1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "llvm/Intrinsics.h" 18 using namespace clang; 19 using namespace CodeGen; 20 21 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 22 llvm::Value *Callee, 23 ReturnValueSlot ReturnValue, 24 llvm::Value *This, 25 llvm::Value *VTT, 26 CallExpr::const_arg_iterator ArgBeg, 27 CallExpr::const_arg_iterator ArgEnd) { 28 assert(MD->isInstance() && 29 "Trying to emit a member call expr on a static method!"); 30 31 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 32 33 CallArgList Args; 34 35 // Push the this ptr. 36 Args.push_back(std::make_pair(RValue::get(This), 37 MD->getThisType(getContext()))); 38 39 // If there is a VTT parameter, emit it. 40 if (VTT) { 41 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 42 Args.push_back(std::make_pair(RValue::get(VTT), T)); 43 } 44 45 // And the rest of the call args 46 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 47 48 QualType ResultType = FPT->getResultType(); 49 return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args, 50 FPT->getExtInfo()), 51 Callee, ReturnValue, Args, MD); 52 } 53 54 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 55 /// expr can be devirtualized. 56 static bool canDevirtualizeMemberFunctionCalls(const Expr *Base) { 57 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 58 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 59 // This is a record decl. We know the type and can devirtualize it. 60 return VD->getType()->isRecordType(); 61 } 62 63 return false; 64 } 65 66 // We can always devirtualize calls on temporary object expressions. 67 if (isa<CXXConstructExpr>(Base)) 68 return true; 69 70 // And calls on bound temporaries. 71 if (isa<CXXBindTemporaryExpr>(Base)) 72 return true; 73 74 // Check if this is a call expr that returns a record type. 75 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 76 return CE->getCallReturnType()->isRecordType(); 77 78 // We can't devirtualize the call. 79 return false; 80 } 81 82 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 83 ReturnValueSlot ReturnValue) { 84 if (isa<BinaryOperator>(CE->getCallee()->IgnoreParens())) 85 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 86 87 const MemberExpr *ME = cast<MemberExpr>(CE->getCallee()->IgnoreParens()); 88 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 89 90 if (MD->isStatic()) { 91 // The method is static, emit it as we would a regular call. 92 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 93 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 94 ReturnValue, CE->arg_begin(), CE->arg_end()); 95 } 96 97 // Compute the object pointer. 98 llvm::Value *This; 99 if (ME->isArrow()) 100 This = EmitScalarExpr(ME->getBase()); 101 else { 102 LValue BaseLV = EmitLValue(ME->getBase()); 103 This = BaseLV.getAddress(); 104 } 105 106 if (MD->isTrivial()) { 107 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 108 109 assert(MD->isCopyAssignment() && "unknown trivial member function"); 110 // We don't like to generate the trivial copy assignment operator when 111 // it isn't necessary; just produce the proper effect here. 112 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 113 EmitAggregateCopy(This, RHS, CE->getType()); 114 return RValue::get(This); 115 } 116 117 // Compute the function type we're calling. 118 const CGFunctionInfo &FInfo = 119 (isa<CXXDestructorDecl>(MD) 120 ? CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD), 121 Dtor_Complete) 122 : CGM.getTypes().getFunctionInfo(MD)); 123 124 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 125 const llvm::Type *Ty 126 = CGM.getTypes().GetFunctionType(FInfo, FPT->isVariadic()); 127 128 // C++ [class.virtual]p12: 129 // Explicit qualification with the scope operator (5.1) suppresses the 130 // virtual call mechanism. 131 // 132 // We also don't emit a virtual call if the base expression has a record type 133 // because then we know what the type is. 134 bool UseVirtualCall = MD->isVirtual() && !ME->hasQualifier() 135 && !canDevirtualizeMemberFunctionCalls(ME->getBase()); 136 137 llvm::Value *Callee; 138 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 139 if (UseVirtualCall) { 140 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 141 } else { 142 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 143 } 144 } else if (UseVirtualCall) { 145 Callee = BuildVirtualCall(MD, This, Ty); 146 } else { 147 Callee = CGM.GetAddrOfFunction(MD, Ty); 148 } 149 150 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 151 CE->arg_begin(), CE->arg_end()); 152 } 153 154 RValue 155 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 156 ReturnValueSlot ReturnValue) { 157 const BinaryOperator *BO = 158 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 159 const Expr *BaseExpr = BO->getLHS(); 160 const Expr *MemFnExpr = BO->getRHS(); 161 162 const MemberPointerType *MPT = 163 MemFnExpr->getType()->getAs<MemberPointerType>(); 164 165 const FunctionProtoType *FPT = 166 MPT->getPointeeType()->getAs<FunctionProtoType>(); 167 const CXXRecordDecl *RD = 168 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 169 170 // Get the member function pointer. 171 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 172 173 // Emit the 'this' pointer. 