1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37 
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46 
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50 
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53 
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58   void EnsureDest(QualType T) {
59     if (!Dest.isIgnored()) return;
60     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
61   }
62 
63 public:
64   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
65     : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
66   }
67 
68   //===--------------------------------------------------------------------===//
69   //                               Utilities
70   //===--------------------------------------------------------------------===//
71 
72   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
73   /// represents a value lvalue, this method emits the address of the lvalue,
74   /// then loads the result into DestPtr.
75   void EmitAggLoadOfLValue(const Expr *E);
76 
77   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
78   void EmitFinalDestCopy(QualType type, const LValue &src);
79   void EmitFinalDestCopy(QualType type, RValue src,
80                          CharUnits srcAlignment = CharUnits::Zero());
81   void EmitCopy(QualType type, const AggValueSlot &dest,
82                 const AggValueSlot &src);
83 
84   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
85 
86   void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
87   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89 
90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95 
96   bool TypeRequiresGCollection(QualType T);
97 
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101 
102   void VisitStmt(Stmt *S) {
103     CGF.ErrorUnsupported(S, "aggregate expression");
104   }
105   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
106   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
107     Visit(GE->getResultExpr());
108   }
109   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
110   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
111     return Visit(E->getReplacement());
112   }
113 
114   // l-values.
115   void VisitDeclRefExpr(DeclRefExpr *E) {
116     // For aggregates, we should always be able to emit the variable
117     // as an l-value unless it's a reference.  This is due to the fact
118     // that we can't actually ever see a normal l2r conversion on an
119     // aggregate in C++, and in C there's no language standard
120     // actively preventing us from listing variables in the captures
121     // list of a block.
122     if (E->getDecl()->getType()->isReferenceType()) {
123       if (CodeGenFunction::ConstantEmission result
124             = CGF.tryEmitAsConstant(E)) {
125         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
126         return;
127       }
128     }
129 
130     EmitAggLoadOfLValue(E);
131   }
132 
133   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
134   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
135   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
136   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
137   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140   void VisitPredefinedExpr(const PredefinedExpr *E) {
141     EmitAggLoadOfLValue(E);
142   }
143 
144   // Operators.
145   void VisitCastExpr(CastExpr *E);
146   void VisitCallExpr(const CallExpr *E);
147   void VisitStmtExpr(const StmtExpr *E);
148   void VisitBinaryOperator(const BinaryOperator *BO);
149   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
150   void VisitBinAssign(const BinaryOperator *E);
151   void VisitBinComma(const BinaryOperator *E);
152 
153   void VisitObjCMessageExpr(ObjCMessageExpr *E);
154   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
155     EmitAggLoadOfLValue(E);
156   }
157 
158   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
159   void VisitChooseExpr(const ChooseExpr *CE);
160   void VisitInitListExpr(InitListExpr *E);
161   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
162   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
163     Visit(DAE->getExpr());
164   }
165   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
166   void VisitCXXConstructExpr(const CXXConstructExpr *E);
167   void VisitLambdaExpr(LambdaExpr *E);
168   void VisitExprWithCleanups(ExprWithCleanups *E);
169   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
170   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
171   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
172   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
173 
174   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
175     if (E->isGLValue()) {
176       LValue LV = CGF.EmitPseudoObjectLValue(E);
177       return EmitFinalDestCopy(E->getType(), LV);
178     }
179 
180     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
181   }
182 
183   void VisitVAArgExpr(VAArgExpr *E);
184 
185   void EmitInitializationToLValue(Expr *E, LValue Address);
186   void EmitNullInitializationToLValue(LValue Address);
187   //  case Expr::ChooseExprClass:
188   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
189   void VisitAtomicExpr(AtomicExpr *E) {
190     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
191   }
192 };
193 }  // end anonymous namespace.
194 
195 //===----------------------------------------------------------------------===//
196 //                                Utilities
197 //===----------------------------------------------------------------------===//
198 
199 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
200 /// represents a value lvalue, this method emits the address of the lvalue,
201 /// then loads the result into DestPtr.
202 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
203   LValue LV = CGF.EmitLValue(E);
204   EmitFinalDestCopy(E->getType(), LV);
205 }
206 
207 /// \brief True if the given aggregate type requires special GC API calls.
208 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
209   // Only record types have members that might require garbage collection.
210   const RecordType *RecordTy = T->getAs<RecordType>();
211   if (!RecordTy) return false;
212 
213   // Don't mess with non-trivial C++ types.
214   RecordDecl *Record = RecordTy->getDecl();
215   if (isa<CXXRecordDecl>(Record) &&
216       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
217        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
218     return false;
219 
220   // Check whether the type has an object member.
221   return Record->hasObjectMember();
222 }
223 
224 /// \brief Perform the final move to DestPtr if for some reason
225 /// getReturnValueSlot() didn't use it directly.
226 ///
227 /// The idea is that you do something like this:
228 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
229 ///   EmitMoveFromReturnSlot(E, Result);
230 ///
231 /// If nothing interferes, this will cause the result to be emitted
232 /// directly into the return value slot.  Otherwise, a final move
233 /// will be performed.
234 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
235   if (shouldUseDestForReturnSlot()) {
236     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
237     // The possibility of undef rvalues complicates that a lot,
238     // though, so we can't really assert.
239     return;
240   }
241 
242   // Otherwise, copy from there to the destination.
