1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getQuantity()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::Constant *CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 344 StructorType::Complete); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getQuantity()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 LValue CodeGenFunction:: 419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 420 const Expr *E = M->GetTemporaryExpr(); 421 422 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 423 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 424 "Reference should never be pseudo-strong!"); 425 426 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 427 // as that will cause the lifetime adjustment to be lost for ARC 428 auto ownership = M->getType().getObjCLifetime(); 429 if (ownership != Qualifiers::OCL_None && 430 ownership != Qualifiers::OCL_ExplicitNone) { 431 Address Object = createReferenceTemporary(*this, M, E); 432 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 433 Object = Address(llvm::ConstantExpr::getBitCast(Var, 434 ConvertTypeForMem(E->getType()) 435 ->getPointerTo(Object.getAddressSpace())), 436 Object.getAlignment()); 437 438 // createReferenceTemporary will promote the temporary to a global with a 439 // constant initializer if it can. It can only do this to a value of 440 // ARC-manageable type if the value is global and therefore "immune" to 441 // ref-counting operations. Therefore we have no need to emit either a 442 // dynamic initialization or a cleanup and we can just return the address 443 // of the temporary. 444 if (Var->hasInitializer()) 445 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 446 447 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 448 } 449 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 450 AlignmentSource::Decl); 451 452 switch (getEvaluationKind(E->getType())) { 453 default: llvm_unreachable("expected scalar or aggregate expression"); 454 case TEK_Scalar: 455 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 456 break; 457 case TEK_Aggregate: { 458 EmitAggExpr(E, AggValueSlot::forAddr(Object, 459 E->getType().getQualifiers(), 460 AggValueSlot::IsDestructed, 461 AggValueSlot::DoesNotNeedGCBarriers, 462 AggValueSlot::IsNotAliased, 463 AggValueSlot::DoesNotOverlap)); 464 break; 465 } 466 } 467 468 pushTemporaryCleanup(*this, M, E, Object); 469 return RefTempDst; 470 } 471 472 SmallVector<const Expr *, 2> CommaLHSs; 473 SmallVector<SubobjectAdjustment, 2> Adjustments; 474 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 475 476 for (const auto &Ignored : CommaLHSs) 477 EmitIgnoredExpr(Ignored); 478 479 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 480 if (opaque->getType()->isRecordType()) { 481 assert(Adjustments.empty()); 482 return EmitOpaqueValueLValue(opaque); 483 } 484 } 485 486 // Create and initialize the reference temporary. 487 Address Alloca = Address::invalid(); 488 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 489 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 490 Object.getPointer()->stripPointerCasts())) { 491 Object = Address(llvm::ConstantExpr::getBitCast( 492 cast<llvm::Constant>(Object.getPointer()), 493 ConvertTypeForMem(E->getType())->getPointerTo()), 494 Object.getAlignment()); 495 // If the temporary is a global and has a constant initializer or is a 496 // constant temporary that we promoted to a global, we may have already 497 // initialized it. 498 if (!Var->hasInitializer()) { 499 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 500 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 501 } 502 } else { 503 switch (M->getStorageDuration()) { 504 case SD_Automatic: 505 if (auto *Size = EmitLifetimeStart( 506 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 507 Alloca.getPointer())) { 508 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 509 Alloca, Size); 510 } 511 break; 512 513 case SD_FullExpression: { 514 if (!ShouldEmitLifetimeMarkers) 515 break; 516 517 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 518 // marker. Instead, start the lifetime of a conditional temporary earlier 519 // so that it's unconditional. Don't do this in ASan's use-after-scope 520 // mode so that it gets the more precise lifetime marks. If the type has 521 // a non-trivial destructor, we'll have a cleanup block for it anyway, 522 // so this typically doesn't help; skip it in that case. 523 ConditionalEvaluation *OldConditional = nullptr; 524 CGBuilderTy::InsertPoint OldIP; 525 if (isInConditionalBranch() && !E->getType().isDestructedType() && 526 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 527 OldConditional = OutermostConditional; 528 OutermostConditional = nullptr; 529 530 OldIP = Builder.saveIP(); 531 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 532 Builder.restoreIP(CGBuilderTy::InsertPoint( 533 Block, llvm::BasicBlock::iterator(Block->back()))); 534 } 535 536 if (auto *Size = EmitLifetimeStart( 537 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 538 Alloca.getPointer())) { 539 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 540 Size); 541 } 542 543 if (OldConditional) { 544 OutermostConditional = OldConditional; 545 Builder.restoreIP(OldIP); 546 } 547 break; 548 } 549 550 default: 551 break; 552 } 553 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 554 } 555 pushTemporaryCleanup(*this, M, E, Object); 556 557 // Perform derived-to-base casts and/or field accesses, to get from the 558 // temporary object we created (and, potentially, for which we extended 559 // the lifetime) to the subobject we're binding the reference to. 560 for (unsigned I = Adjustments.size(); I != 0; --I) { 561 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 562 switch (Adjustment.Kind) { 563 case SubobjectAdjustment::DerivedToBaseAdjustment: 564 Object = 565 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 566 Adjustment.DerivedToBase.BasePath->path_begin(), 567 Adjustment.DerivedToBase.BasePath->path_end(), 568 /*NullCheckValue=*/ false, E->getExprLoc()); 569 break; 570 571 case SubobjectAdjustment::FieldAdjustment: { 572 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 573 LV = EmitLValueForField(LV, Adjustment.Field); 574 assert(LV.isSimple() && 575 "materialized temporary field is not a simple lvalue"); 576 Object = LV.getAddress(); 577 break; 578 } 579 580 case SubobjectAdjustment::MemberPointerAdjustment: { 581 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 582 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 583 Adjustment.Ptr.MPT); 584 break; 585 } 586 } 587 } 588 589 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 590 } 591 592 RValue 593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 594 // Emit the expression as an lvalue. 595 LValue LV = EmitLValue(E); 596 assert(LV.isSimple()); 597 llvm::Value *Value = LV.getPointer(); 598 599 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 600 // C++11 [dcl.ref]p5 (as amended by core issue 453): 601 // If a glvalue to which a reference is directly bound designates neither 602 // an existing object or function of an appropriate type nor a region of 603 // storage of suitable size and alignment to contain an object of the 604 // reference's type, the behavior is undefined. 605 QualType Ty = E->getType(); 606 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 607 } 608 609 return RValue::get(Value); 610 } 611 612 613 /// getAccessedFieldNo - Given an encoded value and a result number, return the 614 /// input field number being accessed. 615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 616 const llvm::Constant *Elts) { 617 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 618 ->getZExtValue(); 619 } 620 621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 623 llvm::Value *High) { 624 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 625 llvm::Value *K47 = Builder.getInt64(47); 626 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 627 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 628 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 629 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 630 return Builder.CreateMul(B1, KMul); 631 } 632 633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 634 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 635 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 636 } 637 638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 639 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 640 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 641 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 642 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 643 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 644 } 645 646 bool CodeGenFunction::sanitizePerformTypeCheck() const { 647 return SanOpts.has(SanitizerKind::Null) | 648 SanOpts.has(SanitizerKind::Alignment) | 649 SanOpts.has(SanitizerKind::ObjectSize) | 650 SanOpts.has(SanitizerKind::Vptr); 651 } 652 653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 654 llvm::Value *Ptr, QualType Ty, 655 CharUnits Alignment, 656 SanitizerSet SkippedChecks) { 657 if (!sanitizePerformTypeCheck()) 658 return; 659 660 // Don't check pointers outside the default address space. The null check 661 // isn't correct, the object-size check isn't supported by LLVM, and we can't 662 // communicate the addresses to the runtime handler for the vptr check. 663 if (Ptr->getType()->getPointerAddressSpace()) 664 return; 665 666 // Don't check pointers to volatile data. The behavior here is implementation- 667 // defined. 668 if (Ty.isVolatileQualified()) 669 return; 670 671 SanitizerScope SanScope(this); 672 673 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 674 llvm::BasicBlock *Done = nullptr; 675 676 // Quickly determine whether we have a pointer to an alloca. It's possible 677 // to skip null checks, and some alignment checks, for these pointers. This 678 // can reduce compile-time significantly. 679 auto PtrToAlloca = 680 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 681 682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 683 llvm::Value *IsNonNull = nullptr; 684 bool IsGuaranteedNonNull = 685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 686 bool AllowNullPointers = isNullPointerAllowed(TCK); 687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 688 !IsGuaranteedNonNull) { 689 // The glvalue must not be an empty glvalue. 690 IsNonNull = Builder.CreateIsNotNull(Ptr); 691 692 // The IR builder can constant-fold the null check if the pointer points to 693 // a constant. 694 IsGuaranteedNonNull = IsNonNull == True; 695 696 // Skip the null check if the pointer is known to be non-null. 697 if (!IsGuaranteedNonNull) { 698 if (AllowNullPointers) { 699 // When performing pointer casts, it's OK if the value is null. 700 // Skip the remaining checks in that case. 701 Done = createBasicBlock("null"); 702 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 703 Builder.CreateCondBr(IsNonNull, Rest, Done); 704 EmitBlock(Rest); 705 } else { 706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 707 } 708 } 709 } 710 711 if (SanOpts.has(SanitizerKind::ObjectSize) && 712 !SkippedChecks.has(SanitizerKind::ObjectSize) && 713 !Ty->isIncompleteType()) { 714 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 715 716 // The glvalue must refer to a large enough storage region. 717 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 718 // to check this. 719 // FIXME: Get object address space 720 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 721 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 722 llvm::Value *Min = Builder.getFalse(); 723 llvm::Value *NullIsUnknown = Builder.getFalse(); 724 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 725 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 726 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 727 llvm::ConstantInt::get(IntPtrTy, Size)); 728 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 729 } 730 731 uint64_t AlignVal = 0; 732 llvm::Value *PtrAsInt = nullptr; 733 734 if (SanOpts.has(SanitizerKind::Alignment) && 735 !SkippedChecks.has(SanitizerKind::Alignment)) { 736 AlignVal = Alignment.getQuantity(); 737 if (!Ty->isIncompleteType() && !AlignVal) 738 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 739 740 // The glvalue must be suitably aligned. 741 if (AlignVal > 1 && 742 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 743 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 744 llvm::Value *Align = Builder.CreateAnd( 745 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 746 llvm::Value *Aligned = 747 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 748 if (Aligned != True) 749 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 750 } 751 } 752 753 if (Checks.size() > 0) { 754 // Make sure we're not losing information. Alignment needs to be a power of 755 // 2 756 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 757 llvm::Constant *StaticData[] = { 758 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 759 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 760 llvm::ConstantInt::get(Int8Ty, TCK)}; 761 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 762 PtrAsInt ? PtrAsInt : Ptr); 763 } 764 765 // If possible, check that the vptr indicates that there is a subobject of 766 // type Ty at offset zero within this object. 767 // 768 // C++11 [basic.life]p5,6: 769 // [For storage which does not refer to an object within its lifetime] 770 // The program has undefined behavior if: 771 // -- the [pointer or glvalue] is used to access a non-static data member 772 // or call a non-static member function 773 if (SanOpts.has(SanitizerKind::Vptr) && 774 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 775 // Ensure that the pointer is non-null before loading it. If there is no 776 // compile-time guarantee, reuse the run-time null check or emit a new one. 777 if (!IsGuaranteedNonNull) { 778 if (!IsNonNull) 779 IsNonNull = Builder.CreateIsNotNull(Ptr); 780 if (!Done) 781 Done = createBasicBlock("vptr.null"); 782 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 783 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 784 EmitBlock(VptrNotNull); 785 } 786 787 // Compute a hash of the mangled name of the type. 788 // 789 // FIXME: This is not guaranteed to be deterministic! Move to a 790 // fingerprinting mechanism once LLVM provides one. For the time 791 // being the implementation happens to be deterministic. 792 SmallString<64> MangledName; 793 llvm::raw_svector_ostream Out(MangledName); 794 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 795 Out); 796 797 // Blacklist based on the mangled type. 798 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 799 SanitizerKind::Vptr, Out.str())) { 800 llvm::hash_code TypeHash = hash_value(Out.str()); 801 802 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 803 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 804 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 805 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 806 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 807 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 808 809 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 810 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 811 812 // Look the hash up in our cache. 813 const int CacheSize = 128; 814 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 815 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 816 "__ubsan_vptr_type_cache"); 817 llvm::Value *Slot = Builder.CreateAnd(Hash, 818 llvm::ConstantInt::get(IntPtrTy, 819 CacheSize-1)); 820 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 821 llvm::Value *CacheVal = 822 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 823 getPointerAlign()); 824 825 // If the hash isn't in the cache, call a runtime handler to perform the 826 // hard work of checking whether the vptr is for an object of the right 827 // type. This will either fill in the cache and return, or produce a 828 // diagnostic. 829 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 830 llvm::Constant *StaticData[] = { 831 EmitCheckSourceLocation(Loc), 832 EmitCheckTypeDescriptor(Ty), 833 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 834 llvm::ConstantInt::get(Int8Ty, TCK) 835 }; 836 llvm::Value *DynamicData[] = { Ptr, Hash }; 837 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 838 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 839 DynamicData); 840 } 841 } 842 843 if (Done) { 844 Builder.CreateBr(Done); 845 EmitBlock(Done); 846 } 847 } 848 849 /// Determine whether this expression refers to a flexible array member in a 850 /// struct. We disable array bounds checks for such members. 851 static bool isFlexibleArrayMemberExpr(const Expr *E) { 852 // For compatibility with existing code, we treat arrays of length 0 or 853 // 1 as flexible array members. 854 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 855 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 856 if (CAT->getSize().ugt(1)) 857 return false; 858 } else if (!isa<IncompleteArrayType>(AT)) 859 return false; 860 861 E = E->IgnoreParens(); 862 863 // A flexible array member must be the last member in the class. 864 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 865 // FIXME: If the base type of the member expr is not FD->getParent(), 866 // this should not be treated as a flexible array member access. 867 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 868 RecordDecl::field_iterator FI( 869 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 870 return ++FI == FD->getParent()->field_end(); 871 } 872 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 873 return IRE->getDecl()->getNextIvar() == nullptr; 874 } 875 876 return false; 877 } 878 879 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 880 QualType EltTy) { 881 ASTContext &C = getContext(); 882 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 883 if (!EltSize) 884 return nullptr; 885 886 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 887 if (!ArrayDeclRef) 888 return nullptr; 889 890 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 891 if (!ParamDecl) 892 return nullptr; 893 894 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 895 if (!POSAttr) 896 return nullptr; 897 898 // Don't load the size if it's a lower bound. 899 int POSType = POSAttr->getType(); 900 if (POSType != 0 && POSType != 1) 901 return nullptr; 902 903 // Find the implicit size parameter. 904 auto PassedSizeIt = SizeArguments.find(ParamDecl); 905 if (PassedSizeIt == SizeArguments.end()) 906 return nullptr; 907 908 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 909 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 910 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 911 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 912 C.getSizeType(), E->getExprLoc()); 913 llvm::Value *SizeOfElement = 914 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 915 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 916 } 917 918 /// If Base is known to point to the start of an array, return the length of 919 /// that array. Return 0 if the length cannot be determined. 920 static llvm::Value *getArrayIndexingBound( 921 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 922 // For the vector indexing extension, the bound is the number of elements. 923 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 924 IndexedType = Base->getType(); 925 return CGF.Builder.getInt32(VT->getNumElements()); 926 } 927 928 Base = Base->IgnoreParens(); 929 930 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 931 if (CE->getCastKind() == CK_ArrayToPointerDecay && 932 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 933 IndexedType = CE->getSubExpr()->getType(); 934 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 935 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 936 return CGF.Builder.getInt(CAT->getSize()); 937 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 938 return CGF.getVLASize(VAT).NumElts; 939 // Ignore pass_object_size here. It's not applicable on decayed pointers. 940 } 941 } 942 943 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 944 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 945 IndexedType = Base->getType(); 946 return POS; 947 } 948 949 return nullptr; 950 } 951 952 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 953 llvm::Value *Index, QualType IndexType, 954 bool Accessed) { 955 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 956 "should not be called unless adding bounds checks"); 957 SanitizerScope SanScope(this); 958 959 QualType IndexedType; 960 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 961 if (!Bound) 962 return; 963 964 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 965 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 966 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 967 968 llvm::Constant *StaticData[] = { 969 EmitCheckSourceLocation(E->getExprLoc()), 970 EmitCheckTypeDescriptor(IndexedType), 971 EmitCheckTypeDescriptor(IndexType) 972 }; 973 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 974 : Builder.CreateICmpULE(IndexVal, BoundVal); 975 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 976 SanitizerHandler::OutOfBounds, StaticData, Index); 977 } 978 979 980 CodeGenFunction::ComplexPairTy CodeGenFunction:: 981 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 982 bool isInc, bool isPre) { 983 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 984 985 llvm::Value *NextVal; 986 if (isa<llvm::IntegerType>(InVal.first->getType())) { 987 uint64_t AmountVal = isInc ? 