1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCXXABI.h" 17 #include "CGObjCRuntime.h" 18 #include "CGDebugInfo.h" 19 #include "llvm/Intrinsics.h" 20 #include "llvm/Support/CallSite.h" 21 22 using namespace clang; 23 using namespace CodeGen; 24 25 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 26 llvm::Value *Callee, 27 ReturnValueSlot ReturnValue, 28 llvm::Value *This, 29 llvm::Value *VTT, 30 CallExpr::const_arg_iterator ArgBeg, 31 CallExpr::const_arg_iterator ArgEnd) { 32 assert(MD->isInstance() && 33 "Trying to emit a member call expr on a static method!"); 34 35 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 36 37 CallArgList Args; 38 39 // Push the this ptr. 40 Args.add(RValue::get(This), MD->getThisType(getContext())); 41 42 // If there is a VTT parameter, emit it. 43 if (VTT) { 44 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 45 Args.add(RValue::get(VTT), T); 46 } 47 48 // And the rest of the call args 49 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 50 51 QualType ResultType = FPT->getResultType(); 52 return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args, 53 FPT->getExtInfo()), 54 Callee, ReturnValue, Args, MD); 55 } 56 57 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) { 58 const Expr *E = Base; 59 60 while (true) { 61 E = E->IgnoreParens(); 62 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 63 if (CE->getCastKind() == CK_DerivedToBase || 64 CE->getCastKind() == CK_UncheckedDerivedToBase || 65 CE->getCastKind() == CK_NoOp) { 66 E = CE->getSubExpr(); 67 continue; 68 } 69 } 70 71 break; 72 } 73 74 QualType DerivedType = E->getType(); 75 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 76 DerivedType = PTy->getPointeeType(); 77 78 return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl()); 79 } 80 81 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 82 // quite what we want. 83 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 84 while (true) { 85 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 86 E = PE->getSubExpr(); 87 continue; 88 } 89 90 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 91 if (CE->getCastKind() == CK_NoOp) { 92 E = CE->getSubExpr(); 93 continue; 94 } 95 } 96 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 97 if (UO->getOpcode() == UO_Extension) { 98 E = UO->getSubExpr(); 99 continue; 100 } 101 } 102 return E; 103 } 104 } 105 106 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 107 /// expr can be devirtualized. 108 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 109 const Expr *Base, 110 const CXXMethodDecl *MD) { 111 112 // When building with -fapple-kext, all calls must go through the vtable since 113 // the kernel linker can do runtime patching of vtables. 114 if (Context.getLangOptions().AppleKext) 115 return false; 116 117 // If the most derived class is marked final, we know that no subclass can 118 // override this member function and so we can devirtualize it. For example: 119 // 120 // struct A { virtual void f(); } 121 // struct B final : A { }; 122 // 123 // void f(B *b) { 124 // b->f(); 125 // } 126 // 127 const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base); 128 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 129 return true; 130 131 // If the member function is marked 'final', we know that it can't be 132 // overridden and can therefore devirtualize it. 133 if (MD->hasAttr<FinalAttr>()) 134 return true; 135 136 // Similarly, if the class itself is marked 'final' it can't be overridden 137 // and we can therefore devirtualize the member function call. 138 if (MD->getParent()->hasAttr<FinalAttr>()) 139 return true; 140 141 Base = skipNoOpCastsAndParens(Base); 142 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 143 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 144 // This is a record decl. We know the type and can devirtualize it. 145 return VD->getType()->isRecordType(); 146 } 147 148 return false; 149 } 150 151 // We can always devirtualize calls on temporary object expressions. 152 if (isa<CXXConstructExpr>(Base)) 153 return true; 154 155 // And calls on bound temporaries. 156 if (isa<CXXBindTemporaryExpr>(Base)) 157 return true; 158 159 // Check if this is a call expr that returns a record type. 160 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 161 return CE->getCallReturnType()->isRecordType(); 162 163 // We can't devirtualize the call. 164 return false; 165 } 166 167 // Note: This function also emit constructor calls to support a MSVC 168 // extensions allowing explicit constructor function call. 169 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 170 ReturnValueSlot ReturnValue) { 171 const Expr *callee = CE->getCallee()->IgnoreParens(); 172 173 if (isa<BinaryOperator>(callee)) 174 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 175 176 const MemberExpr *ME = cast<MemberExpr>(callee); 177 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 178 179 CGDebugInfo *DI = getDebugInfo(); 180 if (DI && CGM.getCodeGenOpts().LimitDebugInfo 181 && !isa<CallExpr>(ME->getBase())) { 182 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType(); 183 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) { 184 DI->getOrCreateRecordType(PTy->getPointeeType(), 185 MD->getParent()->getLocation()); 186 } 187 } 188 189 if (MD->isStatic()) { 190 // The method is static, emit it as we would a regular call. 191 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 192 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 193 ReturnValue, CE->arg_begin(), CE->arg_end()); 194 } 195 196 // Compute the object pointer. 197 llvm::Value *This; 198 if (ME->isArrow()) 199 This = EmitScalarExpr(ME->getBase()); 200 else 201 This = EmitLValue(ME->getBase()).getAddress(); 202 203 if (MD->isTrivial()) { 204 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 205 if (isa<CXXConstructorDecl>(MD) && 206 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 207 return RValue::get(0); 208 209 if (MD->isCopyAssignmentOperator()) { 210 // We don't like to generate the trivial copy assignment operator when 211 // it isn't necessary; just produce the proper effect here. 212 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 213 EmitAggregateCopy(This, RHS, CE->getType()); 214 return RValue::get(This); 215 } 216 217 if (isa<CXXConstructorDecl>(MD) && 218 cast<CXXConstructorDecl>(MD)->isCopyConstructor()) { 219 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 220 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 221 CE->arg_begin(), CE->arg_end()); 222 return RValue::get(This); 223 } 224 llvm_unreachable("unknown trivial member function"); 225 } 226 227 // Compute the function type we're calling. 