243   assert(Dest.getAddr() != src.getAggregateAddr());
244   std::pair<CharUnits, CharUnits> typeInfo =
245     CGF.getContext().getTypeInfoInChars(E->getType());
246   EmitFinalDestCopy(E->getType(), src, typeInfo.second);
247 }
248 
249 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
250 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
251                                        CharUnits srcAlign) {
252   assert(src.isAggregate() && "value must be aggregate value!");
253   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
254   EmitFinalDestCopy(type, srcLV);
255 }
256 
257 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
258 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
259   // If Dest is ignored, then we're evaluating an aggregate expression
260   // in a context that doesn't care about the result.  Note that loads
261   // from volatile l-values force the existence of a non-ignored
262   // destination.
263   if (Dest.isIgnored())
264     return;
265 
266   AggValueSlot srcAgg =
267     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
268                             needsGC(type), AggValueSlot::IsAliased);
269   EmitCopy(type, Dest, srcAgg);
270 }
271 
272 /// Perform a copy from the source into the destination.
273 ///
274 /// \param type - the type of the aggregate being copied; qualifiers are
275 ///   ignored
276 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
277                               const AggValueSlot &src) {
278   if (dest.requiresGCollection()) {
279     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
280     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
281     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
282                                                       dest.getAddr(),
283                                                       src.getAddr(),
284                                                       size);
285     return;
286   }
287 
288   // If the result of the assignment is used, copy the LHS there also.
289   // It's volatile if either side is.  Use the minimum alignment of
290   // the two sides.
291   CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
292                         dest.isVolatile() || src.isVolatile(),
293                         std::min(dest.getAlignment(), src.getAlignment()));
294 }
295 
296 static QualType GetStdInitializerListElementType(QualType T) {
297   // Just assume that this is really std::initializer_list.
298   ClassTemplateSpecializationDecl *specialization =
299       cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
300   return specialization->getTemplateArgs()[0].getAsType();
301 }
302 
303 /// \brief Prepare cleanup for the temporary array.
304 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
305                                           QualType arrayType,
306                                           llvm::Value *addr,
307                                           const InitListExpr *initList) {
308   QualType::DestructionKind dtorKind = arrayType.isDestructedType();
309   if (!dtorKind)
310     return; // Type doesn't need destroying.
311   if (dtorKind != QualType::DK_cxx_destructor) {
312     CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
313     return;
314   }
315 
316   CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
317   CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
318                   /*EHCleanup=*/true);
319 }
320 
321 /// \brief Emit the initializer for a std::initializer_list initialized with a
322 /// real initializer list.
323 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
324                                             InitListExpr *initList) {
325   // We emit an array containing the elements, then have the init list point
326   // at the array.
327   ASTContext &ctx = CGF.getContext();
328   unsigned numInits = initList->getNumInits();
329   QualType element = GetStdInitializerListElementType(initList->getType());
330   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
331   QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
332   llvm::Type *LTy = CGF.ConvertTypeForMem(array);
333   llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
334   alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
335   alloc->setName(".initlist.");
336 
337   EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
338 
339   // FIXME: The diagnostics are somewhat out of place here.
340   RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
341   RecordDecl::field_iterator field = record->field_begin();
342   if (field == record->field_end()) {
343     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
344     return;
345   }
346 
347   QualType elementPtr = ctx.getPointerType(element.withConst());
348 
349   // Start pointer.
350   if (!ctx.hasSameType(field->getType(), elementPtr)) {
351     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
352     return;
353   }
354   LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
355   LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
356   llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
357   CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
358   ++field;
359 
360   if (field == record->field_end()) {
361     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
362     return;
363   }
364   LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
365   if (ctx.hasSameType(field->getType(), elementPtr)) {
366     // End pointer.
367     llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
368     CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
369   } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
370     // Length.
371     CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
372   } else {
373     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
374     return;
375   }
376 
377   if (!Dest.isExternallyDestructed())
378     EmitStdInitializerListCleanup(CGF, array, alloc, initList);
379 }
380 
381 /// \brief Emit initialization of an array from an initializer list.
382 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
383                                    QualType elementType, InitListExpr *E) {
384   uint64_t NumInitElements = E->getNumInits();
385 
386   uint64_t NumArrayElements = AType->getNumElements();
387   assert(NumInitElements <= NumArrayElements);
388 
389   // DestPtr is an array*.  Construct an elementType* by drilling
390   // down a level.
391   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
392   llvm::Value *indices[] = { zero, zero };
393   llvm::Value *begin =
394     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
395 
396   // Exception safety requires us to destroy all the
397   // already-constructed members if an initializer throws.
398   // For that, we'll need an EH cleanup.
399   QualType::DestructionKind dtorKind = elementType.isDestructedType();
400   llvm::AllocaInst *endOfInit = 0;
401   EHScopeStack::stable_iterator cleanup;
402   llvm::Instruction *cleanupDominator = 0;
403   if (CGF.needsEHCleanup(dtorKind)) {
404     // In principle we could tell the cleanup where we are more
405     // directly, but the control flow can get so varied here that it
406     // would actually be quite complex.  Therefore we go through an
407     // alloca.
