1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/ConvertUTF.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===--------------------------------------------------------------------===//
36 //                        Miscellaneous Helper Methods
37 //===--------------------------------------------------------------------===//
38 
39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40   unsigned addressSpace =
41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
42 
43   llvm::PointerType *destType = Int8PtrTy;
44   if (addressSpace)
45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46 
47   if (value->getType() == destType) return value;
48   return Builder.CreateBitCast(value, destType);
49 }
50 
51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
52 /// block.
53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                     const Twine &Name) {
55   if (!Builder.isNamePreserving())
56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58 }
59 
60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                      llvm::Value *Init) {
62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65 }
66 
67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                 const Twine &Name) {
69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70   // FIXME: Should we prefer the preferred type alignment here?
71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
72   Alloc->setAlignment(Align.getQuantity());
73   return Alloc;
74 }
75 
76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                  const Twine &Name) {
78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79   // FIXME: Should we prefer the preferred type alignment here?
80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
81   Alloc->setAlignment(Align.getQuantity());
82   return Alloc;
83 }
84 
85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86 /// expression and compare the result against zero, returning an Int1Ty value.
87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89     llvm::Value *MemPtr = EmitScalarExpr(E);
90     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91   }
92 
93   QualType BoolTy = getContext().BoolTy;
94   if (!E->getType()->isAnyComplexType())
95     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96 
97   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98 }
99 
100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
101 /// ignoring the result.
102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103   if (E->isRValue())
104     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105 
106   // Just emit it as an l-value and drop the result.
107   EmitLValue(E);
108 }
109 
110 /// EmitAnyExpr - Emit code to compute the specified expression which
111 /// can have any type.  The result is returned as an RValue struct.
112 /// If this is an aggregate expression, AggSlot indicates where the
113 /// result should be returned.
114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                     AggValueSlot aggSlot,
116                                     bool ignoreResult) {
117   switch (getEvaluationKind(E->getType())) {
118   case TEK_Scalar:
119     return RValue::get(EmitScalarExpr(E, ignoreResult));
120   case TEK_Complex:
121     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122   case TEK_Aggregate:
123     if (!ignoreResult && aggSlot.isIgnored())
124       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125     EmitAggExpr(E, aggSlot);
126     return aggSlot.asRValue();
127   }
128   llvm_unreachable("bad evaluation kind");
129 }
130 
131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132 /// always be accessible even if no aggregate location is provided.
133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134   AggValueSlot AggSlot = AggValueSlot::ignored();
135 
136   if (hasAggregateEvaluationKind(E->getType()))
137     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138   return EmitAnyExpr(E, AggSlot);
139 }
140 
141 /// EmitAnyExprToMem - Evaluate an expression into a given memory
142 /// location.
143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                        llvm::Value *Location,
145                                        Qualifiers Quals,
146                                        bool IsInit) {
147   // FIXME: This function should take an LValue as an argument.
148   switch (getEvaluationKind(E->getType())) {
149   case TEK_Complex:
150     EmitComplexExprIntoLValue(E,
151                          MakeNaturalAlignAddrLValue(Location, E->getType()),
152                               /*isInit*/ false);
153     return;
154 
155   case TEK_Aggregate: {
156     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                          AggValueSlot::IsDestructed_t(IsInit),
159                                          AggValueSlot::DoesNotNeedGCBarriers,
160                                          AggValueSlot::IsAliased_t(!IsInit)));
161     return;
162   }
163 
164   case TEK_Scalar: {
165     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166     LValue LV = MakeAddrLValue(Location, E->getType());
167     EmitStoreThroughLValue(RV, LV);
168     return;
169   }
170   }
171   llvm_unreachable("bad evaluation kind");
172 }
173 
174 static llvm::Value *
175 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
176                          const NamedDecl *InitializedDecl) {
177   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
178     if (VD->hasGlobalStorage()) {
179       SmallString<256> Name;
180       llvm::raw_svector_ostream Out(Name);
181       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
182       Out.flush();
183 
184       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
185 
186       // Create the reference temporary.
187       llvm::GlobalValue *RefTemp =
188         new llvm::GlobalVariable(CGF.CGM.getModule(),
189                                  RefTempTy, /*isConstant=*/false,
190                                  llvm::GlobalValue::InternalLinkage,
191                                  llvm::Constant::getNullValue(RefTempTy),
192                                  Name.str());
193       return RefTemp;
194     }
195   }
196 
197   return CGF.CreateMemTemp(Type, "ref.tmp");
198 }
199 
200 static llvm::Value *
201 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
202                             llvm::Value *&ReferenceTemporary,
203                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
204                             QualType &ObjCARCReferenceLifetimeType,
205                             const NamedDecl *InitializedDecl) {
206   const MaterializeTemporaryExpr *M = NULL;
207   E = E->findMaterializedTemporary(M);
208   // Objective-C++ ARC:
209   //   If we are binding a reference to a temporary that has ownership, we
210   //   need to perform retain/release operations on the temporary.
