1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Intrinsics.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Aggregate Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 namespace { 34 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 35 CodeGenFunction &CGF; 36 CGBuilderTy &Builder; 37 AggValueSlot Dest; 38 bool IsResultUnused; 39 40 /// We want to use 'dest' as the return slot except under two 41 /// conditions: 42 /// - The destination slot requires garbage collection, so we 43 /// need to use the GC API. 44 /// - The destination slot is potentially aliased. 45 bool shouldUseDestForReturnSlot() const { 46 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 47 } 48 49 ReturnValueSlot getReturnValueSlot() const { 50 if (!shouldUseDestForReturnSlot()) 51 return ReturnValueSlot(); 52 53 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 54 IsResultUnused); 55 } 56 57 AggValueSlot EnsureSlot(QualType T) { 58 if (!Dest.isIgnored()) return Dest; 59 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 60 } 61 void EnsureDest(QualType T) { 62 if (!Dest.isIgnored()) return; 63 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 64 } 65 66 public: 67 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 68 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 69 IsResultUnused(IsResultUnused) { } 70 71 //===--------------------------------------------------------------------===// 72 // Utilities 73 //===--------------------------------------------------------------------===// 74 75 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 76 /// represents a value lvalue, this method emits the address of the lvalue, 77 /// then loads the result into DestPtr. 78 void EmitAggLoadOfLValue(const Expr *E); 79 80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 81 void EmitFinalDestCopy(QualType type, const LValue &src); 82 void EmitFinalDestCopy(QualType type, RValue src); 83 void EmitCopy(QualType type, const AggValueSlot &dest, 84 const AggValueSlot &src); 85 86 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 87 88 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 89 QualType ArrayQTy, InitListExpr *E); 90 91 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 92 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 93 return AggValueSlot::NeedsGCBarriers; 94 return AggValueSlot::DoesNotNeedGCBarriers; 95 } 96 97 bool TypeRequiresGCollection(QualType T); 98 99 //===--------------------------------------------------------------------===// 100 // Visitor Methods 101 //===--------------------------------------------------------------------===// 102 103 void Visit(Expr *E) { 104 ApplyDebugLocation DL(CGF, E); 105 StmtVisitor<AggExprEmitter>::Visit(E); 106 } 107 108 void VisitStmt(Stmt *S) { 109 CGF.ErrorUnsupported(S, "aggregate expression"); 110 } 111 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 112 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 Visit(GE->getResultExpr()); 114 } 115 void VisitCoawaitExpr(CoawaitExpr *E) { 116 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 117 } 118 void VisitCoyieldExpr(CoyieldExpr *E) { 119 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 120 } 121 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 124 return Visit(E->getReplacement()); 125 } 126 127 // l-values. 128 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 129 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 130 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 131 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 132 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 133 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 134 EmitAggLoadOfLValue(E); 135 } 136 void VisitPredefinedExpr(const PredefinedExpr *E) { 137 EmitAggLoadOfLValue(E); 138 } 139 140 // Operators. 141 void VisitCastExpr(CastExpr *E); 142 void VisitCallExpr(const CallExpr *E); 143 void VisitStmtExpr(const StmtExpr *E); 144 void VisitBinaryOperator(const BinaryOperator *BO); 145 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 146 void VisitBinAssign(const BinaryOperator *E); 147 void VisitBinComma(const BinaryOperator *E); 148 149 void VisitObjCMessageExpr(ObjCMessageExpr *E); 150 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 151 EmitAggLoadOfLValue(E); 152 } 153 154 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 155 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 156 void VisitChooseExpr(const ChooseExpr *CE); 157 void VisitInitListExpr(InitListExpr *E); 158 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 159 llvm::Value *outerBegin = nullptr); 160 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 161 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 162 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 163 Visit(DAE->getExpr()); 164 } 165 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 166 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 167 Visit(DIE->getExpr()); 168 } 169 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 170 void VisitCXXConstructExpr(const CXXConstructExpr *E); 171 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 172 void VisitLambdaExpr(LambdaExpr *E); 173 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 174 void VisitExprWithCleanups(ExprWithCleanups *E); 175 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 176 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 177 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 178 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 179 180 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 181 if (E->isGLValue()) { 182 LValue LV = CGF.EmitPseudoObjectLValue(E); 183 return EmitFinalDestCopy(E->getType(), LV); 184 } 185 186 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 187 } 188 189 void VisitVAArgExpr(VAArgExpr *E); 190 191 void EmitInitializationToLValue(Expr *E, LValue Address); 192 void EmitNullInitializationToLValue(LValue Address); 193 // case Expr::ChooseExprClass: 194 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 195 void VisitAtomicExpr(AtomicExpr *E) { 196 RValue Res = CGF.EmitAtomicExpr(E); 197 EmitFinalDestCopy(E->getType(), Res); 198 } 199 }; 200 } // end anonymous namespace. 201 202 //===----------------------------------------------------------------------===// 203 // Utilities 204 //===----------------------------------------------------------------------===// 205 206 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 207 /// represents a value lvalue, this method emits the address of the lvalue, 208 /// then loads the result into DestPtr. 209 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 210 LValue LV = CGF.EmitLValue(E); 211 212 // If the type of the l-value is atomic, then do an atomic load. 213 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 214 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 215 return; 216 } 217 218 EmitFinalDestCopy(E->getType(), LV); 219 } 220 221 /// \brief True if the given aggregate type requires special GC API calls. 222 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 223 // Only record types have members that might require garbage collection. 224 const RecordType *RecordTy = T->getAs<RecordType>(); 225 if (!RecordTy) return false; 226 227 // Don't mess with non-trivial C++ types. 228 RecordDecl *Record = RecordTy->getDecl(); 229 if (isa<CXXRecordDecl>(Record) && 230 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 231 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 232 return false; 233 234 // Check whether the type has an object member. 