174 llvm::Value *This; 175 176 if (BO->getOpcode() == BO_PtrMemI) 177 This = EmitScalarExpr(BaseExpr); 178 else 179 This = EmitLValue(BaseExpr).getAddress(); 180 181 // Ask the ABI to load the callee. Note that This is modified. 182 llvm::Value *Callee = 183 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(CGF, This, MemFnPtr, MPT); 184 185 CallArgList Args; 186 187 QualType ThisType = 188 getContext().getPointerType(getContext().getTagDeclType(RD)); 189 190 // Push the this ptr. 191 Args.push_back(std::make_pair(RValue::get(This), ThisType)); 192 193 // And the rest of the call args 194 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 195 const FunctionType *BO_FPT = BO->getType()->getAs<FunctionProtoType>(); 196 return EmitCall(CGM.getTypes().getFunctionInfo(Args, BO_FPT), Callee, 197 ReturnValue, Args); 198 } 199 200 RValue 201 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 202 const CXXMethodDecl *MD, 203 ReturnValueSlot ReturnValue) { 204 assert(MD->isInstance() && 205 "Trying to emit a member call expr on a static method!"); 206 if (MD->isCopyAssignment()) { 207 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext()); 208 if (ClassDecl->hasTrivialCopyAssignment()) { 209 assert(!ClassDecl->hasUserDeclaredCopyAssignment() && 210 "EmitCXXOperatorMemberCallExpr - user declared copy assignment"); 211 LValue LV = EmitLValue(E->getArg(0)); 212 llvm::Value *This; 213 if (LV.isPropertyRef() || LV.isKVCRef()) { 214 llvm::Value *AggLoc = CreateMemTemp(E->getArg(1)->getType()); 215 EmitAggExpr(E->getArg(1), AggLoc, false /*VolatileDest*/); 216 if (LV.isPropertyRef()) 217 EmitObjCPropertySet(LV.getPropertyRefExpr(), 218 RValue::getAggregate(AggLoc, 219 false /*VolatileDest*/)); 220 else 221 EmitObjCPropertySet(LV.getKVCRefExpr(), 222 RValue::getAggregate(AggLoc, 223 false /*VolatileDest*/)); 224 return RValue::getAggregate(0, false); 225 } 226 else 227 This = LV.getAddress(); 228 229 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 230 QualType Ty = E->getType(); 231 EmitAggregateCopy(This, Src, Ty); 232 return RValue::get(This); 233 } 234 } 235 236 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 237 const llvm::Type *Ty = 238 CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD), 239 FPT->isVariadic()); 240 LValue LV = EmitLValue(E->getArg(0)); 241 llvm::Value *This; 242 if (LV.isPropertyRef() || LV.isKVCRef()) { 243 QualType QT = E->getArg(0)->getType(); 244 RValue RV = 245 LV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(LV, QT) 246 : EmitLoadOfKVCRefLValue(LV, QT); 247 assert (!RV.isScalar() && "EmitCXXOperatorMemberCallExpr"); 248 This = RV.getAggregateAddr(); 249 } 250 else 251 This = LV.getAddress(); 252 253 llvm::Value *Callee; 254 if (MD->isVirtual() && !canDevirtualizeMemberFunctionCalls(E->getArg(0))) 255 Callee = BuildVirtualCall(MD, This, Ty); 256 else 257 Callee = CGM.GetAddrOfFunction(MD, Ty); 258 259 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 260 E->arg_begin() + 1, E->arg_end()); 261 } 262 263 void 264 CodeGenFunction::EmitCXXConstructExpr(llvm::Value *Dest, 265 const CXXConstructExpr *E) { 266 assert(Dest && "Must have a destination!"); 267 const CXXConstructorDecl *CD = E->getConstructor(); 268 269 // If we require zero initialization before (or instead of) calling the 270 // constructor, as can be the case with a non-user-provided default 271 // constructor, emit the zero initialization now. 272 if (E->requiresZeroInitialization()) 273 EmitNullInitialization(Dest, E->getType()); 274 275 276 // If this is a call to a trivial default constructor, do nothing. 277 if (CD->isTrivial() && CD->isDefaultConstructor()) 278 return; 279 280 // Code gen optimization to eliminate copy constructor and return 281 // its first argument instead, if in fact that argument is a temporary 282 // object. 283 if (getContext().getLangOptions().ElideConstructors && E->isElidable()) { 284 if (const Expr *Arg = E->getArg(0)->getTemporaryObject()) { 285 EmitAggExpr(Arg, Dest, false); 286 return; 287 } 288 } 289 290 const ConstantArrayType *Array 291 = getContext().getAsConstantArrayType(E->getType()); 292 if (Array) { 293 QualType BaseElementTy = getContext().getBaseElementType(Array); 294 const llvm::Type *BasePtr = ConvertType(BaseElementTy); 295 BasePtr = llvm::PointerType::getUnqual(BasePtr); 296 llvm::Value *BaseAddrPtr = 297 Builder.CreateBitCast(Dest, BasePtr); 298 299 EmitCXXAggrConstructorCall(CD, Array, BaseAddrPtr, 300 E->arg_begin(), E->arg_end()); 301 } 302 else { 303 CXXCtorType Type = 304 (E->getConstructionKind() == CXXConstructExpr::CK_Complete) 305 ? Ctor_Complete : Ctor_Base; 306 bool ForVirtualBase = 307 E->getConstructionKind() == CXXConstructExpr::CK_VirtualBase; 308 309 // Call the constructor. 310 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest, 311 E->arg_begin(), E->arg_end()); 312 } 313 } 314 315 /// Check whether the given operator new[] is the global placement 316 /// operator new[]. 317 static bool IsPlacementOperatorNewArray(ASTContext &Ctx, 318 const FunctionDecl *Fn) { 319 // Must be in global scope. Note that allocation functions can't be 320 // declared in namespaces. 321 if (!Fn->getDeclContext()->getRedeclContext()->isFileContext()) 322 return false; 323 324 // Signature must be void *operator new[](size_t, void*). 