211   if (M && CGF.getLangOpts().ObjCAutoRefCount &&
212       M->getType()->isObjCLifetimeType() &&
213       (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
214        M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
215        M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
216     ObjCARCReferenceLifetimeType = M->getType();
217 
218   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
219     CGF.enterFullExpression(EWC);
220     CodeGenFunction::RunCleanupsScope Scope(CGF);
221 
222     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
223                                        ReferenceTemporary,
224                                        ReferenceTemporaryDtor,
225                                        ObjCARCReferenceLifetimeType,
226                                        InitializedDecl);
227   }
228 
229   RValue RV;
230   if (E->isGLValue()) {
231     // Emit the expression as an lvalue.
232     LValue LV = CGF.EmitLValue(E);
233 
234     if (LV.isSimple())
235       return LV.getAddress();
236 
237     // We have to load the lvalue.
238     RV = CGF.EmitLoadOfLValue(LV);
239   } else {
240     if (!ObjCARCReferenceLifetimeType.isNull()) {
241       ReferenceTemporary = CreateReferenceTemporary(CGF,
242                                                   ObjCARCReferenceLifetimeType,
243                                                     InitializedDecl);
244 
245 
246       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
247                                              ObjCARCReferenceLifetimeType);
248 
249       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
250                          RefTempDst, false);
251 
252       bool ExtendsLifeOfTemporary = false;
253       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
254         if (Var->extendsLifetimeOfTemporary())
255           ExtendsLifeOfTemporary = true;
256       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
257         ExtendsLifeOfTemporary = true;
258       }
259 
260       if (!ExtendsLifeOfTemporary) {
261         // Since the lifetime of this temporary isn't going to be extended,
262         // we need to clean it up ourselves at the end of the full expression.
263         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
264         case Qualifiers::OCL_None:
265         case Qualifiers::OCL_ExplicitNone:
266         case Qualifiers::OCL_Autoreleasing:
267           break;
268 
269         case Qualifiers::OCL_Strong: {
270           assert(!ObjCARCReferenceLifetimeType->isArrayType());
271           CleanupKind cleanupKind = CGF.getARCCleanupKind();
272           CGF.pushDestroy(cleanupKind,
273                           ReferenceTemporary,
274                           ObjCARCReferenceLifetimeType,
275                           CodeGenFunction::destroyARCStrongImprecise,
276                           cleanupKind & EHCleanup);
277           break;
278         }
279 
280         case Qualifiers::OCL_Weak:
281           assert(!ObjCARCReferenceLifetimeType->isArrayType());
282           CGF.pushDestroy(NormalAndEHCleanup,
283                           ReferenceTemporary,
284                           ObjCARCReferenceLifetimeType,
285                           CodeGenFunction::destroyARCWeak,
286                           /*useEHCleanupForArray*/ true);
287           break;
288         }
289 
290         ObjCARCReferenceLifetimeType = QualType();
291       }
292 
293       return ReferenceTemporary;
294     }
295 
296     SmallVector<SubobjectAdjustment, 2> Adjustments;
297     E = E->skipRValueSubobjectAdjustments(Adjustments);
298     if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
299       if (opaque->getType()->isRecordType())
300         return CGF.EmitOpaqueValueLValue(opaque).getAddress();
301 
302     // Create a reference temporary if necessary.
303     AggValueSlot AggSlot = AggValueSlot::ignored();
304     if (CGF.hasAggregateEvaluationKind(E->getType())) {
305       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
306                                                     InitializedDecl);
307       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
308       AggValueSlot::IsDestructed_t isDestructed
309         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
310       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
311                                       Qualifiers(), isDestructed,
312                                       AggValueSlot::DoesNotNeedGCBarriers,
313                                       AggValueSlot::IsNotAliased);
314     }
315 
316     if (InitializedDecl) {
317       // Get the destructor for the reference temporary.
318       if (const RecordType *RT =
319             E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
320         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
321         if (!ClassDecl->hasTrivialDestructor())
322           ReferenceTemporaryDtor = ClassDecl->getDestructor();
323       }
324     }
325 
326     RV = CGF.EmitAnyExpr(E, AggSlot);
327 
328     // Check if need to perform derived-to-base casts and/or field accesses, to
329     // get from the temporary object we created (and, potentially, for which we
330     // extended the lifetime) to the subobject we're binding the reference to.