235 return Record->hasObjectMember(); 236 } 237 238 /// \brief Perform the final move to DestPtr if for some reason 239 /// getReturnValueSlot() didn't use it directly. 240 /// 241 /// The idea is that you do something like this: 242 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 243 /// EmitMoveFromReturnSlot(E, Result); 244 /// 245 /// If nothing interferes, this will cause the result to be emitted 246 /// directly into the return value slot. Otherwise, a final move 247 /// will be performed. 248 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 249 if (shouldUseDestForReturnSlot()) { 250 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 251 // The possibility of undef rvalues complicates that a lot, 252 // though, so we can't really assert. 253 return; 254 } 255 256 // Otherwise, copy from there to the destination. 257 assert(Dest.getPointer() != src.getAggregatePointer()); 258 EmitFinalDestCopy(E->getType(), src); 259 } 260 261 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 262 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 263 assert(src.isAggregate() && "value must be aggregate value!"); 264 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 265 EmitFinalDestCopy(type, srcLV); 266 } 267 268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 269 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 270 // If Dest is ignored, then we're evaluating an aggregate expression 271 // in a context that doesn't care about the result. Note that loads 272 // from volatile l-values force the existence of a non-ignored 273 // destination. 274 if (Dest.isIgnored()) 275 return; 276 277 AggValueSlot srcAgg = 278 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 279 needsGC(type), AggValueSlot::IsAliased); 280 EmitCopy(type, Dest, srcAgg); 281 } 282 283 /// Perform a copy from the source into the destination. 284 /// 285 /// \param type - the type of the aggregate being copied; qualifiers are 286 /// ignored 287 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 288 const AggValueSlot &src) { 289 if (dest.requiresGCollection()) { 290 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 291 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 292 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 293 dest.getAddress(), 294 src.getAddress(), 295 size); 296 return; 297 } 298 299 // If the result of the assignment is used, copy the LHS there also. 300 // It's volatile if either side is. Use the minimum alignment of 301 // the two sides. 302 CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type, 303 dest.isVolatile() || src.isVolatile()); 304 } 305 306 /// \brief Emit the initializer for a std::initializer_list initialized with a 307 /// real initializer list. 308 void 309 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 310 // Emit an array containing the elements. The array is externally destructed 311 // if the std::initializer_list object is. 312 ASTContext &Ctx = CGF.getContext(); 313 LValue Array = CGF.EmitLValue(E->getSubExpr()); 314 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 315 Address ArrayPtr = Array.getAddress(); 316 317 const ConstantArrayType *ArrayType = 318 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 319 assert(ArrayType && "std::initializer_list constructed from non-array"); 320 321 // FIXME: Perform the checks on the field types in SemaInit. 322 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 323 RecordDecl::field_iterator Field = Record->field_begin(); 324 if (Field == Record->field_end()) { 325 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 326 return; 327 } 328 329 // Start pointer. 330 if (!Field->getType()->isPointerType() || 331 !Ctx.hasSameType(Field->getType()->getPointeeType(), 332 ArrayType->getElementType())) { 333 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 334 return; 335 } 336 337 AggValueSlot Dest = EnsureSlot(E->getType()); 338 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 339 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 340 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 341 llvm::Value *IdxStart[] = { Zero, Zero }; 342 llvm::Value *ArrayStart = 343 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 344 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 345 ++Field; 346 347 if (Field == Record->field_end()) { 348 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 349 return; 350 } 351 352 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 353 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 354 if (Field->getType()->isPointerType() && 355 Ctx.hasSameType(Field->getType()->getPointeeType(), 356 ArrayType->getElementType())) { 357 // End pointer. 358 llvm::Value *IdxEnd[] = { Zero, Size }; 359 llvm::Value *ArrayEnd = 360 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 361 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 362 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 363 // Length. 364 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 365 } else { 366 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 367 return; 368 } 369 } 370 371 /// \brief Determine if E is a trivial array filler, that is, one that is 372 /// equivalent to zero-initialization. 373 static bool isTrivialFiller(Expr *E) { 374 if (!E) 375 return true; 376 377 if (isa<ImplicitValueInitExpr>(E)) 378 return true; 379 380 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 381 if (ILE->getNumInits()) 382 return false; 383 return isTrivialFiller(ILE->getArrayFiller()); 384 } 385 386 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 387 return Cons->getConstructor()->isDefaultConstructor() && 388 Cons->getConstructor()->isTrivial(); 389 390 // FIXME: Are there other cases where we can avoid emitting an initializer? 391 return false; 392 } 393 394 /// \brief Emit initialization of an array from an initializer list. 395 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 396 QualType ArrayQTy, InitListExpr *E) { 397 uint64_t NumInitElements = E->getNumInits(); 398 399 uint64_t NumArrayElements = AType->getNumElements(); 400 assert(NumInitElements <= NumArrayElements); 401 402 QualType elementType = 403 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 404 405 // DestPtr is an array*. Construct an elementType* by drilling 406 // down a level. 407 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 408 llvm::Value *indices[] = { zero, zero }; 409 llvm::Value *begin = 410 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 411 412 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 413 CharUnits elementAlign = 414 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 415 416 // Consider initializing the array by copying from a global. For this to be 417 // more efficient than per-element initialization, the size of the elements 418 // with explicit initializers should be large enough. 419 if (NumInitElements * elementSize.getQuantity() > 16 && 420 elementType.isTriviallyCopyableType(CGF.getContext())) { 421 CodeGen::CodeGenModule &CGM = CGF.CGM; 422 ConstantEmitter Emitter(CGM); 423 LangAS AS = ArrayQTy.getAddressSpace(); 424 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 425 auto GV = new llvm::GlobalVariable( 426 CGM.getModule(), C->getType(), 427 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 428 llvm::GlobalValue::PrivateLinkage, C, "constinit", 429 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 430 CGM.getContext().getTargetAddressSpace(AS)); 431 Emitter.finalize(GV); 432 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 433 GV->setAlignment(Align.getQuantity()); 434 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 435 return; 436 } 437 } 438 439 // Exception safety requires us to destroy all the 440 // already-constructed members if an initializer throws. 