1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name, 65 llvm::Value *ArraySize, 66 bool CastToDefaultAddrSpace) { 67 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 68 Alloca->setAlignment(Align.getQuantity()); 69 llvm::Value *V = Alloca; 70 // Alloca always returns a pointer in alloca address space, which may 71 // be different from the type defined by the language. For example, 72 // in C++ the auto variables are in the default address space. Therefore 73 // cast alloca to the default address space when necessary. 74 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 75 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 76 V = getTargetHooks().performAddrSpaceCast( 77 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 78 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 79 } 80 81 return Address(V, Align); 82 } 83 84 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 85 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 86 /// insertion point of the builder. 87 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 88 const Twine &Name, 89 llvm::Value *ArraySize) { 90 if (ArraySize) 91 return Builder.CreateAlloca(Ty, ArraySize, Name); 92 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 93 ArraySize, Name, AllocaInsertPt); 94 } 95 96 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 97 /// default alignment of the corresponding LLVM type, which is *not* 98 /// guaranteed to be related in any way to the expected alignment of 99 /// an AST type that might have been lowered to Ty. 100 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 101 const Twine &Name) { 102 CharUnits Align = 103 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 104 return CreateTempAlloca(Ty, Align, Name); 105 } 106 107 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 108 assert(isa<llvm::AllocaInst>(Var.getPointer())); 109 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 110 Store->setAlignment(Var.getAlignment().getQuantity()); 111 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 112 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 113 } 114 115 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 116 CharUnits Align = getContext().getTypeAlignInChars(Ty); 117 return CreateTempAlloca(ConvertType(Ty), Align, Name); 118 } 119 120 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 121 bool CastToDefaultAddrSpace) { 122 // FIXME: Should we prefer the preferred type alignment here? 123 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 124 CastToDefaultAddrSpace); 125 } 126 127 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 128 const Twine &Name, 129 bool CastToDefaultAddrSpace) { 130 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 131 CastToDefaultAddrSpace); 132 } 133 134 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 135 /// expression and compare the result against zero, returning an Int1Ty value. 136 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 137 PGO.setCurrentStmt(E); 138 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 139 llvm::Value *MemPtr = EmitScalarExpr(E); 140 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 141 } 142 143 QualType BoolTy = getContext().BoolTy; 144 SourceLocation Loc = E->getExprLoc(); 145 if (!E->getType()->isAnyComplexType()) 146 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 147 148 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 149 Loc); 150 } 151 152 /// EmitIgnoredExpr - Emit code to compute the specified expression, 153 /// ignoring the result. 154 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 155 if (E->isRValue()) 156 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 157 158 // Just emit it as an l-value and drop the result. 159 EmitLValue(E); 160 } 161 162 /// EmitAnyExpr - Emit code to compute the specified expression which 163 /// can have any type. The result is returned as an RValue struct. 164 /// If this is an aggregate expression, AggSlot indicates where the 165 /// result should be returned. 166 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 167 AggValueSlot aggSlot, 168 bool ignoreResult) { 169 switch (getEvaluationKind(E->getType())) { 170 case TEK_Scalar: 171 return RValue::get(EmitScalarExpr(E, ignoreResult)); 172 case TEK_Complex: 173 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 174 case TEK_Aggregate: 175 if (!ignoreResult && aggSlot.isIgnored()) 176 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 177 EmitAggExpr(E, aggSlot); 178 return aggSlot.asRValue(); 179 } 180 llvm_unreachable("bad evaluation kind"); 181 } 182 183 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 184 /// always be accessible even if no aggregate location is provided. 185 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 186 AggValueSlot AggSlot = AggValueSlot::ignored(); 187 188 if (hasAggregateEvaluationKind(E->getType())) 189 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 190 return EmitAnyExpr(E, AggSlot); 191 } 192 193 /// EmitAnyExprToMem - Evaluate an expression into a given memory 194 /// location. 195 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 196 Address Location, 197 Qualifiers Quals, 198 bool IsInit) { 199 // FIXME: This function should take an LValue as an argument. 200 switch (getEvaluationKind(E->getType())) { 201 case TEK_Complex: 202 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 203 /*isInit*/ false); 204 return; 205 206 case TEK_Aggregate: { 207 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 208 AggValueSlot::IsDestructed_t(IsInit), 209 AggValueSlot::DoesNotNeedGCBarriers, 210 AggValueSlot::IsAliased_t(!IsInit))); 211 return; 212 } 213 214 case TEK_Scalar: { 215 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 216 LValue LV = MakeAddrLValue(Location, E->getType()); 217 EmitStoreThroughLValue(RV, LV); 218 return; 219 } 220 } 221 llvm_unreachable("bad evaluation kind"); 222 } 223 224 static void 225 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 226 const Expr *E, Address ReferenceTemporary) { 227 // Objective-C++ ARC: 228 // If we are binding a reference to a temporary that has ownership, we 229 // need to perform retain/release operations on the temporary. 230 // 231 // FIXME: This should be looking at E, not M. 232 if (auto Lifetime = M->getType().getObjCLifetime()) { 233 switch (Lifetime) { 234 case Qualifiers::OCL_None: 235 case Qualifiers::OCL_ExplicitNone: 236 // Carry on to normal cleanup handling. 237 break; 238 239 case Qualifiers::OCL_Autoreleasing: 240 // Nothing to do; cleaned up by an autorelease pool. 241 return; 242 243 case Qualifiers::OCL_Strong: 244 case Qualifiers::OCL_Weak: 245 switch (StorageDuration Duration = M->getStorageDuration()) { 246 case SD_Static: 247 // Note: we intentionally do not register a cleanup to release 248 // the object on program termination. 249 return; 250 251 case SD_Thread: 252 // FIXME: We should probably register a cleanup in this case. 253 return; 254 255 case SD_Automatic: 256 case SD_FullExpression: 257 CodeGenFunction::Destroyer *Destroy; 258 CleanupKind CleanupKind; 259 if (Lifetime == Qualifiers::OCL_Strong) { 260 const ValueDecl *VD = M->getExtendingDecl(); 261 bool Precise = 262 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 263 CleanupKind = CGF.getARCCleanupKind(); 264 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 265 : &CodeGenFunction::destroyARCStrongImprecise; 266 } else { 267 // __weak objects always get EH cleanups; otherwise, exceptions 268 // could cause really nasty crashes instead of mere leaks. 269 CleanupKind = NormalAndEHCleanup; 270 Destroy = &CodeGenFunction::destroyARCWeak; 271 } 272 if (Duration == SD_FullExpression) 273 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 274 M->getType(), *Destroy, 275 CleanupKind & EHCleanup); 276 else 277 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 278 M->getType(), 279 *Destroy, CleanupKind & EHCleanup); 280 return; 281 282 case SD_Dynamic: 283 llvm_unreachable("temporary cannot have dynamic storage duration"); 284 } 285 llvm_unreachable("unknown storage duration"); 286 } 287 } 288 289 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 290 if (const RecordType *RT = 291 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 292 // Get the destructor for the reference temporary. 293 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 294 if (!ClassDecl->hasTrivialDestructor()) 295 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 296 } 297 298 if (!ReferenceTemporaryDtor) 299 return; 300 301 // Call the destructor for the temporary. 302 switch (M->getStorageDuration()) { 303 case SD_Static: 304 case SD_Thread: { 305 llvm::Constant *CleanupFn; 306 llvm::Constant *CleanupArg; 307 if (E->getType()->isArrayType()) { 308 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 309 ReferenceTemporary, E->getType(), 310 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 311 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 312 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 313 } else { 314 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 315 StructorType::Complete); 316 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 317 } 318 CGF.CGM.getCXXABI().registerGlobalDtor( 319 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 320 break; 321 } 322 323 case SD_FullExpression: 324 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 325 CodeGenFunction::destroyCXXObject, 326 CGF.getLangOpts().Exceptions); 327 break; 328 329 case SD_Automatic: 330 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 331 ReferenceTemporary, E->getType(), 332 CodeGenFunction::destroyCXXObject, 333 CGF.getLangOpts().Exceptions); 334 break; 335 336 case SD_Dynamic: 337 llvm_unreachable("temporary cannot have dynamic storage duration"); 338 } 339 } 340 341 static Address 342 createReferenceTemporary(CodeGenFunction &CGF, 343 const MaterializeTemporaryExpr *M, const Expr *Inner) { 344 switch (M->getStorageDuration()) { 345 case SD_FullExpression: 346 case SD_Automatic: { 347 // If we have a constant temporary array or record try to promote it into a 348 // constant global under the same rules a normal constant would've been 349 // promoted. This is easier on the optimizer and generally emits fewer 350 // instructions. 351 QualType Ty = Inner->getType(); 352 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 353 (Ty->isArrayType() || Ty->isRecordType()) && 354 CGF.CGM.isTypeConstant(Ty, true)) 355 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 356 auto *GV = new llvm::GlobalVariable( 357 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 358 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 359 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 360 GV->setAlignment(alignment.getQuantity()); 361 // FIXME: Should we put the new global into a COMDAT? 362 return Address(GV, alignment); 363 } 364 return CGF.CreateMemTemp(Ty, "ref.tmp"); 365 } 366 case SD_Thread: 367 case SD_Static: 368 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 369 370 case SD_Dynamic: 371 llvm_unreachable("temporary can't have dynamic storage duration"); 372 } 373 llvm_unreachable("unknown storage duration"); 374 } 375 376 LValue CodeGenFunction:: 377 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 378 const Expr *E = M->GetTemporaryExpr(); 379 380 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 381 // as that will cause the lifetime adjustment to be lost for ARC 382 auto ownership = M->getType().getObjCLifetime(); 383 if (ownership != Qualifiers::OCL_None && 384 ownership != Qualifiers::OCL_ExplicitNone) { 385 Address Object = createReferenceTemporary(*this, M, E); 386 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 387 Object = Address(llvm::ConstantExpr::getBitCast(Var, 388 ConvertTypeForMem(E->getType()) 389 ->getPointerTo(Object.getAddressSpace())), 390 Object.getAlignment()); 391 392 // createReferenceTemporary will promote the temporary to a global with a 393 // constant initializer if it can. It can only do this to a value of 394 // ARC-manageable type if the value is global and therefore "immune" to 395 // ref-counting operations. Therefore we have no need to emit either a 396 // dynamic initialization or a cleanup and we can just return the address 397 // of the temporary. 398 if (Var->hasInitializer()) 399 return MakeAddrLValue(Object, M->getType(), 400 LValueBaseInfo(AlignmentSource::Decl, false)); 401 402 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 403 } 404 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 405 LValueBaseInfo(AlignmentSource::Decl, 406 false)); 407 408 switch (getEvaluationKind(E->getType())) { 409 default: llvm_unreachable("expected scalar or aggregate expression"); 410 case TEK_Scalar: 411 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 412 break; 413 case TEK_Aggregate: { 414 EmitAggExpr(E, AggValueSlot::forAddr(Object, 415 E->getType().getQualifiers(), 416 AggValueSlot::IsDestructed, 417 AggValueSlot::DoesNotNeedGCBarriers, 418 AggValueSlot::IsNotAliased)); 419 break; 420 } 421 } 422 423 pushTemporaryCleanup(*this, M, E, Object); 424 return RefTempDst; 425 } 426 427 SmallVector<const Expr *, 2> CommaLHSs; 428 SmallVector<SubobjectAdjustment, 2> Adjustments; 429 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 430 431 for (const auto &Ignored : CommaLHSs) 432 EmitIgnoredExpr(Ignored); 433 434 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 435 if (opaque->getType()->isRecordType()) { 436 assert(Adjustments.empty()); 437 return EmitOpaqueValueLValue(opaque); 438 } 439 } 440 441 // Create and initialize the reference temporary. 442 Address Object = createReferenceTemporary(*this, M, E); 443 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 444 Object = Address(llvm::ConstantExpr::getBitCast( 445 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 446 Object.getAlignment()); 447 // If the temporary is a global and has a constant initializer or is a 448 // constant temporary that we promoted to a global, we may have already 449 // initialized it. 450 if (!Var->hasInitializer()) { 451 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 452 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 453 } 454 } else { 455 switch (M->getStorageDuration()) { 456 case SD_Automatic: 457 case SD_FullExpression: 458 if (auto *Size = EmitLifetimeStart( 459 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 460 Object.getPointer())) { 461 if (M->getStorageDuration() == SD_Automatic) 462 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 463 Object, Size); 464 else 465 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 466 Size); 467 } 468 break; 469 default: 470 break; 471 } 472 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 473 } 474 pushTemporaryCleanup(*this, M, E, Object); 475 476 // Perform derived-to-base casts and/or field accesses, to get from the 477 // temporary object we created (and, potentially, for which we extended 478 // the lifetime) to the subobject we're binding the reference to. 479 for (unsigned I = Adjustments.size(); I != 0; --I) { 480 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 481 switch (Adjustment.Kind) { 482 case SubobjectAdjustment::DerivedToBaseAdjustment: 483 Object = 484 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 485 Adjustment.DerivedToBase.BasePath->path_begin(), 486 Adjustment.DerivedToBase.BasePath->path_end(), 487 /*NullCheckValue=*/ false, E->getExprLoc()); 488 break; 489 490 case SubobjectAdjustment::FieldAdjustment: { 491 LValue LV = MakeAddrLValue(Object, E->getType(), 492 LValueBaseInfo(AlignmentSource::Decl, false)); 493 LV = EmitLValueForField(LV, Adjustment.Field); 494 assert(LV.isSimple() && 495 "materialized temporary field is not a simple lvalue"); 496 Object = LV.getAddress(); 497 break; 498 } 499 500 case SubobjectAdjustment::MemberPointerAdjustment: { 501 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 502 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 503 Adjustment.Ptr.MPT); 504 break; 505 } 506 } 507 } 508 509 return MakeAddrLValue(Object, M->getType(), 510 LValueBaseInfo(AlignmentSource::Decl, false)); 511 } 512 513 RValue 514 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 515 // Emit the expression as an lvalue. 516 LValue LV = EmitLValue(E); 517 assert(LV.isSimple()); 518 llvm::Value *Value = LV.getPointer(); 519 520 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 521 // C++11 [dcl.ref]p5 (as amended by core issue 453): 522 // If a glvalue to which a reference is directly bound designates neither 523 // an existing object or function of an appropriate type nor a region of 524 // storage of suitable size and alignment to contain an object of the 525 // reference's type, the behavior is undefined. 526 QualType Ty = E->getType(); 527 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 528 } 529 530 return RValue::get(Value); 531 } 532 533 534 /// getAccessedFieldNo - Given an encoded value and a result number, return the 535 /// input field number being accessed. 536 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 537 const llvm::Constant *Elts) { 538 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 539 ->getZExtValue(); 540 } 541 542 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 543 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 544 llvm::Value *High) { 545 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 546 llvm::Value *K47 = Builder.getInt64(47); 547 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 548 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 549 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 550 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 551 return Builder.CreateMul(B1, KMul); 552 } 553 554 bool CodeGenFunction::sanitizePerformTypeCheck() const { 555 return SanOpts.has(SanitizerKind::Null) | 556 SanOpts.has(SanitizerKind::Alignment) | 557 SanOpts.has(SanitizerKind::ObjectSize) | 558 SanOpts.has(SanitizerKind::Vptr); 559 } 560 561 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 562 llvm::Value *Ptr, QualType Ty, 563 CharUnits Alignment, 564 SanitizerSet SkippedChecks) { 565 if (!sanitizePerformTypeCheck()) 566 return; 567 568 // Don't check pointers outside the default address space. The null check 569 // isn't correct, the object-size check isn't supported by LLVM, and we can't 570 // communicate the addresses to the runtime handler for the vptr check. 571 if (Ptr->getType()->getPointerAddressSpace()) 572 return; 573 574 // Don't check pointers to volatile data. The behavior here is implementation- 575 // defined. 576 if (Ty.isVolatileQualified()) 577 return; 578 579 SanitizerScope SanScope(this); 580 581 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 582 llvm::BasicBlock *Done = nullptr; 583 584 // Quickly determine whether we have a pointer to an alloca. It's possible 585 // to skip null checks, and some alignment checks, for these pointers. This 586 // can reduce compile-time significantly. 587 auto PtrToAlloca = 588 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 589 590 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 591 TCK == TCK_UpcastToVirtualBase; 592 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 593 !SkippedChecks.has(SanitizerKind::Null) && !PtrToAlloca) { 594 // The glvalue must not be an empty glvalue. 595 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 596 597 // The IR builder can constant-fold the null check if the pointer points to 598 // a constant. 599 bool PtrIsNonNull = 600 IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext()); 601 602 // Skip the null check if the pointer is known to be non-null. 603 if (!PtrIsNonNull) { 604 if (AllowNullPointers) { 605 // When performing pointer casts, it's OK if the value is null. 606 // Skip the remaining checks in that case. 607 Done = createBasicBlock("null"); 608 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 609 Builder.CreateCondBr(IsNonNull, Rest, Done); 610 EmitBlock(Rest); 611 } else { 612 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 613 } 614 } 615 } 616 617 if (SanOpts.has(SanitizerKind::ObjectSize) && 618 !SkippedChecks.has(SanitizerKind::ObjectSize) && 619 !Ty->isIncompleteType()) { 620 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 621 622 // The glvalue must refer to a large enough storage region. 623 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 624 // to check this. 625 // FIXME: Get object address space 626 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 627 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 628 llvm::Value *Min = Builder.getFalse(); 629 llvm::Value *NullIsUnknown = Builder.getFalse(); 630 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 631 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 632 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 633 llvm::ConstantInt::get(IntPtrTy, Size)); 634 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 635 } 636 637 uint64_t AlignVal = 0; 638 639 if (SanOpts.has(SanitizerKind::Alignment) && 640 !SkippedChecks.has(SanitizerKind::Alignment)) { 641 AlignVal = Alignment.getQuantity(); 642 if (!Ty->isIncompleteType() && !AlignVal) 643 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 644 645 // The glvalue must be suitably aligned. 