325 // The size_t is common to all operator new[]s. 326 if (Fn->getNumParams() != 2) 327 return false; 328 329 CanQualType ParamType = Ctx.getCanonicalType(Fn->getParamDecl(1)->getType()); 330 return (ParamType == Ctx.VoidPtrTy); 331 } 332 333 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 334 const CXXNewExpr *E) { 335 if (!E->isArray()) 336 return CharUnits::Zero(); 337 338 // No cookie is required if the new operator being used is 339 // ::operator new[](size_t, void*). 340 const FunctionDecl *OperatorNew = E->getOperatorNew(); 341 if (IsPlacementOperatorNewArray(CGF.getContext(), OperatorNew)) 342 return CharUnits::Zero(); 343 344 return CGF.CGM.getCXXABI().GetArrayCookieSize(E->getAllocatedType()); 345 } 346 347 static llvm::Value *EmitCXXNewAllocSize(ASTContext &Context, 348 CodeGenFunction &CGF, 349 const CXXNewExpr *E, 350 llvm::Value *&NumElements, 351 llvm::Value *&SizeWithoutCookie) { 352 QualType ElemType = E->getAllocatedType(); 353 354 const llvm::IntegerType *SizeTy = 355 cast<llvm::IntegerType>(CGF.ConvertType(CGF.getContext().getSizeType())); 356 357 CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(ElemType); 358 359 if (!E->isArray()) { 360 SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity()); 361 return SizeWithoutCookie; 362 } 363 364 // Figure out the cookie size. 365 CharUnits CookieSize = CalculateCookiePadding(CGF, E); 366 367 // Emit the array size expression. 368 // We multiply the size of all dimensions for NumElements. 369 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 370 NumElements = CGF.EmitScalarExpr(E->getArraySize()); 371 assert(NumElements->getType() == SizeTy && "element count not a size_t"); 372 373 uint64_t ArraySizeMultiplier = 1; 374 while (const ConstantArrayType *CAT 375 = CGF.getContext().getAsConstantArrayType(ElemType)) { 376 ElemType = CAT->getElementType(); 377 ArraySizeMultiplier *= CAT->getSize().getZExtValue(); 378 } 379 380 llvm::Value *Size; 381 382 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 383 // Don't bloat the -O0 code. 384 if (llvm::ConstantInt *NumElementsC = 385 dyn_cast<llvm::ConstantInt>(NumElements)) { 386 llvm::APInt NEC = NumElementsC->getValue(); 387 unsigned SizeWidth = NEC.getBitWidth(); 388 389 // Determine if there is an overflow here by doing an extended multiply. 390 NEC.zext(SizeWidth*2); 391 llvm::APInt SC(SizeWidth*2, TypeSize.getQuantity()); 392 SC *= NEC; 393 394 if (!CookieSize.isZero()) { 395 // Save the current size without a cookie. We don't care if an 396 // overflow's already happened because SizeWithoutCookie isn't 397 // used if the allocator returns null or throws, as it should 398 // always do on an overflow. 399 llvm::APInt SWC = SC; 400 SWC.trunc(SizeWidth); 401 SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, SWC); 402 403 // Add the cookie size. 404 SC += llvm::APInt(SizeWidth*2, CookieSize.getQuantity()); 405 } 406 407 if (SC.countLeadingZeros() >= SizeWidth) { 408 SC.trunc(SizeWidth); 409 Size = llvm::ConstantInt::get(SizeTy, SC); 410 } else { 411 // On overflow, produce a -1 so operator new throws. 412 Size = llvm::Constant::getAllOnesValue(SizeTy); 413 } 414 415 // Scale NumElements while we're at it. 416 uint64_t N = NEC.getZExtValue() * ArraySizeMultiplier; 417 NumElements = llvm::ConstantInt::get(SizeTy, N); 418 419 // Otherwise, we don't need to do an overflow-checked multiplication if 420 // we're multiplying by one. 421 } else if (TypeSize.isOne()) { 422 assert(ArraySizeMultiplier == 1); 423 424 Size = NumElements; 425 426 // If we need a cookie, add its size in with an overflow check. 427 // This is maybe a little paranoid. 428 if (!CookieSize.isZero()) { 429 SizeWithoutCookie = Size; 430 431 llvm::Value *CookieSizeV 432 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 433 434 const llvm::Type *Types[] = { SizeTy }; 435 llvm::Value *UAddF 436 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1); 437 llvm::Value *AddRes 438 = CGF.Builder.CreateCall2(UAddF, Size, CookieSizeV); 439 440 Size = CGF.Builder.CreateExtractValue(AddRes, 0); 441 llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1); 442 Size = CGF.Builder.CreateSelect(DidOverflow, 443 llvm::ConstantInt::get(SizeTy, -1), 444 Size); 445 } 446 447 // Otherwise use the int.umul.with.overflow intrinsic. 448 } else { 449 llvm::Value *OutermostElementSize 450 = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity()); 451 452 llvm::Value *NumOutermostElements = NumElements; 453 454 // Scale NumElements by the array size multiplier. This might 455 // overflow, but only if the multiplication below also overflows, 456 // in which case this multiplication isn't used. 457 if (ArraySizeMultiplier != 1) 458 NumElements = CGF.Builder.CreateMul(NumElements, 459 llvm::ConstantInt::get(SizeTy, ArraySizeMultiplier)); 460 461 // The requested size of the outermost array is non-constant. 462 // Multiply that by the static size of the elements of that array; 463 // on unsigned overflow, set the size to -1 to trigger an 464 // exception from the allocation routine. This is sufficient to 465 // prevent buffer overruns from the allocator returning a 466 // seemingly valid pointer to insufficient space. This idea comes 467 // originally from MSVC, and GCC has an open bug requesting 468 // similar behavior: 469 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19351 470 // 471 // This will not be sufficient for C++0x, which requires a 472 // specific exception class (std::bad_array_new_length). 