408     endOfInit = CGF.CreateTempAlloca(begin->getType(),
409                                      "arrayinit.endOfInit");
410     cleanupDominator = Builder.CreateStore(begin, endOfInit);
411     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
412                                          CGF.getDestroyer(dtorKind));
413     cleanup = CGF.EHStack.stable_begin();
414 
415   // Otherwise, remember that we didn't need a cleanup.
416   } else {
417     dtorKind = QualType::DK_none;
418   }
419 
420   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
421 
422   // The 'current element to initialize'.  The invariants on this
423   // variable are complicated.  Essentially, after each iteration of
424   // the loop, it points to the last initialized element, except
425   // that it points to the beginning of the array before any
426   // elements have been initialized.
427   llvm::Value *element = begin;
428 
429   // Emit the explicit initializers.
430   for (uint64_t i = 0; i != NumInitElements; ++i) {
431     // Advance to the next element.
432     if (i > 0) {
433       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
434 
435       // Tell the cleanup that it needs to destroy up to this
436       // element.  TODO: some of these stores can be trivially
437       // observed to be unnecessary.
438       if (endOfInit) Builder.CreateStore(element, endOfInit);
439     }
440 
441     // If these are nested std::initializer_list inits, do them directly,
442     // because they are conceptually the same "location".
443     InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
444     if (initList && initList->initializesStdInitializerList()) {
445       EmitStdInitializerList(element, initList);
446     } else {
447       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
448       EmitInitializationToLValue(E->getInit(i), elementLV);
449     }
450   }
451 
452   // Check whether there's a non-trivial array-fill expression.
453   // Note that this will be a CXXConstructExpr even if the element
454   // type is an array (or array of array, etc.) of class type.
455   Expr *filler = E->getArrayFiller();
456   bool hasTrivialFiller = true;
457   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
458     assert(cons->getConstructor()->isDefaultConstructor());
459     hasTrivialFiller = cons->getConstructor()->isTrivial();
460   }
461 
462   // Any remaining elements need to be zero-initialized, possibly
463   // using the filler expression.  We can skip this if the we're
464   // emitting to zeroed memory.
465   if (NumInitElements != NumArrayElements &&
466       !(Dest.isZeroed() && hasTrivialFiller &&
467         CGF.getTypes().isZeroInitializable(elementType))) {
468 
469     // Use an actual loop.  This is basically
470     //   do { *array++ = filler; } while (array != end);
471 
472     // Advance to the start of the rest of the array.
473     if (NumInitElements) {
474       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
475       if (endOfInit) Builder.CreateStore(element, endOfInit);
476     }
477 
478     // Compute the end of the array.
479     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
480                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
481                                                  "arrayinit.end");
482 
483     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
484     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
485 
486     // Jump into the body.
487     CGF.EmitBlock(bodyBB);
488     llvm::PHINode *currentElement =
489       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
490     currentElement->addIncoming(element, entryBB);
491 
492     // Emit the actual filler expression.
493     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
494     if (filler)
495       EmitInitializationToLValue(filler, elementLV);
496     else
497       EmitNullInitializationToLValue(elementLV);
498 
499     // Move on to the next element.
500     llvm::Value *nextElement =
501       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
502 
503     // Tell the EH cleanup that we finished with the last element.
504     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
505 
506     // Leave the loop if we're done.
507     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
508                                              "arrayinit.done");
509     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
510     Builder.CreateCondBr(done, endBB, bodyBB);
511     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
512 
513     CGF.EmitBlock(endBB);
514   }
515 
516   // Leave the partial-array cleanup if we entered one.
517   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
518 }
519 
520 //===----------------------------------------------------------------------===//
521 //                            Visitor Methods
522 //===----------------------------------------------------------------------===//
523 
524 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
525   Visit(E->GetTemporaryExpr());
526 }
527 
528 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
529   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
530 }
531 
532 void
533 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
534   if (E->getType().isPODType(CGF.getContext())) {
535     // For a POD type, just emit a load of the lvalue + a copy, because our
536     // compound literal might alias the destination.
537     // FIXME: This is a band-aid; the real problem appears to be in our handling
538     // of assignments, where we store directly into the LHS without checking
539     // whether anything in the RHS aliases.
540     EmitAggLoadOfLValue(E);
541     return;
542   }
543 
544   AggValueSlot Slot = EnsureSlot(E->getType());
545   CGF.EmitAggExpr(E->getInitializer(), Slot);
546 }
547 
548 
549 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
550   switch (E->getCastKind()) {
551   case CK_Dynamic: {
552     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
553     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
554     // FIXME: Do we also need to handle property references here?
555     if (LV.isSimple())
556       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
557     else
558       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
559 
560     if (!Dest.isIgnored())
561       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
562     break;
563   }
564 
565   case CK_ToUnion: {
566     if (Dest.isIgnored()) break;
567 
568     // GCC union extension
569     QualType Ty = E->getSubExpr()->getType();
570     QualType PtrTy = CGF.getContext().getPointerType(Ty);
571     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
572                                                  CGF.ConvertType(PtrTy));
573     EmitInitializationToLValue(E->getSubExpr(),
574                                CGF.MakeAddrLValue(CastPtr, Ty));
575     break;
576   }
577 
578   case CK_DerivedToBase:
579   case CK_BaseToDerived:
580   case CK_UncheckedDerivedToBase: {
581     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
582                 "should have been unpacked before we got here");
583   }
584 
585   case CK_LValueToRValue:
586     // If we're loading from a volatile type, force the destination
587     // into existence.