646 if (AlignVal > 1 && 647 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 648 llvm::Value *Align = 649 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 650 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 651 llvm::Value *Aligned = 652 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 653 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 654 } 655 } 656 657 if (Checks.size() > 0) { 658 // Make sure we're not losing information. Alignment needs to be a power of 659 // 2 660 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 661 llvm::Constant *StaticData[] = { 662 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 663 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 664 llvm::ConstantInt::get(Int8Ty, TCK)}; 665 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 666 } 667 668 // If possible, check that the vptr indicates that there is a subobject of 669 // type Ty at offset zero within this object. 670 // 671 // C++11 [basic.life]p5,6: 672 // [For storage which does not refer to an object within its lifetime] 673 // The program has undefined behavior if: 674 // -- the [pointer or glvalue] is used to access a non-static data member 675 // or call a non-static member function 676 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 677 if (SanOpts.has(SanitizerKind::Vptr) && 678 !SkippedChecks.has(SanitizerKind::Vptr) && 679 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 680 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 681 TCK == TCK_UpcastToVirtualBase) && 682 RD && RD->hasDefinition() && RD->isDynamicClass()) { 683 // Compute a hash of the mangled name of the type. 684 // 685 // FIXME: This is not guaranteed to be deterministic! Move to a 686 // fingerprinting mechanism once LLVM provides one. For the time 687 // being the implementation happens to be deterministic. 688 SmallString<64> MangledName; 689 llvm::raw_svector_ostream Out(MangledName); 690 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 691 Out); 692 693 // Blacklist based on the mangled type. 694 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 695 Out.str())) { 696 llvm::hash_code TypeHash = hash_value(Out.str()); 697 698 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 699 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 700 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 701 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 702 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 703 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 704 705 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 706 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 707 708 // Look the hash up in our cache. 709 const int CacheSize = 128; 710 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 711 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 712 "__ubsan_vptr_type_cache"); 713 llvm::Value *Slot = Builder.CreateAnd(Hash, 714 llvm::ConstantInt::get(IntPtrTy, 715 CacheSize-1)); 716 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 717 llvm::Value *CacheVal = 718 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 719 getPointerAlign()); 720 721 // If the hash isn't in the cache, call a runtime handler to perform the 722 // hard work of checking whether the vptr is for an object of the right 723 // type. This will either fill in the cache and return, or produce a 724 // diagnostic. 725 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 726 llvm::Constant *StaticData[] = { 727 EmitCheckSourceLocation(Loc), 728 EmitCheckTypeDescriptor(Ty), 729 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 730 llvm::ConstantInt::get(Int8Ty, TCK) 731 }; 732 llvm::Value *DynamicData[] = { Ptr, Hash }; 733 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 734 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 735 DynamicData); 736 } 737 } 738 739 if (Done) { 740 Builder.CreateBr(Done); 741 EmitBlock(Done); 742 } 743 } 744 745 /// Determine whether this expression refers to a flexible array member in a 746 /// struct. We disable array bounds checks for such members. 747 static bool isFlexibleArrayMemberExpr(const Expr *E) { 748 // For compatibility with existing code, we treat arrays of length 0 or 749 // 1 as flexible array members. 750 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 751 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 752 if (CAT->getSize().ugt(1)) 753 return false; 754 } else if (!isa<IncompleteArrayType>(AT)) 755 return false; 756 757 E = E->IgnoreParens(); 758 759 // A flexible array member must be the last member in the class. 760 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 761 // FIXME: If the base type of the member expr is not FD->getParent(), 762 // this should not be treated as a flexible array member access. 763 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 764 RecordDecl::field_iterator FI( 765 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 766 return ++FI == FD->getParent()->field_end(); 767 } 768 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 769 return IRE->getDecl()->getNextIvar() == nullptr; 770 } 771 772 return false; 773 } 774 775 /// If Base is known to point to the start of an array, return the length of 776 /// that array. Return 0 if the length cannot be determined. 777 static llvm::Value *getArrayIndexingBound( 778 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 779 // For the vector indexing extension, the bound is the number of elements. 780 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 781 IndexedType = Base->getType(); 782 return CGF.Builder.getInt32(VT->getNumElements()); 783 } 784 785 Base = Base->IgnoreParens(); 786 787 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 788 if (CE->getCastKind() == CK_ArrayToPointerDecay && 789 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 790 IndexedType = CE->getSubExpr()->getType(); 791 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 792 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 793 return CGF.Builder.getInt(CAT->getSize()); 794 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 795 return CGF.getVLASize(VAT).first; 796 } 797 } 798 799 return nullptr; 800 } 801 802 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 803 llvm::Value *Index, QualType IndexType, 804 bool Accessed) { 805 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 806 "should not be called unless adding bounds checks"); 807 SanitizerScope SanScope(this); 808 809 QualType IndexedType; 810 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 811 if (!Bound) 812 return; 813 814 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 815 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 816 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 817 818 llvm::Constant *StaticData[] = { 819 EmitCheckSourceLocation(E->getExprLoc()), 820 EmitCheckTypeDescriptor(IndexedType), 821 EmitCheckTypeDescriptor(IndexType) 822 }; 823 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 824 : Builder.CreateICmpULE(IndexVal, BoundVal); 825 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 826 SanitizerHandler::OutOfBounds, StaticData, Index); 827 } 828 829 830 CodeGenFunction::ComplexPairTy CodeGenFunction:: 831 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 832 bool isInc, bool isPre) { 833 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 834 835 llvm::Value *NextVal; 836 if (isa<llvm::IntegerType>(InVal.first->getType())) { 837 uint64_t AmountVal = isInc ? 1 : -1; 838 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 839 840 // Add the inc/dec to the real part. 841 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 842 } else { 843 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 844 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 845 if (!isInc) 846 FVal.changeSign(); 847 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 848 849 // Add the inc/dec to the real part. 850 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 851 } 852 853 ComplexPairTy IncVal(NextVal, InVal.second); 854 855 // Store the updated result through the lvalue. 856 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 857 858 // If this is a postinc, return the value read from memory, otherwise use the 859 // updated value. 860 return isPre ? IncVal : InVal; 861 } 862 863 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 864 CodeGenFunction *CGF) { 865 // Bind VLAs in the cast type. 866 if (CGF && E->getType()->isVariablyModifiedType()) 867 CGF->EmitVariablyModifiedType(E->getType()); 868 869 if (CGDebugInfo *DI = getModuleDebugInfo()) 870 DI->EmitExplicitCastType(E->getType()); 871 } 872 873 //===----------------------------------------------------------------------===// 874 // LValue Expression Emission 875 //===----------------------------------------------------------------------===// 876 877 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 878 /// derive a more accurate bound on the alignment of the pointer. 879 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 880 LValueBaseInfo *BaseInfo) { 881 // We allow this with ObjC object pointers because of fragile ABIs. 882 assert(E->getType()->isPointerType() || 883 E->getType()->isObjCObjectPointerType()); 884 E = E->IgnoreParens(); 885 886 // Casts: 887 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 888 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 889 CGM.EmitExplicitCastExprType(ECE, this); 890 891 switch (CE->getCastKind()) { 892 // Non-converting casts (but not C's implicit conversion from void*). 893 case CK_BitCast: 894 case CK_NoOp: 895 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 896 if (PtrTy->getPointeeType()->isVoidType()) 897 break; 898 899 LValueBaseInfo InnerInfo; 900 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo); 901 if (BaseInfo) *BaseInfo = InnerInfo; 902 903 // If this is an explicit bitcast, and the source l-value is 904 // opaque, honor the alignment of the casted-to type. 905 if (isa<ExplicitCastExpr>(CE) && 906 InnerInfo.getAlignmentSource() != AlignmentSource::Decl) { 907 LValueBaseInfo ExpInfo; 908 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 909 &ExpInfo); 910 if (BaseInfo) 911 BaseInfo->mergeForCast(ExpInfo); 912 Addr = Address(Addr.getPointer(), Align); 913 } 914 915 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 916 CE->getCastKind() == CK_BitCast) { 917 if (auto PT = E->getType()->getAs<PointerType>()) 918 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 919 /*MayBeNull=*/true, 920 CodeGenFunction::CFITCK_UnrelatedCast, 921 CE->getLocStart()); 922 } 923 924 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 925 } 926 break; 927 928 // Array-to-pointer decay. 929 case CK_ArrayToPointerDecay: 930 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo); 931 932 // Derived-to-base conversions. 933 case CK_UncheckedDerivedToBase: 934 case CK_DerivedToBase: { 935 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 936 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 937 return GetAddressOfBaseClass(Addr, Derived, 938 CE->path_begin(), CE->path_end(), 939 ShouldNullCheckClassCastValue(CE), 940 CE->getExprLoc()); 941 } 942 943 // TODO: Is there any reason to treat base-to-derived conversions 944 // specially? 945 default: 946 break; 947 } 948 } 949 950 // Unary &. 951 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 952 if (UO->getOpcode() == UO_AddrOf) { 953 LValue LV = EmitLValue(UO->getSubExpr()); 954 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 955 return LV.getAddress(); 956 } 957 } 958 959 // TODO: conditional operators, comma. 960 961 // Otherwise, use the alignment of the type. 962 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo); 963 return Address(EmitScalarExpr(E), Align); 964 } 965 966 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 967 if (Ty->isVoidType()) 968 return RValue::get(nullptr); 969 970 switch (getEvaluationKind(Ty)) { 971 case TEK_Complex: { 972 llvm::Type *EltTy = 973 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 974 llvm::Value *U = llvm::UndefValue::get(EltTy); 975 return RValue::getComplex(std::make_pair(U, U)); 976 } 977 978 // If this is a use of an undefined aggregate type, the aggregate must have an 979 // identifiable address. Just because the contents of the value are undefined 980 // doesn't mean that the address can't be taken and compared. 981 case TEK_Aggregate: { 982 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 983 return RValue::getAggregate(DestPtr); 984 } 985 986 case TEK_Scalar: 987 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 988 } 989 llvm_unreachable("bad evaluation kind"); 990 } 991 992 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 993 const char *Name) { 994 ErrorUnsupported(E, Name); 995 return GetUndefRValue(E->getType()); 996 } 997 998 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 999 const char *Name) { 1000 ErrorUnsupported(E, Name); 1001 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1002 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1003 E->getType()); 1004 } 1005 1006 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1007 const Expr *Base = Obj; 1008 while (!isa<CXXThisExpr>(Base)) { 1009 // The result of a dynamic_cast can be null. 1010 if (isa<CXXDynamicCastExpr>(Base)) 1011 return false; 1012 1013 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1014 Base = CE->getSubExpr(); 1015 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1016 Base = PE->getSubExpr(); 1017 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1018 if (UO->getOpcode() == UO_Extension) 1019 Base = UO->getSubExpr(); 1020 else 1021 return false; 1022 } else { 1023 return false; 1024 } 1025 } 1026 return true; 1027 } 1028 1029 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1030 LValue LV; 1031 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1032 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1033 else 1034 LV = EmitLValue(E); 1035 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1036 SanitizerSet SkippedChecks; 1037 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1038 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1039 if (IsBaseCXXThis) 1040 SkippedChecks.set(SanitizerKind::Alignment, true); 1041 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1042 SkippedChecks.set(SanitizerKind::Null, true); 1043 } 1044 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1045 E->getType(), LV.getAlignment(), SkippedChecks); 1046 } 1047 return LV; 1048 } 1049 1050 /// EmitLValue - Emit code to compute a designator that specifies the location 1051 /// of the expression. 1052 /// 1053 /// This can return one of two things: a simple address or a bitfield reference. 1054 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1055 /// an LLVM pointer type. 1056 /// 1057 /// If this returns a bitfield reference, nothing about the pointee type of the 1058 /// LLVM value is known: For example, it may not be a pointer to an integer. 1059 /// 1060 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1061 /// this method guarantees that the returned pointer type will point to an LLVM 1062 /// type of the same size of the lvalue's type. If the lvalue has a variable 1063 /// length type, this is not possible. 1064 /// 1065 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1066 ApplyDebugLocation DL(*this, E); 1067 switch (E->getStmtClass()) { 1068 default: return EmitUnsupportedLValue(E, "l-value expression"); 1069 1070 case Expr::ObjCPropertyRefExprClass: 1071 llvm_unreachable("cannot emit a property reference directly"); 1072 1073 case Expr::ObjCSelectorExprClass: 1074 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1075 case Expr::ObjCIsaExprClass: 1076 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1077 case Expr::BinaryOperatorClass: 1078 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1079 case Expr::CompoundAssignOperatorClass: { 1080 QualType Ty = E->getType(); 1081 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1082 Ty = AT->getValueType(); 1083 if (!Ty->isAnyComplexType()) 1084 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1085 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1086 } 1087 case Expr::CallExprClass: 1088 case Expr::CXXMemberCallExprClass: 1089 case Expr::CXXOperatorCallExprClass: 1090 case Expr::UserDefinedLiteralClass: 1091 return EmitCallExprLValue(cast<CallExpr>(E)); 1092 case Expr::VAArgExprClass: 1093 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1094 case Expr::DeclRefExprClass: 1095 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1096 case Expr::ParenExprClass: 1097 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1098 case Expr::GenericSelectionExprClass: 1099 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1100 case Expr::PredefinedExprClass: 1101 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1102 case Expr::StringLiteralClass: 1103 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1104 case Expr::ObjCEncodeExprClass: 1105 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1106 case Expr::PseudoObjectExprClass: 1107 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1108 case Expr::InitListExprClass: 1109 return EmitInitListLValue(cast<InitListExpr>(E)); 1110 case Expr::CXXTemporaryObjectExprClass: 1111 case Expr::CXXConstructExprClass: 1112 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1113 case Expr::CXXBindTemporaryExprClass: 1114 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1115 case Expr::CXXUuidofExprClass: 1116 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1117 case Expr::LambdaExprClass: 1118 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1119 1120 case Expr::ExprWithCleanupsClass: { 1121 const auto *cleanups = cast<ExprWithCleanups>(E); 1122 enterFullExpression(cleanups); 1123 RunCleanupsScope Scope(*this); 1124 LValue LV = EmitLValue(cleanups->getSubExpr()); 1125 if (LV.isSimple()) { 1126 // Defend against branches out of gnu statement expressions surrounded by 1127 // cleanups. 1128 llvm::Value *V = LV.getPointer(); 1129 Scope.ForceCleanup({&V}); 1130 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1131 getContext(), LV.getBaseInfo(), 1132 LV.getTBAAInfo()); 1133 } 1134 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1135 // bitfield lvalue or some other non-simple lvalue? 1136 return LV; 1137 } 1138 1139 case Expr::CXXDefaultArgExprClass: 1140 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1141 case Expr::CXXDefaultInitExprClass: { 1142 CXXDefaultInitExprScope Scope(*this); 1143 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1144 } 1145 case Expr::CXXTypeidExprClass: 1146 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1147 1148 case Expr::ObjCMessageExprClass: 1149 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1150 case Expr::ObjCIvarRefExprClass: 1151 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1152 case Expr::StmtExprClass: 1153 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1154 case Expr::UnaryOperatorClass: 1155 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1156 case Expr::ArraySubscriptExprClass: 1157 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1158 case Expr::OMPArraySectionExprClass: 1159 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1160 case Expr::ExtVectorElementExprClass: 1161 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1162 case Expr::MemberExprClass: 1163 return EmitMemberExpr(cast<MemberExpr>(E)); 1164 case Expr::CompoundLiteralExprClass: 1165 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1166 case Expr::ConditionalOperatorClass: 1167 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1168 case Expr::BinaryConditionalOperatorClass: 1169 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1170 case Expr::ChooseExprClass: 1171 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1172 case Expr::OpaqueValueExprClass: 1173 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1174 case Expr::SubstNonTypeTemplateParmExprClass: 1175 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1176 case Expr::ImplicitCastExprClass: 1177 case Expr::CStyleCastExprClass: 1178 case Expr::CXXFunctionalCastExprClass: 1179 case Expr::CXXStaticCastExprClass: 1180 case Expr::CXXDynamicCastExprClass: 1181 case Expr::CXXReinterpretCastExprClass: 1182 case Expr::CXXConstCastExprClass: 1183 case Expr::ObjCBridgedCastExprClass: 1184 return EmitCastLValue(cast<CastExpr>(E)); 1185 1186 case Expr::MaterializeTemporaryExprClass: 1187 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1188 1189 case Expr::CoawaitExprClass: 1190 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1191 case Expr::CoyieldExprClass: 1192 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1193 } 1194 } 1195 1196 /// Given an object of the given canonical type, can we safely copy a 1197 /// value out of it based on its initializer? 