441 // For that, we'll need an EH cleanup. 442 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 443 Address endOfInit = Address::invalid(); 444 EHScopeStack::stable_iterator cleanup; 445 llvm::Instruction *cleanupDominator = nullptr; 446 if (CGF.needsEHCleanup(dtorKind)) { 447 // In principle we could tell the cleanup where we are more 448 // directly, but the control flow can get so varied here that it 449 // would actually be quite complex. Therefore we go through an 450 // alloca. 451 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 452 "arrayinit.endOfInit"); 453 cleanupDominator = Builder.CreateStore(begin, endOfInit); 454 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 455 elementAlign, 456 CGF.getDestroyer(dtorKind)); 457 cleanup = CGF.EHStack.stable_begin(); 458 459 // Otherwise, remember that we didn't need a cleanup. 460 } else { 461 dtorKind = QualType::DK_none; 462 } 463 464 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 465 466 // The 'current element to initialize'. The invariants on this 467 // variable are complicated. Essentially, after each iteration of 468 // the loop, it points to the last initialized element, except 469 // that it points to the beginning of the array before any 470 // elements have been initialized. 471 llvm::Value *element = begin; 472 473 // Emit the explicit initializers. 474 for (uint64_t i = 0; i != NumInitElements; ++i) { 475 // Advance to the next element. 476 if (i > 0) { 477 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 478 479 // Tell the cleanup that it needs to destroy up to this 480 // element. TODO: some of these stores can be trivially 481 // observed to be unnecessary. 482 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 483 } 484 485 LValue elementLV = 486 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 487 EmitInitializationToLValue(E->getInit(i), elementLV); 488 } 489 490 // Check whether there's a non-trivial array-fill expression. 491 Expr *filler = E->getArrayFiller(); 492 bool hasTrivialFiller = isTrivialFiller(filler); 493 494 // Any remaining elements need to be zero-initialized, possibly 495 // using the filler expression. We can skip this if the we're 496 // emitting to zeroed memory. 497 if (NumInitElements != NumArrayElements && 498 !(Dest.isZeroed() && hasTrivialFiller && 499 CGF.getTypes().isZeroInitializable(elementType))) { 500 501 // Use an actual loop. This is basically 502 // do { *array++ = filler; } while (array != end); 503 504 // Advance to the start of the rest of the array. 505 if (NumInitElements) { 506 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 507 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 508 } 509 510 // Compute the end of the array. 511 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 512 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 513 "arrayinit.end"); 514 515 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 516 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 517 518 // Jump into the body. 519 CGF.EmitBlock(bodyBB); 520 llvm::PHINode *currentElement = 521 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 522 currentElement->addIncoming(element, entryBB); 523 524 // Emit the actual filler expression. 525 { 526 // C++1z [class.temporary]p5: 527 // when a default constructor is called to initialize an element of 528 // an array with no corresponding initializer [...] the destruction of 529 // every temporary created in a default argument is sequenced before 530 // the construction of the next array element, if any 531 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 532 LValue elementLV = 533 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 534 if (filler) 535 EmitInitializationToLValue(filler, elementLV); 536 else 537 EmitNullInitializationToLValue(elementLV); 538 } 539 540 // Move on to the next element. 541 llvm::Value *nextElement = 542 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 543 544 // Tell the EH cleanup that we finished with the last element. 545 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 546 547 // Leave the loop if we're done. 548 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 549 "arrayinit.done"); 550 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 551 Builder.CreateCondBr(done, endBB, bodyBB); 552 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 553 554 CGF.EmitBlock(endBB); 555 } 556 557 // Leave the partial-array cleanup if we entered one. 558 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 559 } 560 561 //===----------------------------------------------------------------------===// 562 // Visitor Methods 563 //===----------------------------------------------------------------------===// 564 565 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 566 Visit(E->GetTemporaryExpr()); 567 } 568 569 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 570 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 571 } 572 573 void 574 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 575 if (Dest.isPotentiallyAliased() && 576 E->getType().isPODType(CGF.getContext())) { 577 // For a POD type, just emit a load of the lvalue + a copy, because our 578 // compound literal might alias the destination. 579 EmitAggLoadOfLValue(E); 580 return; 581 } 582 583 AggValueSlot Slot = EnsureSlot(E->getType()); 584 CGF.EmitAggExpr(E->getInitializer(), Slot); 585 } 586 587 /// Attempt to look through various unimportant expressions to find a 588 /// cast of the given kind. 589 static Expr *findPeephole(Expr *op, CastKind kind) { 590 while (true) { 591 op = op->IgnoreParens(); 592 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 593 if (castE->getCastKind() == kind) 594 return castE->getSubExpr(); 595 if (castE->getCastKind() == CK_NoOp) 596 continue; 597 } 598 return nullptr; 599 } 600 } 601 602 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 603 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 604 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 605 switch (E->getCastKind()) { 606 case CK_Dynamic: { 607 // FIXME: Can this actually happen? We have no test coverage for it. 608 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 609 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 610 CodeGenFunction::TCK_Load); 611 // FIXME: Do we also need to handle property references here? 612 if (LV.isSimple()) 613 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 614 else 615 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 616 617 if (!Dest.isIgnored()) 618 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 619 break; 620 } 621 622 case CK_ToUnion: { 623 // Evaluate even if the destination is ignored. 624 if (Dest.isIgnored()) { 625 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 626 /*ignoreResult=*/true); 627 break; 628 } 629 630 // GCC union extension 631 QualType Ty = E->getSubExpr()->getType(); 632 Address CastPtr = 633 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 634 EmitInitializationToLValue(E->getSubExpr(), 635 CGF.MakeAddrLValue(CastPtr, Ty)); 636 break; 637 } 638 639 case CK_DerivedToBase: 640 case CK_BaseToDerived: 641 case CK_UncheckedDerivedToBase: { 642 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 643 "should have been unpacked before we got here"); 644 } 645 646 case CK_NonAtomicToAtomic: 647 case CK_AtomicToNonAtomic: { 648 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 649 650 // Determine the atomic and value types. 