228 const CGFunctionInfo *FInfo = 0; 229 if (isa<CXXDestructorDecl>(MD)) 230 FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD), 231 Dtor_Complete); 232 else if (isa<CXXConstructorDecl>(MD)) 233 FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXConstructorDecl>(MD), 234 Ctor_Complete); 235 else 236 FInfo = &CGM.getTypes().getFunctionInfo(MD); 237 238 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 239 const llvm::Type *Ty 240 = CGM.getTypes().GetFunctionType(*FInfo, FPT->isVariadic()); 241 242 // C++ [class.virtual]p12: 243 // Explicit qualification with the scope operator (5.1) suppresses the 244 // virtual call mechanism. 245 // 246 // We also don't emit a virtual call if the base expression has a record type 247 // because then we know what the type is. 248 bool UseVirtualCall; 249 UseVirtualCall = MD->isVirtual() && !ME->hasQualifier() 250 && !canDevirtualizeMemberFunctionCalls(getContext(), 251 ME->getBase(), MD); 252 llvm::Value *Callee; 253 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 254 if (UseVirtualCall) { 255 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty); 256 } else { 257 if (getContext().getLangOptions().AppleKext && 258 MD->isVirtual() && 259 ME->hasQualifier()) 260 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 261 else 262 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty); 263 } 264 } else if (const CXXConstructorDecl *Ctor = 265 dyn_cast<CXXConstructorDecl>(MD)) { 266 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 267 } else if (UseVirtualCall) { 268 Callee = BuildVirtualCall(MD, This, Ty); 269 } else { 270 if (getContext().getLangOptions().AppleKext && 271 MD->isVirtual() && 272 ME->hasQualifier()) 273 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 274 else 275 Callee = CGM.GetAddrOfFunction(MD, Ty); 276 } 277 278 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 279 CE->arg_begin(), CE->arg_end()); 280 } 281 282 RValue 283 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 284 ReturnValueSlot ReturnValue) { 285 const BinaryOperator *BO = 286 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 287 const Expr *BaseExpr = BO->getLHS(); 288 const Expr *MemFnExpr = BO->getRHS(); 289 290 const MemberPointerType *MPT = 291 MemFnExpr->getType()->castAs<MemberPointerType>(); 292 293 const FunctionProtoType *FPT = 294 MPT->getPointeeType()->castAs<FunctionProtoType>(); 295 const CXXRecordDecl *RD = 296 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 297 298 // Get the member function pointer. 299 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 300 301 // Emit the 'this' pointer. 302 llvm::Value *This; 303 304 if (BO->getOpcode() == BO_PtrMemI) 305 This = EmitScalarExpr(BaseExpr); 306 else 307 This = EmitLValue(BaseExpr).getAddress(); 308 309 // Ask the ABI to load the callee. Note that This is modified. 310 llvm::Value *Callee = 311 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 312 313 CallArgList Args; 314 315 QualType ThisType = 316 getContext().getPointerType(getContext().getTagDeclType(RD)); 317 318 // Push the this ptr. 319 Args.add(RValue::get(This), ThisType); 320 321 // And the rest of the call args 322 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 323 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FPT), Callee, 324 ReturnValue, Args); 325 } 326 327 RValue 328 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 329 const CXXMethodDecl *MD, 330 ReturnValueSlot ReturnValue) { 331 assert(MD->isInstance() && 332 "Trying to emit a member call expr on a static method!"); 333 LValue LV = EmitLValue(E->getArg(0)); 334 llvm::Value *This = LV.getAddress(); 335 336 if (MD->isCopyAssignmentOperator()) { 337 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext()); 338 if (ClassDecl->hasTrivialCopyAssignment()) { 339 assert(!ClassDecl->hasUserDeclaredCopyAssignment() && 340 "EmitCXXOperatorMemberCallExpr - user declared copy assignment"); 341 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 342 QualType Ty = E->getType(); 343 EmitAggregateCopy(This, Src, Ty); 344 return RValue::get(This); 345 } 346 } 347 348 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 349 const llvm::Type *Ty = 350 CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD), 351 FPT->isVariadic()); 352 llvm::Value *Callee; 353 if (MD->isVirtual() && 354 !canDevirtualizeMemberFunctionCalls(getContext(), 355 E->getArg(0), MD)) 356 Callee = BuildVirtualCall(MD, This, Ty); 357 else 358 Callee = CGM.GetAddrOfFunction(MD, Ty); 359 360 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, 361 E->arg_begin() + 1, E->arg_end()); 362 } 363 364 void 365 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 366 AggValueSlot Dest) { 367 assert(!Dest.isIgnored() && "Must have a destination!"); 368 const CXXConstructorDecl *CD = E->getConstructor(); 369 370 // If we require zero initialization before (or instead of) calling the 371 // constructor, as can be the case with a non-user-provided default 372 // constructor, emit the zero initialization now, unless destination is 373 // already zeroed. 374 if (E->requiresZeroInitialization() && !Dest.isZeroed()) 375 EmitNullInitialization(Dest.getAddr(), E->getType()); 376 377 // If this is a call to a trivial default constructor, do nothing. 378 if (CD->isTrivial() && CD->isDefaultConstructor()) 379 return; 380 381 // Elide the constructor if we're constructing from a temporary. 382 // The temporary check is required because Sema sets this on NRVO 383 // returns. 384 if (getContext().getLangOptions().ElideConstructors && E->isElidable()) { 385 assert(getContext().hasSameUnqualifiedType(E->getType(), 386 E->getArg(0)->getType())); 387 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 388 EmitAggExpr(E->getArg(0), Dest); 389 return; 390 } 391 } 392 393 const ConstantArrayType *Array 394 = getContext().getAsConstantArrayType(E->getType()); 395 if (Array) { 396 QualType BaseElementTy = getContext().getBaseElementType(Array); 397 const llvm::Type *BasePtr = ConvertType(BaseElementTy); 398 BasePtr = llvm::PointerType::getUnqual(BasePtr); 399 llvm::Value *BaseAddrPtr = 400 Builder.CreateBitCast(Dest.getAddr(), BasePtr); 401 402 EmitCXXAggrConstructorCall(CD, Array, BaseAddrPtr, 403 E->arg_begin(), E->arg_end()); 404 } 405 else { 406 CXXCtorType Type; 407 CXXConstructExpr::ConstructionKind K = E->getConstructionKind(); 408 if (K == CXXConstructExpr::CK_Delegating) { 409 // We should be emitting a constructor; GlobalDecl will assert this 410 Type = CurGD.getCtorType(); 411 } else { 412 Type = (E->getConstructionKind() == CXXConstructExpr::CK_Complete) 413 ? Ctor_Complete : Ctor_Base; 414 } 415 416 bool ForVirtualBase = 417 E->getConstructionKind() == CXXConstructExpr::CK_VirtualBase; 418 419 // Call the constructor. 