1198 static bool isConstantEmittableObjectType(QualType type) { 1199 assert(type.isCanonical()); 1200 assert(!type->isReferenceType()); 1201 1202 // Must be const-qualified but non-volatile. 1203 Qualifiers qs = type.getLocalQualifiers(); 1204 if (!qs.hasConst() || qs.hasVolatile()) return false; 1205 1206 // Otherwise, all object types satisfy this except C++ classes with 1207 // mutable subobjects or non-trivial copy/destroy behavior. 1208 if (const auto *RT = dyn_cast<RecordType>(type)) 1209 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1210 if (RD->hasMutableFields() || !RD->isTrivial()) 1211 return false; 1212 1213 return true; 1214 } 1215 1216 /// Can we constant-emit a load of a reference to a variable of the 1217 /// given type? This is different from predicates like 1218 /// Decl::isUsableInConstantExpressions because we do want it to apply 1219 /// in situations that don't necessarily satisfy the language's rules 1220 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1221 /// to do this with const float variables even if those variables 1222 /// aren't marked 'constexpr'. 1223 enum ConstantEmissionKind { 1224 CEK_None, 1225 CEK_AsReferenceOnly, 1226 CEK_AsValueOrReference, 1227 CEK_AsValueOnly 1228 }; 1229 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1230 type = type.getCanonicalType(); 1231 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1232 if (isConstantEmittableObjectType(ref->getPointeeType())) 1233 return CEK_AsValueOrReference; 1234 return CEK_AsReferenceOnly; 1235 } 1236 if (isConstantEmittableObjectType(type)) 1237 return CEK_AsValueOnly; 1238 return CEK_None; 1239 } 1240 1241 /// Try to emit a reference to the given value without producing it as 1242 /// an l-value. This is actually more than an optimization: we can't 1243 /// produce an l-value for variables that we never actually captured 1244 /// in a block or lambda, which means const int variables or constexpr 1245 /// literals or similar. 1246 CodeGenFunction::ConstantEmission 1247 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1248 ValueDecl *value = refExpr->getDecl(); 1249 1250 // The value needs to be an enum constant or a constant variable. 1251 ConstantEmissionKind CEK; 1252 if (isa<ParmVarDecl>(value)) { 1253 CEK = CEK_None; 1254 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1255 CEK = checkVarTypeForConstantEmission(var->getType()); 1256 } else if (isa<EnumConstantDecl>(value)) { 1257 CEK = CEK_AsValueOnly; 1258 } else { 1259 CEK = CEK_None; 1260 } 1261 if (CEK == CEK_None) return ConstantEmission(); 1262 1263 Expr::EvalResult result; 1264 bool resultIsReference; 1265 QualType resultType; 1266 1267 // It's best to evaluate all the way as an r-value if that's permitted. 1268 if (CEK != CEK_AsReferenceOnly && 1269 refExpr->EvaluateAsRValue(result, getContext())) { 1270 resultIsReference = false; 1271 resultType = refExpr->getType(); 1272 1273 // Otherwise, try to evaluate as an l-value. 1274 } else if (CEK != CEK_AsValueOnly && 1275 refExpr->EvaluateAsLValue(result, getContext())) { 1276 resultIsReference = true; 1277 resultType = value->getType(); 1278 1279 // Failure. 1280 } else { 1281 return ConstantEmission(); 1282 } 1283 1284 // In any case, if the initializer has side-effects, abandon ship. 1285 if (result.HasSideEffects) 1286 return ConstantEmission(); 1287 1288 // Emit as a constant. 1289 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1290 1291 // Make sure we emit a debug reference to the global variable. 1292 // This should probably fire even for 1293 if (isa<VarDecl>(value)) { 1294 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1295 EmitDeclRefExprDbgValue(refExpr, result.Val); 1296 } else { 1297 assert(isa<EnumConstantDecl>(value)); 1298 EmitDeclRefExprDbgValue(refExpr, result.Val); 1299 } 1300 1301 // If we emitted a reference constant, we need to dereference that. 1302 if (resultIsReference) 1303 return ConstantEmission::forReference(C); 1304 1305 return ConstantEmission::forValue(C); 1306 } 1307 1308 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1309 SourceLocation Loc) { 1310 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1311 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1312 lvalue.getTBAAInfo(), 1313 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1314 lvalue.isNontemporal()); 1315 } 1316 1317 static bool hasBooleanRepresentation(QualType Ty) { 1318 if (Ty->isBooleanType()) 1319 return true; 1320 1321 if (const EnumType *ET = Ty->getAs<EnumType>()) 1322 return ET->getDecl()->getIntegerType()->isBooleanType(); 1323 1324 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1325 return hasBooleanRepresentation(AT->getValueType()); 1326 1327 return false; 1328 } 1329 1330 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1331 llvm::APInt &Min, llvm::APInt &End, 1332 bool StrictEnums, bool IsBool) { 1333 const EnumType *ET = Ty->getAs<EnumType>(); 1334 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1335 ET && !ET->getDecl()->isFixed(); 1336 if (!IsBool && !IsRegularCPlusPlusEnum) 1337 return false; 1338 1339 if (IsBool) { 1340 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1341 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1342 } else { 1343 const EnumDecl *ED = ET->getDecl(); 1344 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1345 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1346 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1347 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1348 1349 if (NumNegativeBits) { 1350 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1351 assert(NumBits <= Bitwidth); 1352 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1353 Min = -End; 1354 } else { 1355 assert(NumPositiveBits <= Bitwidth); 1356 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1357 Min = llvm::APInt(Bitwidth, 0); 1358 } 1359 } 1360 return true; 1361 } 1362 1363 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1364 llvm::APInt Min, End; 1365 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1366 hasBooleanRepresentation(Ty))) 1367 return nullptr; 1368 1369 llvm::MDBuilder MDHelper(getLLVMContext()); 1370 return MDHelper.createRange(Min, End); 1371 } 1372 1373 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1374 SourceLocation Loc) { 1375 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1376 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1377 if (!HasBoolCheck && !HasEnumCheck) 1378 return false; 1379 1380 bool IsBool = hasBooleanRepresentation(Ty) || 1381 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1382 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1383 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1384 if (!NeedsBoolCheck && !NeedsEnumCheck) 1385 return false; 1386 1387 // Single-bit booleans don't need to be checked. Special-case this to avoid 1388 // a bit width mismatch when handling bitfield values. This is handled by 1389 // EmitFromMemory for the non-bitfield case. 1390 if (IsBool && 1391 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1392 return false; 1393 1394 llvm::APInt Min, End; 1395 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1396 return true; 1397 1398 SanitizerScope SanScope(this); 1399 llvm::Value *Check; 1400 --End; 1401 if (!Min) { 1402 Check = Builder.CreateICmpULE( 1403 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1404 } else { 1405 llvm::Value *Upper = Builder.CreateICmpSLE( 1406 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1407 llvm::Value *Lower = Builder.CreateICmpSGE( 1408 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1409 Check = Builder.CreateAnd(Upper, Lower); 1410 } 1411 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1412 EmitCheckTypeDescriptor(Ty)}; 1413 SanitizerMask Kind = 1414 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1415 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1416 StaticArgs, EmitCheckValue(Value)); 1417 return true; 1418 } 1419 1420 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1421 QualType Ty, 1422 SourceLocation Loc, 1423 LValueBaseInfo BaseInfo, 1424 llvm::MDNode *TBAAInfo, 1425 QualType TBAABaseType, 1426 uint64_t TBAAOffset, 1427 bool isNontemporal) { 1428 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1429 // For better performance, handle vector loads differently. 1430 if (Ty->isVectorType()) { 1431 const llvm::Type *EltTy = Addr.getElementType(); 1432 1433 const auto *VTy = cast<llvm::VectorType>(EltTy); 1434 1435 // Handle vectors of size 3 like size 4 for better performance. 1436 if (VTy->getNumElements() == 3) { 1437 1438 // Bitcast to vec4 type. 1439 llvm::VectorType *vec4Ty = 1440 llvm::VectorType::get(VTy->getElementType(), 4); 1441 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1442 // Now load value. 1443 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1444 1445 // Shuffle vector to get vec3. 1446 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1447 {0, 1, 2}, "extractVec"); 1448 return EmitFromMemory(V, Ty); 1449 } 1450 } 1451 } 1452 1453 // Atomic operations have to be done on integral types. 1454 LValue AtomicLValue = 1455 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1456 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1457 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1458 } 1459 1460 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1461 if (isNontemporal) { 1462 llvm::MDNode *Node = llvm::MDNode::get( 1463 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1464 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1465 } 1466 if (TBAAInfo) { 1467 bool MayAlias = BaseInfo.getMayAlias(); 1468 llvm::MDNode *TBAA = MayAlias 1469 ? CGM.getTBAAInfo(getContext().CharTy) 1470 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1471 if (TBAA) 1472 CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias); 1473 } 1474 1475 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1476 // In order to prevent the optimizer from throwing away the check, don't 1477 // attach range metadata to the load. 1478 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1479 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1480 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1481 1482 return EmitFromMemory(Load, Ty); 1483 } 1484 1485 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1486 // Bool has a different representation in memory than in registers. 1487 if (hasBooleanRepresentation(Ty)) { 1488 // This should really always be an i1, but sometimes it's already 1489 // an i8, and it's awkward to track those cases down. 1490 if (Value->getType()->isIntegerTy(1)) 1491 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1492 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1493 "wrong value rep of bool"); 1494 } 1495 1496 return Value; 1497 } 1498 1499 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1500 // Bool has a different representation in memory than in registers. 1501 if (hasBooleanRepresentation(Ty)) { 1502 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1503 "wrong value rep of bool"); 1504 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1505 } 1506 1507 return Value; 1508 } 1509 1510 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1511 bool Volatile, QualType Ty, 1512 LValueBaseInfo BaseInfo, 1513 llvm::MDNode *TBAAInfo, 1514 bool isInit, QualType TBAABaseType, 1515 uint64_t TBAAOffset, 1516 bool isNontemporal) { 1517 1518 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1519 // Handle vectors differently to get better performance. 1520 if (Ty->isVectorType()) { 1521 llvm::Type *SrcTy = Value->getType(); 1522 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1523 // Handle vec3 special. 1524 if (VecTy && VecTy->getNumElements() == 3) { 1525 // Our source is a vec3, do a shuffle vector to make it a vec4. 1526 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1527 Builder.getInt32(2), 1528 llvm::UndefValue::get(Builder.getInt32Ty())}; 1529 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1530 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1531 MaskV, "extractVec"); 1532 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1533 } 1534 if (Addr.getElementType() != SrcTy) { 1535 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1536 } 1537 } 1538 } 1539 1540 Value = EmitToMemory(Value, Ty); 1541 1542 LValue AtomicLValue = 1543 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1544 if (Ty->isAtomicType() || 1545 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1546 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1547 return; 1548 } 1549 1550 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1551 if (isNontemporal) { 1552 llvm::MDNode *Node = 1553 llvm::MDNode::get(Store->getContext(), 1554 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1555 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1556 } 1557 if (TBAAInfo) { 1558 bool MayAlias = BaseInfo.getMayAlias(); 1559 llvm::MDNode *TBAA = MayAlias 1560 ? CGM.getTBAAInfo(getContext().CharTy) 1561 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1562 if (TBAA) 1563 CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias); 1564 } 1565 } 1566 1567 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1568 bool isInit) { 1569 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1570 lvalue.getType(), lvalue.getBaseInfo(), 1571 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1572 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1573 } 1574 1575 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1576 /// method emits the address of the lvalue, then loads the result as an rvalue, 1577 /// returning the rvalue. 1578 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1579 if (LV.isObjCWeak()) { 1580 // load of a __weak object. 1581 Address AddrWeakObj = LV.getAddress(); 1582 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1583 AddrWeakObj)); 1584 } 1585 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1586 // In MRC mode, we do a load+autorelease. 1587 if (!getLangOpts().ObjCAutoRefCount) { 1588 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1589 } 1590 1591 // In ARC mode, we load retained and then consume the value. 1592 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1593 Object = EmitObjCConsumeObject(LV.getType(), Object); 1594 return RValue::get(Object); 1595 } 1596 1597 if (LV.isSimple()) { 1598 assert(!LV.getType()->isFunctionType()); 1599 1600 // Everything needs a load. 1601 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1602 } 1603 1604 if (LV.isVectorElt()) { 1605 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1606 LV.isVolatileQualified()); 1607 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1608 "vecext")); 1609 } 1610 1611 // If this is a reference to a subset of the elements of a vector, either 1612 // shuffle the input or extract/insert them as appropriate. 1613 if (LV.isExtVectorElt()) 1614 return EmitLoadOfExtVectorElementLValue(LV); 1615 1616 // Global Register variables always invoke intrinsics 1617 if (LV.isGlobalReg()) 1618 return EmitLoadOfGlobalRegLValue(LV); 1619 1620 assert(LV.isBitField() && "Unknown LValue type!"); 1621 return EmitLoadOfBitfieldLValue(LV, Loc); 1622 } 1623 1624 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1625 SourceLocation Loc) { 1626 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1627 1628 // Get the output type. 1629 llvm::Type *ResLTy = ConvertType(LV.getType()); 1630 1631 Address Ptr = LV.getBitFieldAddress(); 1632 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1633 1634 if (Info.IsSigned) { 1635 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1636 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1637 if (HighBits) 1638 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1639 if (Info.Offset + HighBits) 1640 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1641 } else { 1642 if (Info.Offset) 1643 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1644 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1645 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1646 Info.Size), 1647 "bf.clear"); 1648 } 1649 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1650 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1651 return RValue::get(Val); 1652 } 1653 1654 // If this is a reference to a subset of the elements of a vector, create an 1655 // appropriate shufflevector. 1656 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1657 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1658 LV.isVolatileQualified()); 1659 1660 const llvm::Constant *Elts = LV.getExtVectorElts(); 1661 1662 // If the result of the expression is a non-vector type, we must be extracting 1663 // a single element. Just codegen as an extractelement. 1664 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1665 if (!ExprVT) { 1666 unsigned InIdx = getAccessedFieldNo(0, Elts); 1667 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1668 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1669 } 1670 1671 // Always use shuffle vector to try to retain the original program structure 1672 unsigned NumResultElts = ExprVT->getNumElements(); 1673 1674 SmallVector<llvm::Constant*, 4> Mask; 1675 for (unsigned i = 0; i != NumResultElts; ++i) 1676 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1677 1678 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1679 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1680 MaskV); 1681 return RValue::get(Vec); 1682 } 1683 1684 /// @brief Generates lvalue for partial ext_vector access. 1685 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1686 Address VectorAddress = LV.getExtVectorAddress(); 1687 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1688 QualType EQT = ExprVT->getElementType(); 1689 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1690 1691 Address CastToPointerElement = 1692 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1693 "conv.ptr.element"); 1694 1695 const llvm::Constant *Elts = LV.getExtVectorElts(); 1696 unsigned ix = getAccessedFieldNo(0, Elts); 1697 1698 Address VectorBasePtrPlusIx = 1699 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1700 getContext().getTypeSizeInChars(EQT), 1701 "vector.elt"); 1702 1703 return VectorBasePtrPlusIx; 1704 } 1705 1706 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1707 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1708 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1709 "Bad type for register variable"); 1710 llvm::MDNode *RegName = cast<llvm::MDNode>( 1711 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1712 1713 // We accept integer and pointer types only 1714 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1715 llvm::Type *Ty = OrigTy; 1716 if (OrigTy->isPointerTy()) 1717 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1718 llvm::Type *Types[] = { Ty }; 1719 1720 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1721 llvm::Value *Call = Builder.CreateCall( 1722 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1723 if (OrigTy->isPointerTy()) 1724 Call = Builder.CreateIntToPtr(Call, OrigTy); 1725 return RValue::get(Call); 1726 } 1727 1728 1729 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1730 /// lvalue, where both are guaranteed to the have the same type, and that type 1731 /// is 'Ty'. 1732 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1733 bool isInit) { 1734 if (!Dst.isSimple()) { 1735 if (Dst.isVectorElt()) { 1736 // Read/modify/write the vector, inserting the new element. 1737 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1738 Dst.isVolatileQualified()); 1739 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1740 Dst.getVectorIdx(), "vecins"); 1741 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1742 Dst.isVolatileQualified()); 1743 return; 1744 } 1745 1746 // If this is an update of extended vector elements, insert them as 1747 // appropriate. 1748 if (Dst.isExtVectorElt()) 1749 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1750 1751 if (Dst.isGlobalReg()) 1752 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1753 1754 assert(Dst.isBitField() && "Unknown LValue type"); 1755 return EmitStoreThroughBitfieldLValue(Src, Dst); 1756 } 1757 1758 // There's special magic for assigning into an ARC-qualified l-value. 1759 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1760 switch (Lifetime) { 1761 case Qualifiers::OCL_None: 1762 llvm_unreachable("present but none"); 1763 1764 case Qualifiers::OCL_ExplicitNone: 1765 // nothing special 1766 break; 1767 1768 case Qualifiers::OCL_Strong: 1769 if (isInit) { 1770 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1771 break; 1772 } 1773 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1774 return; 1775 1776 case Qualifiers::OCL_Weak: 1777 if (isInit) 1778 // Initialize and then skip the primitive store. 1779 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1780 else 1781 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1782 return; 1783 1784 case Qualifiers::OCL_Autoreleasing: 1785 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1786 Src.getScalarVal())); 1787 // fall into the normal path 1788 break; 1789 } 1790 } 1791 1792 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1793 // load of a __weak object. 