651 QualType atomicType = E->getSubExpr()->getType(); 652 QualType valueType = E->getType(); 653 if (isToAtomic) std::swap(atomicType, valueType); 654 655 assert(atomicType->isAtomicType()); 656 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 657 atomicType->castAs<AtomicType>()->getValueType())); 658 659 // Just recurse normally if we're ignoring the result or the 660 // atomic type doesn't change representation. 661 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 662 return Visit(E->getSubExpr()); 663 } 664 665 CastKind peepholeTarget = 666 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 667 668 // These two cases are reverses of each other; try to peephole them. 669 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 670 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 671 E->getType()) && 672 "peephole significantly changed types?"); 673 return Visit(op); 674 } 675 676 // If we're converting an r-value of non-atomic type to an r-value 677 // of atomic type, just emit directly into the relevant sub-object. 678 if (isToAtomic) { 679 AggValueSlot valueDest = Dest; 680 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 681 // Zero-initialize. (Strictly speaking, we only need to intialize 682 // the padding at the end, but this is simpler.) 683 if (!Dest.isZeroed()) 684 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 685 686 // Build a GEP to refer to the subobject. 687 Address valueAddr = 688 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 689 CharUnits()); 690 valueDest = AggValueSlot::forAddr(valueAddr, 691 valueDest.getQualifiers(), 692 valueDest.isExternallyDestructed(), 693 valueDest.requiresGCollection(), 694 valueDest.isPotentiallyAliased(), 695 AggValueSlot::IsZeroed); 696 } 697 698 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 699 return; 700 } 701 702 // Otherwise, we're converting an atomic type to a non-atomic type. 703 // Make an atomic temporary, emit into that, and then copy the value out. 704 AggValueSlot atomicSlot = 705 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 706 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 707 708 Address valueAddr = 709 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 710 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 711 return EmitFinalDestCopy(valueType, rvalue); 712 } 713 714 case CK_LValueToRValue: 715 // If we're loading from a volatile type, force the destination 716 // into existence. 717 if (E->getSubExpr()->getType().isVolatileQualified()) { 718 EnsureDest(E->getType()); 719 return Visit(E->getSubExpr()); 720 } 721 722 LLVM_FALLTHROUGH; 723 724 case CK_NoOp: 725 case CK_UserDefinedConversion: 726 case CK_ConstructorConversion: 727 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 728 E->getType()) && 729 "Implicit cast types must be compatible"); 730 Visit(E->getSubExpr()); 731 break; 732 733 case CK_LValueBitCast: 734 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 735 736 case CK_Dependent: 737 case CK_BitCast: 738 case CK_ArrayToPointerDecay: 739 case CK_FunctionToPointerDecay: 740 case CK_NullToPointer: 741 case CK_NullToMemberPointer: 742 case CK_BaseToDerivedMemberPointer: 743 case CK_DerivedToBaseMemberPointer: 744 case CK_MemberPointerToBoolean: 745 case CK_ReinterpretMemberPointer: 746 case CK_IntegralToPointer: 747 case CK_PointerToIntegral: 748 case CK_PointerToBoolean: 749 case CK_ToVoid: 750 case CK_VectorSplat: 751 case CK_IntegralCast: 752 case CK_BooleanToSignedIntegral: 753 case CK_IntegralToBoolean: 754 case CK_IntegralToFloating: 755 case CK_FloatingToIntegral: 756 case CK_FloatingToBoolean: 757 case CK_FloatingCast: 758 case CK_CPointerToObjCPointerCast: 759 case CK_BlockPointerToObjCPointerCast: 760 case CK_AnyPointerToBlockPointerCast: 761 case CK_ObjCObjectLValueCast: 762 case CK_FloatingRealToComplex: 763 case CK_FloatingComplexToReal: 764 case CK_FloatingComplexToBoolean: 765 case CK_FloatingComplexCast: 766 case CK_FloatingComplexToIntegralComplex: 767 case CK_IntegralRealToComplex: 768 case CK_IntegralComplexToReal: 769 case CK_IntegralComplexToBoolean: 770 case CK_IntegralComplexCast: 771 case CK_IntegralComplexToFloatingComplex: 772 case CK_ARCProduceObject: 773 case CK_ARCConsumeObject: 774 case CK_ARCReclaimReturnedObject: 775 case CK_ARCExtendBlockObject: 776 case CK_CopyAndAutoreleaseBlockObject: 777 case CK_BuiltinFnToFnPtr: 778 case CK_ZeroToOCLEvent: 779 case CK_ZeroToOCLQueue: 780 case CK_AddressSpaceConversion: 781 case CK_IntToOCLSampler: 782 llvm_unreachable("cast kind invalid for aggregate types"); 783 } 784 } 785 786 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 787 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 788 EmitAggLoadOfLValue(E); 789 return; 790 } 791 792 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 793 EmitMoveFromReturnSlot(E, RV); 794 } 795 796 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 797 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 798 EmitMoveFromReturnSlot(E, RV); 799 } 800 801 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 802 CGF.EmitIgnoredExpr(E->getLHS()); 803 Visit(E->getRHS()); 804 } 805 806 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 807 CodeGenFunction::StmtExprEvaluation eval(CGF); 808 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 809 } 810 811 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 812 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 813 VisitPointerToDataMemberBinaryOperator(E); 814 else 815 CGF.ErrorUnsupported(E, "aggregate binary expression"); 816 } 817 818 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 819 const BinaryOperator *E) { 820 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 821 EmitFinalDestCopy(E->getType(), LV); 822 } 823 824 /// Is the value of the given expression possibly a reference to or 825 /// into a __block variable? 826 static bool isBlockVarRef(const Expr *E) { 827 // Make sure we look through parens. 828 E = E->IgnoreParens(); 829 830 // Check for a direct reference to a __block variable. 831 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 832 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 833 return (var && var->hasAttr<BlocksAttr>()); 834 } 835 836 // More complicated stuff. 837 838 // Binary operators. 839 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 840 // For an assignment or pointer-to-member operation, just care 841 // about the LHS. 842 if (op->isAssignmentOp() || op->isPtrMemOp()) 843 return isBlockVarRef(op->getLHS()); 844 845 // For a comma, just care about the RHS. 846 if (op->getOpcode() == BO_Comma) 847 return isBlockVarRef(op->getRHS()); 848 849 // FIXME: pointer arithmetic? 850 return false; 851 852 // Check both sides of a conditional operator. 853 } else if (const AbstractConditionalOperator *op 854 = dyn_cast<AbstractConditionalOperator>(E)) { 855 return isBlockVarRef(op->getTrueExpr()) 856 || isBlockVarRef(op->getFalseExpr()); 857 858 // OVEs are required to support BinaryConditionalOperators. 859 } else if (const OpaqueValueExpr *op 860 = dyn_cast<OpaqueValueExpr>(E)) { 861 if (const Expr *src = op->getSourceExpr()) 862 return isBlockVarRef(src); 863 864 // Casts are necessary to get things like (*(int*)&var) = foo(). 