473 // That will require ABI support that has not yet been specified. 474 const llvm::Type *Types[] = { SizeTy }; 475 llvm::Value *UMulF 476 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, Types, 1); 477 llvm::Value *MulRes = CGF.Builder.CreateCall2(UMulF, NumOutermostElements, 478 OutermostElementSize); 479 480 // The overflow bit. 481 llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(MulRes, 1); 482 483 // The result of the multiplication. 484 Size = CGF.Builder.CreateExtractValue(MulRes, 0); 485 486 // If we have a cookie, we need to add that size in, too. 487 if (!CookieSize.isZero()) { 488 SizeWithoutCookie = Size; 489 490 llvm::Value *CookieSizeV 491 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 492 llvm::Value *UAddF 493 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1); 494 llvm::Value *AddRes 495 = CGF.Builder.CreateCall2(UAddF, SizeWithoutCookie, CookieSizeV); 496 497 Size = CGF.Builder.CreateExtractValue(AddRes, 0); 498 499 llvm::Value *AddDidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1); 500 DidOverflow = CGF.Builder.CreateAnd(DidOverflow, AddDidOverflow); 501 } 502 503 Size = CGF.Builder.CreateSelect(DidOverflow, 504 llvm::ConstantInt::get(SizeTy, -1), 505 Size); 506 } 507 508 if (CookieSize.isZero()) 509 SizeWithoutCookie = Size; 510 else 511 assert(SizeWithoutCookie && "didn't set SizeWithoutCookie?"); 512 513 return Size; 514 } 515 516 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E, 517 llvm::Value *NewPtr) { 518 519 assert(E->getNumConstructorArgs() == 1 && 520 "Can only have one argument to initializer of POD type."); 521 522 const Expr *Init = E->getConstructorArg(0); 523 QualType AllocType = E->getAllocatedType(); 524 525 unsigned Alignment = 526 CGF.getContext().getTypeAlignInChars(AllocType).getQuantity(); 527 if (!CGF.hasAggregateLLVMType(AllocType)) 528 CGF.EmitStoreOfScalar(CGF.EmitScalarExpr(Init), NewPtr, 529 AllocType.isVolatileQualified(), Alignment, 530 AllocType); 531 else if (AllocType->isAnyComplexType()) 532 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 533 AllocType.isVolatileQualified()); 534 else 535 CGF.EmitAggExpr(Init, NewPtr, AllocType.isVolatileQualified()); 536 } 537 538 void 539 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 540 llvm::Value *NewPtr, 541 llvm::Value *NumElements) { 542 // We have a POD type. 543 if (E->getNumConstructorArgs() == 0) 544 return; 545 546 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 547 548 // Create a temporary for the loop index and initialize it with 0. 549 llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index"); 550 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 551 Builder.CreateStore(Zero, IndexPtr); 552 553 // Start the loop with a block that tests the condition. 554 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 555 llvm::BasicBlock *AfterFor = createBasicBlock("for.end"); 556 557 EmitBlock(CondBlock); 558 559 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 560 561 // Generate: if (loop-index < number-of-elements fall to the loop body, 562 // otherwise, go to the block after the for-loop. 563 llvm::Value *Counter = Builder.CreateLoad(IndexPtr); 564 llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless"); 565 // If the condition is true, execute the body. 566 Builder.CreateCondBr(IsLess, ForBody, AfterFor); 567 568 EmitBlock(ForBody); 569 570 llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc"); 571 // Inside the loop body, emit the constructor call on the array element. 572 Counter = Builder.CreateLoad(IndexPtr); 573 llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter, 574 "arrayidx"); 575 StoreAnyExprIntoOneUnit(*this, E, Address); 576 577 EmitBlock(ContinueBlock); 578 579 // Emit the increment of the loop counter. 580 llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1); 581 Counter = Builder.CreateLoad(IndexPtr); 582 NextVal = Builder.CreateAdd(Counter, NextVal, "inc"); 583 Builder.CreateStore(NextVal, IndexPtr); 584 585 // Finally, branch back up to the condition for the next iteration. 586 EmitBranch(CondBlock); 587 588 // Emit the fall-through block. 589 EmitBlock(AfterFor, true); 590 } 591 592 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 593 llvm::Value *NewPtr, llvm::Value *Size) { 594 llvm::LLVMContext &VMContext = CGF.CGM.getLLVMContext(); 595 const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); 596 if (NewPtr->getType() != BP) 597 NewPtr = CGF.Builder.CreateBitCast(NewPtr, BP, "tmp"); 598 599 CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(BP, CGF.IntPtrTy), NewPtr, 600 llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)), 601 Size, 602 llvm::ConstantInt::get(CGF.Int32Ty, 603 CGF.getContext().getTypeAlign(T)/8), 604 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 605 0)); 606 } 607 608 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 609 llvm::Value *NewPtr, 610 llvm::Value *NumElements, 611 llvm::Value *AllocSizeWithoutCookie) { 612 if (E->isArray()) { 613 if (CXXConstructorDecl *Ctor = E->getConstructor()) { 614 bool RequiresZeroInitialization = false; 615 if (Ctor->getParent()->hasTrivialConstructor()) { 616 // If new expression did not specify value-initialization, then there 617 // is no initialization. 