420 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 421 E->arg_begin(), E->arg_end()); 422 } 423 } 424 425 void 426 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 427 llvm::Value *Src, 428 const Expr *Exp) { 429 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 430 Exp = E->getSubExpr(); 431 assert(isa<CXXConstructExpr>(Exp) && 432 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 433 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 434 const CXXConstructorDecl *CD = E->getConstructor(); 435 RunCleanupsScope Scope(*this); 436 437 // If we require zero initialization before (or instead of) calling the 438 // constructor, as can be the case with a non-user-provided default 439 // constructor, emit the zero initialization now. 440 // FIXME. Do I still need this for a copy ctor synthesis? 441 if (E->requiresZeroInitialization()) 442 EmitNullInitialization(Dest, E->getType()); 443 444 assert(!getContext().getAsConstantArrayType(E->getType()) 445 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 446 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 447 E->arg_begin(), E->arg_end()); 448 } 449 450 /// Check whether the given operator new[] is the global placement 451 /// operator new[]. 452 static bool IsPlacementOperatorNewArray(ASTContext &Ctx, 453 const FunctionDecl *Fn) { 454 // Must be in global scope. Note that allocation functions can't be 455 // declared in namespaces. 456 if (!Fn->getDeclContext()->getRedeclContext()->isFileContext()) 457 return false; 458 459 // Signature must be void *operator new[](size_t, void*). 460 // The size_t is common to all operator new[]s. 461 if (Fn->getNumParams() != 2) 462 return false; 463 464 CanQualType ParamType = Ctx.getCanonicalType(Fn->getParamDecl(1)->getType()); 465 return (ParamType == Ctx.VoidPtrTy); 466 } 467 468 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 469 const CXXNewExpr *E) { 470 if (!E->isArray()) 471 return CharUnits::Zero(); 472 473 // No cookie is required if the new operator being used is 474 // ::operator new[](size_t, void*). 475 const FunctionDecl *OperatorNew = E->getOperatorNew(); 476 if (IsPlacementOperatorNewArray(CGF.getContext(), OperatorNew)) 477 return CharUnits::Zero(); 478 479 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 480 } 481 482 static llvm::Value *EmitCXXNewAllocSize(ASTContext &Context, 483 CodeGenFunction &CGF, 484 const CXXNewExpr *E, 485 llvm::Value *&NumElements, 486 llvm::Value *&SizeWithoutCookie) { 487 QualType ElemType = E->getAllocatedType(); 488 489 const llvm::IntegerType *SizeTy = 490 cast<llvm::IntegerType>(CGF.ConvertType(CGF.getContext().getSizeType())); 491 492 CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(ElemType); 493 494 if (!E->isArray()) { 495 SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity()); 496 return SizeWithoutCookie; 497 } 498 499 // Figure out the cookie size. 500 CharUnits CookieSize = CalculateCookiePadding(CGF, E); 501 502 // Emit the array size expression. 503 // We multiply the size of all dimensions for NumElements. 504 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 505 NumElements = CGF.EmitScalarExpr(E->getArraySize()); 506 assert(NumElements->getType() == SizeTy && "element count not a size_t"); 507 508 uint64_t ArraySizeMultiplier = 1; 509 while (const ConstantArrayType *CAT 510 = CGF.getContext().getAsConstantArrayType(ElemType)) { 511 ElemType = CAT->getElementType(); 512 ArraySizeMultiplier *= CAT->getSize().getZExtValue(); 513 } 514 515 llvm::Value *Size; 516 517 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 518 // Don't bloat the -O0 code. 519 if (llvm::ConstantInt *NumElementsC = 520 dyn_cast<llvm::ConstantInt>(NumElements)) { 521 llvm::APInt NEC = NumElementsC->getValue(); 522 unsigned SizeWidth = NEC.getBitWidth(); 523 524 // Determine if there is an overflow here by doing an extended multiply. 525 NEC = NEC.zext(SizeWidth*2); 526 llvm::APInt SC(SizeWidth*2, TypeSize.getQuantity()); 527 SC *= NEC; 528 529 if (!CookieSize.isZero()) { 530 // Save the current size without a cookie. We don't care if an 531 // overflow's already happened because SizeWithoutCookie isn't 532 // used if the allocator returns null or throws, as it should 533 // always do on an overflow. 534 llvm::APInt SWC = SC.trunc(SizeWidth); 535 SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, SWC); 536 537 // Add the cookie size. 538 SC += llvm::APInt(SizeWidth*2, CookieSize.getQuantity()); 539 } 540 541 if (SC.countLeadingZeros() >= SizeWidth) { 542 SC = SC.trunc(SizeWidth); 543 Size = llvm::ConstantInt::get(SizeTy, SC); 544 } else { 545 // On overflow, produce a -1 so operator new throws. 546 Size = llvm::Constant::getAllOnesValue(SizeTy); 547 } 548 549 // Scale NumElements while we're at it. 550 uint64_t N = NEC.getZExtValue() * ArraySizeMultiplier; 551 NumElements = llvm::ConstantInt::get(SizeTy, N); 552 553 // Otherwise, we don't need to do an overflow-checked multiplication if 554 // we're multiplying by one. 555 } else if (TypeSize.isOne()) { 556 assert(ArraySizeMultiplier == 1); 557 558 Size = NumElements; 559 560 // If we need a cookie, add its size in with an overflow check. 561 // This is maybe a little paranoid. 562 if (!CookieSize.isZero()) { 563 SizeWithoutCookie = Size; 564 565 llvm::Value *CookieSizeV 566 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 567 568 const llvm::Type *Types[] = { SizeTy }; 569 llvm::Value *UAddF 570 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1); 571 llvm::Value *AddRes 572 = CGF.Builder.CreateCall2(UAddF, Size, CookieSizeV); 573 574 Size = CGF.Builder.CreateExtractValue(AddRes, 0); 575 llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1); 576 Size = CGF.Builder.CreateSelect(DidOverflow, 577 llvm::ConstantInt::get(SizeTy, -1), 578 Size); 579 } 580 581 // Otherwise use the int.umul.with.overflow intrinsic. 582 } else { 583 llvm::Value *OutermostElementSize 584 = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity()); 585 586 llvm::Value *NumOutermostElements = NumElements; 587 588 // Scale NumElements by the array size multiplier. This might 589 // overflow, but only if the multiplication below also overflows, 590 // in which case this multiplication isn't used. 591 if (ArraySizeMultiplier != 1) 592 NumElements = CGF.Builder.CreateMul(NumElements, 593 llvm::ConstantInt::get(SizeTy, ArraySizeMultiplier)); 594 595 // The requested size of the outermost array is non-constant. 596 // Multiply that by the static size of the elements of that array; 597 // on unsigned overflow, set the size to -1 to trigger an 598 // exception from the allocation routine. This is sufficient to 599 // prevent buffer overruns from the allocator returning a 600 // seemingly valid pointer to insufficient space. This idea comes 601 // originally from MSVC, and GCC has an open bug requesting 602 // similar behavior: 603 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19351 604 // 605 // This will not be sufficient for C++0x, which requires a 606 // specific exception class (std::bad_array_new_length). 607 // That will require ABI support that has not yet been specified. 