865 // We don't really care about the kind of cast here, except 866 // we don't want to look through l2r casts, because it's okay 867 // to get the *value* in a __block variable. 868 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 869 if (cast->getCastKind() == CK_LValueToRValue) 870 return false; 871 return isBlockVarRef(cast->getSubExpr()); 872 873 // Handle unary operators. Again, just aggressively look through 874 // it, ignoring the operation. 875 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 876 return isBlockVarRef(uop->getSubExpr()); 877 878 // Look into the base of a field access. 879 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 880 return isBlockVarRef(mem->getBase()); 881 882 // Look into the base of a subscript. 883 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 884 return isBlockVarRef(sub->getBase()); 885 } 886 887 return false; 888 } 889 890 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 891 // For an assignment to work, the value on the right has 892 // to be compatible with the value on the left. 893 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 894 E->getRHS()->getType()) 895 && "Invalid assignment"); 896 897 // If the LHS might be a __block variable, and the RHS can 898 // potentially cause a block copy, we need to evaluate the RHS first 899 // so that the assignment goes the right place. 900 // This is pretty semantically fragile. 901 if (isBlockVarRef(E->getLHS()) && 902 E->getRHS()->HasSideEffects(CGF.getContext())) { 903 // Ensure that we have a destination, and evaluate the RHS into that. 904 EnsureDest(E->getRHS()->getType()); 905 Visit(E->getRHS()); 906 907 // Now emit the LHS and copy into it. 908 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 909 910 // That copy is an atomic copy if the LHS is atomic. 911 if (LHS.getType()->isAtomicType() || 912 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 913 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 914 return; 915 } 916 917 EmitCopy(E->getLHS()->getType(), 918 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 919 needsGC(E->getLHS()->getType()), 920 AggValueSlot::IsAliased), 921 Dest); 922 return; 923 } 924 925 LValue LHS = CGF.EmitLValue(E->getLHS()); 926 927 // If we have an atomic type, evaluate into the destination and then 928 // do an atomic copy. 929 if (LHS.getType()->isAtomicType() || 930 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 931 EnsureDest(E->getRHS()->getType()); 932 Visit(E->getRHS()); 933 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 934 return; 935 } 936 937 // Codegen the RHS so that it stores directly into the LHS. 938 AggValueSlot LHSSlot = 939 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 940 needsGC(E->getLHS()->getType()), 941 AggValueSlot::IsAliased); 942 // A non-volatile aggregate destination might have volatile member. 943 if (!LHSSlot.isVolatile() && 944 CGF.hasVolatileMember(E->getLHS()->getType())) 945 LHSSlot.setVolatile(true); 946 947 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 948 949 // Copy into the destination if the assignment isn't ignored. 950 EmitFinalDestCopy(E->getType(), LHS); 951 } 952 953 void AggExprEmitter:: 954 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 955 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 956 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 957 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 958 959 // Bind the common expression if necessary. 960 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 961 962 CodeGenFunction::ConditionalEvaluation eval(CGF); 963 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 964 CGF.getProfileCount(E)); 965 966 // Save whether the destination's lifetime is externally managed. 967 bool isExternallyDestructed = Dest.isExternallyDestructed(); 968 969 eval.begin(CGF); 970 CGF.EmitBlock(LHSBlock); 971 CGF.incrementProfileCounter(E); 972 Visit(E->getTrueExpr()); 973 eval.end(CGF); 974 975 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 976 CGF.Builder.CreateBr(ContBlock); 977 978 // If the result of an agg expression is unused, then the emission 979 // of the LHS might need to create a destination slot. That's fine 980 // with us, and we can safely emit the RHS into the same slot, but 981 // we shouldn't claim that it's already being destructed. 982 Dest.setExternallyDestructed(isExternallyDestructed); 983 984 eval.begin(CGF); 985 CGF.EmitBlock(RHSBlock); 986 Visit(E->getFalseExpr()); 987 eval.end(CGF); 988 989 CGF.EmitBlock(ContBlock); 990 } 991 992 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 993 Visit(CE->getChosenSubExpr()); 994 } 995 996 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 997 Address ArgValue = Address::invalid(); 998 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 999 1000 // If EmitVAArg fails, emit an error. 1001 if (!ArgPtr.isValid()) { 1002 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1003 return; 1004 } 1005 1006 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1007 } 1008 1009 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1010 // Ensure that we have a slot, but if we already do, remember 1011 // whether it was externally destructed. 1012 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1013 EnsureDest(E->getType()); 1014 1015 // We're going to push a destructor if there isn't already one. 1016 Dest.setExternallyDestructed(); 1017 1018 Visit(E->getSubExpr()); 1019 1020 // Push that destructor we promised. 1021 if (!wasExternallyDestructed) 1022 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1023 } 1024 1025 void 1026 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1027 AggValueSlot Slot = EnsureSlot(E->getType()); 1028 CGF.EmitCXXConstructExpr(E, Slot); 1029 } 1030 1031 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1032 const CXXInheritedCtorInitExpr *E) { 1033 AggValueSlot Slot = EnsureSlot(E->getType()); 1034 CGF.EmitInheritedCXXConstructorCall( 1035 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1036 E->inheritedFromVBase(), E); 1037 } 1038 1039 void 1040 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1041 AggValueSlot Slot = EnsureSlot(E->getType()); 1042 CGF.EmitLambdaExpr(E, Slot); 1043 } 1044 1045 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1046 CGF.enterFullExpression(E); 1047 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1048 Visit(E->getSubExpr()); 1049 } 1050 1051 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1052 QualType T = E->getType(); 1053 AggValueSlot Slot = EnsureSlot(T); 1054 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1055 } 1056 1057 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1058 QualType T = E->getType(); 1059 AggValueSlot Slot = EnsureSlot(T); 1060 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1061 } 1062 1063 /// isSimpleZero - If emitting this value will obviously just cause a store of 1064 /// zero to memory, return true. This can return false if uncertain, so it just 1065 /// handles simple cases. 1066 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1067 E = E->IgnoreParens(); 1068 1069 // 0 1070 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1071 return IL->getValue() == 0; 1072 // +0.0 1073 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1074 return FL->getValue().isPosZero(); 1075 // int() 1076 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1077 CGF.getTypes().isZeroInitializable(E->getType())) 1078 return true; 1079 // (int*)0 - Null pointer expressions. 