1794 Address LvalueDst = Dst.getAddress(); 1795 llvm::Value *src = Src.getScalarVal(); 1796 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1797 return; 1798 } 1799 1800 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1801 // load of a __strong object. 1802 Address LvalueDst = Dst.getAddress(); 1803 llvm::Value *src = Src.getScalarVal(); 1804 if (Dst.isObjCIvar()) { 1805 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1806 llvm::Type *ResultType = IntPtrTy; 1807 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1808 llvm::Value *RHS = dst.getPointer(); 1809 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1810 llvm::Value *LHS = 1811 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1812 "sub.ptr.lhs.cast"); 1813 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1814 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1815 BytesBetween); 1816 } else if (Dst.isGlobalObjCRef()) { 1817 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1818 Dst.isThreadLocalRef()); 1819 } 1820 else 1821 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1822 return; 1823 } 1824 1825 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1826 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1827 } 1828 1829 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1830 llvm::Value **Result) { 1831 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1832 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1833 Address Ptr = Dst.getBitFieldAddress(); 1834 1835 // Get the source value, truncated to the width of the bit-field. 1836 llvm::Value *SrcVal = Src.getScalarVal(); 1837 1838 // Cast the source to the storage type and shift it into place. 1839 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1840 /*IsSigned=*/false); 1841 llvm::Value *MaskedVal = SrcVal; 1842 1843 // See if there are other bits in the bitfield's storage we'll need to load 1844 // and mask together with source before storing. 1845 if (Info.StorageSize != Info.Size) { 1846 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1847 llvm::Value *Val = 1848 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1849 1850 // Mask the source value as needed. 1851 if (!hasBooleanRepresentation(Dst.getType())) 1852 SrcVal = Builder.CreateAnd(SrcVal, 1853 llvm::APInt::getLowBitsSet(Info.StorageSize, 1854 Info.Size), 1855 "bf.value"); 1856 MaskedVal = SrcVal; 1857 if (Info.Offset) 1858 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1859 1860 // Mask out the original value. 1861 Val = Builder.CreateAnd(Val, 1862 ~llvm::APInt::getBitsSet(Info.StorageSize, 1863 Info.Offset, 1864 Info.Offset + Info.Size), 1865 "bf.clear"); 1866 1867 // Or together the unchanged values and the source value. 1868 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1869 } else { 1870 assert(Info.Offset == 0); 1871 } 1872 1873 // Write the new value back out. 1874 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1875 1876 // Return the new value of the bit-field, if requested. 1877 if (Result) { 1878 llvm::Value *ResultVal = MaskedVal; 1879 1880 // Sign extend the value if needed. 1881 if (Info.IsSigned) { 1882 assert(Info.Size <= Info.StorageSize); 1883 unsigned HighBits = Info.StorageSize - Info.Size; 1884 if (HighBits) { 1885 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1886 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1887 } 1888 } 1889 1890 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1891 "bf.result.cast"); 1892 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1893 } 1894 } 1895 1896 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1897 LValue Dst) { 1898 // This access turns into a read/modify/write of the vector. Load the input 1899 // value now. 1900 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1901 Dst.isVolatileQualified()); 1902 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1903 1904 llvm::Value *SrcVal = Src.getScalarVal(); 1905 1906 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1907 unsigned NumSrcElts = VTy->getNumElements(); 1908 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1909 if (NumDstElts == NumSrcElts) { 1910 // Use shuffle vector is the src and destination are the same number of 1911 // elements and restore the vector mask since it is on the side it will be 1912 // stored. 1913 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1914 for (unsigned i = 0; i != NumSrcElts; ++i) 1915 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1916 1917 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1918 Vec = Builder.CreateShuffleVector(SrcVal, 1919 llvm::UndefValue::get(Vec->getType()), 1920 MaskV); 1921 } else if (NumDstElts > NumSrcElts) { 1922 // Extended the source vector to the same length and then shuffle it 1923 // into the destination. 1924 // FIXME: since we're shuffling with undef, can we just use the indices 1925 // into that? This could be simpler. 1926 SmallVector<llvm::Constant*, 4> ExtMask; 1927 for (unsigned i = 0; i != NumSrcElts; ++i) 1928 ExtMask.push_back(Builder.getInt32(i)); 1929 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1930 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1931 llvm::Value *ExtSrcVal = 1932 Builder.CreateShuffleVector(SrcVal, 1933 llvm::UndefValue::get(SrcVal->getType()), 1934 ExtMaskV); 1935 // build identity 1936 SmallVector<llvm::Constant*, 4> Mask; 1937 for (unsigned i = 0; i != NumDstElts; ++i) 1938 Mask.push_back(Builder.getInt32(i)); 1939 1940 // When the vector size is odd and .odd or .hi is used, the last element 1941 // of the Elts constant array will be one past the size of the vector. 1942 // Ignore the last element here, if it is greater than the mask size. 1943 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1944 NumSrcElts--; 1945 1946 // modify when what gets shuffled in 1947 for (unsigned i = 0; i != NumSrcElts; ++i) 1948 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1949 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1950 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1951 } else { 1952 // We should never shorten the vector 1953 llvm_unreachable("unexpected shorten vector length"); 1954 } 1955 } else { 1956 // If the Src is a scalar (not a vector) it must be updating one element. 1957 unsigned InIdx = getAccessedFieldNo(0, Elts); 1958 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1959 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1960 } 1961 1962 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1963 Dst.isVolatileQualified()); 1964 } 1965 1966 /// @brief Store of global named registers are always calls to intrinsics. 1967 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1968 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1969 "Bad type for register variable"); 1970 llvm::MDNode *RegName = cast<llvm::MDNode>( 1971 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1972 assert(RegName && "Register LValue is not metadata"); 1973 1974 // We accept integer and pointer types only 1975 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1976 llvm::Type *Ty = OrigTy; 1977 if (OrigTy->isPointerTy()) 1978 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1979 llvm::Type *Types[] = { Ty }; 1980 1981 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1982 llvm::Value *Value = Src.getScalarVal(); 1983 if (OrigTy->isPointerTy()) 1984 Value = Builder.CreatePtrToInt(Value, Ty); 1985 Builder.CreateCall( 1986 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1987 } 1988 1989 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1990 // generating write-barries API. It is currently a global, ivar, 1991 // or neither. 1992 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1993 LValue &LV, 1994 bool IsMemberAccess=false) { 1995 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1996 return; 1997 1998 if (isa<ObjCIvarRefExpr>(E)) { 1999 QualType ExpTy = E->getType(); 2000 if (IsMemberAccess && ExpTy->isPointerType()) { 2001 // If ivar is a structure pointer, assigning to field of 2002 // this struct follows gcc's behavior and makes it a non-ivar 2003 // writer-barrier conservatively. 2004 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2005 if (ExpTy->isRecordType()) { 2006 LV.setObjCIvar(false); 2007 return; 2008 } 2009 } 2010 LV.setObjCIvar(true); 2011 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2012 LV.setBaseIvarExp(Exp->getBase()); 2013 LV.setObjCArray(E->getType()->isArrayType()); 2014 return; 2015 } 2016 2017 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2018 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2019 if (VD->hasGlobalStorage()) { 2020 LV.setGlobalObjCRef(true); 2021 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2022 } 2023 } 2024 LV.setObjCArray(E->getType()->isArrayType()); 2025 return; 2026 } 2027 2028 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2029 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2030 return; 2031 } 2032 2033 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2034 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2035 if (LV.isObjCIvar()) { 2036 // If cast is to a structure pointer, follow gcc's behavior and make it 2037 // a non-ivar write-barrier. 2038 QualType ExpTy = E->getType(); 2039 if (ExpTy->isPointerType()) 2040 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2041 if (ExpTy->isRecordType()) 2042 LV.setObjCIvar(false); 2043 } 2044 return; 2045 } 2046 2047 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2048 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2049 return; 2050 } 2051 2052 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2053 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2054 return; 2055 } 2056 2057 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2058 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2059 return; 2060 } 2061 2062 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2063 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2064 return; 2065 } 2066 2067 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2068 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2069 if (LV.isObjCIvar() && !LV.isObjCArray()) 2070 // Using array syntax to assigning to what an ivar points to is not 2071 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2072 LV.setObjCIvar(false); 2073 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2074 // Using array syntax to assigning to what global points to is not 2075 // same as assigning to the global itself. {id *G;} G[i] = 0; 2076 LV.setGlobalObjCRef(false); 2077 return; 2078 } 2079 2080 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2081 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2082 // We don't know if member is an 'ivar', but this flag is looked at 2083 // only in the context of LV.isObjCIvar(). 2084 LV.setObjCArray(E->getType()->isArrayType()); 2085 return; 2086 } 2087 } 2088 2089 static llvm::Value * 2090 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2091 llvm::Value *V, llvm::Type *IRType, 2092 StringRef Name = StringRef()) { 2093 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2094 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2095 } 2096 2097 static LValue EmitThreadPrivateVarDeclLValue( 2098 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2099 llvm::Type *RealVarTy, SourceLocation Loc) { 2100 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2101 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2102 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2103 return CGF.MakeAddrLValue(Addr, T, BaseInfo); 2104 } 2105 2106 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2107 const ReferenceType *RefTy, 2108 LValueBaseInfo *BaseInfo) { 2109 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2110 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2111 BaseInfo, /*forPointee*/ true)); 2112 } 2113 2114 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2115 const ReferenceType *RefTy) { 2116 LValueBaseInfo BaseInfo; 2117 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo); 2118 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo); 2119 } 2120 2121 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2122 const PointerType *PtrTy, 2123 LValueBaseInfo *BaseInfo) { 2124 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2125 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2126 BaseInfo, 2127 /*forPointeeType=*/true)); 2128 } 2129 2130 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2131 const PointerType *PtrTy) { 2132 LValueBaseInfo BaseInfo; 2133 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo); 2134 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo); 2135 } 2136 2137 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2138 const Expr *E, const VarDecl *VD) { 2139 QualType T = E->getType(); 2140 2141 // If it's thread_local, emit a call to its wrapper function instead. 2142 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2143 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2144 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2145 2146 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2147 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2148 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2149 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2150 Address Addr(V, Alignment); 2151 LValue LV; 2152 // Emit reference to the private copy of the variable if it is an OpenMP 2153 // threadprivate variable. 2154 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2155 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2156 E->getExprLoc()); 2157 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2158 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2159 } else { 2160 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2161 LV = CGF.MakeAddrLValue(Addr, T, BaseInfo); 2162 } 2163 setObjCGCLValueClass(CGF.getContext(), E, LV); 2164 return LV; 2165 } 2166 2167 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2168 const FunctionDecl *FD) { 2169 if (FD->hasAttr<WeakRefAttr>()) { 2170 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2171 return aliasee.getPointer(); 2172 } 2173 2174 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2175 if (!FD->hasPrototype()) { 2176 if (const FunctionProtoType *Proto = 2177 FD->getType()->getAs<FunctionProtoType>()) { 2178 // Ugly case: for a K&R-style definition, the type of the definition 2179 // isn't the same as the type of a use. Correct for this with a 2180 // bitcast. 2181 QualType NoProtoType = 2182 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2183 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2184 V = llvm::ConstantExpr::getBitCast(V, 2185 CGM.getTypes().ConvertType(NoProtoType)); 2186 } 2187 } 2188 return V; 2189 } 2190 2191 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2192 const Expr *E, const FunctionDecl *FD) { 2193 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2194 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2195 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2196 return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo); 2197 } 2198 2199 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2200 llvm::Value *ThisValue) { 2201 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2202 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2203 return CGF.EmitLValueForField(LV, FD); 2204 } 2205 2206 /// Named Registers are named metadata pointing to the register name 2207 /// which will be read from/written to as an argument to the intrinsic 2208 /// @llvm.read/write_register. 2209 /// So far, only the name is being passed down, but other options such as 2210 /// register type, allocation type or even optimization options could be 2211 /// passed down via the metadata node. 2212 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2213 SmallString<64> Name("llvm.named.register."); 2214 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2215 assert(Asm->getLabel().size() < 64-Name.size() && 2216 "Register name too big"); 2217 Name.append(Asm->getLabel()); 2218 llvm::NamedMDNode *M = 2219 CGM.getModule().getOrInsertNamedMetadata(Name); 2220 if (M->getNumOperands() == 0) { 2221 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2222 Asm->getLabel()); 2223 llvm::Metadata *Ops[] = {Str}; 2224 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2225 } 2226 2227 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2228 2229 llvm::Value *Ptr = 2230 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2231 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2232 } 2233 2234 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2235 const NamedDecl *ND = E->getDecl(); 2236 QualType T = E->getType(); 2237 2238 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2239 // Global Named registers access via intrinsics only 2240 if (VD->getStorageClass() == SC_Register && 2241 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2242 return EmitGlobalNamedRegister(VD, CGM); 2243 2244 // A DeclRefExpr for a reference initialized by a constant expression can 2245 // appear without being odr-used. Directly emit the constant initializer. 2246 const Expr *Init = VD->getAnyInitializer(VD); 2247 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2248 VD->isUsableInConstantExpressions(getContext()) && 2249 VD->checkInitIsICE() && 2250 // Do not emit if it is private OpenMP variable. 2251 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2252 LocalDeclMap.count(VD))) { 2253 llvm::Constant *Val = 2254 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2255 assert(Val && "failed to emit reference constant expression"); 2256 // FIXME: Eventually we will want to emit vector element references. 2257 2258 // Should we be using the alignment of the constant pointer we emitted? 2259 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2260 /*pointee*/ true); 2261 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2262 return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo); 2263 } 2264 2265 // Check for captured variables. 2266 if (E->refersToEnclosingVariableOrCapture()) { 2267 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2268 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2269 else if (CapturedStmtInfo) { 2270 auto I = LocalDeclMap.find(VD); 2271 if (I != LocalDeclMap.end()) { 2272 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2273 return EmitLoadOfReferenceLValue(I->second, RefTy); 2274 return MakeAddrLValue(I->second, T); 2275 } 2276 LValue CapLVal = 2277 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2278 CapturedStmtInfo->getContextValue()); 2279 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2280 return MakeAddrLValue( 2281 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2282 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias)); 2283 } 2284 2285 assert(isa<BlockDecl>(CurCodeDecl)); 2286 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2287 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2288 return MakeAddrLValue(addr, T, BaseInfo); 2289 } 2290 } 2291 2292 // FIXME: We should be able to assert this for FunctionDecls as well! 2293 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2294 // those with a valid source location. 2295 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2296 !E->getLocation().isValid()) && 2297 "Should not use decl without marking it used!"); 2298 2299 if (ND->hasAttr<WeakRefAttr>()) { 2300 const auto *VD = cast<ValueDecl>(ND); 2301 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2302 return MakeAddrLValue(Aliasee, T, 2303 LValueBaseInfo(AlignmentSource::Decl, false)); 2304 } 2305 2306 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2307 // Check if this is a global variable. 2308 if (VD->hasLinkage() || VD->isStaticDataMember()) 2309 return EmitGlobalVarDeclLValue(*this, E, VD); 2310 2311 Address addr = Address::invalid(); 2312 2313 // The variable should generally be present in the local decl map. 2314 auto iter = LocalDeclMap.find(VD); 2315 if (iter != LocalDeclMap.end()) { 2316 addr = iter->second; 2317 2318 // Otherwise, it might be static local we haven't emitted yet for 2319 // some reason; most likely, because it's in an outer function. 2320 } else if (VD->isStaticLocal()) { 2321 addr = Address(CGM.getOrCreateStaticVarDecl( 2322 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2323 getContext().getDeclAlign(VD)); 2324 2325 // No other cases for now. 2326 } else { 2327 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2328 } 2329 2330 2331 // Check for OpenMP threadprivate variables. 2332 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2333 return EmitThreadPrivateVarDeclLValue( 2334 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2335 E->getExprLoc()); 2336 } 2337 2338 // Drill into block byref variables. 