608 const llvm::Type *Types[] = { SizeTy }; 609 llvm::Value *UMulF 610 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, Types, 1); 611 llvm::Value *MulRes = CGF.Builder.CreateCall2(UMulF, NumOutermostElements, 612 OutermostElementSize); 613 614 // The overflow bit. 615 llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(MulRes, 1); 616 617 // The result of the multiplication. 618 Size = CGF.Builder.CreateExtractValue(MulRes, 0); 619 620 // If we have a cookie, we need to add that size in, too. 621 if (!CookieSize.isZero()) { 622 SizeWithoutCookie = Size; 623 624 llvm::Value *CookieSizeV 625 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 626 llvm::Value *UAddF 627 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1); 628 llvm::Value *AddRes 629 = CGF.Builder.CreateCall2(UAddF, SizeWithoutCookie, CookieSizeV); 630 631 Size = CGF.Builder.CreateExtractValue(AddRes, 0); 632 633 llvm::Value *AddDidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1); 634 DidOverflow = CGF.Builder.CreateOr(DidOverflow, AddDidOverflow); 635 } 636 637 Size = CGF.Builder.CreateSelect(DidOverflow, 638 llvm::ConstantInt::get(SizeTy, -1), 639 Size); 640 } 641 642 if (CookieSize.isZero()) 643 SizeWithoutCookie = Size; 644 else 645 assert(SizeWithoutCookie && "didn't set SizeWithoutCookie?"); 646 647 return Size; 648 } 649 650 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E, 651 llvm::Value *NewPtr) { 652 653 assert(E->getNumConstructorArgs() == 1 && 654 "Can only have one argument to initializer of POD type."); 655 656 const Expr *Init = E->getConstructorArg(0); 657 QualType AllocType = E->getAllocatedType(); 658 659 unsigned Alignment = 660 CGF.getContext().getTypeAlignInChars(AllocType).getQuantity(); 661 if (!CGF.hasAggregateLLVMType(AllocType)) 662 CGF.EmitStoreOfScalar(CGF.EmitScalarExpr(Init), NewPtr, 663 AllocType.isVolatileQualified(), Alignment, 664 AllocType); 665 else if (AllocType->isAnyComplexType()) 666 CGF.EmitComplexExprIntoAddr(Init, NewPtr, 667 AllocType.isVolatileQualified()); 668 else { 669 AggValueSlot Slot 670 = AggValueSlot::forAddr(NewPtr, AllocType.isVolatileQualified(), true); 671 CGF.EmitAggExpr(Init, Slot); 672 } 673 } 674 675 void 676 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 677 llvm::Value *NewPtr, 678 llvm::Value *NumElements) { 679 // We have a POD type. 680 if (E->getNumConstructorArgs() == 0) 681 return; 682 683 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 684 685 // Create a temporary for the loop index and initialize it with 0. 686 llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index"); 687 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 688 Builder.CreateStore(Zero, IndexPtr); 689 690 // Start the loop with a block that tests the condition. 691 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 692 llvm::BasicBlock *AfterFor = createBasicBlock("for.end"); 693 694 EmitBlock(CondBlock); 695 696 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 697 698 // Generate: if (loop-index < number-of-elements fall to the loop body, 699 // otherwise, go to the block after the for-loop. 700 llvm::Value *Counter = Builder.CreateLoad(IndexPtr); 701 llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless"); 702 // If the condition is true, execute the body. 703 Builder.CreateCondBr(IsLess, ForBody, AfterFor); 704 705 EmitBlock(ForBody); 706 707 llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc"); 708 // Inside the loop body, emit the constructor call on the array element. 709 Counter = Builder.CreateLoad(IndexPtr); 710 llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter, 711 "arrayidx"); 712 StoreAnyExprIntoOneUnit(*this, E, Address); 713 714 EmitBlock(ContinueBlock); 715 716 // Emit the increment of the loop counter. 717 llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1); 718 Counter = Builder.CreateLoad(IndexPtr); 719 NextVal = Builder.CreateAdd(Counter, NextVal, "inc"); 720 Builder.CreateStore(NextVal, IndexPtr); 721 722 // Finally, branch back up to the condition for the next iteration. 723 EmitBranch(CondBlock); 724 725 // Emit the fall-through block. 726 EmitBlock(AfterFor, true); 727 } 728 729 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 730 llvm::Value *NewPtr, llvm::Value *Size) { 731 CGF.EmitCastToVoidPtr(NewPtr); 732 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 733 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 734 Alignment.getQuantity(), false); 735 } 736 737 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 738 llvm::Value *NewPtr, 739 llvm::Value *NumElements, 740 llvm::Value *AllocSizeWithoutCookie) { 741 if (E->isArray()) { 742 if (CXXConstructorDecl *Ctor = E->getConstructor()) { 743 bool RequiresZeroInitialization = false; 744 if (Ctor->getParent()->hasTrivialConstructor()) { 745 // If new expression did not specify value-initialization, then there 746 // is no initialization. 747 if (!E->hasInitializer() || Ctor->getParent()->isEmpty()) 748 return; 749 750 if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) { 751 // Optimization: since zero initialization will just set the memory 752 // to all zeroes, generate a single memset to do it in one shot. 753 EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr, 754 AllocSizeWithoutCookie); 755 return; 756 } 757 758 RequiresZeroInitialization = true; 759 } 760 761 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 762 E->constructor_arg_begin(), 763 E->constructor_arg_end(), 764 RequiresZeroInitialization); 765 return; 766 } else if (E->getNumConstructorArgs() == 1 && 767 isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) { 768 // Optimization: since zero initialization will just set the memory 769 // to all zeroes, generate a single memset to do it in one shot. 770 EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr, 771 AllocSizeWithoutCookie); 772 return; 773 } else { 774 CGF.EmitNewArrayInitializer(E, NewPtr, NumElements); 775 return; 776 } 777 } 778 779 if (CXXConstructorDecl *Ctor = E->getConstructor()) { 780 // Per C++ [expr.new]p15, if we have an initializer, then we're performing 781 // direct initialization. C++ [dcl.init]p5 requires that we 782 // zero-initialize storage if there are no user-declared constructors. 783 if (E->hasInitializer() && 784 !Ctor->getParent()->hasUserDeclaredConstructor() && 785 !Ctor->getParent()->isEmpty()) 786 CGF.EmitNullInitialization(NewPtr, E->getAllocatedType()); 787 788 CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 789 NewPtr, E->constructor_arg_begin(), 790 E->constructor_arg_end()); 791 792 return; 793 } 794 // We have a POD type. 795 if (E->getNumConstructorArgs() == 0) 796 return; 797 798 StoreAnyExprIntoOneUnit(CGF, E, NewPtr); 799 } 800 801 namespace { 802 /// A cleanup to call the given 'operator delete' function upon 803 /// abnormal exit from a new expression. 