1080 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1081 return ICE->getCastKind() == CK_NullToPointer && 1082 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1083 // '\0' 1084 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1085 return CL->getValue() == 0; 1086 1087 // Otherwise, hard case: conservatively return false. 1088 return false; 1089 } 1090 1091 1092 void 1093 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1094 QualType type = LV.getType(); 1095 // FIXME: Ignore result? 1096 // FIXME: Are initializers affected by volatile? 1097 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1098 // Storing "i32 0" to a zero'd memory location is a noop. 1099 return; 1100 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1101 return EmitNullInitializationToLValue(LV); 1102 } else if (isa<NoInitExpr>(E)) { 1103 // Do nothing. 1104 return; 1105 } else if (type->isReferenceType()) { 1106 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1107 return CGF.EmitStoreThroughLValue(RV, LV); 1108 } 1109 1110 switch (CGF.getEvaluationKind(type)) { 1111 case TEK_Complex: 1112 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1113 return; 1114 case TEK_Aggregate: 1115 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1116 AggValueSlot::IsDestructed, 1117 AggValueSlot::DoesNotNeedGCBarriers, 1118 AggValueSlot::IsNotAliased, 1119 Dest.isZeroed())); 1120 return; 1121 case TEK_Scalar: 1122 if (LV.isSimple()) { 1123 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1124 } else { 1125 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1126 } 1127 return; 1128 } 1129 llvm_unreachable("bad evaluation kind"); 1130 } 1131 1132 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1133 QualType type = lv.getType(); 1134 1135 // If the destination slot is already zeroed out before the aggregate is 1136 // copied into it, we don't have to emit any zeros here. 1137 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1138 return; 1139 1140 if (CGF.hasScalarEvaluationKind(type)) { 1141 // For non-aggregates, we can store the appropriate null constant. 1142 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1143 // Note that the following is not equivalent to 1144 // EmitStoreThroughBitfieldLValue for ARC types. 1145 if (lv.isBitField()) { 1146 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1147 } else { 1148 assert(lv.isSimple()); 1149 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1150 } 1151 } else { 1152 // There's a potential optimization opportunity in combining 1153 // memsets; that would be easy for arrays, but relatively 1154 // difficult for structures with the current code. 1155 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1156 } 1157 } 1158 1159 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1160 #if 0 1161 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1162 // (Length of globals? Chunks of zeroed-out space?). 1163 // 1164 // If we can, prefer a copy from a global; this is a lot less code for long 1165 // globals, and it's easier for the current optimizers to analyze. 1166 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1167 llvm::GlobalVariable* GV = 1168 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1169 llvm::GlobalValue::InternalLinkage, C, ""); 1170 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1171 return; 1172 } 1173 #endif 1174 if (E->hadArrayRangeDesignator()) 1175 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1176 1177 if (E->isTransparent()) 1178 return Visit(E->getInit(0)); 1179 1180 AggValueSlot Dest = EnsureSlot(E->getType()); 1181 1182 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1183 1184 // Handle initialization of an array. 1185 if (E->getType()->isArrayType()) { 1186 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1187 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1188 return; 1189 } 1190 1191 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1192 1193 // Do struct initialization; this code just sets each individual member 1194 // to the approprate value. This makes bitfield support automatic; 1195 // the disadvantage is that the generated code is more difficult for 1196 // the optimizer, especially with bitfields. 1197 unsigned NumInitElements = E->getNumInits(); 1198 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1199 1200 // We'll need to enter cleanup scopes in case any of the element 1201 // initializers throws an exception. 1202 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1203 llvm::Instruction *cleanupDominator = nullptr; 1204 1205 unsigned curInitIndex = 0; 1206 1207 // Emit initialization of base classes. 1208 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1209 assert(E->getNumInits() >= CXXRD->getNumBases() && 1210 "missing initializer for base class"); 1211 for (auto &Base : CXXRD->bases()) { 1212 assert(!Base.isVirtual() && "should not see vbases here"); 1213 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1214 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1215 Dest.getAddress(), CXXRD, BaseRD, 1216 /*isBaseVirtual*/ false); 1217 AggValueSlot AggSlot = 1218 AggValueSlot::forAddr(V, Qualifiers(), 1219 AggValueSlot::IsDestructed, 1220 AggValueSlot::DoesNotNeedGCBarriers, 1221 AggValueSlot::IsNotAliased); 1222 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1223 1224 if (QualType::DestructionKind dtorKind = 1225 Base.getType().isDestructedType()) { 1226 CGF.pushDestroy(dtorKind, V, Base.getType()); 1227 cleanups.push_back(CGF.EHStack.stable_begin()); 1228 } 1229 } 1230 } 1231 1232 // Prepare a 'this' for CXXDefaultInitExprs. 1233 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1234 1235 if (record->isUnion()) { 1236 // Only initialize one field of a union. The field itself is 1237 // specified by the initializer list. 1238 if (!E->getInitializedFieldInUnion()) { 1239 // Empty union; we have nothing to do. 1240 1241 #ifndef NDEBUG 1242 // Make sure that it's really an empty and not a failure of 1243 // semantic analysis. 1244 for (const auto *Field : record->fields()) 1245 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1246 #endif 1247 return; 1248 } 1249 1250 // FIXME: volatility 1251 FieldDecl *Field = E->getInitializedFieldInUnion(); 1252 1253 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1254 if (NumInitElements) { 1255 // Store the initializer into the field 1256 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1257 } else { 1258 // Default-initialize to null. 1259 EmitNullInitializationToLValue(FieldLoc); 1260 } 1261 1262 return; 1263 } 1264 1265 // Here we iterate over the fields; this makes it simpler to both 1266 // default-initialize fields and skip over unnamed fields. 1267 for (const auto *field : record->fields()) { 1268 // We're done once we hit the flexible array member. 1269 if (field->getType()->isIncompleteArrayType()) 1270 break; 1271 1272 // Always skip anonymous bitfields. 1273 if (field->isUnnamedBitfield()) 1274 continue; 1275 1276 // We're done if we reach the end of the explicit initializers, we 1277 // have a zeroed object, and the rest of the fields are 1278 // zero-initializable. 1279 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1280 CGF.getTypes().isZeroInitializable(E->getType())) 1281 break; 1282 1283 1284 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1285 // We never generate write-barries for initialized fields. 1286 LV.setNonGC(true); 1287 1288 if (curInitIndex < NumInitElements) { 1289 // Store the initializer into the field. 