1 : -1; 988 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 989 990 // Add the inc/dec to the real part. 991 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 992 } else { 993 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 994 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 995 if (!isInc) 996 FVal.changeSign(); 997 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 998 999 // Add the inc/dec to the real part. 1000 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1001 } 1002 1003 ComplexPairTy IncVal(NextVal, InVal.second); 1004 1005 // Store the updated result through the lvalue. 1006 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1007 1008 // If this is a postinc, return the value read from memory, otherwise use the 1009 // updated value. 1010 return isPre ? IncVal : InVal; 1011 } 1012 1013 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1014 CodeGenFunction *CGF) { 1015 // Bind VLAs in the cast type. 1016 if (CGF && E->getType()->isVariablyModifiedType()) 1017 CGF->EmitVariablyModifiedType(E->getType()); 1018 1019 if (CGDebugInfo *DI = getModuleDebugInfo()) 1020 DI->EmitExplicitCastType(E->getType()); 1021 } 1022 1023 //===----------------------------------------------------------------------===// 1024 // LValue Expression Emission 1025 //===----------------------------------------------------------------------===// 1026 1027 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1028 /// derive a more accurate bound on the alignment of the pointer. 1029 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1030 LValueBaseInfo *BaseInfo, 1031 TBAAAccessInfo *TBAAInfo) { 1032 // We allow this with ObjC object pointers because of fragile ABIs. 1033 assert(E->getType()->isPointerType() || 1034 E->getType()->isObjCObjectPointerType()); 1035 E = E->IgnoreParens(); 1036 1037 // Casts: 1038 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1039 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1040 CGM.EmitExplicitCastExprType(ECE, this); 1041 1042 switch (CE->getCastKind()) { 1043 // Non-converting casts (but not C's implicit conversion from void*). 1044 case CK_BitCast: 1045 case CK_NoOp: 1046 case CK_AddressSpaceConversion: 1047 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1048 if (PtrTy->getPointeeType()->isVoidType()) 1049 break; 1050 1051 LValueBaseInfo InnerBaseInfo; 1052 TBAAAccessInfo InnerTBAAInfo; 1053 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1054 &InnerBaseInfo, 1055 &InnerTBAAInfo); 1056 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1057 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1058 1059 if (isa<ExplicitCastExpr>(CE)) { 1060 LValueBaseInfo TargetTypeBaseInfo; 1061 TBAAAccessInfo TargetTypeTBAAInfo; 1062 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1063 &TargetTypeBaseInfo, 1064 &TargetTypeTBAAInfo); 1065 if (TBAAInfo) 1066 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1067 TargetTypeTBAAInfo); 1068 // If the source l-value is opaque, honor the alignment of the 1069 // casted-to type. 1070 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1071 if (BaseInfo) 1072 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1073 Addr = Address(Addr.getPointer(), Align); 1074 } 1075 } 1076 1077 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1078 CE->getCastKind() == CK_BitCast) { 1079 if (auto PT = E->getType()->getAs<PointerType>()) 1080 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1081 /*MayBeNull=*/true, 1082 CodeGenFunction::CFITCK_UnrelatedCast, 1083 CE->getBeginLoc()); 1084 } 1085 return CE->getCastKind() != CK_AddressSpaceConversion 1086 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1087 : Builder.CreateAddrSpaceCast(Addr, 1088 ConvertType(E->getType())); 1089 } 1090 break; 1091 1092 // Array-to-pointer decay. 1093 case CK_ArrayToPointerDecay: 1094 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1095 1096 // Derived-to-base conversions. 1097 case CK_UncheckedDerivedToBase: 1098 case CK_DerivedToBase: { 1099 // TODO: Support accesses to members of base classes in TBAA. For now, we 1100 // conservatively pretend that the complete object is of the base class 1101 // type. 1102 if (TBAAInfo) 1103 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1104 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1105 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1106 return GetAddressOfBaseClass(Addr, Derived, 1107 CE->path_begin(), CE->path_end(), 1108 ShouldNullCheckClassCastValue(CE), 1109 CE->getExprLoc()); 1110 } 1111 1112 // TODO: Is there any reason to treat base-to-derived conversions 1113 // specially? 1114 default: 1115 break; 1116 } 1117 } 1118 1119 // Unary &. 1120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1121 if (UO->getOpcode() == UO_AddrOf) { 1122 LValue LV = EmitLValue(UO->getSubExpr()); 1123 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1124 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1125 return LV.getAddress(); 1126 } 1127 } 1128 1129 // TODO: conditional operators, comma. 1130 1131 // Otherwise, use the alignment of the type. 1132 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1133 TBAAInfo); 1134 return Address(EmitScalarExpr(E), Align); 1135 } 1136 1137 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1138 if (Ty->isVoidType()) 1139 return RValue::get(nullptr); 1140 1141 switch (getEvaluationKind(Ty)) { 1142 case TEK_Complex: { 1143 llvm::Type *EltTy = 1144 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1145 llvm::Value *U = llvm::UndefValue::get(EltTy); 1146 return RValue::getComplex(std::make_pair(U, U)); 1147 } 1148 1149 // If this is a use of an undefined aggregate type, the aggregate must have an 1150 // identifiable address. Just because the contents of the value are undefined 1151 // doesn't mean that the address can't be taken and compared. 1152 case TEK_Aggregate: { 1153 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1154 return RValue::getAggregate(DestPtr); 1155 } 1156 1157 case TEK_Scalar: 1158 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1159 } 1160 llvm_unreachable("bad evaluation kind"); 1161 } 1162 1163 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1164 const char *Name) { 1165 ErrorUnsupported(E, Name); 1166 return GetUndefRValue(E->getType()); 1167 } 1168 1169 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1170 const char *Name) { 1171 ErrorUnsupported(E, Name); 1172 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1173 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1174 E->getType()); 1175 } 1176 1177 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1178 const Expr *Base = Obj; 1179 while (!isa<CXXThisExpr>(Base)) { 1180 // The result of a dynamic_cast can be null. 1181 if (isa<CXXDynamicCastExpr>(Base)) 1182 return false; 1183 1184 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1185 Base = CE->getSubExpr(); 1186 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1187 Base = PE->getSubExpr(); 1188 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1189 if (UO->getOpcode() == UO_Extension) 1190 Base = UO->getSubExpr(); 1191 else 1192 return false; 1193 } else { 1194 return false; 1195 } 1196 } 1197 return true; 1198 } 1199 1200 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1201 LValue LV; 1202 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1203 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1204 else 1205 LV = EmitLValue(E); 1206 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1207 SanitizerSet SkippedChecks; 1208 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1209 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1210 if (IsBaseCXXThis) 1211 SkippedChecks.set(SanitizerKind::Alignment, true); 1212 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1213 SkippedChecks.set(SanitizerKind::Null, true); 1214 } 1215 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1216 E->getType(), LV.getAlignment(), SkippedChecks); 1217 } 1218 return LV; 1219 } 1220 1221 /// EmitLValue - Emit code to compute a designator that specifies the location 1222 /// of the expression. 1223 /// 1224 /// This can return one of two things: a simple address or a bitfield reference. 1225 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1226 /// an LLVM pointer type. 1227 /// 1228 /// If this returns a bitfield reference, nothing about the pointee type of the 1229 /// LLVM value is known: For example, it may not be a pointer to an integer. 1230 /// 1231 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1232 /// this method guarantees that the returned pointer type will point to an LLVM 1233 /// type of the same size of the lvalue's type. If the lvalue has a variable 1234 /// length type, this is not possible. 1235 /// 1236 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1237 ApplyDebugLocation DL(*this, E); 1238 switch (E->getStmtClass()) { 1239 default: return EmitUnsupportedLValue(E, "l-value expression"); 1240 1241 case Expr::ObjCPropertyRefExprClass: 1242 llvm_unreachable("cannot emit a property reference directly"); 1243 1244 case Expr::ObjCSelectorExprClass: 1245 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1246 case Expr::ObjCIsaExprClass: 1247 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1248 case Expr::BinaryOperatorClass: 1249 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1250 case Expr::CompoundAssignOperatorClass: { 1251 QualType Ty = E->getType(); 1252 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1253 Ty = AT->getValueType(); 1254 if (!Ty->isAnyComplexType()) 1255 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1256 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1257 } 1258 case Expr::CallExprClass: 1259 case Expr::CXXMemberCallExprClass: 1260 case Expr::CXXOperatorCallExprClass: 1261 case Expr::UserDefinedLiteralClass: 1262 return EmitCallExprLValue(cast<CallExpr>(E)); 1263 case Expr::VAArgExprClass: 1264 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1265 case Expr::DeclRefExprClass: 1266 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1267 case Expr::ConstantExprClass: 1268 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1269 case Expr::ParenExprClass: 1270 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1271 case Expr::GenericSelectionExprClass: 1272 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1273 case Expr::PredefinedExprClass: 1274 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1275 case Expr::StringLiteralClass: 1276 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1277 case Expr::ObjCEncodeExprClass: 1278 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1279 case Expr::PseudoObjectExprClass: 1280 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1281 case Expr::InitListExprClass: 1282 return EmitInitListLValue(cast<InitListExpr>(E)); 1283 case Expr::CXXTemporaryObjectExprClass: 1284 case Expr::CXXConstructExprClass: 1285 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1286 case Expr::CXXBindTemporaryExprClass: 1287 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1288 case Expr::CXXUuidofExprClass: 1289 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1290 case Expr::LambdaExprClass: 1291 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1292 1293 case Expr::ExprWithCleanupsClass: { 1294 const auto *cleanups = cast<ExprWithCleanups>(E); 1295 enterFullExpression(cleanups); 1296 RunCleanupsScope Scope(*this); 1297 LValue LV = EmitLValue(cleanups->getSubExpr()); 1298 if (LV.isSimple()) { 1299 // Defend against branches out of gnu statement expressions surrounded by 1300 // cleanups. 1301 llvm::Value *V = LV.getPointer(); 1302 Scope.ForceCleanup({&V}); 1303 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1304 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1305 } 1306 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1307 // bitfield lvalue or some other non-simple lvalue? 1308 return LV; 1309 } 1310 1311 case Expr::CXXDefaultArgExprClass: 1312 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1313 case Expr::CXXDefaultInitExprClass: { 1314 CXXDefaultInitExprScope Scope(*this); 1315 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1316 } 1317 case Expr::CXXTypeidExprClass: 1318 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1319 1320 case Expr::ObjCMessageExprClass: 1321 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1322 case Expr::ObjCIvarRefExprClass: 1323 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1324 case Expr::StmtExprClass: 1325 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1326 case Expr::UnaryOperatorClass: 1327 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1328 case Expr::ArraySubscriptExprClass: 1329 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1330 case Expr::OMPArraySectionExprClass: 1331 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1332 case Expr::ExtVectorElementExprClass: 1333 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1334 case Expr::MemberExprClass: 1335 return EmitMemberExpr(cast<MemberExpr>(E)); 1336 case Expr::CompoundLiteralExprClass: 1337 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1338 case Expr::ConditionalOperatorClass: 1339 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1340 case Expr::BinaryConditionalOperatorClass: 1341 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1342 case Expr::ChooseExprClass: 1343 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1344 case Expr::OpaqueValueExprClass: 1345 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1346 case Expr::SubstNonTypeTemplateParmExprClass: 1347 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1348 case Expr::ImplicitCastExprClass: 1349 case Expr::CStyleCastExprClass: 1350 case Expr::CXXFunctionalCastExprClass: 1351 case Expr::CXXStaticCastExprClass: 1352 case Expr::CXXDynamicCastExprClass: 1353 case Expr::CXXReinterpretCastExprClass: 1354 case Expr::CXXConstCastExprClass: 1355 case Expr::ObjCBridgedCastExprClass: 1356 return EmitCastLValue(cast<CastExpr>(E)); 1357 1358 case Expr::MaterializeTemporaryExprClass: 1359 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1360 1361 case Expr::CoawaitExprClass: 1362 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1363 case Expr::CoyieldExprClass: 1364 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1365 } 1366 } 1367 1368 /// Given an object of the given canonical type, can we safely copy a 1369 /// value out of it based on its initializer? 1370 static bool isConstantEmittableObjectType(QualType type) { 1371 assert(type.isCanonical()); 1372 assert(!type->isReferenceType()); 1373 1374 // Must be const-qualified but non-volatile. 1375 Qualifiers qs = type.getLocalQualifiers(); 1376 if (!qs.hasConst() || qs.hasVolatile()) return false; 1377 1378 // Otherwise, all object types satisfy this except C++ classes with 1379 // mutable subobjects or non-trivial copy/destroy behavior. 1380 if (const auto *RT = dyn_cast<RecordType>(type)) 1381 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1382 if (RD->hasMutableFields() || !RD->isTrivial()) 1383 return false; 1384 1385 return true; 1386 } 1387 1388 /// Can we constant-emit a load of a reference to a variable of the 1389 /// given type? This is different from predicates like 1390 /// Decl::isUsableInConstantExpressions because we do want it to apply 1391 /// in situations that don't necessarily satisfy the language's rules 1392 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1393 /// to do this with const float variables even if those variables 1394 /// aren't marked 'constexpr'. 1395 enum ConstantEmissionKind { 1396 CEK_None, 1397 CEK_AsReferenceOnly, 1398 CEK_AsValueOrReference, 1399 CEK_AsValueOnly 1400 }; 1401 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1402 type = type.getCanonicalType(); 1403 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1404 if (isConstantEmittableObjectType(ref->getPointeeType())) 1405 return CEK_AsValueOrReference; 1406 return CEK_AsReferenceOnly; 1407 } 1408 if (isConstantEmittableObjectType(type)) 1409 return CEK_AsValueOnly; 1410 return CEK_None; 1411 } 1412 1413 /// Try to emit a reference to the given value without producing it as 1414 /// an l-value. This is actually more than an optimization: we can't 1415 /// produce an l-value for variables that we never actually captured 1416 /// in a block or lambda, which means const int variables or constexpr 1417 /// literals or similar. 1418 CodeGenFunction::ConstantEmission 1419 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1420 ValueDecl *value = refExpr->getDecl(); 1421 1422 // The value needs to be an enum constant or a constant variable. 1423 ConstantEmissionKind CEK; 1424 if (isa<ParmVarDecl>(value)) { 1425 CEK = CEK_None; 1426 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1427 CEK = checkVarTypeForConstantEmission(var->getType()); 1428 } else if (isa<EnumConstantDecl>(value)) { 1429 CEK = CEK_AsValueOnly; 1430 } else { 1431 CEK = CEK_None; 1432 } 1433 if (CEK == CEK_None) return ConstantEmission(); 1434 1435 Expr::EvalResult result; 1436 bool resultIsReference; 1437 QualType resultType; 1438 1439 // It's best to evaluate all the way as an r-value if that's permitted. 1440 if (CEK != CEK_AsReferenceOnly && 1441 refExpr->EvaluateAsRValue(result, getContext())) { 1442 resultIsReference = false; 1443 resultType = refExpr->getType(); 1444 1445 // Otherwise, try to evaluate as an l-value. 1446 } else if (CEK != CEK_AsValueOnly && 1447 refExpr->EvaluateAsLValue(result, getContext())) { 1448 resultIsReference = true; 1449 resultType = value->getType(); 1450 1451 // Failure. 1452 } else { 1453 return ConstantEmission(); 1454 } 1455 1456 // In any case, if the initializer has side-effects, abandon ship. 1457 if (result.HasSideEffects) 1458 return ConstantEmission(); 1459 1460 // Emit as a constant. 1461 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1462 result.Val, resultType); 1463 1464 // Make sure we emit a debug reference to the global variable. 