618 if (!E->hasInitializer() || Ctor->getParent()->isEmpty()) 619 return; 620 621 if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) { 622 // Optimization: since zero initialization will just set the memory 623 // to all zeroes, generate a single memset to do it in one shot. 624 EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr, 625 AllocSizeWithoutCookie); 626 return; 627 } 628 629 RequiresZeroInitialization = true; 630 } 631 632 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 633 E->constructor_arg_begin(), 634 E->constructor_arg_end(), 635 RequiresZeroInitialization); 636 return; 637 } else if (E->getNumConstructorArgs() == 1 && 638 isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) { 639 // Optimization: since zero initialization will just set the memory 640 // to all zeroes, generate a single memset to do it in one shot. 641 EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr, 642 AllocSizeWithoutCookie); 643 return; 644 } else { 645 CGF.EmitNewArrayInitializer(E, NewPtr, NumElements); 646 return; 647 } 648 } 649 650 if (CXXConstructorDecl *Ctor = E->getConstructor()) { 651 // Per C++ [expr.new]p15, if we have an initializer, then we're performing 652 // direct initialization. C++ [dcl.init]p5 requires that we 653 // zero-initialize storage if there are no user-declared constructors. 654 if (E->hasInitializer() && 655 !Ctor->getParent()->hasUserDeclaredConstructor() && 656 !Ctor->getParent()->isEmpty()) 657 CGF.EmitNullInitialization(NewPtr, E->getAllocatedType()); 658 659 CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 660 NewPtr, E->constructor_arg_begin(), 661 E->constructor_arg_end()); 662 663 return; 664 } 665 // We have a POD type. 666 if (E->getNumConstructorArgs() == 0) 667 return; 668 669 StoreAnyExprIntoOneUnit(CGF, E, NewPtr); 670 } 671 672 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 673 QualType AllocType = E->getAllocatedType(); 674 if (AllocType->isArrayType()) 675 while (const ArrayType *AType = getContext().getAsArrayType(AllocType)) 676 AllocType = AType->getElementType(); 677 678 FunctionDecl *NewFD = E->getOperatorNew(); 679 const FunctionProtoType *NewFTy = NewFD->getType()->getAs<FunctionProtoType>(); 680 681 CallArgList NewArgs; 682 683 // The allocation size is the first argument. 684 QualType SizeTy = getContext().getSizeType(); 685 686 llvm::Value *NumElements = 0; 687 llvm::Value *AllocSizeWithoutCookie = 0; 688 llvm::Value *AllocSize = EmitCXXNewAllocSize(getContext(), 689 *this, E, NumElements, 690 AllocSizeWithoutCookie); 691 692 NewArgs.push_back(std::make_pair(RValue::get(AllocSize), SizeTy)); 693 694 // Emit the rest of the arguments. 695 // FIXME: Ideally, this should just use EmitCallArgs. 696 CXXNewExpr::const_arg_iterator NewArg = E->placement_arg_begin(); 697 698 // First, use the types from the function type. 699 // We start at 1 here because the first argument (the allocation size) 700 // has already been emitted. 701 for (unsigned i = 1, e = NewFTy->getNumArgs(); i != e; ++i, ++NewArg) { 702 QualType ArgType = NewFTy->getArgType(i); 703 704 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 705 getTypePtr() == 706 getContext().getCanonicalType(NewArg->getType()).getTypePtr() && 707 "type mismatch in call argument!"); 708 709 NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType), 710 ArgType)); 711 712 } 713 714 // Either we've emitted all the call args, or we have a call to a 715 // variadic function. 716 assert((NewArg == E->placement_arg_end() || NewFTy->isVariadic()) && 717 "Extra arguments in non-variadic function!"); 718 719 // If we still have any arguments, emit them using the type of the argument. 720 for (CXXNewExpr::const_arg_iterator NewArgEnd = E->placement_arg_end(); 721 NewArg != NewArgEnd; ++NewArg) { 722 QualType ArgType = NewArg->getType(); 723 NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType), 724 ArgType)); 725 } 726 727 // Emit the call to new. 728 RValue RV = 729 EmitCall(CGM.getTypes().getFunctionInfo(NewArgs, NewFTy), 730 CGM.GetAddrOfFunction(NewFD), ReturnValueSlot(), NewArgs, NewFD); 731 732 // If an allocation function is declared with an empty exception specification 733 // it returns null to indicate failure to allocate storage. [expr.new]p13. 734 // (We don't need to check for null when there's no new initializer and 735 // we're allocating a POD type). 736 bool NullCheckResult = NewFTy->hasEmptyExceptionSpec() && 737 !