588     if (E->getSubExpr()->getType().isVolatileQualified()) {
589       EnsureDest(E->getType());
590       return Visit(E->getSubExpr());
591     }
592     // fallthrough
593 
594   case CK_NoOp:
595   case CK_AtomicToNonAtomic:
596   case CK_NonAtomicToAtomic:
597   case CK_UserDefinedConversion:
598   case CK_ConstructorConversion:
599     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
600                                                    E->getType()) &&
601            "Implicit cast types must be compatible");
602     Visit(E->getSubExpr());
603     break;
604 
605   case CK_LValueBitCast:
606     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
607 
608   case CK_Dependent:
609   case CK_BitCast:
610   case CK_ArrayToPointerDecay:
611   case CK_FunctionToPointerDecay:
612   case CK_NullToPointer:
613   case CK_NullToMemberPointer:
614   case CK_BaseToDerivedMemberPointer:
615   case CK_DerivedToBaseMemberPointer:
616   case CK_MemberPointerToBoolean:
617   case CK_ReinterpretMemberPointer:
618   case CK_IntegralToPointer:
619   case CK_PointerToIntegral:
620   case CK_PointerToBoolean:
621   case CK_ToVoid:
622   case CK_VectorSplat:
623   case CK_IntegralCast:
624   case CK_IntegralToBoolean:
625   case CK_IntegralToFloating:
626   case CK_FloatingToIntegral:
627   case CK_FloatingToBoolean:
628   case CK_FloatingCast:
629   case CK_CPointerToObjCPointerCast:
630   case CK_BlockPointerToObjCPointerCast:
631   case CK_AnyPointerToBlockPointerCast:
632   case CK_ObjCObjectLValueCast:
633   case CK_FloatingRealToComplex:
634   case CK_FloatingComplexToReal:
635   case CK_FloatingComplexToBoolean:
636   case CK_FloatingComplexCast:
637   case CK_FloatingComplexToIntegralComplex:
638   case CK_IntegralRealToComplex:
639   case CK_IntegralComplexToReal:
640   case CK_IntegralComplexToBoolean:
641   case CK_IntegralComplexCast:
642   case CK_IntegralComplexToFloatingComplex:
643   case CK_ARCProduceObject:
644   case CK_ARCConsumeObject:
645   case CK_ARCReclaimReturnedObject:
646   case CK_ARCExtendBlockObject:
647   case CK_CopyAndAutoreleaseBlockObject:
648     llvm_unreachable("cast kind invalid for aggregate types");
649   }
650 }
651 
652 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
653   if (E->getCallReturnType()->isReferenceType()) {
654     EmitAggLoadOfLValue(E);
655     return;
656   }
657 
658   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
659   EmitMoveFromReturnSlot(E, RV);
660 }
661 
662 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
663   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
664   EmitMoveFromReturnSlot(E, RV);
665 }
666 
667 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
668   CGF.EmitIgnoredExpr(E->getLHS());
669   Visit(E->getRHS());
670 }
671 
672 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
673   CodeGenFunction::StmtExprEvaluation eval(CGF);
674   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
675 }
676 
677 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
678   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
679     VisitPointerToDataMemberBinaryOperator(E);
680   else
681     CGF.ErrorUnsupported(E, "aggregate binary expression");
682 }
683 
684 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
685                                                     const BinaryOperator *E) {
686   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
687   EmitFinalDestCopy(E->getType(), LV);
688 }
689 
690 /// Is the value of the given expression possibly a reference to or
691 /// into a __block variable?
692 static bool isBlockVarRef(const Expr *E) {
693   // Make sure we look through parens.
694   E = E->IgnoreParens();
695 
696   // Check for a direct reference to a __block variable.
697   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
698     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
699     return (var && var->hasAttr<BlocksAttr>());
700   }
701 
702   // More complicated stuff.
703 
704   // Binary operators.
705   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
706     // For an assignment or pointer-to-member operation, just care
707     // about the LHS.
708     if (op->isAssignmentOp() || op->isPtrMemOp())
709       return isBlockVarRef(op->getLHS());
710 
711     // For a comma, just care about the RHS.
712     if (op->getOpcode() == BO_Comma)
713       return isBlockVarRef(op->getRHS());
714 
715     // FIXME: pointer arithmetic?
716     return false;
717 
718   // Check both sides of a conditional operator.
719   } else if (const AbstractConditionalOperator *op
720                = dyn_cast<AbstractConditionalOperator>(E)) {
721     return isBlockVarRef(op->getTrueExpr())
722         || isBlockVarRef(op->getFalseExpr());
723 
724   // OVEs are required to support BinaryConditionalOperators.
725   } else if (const OpaqueValueExpr *op
726                = dyn_cast<OpaqueValueExpr>(E)) {
727     if (const Expr *src = op->getSourceExpr())
728       return isBlockVarRef(src);
729 
730   // Casts are necessary to get things like (*(int*)&var) = foo().
731   // We don't really care about the kind of cast here, except
732   // we don't want to look through l2r casts, because it's okay
733   // to get the *value* in a __block variable.
734   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
735     if (cast->getCastKind() == CK_LValueToRValue)
736       return false;
737     return isBlockVarRef(cast->getSubExpr());
738 
739   // Handle unary operators.  Again, just aggressively look through
740   // it, ignoring the operation.