1465 // This should probably fire even for 1466 if (isa<VarDecl>(value)) { 1467 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1468 EmitDeclRefExprDbgValue(refExpr, result.Val); 1469 } else { 1470 assert(isa<EnumConstantDecl>(value)); 1471 EmitDeclRefExprDbgValue(refExpr, result.Val); 1472 } 1473 1474 // If we emitted a reference constant, we need to dereference that. 1475 if (resultIsReference) 1476 return ConstantEmission::forReference(C); 1477 1478 return ConstantEmission::forValue(C); 1479 } 1480 1481 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1482 const MemberExpr *ME) { 1483 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1484 // Try to emit static variable member expressions as DREs. 1485 return DeclRefExpr::Create( 1486 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1487 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1488 ME->getType(), ME->getValueKind()); 1489 } 1490 return nullptr; 1491 } 1492 1493 CodeGenFunction::ConstantEmission 1494 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1495 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1496 return tryEmitAsConstant(DRE); 1497 return ConstantEmission(); 1498 } 1499 1500 llvm::Value *CodeGenFunction::emitScalarConstant( 1501 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1502 assert(Constant && "not a constant"); 1503 if (Constant.isReference()) 1504 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1505 E->getExprLoc()) 1506 .getScalarVal(); 1507 return Constant.getValue(); 1508 } 1509 1510 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1511 SourceLocation Loc) { 1512 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1513 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1514 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1515 } 1516 1517 static bool hasBooleanRepresentation(QualType Ty) { 1518 if (Ty->isBooleanType()) 1519 return true; 1520 1521 if (const EnumType *ET = Ty->getAs<EnumType>()) 1522 return ET->getDecl()->getIntegerType()->isBooleanType(); 1523 1524 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1525 return hasBooleanRepresentation(AT->getValueType()); 1526 1527 return false; 1528 } 1529 1530 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1531 llvm::APInt &Min, llvm::APInt &End, 1532 bool StrictEnums, bool IsBool) { 1533 const EnumType *ET = Ty->getAs<EnumType>(); 1534 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1535 ET && !ET->getDecl()->isFixed(); 1536 if (!IsBool && !IsRegularCPlusPlusEnum) 1537 return false; 1538 1539 if (IsBool) { 1540 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1541 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1542 } else { 1543 const EnumDecl *ED = ET->getDecl(); 1544 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1545 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1546 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1547 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1548 1549 if (NumNegativeBits) { 1550 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1551 assert(NumBits <= Bitwidth); 1552 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1553 Min = -End; 1554 } else { 1555 assert(NumPositiveBits <= Bitwidth); 1556 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1557 Min = llvm::APInt(Bitwidth, 0); 1558 } 1559 } 1560 return true; 1561 } 1562 1563 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1564 llvm::APInt Min, End; 1565 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1566 hasBooleanRepresentation(Ty))) 1567 return nullptr; 1568 1569 llvm::MDBuilder MDHelper(getLLVMContext()); 1570 return MDHelper.createRange(Min, End); 1571 } 1572 1573 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1574 SourceLocation Loc) { 1575 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1576 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1577 if (!HasBoolCheck && !HasEnumCheck) 1578 return false; 1579 1580 bool IsBool = hasBooleanRepresentation(Ty) || 1581 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1582 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1583 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1584 if (!NeedsBoolCheck && !NeedsEnumCheck) 1585 return false; 1586 1587 // Single-bit booleans don't need to be checked. Special-case this to avoid 1588 // a bit width mismatch when handling bitfield values. This is handled by 1589 // EmitFromMemory for the non-bitfield case. 1590 if (IsBool && 1591 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1592 return false; 1593 1594 llvm::APInt Min, End; 1595 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1596 return true; 1597 1598 auto &Ctx = getLLVMContext(); 1599 SanitizerScope SanScope(this); 1600 llvm::Value *Check; 1601 --End; 1602 if (!Min) { 1603 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1604 } else { 1605 llvm::Value *Upper = 1606 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1607 llvm::Value *Lower = 1608 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1609 Check = Builder.CreateAnd(Upper, Lower); 1610 } 1611 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1612 EmitCheckTypeDescriptor(Ty)}; 1613 SanitizerMask Kind = 1614 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1615 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1616 StaticArgs, EmitCheckValue(Value)); 1617 return true; 1618 } 1619 1620 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1621 QualType Ty, 1622 SourceLocation Loc, 1623 LValueBaseInfo BaseInfo, 1624 TBAAAccessInfo TBAAInfo, 1625 bool isNontemporal) { 1626 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1627 // For better performance, handle vector loads differently. 1628 if (Ty->isVectorType()) { 1629 const llvm::Type *EltTy = Addr.getElementType(); 1630 1631 const auto *VTy = cast<llvm::VectorType>(EltTy); 1632 1633 // Handle vectors of size 3 like size 4 for better performance. 1634 if (VTy->getNumElements() == 3) { 1635 1636 // Bitcast to vec4 type. 1637 llvm::VectorType *vec4Ty = 1638 llvm::VectorType::get(VTy->getElementType(), 4); 1639 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1640 // Now load value. 1641 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1642 1643 // Shuffle vector to get vec3. 1644 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1645 {0, 1, 2}, "extractVec"); 1646 return EmitFromMemory(V, Ty); 1647 } 1648 } 1649 } 1650 1651 // Atomic operations have to be done on integral types. 1652 LValue AtomicLValue = 1653 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1654 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1655 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1656 } 1657 1658 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1659 if (isNontemporal) { 1660 llvm::MDNode *Node = llvm::MDNode::get( 1661 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1662 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1663 } 1664 1665 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1666 1667 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1668 // In order to prevent the optimizer from throwing away the check, don't 1669 // attach range metadata to the load. 1670 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1671 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1672 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1673 1674 return EmitFromMemory(Load, Ty); 1675 } 1676 1677 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1678 // Bool has a different representation in memory than in registers. 1679 if (hasBooleanRepresentation(Ty)) { 1680 // This should really always be an i1, but sometimes it's already 1681 // an i8, and it's awkward to track those cases down. 1682 if (Value->getType()->isIntegerTy(1)) 1683 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1684 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1685 "wrong value rep of bool"); 1686 } 1687 1688 return Value; 1689 } 1690 1691 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1692 // Bool has a different representation in memory than in registers. 1693 if (hasBooleanRepresentation(Ty)) { 1694 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1695 "wrong value rep of bool"); 1696 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1697 } 1698 1699 return Value; 1700 } 1701 1702 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1703 bool Volatile, QualType Ty, 1704 LValueBaseInfo BaseInfo, 1705 TBAAAccessInfo TBAAInfo, 1706 bool isInit, bool isNontemporal) { 1707 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1708 // Handle vectors differently to get better performance. 1709 if (Ty->isVectorType()) { 1710 llvm::Type *SrcTy = Value->getType(); 1711 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1712 // Handle vec3 special. 1713 if (VecTy && VecTy->getNumElements() == 3) { 1714 // Our source is a vec3, do a shuffle vector to make it a vec4. 1715 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1716 Builder.getInt32(2), 1717 llvm::UndefValue::get(Builder.getInt32Ty())}; 1718 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1719 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1720 MaskV, "extractVec"); 1721 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1722 } 1723 if (Addr.getElementType() != SrcTy) { 1724 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1725 } 1726 } 1727 } 1728 1729 Value = EmitToMemory(Value, Ty); 1730 1731 LValue AtomicLValue = 1732 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1733 if (Ty->isAtomicType() || 1734 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1735 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1736 return; 1737 } 1738 1739 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1740 if (isNontemporal) { 1741 llvm::MDNode *Node = 1742 llvm::MDNode::get(Store->getContext(), 1743 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1744 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1745 } 1746 1747 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1748 } 1749 1750 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1751 bool isInit) { 1752 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1753 lvalue.getType(), lvalue.getBaseInfo(), 1754 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1755 } 1756 1757 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1758 /// method emits the address of the lvalue, then loads the result as an rvalue, 1759 /// returning the rvalue. 1760 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1761 if (LV.isObjCWeak()) { 1762 // load of a __weak object. 1763 Address AddrWeakObj = LV.getAddress(); 1764 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1765 AddrWeakObj)); 1766 } 1767 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1768 // In MRC mode, we do a load+autorelease. 1769 if (!getLangOpts().ObjCAutoRefCount) { 1770 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1771 } 1772 1773 // In ARC mode, we load retained and then consume the value. 1774 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1775 Object = EmitObjCConsumeObject(LV.getType(), Object); 1776 return RValue::get(Object); 1777 } 1778 1779 if (LV.isSimple()) { 1780 assert(!LV.getType()->isFunctionType()); 1781 1782 // Everything needs a load. 1783 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1784 } 1785 1786 if (LV.isVectorElt()) { 1787 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1788 LV.isVolatileQualified()); 1789 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1790 "vecext")); 1791 } 1792 1793 // If this is a reference to a subset of the elements of a vector, either 1794 // shuffle the input or extract/insert them as appropriate. 1795 if (LV.isExtVectorElt()) 1796 return EmitLoadOfExtVectorElementLValue(LV); 1797 1798 // Global Register variables always invoke intrinsics 1799 if (LV.isGlobalReg()) 1800 return EmitLoadOfGlobalRegLValue(LV); 1801 1802 assert(LV.isBitField() && "Unknown LValue type!"); 1803 return EmitLoadOfBitfieldLValue(LV, Loc); 1804 } 1805 1806 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1807 SourceLocation Loc) { 1808 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1809 1810 // Get the output type. 1811 llvm::Type *ResLTy = ConvertType(LV.getType()); 1812 1813 Address Ptr = LV.getBitFieldAddress(); 1814 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1815 1816 if (Info.IsSigned) { 1817 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1818 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1819 if (HighBits) 1820 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1821 if (Info.Offset + HighBits) 1822 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1823 } else { 1824 if (Info.Offset) 1825 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1826 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1827 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1828 Info.Size), 1829 "bf.clear"); 1830 } 1831 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1832 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1833 return RValue::get(Val); 1834 } 1835 1836 // If this is a reference to a subset of the elements of a vector, create an 1837 // appropriate shufflevector. 1838 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1839 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1840 LV.isVolatileQualified()); 1841 1842 const llvm::Constant *Elts = LV.getExtVectorElts(); 1843 1844 // If the result of the expression is a non-vector type, we must be extracting 1845 // a single element. Just codegen as an extractelement. 1846 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1847 if (!ExprVT) { 1848 unsigned InIdx = getAccessedFieldNo(0, Elts); 1849 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1850 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1851 } 1852 1853 // Always use shuffle vector to try to retain the original program structure 1854 unsigned NumResultElts = ExprVT->getNumElements(); 1855 1856 SmallVector<llvm::Constant*, 4> Mask; 1857 for (unsigned i = 0; i != NumResultElts; ++i) 1858 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1859 1860 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1861 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1862 MaskV); 1863 return RValue::get(Vec); 1864 } 1865 1866 /// Generates lvalue for partial ext_vector access. 1867 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1868 Address VectorAddress = LV.getExtVectorAddress(); 1869 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1870 QualType EQT = ExprVT->getElementType(); 1871 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1872 1873 Address CastToPointerElement = 1874 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1875 "conv.ptr.element"); 1876 1877 const llvm::Constant *Elts = LV.getExtVectorElts(); 1878 unsigned ix = getAccessedFieldNo(0, Elts); 1879 1880 Address VectorBasePtrPlusIx = 1881 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1882 getContext().getTypeSizeInChars(EQT), 1883 "vector.elt"); 1884 1885 return VectorBasePtrPlusIx; 1886 } 1887 1888 /// Load of global gamed gegisters are always calls to intrinsics. 1889 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1890 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1891 "Bad type for register variable"); 1892 llvm::MDNode *RegName = cast<llvm::MDNode>( 1893 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1894 1895 // We accept integer and pointer types only 1896 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1897 llvm::Type *Ty = OrigTy; 1898 if (OrigTy->isPointerTy()) 1899 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1900 llvm::Type *Types[] = { Ty }; 1901 1902 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1903 llvm::Value *Call = Builder.CreateCall( 1904 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1905 if (OrigTy->isPointerTy()) 1906 Call = Builder.CreateIntToPtr(Call, OrigTy); 1907 return RValue::get(Call); 1908 } 1909 1910 1911 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1912 /// lvalue, where both are guaranteed to the have the same type, and that type 1913 /// is 'Ty'. 1914 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1915 bool isInit) { 1916 if (!Dst.isSimple()) { 1917 if (Dst.isVectorElt()) { 1918 // Read/modify/write the vector, inserting the new element. 1919 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1920 Dst.isVolatileQualified()); 1921 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1922 Dst.getVectorIdx(), "vecins"); 1923 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1924 Dst.isVolatileQualified()); 1925 return; 1926 } 1927 1928 // If this is an update of extended vector elements, insert them as 1929 // appropriate. 1930 if (Dst.isExtVectorElt()) 1931 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1932 1933 if (Dst.isGlobalReg()) 1934 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1935 1936 assert(Dst.isBitField() && "Unknown LValue type"); 1937 return EmitStoreThroughBitfieldLValue(Src, Dst); 1938 } 1939 1940 // There's special magic for assigning into an ARC-qualified l-value. 1941 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1942 switch (Lifetime) { 1943 case Qualifiers::OCL_None: 1944 llvm_unreachable("present but none"); 1945 1946 case Qualifiers::OCL_ExplicitNone: 1947 // nothing special 1948 break; 1949 1950 case Qualifiers::OCL_Strong: 1951 if (isInit) { 1952 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1953 break; 1954 } 1955 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1956 return; 1957 1958 case Qualifiers::OCL_Weak: 1959 if (isInit) 1960 // Initialize and then skip the primitive store. 1961 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1962 else 1963 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1964 return; 1965 1966 case Qualifiers::OCL_Autoreleasing: 1967 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1968 Src.getScalarVal())); 1969 // fall into the normal path 1970 break; 1971 } 1972 } 1973 1974 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1975 // load of a __weak object. 1976 Address LvalueDst = Dst.getAddress(); 1977 llvm::Value *src = Src.getScalarVal(); 1978 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1979 return; 1980 } 1981 1982 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1983 // load of a __strong object. 1984 Address LvalueDst = Dst.getAddress(); 1985 llvm::Value *src = Src.getScalarVal(); 1986 if (Dst.isObjCIvar()) { 1987 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1988 llvm::Type *ResultType = IntPtrTy; 1989 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1990 llvm::Value *RHS = dst.getPointer(); 1991 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1992 llvm::Value *LHS = 1993 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1994 "sub.ptr.lhs.cast"); 1995 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1996 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1997 BytesBetween); 1998 } else if (Dst.isGlobalObjCRef()) { 1999 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2000 Dst.isThreadLocalRef()); 2001 } 2002 else 2003 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2004 return; 2005 } 2006 2007 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2008 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2009 } 2010 2011 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2012 llvm::Value **Result) { 2013 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2014 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2015 Address Ptr = Dst.getBitFieldAddress(); 2016 2017 // Get the source value, truncated to the width of the bit-field. 2018 llvm::Value *SrcVal = Src.getScalarVal(); 2019 2020 // Cast the source to the storage type and shift it into place. 2021 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2022 /*IsSigned=*/false); 2023 llvm::Value *MaskedVal = SrcVal; 2024 2025 // See if there are other bits in the bitfield's storage we'll need to load 2026 // and mask together with source before storing. 2027 if (Info.StorageSize != Info.Size) { 2028 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2029 llvm::Value *Val = 2030 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2031 2032 // Mask the source value as needed. 2033 if (!hasBooleanRepresentation(Dst.getType())) 2034 SrcVal = Builder.CreateAnd(SrcVal, 2035 llvm::APInt::getLowBitsSet(Info.StorageSize, 2036 Info.Size), 2037 "bf.value"); 2038 MaskedVal = SrcVal; 2039 if (Info.Offset) 2040 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2041 2042 // Mask out the original value. 2043 Val = Builder.CreateAnd(Val, 2044 ~llvm::APInt::getBitsSet(Info.StorageSize, 2045 Info.Offset, 2046 Info.Offset + Info.Size), 2047 "bf.clear"); 2048 2049 // Or together the unchanged values and the source value. 2050 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2051 } else { 2052 assert(Info.Offset == 0); 2053 } 2054 2055 // Write the new value back out. 2056 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2057 2058 // Return the new value of the bit-field, if requested. 2059 if (Result) { 2060 llvm::Value *ResultVal = MaskedVal; 2061 2062 // Sign extend the value if needed. 2063 if (Info.IsSigned) { 2064 assert(Info.Size <= Info.StorageSize); 2065 unsigned HighBits = Info.StorageSize - Info.Size; 2066 if (HighBits) { 2067 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2068 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2069 } 2070 } 2071 2072 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2073 "bf.result.cast"); 2074 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2075 } 2076 } 2077 2078 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2079 LValue Dst) { 2080 // This access turns into a read/modify/write of the vector. Load the input 2081 // value now. 2082 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2083 Dst.isVolatileQualified()); 2084 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2085 2086 llvm::Value *SrcVal = Src.getScalarVal(); 2087 2088 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2089 unsigned NumSrcElts = VTy->getNumElements(); 2090 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2091 if (NumDstElts == NumSrcElts) { 2092 // Use shuffle vector is the src and destination are the same number of 2093 // elements and restore the vector mask since it is on the side it will be 2094 // stored. 2095 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2096 for (unsigned i = 0; i != NumSrcElts; ++i) 2097 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2098 2099 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2100 Vec = Builder.CreateShuffleVector(SrcVal, 2101 llvm::UndefValue::get(Vec->getType()), 2102 MaskV); 2103 } else if (NumDstElts > NumSrcElts) { 2104 // Extended the source vector to the same length and then shuffle it 2105 // into the destination. 2106 // FIXME: since we're shuffling with undef, can we just use the indices 2107 // into that? This could be simpler. 2108 SmallVector<llvm::Constant*, 4> ExtMask; 2109 for (unsigned i = 0; i != NumSrcElts; ++i) 2110 ExtMask.push_back(Builder.getInt32(i)); 2111 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2112 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2113 llvm::Value *ExtSrcVal = 2114 Builder.CreateShuffleVector(SrcVal, 2115 llvm::UndefValue::get(SrcVal->getType()), 2116 ExtMaskV); 2117 // build identity 2118 SmallVector<llvm::Constant*, 4> Mask; 2119 for (unsigned i = 0; i != NumDstElts; ++i) 2120 Mask.push_back(Builder.getInt32(i)); 2121 2122 // When the vector size is odd and .odd or .hi is used, the last element 2123 // of the Elts constant array will be one past the size of the vector. 