(AllocType->isPODType() && !E->hasInitializer()); 738 739 llvm::BasicBlock *NullCheckSource = 0; 740 llvm::BasicBlock *NewNotNull = 0; 741 llvm::BasicBlock *NewEnd = 0; 742 743 llvm::Value *NewPtr = RV.getScalarVal(); 744 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace(); 745 746 if (NullCheckResult) { 747 NullCheckSource = Builder.GetInsertBlock(); 748 NewNotNull = createBasicBlock("new.notnull"); 749 NewEnd = createBasicBlock("new.end"); 750 751 llvm::Value *IsNull = Builder.CreateIsNull(NewPtr, "new.isnull"); 752 Builder.CreateCondBr(IsNull, NewEnd, NewNotNull); 753 EmitBlock(NewNotNull); 754 } 755 756 assert((AllocSize == AllocSizeWithoutCookie) == 757 CalculateCookiePadding(*this, E).isZero()); 758 if (AllocSize != AllocSizeWithoutCookie) { 759 assert(E->isArray()); 760 NewPtr = CGM.getCXXABI().InitializeArrayCookie(CGF, NewPtr, NumElements, 761 AllocType); 762 } 763 764 const llvm::Type *ElementPtrTy 765 = ConvertTypeForMem(AllocType)->getPointerTo(AS); 766 NewPtr = Builder.CreateBitCast(NewPtr, ElementPtrTy); 767 if (E->isArray()) { 768 EmitNewInitializer(*this, E, NewPtr, NumElements, AllocSizeWithoutCookie); 769 770 // NewPtr is a pointer to the base element type. If we're 771 // allocating an array of arrays, we'll need to cast back to the 772 // array pointer type. 773 const llvm::Type *ResultTy = ConvertTypeForMem(E->getType()); 774 if (NewPtr->getType() != ResultTy) 775 NewPtr = Builder.CreateBitCast(NewPtr, ResultTy); 776 } else { 777 EmitNewInitializer(*this, E, NewPtr, NumElements, AllocSizeWithoutCookie); 778 } 779 780 if (NullCheckResult) { 781 Builder.CreateBr(NewEnd); 782 llvm::BasicBlock *NotNullSource = Builder.GetInsertBlock(); 783 EmitBlock(NewEnd); 784 785 llvm::PHINode *PHI = Builder.CreatePHI(NewPtr->getType()); 786 PHI->reserveOperandSpace(2); 787 PHI->addIncoming(NewPtr, NotNullSource); 788 PHI->addIncoming(llvm::Constant::getNullValue(NewPtr->getType()), 789 NullCheckSource); 790 791 NewPtr = PHI; 792 } 793 794 return NewPtr; 795 } 796 797 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 798 llvm::Value *Ptr, 799 QualType DeleteTy) { 800 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 801 802 const FunctionProtoType *DeleteFTy = 803 DeleteFD->getType()->getAs<FunctionProtoType>(); 804 805 CallArgList DeleteArgs; 806 807 // Check if we need to pass the size to the delete operator. 808 llvm::Value *Size = 0; 809 QualType SizeTy; 810 if (DeleteFTy->getNumArgs() == 2) { 811 SizeTy = DeleteFTy->getArgType(1); 812 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 813 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 814 DeleteTypeSize.getQuantity()); 815 } 816 817 QualType ArgTy = DeleteFTy->getArgType(0); 818 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 819 DeleteArgs.push_back(std::make_pair(RValue::get(DeletePtr), ArgTy)); 820 821 if (Size) 822 DeleteArgs.push_back(std::make_pair(RValue::get(Size), SizeTy)); 823 824 // Emit the call to delete. 825 EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy), 826 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 827 DeleteArgs, DeleteFD); 828 } 829 830 namespace { 831 /// Calls the given 'operator delete' on a single object. 832 struct CallObjectDelete : EHScopeStack::Cleanup { 833 llvm::Value *Ptr; 834 const FunctionDecl *OperatorDelete; 835 QualType ElementType; 836 837 CallObjectDelete(llvm::Value *Ptr, 838 const FunctionDecl *OperatorDelete, 839 QualType ElementType) 840 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 841 842 void Emit(CodeGenFunction &CGF, bool IsForEH) { 843 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 844 } 845 }; 846 } 847 848 /// Emit the code for deleting a single object. 849 static void EmitObjectDelete(CodeGenFunction &CGF, 850 const FunctionDecl *OperatorDelete, 851 llvm::Value *Ptr, 852 QualType ElementType) { 853 // Find the destructor for the type, if applicable. If the 854 // destructor is virtual, we'll just emit the vcall and return. 855 const CXXDestructorDecl *Dtor = 0; 856 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 857 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 858 if (!RD->hasTrivialDestructor()) { 859 Dtor = RD->getDestructor(); 860 861 if (Dtor->isVirtual()) { 862 const llvm::Type *Ty = 863 CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor, 864 Dtor_Complete), 865 /*isVariadic=*/false); 866 867 llvm::Value *Callee 868 = CGF.BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty); 869 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 870 0, 0); 871 872 // The dtor took care of deleting the object. 873 return; 874 } 875 } 876 } 877 878 // Make sure that we call delete even if the dtor throws. 879 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 880 Ptr, OperatorDelete, ElementType); 881 882 if (Dtor) 883 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 884 /*ForVirtualBase=*/false, Ptr); 885 886 CGF.PopCleanupBlock(); 887 } 888 889 namespace { 890 /// Calls the given 'operator delete' on an array of objects. 891 struct CallArrayDelete : EHScopeStack::Cleanup { 892 llvm::Value *Ptr; 893 const FunctionDecl *OperatorDelete; 894 llvm::Value *NumElements; 895 QualType ElementType; 896 CharUnits CookieSize; 897 898 CallArrayDelete(llvm::Value *Ptr, 899 const FunctionDecl *OperatorDelete, 900 llvm::Value *NumElements, 901 QualType ElementType, 902 CharUnits CookieSize) 903 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 904 ElementType(ElementType), CookieSize(CookieSize) {} 905 906 void Emit(CodeGenFunction &CGF, bool IsForEH) { 907 const FunctionProtoType *DeleteFTy = 908 OperatorDelete->getType()->getAs<FunctionProtoType>(); 909 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 910 911 CallArgList Args; 912 913 // Pass the pointer as the first argument. 914 QualType VoidPtrTy = DeleteFTy->getArgType(0); 915 llvm::Value *DeletePtr 916 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 917 Args.push_back(std::make_pair(RValue::get(DeletePtr), VoidPtrTy)); 918 919 // Pass the original requested size as the second argument. 