2339 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2340 if (isBlockByref) { 2341 addr = emitBlockByrefAddress(addr, VD); 2342 } 2343 2344 // Drill into reference types. 2345 LValue LV; 2346 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2347 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2348 } else { 2349 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2350 LV = MakeAddrLValue(addr, T, BaseInfo); 2351 } 2352 2353 bool isLocalStorage = VD->hasLocalStorage(); 2354 2355 bool NonGCable = isLocalStorage && 2356 !VD->getType()->isReferenceType() && 2357 !isBlockByref; 2358 if (NonGCable) { 2359 LV.getQuals().removeObjCGCAttr(); 2360 LV.setNonGC(true); 2361 } 2362 2363 bool isImpreciseLifetime = 2364 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2365 if (isImpreciseLifetime) 2366 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2367 setObjCGCLValueClass(getContext(), E, LV); 2368 return LV; 2369 } 2370 2371 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2372 return EmitFunctionDeclLValue(*this, E, FD); 2373 2374 // FIXME: While we're emitting a binding from an enclosing scope, all other 2375 // DeclRefExprs we see should be implicitly treated as if they also refer to 2376 // an enclosing scope. 2377 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2378 return EmitLValue(BD->getBinding()); 2379 2380 llvm_unreachable("Unhandled DeclRefExpr"); 2381 } 2382 2383 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2384 // __extension__ doesn't affect lvalue-ness. 2385 if (E->getOpcode() == UO_Extension) 2386 return EmitLValue(E->getSubExpr()); 2387 2388 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2389 switch (E->getOpcode()) { 2390 default: llvm_unreachable("Unknown unary operator lvalue!"); 2391 case UO_Deref: { 2392 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2393 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2394 2395 LValueBaseInfo BaseInfo; 2396 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo); 2397 LValue LV = MakeAddrLValue(Addr, T, BaseInfo); 2398 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2399 2400 // We should not generate __weak write barrier on indirect reference 2401 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2402 // But, we continue to generate __strong write barrier on indirect write 2403 // into a pointer to object. 2404 if (getLangOpts().ObjC1 && 2405 getLangOpts().getGC() != LangOptions::NonGC && 2406 LV.isObjCWeak()) 2407 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2408 return LV; 2409 } 2410 case UO_Real: 2411 case UO_Imag: { 2412 LValue LV = EmitLValue(E->getSubExpr()); 2413 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2414 2415 // __real is valid on scalars. This is a faster way of testing that. 2416 // __imag can only produce an rvalue on scalars. 2417 if (E->getOpcode() == UO_Real && 2418 !LV.getAddress().getElementType()->isStructTy()) { 2419 assert(E->getSubExpr()->getType()->isArithmeticType()); 2420 return LV; 2421 } 2422 2423 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2424 2425 Address Component = 2426 (E->getOpcode() == UO_Real 2427 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2428 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2429 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo()); 2430 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2431 return ElemLV; 2432 } 2433 case UO_PreInc: 2434 case UO_PreDec: { 2435 LValue LV = EmitLValue(E->getSubExpr()); 2436 bool isInc = E->getOpcode() == UO_PreInc; 2437 2438 if (E->getType()->isAnyComplexType()) 2439 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2440 else 2441 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2442 return LV; 2443 } 2444 } 2445 } 2446 2447 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2448 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2449 E->getType(), 2450 LValueBaseInfo(AlignmentSource::Decl, false)); 2451 } 2452 2453 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2454 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2455 E->getType(), 2456 LValueBaseInfo(AlignmentSource::Decl, false)); 2457 } 2458 2459 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2460 auto SL = E->getFunctionName(); 2461 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2462 StringRef FnName = CurFn->getName(); 2463 if (FnName.startswith("\01")) 2464 FnName = FnName.substr(1); 2465 StringRef NameItems[] = { 2466 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2467 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2468 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2469 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2470 std::string Name = SL->getString(); 2471 if (!Name.empty()) { 2472 unsigned Discriminator = 2473 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2474 if (Discriminator) 2475 Name += "_" + Twine(Discriminator + 1).str(); 2476 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2477 return MakeAddrLValue(C, E->getType(), BaseInfo); 2478 } else { 2479 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2480 return MakeAddrLValue(C, E->getType(), BaseInfo); 2481 } 2482 } 2483 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2484 return MakeAddrLValue(C, E->getType(), BaseInfo); 2485 } 2486 2487 /// Emit a type description suitable for use by a runtime sanitizer library. The 2488 /// format of a type descriptor is 2489 /// 2490 /// \code 2491 /// { i16 TypeKind, i16 TypeInfo } 2492 /// \endcode 2493 /// 2494 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2495 /// integer, 1 for a floating point value, and -1 for anything else. 2496 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2497 // Only emit each type's descriptor once. 2498 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2499 return C; 2500 2501 uint16_t TypeKind = -1; 2502 uint16_t TypeInfo = 0; 2503 2504 if (T->isIntegerType()) { 2505 TypeKind = 0; 2506 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2507 (T->isSignedIntegerType() ? 1 : 0); 2508 } else if (T->isFloatingType()) { 2509 TypeKind = 1; 2510 TypeInfo = getContext().getTypeSize(T); 2511 } 2512 2513 // Format the type name as if for a diagnostic, including quotes and 2514 // optionally an 'aka'. 2515 SmallString<32> Buffer; 2516 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2517 (intptr_t)T.getAsOpaquePtr(), 2518 StringRef(), StringRef(), None, Buffer, 2519 None); 2520 2521 llvm::Constant *Components[] = { 2522 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2523 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2524 }; 2525 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2526 2527 auto *GV = new llvm::GlobalVariable( 2528 CGM.getModule(), Descriptor->getType(), 2529 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2530 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2531 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2532 2533 // Remember the descriptor for this type. 2534 CGM.setTypeDescriptorInMap(T, GV); 2535 2536 return GV; 2537 } 2538 2539 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2540 llvm::Type *TargetTy = IntPtrTy; 2541 2542 // Floating-point types which fit into intptr_t are bitcast to integers 2543 // and then passed directly (after zero-extension, if necessary). 2544 if (V->getType()->isFloatingPointTy()) { 2545 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2546 if (Bits <= TargetTy->getIntegerBitWidth()) 2547 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2548 Bits)); 2549 } 2550 2551 // Integers which fit in intptr_t are zero-extended and passed directly. 2552 if (V->getType()->isIntegerTy() && 2553 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2554 return Builder.CreateZExt(V, TargetTy); 2555 2556 // Pointers are passed directly, everything else is passed by address. 2557 if (!V->getType()->isPointerTy()) { 2558 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2559 Builder.CreateStore(V, Ptr); 2560 V = Ptr.getPointer(); 2561 } 2562 return Builder.CreatePtrToInt(V, TargetTy); 2563 } 2564 2565 /// \brief Emit a representation of a SourceLocation for passing to a handler 2566 /// in a sanitizer runtime library. The format for this data is: 2567 /// \code 2568 /// struct SourceLocation { 2569 /// const char *Filename; 2570 /// int32_t Line, Column; 2571 /// }; 2572 /// \endcode 2573 /// For an invalid SourceLocation, the Filename pointer is null. 2574 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2575 llvm::Constant *Filename; 2576 int Line, Column; 2577 2578 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2579 if (PLoc.isValid()) { 2580 StringRef FilenameString = PLoc.getFilename(); 2581 2582 int PathComponentsToStrip = 2583 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2584 if (PathComponentsToStrip < 0) { 2585 assert(PathComponentsToStrip != INT_MIN); 2586 int PathComponentsToKeep = -PathComponentsToStrip; 2587 auto I = llvm::sys::path::rbegin(FilenameString); 2588 auto E = llvm::sys::path::rend(FilenameString); 2589 while (I != E && --PathComponentsToKeep) 2590 ++I; 2591 2592 FilenameString = FilenameString.substr(I - E); 2593 } else if (PathComponentsToStrip > 0) { 2594 auto I = llvm::sys::path::begin(FilenameString); 2595 auto E = llvm::sys::path::end(FilenameString); 2596 while (I != E && PathComponentsToStrip--) 2597 ++I; 2598 2599 if (I != E) 2600 FilenameString = 2601 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2602 else 2603 FilenameString = llvm::sys::path::filename(FilenameString); 2604 } 2605 2606 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2607 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2608 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2609 Filename = FilenameGV.getPointer(); 2610 Line = PLoc.getLine(); 2611 Column = PLoc.getColumn(); 2612 } else { 2613 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2614 Line = Column = 0; 2615 } 2616 2617 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2618 Builder.getInt32(Column)}; 2619 2620 return llvm::ConstantStruct::getAnon(Data); 2621 } 2622 2623 namespace { 2624 /// \brief Specify under what conditions this check can be recovered 2625 enum class CheckRecoverableKind { 2626 /// Always terminate program execution if this check fails. 2627 Unrecoverable, 2628 /// Check supports recovering, runtime has both fatal (noreturn) and 2629 /// non-fatal handlers for this check. 2630 Recoverable, 2631 /// Runtime conditionally aborts, always need to support recovery. 2632 AlwaysRecoverable 2633 }; 2634 } 2635 2636 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2637 assert(llvm::countPopulation(Kind) == 1); 2638 switch (Kind) { 2639 case SanitizerKind::Vptr: 2640 return CheckRecoverableKind::AlwaysRecoverable; 2641 case SanitizerKind::Return: 2642 case SanitizerKind::Unreachable: 2643 return CheckRecoverableKind::Unrecoverable; 2644 default: 2645 return CheckRecoverableKind::Recoverable; 2646 } 2647 } 2648 2649 namespace { 2650 struct SanitizerHandlerInfo { 2651 char const *const Name; 2652 unsigned Version; 2653 }; 2654 } 2655 2656 const SanitizerHandlerInfo SanitizerHandlers[] = { 2657 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2658 LIST_SANITIZER_CHECKS 2659 #undef SANITIZER_CHECK 2660 }; 2661 2662 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2663 llvm::FunctionType *FnType, 2664 ArrayRef<llvm::Value *> FnArgs, 2665 SanitizerHandler CheckHandler, 2666 CheckRecoverableKind RecoverKind, bool IsFatal, 2667 llvm::BasicBlock *ContBB) { 2668 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2669 bool NeedsAbortSuffix = 2670 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2671 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2672 const StringRef CheckName = CheckInfo.Name; 2673 std::string FnName = 2674 ("__ubsan_handle_" + CheckName + 2675 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2676 (NeedsAbortSuffix ? "_abort" : "")) 2677 .str(); 2678 bool MayReturn = 2679 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2680 2681 llvm::AttrBuilder B; 2682 if (!MayReturn) { 2683 B.addAttribute(llvm::Attribute::NoReturn) 2684 .addAttribute(llvm::Attribute::NoUnwind); 2685 } 2686 B.addAttribute(llvm::Attribute::UWTable); 2687 2688 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2689 FnType, FnName, 2690 llvm::AttributeList::get(CGF.getLLVMContext(), 2691 llvm::AttributeList::FunctionIndex, B), 2692 /*Local=*/true); 2693 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2694 if (!MayReturn) { 2695 HandlerCall->setDoesNotReturn(); 2696 CGF.Builder.CreateUnreachable(); 2697 } else { 2698 CGF.Builder.CreateBr(ContBB); 2699 } 2700 } 2701 2702 void CodeGenFunction::EmitCheck( 2703 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2704 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2705 ArrayRef<llvm::Value *> DynamicArgs) { 2706 assert(IsSanitizerScope); 2707 assert(Checked.size() > 0); 2708 assert(CheckHandler >= 0 && 2709 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2710 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2711 2712 llvm::Value *FatalCond = nullptr; 2713 llvm::Value *RecoverableCond = nullptr; 2714 llvm::Value *TrapCond = nullptr; 2715 for (int i = 0, n = Checked.size(); i < n; ++i) { 2716 llvm::Value *Check = Checked[i].first; 2717 // -fsanitize-trap= overrides -fsanitize-recover=. 2718 llvm::Value *&Cond = 2719 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2720 ? TrapCond 2721 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2722 ? RecoverableCond 2723 : FatalCond; 2724 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2725 } 2726 2727 if (TrapCond) 2728 EmitTrapCheck(TrapCond); 2729 if (!FatalCond && !RecoverableCond) 2730 return; 2731 2732 llvm::Value *JointCond; 2733 if (FatalCond && RecoverableCond) 2734 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2735 else 2736 JointCond = FatalCond ? FatalCond : RecoverableCond; 2737 assert(JointCond); 2738 2739 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2740 assert(SanOpts.has(Checked[0].second)); 2741 #ifndef NDEBUG 2742 for (int i = 1, n = Checked.size(); i < n; ++i) { 2743 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2744 "All recoverable kinds in a single check must be same!"); 2745 assert(SanOpts.has(Checked[i].second)); 2746 } 2747 #endif 2748 2749 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2750 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2751 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2752 // Give hint that we very much don't expect to execute the handler 2753 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2754 llvm::MDBuilder MDHelper(getLLVMContext()); 2755 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2756 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2757 EmitBlock(Handlers); 2758 2759 // Handler functions take an i8* pointing to the (handler-specific) static 2760 // information block, followed by a sequence of intptr_t arguments 2761 // representing operand values. 2762 SmallVector<llvm::Value *, 4> Args; 2763 SmallVector<llvm::Type *, 4> ArgTypes; 2764 Args.reserve(DynamicArgs.size() + 1); 2765 ArgTypes.reserve(DynamicArgs.size() + 1); 2766 2767 // Emit handler arguments and create handler function type. 2768 if (!StaticArgs.empty()) { 2769 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2770 auto *InfoPtr = 2771 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2772 llvm::GlobalVariable::PrivateLinkage, Info); 2773 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2774 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2775 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2776 ArgTypes.push_back(Int8PtrTy); 2777 } 2778 2779 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2780 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2781 ArgTypes.push_back(IntPtrTy); 2782 } 2783 2784 llvm::FunctionType *FnType = 2785 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2786 2787 if (!FatalCond || !RecoverableCond) { 2788 // Simple case: we need to generate a single handler call, either 2789 // fatal, or non-fatal. 2790 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2791 (FatalCond != nullptr), Cont); 2792 } else { 2793 // Emit two handler calls: first one for set of unrecoverable checks, 2794 // another one for recoverable. 2795 llvm::BasicBlock *NonFatalHandlerBB = 2796 createBasicBlock("non_fatal." + CheckName); 2797 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2798 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2799 EmitBlock(FatalHandlerBB); 2800 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2801 NonFatalHandlerBB); 2802 EmitBlock(NonFatalHandlerBB); 2803 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2804 Cont); 2805 } 2806 2807 EmitBlock(Cont); 2808 } 2809 2810 void CodeGenFunction::EmitCfiSlowPathCheck( 2811 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2812 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2813 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2814 2815 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2816 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2817 2818 llvm::MDBuilder MDHelper(getLLVMContext()); 2819 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2820 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2821 2822 EmitBlock(CheckBB); 2823 2824 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2825 2826 llvm::CallInst *CheckCall; 2827 if (WithDiag) { 2828 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2829 auto *InfoPtr = 2830 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2831 llvm::GlobalVariable::PrivateLinkage, Info); 2832 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2833 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2834 2835 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2836 "__cfi_slowpath_diag", 2837 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2838 false)); 2839 CheckCall = Builder.CreateCall( 2840 SlowPathDiagFn, 2841 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2842 } else { 2843 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2844 "__cfi_slowpath", 2845 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2846 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2847 } 2848 2849 CheckCall->setDoesNotThrow(); 2850 2851 EmitBlock(Cont); 2852 } 2853 2854 // Emit a stub for __cfi_check function so that the linker knows about this 2855 // symbol in LTO mode. 2856 void CodeGenFunction::EmitCfiCheckStub() { 2857 llvm::Module *M = &CGM.getModule(); 2858 auto &Ctx = M->getContext(); 2859 llvm::Function *F = llvm::Function::Create( 2860 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2861 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2862 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2863 // FIXME: consider emitting an intrinsic call like 2864 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2865 // which can be lowered in CrossDSOCFI pass to the actual contents of 2866 // __cfi_check. This would allow inlining of __cfi_check calls. 2867 llvm::CallInst::Create( 2868 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2869 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2870 } 2871 2872 // This function is basically a switch over the CFI failure kind, which is 2873 // extracted from CFICheckFailData (1st function argument). Each case is either 2874 // llvm.trap or a call to one of the two runtime handlers, based on 2875 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2876 // failure kind) traps, but this should really never happen. CFICheckFailData 2877 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2878 // check kind; in this case __cfi_check_fail traps as well. 2879 void CodeGenFunction::EmitCfiCheckFail() { 2880 SanitizerScope SanScope(this); 2881 FunctionArgList Args; 2882 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2883 ImplicitParamDecl::Other); 2884 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2885 ImplicitParamDecl::Other); 2886 Args.push_back(&ArgData); 2887 Args.push_back(&ArgAddr); 2888 2889 const CGFunctionInfo &FI = 2890 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2891 2892 llvm::Function *F = llvm::Function::Create( 2893 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2894 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2895 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2896 2897 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2898 SourceLocation()); 2899 2900 llvm::Value *Data = 2901 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2902 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2903 llvm::Value *Addr = 2904 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2905 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2906 2907 // Data == nullptr means the calling module has trap behaviour for this check. 