741   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
742     return isBlockVarRef(uop->getSubExpr());
743 
744   // Look into the base of a field access.
745   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
746     return isBlockVarRef(mem->getBase());
747 
748   // Look into the base of a subscript.
749   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
750     return isBlockVarRef(sub->getBase());
751   }
752 
753   return false;
754 }
755 
756 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
757   // For an assignment to work, the value on the right has
758   // to be compatible with the value on the left.
759   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
760                                                  E->getRHS()->getType())
761          && "Invalid assignment");
762 
763   // If the LHS might be a __block variable, and the RHS can
764   // potentially cause a block copy, we need to evaluate the RHS first
765   // so that the assignment goes the right place.
766   // This is pretty semantically fragile.
767   if (isBlockVarRef(E->getLHS()) &&
768       E->getRHS()->HasSideEffects(CGF.getContext())) {
769     // Ensure that we have a destination, and evaluate the RHS into that.
770     EnsureDest(E->getRHS()->getType());
771     Visit(E->getRHS());
772 
773     // Now emit the LHS and copy into it.
774     LValue LHS = CGF.EmitLValue(E->getLHS());
775 
776     EmitCopy(E->getLHS()->getType(),
777              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
778                                      needsGC(E->getLHS()->getType()),
779                                      AggValueSlot::IsAliased),
780              Dest);
781     return;
782   }
783 
784   LValue LHS = CGF.EmitLValue(E->getLHS());
785 
786   // Codegen the RHS so that it stores directly into the LHS.
787   AggValueSlot LHSSlot =
788     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
789                             needsGC(E->getLHS()->getType()),
790                             AggValueSlot::IsAliased);
791   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
792 
793   // Copy into the destination if the assignment isn't ignored.
794   EmitFinalDestCopy(E->getType(), LHS);
795 }
796 
797 void AggExprEmitter::
798 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
799   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
800   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
801   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
802 
803   // Bind the common expression if necessary.
804   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
805 
806   CodeGenFunction::ConditionalEvaluation eval(CGF);
807   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
808 
809   // Save whether the destination's lifetime is externally managed.
810   bool isExternallyDestructed = Dest.isExternallyDestructed();
811 
812   eval.begin(CGF);
813   CGF.EmitBlock(LHSBlock);
814   Visit(E->getTrueExpr());
815   eval.end(CGF);
816 
817   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
818   CGF.Builder.CreateBr(ContBlock);
819 
820   // If the result of an agg expression is unused, then the emission
821   // of the LHS might need to create a destination slot.  That's fine
822   // with us, and we can safely emit the RHS into the same slot, but
823   // we shouldn't claim that it's already being destructed.
824   Dest.setExternallyDestructed(isExternallyDestructed);
825 
826   eval.begin(CGF);
827   CGF.EmitBlock(RHSBlock);
828   Visit(E->getFalseExpr());
829   eval.end(CGF);
830 
831   CGF.EmitBlock(ContBlock);
832 }
833 
834 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
835   Visit(CE->getChosenSubExpr(CGF.getContext()));
836 }
837 
838 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
839   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
840   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
841 
842   if (!ArgPtr) {
843     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
844     return;
845   }
846 
847   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
848 }
849 
850 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
851   // Ensure that we have a slot, but if we already do, remember
852   // whether it was externally destructed.
853   bool wasExternallyDestructed = Dest.isExternallyDestructed();
854   EnsureDest(E->getType());
855 
856   // We're going to push a destructor if there isn't already one.
857   Dest.setExternallyDestructed();
858 
859   Visit(E->getSubExpr());
860 
861   // Push that destructor we promised.
862   if (!wasExternallyDestructed)
863     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
864 }
865 
866 void
867 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
868   AggValueSlot Slot = EnsureSlot(E->getType());
869   CGF.EmitCXXConstructExpr(E, Slot);
870 }
871 
872 void
873 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
874   AggValueSlot Slot = EnsureSlot(E->getType());
875   CGF.EmitLambdaExpr(E, Slot);
876 }
877 
878 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
879   CGF.enterFullExpression(E);
880   CodeGenFunction::RunCleanupsScope cleanups(CGF);
881   Visit(E->getSubExpr());
882 }
883 
884 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
885   QualType T = E->getType();
886   AggValueSlot Slot = EnsureSlot(T);
887   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
888 }
889 
890 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
891   QualType T = E->getType();
892   AggValueSlot Slot = EnsureSlot(T);
893   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
894 }
895 
896 /// isSimpleZero - If emitting this value will obviously just cause a store of
897 /// zero to memory, return true.  This can return false if uncertain, so it just
898 /// handles simple cases.
899 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
900   E = E->IgnoreParens();
901 
902   // 0
903   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
904     return IL->getValue() == 0;
905   // +0.0
906   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
907     return FL->getValue().isPosZero();
908   // int()
909   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
910       CGF.getTypes().isZeroInitializable(E->getType()))
911     return true;
912   // (int*)0 - Null pointer expressions.
913   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
914     return ICE->getCastKind() == CK_NullToPointer;
915   // '\0'
916   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
917     return CL->getValue() == 0;
918 
919   // Otherwise, hard case: conservatively return false.
920   return false;
921 }
922 
923 
924 void
925 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
926   QualType type = LV.getType();
927   // FIXME: Ignore result?