804 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 805 size_t NumPlacementArgs; 806 const FunctionDecl *OperatorDelete; 807 llvm::Value *Ptr; 808 llvm::Value *AllocSize; 809 810 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 811 812 public: 813 static size_t getExtraSize(size_t NumPlacementArgs) { 814 return NumPlacementArgs * sizeof(RValue); 815 } 816 817 CallDeleteDuringNew(size_t NumPlacementArgs, 818 const FunctionDecl *OperatorDelete, 819 llvm::Value *Ptr, 820 llvm::Value *AllocSize) 821 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 822 Ptr(Ptr), AllocSize(AllocSize) {} 823 824 void setPlacementArg(unsigned I, RValue Arg) { 825 assert(I < NumPlacementArgs && "index out of range"); 826 getPlacementArgs()[I] = Arg; 827 } 828 829 void Emit(CodeGenFunction &CGF, bool IsForEH) { 830 const FunctionProtoType *FPT 831 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 832 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 833 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 834 835 CallArgList DeleteArgs; 836 837 // The first argument is always a void*. 838 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 839 DeleteArgs.add(RValue::get(Ptr), *AI++); 840 841 // A member 'operator delete' can take an extra 'size_t' argument. 842 if (FPT->getNumArgs() == NumPlacementArgs + 2) 843 DeleteArgs.add(RValue::get(AllocSize), *AI++); 844 845 // Pass the rest of the arguments, which must match exactly. 846 for (unsigned I = 0; I != NumPlacementArgs; ++I) 847 DeleteArgs.add(getPlacementArgs()[I], *AI++); 848 849 // Call 'operator delete'. 850 CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT), 851 CGF.CGM.GetAddrOfFunction(OperatorDelete), 852 ReturnValueSlot(), DeleteArgs, OperatorDelete); 853 } 854 }; 855 856 /// A cleanup to call the given 'operator delete' function upon 857 /// abnormal exit from a new expression when the new expression is 858 /// conditional. 859 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 860 size_t NumPlacementArgs; 861 const FunctionDecl *OperatorDelete; 862 DominatingValue<RValue>::saved_type Ptr; 863 DominatingValue<RValue>::saved_type AllocSize; 864 865 DominatingValue<RValue>::saved_type *getPlacementArgs() { 866 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 867 } 868 869 public: 870 static size_t getExtraSize(size_t NumPlacementArgs) { 871 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 872 } 873 874 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 875 const FunctionDecl *OperatorDelete, 876 DominatingValue<RValue>::saved_type Ptr, 877 DominatingValue<RValue>::saved_type AllocSize) 878 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 879 Ptr(Ptr), AllocSize(AllocSize) {} 880 881 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 882 assert(I < NumPlacementArgs && "index out of range"); 883 getPlacementArgs()[I] = Arg; 884 } 885 886 void Emit(CodeGenFunction &CGF, bool IsForEH) { 887 const FunctionProtoType *FPT 888 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 889 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 890 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 891 892 CallArgList DeleteArgs; 893 894 // The first argument is always a void*. 895 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 896 DeleteArgs.add(Ptr.restore(CGF), *AI++); 897 898 // A member 'operator delete' can take an extra 'size_t' argument. 899 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 900 RValue RV = AllocSize.restore(CGF); 901 DeleteArgs.add(RV, *AI++); 902 } 903 904 // Pass the rest of the arguments, which must match exactly. 905 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 906 RValue RV = getPlacementArgs()[I].restore(CGF); 907 DeleteArgs.add(RV, *AI++); 908 } 909 910 // Call 'operator delete'. 911 CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT), 912 CGF.CGM.GetAddrOfFunction(OperatorDelete), 913 ReturnValueSlot(), DeleteArgs, OperatorDelete); 914 } 915 }; 916 } 917 918 /// Enter a cleanup to call 'operator delete' if the initializer in a 919 /// new-expression throws. 920 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 921 const CXXNewExpr *E, 922 llvm::Value *NewPtr, 923 llvm::Value *AllocSize, 924 const CallArgList &NewArgs) { 925 // If we're not inside a conditional branch, then the cleanup will 926 // dominate and we can do the easier (and more efficient) thing. 927 if (!CGF.isInConditionalBranch()) { 928 CallDeleteDuringNew *Cleanup = CGF.EHStack 929 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 930 E->getNumPlacementArgs(), 931 E->getOperatorDelete(), 932 NewPtr, AllocSize); 933 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 934 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 935 936 return; 937 } 938 939 // Otherwise, we need to save all this stuff. 940 DominatingValue<RValue>::saved_type SavedNewPtr = 941 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 942 DominatingValue<RValue>::saved_type SavedAllocSize = 943 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 944 945 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 946 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup, 947 E->getNumPlacementArgs(), 948 E->getOperatorDelete(), 949 SavedNewPtr, 950 SavedAllocSize); 951 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 952 Cleanup->setPlacementArg(I, 953 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 954 955 CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin()); 956 } 957 958 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 959 // The element type being allocated. 960 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 961 962 // 1. Build a call to the allocation function. 963 FunctionDecl *allocator = E->getOperatorNew(); 964 const FunctionProtoType *allocatorType = 965 allocator->getType()->castAs<FunctionProtoType>(); 966 967 CallArgList allocatorArgs; 968 969 // The allocation size is the first argument. 970 QualType sizeType = getContext().getSizeType(); 971 972 llvm::Value *numElements = 0; 973 llvm::Value *allocSizeWithoutCookie = 0; 974 llvm::Value *allocSize = 975 EmitCXXNewAllocSize(getContext(), *this, E, numElements, 976 allocSizeWithoutCookie); 977 978 allocatorArgs.add(RValue::get(allocSize), sizeType); 979 980 // Emit the rest of the arguments. 981 // FIXME: Ideally, this should just use EmitCallArgs. 982 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 983 984 // First, use the types from the function type. 985 // We start at 1 here because the first argument (the allocation size) 986 // has already been emitted. 987 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 988 ++i, ++placementArg) { 989 QualType argType = allocatorType->getArgType(i); 990 991 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 992 placementArg->getType()) && 993 "type mismatch in call argument!"); 994 995 EmitCallArg(allocatorArgs, *placementArg, argType); 996 } 997 998 // Either we've emitted all the call args, or we have a call to a 999 // variadic function. 