 if (E->isTypeOperand()) 1780 T = E->getTypeOperand(CGM.getContext()); 1781 else 1782 T = E->getExprOperand()->getType(); 1783 return CGM.GetAddrOfRTTIDescriptor(T); 1784 } 1785 1786 ConstantLValue 1787 ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 1788 return CGM.GetAddrOfUuidDescriptor(E); 1789 } 1790 1791 ConstantLValue 1792 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 1793 const MaterializeTemporaryExpr *E) { 1794 assert(E->getStorageDuration() == SD_Static); 1795 SmallVector<const Expr *, 2> CommaLHSs; 1796 SmallVector<SubobjectAdjustment, 2> Adjustments; 1797 const Expr *Inner = E->GetTemporaryExpr() 1798 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1799 return CGM.GetAddrOfGlobalTemporary(E, Inner); 1800 } 1801 1802 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 1803 QualType DestType) { 1804 switch (Value.getKind()) { 1805 case APValue::Uninitialized: 1806 llvm_unreachable("Constant expressions should be initialized."); 1807 case APValue::LValue: 1808 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 1809 case APValue::Int: 1810 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 1811 case APValue::ComplexInt: { 1812 llvm::Constant *Complex[2]; 1813 1814 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1815 Value.getComplexIntReal()); 1816 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 1817 Value.getComplexIntImag()); 1818 1819 // FIXME: the target may want to specify that this is packed. 1820 llvm::StructType *STy = 1821 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1822 return llvm::ConstantStruct::get(STy, Complex); 1823 } 1824 case APValue::Float: { 1825 const llvm::APFloat &Init = Value.getFloat(); 1826 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 1827 !CGM.getContext().getLangOpts().NativeHalfType && 1828 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1829 return llvm::ConstantInt::get(CGM.getLLVMContext(), 1830 Init.bitcastToAPInt()); 1831 else 1832 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 1833 } 1834 case APValue::ComplexFloat: { 1835 llvm::Constant *Complex[2]; 1836 1837 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1838 Value.getComplexFloatReal()); 1839 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 1840 Value.getComplexFloatImag()); 1841 1842 // FIXME: the target may want to specify that this is packed. 1843 llvm::StructType *STy = 1844 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 1845 return llvm::ConstantStruct::get(STy, Complex); 1846 } 1847 case APValue::Vector: { 1848 unsigned NumElts = Value.getVectorLength(); 1849 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1850 1851 for (unsigned I = 0; I != NumElts; ++I) { 1852 const APValue &Elt = Value.getVectorElt(I); 1853 if (Elt.isInt()) 1854 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 1855 else if (Elt.isFloat()) 1856 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 1857 else 1858 llvm_unreachable("unsupported vector element type"); 1859 } 1860 return llvm::ConstantVector::get(Inits); 1861 } 1862 case APValue::AddrLabelDiff: { 1863 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1864 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1865 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 1866 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 1867 if (!LHS || !RHS) return nullptr; 1868 1869 // Compute difference 1870 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 1871 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 1872 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 1873 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1874 1875 // LLVM is a bit sensitive about the exact format of the 1876 // address-of-label difference; make sure to truncate after 1877 // the subtraction. 1878 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1879 } 1880 case APValue::Struct: 1881 case APValue::Union: 1882 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 1883 case APValue::Array: { 1884 const ArrayType *CAT = CGM.getContext().getAsArrayType(DestType); 1885 unsigned NumElements = Value.getArraySize(); 1886 unsigned NumInitElts = Value.getArrayInitializedElts(); 1887 1888 // Emit array filler, if there is one. 1889 llvm::Constant *Filler = nullptr; 1890 if (Value.hasArrayFiller()) 1891 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 1892 CAT->getElementType()); 1893 1894 // Emit initializer elements. 1895 llvm::Type *CommonElementType = 1896 CGM.getTypes().ConvertType(CAT->getElementType()); 1897 1898 // Try to use a ConstantAggregateZero if we can. 1899 if (Filler && Filler->isNullValue() && !NumInitElts) { 1900 llvm::ArrayType *AType = 1901 llvm::ArrayType::get(CommonElementType, NumElements); 1902 return llvm::ConstantAggregateZero::get(AType); 1903 } 1904 1905 SmallVector<llvm::Constant*, 16> Elts; 1906 Elts.reserve(NumElements); 1907 for (unsigned I = 0; I < NumElements; ++I) { 1908 llvm::Constant *C = Filler; 1909 if (I < NumInitElts) { 1910 C = tryEmitPrivateForMemory(Value.getArrayInitializedElt(I), 1911 CAT->getElementType()); 1912 } else if (!Filler) { 1913 assert(Value.hasArrayFiller() && 1914 "Missing filler for implicit elements of initializer"); 1915 C = tryEmitPrivateForMemory(Value.getArrayFiller(), 1916 CAT->getElementType()); 1917 } 1918 if (!C) return nullptr; 1919 1920 if (I == 0) 1921 CommonElementType = C->getType(); 1922 else if (C->getType() != CommonElementType) 1923 CommonElementType = nullptr; 1924 Elts.push_back(C); 1925 } 1926 1927 if (!CommonElementType) { 1928 // FIXME: Try to avoid packing the array 1929 std::vector<llvm::Type*> Types; 1930 Types.reserve(NumElements); 1931 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 1932 Types.push_back(Elts[i]->getType()); 1933 llvm::StructType *SType = 1934 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 1935 return llvm::ConstantStruct::get(SType, Elts); 1936 } 1937 1938 llvm::ArrayType *AType = 1939 llvm::ArrayType::get(CommonElementType, NumElements); 1940 return llvm::ConstantArray::get(AType, Elts); 1941 } 1942 case APValue::MemberPointer: 1943 