928   // FIXME: Are initializers affected by volatile?
929   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
930     // Storing "i32 0" to a zero'd memory location is a noop.
931   } else if (isa<ImplicitValueInitExpr>(E)) {
932     EmitNullInitializationToLValue(LV);
933   } else if (type->isReferenceType()) {
934     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
935     CGF.EmitStoreThroughLValue(RV, LV);
936   } else if (type->isAnyComplexType()) {
937     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
938   } else if (CGF.hasAggregateLLVMType(type)) {
939     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
940                                                AggValueSlot::IsDestructed,
941                                       AggValueSlot::DoesNotNeedGCBarriers,
942                                                AggValueSlot::IsNotAliased,
943                                                Dest.isZeroed()));
944   } else if (LV.isSimple()) {
945     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
946   } else {
947     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
948   }
949 }
950 
951 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
952   QualType type = lv.getType();
953 
954   // If the destination slot is already zeroed out before the aggregate is
955   // copied into it, we don't have to emit any zeros here.
956   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
957     return;
958 
959   if (!CGF.hasAggregateLLVMType(type)) {
960     // For non-aggregates, we can store zero.
961     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
962     // Note that the following is not equivalent to
963     // EmitStoreThroughBitfieldLValue for ARC types.
964     if (lv.isBitField()) {
965       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
966     } else {
967       assert(lv.isSimple());
968       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
969     }
970   } else {
971     // There's a potential optimization opportunity in combining
972     // memsets; that would be easy for arrays, but relatively
973     // difficult for structures with the current code.
974     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
975   }
976 }
977 
978 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
979 #if 0
980   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
981   // (Length of globals? Chunks of zeroed-out space?).
982   //
983   // If we can, prefer a copy from a global; this is a lot less code for long
984   // globals, and it's easier for the current optimizers to analyze.
985   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
986     llvm::GlobalVariable* GV =
987     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
988                              llvm::GlobalValue::InternalLinkage, C, "");
989     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
990     return;
991   }
992 #endif
993   if (E->hadArrayRangeDesignator())
994     CGF.ErrorUnsupported(E, "GNU array range designator extension");
995 
996   if (E->initializesStdInitializerList()) {
997     EmitStdInitializerList(Dest.getAddr(), E);
998     return;
999   }
1000 
1001   AggValueSlot Dest = EnsureSlot(E->getType());
1002   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
1003                                      Dest.getAlignment());
1004 
1005   // Handle initialization of an array.
1006   if (E->getType()->isArrayType()) {
1007     if (E->isStringLiteralInit())
1008       return Visit(E->getInit(0));
1009 
1010     QualType elementType =
1011         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1012 
1013     llvm::PointerType *APType =
1014       cast<llvm::PointerType>(Dest.getAddr()->getType());
1015     llvm::ArrayType *AType =
1016       cast<llvm::ArrayType>(APType->getElementType());
1017 
1018     EmitArrayInit(Dest.getAddr(), AType, elementType, E);
1019     return;
1020   }
1021 
1022   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1023 
1024   // Do struct initialization; this code just sets each individual member
1025   // to the approprate value.  This makes bitfield support automatic;
1026   // the disadvantage is that the generated code is more difficult for
1027   // the optimizer, especially with bitfields.
1028   unsigned NumInitElements = E->getNumInits();
1029   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1030 
1031   if (record->isUnion()) {
1032     // Only initialize one field of a union. The field itself is
1033     // specified by the initializer list.
1034     if (!E->getInitializedFieldInUnion()) {
1035       // Empty union; we have nothing to do.
1036 
1037 #ifndef NDEBUG
1038       // Make sure that it's really an empty and not a failure of
1039       // semantic analysis.
1040       for (RecordDecl::field_iterator Field = record->field_begin(),
1041                                    FieldEnd = record->field_end();
1042            Field != FieldEnd; ++Field)
1043         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1044 #endif
1045       return;
1046     }
1047 
1048     // FIXME: volatility
1049     FieldDecl *Field = E->getInitializedFieldInUnion();
1050 
1051     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1052     if (NumInitElements) {
1053       // Store the initializer into the field
1054       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1055     } else {
1056       // Default-initialize to null.
1057       EmitNullInitializationToLValue(FieldLoc);
1058     }
1059 
1060     return;
1061   }
1062 
1063   // We'll need to enter cleanup scopes in case any of the member
1064   // initializers throw an exception.
1065   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1066   llvm::Instruction *cleanupDominator = 0;
1067 
1068   // Here we iterate over the fields; this makes it simpler to both
1069   // default-initialize fields and skip over unnamed fields.
1070   unsigned curInitIndex = 0;
1071   for (RecordDecl::field_iterator field = record->field_begin(),
1072                                fieldEnd = record->field_end();
1073        field != fieldEnd; ++field) {
1074     // We're done once we hit the flexible array member.
1075     if (field->getType()->isIncompleteArrayType())
1076       break;
1077 
1078     // Always skip anonymous bitfields.
1079     if (field->isUnnamedBitfield())
1080       continue;
1081 
1082     // We're done if we reach the end of the explicit initializers, we
1083     // have a zeroed object, and the rest of the fields are
1084     // zero-initializable.
1085     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1086         CGF.getTypes().isZeroInitializable(E->getType()))
1087       break;
1088 
1089 
1090     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
1091     // We never generate write-barries for initialized fields.