920 if (DeleteFTy->getNumArgs() == 2) { 921 QualType size_t = DeleteFTy->getArgType(1); 922 const llvm::IntegerType *SizeTy 923 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 924 925 CharUnits ElementTypeSize = 926 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 927 928 // The size of an element, multiplied by the number of elements. 929 llvm::Value *Size 930 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 931 Size = CGF.Builder.CreateMul(Size, NumElements); 932 933 // Plus the size of the cookie if applicable. 934 if (!CookieSize.isZero()) { 935 llvm::Value *CookieSizeV 936 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 937 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 938 } 939 940 Args.push_back(std::make_pair(RValue::get(Size), size_t)); 941 } 942 943 // Emit the call to delete. 944 CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy), 945 CGF.CGM.GetAddrOfFunction(OperatorDelete), 946 ReturnValueSlot(), Args, OperatorDelete); 947 } 948 }; 949 } 950 951 /// Emit the code for deleting an array of objects. 952 static void EmitArrayDelete(CodeGenFunction &CGF, 953 const FunctionDecl *OperatorDelete, 954 llvm::Value *Ptr, 955 QualType ElementType) { 956 llvm::Value *NumElements = 0; 957 llvm::Value *AllocatedPtr = 0; 958 CharUnits CookieSize; 959 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, Ptr, ElementType, 960 NumElements, AllocatedPtr, CookieSize); 961 962 assert(AllocatedPtr && "ReadArrayCookie didn't set AllocatedPtr"); 963 964 // Make sure that we call delete even if one of the dtors throws. 965 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 966 AllocatedPtr, OperatorDelete, 967 NumElements, ElementType, 968 CookieSize); 969 970 if (const CXXRecordDecl *RD = ElementType->getAsCXXRecordDecl()) { 971 if (!RD->hasTrivialDestructor()) { 972 assert(NumElements && "ReadArrayCookie didn't find element count" 973 " for a class with destructor"); 974 CGF.EmitCXXAggrDestructorCall(RD->getDestructor(), NumElements, Ptr); 975 } 976 } 977 978 CGF.PopCleanupBlock(); 979 } 980 981 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 982 983 // Get at the argument before we performed the implicit conversion 984 // to void*. 985 const Expr *Arg = E->getArgument(); 986 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { 987 if (ICE->getCastKind() != CK_UserDefinedConversion && 988 ICE->getType()->isVoidPointerType()) 989 Arg = ICE->getSubExpr(); 990 else 991 break; 992 } 993 994 llvm::Value *Ptr = EmitScalarExpr(Arg); 995 996 // Null check the pointer. 997 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 998 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 999 1000 llvm::Value *IsNull = 1001 Builder.CreateICmpEQ(Ptr, llvm::Constant::getNullValue(Ptr->getType()), 1002 "isnull"); 1003 1004 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1005 EmitBlock(DeleteNotNull); 1006 1007 // We might be deleting a pointer to array. If so, GEP down to the 1008 // first non-array element. 1009 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1010 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1011 if (DeleteTy->isConstantArrayType()) { 1012 llvm::Value *Zero = Builder.getInt32(0); 1013 llvm::SmallVector<llvm::Value*,8> GEP; 1014 1015 GEP.push_back(Zero); // point at the outermost array 1016 1017 // For each layer of array type we're pointing at: 1018 while (const ConstantArrayType *Arr 1019 = getContext().getAsConstantArrayType(DeleteTy)) { 1020 // 1. Unpeel the array type. 1021 DeleteTy = Arr->getElementType(); 1022 1023 // 2. GEP to the first element of the array. 1024 GEP.push_back(Zero); 1025 } 1026 1027 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first"); 1028 } 1029 1030 assert(ConvertTypeForMem(DeleteTy) == 1031 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1032 1033 if (E->isArrayForm()) { 1034 EmitArrayDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy); 1035 } else { 1036 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy); 1037 } 1038 1039 EmitBlock(DeleteEnd); 1040 } 1041 1042 llvm::Value * CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1043 QualType Ty = E->getType(); 1044 const llvm::Type *LTy = ConvertType(Ty)->getPointerTo(); 1045 1046 if (E->isTypeOperand()) { 1047 llvm::Constant *TypeInfo = 1048 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1049 return Builder.CreateBitCast(TypeInfo, LTy); 1050 } 1051 1052 Expr *subE = E->getExprOperand(); 1053 Ty = subE->getType(); 1054 CanQualType CanTy = CGM.getContext().getCanonicalType(Ty); 1055 Ty = CanTy.getUnqualifiedType().getNonReferenceType(); 1056 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1057 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1058 if (RD->isPolymorphic()) { 1059 // FIXME: if subE is an lvalue do 1060 LValue Obj = EmitLValue(subE); 1061 llvm::Value *This = Obj.getAddress(); 1062 LTy = LTy->getPointerTo()->getPointerTo(); 1063 llvm::Value *V = Builder.CreateBitCast(This, LTy); 1064 // We need to do a zero check for *p, unless it has NonNullAttr. 