2124 // Ignore the last element here, if it is greater than the mask size. 2125 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2126 NumSrcElts--; 2127 2128 // modify when what gets shuffled in 2129 for (unsigned i = 0; i != NumSrcElts; ++i) 2130 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2131 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2132 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2133 } else { 2134 // We should never shorten the vector 2135 llvm_unreachable("unexpected shorten vector length"); 2136 } 2137 } else { 2138 // If the Src is a scalar (not a vector) it must be updating one element. 2139 unsigned InIdx = getAccessedFieldNo(0, Elts); 2140 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2141 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2142 } 2143 2144 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2145 Dst.isVolatileQualified()); 2146 } 2147 2148 /// Store of global named registers are always calls to intrinsics. 2149 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2150 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2151 "Bad type for register variable"); 2152 llvm::MDNode *RegName = cast<llvm::MDNode>( 2153 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2154 assert(RegName && "Register LValue is not metadata"); 2155 2156 // We accept integer and pointer types only 2157 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2158 llvm::Type *Ty = OrigTy; 2159 if (OrigTy->isPointerTy()) 2160 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2161 llvm::Type *Types[] = { Ty }; 2162 2163 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2164 llvm::Value *Value = Src.getScalarVal(); 2165 if (OrigTy->isPointerTy()) 2166 Value = Builder.CreatePtrToInt(Value, Ty); 2167 Builder.CreateCall( 2168 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2169 } 2170 2171 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2172 // generating write-barries API. It is currently a global, ivar, 2173 // or neither. 2174 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2175 LValue &LV, 2176 bool IsMemberAccess=false) { 2177 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2178 return; 2179 2180 if (isa<ObjCIvarRefExpr>(E)) { 2181 QualType ExpTy = E->getType(); 2182 if (IsMemberAccess && ExpTy->isPointerType()) { 2183 // If ivar is a structure pointer, assigning to field of 2184 // this struct follows gcc's behavior and makes it a non-ivar 2185 // writer-barrier conservatively. 2186 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2187 if (ExpTy->isRecordType()) { 2188 LV.setObjCIvar(false); 2189 return; 2190 } 2191 } 2192 LV.setObjCIvar(true); 2193 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2194 LV.setBaseIvarExp(Exp->getBase()); 2195 LV.setObjCArray(E->getType()->isArrayType()); 2196 return; 2197 } 2198 2199 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2200 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2201 if (VD->hasGlobalStorage()) { 2202 LV.setGlobalObjCRef(true); 2203 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2204 } 2205 } 2206 LV.setObjCArray(E->getType()->isArrayType()); 2207 return; 2208 } 2209 2210 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2211 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2212 return; 2213 } 2214 2215 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2216 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2217 if (LV.isObjCIvar()) { 2218 // If cast is to a structure pointer, follow gcc's behavior and make it 2219 // a non-ivar write-barrier. 2220 QualType ExpTy = E->getType(); 2221 if (ExpTy->isPointerType()) 2222 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2223 if (ExpTy->isRecordType()) 2224 LV.setObjCIvar(false); 2225 } 2226 return; 2227 } 2228 2229 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2230 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2231 return; 2232 } 2233 2234 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2235 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2236 return; 2237 } 2238 2239 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2240 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2241 return; 2242 } 2243 2244 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2245 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2246 return; 2247 } 2248 2249 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2250 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2251 if (LV.isObjCIvar() && !LV.isObjCArray()) 2252 // Using array syntax to assigning to what an ivar points to is not 2253 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2254 LV.setObjCIvar(false); 2255 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2256 // Using array syntax to assigning to what global points to is not 2257 // same as assigning to the global itself. {id *G;} G[i] = 0; 2258 LV.setGlobalObjCRef(false); 2259 return; 2260 } 2261 2262 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2263 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2264 // We don't know if member is an 'ivar', but this flag is looked at 2265 // only in the context of LV.isObjCIvar(). 2266 LV.setObjCArray(E->getType()->isArrayType()); 2267 return; 2268 } 2269 } 2270 2271 static llvm::Value * 2272 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2273 llvm::Value *V, llvm::Type *IRType, 2274 StringRef Name = StringRef()) { 2275 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2276 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2277 } 2278 2279 static LValue EmitThreadPrivateVarDeclLValue( 2280 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2281 llvm::Type *RealVarTy, SourceLocation Loc) { 2282 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2283 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2284 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2285 } 2286 2287 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2288 const VarDecl *VD, QualType T) { 2289 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2290 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2291 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) 2292 return Address::invalid(); 2293 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); 2294 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2295 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2296 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2297 } 2298 2299 Address 2300 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2301 LValueBaseInfo *PointeeBaseInfo, 2302 TBAAAccessInfo *PointeeTBAAInfo) { 2303 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2304 RefLVal.isVolatile()); 2305 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2306 2307 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2308 PointeeBaseInfo, PointeeTBAAInfo, 2309 /* forPointeeType= */ true); 2310 return Address(Load, Align); 2311 } 2312 2313 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2314 LValueBaseInfo PointeeBaseInfo; 2315 TBAAAccessInfo PointeeTBAAInfo; 2316 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2317 &PointeeTBAAInfo); 2318 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2319 PointeeBaseInfo, PointeeTBAAInfo); 2320 } 2321 2322 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2323 const PointerType *PtrTy, 2324 LValueBaseInfo *BaseInfo, 2325 TBAAAccessInfo *TBAAInfo) { 2326 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2327 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2328 BaseInfo, TBAAInfo, 2329 /*forPointeeType=*/true)); 2330 } 2331 2332 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2333 const PointerType *PtrTy) { 2334 LValueBaseInfo BaseInfo; 2335 TBAAAccessInfo TBAAInfo; 2336 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2337 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2338 } 2339 2340 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2341 const Expr *E, const VarDecl *VD) { 2342 QualType T = E->getType(); 2343 2344 // If it's thread_local, emit a call to its wrapper function instead. 2345 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2346 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2347 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2348 // Check if the variable is marked as declare target with link clause in 2349 // device codegen. 2350 if (CGF.getLangOpts().OpenMPIsDevice) { 2351 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2352 if (Addr.isValid()) 2353 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2354 } 2355 2356 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2357 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2358 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2359 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2360 Address Addr(V, Alignment); 2361 // Emit reference to the private copy of the variable if it is an OpenMP 2362 // threadprivate variable. 2363 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2364 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2365 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2366 E->getExprLoc()); 2367 } 2368 LValue LV = VD->getType()->isReferenceType() ? 2369 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2370 AlignmentSource::Decl) : 2371 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2372 setObjCGCLValueClass(CGF.getContext(), E, LV); 2373 return LV; 2374 } 2375 2376 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2377 const FunctionDecl *FD) { 2378 if (FD->hasAttr<WeakRefAttr>()) { 2379 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2380 return aliasee.getPointer(); 2381 } 2382 2383 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2384 if (!FD->hasPrototype()) { 2385 if (const FunctionProtoType *Proto = 2386 FD->getType()->getAs<FunctionProtoType>()) { 2387 // Ugly case: for a K&R-style definition, the type of the definition 2388 // isn't the same as the type of a use. Correct for this with a 2389 // bitcast. 2390 QualType NoProtoType = 2391 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2392 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2393 V = llvm::ConstantExpr::getBitCast(V, 2394 CGM.getTypes().ConvertType(NoProtoType)); 2395 } 2396 } 2397 return V; 2398 } 2399 2400 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2401 const Expr *E, const FunctionDecl *FD) { 2402 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2403 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2404 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2405 AlignmentSource::Decl); 2406 } 2407 2408 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2409 llvm::Value *ThisValue) { 2410 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2411 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2412 return CGF.EmitLValueForField(LV, FD); 2413 } 2414 2415 /// Named Registers are named metadata pointing to the register name 2416 /// which will be read from/written to as an argument to the intrinsic 2417 /// @llvm.read/write_register. 2418 /// So far, only the name is being passed down, but other options such as 2419 /// register type, allocation type or even optimization options could be 2420 /// passed down via the metadata node. 2421 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2422 SmallString<64> Name("llvm.named.register."); 2423 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2424 assert(Asm->getLabel().size() < 64-Name.size() && 2425 "Register name too big"); 2426 Name.append(Asm->getLabel()); 2427 llvm::NamedMDNode *M = 2428 CGM.getModule().getOrInsertNamedMetadata(Name); 2429 if (M->getNumOperands() == 0) { 2430 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2431 Asm->getLabel()); 2432 llvm::Metadata *Ops[] = {Str}; 2433 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2434 } 2435 2436 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2437 2438 llvm::Value *Ptr = 2439 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2440 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2441 } 2442 2443 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2444 const NamedDecl *ND = E->getDecl(); 2445 QualType T = E->getType(); 2446 2447 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2448 // Global Named registers access via intrinsics only 2449 if (VD->getStorageClass() == SC_Register && 2450 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2451 return EmitGlobalNamedRegister(VD, CGM); 2452 2453 // A DeclRefExpr for a reference initialized by a constant expression can 2454 // appear without being odr-used. Directly emit the constant initializer. 2455 const Expr *Init = VD->getAnyInitializer(VD); 2456 const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl); 2457 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2458 VD->isUsableInConstantExpressions(getContext()) && 2459 VD->checkInitIsICE() && 2460 // Do not emit if it is private OpenMP variable. 2461 !(E->refersToEnclosingVariableOrCapture() && 2462 ((CapturedStmtInfo && 2463 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2464 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2465 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2466 (BD && BD->capturesVariable(VD))))) { 2467 llvm::Constant *Val = 2468 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2469 *VD->evaluateValue(), 2470 VD->getType()); 2471 assert(Val && "failed to emit reference constant expression"); 2472 // FIXME: Eventually we will want to emit vector element references. 2473 2474 // Should we be using the alignment of the constant pointer we emitted? 2475 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2476 /* BaseInfo= */ nullptr, 2477 /* TBAAInfo= */ nullptr, 2478 /* forPointeeType= */ true); 2479 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2480 } 2481 2482 // Check for captured variables. 2483 if (E->refersToEnclosingVariableOrCapture()) { 2484 VD = VD->getCanonicalDecl(); 2485 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2486 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2487 else if (CapturedStmtInfo) { 2488 auto I = LocalDeclMap.find(VD); 2489 if (I != LocalDeclMap.end()) { 2490 if (VD->getType()->isReferenceType()) 2491 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2492 AlignmentSource::Decl); 2493 return MakeAddrLValue(I->second, T); 2494 } 2495 LValue CapLVal = 2496 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2497 CapturedStmtInfo->getContextValue()); 2498 return MakeAddrLValue( 2499 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2500 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2501 CapLVal.getTBAAInfo()); 2502 } 2503 2504 assert(isa<BlockDecl>(CurCodeDecl)); 2505 Address addr = GetAddrOfBlockDecl(VD); 2506 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2507 } 2508 } 2509 2510 // FIXME: We should be able to assert this for FunctionDecls as well! 2511 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2512 // those with a valid source location. 2513 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2514 !E->getLocation().isValid()) && 2515 "Should not use decl without marking it used!"); 2516 2517 if (ND->hasAttr<WeakRefAttr>()) { 2518 const auto *VD = cast<ValueDecl>(ND); 2519 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2520 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2521 } 2522 2523 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2524 // Check if this is a global variable. 2525 if (VD->hasLinkage() || VD->isStaticDataMember()) 2526 return EmitGlobalVarDeclLValue(*this, E, VD); 2527 2528 Address addr = Address::invalid(); 2529 2530 // The variable should generally be present in the local decl map. 2531 auto iter = LocalDeclMap.find(VD); 2532 if (iter != LocalDeclMap.end()) { 2533 addr = iter->second; 2534 2535 // Otherwise, it might be static local we haven't emitted yet for 2536 // some reason; most likely, because it's in an outer function. 2537 } else if (VD->isStaticLocal()) { 2538 addr = Address(CGM.getOrCreateStaticVarDecl( 2539 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2540 getContext().getDeclAlign(VD)); 2541 2542 // No other cases for now. 2543 } else { 2544 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2545 } 2546 2547 2548 // Check for OpenMP threadprivate variables. 2549 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2550 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2551 return EmitThreadPrivateVarDeclLValue( 2552 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2553 E->getExprLoc()); 2554 } 2555 2556 // Drill into block byref variables. 2557 bool isBlockByref = VD->isEscapingByref(); 2558 if (isBlockByref) { 2559 addr = emitBlockByrefAddress(addr, VD); 2560 } 2561 2562 // Drill into reference types. 2563 LValue LV = VD->getType()->isReferenceType() ? 2564 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2565 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2566 2567 bool isLocalStorage = VD->hasLocalStorage(); 2568 2569 bool NonGCable = isLocalStorage && 2570 !VD->getType()->isReferenceType() && 2571 !isBlockByref; 2572 if (NonGCable) { 2573 LV.getQuals().removeObjCGCAttr(); 2574 LV.setNonGC(true); 2575 } 2576 2577 bool isImpreciseLifetime = 2578 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2579 if (isImpreciseLifetime) 2580 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2581 setObjCGCLValueClass(getContext(), E, LV); 2582 return LV; 2583 } 2584 2585 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2586 return EmitFunctionDeclLValue(*this, E, FD); 2587 2588 // FIXME: While we're emitting a binding from an enclosing scope, all other 2589 // DeclRefExprs we see should be implicitly treated as if they also refer to 2590 // an enclosing scope. 2591 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2592 return EmitLValue(BD->getBinding()); 2593 2594 llvm_unreachable("Unhandled DeclRefExpr"); 2595 } 2596 2597 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2598 // __extension__ doesn't affect lvalue-ness. 2599 if (E->getOpcode() == UO_Extension) 2600 return EmitLValue(E->getSubExpr()); 2601 2602 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2603 switch (E->getOpcode()) { 2604 default: llvm_unreachable("Unknown unary operator lvalue!"); 2605 case UO_Deref: { 2606 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2607 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2608 2609 LValueBaseInfo BaseInfo; 2610 TBAAAccessInfo TBAAInfo; 2611 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2612 &TBAAInfo); 2613 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2614 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2615 2616 // We should not generate __weak write barrier on indirect reference 2617 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2618 // But, we continue to generate __strong write barrier on indirect write 2619 // into a pointer to object. 2620 if (getLangOpts().ObjC && 2621 getLangOpts().getGC() != LangOptions::NonGC && 2622 LV.isObjCWeak()) 2623 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2624 return LV; 2625 } 2626 case UO_Real: 2627 case UO_Imag: { 2628 LValue LV = EmitLValue(E->getSubExpr()); 2629 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2630 2631 // __real is valid on scalars. This is a faster way of testing that. 2632 // __imag can only produce an rvalue on scalars. 2633 if (E->getOpcode() == UO_Real && 2634 !LV.getAddress().getElementType()->isStructTy()) { 2635 assert(E->getSubExpr()->getType()->isArithmeticType()); 2636 return LV; 2637 } 2638 2639 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2640 2641 Address Component = 2642 (E->getOpcode() == UO_Real 2643 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2644 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2645 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2646 CGM.getTBAAInfoForSubobject(LV, T)); 2647 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2648 return ElemLV; 2649 } 2650 case UO_PreInc: 2651 case UO_PreDec: { 2652 LValue LV = EmitLValue(E->getSubExpr()); 2653 bool isInc = E->getOpcode() == UO_PreInc; 2654 2655 if (E->getType()->isAnyComplexType()) 2656 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2657 else 2658 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2659 return LV; 2660 } 2661 } 2662 } 2663 2664 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2665 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2666 E->getType(), AlignmentSource::Decl); 2667 } 2668 2669 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2670 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2671 E->getType(), AlignmentSource::Decl); 2672 } 2673 2674 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2675 auto SL = E->getFunctionName(); 2676 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2677 StringRef FnName = CurFn->getName(); 2678 if (FnName.startswith("\01")) 2679 FnName = FnName.substr(1); 2680 StringRef NameItems[] = { 2681 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2682 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2683 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2684 std::string Name = SL->getString(); 2685 if (!Name.empty()) { 2686 unsigned Discriminator = 2687 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2688 if (Discriminator) 2689 Name += "_" + Twine(Discriminator + 1).str(); 2690 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2691 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2692 } else { 2693 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2694 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2695 } 2696 } 2697 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2698 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2699 } 2700 2701 /// Emit a type description suitable for use by a runtime sanitizer library. The 2702 /// format of a type descriptor is 2703 /// 2704 /// \code 2705 /// { i16 TypeKind, i16 TypeInfo } 2706 /// \endcode 2707 /// 2708 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2709 /// integer, 1 for a floating point value, and -1 for anything else. 2710 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2711 // Only emit each type's descriptor once. 2712 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2713 return C; 2714 2715 uint16_t TypeKind = -1; 2716 uint16_t TypeInfo = 0; 2717 2718 if (T->isIntegerType()) { 2719 TypeKind = 0; 2720 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2721 (T->isSignedIntegerType() ? 