1000 assert((placementArg == E->placement_arg_end() || 1001 allocatorType->isVariadic()) && 1002 "Extra arguments to non-variadic function!"); 1003 1004 // If we still have any arguments, emit them using the type of the argument. 1005 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1006 placementArg != placementArgsEnd; ++placementArg) { 1007 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1008 } 1009 1010 // Emit the allocation call. 1011 RValue RV = 1012 EmitCall(CGM.getTypes().getFunctionInfo(allocatorArgs, allocatorType), 1013 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(), 1014 allocatorArgs, allocator); 1015 1016 // Emit a null check on the allocation result if the allocation 1017 // function is allowed to return null (because it has a non-throwing 1018 // exception spec; for this part, we inline 1019 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1020 // interesting initializer. 1021 bool nullCheck = allocatorType->isNothrow(getContext()) && 1022 !(allocType->isPODType() && !E->hasInitializer()); 1023 1024 llvm::BasicBlock *nullCheckBB = 0; 1025 llvm::BasicBlock *contBB = 0; 1026 1027 llvm::Value *allocation = RV.getScalarVal(); 1028 unsigned AS = 1029 cast<llvm::PointerType>(allocation->getType())->getAddressSpace(); 1030 1031 // The null-check means that the initializer is conditionally 1032 // evaluated. 1033 ConditionalEvaluation conditional(*this); 1034 1035 if (nullCheck) { 1036 conditional.begin(*this); 1037 1038 nullCheckBB = Builder.GetInsertBlock(); 1039 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1040 contBB = createBasicBlock("new.cont"); 1041 1042 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1043 Builder.CreateCondBr(isNull, contBB, notNullBB); 1044 EmitBlock(notNullBB); 1045 } 1046 1047 assert((allocSize == allocSizeWithoutCookie) == 1048 CalculateCookiePadding(*this, E).isZero()); 1049 if (allocSize != allocSizeWithoutCookie) { 1050 assert(E->isArray()); 1051 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1052 numElements, 1053 E, allocType); 1054 } 1055 1056 // If there's an operator delete, enter a cleanup to call it if an 1057 // exception is thrown. 1058 EHScopeStack::stable_iterator operatorDeleteCleanup; 1059 if (E->getOperatorDelete()) { 1060 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1061 operatorDeleteCleanup = EHStack.stable_begin(); 1062 } 1063 1064 const llvm::Type *elementPtrTy 1065 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1066 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1067 1068 if (E->isArray()) { 1069 EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie); 1070 1071 // NewPtr is a pointer to the base element type. If we're 1072 // allocating an array of arrays, we'll need to cast back to the 1073 // array pointer type. 1074 const llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1075 if (result->getType() != resultType) 1076 result = Builder.CreateBitCast(result, resultType); 1077 } else { 1078 EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie); 1079 } 1080 1081 // Deactivate the 'operator delete' cleanup if we finished 1082 // initialization. 1083 if (operatorDeleteCleanup.isValid()) 1084 DeactivateCleanupBlock(operatorDeleteCleanup); 1085 1086 if (nullCheck) { 1087 conditional.end(*this); 1088 1089 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1090 EmitBlock(contBB); 1091 1092 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1093 PHI->addIncoming(result, notNullBB); 1094 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1095 nullCheckBB); 1096 1097 result = PHI; 1098 } 1099 1100 return result; 1101 } 1102 1103 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1104 llvm::Value *Ptr, 1105 QualType DeleteTy) { 1106 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1107 1108 const FunctionProtoType *DeleteFTy = 1109 DeleteFD->getType()->getAs<FunctionProtoType>(); 1110 1111 CallArgList DeleteArgs; 1112 1113 // Check if we need to pass the size to the delete operator. 1114 llvm::Value *Size = 0; 1115 QualType SizeTy; 1116 if (DeleteFTy->getNumArgs() == 2) { 1117 SizeTy = DeleteFTy->getArgType(1); 1118 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1119 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1120 DeleteTypeSize.getQuantity()); 1121 } 1122 1123 QualType ArgTy = DeleteFTy->getArgType(0); 1124 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1125 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1126 1127 if (Size) 1128 DeleteArgs.add(RValue::get(Size), SizeTy); 1129 1130 // Emit the call to delete. 1131 EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy), 1132 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 1133 DeleteArgs, DeleteFD); 1134 } 1135 1136 namespace { 1137 /// Calls the given 'operator delete' on a single object. 1138 struct CallObjectDelete : EHScopeStack::Cleanup { 1139 llvm::Value *Ptr; 1140 const FunctionDecl *OperatorDelete; 1141 QualType ElementType; 1142 1143 CallObjectDelete(llvm::Value *Ptr, 1144 const FunctionDecl *OperatorDelete, 1145 QualType ElementType) 1146 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1147 1148 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1149 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1150 } 1151 }; 1152 } 1153 1154 /// Emit the code for deleting a single object. 1155 static void EmitObjectDelete(CodeGenFunction &CGF, 1156 const FunctionDecl *OperatorDelete, 1157 llvm::Value *Ptr, 1158 QualType ElementType) { 1159 // Find the destructor for the type, if applicable. If the 1160 // destructor is virtual, we'll just emit the vcall and return. 1161 const CXXDestructorDecl *Dtor = 0; 1162 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1163 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1164 if (!RD->hasTrivialDestructor()) { 1165 Dtor = RD->getDestructor(); 1166 1167 if (Dtor->isVirtual()) { 1168 const llvm::Type *Ty = 1169 CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor, 1170 Dtor_Complete), 1171 /*isVariadic=*/false); 1172 1173 llvm::Value *Callee 1174 = CGF.BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty); 1175 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 1176 0, 0); 1177 1178 // The dtor took care of deleting the object. 1179 return; 1180 } 1181 } 1182 } 1183 1184 // Make sure that we call delete even if the dtor throws. 1185 // This doesn't have to a conditional cleanup because we're going 1186 // to pop it off in a second. 1187 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1188 Ptr, OperatorDelete, ElementType); 1189 1190 if (Dtor) 1191 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1192 /*ForVirtualBase=*/false, Ptr); 1193 1194 CGF.PopCleanupBlock(); 1195 } 1196 1197 namespace { 1198 /// Calls the given 'operator delete' on an array of objects. 