1092     LV.setNonGC(true);
1093 
1094     if (curInitIndex < NumInitElements) {
1095       // Store the initializer into the field.
1096       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1097     } else {
1098       // We're out of initalizers; default-initialize to null
1099       EmitNullInitializationToLValue(LV);
1100     }
1101 
1102     // Push a destructor if necessary.
1103     // FIXME: if we have an array of structures, all explicitly
1104     // initialized, we can end up pushing a linear number of cleanups.
1105     bool pushedCleanup = false;
1106     if (QualType::DestructionKind dtorKind
1107           = field->getType().isDestructedType()) {
1108       assert(LV.isSimple());
1109       if (CGF.needsEHCleanup(dtorKind)) {
1110         if (!cleanupDominator)
1111           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1112 
1113         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1114                         CGF.getDestroyer(dtorKind), false);
1115         cleanups.push_back(CGF.EHStack.stable_begin());
1116         pushedCleanup = true;
1117       }
1118     }
1119 
1120     // If the GEP didn't get used because of a dead zero init or something
1121     // else, clean it up for -O0 builds and general tidiness.
1122     if (!pushedCleanup && LV.isSimple())
1123       if (llvm::GetElementPtrInst *GEP =
1124             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1125         if (GEP->use_empty())
1126           GEP->eraseFromParent();
1127   }
1128 
1129   // Deactivate all the partial cleanups in reverse order, which
1130   // generally means popping them.
1131   for (unsigned i = cleanups.size(); i != 0; --i)
1132     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1133 
1134   // Destroy the placeholder if we made one.
1135   if (cleanupDominator)
1136     cleanupDominator->eraseFromParent();
1137 }
1138 
1139 //===----------------------------------------------------------------------===//
1140 //                        Entry Points into this File
1141 //===----------------------------------------------------------------------===//
1142 
1143 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1144 /// non-zero bytes that will be stored when outputting the initializer for the
1145 /// specified initializer expression.
1146 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1147   E = E->IgnoreParens();
1148 
1149   // 0 and 0.0 won't require any non-zero stores!
1150   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1151 
1152   // If this is an initlist expr, sum up the size of sizes of the (present)
1153   // elements.  If this is something weird, assume the whole thing is non-zero.
1154   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1155   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1156     return CGF.getContext().getTypeSizeInChars(E->getType());
1157 
1158   // InitListExprs for structs have to be handled carefully.  If there are
1159   // reference members, we need to consider the size of the reference, not the
1160   // referencee.  InitListExprs for unions and arrays can't have references.
1161   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1162     if (!RT->isUnionType()) {
1163       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1164       CharUnits NumNonZeroBytes = CharUnits::Zero();
1165 
1166       unsigned ILEElement = 0;
1167       for (RecordDecl::field_iterator Field = SD->field_begin(),
1168            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1169         // We're done once we hit the flexible array member or run out of
1170         // InitListExpr elements.
1171         if (Field->getType()->isIncompleteArrayType() ||
1172             ILEElement == ILE->getNumInits())
1173           break;
1174         if (Field->isUnnamedBitfield())
1175           continue;
1176 
1177         const Expr *E = ILE->getInit(ILEElement++);
1178 
1179         // Reference values are always non-null and have the width of a pointer.
1180         if (Field->getType()->isReferenceType())
1181           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1182               CGF.getContext().getTargetInfo().getPointerWidth(0));
1183         else
1184           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1185       }
1186 
1187       return NumNonZeroBytes;
1188     }
1189   }
1190 
1191 
1192   CharUnits NumNonZeroBytes = CharUnits::Zero();
1193   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1194     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1195   return NumNonZeroBytes;
1196 }
1197 
1198 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1199 /// zeros in it, emit a memset and avoid storing the individual zeros.
1200 ///
1201 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1202                                      CodeGenFunction &CGF) {
1203   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1204   // volatile stores.
1205   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1206 
1207   // C++ objects with a user-declared constructor don't need zero'ing.
1208   if (CGF.getContext().getLangOpts().CPlusPlus)
1209     if (const RecordType *RT = CGF.getContext()
1210                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1211       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1212       if (RD->hasUserDeclaredConstructor())
1213         return;
1214     }
1215 
1216   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1217   std::pair<CharUnits, CharUnits> TypeInfo =
1218     CGF.getContext().getTypeInfoInChars(E->getType());
1219   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1220     return;
1221 
1222   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1223   // we prefer to emit memset + individual stores for the rest.
1224   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1225   if (NumNonZeroBytes*4 > TypeInfo.first)
1226     return;
1227 
1228   // Okay, it seems like a good idea to use an initial memset, emit the call.
1229   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1230   CharUnits Align = TypeInfo.second;
1231 
1232   llvm::Value *Loc = Slot.getAddr();
1233 
1234   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1235   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1236                            Align.getQuantity(), false);
1237 
1238   // Tell the AggExprEmitter that the slot is known zero.
1239   Slot.setZeroed();
1240 }
1241 
1242 
1243 
1244 
1245 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1246 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1247 /// the value of the aggregate expression is not needed.  If VolatileDest is
1248 /// true, DestPtr cannot be 0.
1249 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1250   assert(E && hasAggregateLLVMType(E->getType()) &&
1251          "Invalid aggregate expression to emit");
1252   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1253          "slot has bits but no address");
1254 
1255   // Optimize the slot if possible.