1 : 0); 2722 } else if (T->isFloatingType()) { 2723 TypeKind = 1; 2724 TypeInfo = getContext().getTypeSize(T); 2725 } 2726 2727 // Format the type name as if for a diagnostic, including quotes and 2728 // optionally an 'aka'. 2729 SmallString<32> Buffer; 2730 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2731 (intptr_t)T.getAsOpaquePtr(), 2732 StringRef(), StringRef(), None, Buffer, 2733 None); 2734 2735 llvm::Constant *Components[] = { 2736 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2737 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2738 }; 2739 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2740 2741 auto *GV = new llvm::GlobalVariable( 2742 CGM.getModule(), Descriptor->getType(), 2743 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2744 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2745 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2746 2747 // Remember the descriptor for this type. 2748 CGM.setTypeDescriptorInMap(T, GV); 2749 2750 return GV; 2751 } 2752 2753 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2754 llvm::Type *TargetTy = IntPtrTy; 2755 2756 if (V->getType() == TargetTy) 2757 return V; 2758 2759 // Floating-point types which fit into intptr_t are bitcast to integers 2760 // and then passed directly (after zero-extension, if necessary). 2761 if (V->getType()->isFloatingPointTy()) { 2762 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2763 if (Bits <= TargetTy->getIntegerBitWidth()) 2764 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2765 Bits)); 2766 } 2767 2768 // Integers which fit in intptr_t are zero-extended and passed directly. 2769 if (V->getType()->isIntegerTy() && 2770 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2771 return Builder.CreateZExt(V, TargetTy); 2772 2773 // Pointers are passed directly, everything else is passed by address. 2774 if (!V->getType()->isPointerTy()) { 2775 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2776 Builder.CreateStore(V, Ptr); 2777 V = Ptr.getPointer(); 2778 } 2779 return Builder.CreatePtrToInt(V, TargetTy); 2780 } 2781 2782 /// Emit a representation of a SourceLocation for passing to a handler 2783 /// in a sanitizer runtime library. The format for this data is: 2784 /// \code 2785 /// struct SourceLocation { 2786 /// const char *Filename; 2787 /// int32_t Line, Column; 2788 /// }; 2789 /// \endcode 2790 /// For an invalid SourceLocation, the Filename pointer is null. 2791 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2792 llvm::Constant *Filename; 2793 int Line, Column; 2794 2795 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2796 if (PLoc.isValid()) { 2797 StringRef FilenameString = PLoc.getFilename(); 2798 2799 int PathComponentsToStrip = 2800 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2801 if (PathComponentsToStrip < 0) { 2802 assert(PathComponentsToStrip != INT_MIN); 2803 int PathComponentsToKeep = -PathComponentsToStrip; 2804 auto I = llvm::sys::path::rbegin(FilenameString); 2805 auto E = llvm::sys::path::rend(FilenameString); 2806 while (I != E && --PathComponentsToKeep) 2807 ++I; 2808 2809 FilenameString = FilenameString.substr(I - E); 2810 } else if (PathComponentsToStrip > 0) { 2811 auto I = llvm::sys::path::begin(FilenameString); 2812 auto E = llvm::sys::path::end(FilenameString); 2813 while (I != E && PathComponentsToStrip--) 2814 ++I; 2815 2816 if (I != E) 2817 FilenameString = 2818 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2819 else 2820 FilenameString = llvm::sys::path::filename(FilenameString); 2821 } 2822 2823 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2824 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2825 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2826 Filename = FilenameGV.getPointer(); 2827 Line = PLoc.getLine(); 2828 Column = PLoc.getColumn(); 2829 } else { 2830 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2831 Line = Column = 0; 2832 } 2833 2834 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2835 Builder.getInt32(Column)}; 2836 2837 return llvm::ConstantStruct::getAnon(Data); 2838 } 2839 2840 namespace { 2841 /// Specify under what conditions this check can be recovered 2842 enum class CheckRecoverableKind { 2843 /// Always terminate program execution if this check fails. 2844 Unrecoverable, 2845 /// Check supports recovering, runtime has both fatal (noreturn) and 2846 /// non-fatal handlers for this check. 2847 Recoverable, 2848 /// Runtime conditionally aborts, always need to support recovery. 2849 AlwaysRecoverable 2850 }; 2851 } 2852 2853 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2854 assert(llvm::countPopulation(Kind) == 1); 2855 switch (Kind) { 2856 case SanitizerKind::Vptr: 2857 return CheckRecoverableKind::AlwaysRecoverable; 2858 case SanitizerKind::Return: 2859 case SanitizerKind::Unreachable: 2860 return CheckRecoverableKind::Unrecoverable; 2861 default: 2862 return CheckRecoverableKind::Recoverable; 2863 } 2864 } 2865 2866 namespace { 2867 struct SanitizerHandlerInfo { 2868 char const *const Name; 2869 unsigned Version; 2870 }; 2871 } 2872 2873 const SanitizerHandlerInfo SanitizerHandlers[] = { 2874 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2875 LIST_SANITIZER_CHECKS 2876 #undef SANITIZER_CHECK 2877 }; 2878 2879 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2880 llvm::FunctionType *FnType, 2881 ArrayRef<llvm::Value *> FnArgs, 2882 SanitizerHandler CheckHandler, 2883 CheckRecoverableKind RecoverKind, bool IsFatal, 2884 llvm::BasicBlock *ContBB) { 2885 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2886 Optional<ApplyDebugLocation> DL; 2887 if (!CGF.Builder.getCurrentDebugLocation()) { 2888 // Ensure that the call has at least an artificial debug location. 2889 DL.emplace(CGF, SourceLocation()); 2890 } 2891 bool NeedsAbortSuffix = 2892 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2893 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2894 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2895 const StringRef CheckName = CheckInfo.Name; 2896 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2897 if (CheckInfo.Version && !MinimalRuntime) 2898 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2899 if (MinimalRuntime) 2900 FnName += "_minimal"; 2901 if (NeedsAbortSuffix) 2902 FnName += "_abort"; 2903 bool MayReturn = 2904 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2905 2906 llvm::AttrBuilder B; 2907 if (!MayReturn) { 2908 B.addAttribute(llvm::Attribute::NoReturn) 2909 .addAttribute(llvm::Attribute::NoUnwind); 2910 } 2911 B.addAttribute(llvm::Attribute::UWTable); 2912 2913 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2914 FnType, FnName, 2915 llvm::AttributeList::get(CGF.getLLVMContext(), 2916 llvm::AttributeList::FunctionIndex, B), 2917 /*Local=*/true); 2918 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2919 if (!MayReturn) { 2920 HandlerCall->setDoesNotReturn(); 2921 CGF.Builder.CreateUnreachable(); 2922 } else { 2923 CGF.Builder.CreateBr(ContBB); 2924 } 2925 } 2926 2927 void CodeGenFunction::EmitCheck( 2928 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2929 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2930 ArrayRef<llvm::Value *> DynamicArgs) { 2931 assert(IsSanitizerScope); 2932 assert(Checked.size() > 0); 2933 assert(CheckHandler >= 0 && 2934 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2935 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2936 2937 llvm::Value *FatalCond = nullptr; 2938 llvm::Value *RecoverableCond = nullptr; 2939 llvm::Value *TrapCond = nullptr; 2940 for (int i = 0, n = Checked.size(); i < n; ++i) { 2941 llvm::Value *Check = Checked[i].first; 2942 // -fsanitize-trap= overrides -fsanitize-recover=. 2943 llvm::Value *&Cond = 2944 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2945 ? TrapCond 2946 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2947 ? RecoverableCond 2948 : FatalCond; 2949 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2950 } 2951 2952 if (TrapCond) 2953 EmitTrapCheck(TrapCond); 2954 if (!FatalCond && !RecoverableCond) 2955 return; 2956 2957 llvm::Value *JointCond; 2958 if (FatalCond && RecoverableCond) 2959 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2960 else 2961 JointCond = FatalCond ? FatalCond : RecoverableCond; 2962 assert(JointCond); 2963 2964 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2965 assert(SanOpts.has(Checked[0].second)); 2966 #ifndef NDEBUG 2967 for (int i = 1, n = Checked.size(); i < n; ++i) { 2968 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2969 "All recoverable kinds in a single check must be same!"); 2970 assert(SanOpts.has(Checked[i].second)); 2971 } 2972 #endif 2973 2974 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2975 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2976 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2977 // Give hint that we very much don't expect to execute the handler 2978 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2979 llvm::MDBuilder MDHelper(getLLVMContext()); 2980 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2981 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2982 EmitBlock(Handlers); 2983 2984 // Handler functions take an i8* pointing to the (handler-specific) static 2985 // information block, followed by a sequence of intptr_t arguments 2986 // representing operand values. 2987 SmallVector<llvm::Value *, 4> Args; 2988 SmallVector<llvm::Type *, 4> ArgTypes; 2989 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2990 Args.reserve(DynamicArgs.size() + 1); 2991 ArgTypes.reserve(DynamicArgs.size() + 1); 2992 2993 // Emit handler arguments and create handler function type. 2994 if (!StaticArgs.empty()) { 2995 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2996 auto *InfoPtr = 2997 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2998 llvm::GlobalVariable::PrivateLinkage, Info); 2999 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3000 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3001 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3002 ArgTypes.push_back(Int8PtrTy); 3003 } 3004 3005 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3006 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3007 ArgTypes.push_back(IntPtrTy); 3008 } 3009 } 3010 3011 llvm::FunctionType *FnType = 3012 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3013 3014 if (!FatalCond || !RecoverableCond) { 3015 // Simple case: we need to generate a single handler call, either 3016 // fatal, or non-fatal. 3017 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3018 (FatalCond != nullptr), Cont); 3019 } else { 3020 // Emit two handler calls: first one for set of unrecoverable checks, 3021 // another one for recoverable. 3022 llvm::BasicBlock *NonFatalHandlerBB = 3023 createBasicBlock("non_fatal." + CheckName); 3024 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3025 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3026 EmitBlock(FatalHandlerBB); 3027 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3028 NonFatalHandlerBB); 3029 EmitBlock(NonFatalHandlerBB); 3030 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3031 Cont); 3032 } 3033 3034 EmitBlock(Cont); 3035 } 3036 3037 void CodeGenFunction::EmitCfiSlowPathCheck( 3038 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3039 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3040 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3041 3042 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3043 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3044 3045 llvm::MDBuilder MDHelper(getLLVMContext()); 3046 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3047 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3048 3049 EmitBlock(CheckBB); 3050 3051 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3052 3053 llvm::CallInst *CheckCall; 3054 llvm::Constant *SlowPathFn; 3055 if (WithDiag) { 3056 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3057 auto *InfoPtr = 3058 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3059 llvm::GlobalVariable::PrivateLinkage, Info); 3060 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3061 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3062 3063 SlowPathFn = CGM.getModule().getOrInsertFunction( 3064 "__cfi_slowpath_diag", 3065 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3066 false)); 3067 CheckCall = Builder.CreateCall( 3068 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3069 } else { 3070 SlowPathFn = CGM.getModule().getOrInsertFunction( 3071 "__cfi_slowpath", 3072 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3073 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3074 } 3075 3076 CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); 3077 CheckCall->setDoesNotThrow(); 3078 3079 EmitBlock(Cont); 3080 } 3081 3082 // Emit a stub for __cfi_check function so that the linker knows about this 3083 // symbol in LTO mode. 3084 void CodeGenFunction::EmitCfiCheckStub() { 3085 llvm::Module *M = &CGM.getModule(); 3086 auto &Ctx = M->getContext(); 3087 llvm::Function *F = llvm::Function::Create( 3088 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3089 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3090 CGM.setDSOLocal(F); 3091 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3092 // FIXME: consider emitting an intrinsic call like 3093 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3094 // which can be lowered in CrossDSOCFI pass to the actual contents of 3095 // __cfi_check. This would allow inlining of __cfi_check calls. 3096 llvm::CallInst::Create( 3097 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3098 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3099 } 3100 3101 // This function is basically a switch over the CFI failure kind, which is 3102 // extracted from CFICheckFailData (1st function argument). Each case is either 3103 // llvm.trap or a call to one of the two runtime handlers, based on 3104 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3105 // failure kind) traps, but this should really never happen. CFICheckFailData 3106 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3107 // check kind; in this case __cfi_check_fail traps as well. 3108 void CodeGenFunction::EmitCfiCheckFail() { 3109 SanitizerScope SanScope(this); 3110 FunctionArgList Args; 3111 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3112 ImplicitParamDecl::Other); 3113 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3114 ImplicitParamDecl::Other); 3115 Args.push_back(&ArgData); 3116 Args.push_back(&ArgAddr); 3117 3118 const CGFunctionInfo &FI = 3119 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3120 3121 llvm::Function *F = llvm::Function::Create( 3122 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3123 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3124 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3125 3126 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3127 SourceLocation()); 3128 3129 // This function should not be affected by blacklist. This function does 3130 // not have a source location, but "src:*" would still apply. Revert any 3131 // changes to SanOpts made in StartFunction. 3132 SanOpts = CGM.getLangOpts().Sanitize; 3133 3134 llvm::Value *Data = 3135 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3136 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3137 llvm::Value *Addr = 3138 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3139 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3140 3141 // Data == nullptr means the calling module has trap behaviour for this check. 3142 llvm::Value *DataIsNotNullPtr = 3143 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3144 EmitTrapCheck(DataIsNotNullPtr); 3145 3146 llvm::StructType *SourceLocationTy = 3147 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3148 llvm::StructType *CfiCheckFailDataTy = 3149 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3150 3151 llvm::Value *V = Builder.CreateConstGEP2_32( 3152 CfiCheckFailDataTy, 3153 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3154 0); 3155 Address CheckKindAddr(V, getIntAlign()); 3156 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3157 3158 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3159 CGM.getLLVMContext(), 3160 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3161 llvm::Value *ValidVtable = Builder.CreateZExt( 3162 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3163 {Addr, AllVtables}), 3164 IntPtrTy); 3165 3166 const std::pair<int, SanitizerMask> CheckKinds[] = { 3167 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3168 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3169 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3170 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3171 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3172 3173 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3174 for (auto CheckKindMaskPair : CheckKinds) { 3175 int Kind = CheckKindMaskPair.first; 3176 SanitizerMask Mask = CheckKindMaskPair.second; 3177 llvm::Value *Cond = 3178 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3179 if (CGM.getLangOpts().Sanitize.has(Mask)) 3180 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3181 {Data, Addr, ValidVtable}); 3182 else 3183 EmitTrapCheck(Cond); 3184 } 3185 3186 FinishFunction(); 3187 // The only reference to this function will be created during LTO link. 3188 // Make sure it survives until then. 3189 CGM.addUsedGlobal(F); 3190 } 3191 3192 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3193 if (SanOpts.has(SanitizerKind::Unreachable)) { 3194 SanitizerScope SanScope(this); 3195 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3196 SanitizerKind::Unreachable), 3197 SanitizerHandler::BuiltinUnreachable, 3198 EmitCheckSourceLocation(Loc), None); 3199 } 3200 Builder.CreateUnreachable(); 3201 } 3202 3203 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3204 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3205 3206 // If we're optimizing, collapse all calls to trap down to just one per 3207 // function to save on code size. 3208 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3209 TrapBB = createBasicBlock("trap"); 3210 Builder.CreateCondBr(Checked, Cont, TrapBB); 3211 EmitBlock(TrapBB); 3212 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3213 TrapCall->setDoesNotReturn(); 3214 TrapCall->setDoesNotThrow(); 3215 Builder.CreateUnreachable(); 3216 } else { 3217 Builder.CreateCondBr(Checked, Cont, TrapBB); 3218 } 3219 3220 EmitBlock(Cont); 3221 } 3222 3223 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3224 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3225 3226 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3227 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3228 CGM.getCodeGenOpts().TrapFuncName); 3229 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3230 } 3231 3232 return TrapCall; 3233 } 3234 3235 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3236 LValueBaseInfo *BaseInfo, 3237 TBAAAccessInfo *TBAAInfo) { 3238 assert(E->getType()->isArrayType() && 3239 "Array to pointer decay must have array source type!"); 3240 3241 // Expressions of array type can't be bitfields or vector elements. 