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 1944 } 1945 llvm_unreachable("Unknown APValue kind"); 1946 } 1947 1948 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 1949 const CompoundLiteralExpr *E) { 1950 return EmittedCompoundLiterals.lookup(E); 1951 } 1952 1953 void CodeGenModule::setAddrOfConstantCompoundLiteral( 1954 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 1955 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 1956 (void)Ok; 1957 assert(Ok && "CLE has already been emitted!"); 1958 } 1959 1960 ConstantAddress 1961 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1962 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1963 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 1964 } 1965 1966 llvm::Constant * 1967 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1968 // Member pointer constants always have a very particular form. 1969 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1970 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1971 1972 // A member function pointer. 1973 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 1974 return getCXXABI().EmitMemberFunctionPointer(method); 1975 1976 // Otherwise, a member data pointer. 1977 uint64_t fieldOffset = getContext().getFieldOffset(decl); 1978 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 1979 return getCXXABI().EmitMemberDataPointer(type, chars); 1980 } 1981 1982 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1983 llvm::Type *baseType, 1984 const CXXRecordDecl *base); 1985 1986 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 1987 const RecordDecl *record, 1988 bool asCompleteObject) { 1989 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 1990 llvm::StructType *structure = 1991 (asCompleteObject ? layout.getLLVMType() 1992 : layout.getBaseSubobjectLLVMType()); 1993 1994 unsigned numElements = structure->getNumElements(); 1995 std::vector<llvm::Constant *> elements(numElements); 1996 1997 auto CXXR = dyn_cast<CXXRecordDecl>(record); 1998 // Fill in all the bases. 1999 if (CXXR) { 2000 for (const auto &I : CXXR->bases()) { 2001 if (I.isVirtual()) { 2002 // Ignore virtual bases; if we're laying out for a complete 2003 // object, we'll lay these out later. 2004 continue; 2005 } 2006 2007 const CXXRecordDecl *base = 2008 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2009 2010 // Ignore empty bases. 2011 if (base->isEmpty() || 2012 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2013 .isZero()) 2014 continue; 2015 2016 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2017 llvm::Type *baseType = structure->getElementType(fieldIndex); 2018 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2019 } 2020 } 2021 2022 // Fill in all the fields. 2023 for (const auto *Field : record->fields()) { 2024 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2025 // will fill in later.) 2026 if (!Field->isBitField()) { 2027 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2028 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2029 } 2030 2031 // For unions, stop after the first named field. 2032 if (record->isUnion()) { 2033 if (Field->getIdentifier()) 2034 break; 2035 if (const auto *FieldRD = 2036 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 2037 if (FieldRD->findFirstNamedDataMember()) 2038 break; 2039 } 2040 } 2041 2042 // Fill in the virtual bases, if we're working with the complete object. 2043 if (CXXR && asCompleteObject) { 2044 for (const auto &I : CXXR->vbases()) { 2045 const CXXRecordDecl *base = 2046 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2047 2048 // Ignore empty bases. 2049 if (base->isEmpty()) 2050 continue; 2051 2052 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2053 2054 // We might have already laid this field out. 2055 if (elements[fieldIndex]) continue; 2056 2057 llvm::Type *baseType = structure->getElementType(fieldIndex); 2058 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2059 } 2060 } 2061 2062 // Now go through all other fields and zero them out. 2063 for (unsigned i = 0; i != numElements; ++i) { 2064 if (!elements[i]) 2065 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2066 } 2067 2068 return llvm::ConstantStruct::get(structure, elements); 2069 } 2070 2071 /// Emit the null constant for a base subobject. 2072 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2073 llvm::Type *baseType, 2074 const CXXRecordDecl *base) { 2075 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2076 2077 // Just zero out bases that don't have any pointer to data members. 2078 if (baseLayout.isZeroInitializableAsBase()) 2079 return llvm::Constant::getNullValue(baseType); 2080 2081 // Otherwise, we can just use its null constant. 2082 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2083 } 2084 2085 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2086 QualType T) { 2087 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2088 } 2089 2090 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2091 if (T->getAs<PointerType>()) 2092 return getNullPointer( 2093 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2094 2095 if (getTypes().isZeroInitializable(T)) 2096 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2097 2098 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2099 llvm::ArrayType *ATy = 2100 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2101 2102 QualType ElementTy = CAT->getElementType(); 2103 2104 llvm::Constant *Element = 2105 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2106 unsigned NumElements = CAT->getSize().getZExtValue(); 2107 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2108 return llvm::ConstantArray::get(ATy, Array); 2109 } 2110 2111 if (const RecordType *RT = T->getAs<RecordType>()) 2112 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2113 2114 assert(T->isMemberDataPointerType() && 2115 "Should only see pointers to data members here!"); 2116 2117 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2118 } 2119 2120 llvm::Constant * 2121 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2122 return ::EmitNullConstant(*this, Record, false); 2123 } 2124