1199 struct CallArrayDelete : EHScopeStack::Cleanup { 1200 llvm::Value *Ptr; 1201 const FunctionDecl *OperatorDelete; 1202 llvm::Value *NumElements; 1203 QualType ElementType; 1204 CharUnits CookieSize; 1205 1206 CallArrayDelete(llvm::Value *Ptr, 1207 const FunctionDecl *OperatorDelete, 1208 llvm::Value *NumElements, 1209 QualType ElementType, 1210 CharUnits CookieSize) 1211 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1212 ElementType(ElementType), CookieSize(CookieSize) {} 1213 1214 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1215 const FunctionProtoType *DeleteFTy = 1216 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1217 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1218 1219 CallArgList Args; 1220 1221 // Pass the pointer as the first argument. 1222 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1223 llvm::Value *DeletePtr 1224 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1225 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1226 1227 // Pass the original requested size as the second argument. 1228 if (DeleteFTy->getNumArgs() == 2) { 1229 QualType size_t = DeleteFTy->getArgType(1); 1230 const llvm::IntegerType *SizeTy 1231 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1232 1233 CharUnits ElementTypeSize = 1234 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1235 1236 // The size of an element, multiplied by the number of elements. 1237 llvm::Value *Size 1238 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1239 Size = CGF.Builder.CreateMul(Size, NumElements); 1240 1241 // Plus the size of the cookie if applicable. 1242 if (!CookieSize.isZero()) { 1243 llvm::Value *CookieSizeV 1244 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1245 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1246 } 1247 1248 Args.add(RValue::get(Size), size_t); 1249 } 1250 1251 // Emit the call to delete. 1252 CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy), 1253 CGF.CGM.GetAddrOfFunction(OperatorDelete), 1254 ReturnValueSlot(), Args, OperatorDelete); 1255 } 1256 }; 1257 } 1258 1259 /// Emit the code for deleting an array of objects. 1260 static void EmitArrayDelete(CodeGenFunction &CGF, 1261 const CXXDeleteExpr *E, 1262 llvm::Value *Ptr, 1263 QualType ElementType) { 1264 llvm::Value *NumElements = 0; 1265 llvm::Value *AllocatedPtr = 0; 1266 CharUnits CookieSize; 1267 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, Ptr, E, ElementType, 1268 NumElements, AllocatedPtr, CookieSize); 1269 1270 assert(AllocatedPtr && "ReadArrayCookie didn't set AllocatedPtr"); 1271 1272 // Make sure that we call delete even if one of the dtors throws. 1273 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 1274 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1275 AllocatedPtr, OperatorDelete, 1276 NumElements, ElementType, 1277 CookieSize); 1278 1279 if (const CXXRecordDecl *RD = ElementType->getAsCXXRecordDecl()) { 1280 if (!RD->hasTrivialDestructor()) { 1281 assert(NumElements && "ReadArrayCookie didn't find element count" 1282 " for a class with destructor"); 1283 CGF.EmitCXXAggrDestructorCall(RD->getDestructor(), NumElements, Ptr); 1284 } 1285 } 1286 1287 CGF.PopCleanupBlock(); 1288 } 1289 1290 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1291 1292 // Get at the argument before we performed the implicit conversion 1293 // to void*. 1294 const Expr *Arg = E->getArgument(); 1295 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { 1296 if (ICE->getCastKind() != CK_UserDefinedConversion && 1297 ICE->getType()->isVoidPointerType()) 1298 Arg = ICE->getSubExpr(); 1299 else 1300 break; 1301 } 1302 1303 llvm::Value *Ptr = EmitScalarExpr(Arg); 1304 1305 // Null check the pointer. 1306 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1307 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1308 1309 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1310 1311 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1312 EmitBlock(DeleteNotNull); 1313 1314 // We might be deleting a pointer to array. If so, GEP down to the 1315 // first non-array element. 1316 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1317 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1318 if (DeleteTy->isConstantArrayType()) { 1319 llvm::Value *Zero = Builder.getInt32(0); 1320 llvm::SmallVector<llvm::Value*,8> GEP; 1321 1322 GEP.push_back(Zero); // point at the outermost array 1323 1324 // For each layer of array type we're pointing at: 1325 while (const ConstantArrayType *Arr 1326 = getContext().getAsConstantArrayType(DeleteTy)) { 1327 // 1. Unpeel the array type. 1328 DeleteTy = Arr->getElementType(); 1329 1330 // 2. GEP to the first element of the array. 1331 GEP.push_back(Zero); 1332 } 1333 1334 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first"); 1335 } 1336 1337 assert(ConvertTypeForMem(DeleteTy) == 1338 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1339 1340 if (E->isArrayForm()) { 1341 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1342 } else { 1343 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy); 1344 } 1345 1346 EmitBlock(DeleteEnd); 1347 } 1348 1349 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1350 // void __cxa_bad_typeid(); 1351 1352 const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); 1353 const llvm::FunctionType *FTy = 1354 llvm::FunctionType::get(VoidTy, false); 1355 1356 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1357 } 1358 1359 static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1360 llvm::Value *Fn = getBadTypeidFn(CGF); 1361 CGF.EmitCallOrInvoke(Fn, 0, 0).setDoesNotReturn(); 1362 CGF.Builder.CreateUnreachable(); 1363 } 1364 1365 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1366 const Expr *E, 1367 const llvm::Type *StdTypeInfoPtrTy) { 1368 // Get the vtable pointer. 1369 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1370 1371 // C++ [expr.typeid]p2: 1372 // If the glvalue expression is obtained by applying the unary * operator to 1373 // a pointer and the pointer is a null pointer value, the typeid expression 1374 // throws the std::bad_typeid exception. 