3242 LValue LV = EmitLValue(E); 3243 Address Addr = LV.getAddress(); 3244 3245 // If the array type was an incomplete type, we need to make sure 3246 // the decay ends up being the right type. 3247 llvm::Type *NewTy = ConvertType(E->getType()); 3248 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3249 3250 // Note that VLA pointers are always decayed, so we don't need to do 3251 // anything here. 3252 if (!E->getType()->isVariableArrayType()) { 3253 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3254 "Expected pointer to array"); 3255 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3256 } 3257 3258 // The result of this decay conversion points to an array element within the 3259 // base lvalue. However, since TBAA currently does not support representing 3260 // accesses to elements of member arrays, we conservatively represent accesses 3261 // to the pointee object as if it had no any base lvalue specified. 3262 // TODO: Support TBAA for member arrays. 3263 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3264 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3265 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3266 3267 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3268 } 3269 3270 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3271 /// array to pointer, return the array subexpression. 3272 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3273 // If this isn't just an array->pointer decay, bail out. 3274 const auto *CE = dyn_cast<CastExpr>(E); 3275 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3276 return nullptr; 3277 3278 // If this is a decay from variable width array, bail out. 3279 const Expr *SubExpr = CE->getSubExpr(); 3280 if (SubExpr->getType()->isVariableArrayType()) 3281 return nullptr; 3282 3283 return SubExpr; 3284 } 3285 3286 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3287 llvm::Value *ptr, 3288 ArrayRef<llvm::Value*> indices, 3289 bool inbounds, 3290 bool signedIndices, 3291 SourceLocation loc, 3292 const llvm::Twine &name = "arrayidx") { 3293 if (inbounds) { 3294 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3295 CodeGenFunction::NotSubtraction, loc, 3296 name); 3297 } else { 3298 return CGF.Builder.CreateGEP(ptr, indices, name); 3299 } 3300 } 3301 3302 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3303 llvm::Value *idx, 3304 CharUnits eltSize) { 3305 // If we have a constant index, we can use the exact offset of the 3306 // element we're accessing. 3307 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3308 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3309 return arrayAlign.alignmentAtOffset(offset); 3310 3311 // Otherwise, use the worst-case alignment for any element. 3312 } else { 3313 return arrayAlign.alignmentOfArrayElement(eltSize); 3314 } 3315 } 3316 3317 static QualType getFixedSizeElementType(const ASTContext &ctx, 3318 const VariableArrayType *vla) { 3319 QualType eltType; 3320 do { 3321 eltType = vla->getElementType(); 3322 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3323 return eltType; 3324 } 3325 3326 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3327 ArrayRef<llvm::Value *> indices, 3328 QualType eltType, bool inbounds, 3329 bool signedIndices, SourceLocation loc, 3330 const llvm::Twine &name = "arrayidx") { 3331 // All the indices except that last must be zero. 3332 #ifndef NDEBUG 3333 for (auto idx : indices.drop_back()) 3334 assert(isa<llvm::ConstantInt>(idx) && 3335 cast<llvm::ConstantInt>(idx)->isZero()); 3336 #endif 3337 3338 // Determine the element size of the statically-sized base. This is 3339 // the thing that the indices are expressed in terms of. 3340 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3341 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3342 } 3343 3344 // We can use that to compute the best alignment of the element. 3345 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3346 CharUnits eltAlign = 3347 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3348 3349 llvm::Value *eltPtr = emitArraySubscriptGEP( 3350 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3351 return Address(eltPtr, eltAlign); 3352 } 3353 3354 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3355 bool Accessed) { 3356 // The index must always be an integer, which is not an aggregate. Emit it 3357 // in lexical order (this complexity is, sadly, required by C++17). 3358 llvm::Value *IdxPre = 3359 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3360 bool SignedIndices = false; 3361 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3362 auto *Idx = IdxPre; 3363 if (E->getLHS() != E->getIdx()) { 3364 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3365 Idx = EmitScalarExpr(E->getIdx()); 3366 } 3367 3368 QualType IdxTy = E->getIdx()->getType(); 3369 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3370 SignedIndices |= IdxSigned; 3371 3372 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3373 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3374 3375 // Extend or truncate the index type to 32 or 64-bits. 3376 if (Promote && Idx->getType() != IntPtrTy) 3377 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3378 3379 return Idx; 3380 }; 3381 IdxPre = nullptr; 3382 3383 // If the base is a vector type, then we are forming a vector element lvalue 3384 // with this subscript. 3385 if (E->getBase()->getType()->isVectorType() && 3386 !isa<ExtVectorElementExpr>(E->getBase())) { 3387 // Emit the vector as an lvalue to get its address. 3388 LValue LHS = EmitLValue(E->getBase()); 3389 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3390 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3391 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3392 LHS.getBaseInfo(), TBAAAccessInfo()); 3393 } 3394 3395 // All the other cases basically behave like simple offsetting. 3396 3397 // Handle the extvector case we ignored above. 3398 if (isa<ExtVectorElementExpr>(E->getBase())) { 3399 LValue LV = EmitLValue(E->getBase()); 3400 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3401 Address Addr = EmitExtVectorElementLValue(LV); 3402 3403 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3404 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3405 SignedIndices, E->getExprLoc()); 3406 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3407 CGM.getTBAAInfoForSubobject(LV, EltType)); 3408 } 3409 3410 LValueBaseInfo EltBaseInfo; 3411 TBAAAccessInfo EltTBAAInfo; 3412 Address Addr = Address::invalid(); 3413 if (const VariableArrayType *vla = 3414 getContext().getAsVariableArrayType(E->getType())) { 3415 // The base must be a pointer, which is not an aggregate. Emit 3416 // it. It needs to be emitted first in case it's what captures 3417 // the VLA bounds. 3418 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3419 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3420 3421 // The element count here is the total number of non-VLA elements. 3422 llvm::Value *numElements = getVLASize(vla).NumElts; 3423 3424 // Effectively, the multiply by the VLA size is part of the GEP. 3425 // GEP indexes are signed, and scaling an index isn't permitted to 3426 // signed-overflow, so we use the same semantics for our explicit 3427 // multiply. We suppress this if overflow is not undefined behavior. 3428 if (getLangOpts().isSignedOverflowDefined()) { 3429 Idx = Builder.CreateMul(Idx, numElements); 3430 } else { 3431 Idx = Builder.CreateNSWMul(Idx, numElements); 3432 } 3433 3434 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3435 !getLangOpts().isSignedOverflowDefined(), 3436 SignedIndices, E->getExprLoc()); 3437 3438 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3439 // Indexing over an interface, as in "NSString *P; P[4];" 3440 3441 // Emit the base pointer. 3442 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3443 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3444 3445 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3446 llvm::Value *InterfaceSizeVal = 3447 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3448 3449 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3450 3451 // We don't necessarily build correct LLVM struct types for ObjC 3452 // interfaces, so we can't rely on GEP to do this scaling 3453 // correctly, so we need to cast to i8*. FIXME: is this actually 3454 // true? A lot of other things in the fragile ABI would break... 3455 llvm::Type *OrigBaseTy = Addr.getType(); 3456 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3457 3458 // Do the GEP. 3459 CharUnits EltAlign = 3460 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3461 llvm::Value *EltPtr = 3462 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3463 SignedIndices, E->getExprLoc()); 3464 Addr = Address(EltPtr, EltAlign); 3465 3466 // Cast back. 3467 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3468 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3469 // If this is A[i] where A is an array, the frontend will have decayed the 3470 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3471 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3472 // "gep x, i" here. Emit one "gep A, 0, i". 3473 assert(Array->getType()->isArrayType() && 3474 "Array to pointer decay must have array source type!"); 3475 LValue ArrayLV; 3476 // For simple multidimensional array indexing, set the 'accessed' flag for 3477 // better bounds-checking of the base expression. 3478 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3479 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3480 else 3481 ArrayLV = EmitLValue(Array); 3482 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3483 3484 // Propagate the alignment from the array itself to the result. 3485 Addr = emitArraySubscriptGEP( 3486 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3487 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3488 E->getExprLoc()); 3489 EltBaseInfo = ArrayLV.getBaseInfo(); 3490 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3491 } else { 3492 // The base must be a pointer; emit it with an estimate of its alignment. 3493 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3494 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3495 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3496 !getLangOpts().isSignedOverflowDefined(), 3497 SignedIndices, E->getExprLoc()); 3498 } 3499 3500 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3501 3502 if (getLangOpts().ObjC && 3503 getLangOpts().getGC() != LangOptions::NonGC) { 3504 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3505 setObjCGCLValueClass(getContext(), E, LV); 3506 } 3507 return LV; 3508 } 3509 3510 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3511 LValueBaseInfo &BaseInfo, 3512 TBAAAccessInfo &TBAAInfo, 3513 QualType BaseTy, QualType ElTy, 3514 bool IsLowerBound) { 3515 LValue BaseLVal; 3516 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3517 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3518 if (BaseTy->isArrayType()) { 3519 Address Addr = BaseLVal.getAddress(); 3520 BaseInfo = BaseLVal.getBaseInfo(); 3521 3522 // If the array type was an incomplete type, we need to make sure 3523 // the decay ends up being the right type. 3524 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3525 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3526 3527 // Note that VLA pointers are always decayed, so we don't need to do 3528 // anything here. 3529 if (!BaseTy->isVariableArrayType()) { 3530 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3531 "Expected pointer to array"); 3532 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3533 "arraydecay"); 3534 } 3535 3536 return CGF.Builder.CreateElementBitCast(Addr, 3537 CGF.ConvertTypeForMem(ElTy)); 3538 } 3539 LValueBaseInfo TypeBaseInfo; 3540 TBAAAccessInfo TypeTBAAInfo; 3541 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3542 &TypeTBAAInfo); 3543 BaseInfo.mergeForCast(TypeBaseInfo); 3544 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3545 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3546 } 3547 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3548 } 3549 3550 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3551 bool IsLowerBound) { 3552 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3553 QualType ResultExprTy; 3554 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3555 ResultExprTy = AT->getElementType(); 3556 else 3557 ResultExprTy = BaseTy->getPointeeType(); 3558 llvm::Value *Idx = nullptr; 3559 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3560 // Requesting lower bound or upper bound, but without provided length and 3561 // without ':' symbol for the default length -> length = 1. 3562 // Idx = LowerBound ?: 0; 3563 if (auto *LowerBound = E->getLowerBound()) { 3564 Idx = Builder.CreateIntCast( 3565 EmitScalarExpr(LowerBound), IntPtrTy, 3566 LowerBound->getType()->hasSignedIntegerRepresentation()); 3567 } else 3568 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3569 } else { 3570 // Try to emit length or lower bound as constant. If this is possible, 1 3571 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3572 // IR (LB + Len) - 1. 3573 auto &C = CGM.getContext(); 3574 auto *Length = E->getLength(); 3575 llvm::APSInt ConstLength; 3576 if (Length) { 3577 // Idx = LowerBound + Length - 1; 3578 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3579 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3580 Length = nullptr; 3581 } 3582 auto *LowerBound = E->getLowerBound(); 3583 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3584 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3585 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3586 LowerBound = nullptr; 3587 } 3588 if (!Length) 3589 --ConstLength; 3590 else if (!LowerBound) 3591 --ConstLowerBound; 3592 3593 if (Length || LowerBound) { 3594 auto *LowerBoundVal = 3595 LowerBound 3596 ? Builder.CreateIntCast( 3597 EmitScalarExpr(LowerBound), IntPtrTy, 3598 LowerBound->getType()->hasSignedIntegerRepresentation()) 3599 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3600 auto *LengthVal = 3601 Length 3602 ? Builder.CreateIntCast( 3603 EmitScalarExpr(Length), IntPtrTy, 3604 Length->getType()->hasSignedIntegerRepresentation()) 3605 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3606 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3607 /*HasNUW=*/false, 3608 !getLangOpts().isSignedOverflowDefined()); 3609 if (Length && LowerBound) { 3610 Idx = Builder.CreateSub( 3611 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3612 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3613 } 3614 } else 3615 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3616 } else { 3617 // Idx = ArraySize - 1; 3618 QualType ArrayTy = BaseTy->isPointerType() 3619 ? E->getBase()->IgnoreParenImpCasts()->getType() 3620 : BaseTy; 3621 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3622 Length = VAT->getSizeExpr(); 3623 if (Length->isIntegerConstantExpr(ConstLength, C)) 3624 Length = nullptr; 3625 } else { 3626 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3627 ConstLength = CAT->getSize(); 3628 } 3629 if (Length) { 3630 auto *LengthVal = Builder.CreateIntCast( 3631 EmitScalarExpr(Length), IntPtrTy, 3632 Length->getType()->hasSignedIntegerRepresentation()); 3633 Idx = Builder.CreateSub( 3634 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3635 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3636 } else { 3637 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3638 --ConstLength; 3639 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3640 } 3641 } 3642 } 3643 assert(Idx); 3644 3645 Address EltPtr = Address::invalid(); 3646 LValueBaseInfo BaseInfo; 3647 TBAAAccessInfo TBAAInfo; 3648 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3649 // The base must be a pointer, which is not an aggregate. Emit 3650 // it. It needs to be emitted first in case it's what captures 3651 // the VLA bounds. 3652 Address Base = 3653 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3654 BaseTy, VLA->getElementType(), IsLowerBound); 3655 // The element count here is the total number of non-VLA elements. 3656 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3657 3658 // Effectively, the multiply by the VLA size is part of the GEP. 3659 // GEP indexes are signed, and scaling an index isn't permitted to 3660 // signed-overflow, so we use the same semantics for our explicit 3661 // multiply. We suppress this if overflow is not undefined behavior. 3662 if (getLangOpts().isSignedOverflowDefined()) 3663 Idx = Builder.CreateMul(Idx, NumElements); 3664 else 3665 Idx = Builder.CreateNSWMul(Idx, NumElements); 3666 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3667 !getLangOpts().isSignedOverflowDefined(), 3668 /*SignedIndices=*/false, E->getExprLoc()); 3669 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3670 // If this is A[i] where A is an array, the frontend will have decayed the 3671 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3672 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3673 // "gep x, i" here. Emit one "gep A, 0, i". 3674 assert(Array->getType()->isArrayType() && 3675 "Array to pointer decay must have array source type!"); 3676 LValue ArrayLV; 3677 // For simple multidimensional array indexing, set the 'accessed' flag for 3678 // better bounds-checking of the base expression. 3679 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3680 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3681 else 3682 ArrayLV = EmitLValue(Array); 3683 3684 // Propagate the alignment from the array itself to the result. 3685 EltPtr = emitArraySubscriptGEP( 3686 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3687 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3688 /*SignedIndices=*/false, E->getExprLoc()); 3689 BaseInfo = ArrayLV.getBaseInfo(); 3690 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3691 } else { 3692 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3693 TBAAInfo, BaseTy, ResultExprTy, 3694 IsLowerBound); 3695 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3696 !getLangOpts().isSignedOverflowDefined(), 3697 /*SignedIndices=*/false, E->getExprLoc()); 3698 } 3699 3700 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3701 } 3702 3703 LValue CodeGenFunction:: 3704 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3705 // Emit the base vector as an l-value. 3706 LValue Base; 3707 3708 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3709 if (E->isArrow()) { 3710 // If it is a pointer to a vector, emit the address and form an lvalue with 3711 // it. 3712 LValueBaseInfo BaseInfo; 3713 TBAAAccessInfo TBAAInfo; 3714 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3715 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3716 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3717 Base.getQuals().removeObjCGCAttr(); 3718 } else if (E->getBase()->isGLValue()) { 3719 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3720 // emit the base as an lvalue. 3721 assert(E->getBase()->getType()->isVectorType()); 3722 Base = EmitLValue(E->getBase()); 3723 } else { 3724 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3725 assert(E->getBase()->getType()->isVectorType() && 3726 "Result must be a vector"); 3727 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3728 3729 // Store the vector to memory (because LValue wants an address). 3730 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3731 Builder.CreateStore(Vec, VecMem); 3732 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3733 AlignmentSource::Decl); 3734 } 3735 3736 QualType type = 3737 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3738 3739 // Encode the element access list into a vector of unsigned indices. 3740 SmallVector<uint32_t, 4> Indices; 3741 E->getEncodedElementAccess(Indices); 3742 3743 if (Base.isSimple()) { 3744 llvm::Constant *CV = 3745 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3746 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3747 Base.getBaseInfo(), TBAAAccessInfo()); 3748 } 3749 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3750 3751 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3752 SmallVector<llvm::Constant *, 4> CElts; 3753 3754 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3755 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3756 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3757 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3758 Base.getBaseInfo(), TBAAAccessInfo()); 3759 } 3760 3761 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3762 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3763 EmitIgnoredExpr(E->getBase()); 3764 return EmitDeclRefLValue(DRE); 3765 } 3766 3767 Expr *BaseExpr = E->getBase(); 3768 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3769 LValue BaseLV; 3770 if (E->isArrow()) { 3771 LValueBaseInfo BaseInfo; 3772 TBAAAccessInfo TBAAInfo; 3773 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3774 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3775 SanitizerSet SkippedChecks; 3776 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3777 if (IsBaseCXXThis) 3778 SkippedChecks.set(SanitizerKind::Alignment, true); 3779 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3780 SkippedChecks.set(SanitizerKind::Null, true); 3781 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3782 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3783 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3784 } else 3785 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3786 3787 NamedDecl *ND = E->getMemberDecl(); 3788 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3789 LValue LV = EmitLValueForField(BaseLV, Field); 3790 setObjCGCLValueClass(getContext(), E, LV); 3791 return LV; 3792 } 3793 3794 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3795 return EmitFunctionDeclLValue(*this, E, FD); 3796 3797 llvm_unreachable("Unhandled member declaration!"); 3798 } 3799 3800 /// Given that we are currently emitting a lambda, emit an l-value for 3801 /// one of its members. 