1256   CheckAggExprForMemSetUse(Slot, E, *this);
1257 
1258   AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
1259 }
1260 
1261 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1262   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1263   llvm::Value *Temp = CreateMemTemp(E->getType());
1264   LValue LV = MakeAddrLValue(Temp, E->getType());
1265   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1266                                          AggValueSlot::DoesNotNeedGCBarriers,
1267                                          AggValueSlot::IsNotAliased));
1268   return LV;
1269 }
1270 
1271 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1272                                         llvm::Value *SrcPtr, QualType Ty,
1273                                         bool isVolatile,
1274                                         CharUnits alignment) {
1275   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1276 
1277   if (getContext().getLangOpts().CPlusPlus) {
1278     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1279       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1280       assert((Record->hasTrivialCopyConstructor() ||
1281               Record->hasTrivialCopyAssignment() ||
1282               Record->hasTrivialMoveConstructor() ||
1283               Record->hasTrivialMoveAssignment()) &&
1284              "Trying to aggregate-copy a type without a trivial copy "
1285              "constructor or assignment operator");
1286       // Ignore empty classes in C++.
1287       if (Record->isEmpty())
1288         return;
1289     }
1290   }
1291 
1292   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1293   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1294   // read from another object that overlaps in anyway the storage of the first
1295   // object, then the overlap shall be exact and the two objects shall have
1296   // qualified or unqualified versions of a compatible type."
1297   //
1298   // memcpy is not defined if the source and destination pointers are exactly
1299   // equal, but other compilers do this optimization, and almost every memcpy
1300   // implementation handles this case safely.  If there is a libc that does not
1301   // safely handle this, we can add a target hook.
1302 
1303   // Get size and alignment info for this aggregate.
1304   std::pair<CharUnits, CharUnits> TypeInfo =
1305     getContext().getTypeInfoInChars(Ty);
1306 
1307   if (alignment.isZero())
1308     alignment = TypeInfo.second;
1309 
1310   // FIXME: Handle variable sized types.
1311 
1312   // FIXME: If we have a volatile struct, the optimizer can remove what might
1313   // appear to be `extra' memory ops:
1314   //
1315   // volatile struct { int i; } a, b;
1316   //
1317   // int main() {
1318   //   a = b;
1319   //   a = b;
1320   // }
1321   //
1322   // we need to use a different call here.  We use isVolatile to indicate when
1323   // either the source or the destination is volatile.
1324 
1325   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1326   llvm::Type *DBP =
1327     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1328   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1329 
1330   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1331   llvm::Type *SBP =
1332     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1333   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1334 
1335   // Don't do any of the memmove_collectable tests if GC isn't set.
1336   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1337     // fall through
1338   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1339     RecordDecl *Record = RecordTy->getDecl();
1340     if (Record->hasObjectMember()) {
1341       CharUnits size = TypeInfo.first;
1342       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1343       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1344       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1345                                                     SizeVal);
1346       return;
1347     }
1348   } else if (Ty->isArrayType()) {
1349     QualType BaseType = getContext().getBaseElementType(Ty);
1350     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1351       if (RecordTy->getDecl()->hasObjectMember()) {
1352         CharUnits size = TypeInfo.first;
1353         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1354         llvm::Value *SizeVal =
1355           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1356         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1357                                                       SizeVal);
1358         return;
1359       }
1360     }
1361   }
1362 
1363   Builder.CreateMemCpy(DestPtr, SrcPtr,
1364                        llvm::ConstantInt::get(IntPtrTy,
1365                                               TypeInfo.first.getQuantity()),
1366                        alignment.getQuantity(), isVolatile);
1367 }
1368 
1369 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
1370                                                          const Expr *init) {
1371   const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1372   if (cleanups)
1373     init = cleanups->getSubExpr();
1374 
1375   if (isa<InitListExpr>(init) &&
1376       cast<InitListExpr>(init)->initializesStdInitializerList()) {
1377     // We initialized this std::initializer_list with an initializer list.
1378     // A backing array was created. Push a cleanup for it.
1379     EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
1380   }
1381 }
1382 
1383 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
1384                                                    llvm::Value *arrayStart,
1385                                                    const InitListExpr *init) {
1386   // Check if there are any recursive cleanups to do, i.e. if we have
1387   //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
1388   // then we need to destroy the inner array as well.
1389   for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
1390     const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
1391     if (!subInit || !subInit->initializesStdInitializerList())
1392       continue;
1393 
1394     // This one needs to be destroyed. Get the address of the std::init_list.
1395     llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
1396     llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
1397                                                  "std.initlist");
1398     CGF.EmitStdInitializerListCleanup(loc, subInit);
1399   }
1400 }
1401 
1402 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
1403                                                     const InitListExpr *init) {
1404   ASTContext &ctx = getContext();
1405   QualType element = GetStdInitializerListElementType(init->getType());
1406   unsigned numInits = init->getNumInits();
1407   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1408   QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1409   QualType arrayPtr = ctx.getPointerType(array);
1410   llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1411 
1412   // lvalue is the location of a std::initializer_list, which as its first
1413   // element has a pointer to the array we want to destroy.
1414   llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
1415   llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
1416 
1417   ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
1418 
1419   llvm::Value *arrayAddress =
1420       Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
1421   ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1422 }
1423