2908 llvm::Value *DataIsNotNullPtr = 2909 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2910 EmitTrapCheck(DataIsNotNullPtr); 2911 2912 llvm::StructType *SourceLocationTy = 2913 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2914 llvm::StructType *CfiCheckFailDataTy = 2915 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2916 2917 llvm::Value *V = Builder.CreateConstGEP2_32( 2918 CfiCheckFailDataTy, 2919 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2920 0); 2921 Address CheckKindAddr(V, getIntAlign()); 2922 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2923 2924 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2925 CGM.getLLVMContext(), 2926 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2927 llvm::Value *ValidVtable = Builder.CreateZExt( 2928 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2929 {Addr, AllVtables}), 2930 IntPtrTy); 2931 2932 const std::pair<int, SanitizerMask> CheckKinds[] = { 2933 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2934 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2935 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2936 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2937 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2938 2939 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2940 for (auto CheckKindMaskPair : CheckKinds) { 2941 int Kind = CheckKindMaskPair.first; 2942 SanitizerMask Mask = CheckKindMaskPair.second; 2943 llvm::Value *Cond = 2944 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2945 if (CGM.getLangOpts().Sanitize.has(Mask)) 2946 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2947 {Data, Addr, ValidVtable}); 2948 else 2949 EmitTrapCheck(Cond); 2950 } 2951 2952 FinishFunction(); 2953 // The only reference to this function will be created during LTO link. 2954 // Make sure it survives until then. 2955 CGM.addUsedGlobal(F); 2956 } 2957 2958 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2959 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2960 2961 // If we're optimizing, collapse all calls to trap down to just one per 2962 // function to save on code size. 2963 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2964 TrapBB = createBasicBlock("trap"); 2965 Builder.CreateCondBr(Checked, Cont, TrapBB); 2966 EmitBlock(TrapBB); 2967 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2968 TrapCall->setDoesNotReturn(); 2969 TrapCall->setDoesNotThrow(); 2970 Builder.CreateUnreachable(); 2971 } else { 2972 Builder.CreateCondBr(Checked, Cont, TrapBB); 2973 } 2974 2975 EmitBlock(Cont); 2976 } 2977 2978 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2979 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2980 2981 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2982 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2983 CGM.getCodeGenOpts().TrapFuncName); 2984 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 2985 } 2986 2987 return TrapCall; 2988 } 2989 2990 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2991 LValueBaseInfo *BaseInfo) { 2992 assert(E->getType()->isArrayType() && 2993 "Array to pointer decay must have array source type!"); 2994 2995 // Expressions of array type can't be bitfields or vector elements. 2996 LValue LV = EmitLValue(E); 2997 Address Addr = LV.getAddress(); 2998 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 2999 3000 // If the array type was an incomplete type, we need to make sure 3001 // the decay ends up being the right type. 3002 llvm::Type *NewTy = ConvertType(E->getType()); 3003 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3004 3005 // Note that VLA pointers are always decayed, so we don't need to do 3006 // anything here. 3007 if (!E->getType()->isVariableArrayType()) { 3008 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3009 "Expected pointer to array"); 3010 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3011 } 3012 3013 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3014 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3015 } 3016 3017 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3018 /// array to pointer, return the array subexpression. 3019 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3020 // If this isn't just an array->pointer decay, bail out. 3021 const auto *CE = dyn_cast<CastExpr>(E); 3022 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3023 return nullptr; 3024 3025 // If this is a decay from variable width array, bail out. 3026 const Expr *SubExpr = CE->getSubExpr(); 3027 if (SubExpr->getType()->isVariableArrayType()) 3028 return nullptr; 3029 3030 return SubExpr; 3031 } 3032 3033 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3034 llvm::Value *ptr, 3035 ArrayRef<llvm::Value*> indices, 3036 bool inbounds, 3037 bool signedIndices, 3038 SourceLocation loc, 3039 const llvm::Twine &name = "arrayidx") { 3040 if (inbounds) { 3041 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, loc, name); 3042 } else { 3043 return CGF.Builder.CreateGEP(ptr, indices, name); 3044 } 3045 } 3046 3047 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3048 llvm::Value *idx, 3049 CharUnits eltSize) { 3050 // If we have a constant index, we can use the exact offset of the 3051 // element we're accessing. 3052 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3053 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3054 return arrayAlign.alignmentAtOffset(offset); 3055 3056 // Otherwise, use the worst-case alignment for any element. 3057 } else { 3058 return arrayAlign.alignmentOfArrayElement(eltSize); 3059 } 3060 } 3061 3062 static QualType getFixedSizeElementType(const ASTContext &ctx, 3063 const VariableArrayType *vla) { 3064 QualType eltType; 3065 do { 3066 eltType = vla->getElementType(); 3067 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3068 return eltType; 3069 } 3070 3071 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3072 ArrayRef<llvm::Value *> indices, 3073 QualType eltType, bool inbounds, 3074 bool signedIndices, SourceLocation loc, 3075 const llvm::Twine &name = "arrayidx") { 3076 // All the indices except that last must be zero. 3077 #ifndef NDEBUG 3078 for (auto idx : indices.drop_back()) 3079 assert(isa<llvm::ConstantInt>(idx) && 3080 cast<llvm::ConstantInt>(idx)->isZero()); 3081 #endif 3082 3083 // Determine the element size of the statically-sized base. This is 3084 // the thing that the indices are expressed in terms of. 3085 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3086 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3087 } 3088 3089 // We can use that to compute the best alignment of the element. 3090 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3091 CharUnits eltAlign = 3092 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3093 3094 llvm::Value *eltPtr = emitArraySubscriptGEP( 3095 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3096 return Address(eltPtr, eltAlign); 3097 } 3098 3099 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3100 bool Accessed) { 3101 // The index must always be an integer, which is not an aggregate. Emit it 3102 // in lexical order (this complexity is, sadly, required by C++17). 3103 llvm::Value *IdxPre = 3104 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3105 bool SignedIndices = false; 3106 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3107 auto *Idx = IdxPre; 3108 if (E->getLHS() != E->getIdx()) { 3109 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3110 Idx = EmitScalarExpr(E->getIdx()); 3111 } 3112 3113 QualType IdxTy = E->getIdx()->getType(); 3114 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3115 SignedIndices |= IdxSigned; 3116 3117 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3118 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3119 3120 // Extend or truncate the index type to 32 or 64-bits. 3121 if (Promote && Idx->getType() != IntPtrTy) 3122 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3123 3124 return Idx; 3125 }; 3126 IdxPre = nullptr; 3127 3128 // If the base is a vector type, then we are forming a vector element lvalue 3129 // with this subscript. 3130 if (E->getBase()->getType()->isVectorType() && 3131 !isa<ExtVectorElementExpr>(E->getBase())) { 3132 // Emit the vector as an lvalue to get its address. 3133 LValue LHS = EmitLValue(E->getBase()); 3134 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3135 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3136 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3137 E->getBase()->getType(), 3138 LHS.getBaseInfo()); 3139 } 3140 3141 // All the other cases basically behave like simple offsetting. 3142 3143 // Handle the extvector case we ignored above. 3144 if (isa<ExtVectorElementExpr>(E->getBase())) { 3145 LValue LV = EmitLValue(E->getBase()); 3146 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3147 Address Addr = EmitExtVectorElementLValue(LV); 3148 3149 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3150 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3151 SignedIndices, E->getExprLoc()); 3152 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo()); 3153 } 3154 3155 LValueBaseInfo BaseInfo; 3156 Address Addr = Address::invalid(); 3157 if (const VariableArrayType *vla = 3158 getContext().getAsVariableArrayType(E->getType())) { 3159 // The base must be a pointer, which is not an aggregate. Emit 3160 // it. It needs to be emitted first in case it's what captures 3161 // the VLA bounds. 3162 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3163 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3164 3165 // The element count here is the total number of non-VLA elements. 3166 llvm::Value *numElements = getVLASize(vla).first; 3167 3168 // Effectively, the multiply by the VLA size is part of the GEP. 3169 // GEP indexes are signed, and scaling an index isn't permitted to 3170 // signed-overflow, so we use the same semantics for our explicit 3171 // multiply. We suppress this if overflow is not undefined behavior. 3172 if (getLangOpts().isSignedOverflowDefined()) { 3173 Idx = Builder.CreateMul(Idx, numElements); 3174 } else { 3175 Idx = Builder.CreateNSWMul(Idx, numElements); 3176 } 3177 3178 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3179 !getLangOpts().isSignedOverflowDefined(), 3180 SignedIndices, E->getExprLoc()); 3181 3182 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3183 // Indexing over an interface, as in "NSString *P; P[4];" 3184 3185 // Emit the base pointer. 3186 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3187 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3188 3189 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3190 llvm::Value *InterfaceSizeVal = 3191 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3192 3193 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3194 3195 // We don't necessarily build correct LLVM struct types for ObjC 3196 // interfaces, so we can't rely on GEP to do this scaling 3197 // correctly, so we need to cast to i8*. FIXME: is this actually 3198 // true? A lot of other things in the fragile ABI would break... 3199 llvm::Type *OrigBaseTy = Addr.getType(); 3200 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3201 3202 // Do the GEP. 3203 CharUnits EltAlign = 3204 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3205 llvm::Value *EltPtr = 3206 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3207 SignedIndices, E->getExprLoc()); 3208 Addr = Address(EltPtr, EltAlign); 3209 3210 // Cast back. 3211 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3212 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3213 // If this is A[i] where A is an array, the frontend will have decayed the 3214 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3215 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3216 // "gep x, i" here. Emit one "gep A, 0, i". 3217 assert(Array->getType()->isArrayType() && 3218 "Array to pointer decay must have array source type!"); 3219 LValue ArrayLV; 3220 // For simple multidimensional array indexing, set the 'accessed' flag for 3221 // better bounds-checking of the base expression. 3222 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3223 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3224 else 3225 ArrayLV = EmitLValue(Array); 3226 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3227 3228 // Propagate the alignment from the array itself to the result. 3229 Addr = emitArraySubscriptGEP( 3230 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3231 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3232 E->getExprLoc()); 3233 BaseInfo = ArrayLV.getBaseInfo(); 3234 } else { 3235 // The base must be a pointer; emit it with an estimate of its alignment. 3236 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3237 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3238 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3239 !getLangOpts().isSignedOverflowDefined(), 3240 SignedIndices, E->getExprLoc()); 3241 } 3242 3243 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo); 3244 3245 // TODO: Preserve/extend path TBAA metadata? 3246 3247 if (getLangOpts().ObjC1 && 3248 getLangOpts().getGC() != LangOptions::NonGC) { 3249 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3250 setObjCGCLValueClass(getContext(), E, LV); 3251 } 3252 return LV; 3253 } 3254 3255 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3256 LValueBaseInfo &BaseInfo, 3257 QualType BaseTy, QualType ElTy, 3258 bool IsLowerBound) { 3259 LValue BaseLVal; 3260 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3261 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3262 if (BaseTy->isArrayType()) { 3263 Address Addr = BaseLVal.getAddress(); 3264 BaseInfo = BaseLVal.getBaseInfo(); 3265 3266 // If the array type was an incomplete type, we need to make sure 3267 // the decay ends up being the right type. 3268 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3269 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3270 3271 // Note that VLA pointers are always decayed, so we don't need to do 3272 // anything here. 3273 if (!BaseTy->isVariableArrayType()) { 3274 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3275 "Expected pointer to array"); 3276 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3277 "arraydecay"); 3278 } 3279 3280 return CGF.Builder.CreateElementBitCast(Addr, 3281 CGF.ConvertTypeForMem(ElTy)); 3282 } 3283 LValueBaseInfo TypeInfo; 3284 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3285 BaseInfo.mergeForCast(TypeInfo); 3286 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3287 } 3288 return CGF.EmitPointerWithAlignment(Base, &BaseInfo); 3289 } 3290 3291 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3292 bool IsLowerBound) { 3293 QualType BaseTy; 3294 if (auto *ASE = 3295 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3296 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3297 else 3298 BaseTy = E->getBase()->getType(); 3299 QualType ResultExprTy; 3300 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3301 ResultExprTy = AT->getElementType(); 3302 else 3303 ResultExprTy = BaseTy->getPointeeType(); 3304 llvm::Value *Idx = nullptr; 3305 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3306 // Requesting lower bound or upper bound, but without provided length and 3307 // without ':' symbol for the default length -> length = 1. 3308 // Idx = LowerBound ?: 0; 3309 if (auto *LowerBound = E->getLowerBound()) { 3310 Idx = Builder.CreateIntCast( 3311 EmitScalarExpr(LowerBound), IntPtrTy, 3312 LowerBound->getType()->hasSignedIntegerRepresentation()); 3313 } else 3314 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3315 } else { 3316 // Try to emit length or lower bound as constant. If this is possible, 1 3317 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3318 // IR (LB + Len) - 1. 3319 auto &C = CGM.getContext(); 3320 auto *Length = E->getLength(); 3321 llvm::APSInt ConstLength; 3322 if (Length) { 3323 // Idx = LowerBound + Length - 1; 3324 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3325 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3326 Length = nullptr; 3327 } 3328 auto *LowerBound = E->getLowerBound(); 3329 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3330 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3331 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3332 LowerBound = nullptr; 3333 } 3334 if (!Length) 3335 --ConstLength; 3336 else if (!LowerBound) 3337 --ConstLowerBound; 3338 3339 if (Length || LowerBound) { 3340 auto *LowerBoundVal = 3341 LowerBound 3342 ? Builder.CreateIntCast( 3343 EmitScalarExpr(LowerBound), IntPtrTy, 3344 LowerBound->getType()->hasSignedIntegerRepresentation()) 3345 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3346 auto *LengthVal = 3347 Length 3348 ? Builder.CreateIntCast( 3349 EmitScalarExpr(Length), IntPtrTy, 3350 Length->getType()->hasSignedIntegerRepresentation()) 3351 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3352 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3353 /*HasNUW=*/false, 3354 !getLangOpts().isSignedOverflowDefined()); 3355 if (Length && LowerBound) { 3356 Idx = Builder.CreateSub( 3357 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3358 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3359 } 3360 } else 3361 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3362 } else { 3363 // Idx = ArraySize - 1; 3364 QualType ArrayTy = BaseTy->isPointerType() 3365 ? E->getBase()->IgnoreParenImpCasts()->getType() 3366 : BaseTy; 3367 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3368 Length = VAT->getSizeExpr(); 3369 if (Length->isIntegerConstantExpr(ConstLength, C)) 3370 Length = nullptr; 3371 } else { 3372 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3373 ConstLength = CAT->getSize(); 3374 } 3375 if (Length) { 3376 auto *LengthVal = Builder.CreateIntCast( 3377 EmitScalarExpr(Length), IntPtrTy, 3378 Length->getType()->hasSignedIntegerRepresentation()); 3379 Idx = Builder.CreateSub( 3380 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3381 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3382 } else { 3383 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3384 --ConstLength; 3385 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3386 } 3387 } 3388 } 3389 assert(Idx); 3390 3391 Address EltPtr = Address::invalid(); 3392 LValueBaseInfo BaseInfo; 3393 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3394 // The base must be a pointer, which is not an aggregate. Emit 3395 // it. It needs to be emitted first in case it's what captures 3396 // the VLA bounds. 3397 Address Base = 3398 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy, 3399 VLA->getElementType(), IsLowerBound); 3400 // The element count here is the total number of non-VLA elements. 3401 llvm::Value *NumElements = getVLASize(VLA).first; 3402 3403 // Effectively, the multiply by the VLA size is part of the GEP. 3404 // GEP indexes are signed, and scaling an index isn't permitted to 3405 // signed-overflow, so we use the same semantics for our explicit 3406 // multiply. We suppress this if overflow is not undefined behavior. 3407 if (getLangOpts().isSignedOverflowDefined()) 3408 Idx = Builder.CreateMul(Idx, NumElements); 3409 else 3410 Idx = Builder.CreateNSWMul(Idx, NumElements); 3411 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3412 !getLangOpts().isSignedOverflowDefined(), 3413 /*SignedIndices=*/false, E->getExprLoc()); 3414 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3415 // If this is A[i] where A is an array, the frontend will have decayed the 3416 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3417 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3418 // "gep x, i" here. Emit one "gep A, 0, i". 3419 assert(Array->getType()->isArrayType() && 3420 "Array to pointer decay must have array source type!"); 3421 LValue ArrayLV; 3422 // For simple multidimensional array indexing, set the 'accessed' flag for 3423 // better bounds-checking of the base expression. 3424 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3425 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3426 else 3427 ArrayLV = EmitLValue(Array); 3428 3429 // Propagate the alignment from the array itself to the result. 3430 EltPtr = emitArraySubscriptGEP( 3431 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3432 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3433 /*SignedIndices=*/false, E->getExprLoc()); 3434 BaseInfo = ArrayLV.getBaseInfo(); 3435 } else { 3436 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3437 BaseTy, ResultExprTy, IsLowerBound); 3438 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3439 !getLangOpts().isSignedOverflowDefined(), 3440 /*SignedIndices=*/false, E->getExprLoc()); 3441 } 3442 3443 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo); 3444 } 3445 3446 LValue CodeGenFunction:: 3447 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3448 // Emit the base vector as an l-value. 3449 LValue Base; 3450 3451 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3452 if (E->isArrow()) { 3453 // If it is a pointer to a vector, emit the address and form an lvalue with 3454 // it. 3455 LValueBaseInfo BaseInfo; 3456 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3457 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3458 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo); 3459 Base.getQuals().removeObjCGCAttr(); 3460 } else if (E->getBase()->isGLValue()) { 3461 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3462 // emit the base as an lvalue. 