3802 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3803 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3804 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3805 QualType LambdaTagType = 3806 getContext().getTagDeclType(Field->getParent()); 3807 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3808 return EmitLValueForField(LambdaLV, Field); 3809 } 3810 3811 /// Drill down to the storage of a field without walking into 3812 /// reference types. 3813 /// 3814 /// The resulting address doesn't necessarily have the right type. 3815 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3816 const FieldDecl *field) { 3817 const RecordDecl *rec = field->getParent(); 3818 3819 unsigned idx = 3820 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3821 3822 CharUnits offset; 3823 // Adjust the alignment down to the given offset. 3824 // As a special case, if the LLVM field index is 0, we know that this 3825 // is zero. 3826 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3827 .getFieldOffset(field->getFieldIndex()) == 0) && 3828 "LLVM field at index zero had non-zero offset?"); 3829 if (idx != 0) { 3830 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3831 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3832 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3833 } 3834 3835 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3836 } 3837 3838 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3839 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3840 if (!RD) 3841 return false; 3842 3843 if (RD->isDynamicClass()) 3844 return true; 3845 3846 for (const auto &Base : RD->bases()) 3847 if (hasAnyVptr(Base.getType(), Context)) 3848 return true; 3849 3850 for (const FieldDecl *Field : RD->fields()) 3851 if (hasAnyVptr(Field->getType(), Context)) 3852 return true; 3853 3854 return false; 3855 } 3856 3857 LValue CodeGenFunction::EmitLValueForField(LValue base, 3858 const FieldDecl *field) { 3859 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3860 3861 if (field->isBitField()) { 3862 const CGRecordLayout &RL = 3863 CGM.getTypes().getCGRecordLayout(field->getParent()); 3864 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3865 Address Addr = base.getAddress(); 3866 unsigned Idx = RL.getLLVMFieldNo(field); 3867 if (Idx != 0) 3868 // For structs, we GEP to the field that the record layout suggests. 3869 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3870 field->getName()); 3871 // Get the access type. 3872 llvm::Type *FieldIntTy = 3873 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3874 if (Addr.getElementType() != FieldIntTy) 3875 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3876 3877 QualType fieldType = 3878 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3879 // TODO: Support TBAA for bit fields. 3880 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3881 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3882 TBAAAccessInfo()); 3883 } 3884 3885 // Fields of may-alias structures are may-alias themselves. 3886 // FIXME: this should get propagated down through anonymous structs 3887 // and unions. 3888 QualType FieldType = field->getType(); 3889 const RecordDecl *rec = field->getParent(); 3890 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3891 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3892 TBAAAccessInfo FieldTBAAInfo; 3893 if (base.getTBAAInfo().isMayAlias() || 3894 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3895 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3896 } else if (rec->isUnion()) { 3897 // TODO: Support TBAA for unions. 3898 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3899 } else { 3900 // If no base type been assigned for the base access, then try to generate 3901 // one for this base lvalue. 3902 FieldTBAAInfo = base.getTBAAInfo(); 3903 if (!FieldTBAAInfo.BaseType) { 3904 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3905 assert(!FieldTBAAInfo.Offset && 3906 "Nonzero offset for an access with no base type!"); 3907 } 3908 3909 // Adjust offset to be relative to the base type. 3910 const ASTRecordLayout &Layout = 3911 getContext().getASTRecordLayout(field->getParent()); 3912 unsigned CharWidth = getContext().getCharWidth(); 3913 if (FieldTBAAInfo.BaseType) 3914 FieldTBAAInfo.Offset += 3915 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3916 3917 // Update the final access type and size. 3918 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3919 FieldTBAAInfo.Size = 3920 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3921 } 3922 3923 Address addr = base.getAddress(); 3924 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 3925 if (CGM.getCodeGenOpts().StrictVTablePointers && 3926 ClassDef->isDynamicClass()) { 3927 // Getting to any field of dynamic object requires stripping dynamic 3928 // information provided by invariant.group. This is because accessing 3929 // fields may leak the real address of dynamic object, which could result 3930 // in miscompilation when leaked pointer would be compared. 3931 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 3932 addr = Address(stripped, addr.getAlignment()); 3933 } 3934 } 3935 3936 unsigned RecordCVR = base.getVRQualifiers(); 3937 if (rec->isUnion()) { 3938 // For unions, there is no pointer adjustment. 3939 assert(!FieldType->isReferenceType() && "union has reference member"); 3940 if (CGM.getCodeGenOpts().StrictVTablePointers && 3941 hasAnyVptr(FieldType, getContext())) 3942 // Because unions can easily skip invariant.barriers, we need to add 3943 // a barrier every time CXXRecord field with vptr is referenced. 3944 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3945 addr.getAlignment()); 3946 } else { 3947 // For structs, we GEP to the field that the record layout suggests. 3948 addr = emitAddrOfFieldStorage(*this, addr, field); 3949 3950 // If this is a reference field, load the reference right now. 3951 if (FieldType->isReferenceType()) { 3952 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3953 FieldTBAAInfo); 3954 if (RecordCVR & Qualifiers::Volatile) 3955 RefLVal.getQuals().addVolatile(); 3956 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3957 3958 // Qualifiers on the struct don't apply to the referencee. 3959 RecordCVR = 0; 3960 FieldType = FieldType->getPointeeType(); 3961 } 3962 } 3963 3964 // Make sure that the address is pointing to the right type. This is critical 3965 // for both unions and structs. A union needs a bitcast, a struct element 3966 // will need a bitcast if the LLVM type laid out doesn't match the desired 3967 // type. 3968 addr = Builder.CreateElementBitCast( 3969 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3970 3971 if (field->hasAttr<AnnotateAttr>()) 3972 addr = EmitFieldAnnotations(field, addr); 3973 3974 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3975 LV.getQuals().addCVRQualifiers(RecordCVR); 3976 3977 // __weak attribute on a field is ignored. 3978 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3979 LV.getQuals().removeObjCGCAttr(); 3980 3981 return LV; 3982 } 3983 3984 LValue 3985 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3986 const FieldDecl *Field) { 3987 QualType FieldType = Field->getType(); 3988 3989 if (!FieldType->isReferenceType()) 3990 return EmitLValueForField(Base, Field); 3991 3992 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3993 3994 // Make sure that the address is pointing to the right type. 3995 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3996 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3997 3998 // TODO: Generate TBAA information that describes this access as a structure 3999 // member access and not just an access to an object of the field's type. This 4000 // should be similar to what we do in EmitLValueForField(). 4001 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4002 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4003 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4004 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4005 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4006 } 4007 4008 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4009 if (E->isFileScope()) { 4010 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4011 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4012 } 4013 if (E->getType()->isVariablyModifiedType()) 4014 // make sure to emit the VLA size. 4015 EmitVariablyModifiedType(E->getType()); 4016 4017 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4018 const Expr *InitExpr = E->getInitializer(); 4019 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4020 4021 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4022 /*Init*/ true); 4023 4024 return Result; 4025 } 4026 4027 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4028 if (!E->isGLValue()) 4029 // Initializing an aggregate temporary in C++11: T{...}. 4030 return EmitAggExprToLValue(E); 4031 4032 // An lvalue initializer list must be initializing a reference. 4033 assert(E->isTransparent() && "non-transparent glvalue init list"); 4034 return EmitLValue(E->getInit(0)); 4035 } 4036 4037 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4038 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4039 /// LValue is returned and the current block has been terminated. 4040 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4041 const Expr *Operand) { 4042 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4043 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4044 return None; 4045 } 4046 4047 return CGF.EmitLValue(Operand); 4048 } 4049 4050 LValue CodeGenFunction:: 4051 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4052 if (!expr->isGLValue()) { 4053 // ?: here should be an aggregate. 4054 assert(hasAggregateEvaluationKind(expr->getType()) && 4055 "Unexpected conditional operator!"); 4056 return EmitAggExprToLValue(expr); 4057 } 4058 4059 OpaqueValueMapping binding(*this, expr); 4060 4061 const Expr *condExpr = expr->getCond(); 4062 bool CondExprBool; 4063 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4064 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4065 if (!CondExprBool) std::swap(live, dead); 4066 4067 if (!ContainsLabel(dead)) { 4068 // If the true case is live, we need to track its region. 4069 if (CondExprBool) 4070 incrementProfileCounter(expr); 4071 return EmitLValue(live); 4072 } 4073 } 4074 4075 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4076 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4077 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4078 4079 ConditionalEvaluation eval(*this); 4080 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4081 4082 // Any temporaries created here are conditional. 4083 EmitBlock(lhsBlock); 4084 incrementProfileCounter(expr); 4085 eval.begin(*this); 4086 Optional<LValue> lhs = 4087 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4088 eval.end(*this); 4089 4090 if (lhs && !lhs->isSimple()) 4091 return EmitUnsupportedLValue(expr, "conditional operator"); 4092 4093 lhsBlock = Builder.GetInsertBlock(); 4094 if (lhs) 4095 Builder.CreateBr(contBlock); 4096 4097 // Any temporaries created here are conditional. 4098 EmitBlock(rhsBlock); 4099 eval.begin(*this); 4100 Optional<LValue> rhs = 4101 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4102 eval.end(*this); 4103 if (rhs && !rhs->isSimple()) 4104 return EmitUnsupportedLValue(expr, "conditional operator"); 4105 rhsBlock = Builder.GetInsertBlock(); 4106 4107 EmitBlock(contBlock); 4108 4109 if (lhs && rhs) { 4110 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4111 2, "cond-lvalue"); 4112 phi->addIncoming(lhs->getPointer(), lhsBlock); 4113 phi->addIncoming(rhs->getPointer(), rhsBlock); 4114 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4115 AlignmentSource alignSource = 4116 std::max(lhs->getBaseInfo().getAlignmentSource(), 4117 rhs->getBaseInfo().getAlignmentSource()); 4118 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4119 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4120 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4121 TBAAInfo); 4122 } else { 4123 assert((lhs || rhs) && 4124 "both operands of glvalue conditional are throw-expressions?"); 4125 return lhs ? *lhs : *rhs; 4126 } 4127 } 4128 4129 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4130 /// type. If the cast is to a reference, we can have the usual lvalue result, 4131 /// otherwise if a cast is needed by the code generator in an lvalue context, 4132 /// then it must mean that we need the address of an aggregate in order to 4133 /// access one of its members. This can happen for all the reasons that casts 4134 /// are permitted with aggregate result, including noop aggregate casts, and 4135 /// cast from scalar to union. 4136 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4137 switch (E->getCastKind()) { 4138 case CK_ToVoid: 4139 case CK_BitCast: 4140 case CK_ArrayToPointerDecay: 4141 case CK_FunctionToPointerDecay: 4142 case CK_NullToMemberPointer: 4143 case CK_NullToPointer: 4144 case CK_IntegralToPointer: 4145 case CK_PointerToIntegral: 4146 case CK_PointerToBoolean: 4147 case CK_VectorSplat: 4148 case CK_IntegralCast: 4149 case CK_BooleanToSignedIntegral: 4150 case CK_IntegralToBoolean: 4151 case CK_IntegralToFloating: 4152 case CK_FloatingToIntegral: 4153 case CK_FloatingToBoolean: 4154 case CK_FloatingCast: 4155 case CK_FloatingRealToComplex: 4156 case CK_FloatingComplexToReal: 4157 case CK_FloatingComplexToBoolean: 4158 case CK_FloatingComplexCast: 4159 case CK_FloatingComplexToIntegralComplex: 4160 case CK_IntegralRealToComplex: 4161 case CK_IntegralComplexToReal: 4162 case CK_IntegralComplexToBoolean: 4163 case CK_IntegralComplexCast: 4164 case CK_IntegralComplexToFloatingComplex: 4165 case CK_DerivedToBaseMemberPointer: 4166 case CK_BaseToDerivedMemberPointer: 4167 case CK_MemberPointerToBoolean: 4168 case CK_ReinterpretMemberPointer: 4169 case CK_AnyPointerToBlockPointerCast: 4170 case CK_ARCProduceObject: 4171 case CK_ARCConsumeObject: 4172 case CK_ARCReclaimReturnedObject: 4173 case CK_ARCExtendBlockObject: 4174 case CK_CopyAndAutoreleaseBlockObject: 4175 case CK_IntToOCLSampler: 4176 case CK_FixedPointCast: 4177 case CK_FixedPointToBoolean: 4178 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4179 4180 case CK_Dependent: 4181 llvm_unreachable("dependent cast kind in IR gen!"); 4182 4183 case CK_BuiltinFnToFnPtr: 4184 llvm_unreachable("builtin functions are handled elsewhere"); 4185 4186 // These are never l-values; just use the aggregate emission code. 4187 case CK_NonAtomicToAtomic: 4188 case CK_AtomicToNonAtomic: 4189 return EmitAggExprToLValue(E); 4190 4191 case CK_Dynamic: { 4192 LValue LV = EmitLValue(E->getSubExpr()); 4193 Address V = LV.getAddress(); 4194 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4195 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4196 } 4197 4198 case CK_ConstructorConversion: 4199 case CK_UserDefinedConversion: 4200 case CK_CPointerToObjCPointerCast: 4201 case CK_BlockPointerToObjCPointerCast: 4202 case CK_NoOp: 4203 case CK_LValueToRValue: 4204 return EmitLValue(E->getSubExpr()); 4205 4206 case CK_UncheckedDerivedToBase: 4207 case CK_DerivedToBase: { 4208 const RecordType *DerivedClassTy = 4209 E->getSubExpr()->getType()->getAs<RecordType>(); 4210 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4211 4212 LValue LV = EmitLValue(E->getSubExpr()); 4213 Address This = LV.getAddress(); 4214 4215 // Perform the derived-to-base conversion 4216 Address Base = GetAddressOfBaseClass( 4217 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4218 /*NullCheckValue=*/false, E->getExprLoc()); 4219 4220 // TODO: Support accesses to members of base classes in TBAA. For now, we 4221 // conservatively pretend that the complete object is of the base class 4222 // type. 4223 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4224 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4225 } 4226 case CK_ToUnion: 4227 return EmitAggExprToLValue(E); 4228 case CK_BaseToDerived: { 4229 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4230 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4231 4232 LValue LV = EmitLValue(E->getSubExpr()); 4233 4234 // Perform the base-to-derived conversion 4235 Address Derived = 4236 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4237 E->path_begin(), E->path_end(), 4238 /*NullCheckValue=*/false); 4239 4240 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4241 // performed and the object is not of the derived type. 4242 if (sanitizePerformTypeCheck()) 4243 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4244 Derived.getPointer(), E->getType()); 4245 4246 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4247 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4248 /*MayBeNull=*/false, CFITCK_DerivedCast, 4249 E->getBeginLoc()); 4250 4251 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4252 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4253 } 4254 case CK_LValueBitCast: { 4255 // This must be a reinterpret_cast (or c-style equivalent). 4256 const auto *CE = cast<ExplicitCastExpr>(E); 4257 4258 CGM.EmitExplicitCastExprType(CE, this); 4259 LValue LV = EmitLValue(E->getSubExpr()); 4260 Address V = Builder.CreateBitCast(LV.getAddress(), 4261 ConvertType(CE->getTypeAsWritten())); 4262 4263 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4264 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4265 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4266 E->getBeginLoc()); 4267 4268 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4269 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4270 } 4271 case CK_AddressSpaceConversion: { 4272 LValue LV = EmitLValue(E->getSubExpr()); 4273 QualType DestTy = getContext().getPointerType(E->getType()); 4274 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4275 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4276 E->getType().getAddressSpace(), ConvertType(DestTy)); 4277 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), 4278 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4279 } 4280 case CK_ObjCObjectLValueCast: { 4281 LValue LV = EmitLValue(E->getSubExpr()); 4282 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4283 ConvertType(E->getType())); 4284 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4285 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4286 } 4287 case CK_ZeroToOCLOpaqueType: 4288 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4289 } 4290 4291 llvm_unreachable("Unhandled lvalue cast kind?"); 4292 } 4293 4294 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4295 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4296 return getOrCreateOpaqueLValueMapping(e); 4297 } 4298 4299 LValue 4300 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4301 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4302 4303 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4304 it = OpaqueLValues.find(e); 4305 4306 if (it != OpaqueLValues.end()) 4307 return it->second; 4308 4309 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4310 return EmitLValue(e->getSourceExpr()); 4311 } 4312 4313 RValue 4314 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4315 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4316 4317 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4318 it = OpaqueRValues.find(e); 4319 4320 if (it != OpaqueRValues.end()) 4321 return it->second; 4322 4323 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4324 return EmitAnyExpr(e->getSourceExpr()); 4325 } 4326 4327 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4328 const FieldDecl *FD, 4329 SourceLocation Loc) { 4330 QualType FT = FD->getType(); 4331 LValue FieldLV = EmitLValueForField(LV, FD); 4332 switch (getEvaluationKind(FT)) { 4333 case TEK_Complex: 4334 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4335 case TEK_Aggregate: 4336 return FieldLV.asAggregateRValue(); 4337 case TEK_Scalar: 4338 // This routine is used to load fields one-by-one to perform a copy, so 4339 // don't load reference fields. 