1375 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1376 if (UO->getOpcode() == UO_Deref) { 1377 llvm::BasicBlock *BadTypeidBlock = 1378 CGF.createBasicBlock("typeid.bad_typeid"); 1379 llvm::BasicBlock *EndBlock = 1380 CGF.createBasicBlock("typeid.end"); 1381 1382 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1383 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1384 1385 CGF.EmitBlock(BadTypeidBlock); 1386 EmitBadTypeidCall(CGF); 1387 CGF.EmitBlock(EndBlock); 1388 } 1389 } 1390 1391 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1392 StdTypeInfoPtrTy->getPointerTo()); 1393 1394 // Load the type info. 1395 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1396 return CGF.Builder.CreateLoad(Value); 1397 } 1398 1399 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1400 const llvm::Type *StdTypeInfoPtrTy = 1401 ConvertType(E->getType())->getPointerTo(); 1402 1403 if (E->isTypeOperand()) { 1404 llvm::Constant *TypeInfo = 1405 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1406 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1407 } 1408 1409 // C++ [expr.typeid]p2: 1410 // When typeid is applied to a glvalue expression whose type is a 1411 // polymorphic class type, the result refers to a std::type_info object 1412 // representing the type of the most derived object (that is, the dynamic 1413 // type) to which the glvalue refers. 1414 if (E->getExprOperand()->isGLValue()) { 1415 if (const RecordType *RT = 1416 E->getExprOperand()->getType()->getAs<RecordType>()) { 1417 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1418 if (RD->isPolymorphic()) 1419 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1420 StdTypeInfoPtrTy); 1421 } 1422 } 1423 1424 QualType OperandTy = E->getExprOperand()->getType(); 1425 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1426 StdTypeInfoPtrTy); 1427 } 1428 1429 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1430 // void *__dynamic_cast(const void *sub, 1431 // const abi::__class_type_info *src, 1432 // const abi::__class_type_info *dst, 1433 // std::ptrdiff_t src2dst_offset); 1434 1435 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1436 const llvm::Type *PtrDiffTy = 1437 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1438 1439 const llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1440 1441 const llvm::FunctionType *FTy = 1442 llvm::FunctionType::get(Int8PtrTy, Args, false); 1443 1444 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"); 1445 } 1446 1447 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1448 // void __cxa_bad_cast(); 1449 1450 const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); 1451 const llvm::FunctionType *FTy = 1452 llvm::FunctionType::get(VoidTy, false); 1453 1454 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1455 } 1456 1457 static void EmitBadCastCall(CodeGenFunction &CGF) { 1458 llvm::Value *Fn = getBadCastFn(CGF); 1459 CGF.EmitCallOrInvoke(Fn, 0, 0).setDoesNotReturn(); 1460 CGF.Builder.CreateUnreachable(); 1461 } 1462 1463 static llvm::Value * 1464 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1465 QualType SrcTy, QualType DestTy, 1466 llvm::BasicBlock *CastEnd) { 1467 const llvm::Type *PtrDiffLTy = 1468 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1469 const llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1470 1471 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1472 if (PTy->getPointeeType()->isVoidType()) { 1473 // C++ [expr.dynamic.cast]p7: 1474 // If T is "pointer to cv void," then the result is a pointer to the 1475 // most derived object pointed to by v. 1476 1477 // Get the vtable pointer. 1478 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1479 1480 // Get the offset-to-top from the vtable. 1481 llvm::Value *OffsetToTop = 1482 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1483 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1484 1485 // Finally, add the offset to the pointer. 1486 Value = CGF.EmitCastToVoidPtr(Value); 1487 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1488 1489 return CGF.Builder.CreateBitCast(Value, DestLTy); 1490 } 1491 } 1492 1493 QualType SrcRecordTy; 1494 QualType DestRecordTy; 1495 1496 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1497 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1498 DestRecordTy = DestPTy->getPointeeType(); 1499 } else { 1500 SrcRecordTy = SrcTy; 1501 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1502 } 1503 1504 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1505 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1506 1507 llvm::Value *SrcRTTI = 1508 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1509 llvm::Value *DestRTTI = 1510 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1511 1512 // FIXME: Actually compute a hint here. 1513 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL); 1514 1515 // Emit the call to __dynamic_cast. 1516 Value = CGF.EmitCastToVoidPtr(Value); 1517 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value, 1518 SrcRTTI, DestRTTI, OffsetHint); 1519 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1520 1521 /// C++ [expr.dynamic.cast]p9: 1522 /// A failed cast to reference type throws std::bad_cast 1523 if (DestTy->isReferenceType()) { 1524 llvm::BasicBlock *BadCastBlock = 1525 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1526 1527 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1528 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1529 1530 CGF.EmitBlock(BadCastBlock); 1531 EmitBadCastCall(CGF); 1532 } 1533 1534 return Value; 1535 } 1536 1537 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1538 QualType DestTy) { 1539 const llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1540 if (DestTy->isPointerType()) 1541 return llvm::Constant::getNullValue(DestLTy); 1542 1543 /// C++ [expr.dynamic.cast]p9: 1544 /// A failed cast to reference type throws std::bad_cast 1545 EmitBadCastCall(CGF); 1546 1547 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1548 return llvm::UndefValue::get(DestLTy); 1549 } 1550 1551 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1552 const CXXDynamicCastExpr *DCE) { 1553 QualType DestTy = DCE->getTypeAsWritten(); 1554 1555 if (DCE->isAlwaysNull()) 1556 return EmitDynamicCastToNull(*this, DestTy); 1557 1558 QualType SrcTy = DCE->getSubExpr()->getType(); 1559 1560 // C++ [expr.dynamic.cast]p4: 1561 // If the value of v is a null pointer value in the pointer case, the result 1562 // is the null pointer value of type T. 1563 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1564 1565 llvm::BasicBlock *CastNull = 0; 1566 llvm::BasicBlock *CastNotNull = 0; 1567 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1568 1569 if (ShouldNullCheckSrcValue) { 1570 CastNull = createBasicBlock("dynamic_cast.null"); 1571 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1572 1573 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1574 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1575 EmitBlock(CastNotNull); 1576 } 1577 1578 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1579 1580 if (ShouldNullCheckSrcValue) { 1581 EmitBranch(CastEnd); 1582 1583 EmitBlock(CastNull); 1584 EmitBranch(CastEnd); 1585 } 1586 1587 EmitBlock(CastEnd); 1588 1589 if (ShouldNullCheckSrcValue) { 1590 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1591 PHI->addIncoming(Value, CastNotNull); 1592 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1593 1594 Value = PHI; 1595 } 1596 1597 return Value; 1598 } 1599