1290 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1291 } else { 1292 // We're out of initializers; default-initialize to null 1293 EmitNullInitializationToLValue(LV); 1294 } 1295 1296 // Push a destructor if necessary. 1297 // FIXME: if we have an array of structures, all explicitly 1298 // initialized, we can end up pushing a linear number of cleanups. 1299 bool pushedCleanup = false; 1300 if (QualType::DestructionKind dtorKind 1301 = field->getType().isDestructedType()) { 1302 assert(LV.isSimple()); 1303 if (CGF.needsEHCleanup(dtorKind)) { 1304 if (!cleanupDominator) 1305 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1306 CGF.Int8Ty, 1307 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1308 CharUnits::One()); // placeholder 1309 1310 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1311 CGF.getDestroyer(dtorKind), false); 1312 cleanups.push_back(CGF.EHStack.stable_begin()); 1313 pushedCleanup = true; 1314 } 1315 } 1316 1317 // If the GEP didn't get used because of a dead zero init or something 1318 // else, clean it up for -O0 builds and general tidiness. 1319 if (!pushedCleanup && LV.isSimple()) 1320 if (llvm::GetElementPtrInst *GEP = 1321 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1322 if (GEP->use_empty()) 1323 GEP->eraseFromParent(); 1324 } 1325 1326 // Deactivate all the partial cleanups in reverse order, which 1327 // generally means popping them. 1328 for (unsigned i = cleanups.size(); i != 0; --i) 1329 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1330 1331 // Destroy the placeholder if we made one. 1332 if (cleanupDominator) 1333 cleanupDominator->eraseFromParent(); 1334 } 1335 1336 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1337 llvm::Value *outerBegin) { 1338 // Emit the common subexpression. 1339 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1340 1341 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1342 uint64_t numElements = E->getArraySize().getZExtValue(); 1343 1344 if (!numElements) 1345 return; 1346 1347 // destPtr is an array*. Construct an elementType* by drilling down a level. 1348 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1349 llvm::Value *indices[] = {zero, zero}; 1350 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1351 "arrayinit.begin"); 1352 1353 // Prepare to special-case multidimensional array initialization: we avoid 1354 // emitting multiple destructor loops in that case. 1355 if (!outerBegin) 1356 outerBegin = begin; 1357 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1358 1359 QualType elementType = 1360 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1361 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1362 CharUnits elementAlign = 1363 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1364 1365 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1366 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1367 1368 // Jump into the body. 1369 CGF.EmitBlock(bodyBB); 1370 llvm::PHINode *index = 1371 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1372 index->addIncoming(zero, entryBB); 1373 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1374 1375 // Prepare for a cleanup. 1376 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1377 EHScopeStack::stable_iterator cleanup; 1378 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1379 if (outerBegin->getType() != element->getType()) 1380 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1381 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1382 elementAlign, 1383 CGF.getDestroyer(dtorKind)); 1384 cleanup = CGF.EHStack.stable_begin(); 1385 } else { 1386 dtorKind = QualType::DK_none; 1387 } 1388 1389 // Emit the actual filler expression. 1390 { 1391 // Temporaries created in an array initialization loop are destroyed 1392 // at the end of each iteration. 1393 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1394 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1395 LValue elementLV = 1396 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1397 1398 if (InnerLoop) { 1399 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1400 auto elementSlot = AggValueSlot::forLValue( 1401 elementLV, AggValueSlot::IsDestructed, 1402 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); 1403 AggExprEmitter(CGF, elementSlot, false) 1404 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1405 } else 1406 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1407 } 1408 1409 // Move on to the next element. 1410 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1411 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1412 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1413 1414 // Leave the loop if we're done. 1415 llvm::Value *done = Builder.CreateICmpEQ( 1416 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1417 "arrayinit.done"); 1418 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1419 Builder.CreateCondBr(done, endBB, bodyBB); 1420 1421 CGF.EmitBlock(endBB); 1422 1423 // Leave the partial-array cleanup if we entered one. 1424 if (dtorKind) 1425 CGF.DeactivateCleanupBlock(cleanup, index); 1426 } 1427 1428 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1429 AggValueSlot Dest = EnsureSlot(E->getType()); 1430 1431 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1432 EmitInitializationToLValue(E->getBase(), DestLV); 1433 VisitInitListExpr(E->getUpdater()); 1434 } 1435 1436 //===----------------------------------------------------------------------===// 1437 // Entry Points into this File 1438 //===----------------------------------------------------------------------===// 1439 1440 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1441 /// non-zero bytes that will be stored when outputting the initializer for the 1442 /// specified initializer expression. 1443 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1444 E = E->IgnoreParens(); 1445 1446 // 0 and 0.0 won't require any non-zero stores! 1447 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1448 1449 // If this is an initlist expr, sum up the size of sizes of the (present) 1450 // elements. If this is something weird, assume the whole thing is non-zero. 1451 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1452 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1453 return CGF.getContext().getTypeSizeInChars(E->getType()); 1454 1455 // InitListExprs for structs have to be handled carefully. If there are 1456 // reference members, we need to consider the size of the reference, not the 1457 // referencee. InitListExprs for unions and arrays can't have references. 1458 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1459 if (!RT->isUnionType()) { 1460 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1461 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1462 1463 unsigned ILEElement = 0; 1464 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1465 while (ILEElement != CXXRD->getNumBases()) 1466 NumNonZeroBytes += 1467 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1468 for (const auto *Field : SD->fields()) { 1469 // We're done once we hit the flexible array member or run out of 1470 // InitListExpr elements. 1471 if (Field->getType()->isIncompleteArrayType() || 1472 ILEElement == ILE->getNumInits()) 1473 break; 1474 if (Field->isUnnamedBitfield()) 1475 continue; 1476 1477 const Expr *E = ILE->getInit(ILEElement++); 1478 1479 // Reference values are always non-null and have the width of a pointer. 