3463 assert(E->getBase()->getType()->isVectorType()); 3464 Base = EmitLValue(E->getBase()); 3465 } else { 3466 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3467 assert(E->getBase()->getType()->isVectorType() && 3468 "Result must be a vector"); 3469 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3470 3471 // Store the vector to memory (because LValue wants an address). 3472 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3473 Builder.CreateStore(Vec, VecMem); 3474 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3475 LValueBaseInfo(AlignmentSource::Decl, false)); 3476 } 3477 3478 QualType type = 3479 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3480 3481 // Encode the element access list into a vector of unsigned indices. 3482 SmallVector<uint32_t, 4> Indices; 3483 E->getEncodedElementAccess(Indices); 3484 3485 if (Base.isSimple()) { 3486 llvm::Constant *CV = 3487 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3488 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3489 Base.getBaseInfo()); 3490 } 3491 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3492 3493 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3494 SmallVector<llvm::Constant *, 4> CElts; 3495 3496 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3497 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3498 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3499 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3500 Base.getBaseInfo()); 3501 } 3502 3503 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3504 Expr *BaseExpr = E->getBase(); 3505 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3506 LValue BaseLV; 3507 if (E->isArrow()) { 3508 LValueBaseInfo BaseInfo; 3509 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo); 3510 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3511 SanitizerSet SkippedChecks; 3512 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3513 if (IsBaseCXXThis) 3514 SkippedChecks.set(SanitizerKind::Alignment, true); 3515 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3516 SkippedChecks.set(SanitizerKind::Null, true); 3517 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3518 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3519 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo); 3520 } else 3521 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3522 3523 NamedDecl *ND = E->getMemberDecl(); 3524 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3525 LValue LV = EmitLValueForField(BaseLV, Field); 3526 setObjCGCLValueClass(getContext(), E, LV); 3527 return LV; 3528 } 3529 3530 if (auto *VD = dyn_cast<VarDecl>(ND)) 3531 return EmitGlobalVarDeclLValue(*this, E, VD); 3532 3533 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3534 return EmitFunctionDeclLValue(*this, E, FD); 3535 3536 llvm_unreachable("Unhandled member declaration!"); 3537 } 3538 3539 /// Given that we are currently emitting a lambda, emit an l-value for 3540 /// one of its members. 3541 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3542 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3543 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3544 QualType LambdaTagType = 3545 getContext().getTagDeclType(Field->getParent()); 3546 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3547 return EmitLValueForField(LambdaLV, Field); 3548 } 3549 3550 /// Drill down to the storage of a field without walking into 3551 /// reference types. 3552 /// 3553 /// The resulting address doesn't necessarily have the right type. 3554 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3555 const FieldDecl *field) { 3556 const RecordDecl *rec = field->getParent(); 3557 3558 unsigned idx = 3559 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3560 3561 CharUnits offset; 3562 // Adjust the alignment down to the given offset. 3563 // As a special case, if the LLVM field index is 0, we know that this 3564 // is zero. 3565 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3566 .getFieldOffset(field->getFieldIndex()) == 0) && 3567 "LLVM field at index zero had non-zero offset?"); 3568 if (idx != 0) { 3569 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3570 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3571 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3572 } 3573 3574 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3575 } 3576 3577 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3578 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3579 if (!RD) 3580 return false; 3581 3582 if (RD->isDynamicClass()) 3583 return true; 3584 3585 for (const auto &Base : RD->bases()) 3586 if (hasAnyVptr(Base.getType(), Context)) 3587 return true; 3588 3589 for (const FieldDecl *Field : RD->fields()) 3590 if (hasAnyVptr(Field->getType(), Context)) 3591 return true; 3592 3593 return false; 3594 } 3595 3596 LValue CodeGenFunction::EmitLValueForField(LValue base, 3597 const FieldDecl *field) { 3598 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3599 AlignmentSource fieldAlignSource = 3600 getFieldAlignmentSource(BaseInfo.getAlignmentSource()); 3601 LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias()); 3602 3603 const RecordDecl *rec = field->getParent(); 3604 if (rec->isUnion() || rec->hasAttr<MayAliasAttr>()) 3605 FieldBaseInfo.setMayAlias(true); 3606 bool mayAlias = FieldBaseInfo.getMayAlias(); 3607 3608 if (field->isBitField()) { 3609 const CGRecordLayout &RL = 3610 CGM.getTypes().getCGRecordLayout(field->getParent()); 3611 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3612 Address Addr = base.getAddress(); 3613 unsigned Idx = RL.getLLVMFieldNo(field); 3614 if (Idx != 0) 3615 // For structs, we GEP to the field that the record layout suggests. 3616 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3617 field->getName()); 3618 // Get the access type. 3619 llvm::Type *FieldIntTy = 3620 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3621 if (Addr.getElementType() != FieldIntTy) 3622 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3623 3624 QualType fieldType = 3625 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3626 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo); 3627 } 3628 3629 QualType type = field->getType(); 3630 Address addr = base.getAddress(); 3631 unsigned cvr = base.getVRQualifiers(); 3632 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3633 if (rec->isUnion()) { 3634 // For unions, there is no pointer adjustment. 3635 assert(!type->isReferenceType() && "union has reference member"); 3636 // TODO: handle path-aware TBAA for union. 3637 TBAAPath = false; 3638 3639 const auto FieldType = field->getType(); 3640 if (CGM.getCodeGenOpts().StrictVTablePointers && 3641 hasAnyVptr(FieldType, getContext())) 3642 // Because unions can easily skip invariant.barriers, we need to add 3643 // a barrier every time CXXRecord field with vptr is referenced. 3644 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3645 addr.getAlignment()); 3646 } else { 3647 // For structs, we GEP to the field that the record layout suggests. 3648 addr = emitAddrOfFieldStorage(*this, addr, field); 3649 3650 // If this is a reference field, load the reference right now. 3651 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3652 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3653 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3654 3655 // Loading the reference will disable path-aware TBAA. 3656 TBAAPath = false; 3657 if (CGM.shouldUseTBAA()) { 3658 llvm::MDNode *tbaa; 3659 if (mayAlias) 3660 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3661 else 3662 tbaa = CGM.getTBAAInfo(type); 3663 if (tbaa) 3664 CGM.DecorateInstructionWithTBAA(load, tbaa); 3665 } 3666 3667 mayAlias = false; 3668 type = refType->getPointeeType(); 3669 3670 CharUnits alignment = 3671 getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true); 3672 FieldBaseInfo.setMayAlias(false); 3673 addr = Address(load, alignment); 3674 3675 // Qualifiers on the struct don't apply to the referencee, and 3676 // we'll pick up CVR from the actual type later, so reset these 3677 // additional qualifiers now. 3678 cvr = 0; 3679 } 3680 } 3681 3682 // Make sure that the address is pointing to the right type. This is critical 3683 // for both unions and structs. A union needs a bitcast, a struct element 3684 // will need a bitcast if the LLVM type laid out doesn't match the desired 3685 // type. 3686 addr = Builder.CreateElementBitCast(addr, 3687 CGM.getTypes().ConvertTypeForMem(type), 3688 field->getName()); 3689 3690 if (field->hasAttr<AnnotateAttr>()) 3691 addr = EmitFieldAnnotations(field, addr); 3692 3693 LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo); 3694 LV.getQuals().addCVRQualifiers(cvr); 3695 if (TBAAPath) { 3696 const ASTRecordLayout &Layout = 3697 getContext().getASTRecordLayout(field->getParent()); 3698 // Set the base type to be the base type of the base LValue and 3699 // update offset to be relative to the base type. 3700 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3701 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3702 Layout.getFieldOffset(field->getFieldIndex()) / 3703 getContext().getCharWidth()); 3704 } 3705 3706 // __weak attribute on a field is ignored. 3707 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3708 LV.getQuals().removeObjCGCAttr(); 3709 3710 // Fields of may_alias structs act like 'char' for TBAA purposes. 3711 // FIXME: this should get propagated down through anonymous structs 3712 // and unions. 3713 if (mayAlias && LV.getTBAAInfo()) 3714 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3715 3716 return LV; 3717 } 3718 3719 LValue 3720 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3721 const FieldDecl *Field) { 3722 QualType FieldType = Field->getType(); 3723 3724 if (!FieldType->isReferenceType()) 3725 return EmitLValueForField(Base, Field); 3726 3727 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3728 3729 // Make sure that the address is pointing to the right type. 3730 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3731 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3732 3733 // TODO: access-path TBAA? 3734 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3735 LValueBaseInfo FieldBaseInfo( 3736 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3737 BaseInfo.getMayAlias()); 3738 return MakeAddrLValue(V, FieldType, FieldBaseInfo); 3739 } 3740 3741 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3742 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 3743 if (E->isFileScope()) { 3744 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3745 return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo); 3746 } 3747 if (E->getType()->isVariablyModifiedType()) 3748 // make sure to emit the VLA size. 3749 EmitVariablyModifiedType(E->getType()); 3750 3751 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3752 const Expr *InitExpr = E->getInitializer(); 3753 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo); 3754 3755 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3756 /*Init*/ true); 3757 3758 return Result; 3759 } 3760 3761 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3762 if (!E->isGLValue()) 3763 // Initializing an aggregate temporary in C++11: T{...}. 3764 return EmitAggExprToLValue(E); 3765 3766 // An lvalue initializer list must be initializing a reference. 3767 assert(E->isTransparent() && "non-transparent glvalue init list"); 3768 return EmitLValue(E->getInit(0)); 3769 } 3770 3771 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3772 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3773 /// LValue is returned and the current block has been terminated. 3774 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3775 const Expr *Operand) { 3776 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3777 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3778 return None; 3779 } 3780 3781 return CGF.EmitLValue(Operand); 3782 } 3783 3784 LValue CodeGenFunction:: 3785 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3786 if (!expr->isGLValue()) { 3787 // ?: here should be an aggregate. 3788 assert(hasAggregateEvaluationKind(expr->getType()) && 3789 "Unexpected conditional operator!"); 3790 return EmitAggExprToLValue(expr); 3791 } 3792 3793 OpaqueValueMapping binding(*this, expr); 3794 3795 const Expr *condExpr = expr->getCond(); 3796 bool CondExprBool; 3797 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3798 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3799 if (!CondExprBool) std::swap(live, dead); 3800 3801 if (!ContainsLabel(dead)) { 3802 // If the true case is live, we need to track its region. 3803 if (CondExprBool) 3804 incrementProfileCounter(expr); 3805 return EmitLValue(live); 3806 } 3807 } 3808 3809 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3810 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3811 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3812 3813 ConditionalEvaluation eval(*this); 3814 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3815 3816 // Any temporaries created here are conditional. 3817 EmitBlock(lhsBlock); 3818 incrementProfileCounter(expr); 3819 eval.begin(*this); 3820 Optional<LValue> lhs = 3821 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3822 eval.end(*this); 3823 3824 if (lhs && !lhs->isSimple()) 3825 return EmitUnsupportedLValue(expr, "conditional operator"); 3826 3827 lhsBlock = Builder.GetInsertBlock(); 3828 if (lhs) 3829 Builder.CreateBr(contBlock); 3830 3831 // Any temporaries created here are conditional. 3832 EmitBlock(rhsBlock); 3833 eval.begin(*this); 3834 Optional<LValue> rhs = 3835 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3836 eval.end(*this); 3837 if (rhs && !rhs->isSimple()) 3838 return EmitUnsupportedLValue(expr, "conditional operator"); 3839 rhsBlock = Builder.GetInsertBlock(); 3840 3841 EmitBlock(contBlock); 3842 3843 if (lhs && rhs) { 3844 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3845 2, "cond-lvalue"); 3846 phi->addIncoming(lhs->getPointer(), lhsBlock); 3847 phi->addIncoming(rhs->getPointer(), rhsBlock); 3848 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3849 AlignmentSource alignSource = 3850 std::max(lhs->getBaseInfo().getAlignmentSource(), 3851 rhs->getBaseInfo().getAlignmentSource()); 3852 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3853 rhs->getBaseInfo().getMayAlias(); 3854 return MakeAddrLValue(result, expr->getType(), 3855 LValueBaseInfo(alignSource, MayAlias)); 3856 } else { 3857 assert((lhs || rhs) && 3858 "both operands of glvalue conditional are throw-expressions?"); 3859 return lhs ? *lhs : *rhs; 3860 } 3861 } 3862 3863 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3864 /// type. If the cast is to a reference, we can have the usual lvalue result, 3865 /// otherwise if a cast is needed by the code generator in an lvalue context, 3866 /// then it must mean that we need the address of an aggregate in order to 3867 /// access one of its members. This can happen for all the reasons that casts 3868 /// are permitted with aggregate result, including noop aggregate casts, and 3869 /// cast from scalar to union. 3870 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3871 switch (E->getCastKind()) { 3872 case CK_ToVoid: 3873 case CK_BitCast: 3874 case CK_ArrayToPointerDecay: 3875 case CK_FunctionToPointerDecay: 3876 case CK_NullToMemberPointer: 3877 case CK_NullToPointer: 3878 case CK_IntegralToPointer: 3879 case CK_PointerToIntegral: 3880 case CK_PointerToBoolean: 3881 case CK_VectorSplat: 3882 case CK_IntegralCast: 3883 case CK_BooleanToSignedIntegral: 3884 case CK_IntegralToBoolean: 3885 case CK_IntegralToFloating: 3886 case CK_FloatingToIntegral: 3887 case CK_FloatingToBoolean: 3888 case CK_FloatingCast: 3889 case CK_FloatingRealToComplex: 3890 case CK_FloatingComplexToReal: 3891 case CK_FloatingComplexToBoolean: 3892 case CK_FloatingComplexCast: 3893 case CK_FloatingComplexToIntegralComplex: 3894 case CK_IntegralRealToComplex: 3895 case CK_IntegralComplexToReal: 3896 case CK_IntegralComplexToBoolean: 3897 case CK_IntegralComplexCast: 3898 case CK_IntegralComplexToFloatingComplex: 3899 case CK_DerivedToBaseMemberPointer: 3900 case CK_BaseToDerivedMemberPointer: 3901 case CK_MemberPointerToBoolean: 3902 case CK_ReinterpretMemberPointer: 3903 case CK_AnyPointerToBlockPointerCast: 3904 case CK_ARCProduceObject: 3905 case CK_ARCConsumeObject: 3906 case CK_ARCReclaimReturnedObject: 3907 case CK_ARCExtendBlockObject: 3908 case CK_CopyAndAutoreleaseBlockObject: 3909 case CK_AddressSpaceConversion: 3910 case CK_IntToOCLSampler: 3911 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3912 3913 case CK_Dependent: 3914 llvm_unreachable("dependent cast kind in IR gen!"); 3915 3916 case CK_BuiltinFnToFnPtr: 3917 llvm_unreachable("builtin functions are handled elsewhere"); 3918 3919 // These are never l-values; just use the aggregate emission code. 3920 case CK_NonAtomicToAtomic: 3921 case CK_AtomicToNonAtomic: 3922 return EmitAggExprToLValue(E); 3923 3924 case CK_Dynamic: { 3925 LValue LV = EmitLValue(E->getSubExpr()); 3926 Address V = LV.getAddress(); 3927 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3928 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3929 } 3930 3931 case CK_ConstructorConversion: 3932 case CK_UserDefinedConversion: 3933 case CK_CPointerToObjCPointerCast: 3934 case CK_BlockPointerToObjCPointerCast: 3935 case CK_NoOp: 3936 case CK_LValueToRValue: 3937 return EmitLValue(E->getSubExpr()); 3938 3939 case CK_UncheckedDerivedToBase: 3940 case CK_DerivedToBase: { 3941 const RecordType *DerivedClassTy = 3942 E->getSubExpr()->getType()->getAs<RecordType>(); 3943 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3944 3945 LValue LV = EmitLValue(E->getSubExpr()); 3946 Address This = LV.getAddress(); 3947 3948 // Perform the derived-to-base conversion 3949 Address Base = GetAddressOfBaseClass( 3950 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3951 /*NullCheckValue=*/false, E->getExprLoc()); 3952 3953 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo()); 3954 } 3955 case CK_ToUnion: 3956 return EmitAggExprToLValue(E); 3957 case CK_BaseToDerived: { 3958 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3959 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3960 3961 LValue LV = EmitLValue(E->getSubExpr()); 3962 3963 // Perform the base-to-derived conversion 3964 Address Derived = 3965 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3966 E->path_begin(), E->path_end(), 3967 /*NullCheckValue=*/false); 3968 3969 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3970 // performed and the object is not of the derived type. 3971 if (sanitizePerformTypeCheck()) 3972 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3973 Derived.getPointer(), E->getType()); 3974 3975 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3976 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3977 /*MayBeNull=*/false, 3978 CFITCK_DerivedCast, E->getLocStart()); 3979 3980 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo()); 3981 } 3982 case CK_LValueBitCast: { 3983 // This must be a reinterpret_cast (or c-style equivalent). 3984 const auto *CE = cast<ExplicitCastExpr>(E); 3985 3986 CGM.EmitExplicitCastExprType(CE, this); 3987 LValue LV = EmitLValue(E->getSubExpr()); 3988 Address V = Builder.CreateBitCast(LV.getAddress(), 3989 ConvertType(CE->getTypeAsWritten())); 3990 3991 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3992 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3993 /*MayBeNull=*/false, 3994 CFITCK_UnrelatedCast, E->getLocStart()); 3995 3996 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 3997 } 3998 case CK_ObjCObjectLValueCast: { 3999 LValue LV = EmitLValue(E->getSubExpr()); 4000 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4001 ConvertType(E->getType())); 4002 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4003 } 4004 case CK_ZeroToOCLQueue: 4005 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4006 case CK_ZeroToOCLEvent: 4007 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4008 } 4009 4010 llvm_unreachable("Unhandled lvalue cast kind?"); 4011 } 4012 4013 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4014 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4015 return getOpaqueLValueMapping(e); 4016 } 4017 4018 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4019 const FieldDecl *FD, 4020 SourceLocation Loc) { 4021 QualType FT = FD->getType(); 4022 LValue FieldLV = EmitLValueForField(LV, FD); 4023 switch (getEvaluationKind(FT)) { 4024 case TEK_Complex: 4025 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4026 case TEK_Aggregate: 4027 return FieldLV.asAggregateRValue(); 4028 case TEK_Scalar: 4029 // This routine is used to load fields one-by-one to perform a copy, so 4030 // don't load reference fields. 