4340 if (FD->getType()->isReferenceType()) 4341 return RValue::get(FieldLV.getPointer()); 4342 return EmitLoadOfLValue(FieldLV, Loc); 4343 } 4344 llvm_unreachable("bad evaluation kind"); 4345 } 4346 4347 //===--------------------------------------------------------------------===// 4348 // Expression Emission 4349 //===--------------------------------------------------------------------===// 4350 4351 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4352 ReturnValueSlot ReturnValue) { 4353 // Builtins never have block type. 4354 if (E->getCallee()->getType()->isBlockPointerType()) 4355 return EmitBlockCallExpr(E, ReturnValue); 4356 4357 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4358 return EmitCXXMemberCallExpr(CE, ReturnValue); 4359 4360 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4361 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4362 4363 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4364 if (const CXXMethodDecl *MD = 4365 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4366 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4367 4368 CGCallee callee = EmitCallee(E->getCallee()); 4369 4370 if (callee.isBuiltin()) { 4371 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4372 E, ReturnValue); 4373 } 4374 4375 if (callee.isPseudoDestructor()) { 4376 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4377 } 4378 4379 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4380 } 4381 4382 /// Emit a CallExpr without considering whether it might be a subclass. 4383 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4384 ReturnValueSlot ReturnValue) { 4385 CGCallee Callee = EmitCallee(E->getCallee()); 4386 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4387 } 4388 4389 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4390 if (auto builtinID = FD->getBuiltinID()) { 4391 return CGCallee::forBuiltin(builtinID, FD); 4392 } 4393 4394 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4395 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4396 } 4397 4398 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4399 E = E->IgnoreParens(); 4400 4401 // Look through function-to-pointer decay. 4402 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4403 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4404 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4405 return EmitCallee(ICE->getSubExpr()); 4406 } 4407 4408 // Resolve direct calls. 4409 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4410 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4411 return EmitDirectCallee(*this, FD); 4412 } 4413 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4414 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4415 EmitIgnoredExpr(ME->getBase()); 4416 return EmitDirectCallee(*this, FD); 4417 } 4418 4419 // Look through template substitutions. 4420 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4421 return EmitCallee(NTTP->getReplacement()); 4422 4423 // Treat pseudo-destructor calls differently. 4424 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4425 return CGCallee::forPseudoDestructor(PDE); 4426 } 4427 4428 // Otherwise, we have an indirect reference. 4429 llvm::Value *calleePtr; 4430 QualType functionType; 4431 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4432 calleePtr = EmitScalarExpr(E); 4433 functionType = ptrType->getPointeeType(); 4434 } else { 4435 functionType = E->getType(); 4436 calleePtr = EmitLValue(E).getPointer(); 4437 } 4438 assert(functionType->isFunctionType()); 4439 4440 GlobalDecl GD; 4441 if (const auto *VD = 4442 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4443 GD = GlobalDecl(VD); 4444 4445 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4446 CGCallee callee(calleeInfo, calleePtr); 4447 return callee; 4448 } 4449 4450 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4451 // Comma expressions just emit their LHS then their RHS as an l-value. 4452 if (E->getOpcode() == BO_Comma) { 4453 EmitIgnoredExpr(E->getLHS()); 4454 EnsureInsertPoint(); 4455 return EmitLValue(E->getRHS()); 4456 } 4457 4458 if (E->getOpcode() == BO_PtrMemD || 4459 E->getOpcode() == BO_PtrMemI) 4460 return EmitPointerToDataMemberBinaryExpr(E); 4461 4462 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4463 4464 // Note that in all of these cases, __block variables need the RHS 4465 // evaluated first just in case the variable gets moved by the RHS. 4466 4467 switch (getEvaluationKind(E->getType())) { 4468 case TEK_Scalar: { 4469 switch (E->getLHS()->getType().getObjCLifetime()) { 4470 case Qualifiers::OCL_Strong: 4471 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4472 4473 case Qualifiers::OCL_Autoreleasing: 4474 return EmitARCStoreAutoreleasing(E).first; 4475 4476 // No reason to do any of these differently. 4477 case Qualifiers::OCL_None: 4478 case Qualifiers::OCL_ExplicitNone: 4479 case Qualifiers::OCL_Weak: 4480 break; 4481 } 4482 4483 RValue RV = EmitAnyExpr(E->getRHS()); 4484 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4485 if (RV.isScalar()) 4486 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4487 EmitStoreThroughLValue(RV, LV); 4488 return LV; 4489 } 4490 4491 case TEK_Complex: 4492 return EmitComplexAssignmentLValue(E); 4493 4494 case TEK_Aggregate: 4495 return EmitAggExprToLValue(E); 4496 } 4497 llvm_unreachable("bad evaluation kind"); 4498 } 4499 4500 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4501 RValue RV = EmitCallExpr(E); 4502 4503 if (!RV.isScalar()) 4504 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4505 AlignmentSource::Decl); 4506 4507 assert(E->getCallReturnType(getContext())->isReferenceType() && 4508 "Can't have a scalar return unless the return type is a " 4509 "reference type!"); 4510 4511 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4512 } 4513 4514 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4515 // FIXME: This shouldn't require another copy. 4516 return EmitAggExprToLValue(E); 4517 } 4518 4519 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4520 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4521 && "binding l-value to type which needs a temporary"); 4522 AggValueSlot Slot = CreateAggTemp(E->getType()); 4523 EmitCXXConstructExpr(E, Slot); 4524 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4525 } 4526 4527 LValue 4528 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4529 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4530 } 4531 4532 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4533 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4534 ConvertType(E->getType())); 4535 } 4536 4537 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4538 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4539 AlignmentSource::Decl); 4540 } 4541 4542 LValue 4543 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4544 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4545 Slot.setExternallyDestructed(); 4546 EmitAggExpr(E->getSubExpr(), Slot); 4547 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4548 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4549 } 4550 4551 LValue 4552 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4553 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4554 EmitLambdaExpr(E, Slot); 4555 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4556 } 4557 4558 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4559 RValue RV = EmitObjCMessageExpr(E); 4560 4561 if (!RV.isScalar()) 4562 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4563 AlignmentSource::Decl); 4564 4565 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4566 "Can't have a scalar return unless the return type is a " 4567 "reference type!"); 4568 4569 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4570 } 4571 4572 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4573 Address V = 4574 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4575 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4576 } 4577 4578 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4579 const ObjCIvarDecl *Ivar) { 4580 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4581 } 4582 4583 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4584 llvm::Value *BaseValue, 4585 const ObjCIvarDecl *Ivar, 4586 unsigned CVRQualifiers) { 4587 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4588 Ivar, CVRQualifiers); 4589 } 4590 4591 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4592 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4593 llvm::Value *BaseValue = nullptr; 4594 const Expr *BaseExpr = E->getBase(); 4595 Qualifiers BaseQuals; 4596 QualType ObjectTy; 4597 if (E->isArrow()) { 4598 BaseValue = EmitScalarExpr(BaseExpr); 4599 ObjectTy = BaseExpr->getType()->getPointeeType(); 4600 BaseQuals = ObjectTy.getQualifiers(); 4601 } else { 4602 LValue BaseLV = EmitLValue(BaseExpr); 4603 BaseValue = BaseLV.getPointer(); 4604 ObjectTy = BaseExpr->getType(); 4605 BaseQuals = ObjectTy.getQualifiers(); 4606 } 4607 4608 LValue LV = 4609 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4610 BaseQuals.getCVRQualifiers()); 4611 setObjCGCLValueClass(getContext(), E, LV); 4612 return LV; 4613 } 4614 4615 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4616 // Can only get l-value for message expression returning aggregate type 4617 RValue RV = EmitAnyExprToTemp(E); 4618 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4619 AlignmentSource::Decl); 4620 } 4621 4622 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4623 const CallExpr *E, ReturnValueSlot ReturnValue, 4624 llvm::Value *Chain) { 4625 // Get the actual function type. The callee type will always be a pointer to 4626 // function type or a block pointer type. 4627 assert(CalleeType->isFunctionPointerType() && 4628 "Call must have function pointer type!"); 4629 4630 const Decl *TargetDecl = 4631 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4632 4633 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4634 // We can only guarantee that a function is called from the correct 4635 // context/function based on the appropriate target attributes, 4636 // so only check in the case where we have both always_inline and target 4637 // since otherwise we could be making a conditional call after a check for 4638 // the proper cpu features (and it won't cause code generation issues due to 4639 // function based code generation). 4640 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4641 TargetDecl->hasAttr<TargetAttr>()) 4642 checkTargetFeatures(E, FD); 4643 4644 CalleeType = getContext().getCanonicalType(CalleeType); 4645 4646 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4647 4648 CGCallee Callee = OrigCallee; 4649 4650 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4651 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4652 if (llvm::Constant *PrefixSig = 4653 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4654 SanitizerScope SanScope(this); 4655 // Remove any (C++17) exception specifications, to allow calling e.g. a 4656 // noexcept function through a non-noexcept pointer. 4657 auto ProtoTy = 4658 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4659 llvm::Constant *FTRTTIConst = 4660 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4661 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4662 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4663 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4664 4665 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4666 4667 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4668 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4669 llvm::Value *CalleeSigPtr = 4670 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4671 llvm::Value *CalleeSig = 4672 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4673 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4674 4675 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4676 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4677 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4678 4679 EmitBlock(TypeCheck); 4680 llvm::Value *CalleeRTTIPtr = 4681 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4682 llvm::Value *CalleeRTTIEncoded = 4683 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4684 llvm::Value *CalleeRTTI = 4685 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4686 llvm::Value *CalleeRTTIMatch = 4687 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4688 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4689 EmitCheckTypeDescriptor(CalleeType)}; 4690 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4691 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4692 4693 Builder.CreateBr(Cont); 4694 EmitBlock(Cont); 4695 } 4696 } 4697 4698 const auto *FnType = cast<FunctionType>(PointeeType); 4699 4700 // If we are checking indirect calls and this call is indirect, check that the 4701 // function pointer is a member of the bit set for the function type. 4702 if (SanOpts.has(SanitizerKind::CFIICall) && 4703 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4704 SanitizerScope SanScope(this); 4705 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4706 4707 llvm::Metadata *MD; 4708 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4709 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4710 else 4711 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4712 4713 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4714 4715 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4716 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4717 llvm::Value *TypeTest = Builder.CreateCall( 4718 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4719 4720 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4721 llvm::Constant *StaticData[] = { 4722 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4723 EmitCheckSourceLocation(E->getBeginLoc()), 4724 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4725 }; 4726 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4727 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4728 CastedCallee, StaticData); 4729 } else { 4730 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4731 SanitizerHandler::CFICheckFail, StaticData, 4732 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4733 } 4734 } 4735 4736 CallArgList Args; 4737 if (Chain) 4738 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4739 CGM.getContext().VoidPtrTy); 4740 4741 // C++17 requires that we evaluate arguments to a call using assignment syntax 4742 // right-to-left, and that we evaluate arguments to certain other operators 4743 // left-to-right. Note that we allow this to override the order dictated by 4744 // the calling convention on the MS ABI, which means that parameter 4745 // destruction order is not necessarily reverse construction order. 4746 // FIXME: Revisit this based on C++ committee response to unimplementability. 4747 EvaluationOrder Order = EvaluationOrder::Default; 4748 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4749 if (OCE->isAssignmentOp()) 4750 Order = EvaluationOrder::ForceRightToLeft; 4751 else { 4752 switch (OCE->getOperator()) { 4753 case OO_LessLess: 4754 case OO_GreaterGreater: 4755 case OO_AmpAmp: 4756 case OO_PipePipe: 4757 case OO_Comma: 4758 case OO_ArrowStar: 4759 Order = EvaluationOrder::ForceLeftToRight; 4760 break; 4761 default: 4762 break; 4763 } 4764 } 4765 } 4766 4767 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4768 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4769 4770 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4771 Args, FnType, /*isChainCall=*/Chain); 4772 4773 // C99 6.5.2.2p6: 4774 // If the expression that denotes the called function has a type 4775 // that does not include a prototype, [the default argument 4776 // promotions are performed]. If the number of arguments does not 4777 // equal the number of parameters, the behavior is undefined. If 4778 // the function is defined with a type that includes a prototype, 4779 // and either the prototype ends with an ellipsis (, ...) or the 4780 // types of the arguments after promotion are not compatible with 4781 // the types of the parameters, the behavior is undefined. If the 4782 // function is defined with a type that does not include a 4783 // prototype, and the types of the arguments after promotion are 4784 // not compatible with those of the parameters after promotion, 4785 // the behavior is undefined [except in some trivial cases]. 4786 // That is, in the general case, we should assume that a call 4787 // through an unprototyped function type works like a *non-variadic* 4788 // call. The way we make this work is to cast to the exact type 4789 // of the promoted arguments. 4790 // 4791 // Chain calls use this same code path to add the invisible chain parameter 4792 // to the function type. 4793 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4794 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4795 CalleeTy = CalleeTy->getPointerTo(); 4796 4797 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4798 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4799 Callee.setFunctionPointer(CalleePtr); 4800 } 4801 4802 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4803 } 4804 4805 LValue CodeGenFunction:: 4806 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4807 Address BaseAddr = Address::invalid(); 4808 if (E->getOpcode() == BO_PtrMemI) { 4809 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4810 } else { 4811 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4812 } 4813 4814 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4815 4816 const MemberPointerType *MPT 4817 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4818 4819 LValueBaseInfo BaseInfo; 4820 TBAAAccessInfo TBAAInfo; 4821 Address MemberAddr = 4822 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4823 &TBAAInfo); 4824 4825 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4826 } 4827 4828 /// Given the address of a temporary variable, produce an r-value of 4829 /// its type. 4830 RValue CodeGenFunction::convertTempToRValue(Address addr, 4831 QualType type, 4832 SourceLocation loc) { 4833 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4834 switch (getEvaluationKind(type)) { 4835 case TEK_Complex: 4836 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4837 case TEK_Aggregate: 4838 return lvalue.asAggregateRValue(); 4839 case TEK_Scalar: 4840 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4841 } 4842 llvm_unreachable("bad evaluation kind"); 4843 } 4844 4845 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4846 assert(Val->getType()->isFPOrFPVectorTy()); 4847 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4848 return; 4849 4850 llvm::MDBuilder MDHelper(getLLVMContext()); 4851 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4852 4853 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4854 } 4855 4856 namespace { 4857 struct LValueOrRValue { 4858 LValue LV; 4859 RValue RV; 4860 }; 4861 } 4862 4863 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4864 const PseudoObjectExpr *E, 4865 bool forLValue, 4866 AggValueSlot slot) { 4867 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4868 4869 // Find the result expression, if any. 4870 const Expr *resultExpr = E->getResultExpr(); 4871 LValueOrRValue result; 4872 4873 for (PseudoObjectExpr::const_semantics_iterator 4874 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4875 const Expr *semantic = *i; 4876 4877 // If this semantic expression is an opaque value, bind it 4878 // to the result of its source expression. 4879 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4880 // Skip unique OVEs. 4881 if (ov->isUnique()) { 4882 assert(ov != resultExpr && 4883 "A unique OVE cannot be used as the result expression"); 4884 continue; 4885 } 4886 4887 // If this is the result expression, we may need to evaluate 4888 // directly into the slot. 4889 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4890 OVMA opaqueData; 4891 if (ov == resultExpr && ov->isRValue() && !forLValue && 4892 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4893 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4894 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4895 AlignmentSource::Decl); 4896 opaqueData = OVMA::bind(CGF, ov, LV); 4897 result.RV = slot.asRValue(); 4898 4899 // Otherwise, emit as normal. 4900 } else { 4901 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4902 4903 // If this is the result, also evaluate the result now. 4904 if (ov == resultExpr) { 4905 if (forLValue) 4906 result.LV = CGF.EmitLValue(ov); 4907 else 4908 result.RV = CGF.EmitAnyExpr(ov, slot); 4909 } 4910 } 4911 4912 opaques.push_back(opaqueData); 4913 4914 // Otherwise, if the expression is the result, evaluate it 4915 // and remember the result. 4916 } else if (semantic == resultExpr) { 4917 if (forLValue) 4918 result.LV = CGF.EmitLValue(semantic); 4919 else 4920 result.RV = CGF.EmitAnyExpr(semantic, slot); 4921 4922 // Otherwise, evaluate the expression in an ignored context. 4923 } else { 4924 CGF.EmitIgnoredExpr(semantic); 4925 } 4926 } 4927 4928 // Unbind all the opaques now. 4929 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4930 opaques[i].unbind(CGF); 4931 4932 return result; 4933 } 4934 4935 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4936 AggValueSlot slot) { 4937 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4938 } 4939 4940 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4941 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4942 } 4943