1480 if (Field->getType()->isReferenceType()) 1481 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1482 CGF.getTarget().getPointerWidth(0)); 1483 else 1484 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1485 } 1486 1487 return NumNonZeroBytes; 1488 } 1489 } 1490 1491 1492 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1493 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1494 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1495 return NumNonZeroBytes; 1496 } 1497 1498 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1499 /// zeros in it, emit a memset and avoid storing the individual zeros. 1500 /// 1501 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1502 CodeGenFunction &CGF) { 1503 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1504 // volatile stores. 1505 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1506 return; 1507 1508 // C++ objects with a user-declared constructor don't need zero'ing. 1509 if (CGF.getLangOpts().CPlusPlus) 1510 if (const RecordType *RT = CGF.getContext() 1511 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1512 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1513 if (RD->hasUserDeclaredConstructor()) 1514 return; 1515 } 1516 1517 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1518 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1519 if (Size <= CharUnits::fromQuantity(16)) 1520 return; 1521 1522 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1523 // we prefer to emit memset + individual stores for the rest. 1524 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1525 if (NumNonZeroBytes*4 > Size) 1526 return; 1527 1528 // Okay, it seems like a good idea to use an initial memset, emit the call. 1529 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1530 1531 Address Loc = Slot.getAddress(); 1532 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1533 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1534 1535 // Tell the AggExprEmitter that the slot is known zero. 1536 Slot.setZeroed(); 1537 } 1538 1539 1540 1541 1542 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1543 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1544 /// the value of the aggregate expression is not needed. If VolatileDest is 1545 /// true, DestPtr cannot be 0. 1546 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1547 assert(E && hasAggregateEvaluationKind(E->getType()) && 1548 "Invalid aggregate expression to emit"); 1549 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1550 "slot has bits but no address"); 1551 1552 // Optimize the slot if possible. 1553 CheckAggExprForMemSetUse(Slot, E, *this); 1554 1555 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1556 } 1557 1558 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1559 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1560 Address Temp = CreateMemTemp(E->getType()); 1561 LValue LV = MakeAddrLValue(Temp, E->getType()); 1562 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1563 AggValueSlot::DoesNotNeedGCBarriers, 1564 AggValueSlot::IsNotAliased)); 1565 return LV; 1566 } 1567 1568 void CodeGenFunction::EmitAggregateCopy(Address DestPtr, 1569 Address SrcPtr, QualType Ty, 1570 bool isVolatile, 1571 bool isAssignment) { 1572 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1573 1574 if (getLangOpts().CPlusPlus) { 1575 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1576 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1577 assert((Record->hasTrivialCopyConstructor() || 1578 Record->hasTrivialCopyAssignment() || 1579 Record->hasTrivialMoveConstructor() || 1580 Record->hasTrivialMoveAssignment() || 1581 Record->isUnion()) && 1582 "Trying to aggregate-copy a type without a trivial copy/move " 1583 "constructor or assignment operator"); 1584 // Ignore empty classes in C++. 1585 if (Record->isEmpty()) 1586 return; 1587 } 1588 } 1589 1590 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1591 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1592 // read from another object that overlaps in anyway the storage of the first 1593 // object, then the overlap shall be exact and the two objects shall have 1594 // qualified or unqualified versions of a compatible type." 1595 // 1596 // memcpy is not defined if the source and destination pointers are exactly 1597 // equal, but other compilers do this optimization, and almost every memcpy 1598 // implementation handles this case safely. If there is a libc that does not 1599 // safely handle this, we can add a target hook. 1600 1601 // Get data size info for this aggregate. If this is an assignment, 1602 // don't copy the tail padding, because we might be assigning into a 1603 // base subobject where the tail padding is claimed. Otherwise, 1604 // copying it is fine. 1605 std::pair<CharUnits, CharUnits> TypeInfo; 1606 if (isAssignment) 1607 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1608 else 1609 TypeInfo = getContext().getTypeInfoInChars(Ty); 1610 1611 llvm::Value *SizeVal = nullptr; 1612 if (TypeInfo.first.isZero()) { 1613 // But note that getTypeInfo returns 0 for a VLA. 1614 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1615 getContext().getAsArrayType(Ty))) { 1616 QualType BaseEltTy; 1617 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1618 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1619 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1620 if (!isAssignment) 1621 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1622 assert(!TypeInfo.first.isZero()); 1623 SizeVal = Builder.CreateNUWMul( 1624 SizeVal, 1625 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1626 if (!isAssignment) { 1627 SizeVal = Builder.CreateNUWSub( 1628 SizeVal, 1629 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1630 SizeVal = Builder.CreateNUWAdd( 1631 SizeVal, llvm::ConstantInt::get( 1632 SizeTy, LastElementTypeInfo.first.getQuantity())); 1633 } 1634 } 1635 } 1636 if (!SizeVal) { 1637 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1638 } 1639 1640 // FIXME: If we have a volatile struct, the optimizer can remove what might 1641 // appear to be `extra' memory ops: 1642 // 1643 // volatile struct { int i; } a, b; 1644 // 1645 // int main() { 1646 // a = b; 1647 // a = b; 1648 // } 1649 // 1650 // we need to use a different call here. We use isVolatile to indicate when 1651 // either the source or the destination is volatile. 1652 1653 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1654 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1655 1656 // Don't do any of the memmove_collectable tests if GC isn't set. 1657 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1658 // fall through 1659 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1660 RecordDecl *Record = RecordTy->getDecl(); 1661 if (Record->hasObjectMember()) { 1662 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1663 SizeVal); 1664 return; 1665 } 1666 } else if (Ty->isArrayType()) { 1667 QualType BaseType = getContext().getBaseElementType(Ty); 1668 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1669 if (RecordTy->getDecl()->hasObjectMember()) { 1670 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1671 SizeVal); 1672 return; 1673 } 1674 } 1675 } 1676 1677 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1678 1679 // Determine the metadata to describe the position of any padding in this 1680 // memcpy, as well as the TBAA tags for the members of the struct, in case 1681 // the optimizer wishes to expand it in to scalar memory operations. 1682 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1683 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1684 } 1685