4031 if (FD->getType()->isReferenceType()) 4032 return RValue::get(FieldLV.getPointer()); 4033 return EmitLoadOfLValue(FieldLV, Loc); 4034 } 4035 llvm_unreachable("bad evaluation kind"); 4036 } 4037 4038 //===--------------------------------------------------------------------===// 4039 // Expression Emission 4040 //===--------------------------------------------------------------------===// 4041 4042 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4043 ReturnValueSlot ReturnValue) { 4044 // Builtins never have block type. 4045 if (E->getCallee()->getType()->isBlockPointerType()) 4046 return EmitBlockCallExpr(E, ReturnValue); 4047 4048 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4049 return EmitCXXMemberCallExpr(CE, ReturnValue); 4050 4051 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4052 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4053 4054 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4055 if (const CXXMethodDecl *MD = 4056 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4057 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4058 4059 CGCallee callee = EmitCallee(E->getCallee()); 4060 4061 if (callee.isBuiltin()) { 4062 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4063 E, ReturnValue); 4064 } 4065 4066 if (callee.isPseudoDestructor()) { 4067 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4068 } 4069 4070 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4071 } 4072 4073 /// Emit a CallExpr without considering whether it might be a subclass. 4074 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4075 ReturnValueSlot ReturnValue) { 4076 CGCallee Callee = EmitCallee(E->getCallee()); 4077 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4078 } 4079 4080 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4081 if (auto builtinID = FD->getBuiltinID()) { 4082 return CGCallee::forBuiltin(builtinID, FD); 4083 } 4084 4085 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4086 return CGCallee::forDirect(calleePtr, FD); 4087 } 4088 4089 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4090 E = E->IgnoreParens(); 4091 4092 // Look through function-to-pointer decay. 4093 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4094 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4095 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4096 return EmitCallee(ICE->getSubExpr()); 4097 } 4098 4099 // Resolve direct calls. 4100 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4101 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4102 return EmitDirectCallee(*this, FD); 4103 } 4104 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4105 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4106 EmitIgnoredExpr(ME->getBase()); 4107 return EmitDirectCallee(*this, FD); 4108 } 4109 4110 // Look through template substitutions. 4111 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4112 return EmitCallee(NTTP->getReplacement()); 4113 4114 // Treat pseudo-destructor calls differently. 4115 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4116 return CGCallee::forPseudoDestructor(PDE); 4117 } 4118 4119 // Otherwise, we have an indirect reference. 4120 llvm::Value *calleePtr; 4121 QualType functionType; 4122 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4123 calleePtr = EmitScalarExpr(E); 4124 functionType = ptrType->getPointeeType(); 4125 } else { 4126 functionType = E->getType(); 4127 calleePtr = EmitLValue(E).getPointer(); 4128 } 4129 assert(functionType->isFunctionType()); 4130 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4131 E->getReferencedDeclOfCallee()); 4132 CGCallee callee(calleeInfo, calleePtr); 4133 return callee; 4134 } 4135 4136 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4137 // Comma expressions just emit their LHS then their RHS as an l-value. 4138 if (E->getOpcode() == BO_Comma) { 4139 EmitIgnoredExpr(E->getLHS()); 4140 EnsureInsertPoint(); 4141 return EmitLValue(E->getRHS()); 4142 } 4143 4144 if (E->getOpcode() == BO_PtrMemD || 4145 E->getOpcode() == BO_PtrMemI) 4146 return EmitPointerToDataMemberBinaryExpr(E); 4147 4148 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4149 4150 // Note that in all of these cases, __block variables need the RHS 4151 // evaluated first just in case the variable gets moved by the RHS. 4152 4153 switch (getEvaluationKind(E->getType())) { 4154 case TEK_Scalar: { 4155 switch (E->getLHS()->getType().getObjCLifetime()) { 4156 case Qualifiers::OCL_Strong: 4157 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4158 4159 case Qualifiers::OCL_Autoreleasing: 4160 return EmitARCStoreAutoreleasing(E).first; 4161 4162 // No reason to do any of these differently. 4163 case Qualifiers::OCL_None: 4164 case Qualifiers::OCL_ExplicitNone: 4165 case Qualifiers::OCL_Weak: 4166 break; 4167 } 4168 4169 RValue RV = EmitAnyExpr(E->getRHS()); 4170 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4171 if (RV.isScalar()) 4172 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4173 EmitStoreThroughLValue(RV, LV); 4174 return LV; 4175 } 4176 4177 case TEK_Complex: 4178 return EmitComplexAssignmentLValue(E); 4179 4180 case TEK_Aggregate: 4181 return EmitAggExprToLValue(E); 4182 } 4183 llvm_unreachable("bad evaluation kind"); 4184 } 4185 4186 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4187 RValue RV = EmitCallExpr(E); 4188 4189 if (!RV.isScalar()) 4190 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4191 LValueBaseInfo(AlignmentSource::Decl, false)); 4192 4193 assert(E->getCallReturnType(getContext())->isReferenceType() && 4194 "Can't have a scalar return unless the return type is a " 4195 "reference type!"); 4196 4197 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4198 } 4199 4200 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4201 // FIXME: This shouldn't require another copy. 4202 return EmitAggExprToLValue(E); 4203 } 4204 4205 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4206 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4207 && "binding l-value to type which needs a temporary"); 4208 AggValueSlot Slot = CreateAggTemp(E->getType()); 4209 EmitCXXConstructExpr(E, Slot); 4210 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4211 LValueBaseInfo(AlignmentSource::Decl, false)); 4212 } 4213 4214 LValue 4215 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4216 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4217 } 4218 4219 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4220 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4221 ConvertType(E->getType())); 4222 } 4223 4224 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4225 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4226 LValueBaseInfo(AlignmentSource::Decl, false)); 4227 } 4228 4229 LValue 4230 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4231 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4232 Slot.setExternallyDestructed(); 4233 EmitAggExpr(E->getSubExpr(), Slot); 4234 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4235 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4236 LValueBaseInfo(AlignmentSource::Decl, false)); 4237 } 4238 4239 LValue 4240 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4241 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4242 EmitLambdaExpr(E, Slot); 4243 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4244 LValueBaseInfo(AlignmentSource::Decl, false)); 4245 } 4246 4247 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4248 RValue RV = EmitObjCMessageExpr(E); 4249 4250 if (!RV.isScalar()) 4251 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4252 LValueBaseInfo(AlignmentSource::Decl, false)); 4253 4254 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4255 "Can't have a scalar return unless the return type is a " 4256 "reference type!"); 4257 4258 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4259 } 4260 4261 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4262 Address V = 4263 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4264 return MakeAddrLValue(V, E->getType(), 4265 LValueBaseInfo(AlignmentSource::Decl, false)); 4266 } 4267 4268 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4269 const ObjCIvarDecl *Ivar) { 4270 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4271 } 4272 4273 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4274 llvm::Value *BaseValue, 4275 const ObjCIvarDecl *Ivar, 4276 unsigned CVRQualifiers) { 4277 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4278 Ivar, CVRQualifiers); 4279 } 4280 4281 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4282 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4283 llvm::Value *BaseValue = nullptr; 4284 const Expr *BaseExpr = E->getBase(); 4285 Qualifiers BaseQuals; 4286 QualType ObjectTy; 4287 if (E->isArrow()) { 4288 BaseValue = EmitScalarExpr(BaseExpr); 4289 ObjectTy = BaseExpr->getType()->getPointeeType(); 4290 BaseQuals = ObjectTy.getQualifiers(); 4291 } else { 4292 LValue BaseLV = EmitLValue(BaseExpr); 4293 BaseValue = BaseLV.getPointer(); 4294 ObjectTy = BaseExpr->getType(); 4295 BaseQuals = ObjectTy.getQualifiers(); 4296 } 4297 4298 LValue LV = 4299 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4300 BaseQuals.getCVRQualifiers()); 4301 setObjCGCLValueClass(getContext(), E, LV); 4302 return LV; 4303 } 4304 4305 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4306 // Can only get l-value for message expression returning aggregate type 4307 RValue RV = EmitAnyExprToTemp(E); 4308 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4309 LValueBaseInfo(AlignmentSource::Decl, false)); 4310 } 4311 4312 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4313 const CallExpr *E, ReturnValueSlot ReturnValue, 4314 llvm::Value *Chain) { 4315 // Get the actual function type. The callee type will always be a pointer to 4316 // function type or a block pointer type. 4317 assert(CalleeType->isFunctionPointerType() && 4318 "Call must have function pointer type!"); 4319 4320 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4321 4322 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4323 // We can only guarantee that a function is called from the correct 4324 // context/function based on the appropriate target attributes, 4325 // so only check in the case where we have both always_inline and target 4326 // since otherwise we could be making a conditional call after a check for 4327 // the proper cpu features (and it won't cause code generation issues due to 4328 // function based code generation). 4329 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4330 TargetDecl->hasAttr<TargetAttr>()) 4331 checkTargetFeatures(E, FD); 4332 4333 CalleeType = getContext().getCanonicalType(CalleeType); 4334 4335 const auto *FnType = 4336 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4337 4338 CGCallee Callee = OrigCallee; 4339 4340 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4341 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4342 if (llvm::Constant *PrefixSig = 4343 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4344 SanitizerScope SanScope(this); 4345 llvm::Constant *FTRTTIConst = 4346 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4347 llvm::Type *PrefixStructTyElems[] = { 4348 PrefixSig->getType(), 4349 FTRTTIConst->getType() 4350 }; 4351 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4352 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4353 4354 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4355 4356 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4357 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4358 llvm::Value *CalleeSigPtr = 4359 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4360 llvm::Value *CalleeSig = 4361 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4362 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4363 4364 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4365 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4366 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4367 4368 EmitBlock(TypeCheck); 4369 llvm::Value *CalleeRTTIPtr = 4370 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4371 llvm::Value *CalleeRTTI = 4372 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4373 llvm::Value *CalleeRTTIMatch = 4374 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4375 llvm::Constant *StaticData[] = { 4376 EmitCheckSourceLocation(E->getLocStart()), 4377 EmitCheckTypeDescriptor(CalleeType) 4378 }; 4379 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4380 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4381 4382 Builder.CreateBr(Cont); 4383 EmitBlock(Cont); 4384 } 4385 } 4386 4387 // If we are checking indirect calls and this call is indirect, check that the 4388 // function pointer is a member of the bit set for the function type. 4389 if (SanOpts.has(SanitizerKind::CFIICall) && 4390 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4391 SanitizerScope SanScope(this); 4392 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4393 4394 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4395 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4396 4397 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4398 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4399 llvm::Value *TypeTest = Builder.CreateCall( 4400 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4401 4402 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4403 llvm::Constant *StaticData[] = { 4404 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4405 EmitCheckSourceLocation(E->getLocStart()), 4406 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4407 }; 4408 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4409 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4410 CastedCallee, StaticData); 4411 } else { 4412 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4413 SanitizerHandler::CFICheckFail, StaticData, 4414 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4415 } 4416 } 4417 4418 CallArgList Args; 4419 if (Chain) 4420 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4421 CGM.getContext().VoidPtrTy); 4422 4423 // C++17 requires that we evaluate arguments to a call using assignment syntax 4424 // right-to-left, and that we evaluate arguments to certain other operators 4425 // left-to-right. Note that we allow this to override the order dictated by 4426 // the calling convention on the MS ABI, which means that parameter 4427 // destruction order is not necessarily reverse construction order. 4428 // FIXME: Revisit this based on C++ committee response to unimplementability. 4429 EvaluationOrder Order = EvaluationOrder::Default; 4430 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4431 if (OCE->isAssignmentOp()) 4432 Order = EvaluationOrder::ForceRightToLeft; 4433 else { 4434 switch (OCE->getOperator()) { 4435 case OO_LessLess: 4436 case OO_GreaterGreater: 4437 case OO_AmpAmp: 4438 case OO_PipePipe: 4439 case OO_Comma: 4440 case OO_ArrowStar: 4441 Order = EvaluationOrder::ForceLeftToRight; 4442 break; 4443 default: 4444 break; 4445 } 4446 } 4447 } 4448 4449 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4450 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4451 4452 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4453 Args, FnType, /*isChainCall=*/Chain); 4454 4455 // C99 6.5.2.2p6: 4456 // If the expression that denotes the called function has a type 4457 // that does not include a prototype, [the default argument 4458 // promotions are performed]. If the number of arguments does not 4459 // equal the number of parameters, the behavior is undefined. If 4460 // the function is defined with a type that includes a prototype, 4461 // and either the prototype ends with an ellipsis (, ...) or the 4462 // types of the arguments after promotion are not compatible with 4463 // the types of the parameters, the behavior is undefined. If the 4464 // function is defined with a type that does not include a 4465 // prototype, and the types of the arguments after promotion are 4466 // not compatible with those of the parameters after promotion, 4467 // the behavior is undefined [except in some trivial cases]. 4468 // That is, in the general case, we should assume that a call 4469 // through an unprototyped function type works like a *non-variadic* 4470 // call. The way we make this work is to cast to the exact type 4471 // of the promoted arguments. 4472 // 4473 // Chain calls use this same code path to add the invisible chain parameter 4474 // to the function type. 4475 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4476 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4477 CalleeTy = CalleeTy->getPointerTo(); 4478 4479 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4480 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4481 Callee.setFunctionPointer(CalleePtr); 4482 } 4483 4484 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4485 } 4486 4487 LValue CodeGenFunction:: 4488 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4489 Address BaseAddr = Address::invalid(); 4490 if (E->getOpcode() == BO_PtrMemI) { 4491 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4492 } else { 4493 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4494 } 4495 4496 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4497 4498 const MemberPointerType *MPT 4499 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4500 4501 LValueBaseInfo BaseInfo; 4502 Address MemberAddr = 4503 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo); 4504 4505 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo); 4506 } 4507 4508 /// Given the address of a temporary variable, produce an r-value of 4509 /// its type. 4510 RValue CodeGenFunction::convertTempToRValue(Address addr, 4511 QualType type, 4512 SourceLocation loc) { 4513 LValue lvalue = MakeAddrLValue(addr, type, 4514 LValueBaseInfo(AlignmentSource::Decl, false)); 4515 switch (getEvaluationKind(type)) { 4516 case TEK_Complex: 4517 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4518 case TEK_Aggregate: 4519 return lvalue.asAggregateRValue(); 4520 case TEK_Scalar: 4521 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4522 } 4523 llvm_unreachable("bad evaluation kind"); 4524 } 4525 4526 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4527 assert(Val->getType()->isFPOrFPVectorTy()); 4528 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4529 return; 4530 4531 llvm::MDBuilder MDHelper(getLLVMContext()); 4532 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4533 4534 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4535 } 4536 4537 namespace { 4538 struct LValueOrRValue { 4539 LValue LV; 4540 RValue RV; 4541 }; 4542 } 4543 4544 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4545 const PseudoObjectExpr *E, 4546 bool forLValue, 4547 AggValueSlot slot) { 4548 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4549 4550 // Find the result expression, if any. 4551 const Expr *resultExpr = E->getResultExpr(); 4552 LValueOrRValue result; 4553 4554 for (PseudoObjectExpr::const_semantics_iterator 4555 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4556 const Expr *semantic = *i; 4557 4558 // If this semantic expression is an opaque value, bind it 4559 // to the result of its source expression. 4560 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4561 4562 // If this is the result expression, we may need to evaluate 4563 // directly into the slot. 4564 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4565 OVMA opaqueData; 4566 if (ov == resultExpr && ov->isRValue() && !forLValue && 4567 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4568 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4569 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 4570 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4571 BaseInfo); 4572 opaqueData = OVMA::bind(CGF, ov, LV); 4573 result.RV = slot.asRValue(); 4574 4575 // Otherwise, emit as normal. 4576 } else { 4577 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4578 4579 // If this is the result, also evaluate the result now. 4580 if (ov == resultExpr) { 4581 if (forLValue) 4582 result.LV = CGF.EmitLValue(ov); 4583 else 4584 result.RV = CGF.EmitAnyExpr(ov, slot); 4585 } 4586 } 4587 4588 opaques.push_back(opaqueData); 4589 4590 // Otherwise, if the expression is the result, evaluate it 4591 // and remember the result. 4592 } else if (semantic == resultExpr) { 4593 if (forLValue) 4594 result.LV = CGF.EmitLValue(semantic); 4595 else 4596 result.RV = CGF.EmitAnyExpr(semantic, slot); 4597 4598 // Otherwise, evaluate the expression in an ignored context. 4599 } else { 4600 CGF.EmitIgnoredExpr(semantic); 4601 } 4602 } 4603 4604 // Unbind all the opaques now. 4605 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4606 opaques[i].unbind(CGF); 4607 4608 return result; 4609 } 4610 4611 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4612 AggValueSlot slot) { 4613 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4614 } 4615 4616 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4617 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4618 } 4619