1065 // FIXME: PointerType->hasAttr<NonNullAttr>() 1066 bool CanBeZero = false; 1067 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(subE->IgnoreParens())) 1068 if (UO->getOpcode() == UO_Deref) 1069 CanBeZero = true; 1070 if (CanBeZero) { 1071 llvm::BasicBlock *NonZeroBlock = createBasicBlock(); 1072 llvm::BasicBlock *ZeroBlock = createBasicBlock(); 1073 1074 llvm::Value *Zero = llvm::Constant::getNullValue(LTy); 1075 Builder.CreateCondBr(Builder.CreateICmpNE(V, Zero), 1076 NonZeroBlock, ZeroBlock); 1077 EmitBlock(ZeroBlock); 1078 /// Call __cxa_bad_typeid 1079 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 1080 const llvm::FunctionType *FTy; 1081 FTy = llvm::FunctionType::get(ResultType, false); 1082 llvm::Value *F = CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1083 Builder.CreateCall(F)->setDoesNotReturn(); 1084 Builder.CreateUnreachable(); 1085 EmitBlock(NonZeroBlock); 1086 } 1087 V = Builder.CreateLoad(V, "vtable"); 1088 V = Builder.CreateConstInBoundsGEP1_64(V, -1ULL); 1089 V = Builder.CreateLoad(V); 1090 return V; 1091 } 1092 } 1093 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(Ty), LTy); 1094 } 1095 1096 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *V, 1097 const CXXDynamicCastExpr *DCE) { 1098 QualType SrcTy = DCE->getSubExpr()->getType(); 1099 QualType DestTy = DCE->getTypeAsWritten(); 1100 QualType InnerType = DestTy->getPointeeType(); 1101 1102 const llvm::Type *LTy = ConvertType(DCE->getType()); 1103 1104 bool CanBeZero = false; 1105 bool ToVoid = false; 1106 bool ThrowOnBad = false; 1107 if (DestTy->isPointerType()) { 1108 // FIXME: if PointerType->hasAttr<NonNullAttr>(), we don't set this 1109 CanBeZero = true; 1110 if (InnerType->isVoidType()) 1111 ToVoid = true; 1112 } else { 1113 LTy = LTy->getPointerTo(); 1114 1115 // FIXME: What if exceptions are disabled? 1116 ThrowOnBad = true; 1117 } 1118 1119 if (SrcTy->isPointerType() || SrcTy->isReferenceType()) 1120 SrcTy = SrcTy->getPointeeType(); 1121 SrcTy = SrcTy.getUnqualifiedType(); 1122 1123 if (DestTy->isPointerType() || DestTy->isReferenceType()) 1124 DestTy = DestTy->getPointeeType(); 1125 DestTy = DestTy.getUnqualifiedType(); 1126 1127 llvm::BasicBlock *ContBlock = createBasicBlock(); 1128 llvm::BasicBlock *NullBlock = 0; 1129 llvm::BasicBlock *NonZeroBlock = 0; 1130 if (CanBeZero) { 1131 NonZeroBlock = createBasicBlock(); 1132 NullBlock = createBasicBlock(); 1133 Builder.CreateCondBr(Builder.CreateIsNotNull(V), NonZeroBlock, NullBlock); 1134 EmitBlock(NonZeroBlock); 1135 } 1136 1137 llvm::BasicBlock *BadCastBlock = 0; 1138 1139 const llvm::Type *PtrDiffTy = ConvertType(getContext().getPointerDiffType()); 1140 1141 // See if this is a dynamic_cast(void*) 1142 if (ToVoid) { 1143 llvm::Value *This = V; 1144 V = Builder.CreateBitCast(This, PtrDiffTy->getPointerTo()->getPointerTo()); 1145 V = Builder.CreateLoad(V, "vtable"); 1146 V = Builder.CreateConstInBoundsGEP1_64(V, -2ULL); 1147 V = Builder.CreateLoad(V, "offset to top"); 1148 This = Builder.CreateBitCast(This, llvm::Type::getInt8PtrTy(VMContext)); 1149 V = Builder.CreateInBoundsGEP(This, V); 1150 V = Builder.CreateBitCast(V, LTy); 1151 } else { 1152 /// Call __dynamic_cast 1153 const llvm::Type *ResultType = llvm::Type::getInt8PtrTy(VMContext); 1154 const llvm::FunctionType *FTy; 1155 std::vector<const llvm::Type*> ArgTys; 1156 const llvm::Type *PtrToInt8Ty 1157 = llvm::Type::getInt8Ty(VMContext)->getPointerTo(); 1158 ArgTys.push_back(PtrToInt8Ty); 1159 ArgTys.push_back(PtrToInt8Ty); 1160 ArgTys.push_back(PtrToInt8Ty); 1161 ArgTys.push_back(PtrDiffTy); 1162 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 1163 1164 // FIXME: Calculate better hint. 1165 llvm::Value *hint = llvm::ConstantInt::get(PtrDiffTy, -1ULL); 1166 1167 assert(SrcTy->isRecordType() && "Src type must be record type!"); 1168 assert(DestTy->isRecordType() && "Dest type must be record type!"); 1169 1170 llvm::Value *SrcArg 1171 = CGM.GetAddrOfRTTIDescriptor(SrcTy.getUnqualifiedType()); 1172 llvm::Value *DestArg 1173 = CGM.GetAddrOfRTTIDescriptor(DestTy.getUnqualifiedType()); 1174 1175 V = Builder.CreateBitCast(V, PtrToInt8Ty); 1176 V = Builder.CreateCall4(CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"), 1177 V, SrcArg, DestArg, hint); 1178 V = Builder.CreateBitCast(V, LTy); 1179 1180 if (ThrowOnBad) { 1181 BadCastBlock = createBasicBlock(); 1182 Builder.CreateCondBr(Builder.CreateIsNotNull(V), ContBlock, BadCastBlock); 1183 EmitBlock(BadCastBlock); 1184 /// Invoke __cxa_bad_cast 1185 ResultType = llvm::Type::getVoidTy(VMContext); 1186 const llvm::FunctionType *FBadTy; 1187 FBadTy = llvm::FunctionType::get(ResultType, false); 1188 llvm::Value *F = CGM.CreateRuntimeFunction(FBadTy, "__cxa_bad_cast"); 1189 if (llvm::BasicBlock *InvokeDest = getInvokeDest()) { 1190 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 1191 Builder.CreateInvoke(F, Cont, InvokeDest)->setDoesNotReturn(); 1192 EmitBlock(Cont); 1193 } else { 1194 // FIXME: Does this ever make sense? 1195 Builder.CreateCall(F)->setDoesNotReturn(); 1196 } 1197 Builder.CreateUnreachable(); 1198 } 1199 } 1200 1201 if (CanBeZero) { 1202 Builder.CreateBr(ContBlock); 1203 EmitBlock(NullBlock); 1204 Builder.CreateBr(ContBlock); 1205 } 1206 EmitBlock(ContBlock); 1207 if (CanBeZero) { 1208 llvm::PHINode *PHI = Builder.CreatePHI(LTy); 1209 PHI->reserveOperandSpace(2); 1210 PHI->addIncoming(V, NonZeroBlock); 1211 PHI->addIncoming(llvm::Constant::getNullValue(LTy), NullBlock); 1212 V = PHI; 1213 } 1214 1215 return V; 1216 } 1217