331     if (!Adjustments.empty()) {
332       llvm::Value *Object = RV.getAggregateAddr();
333       for (unsigned I = Adjustments.size(); I != 0; --I) {
334         SubobjectAdjustment &Adjustment = Adjustments[I-1];
335         switch (Adjustment.Kind) {
336         case SubobjectAdjustment::DerivedToBaseAdjustment:
337           Object =
338               CGF.GetAddressOfBaseClass(Object,
339                                         Adjustment.DerivedToBase.DerivedClass,
340                               Adjustment.DerivedToBase.BasePath->path_begin(),
341                               Adjustment.DerivedToBase.BasePath->path_end(),
342                                         /*NullCheckValue=*/false);
343           break;
344 
345         case SubobjectAdjustment::FieldAdjustment: {
346           LValue LV = CGF.MakeAddrLValue(Object, E->getType());
347           LV = CGF.EmitLValueForField(LV, Adjustment.Field);
348           if (LV.isSimple()) {
349             Object = LV.getAddress();
350             break;
351           }
352 
353           // For non-simple lvalues, we actually have to create a copy of
354           // the object we're binding to.
355           QualType T = Adjustment.Field->getType().getNonReferenceType()
356                                                   .getUnqualifiedType();
357           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
358           LValue TempLV = CGF.MakeAddrLValue(Object,
359                                              Adjustment.Field->getType());
360           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
361           break;
362         }
363 
364         case SubobjectAdjustment::MemberPointerAdjustment: {
365           llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
366           Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
367                         CGF, Object, Ptr, Adjustment.Ptr.MPT);
368           break;
369         }
370         }
371       }
372 
373       return Object;
374     }
375   }
376 
377   if (RV.isAggregate())
378     return RV.getAggregateAddr();
379 
380   // Create a temporary variable that we can bind the reference to.
381   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
382                                                 InitializedDecl);
383 
384 
385   LValue tempLV = CGF.MakeNaturalAlignAddrLValue(ReferenceTemporary,
386                                                  E->getType());
387   if (RV.isScalar())
388     CGF.EmitStoreOfScalar(RV.getScalarVal(), tempLV, /*init*/ true);
389   else
390     CGF.EmitStoreOfComplex(RV.getComplexVal(), tempLV, /*init*/ true);
391   return ReferenceTemporary;
392 }
393 
394 RValue
395 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
396                                             const NamedDecl *InitializedDecl) {
397   llvm::Value *ReferenceTemporary = 0;
398   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
399   QualType ObjCARCReferenceLifetimeType;
400   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
401                                                    ReferenceTemporaryDtor,
402                                                    ObjCARCReferenceLifetimeType,
403                                                    InitializedDecl);
404   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
405     // C++11 [dcl.ref]p5 (as amended by core issue 453):
406     //   If a glvalue to which a reference is directly bound designates neither
407     //   an existing object or function of an appropriate type nor a region of
408     //   storage of suitable size and alignment to contain an object of the
409     //   reference's type, the behavior is undefined.
410     QualType Ty = E->getType();
411     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
412   }
413   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
414     return RValue::get(Value);
415 
416   // Make sure to call the destructor for the reference temporary.
417   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
418   if (VD && VD->hasGlobalStorage()) {
419     if (ReferenceTemporaryDtor) {
420       llvm::Constant *CleanupFn;
421       llvm::Constant *CleanupArg;
422       if (E->getType()->isArrayType()) {
423         CleanupFn = CodeGenFunction(CGM).generateDestroyHelper(
424             cast<llvm::Constant>(ReferenceTemporary), E->getType(),
425             destroyCXXObject, getLangOpts().Exceptions);
426         CleanupArg = llvm::Constant::getNullValue(Int8PtrTy);
427       } else {
428         CleanupFn =
429           CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
430         CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
431       }
432       CGM.getCXXABI().registerGlobalDtor(*this, CleanupFn, CleanupArg);
433     } else {
434       assert(!ObjCARCReferenceLifetimeType.isNull());
435       // Note: We intentionally do not register a global "destructor" to
436       // release the object.
437     }
438 
439     return RValue::get(Value);
440   }
441 
442   if (ReferenceTemporaryDtor) {
443     if (E->getType()->isArrayType())
444       pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
445                   destroyCXXObject, getLangOpts().Exceptions);
446     else
447       PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
448   } else {
449     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
450     case Qualifiers::OCL_None:
451       llvm_unreachable(
452                       "Not a reference temporary that needs to be deallocated");
453     case Qualifiers::OCL_ExplicitNone:
454     case Qualifiers::OCL_Autoreleasing:
455       // Nothing to do.
456       break;
457 
458     case Qualifiers::OCL_Strong: {
459       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
460       CleanupKind cleanupKind = getARCCleanupKind();
461       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
462                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
463                   cleanupKind & EHCleanup);
464       break;
465     }
466 
467     case Qualifiers::OCL_Weak: {
468       // __weak objects always get EH cleanups; otherwise, exceptions
469       // could cause really nasty crashes instead of mere leaks.
470       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
471                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
472       break;
473     }
474     }
475   }
476 
477   return RValue::get(Value);
478 }
479 
480 
481 /// getAccessedFieldNo - Given an encoded value and a result number, return the
482 /// input field number being accessed.
483 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
484                                              const llvm::Constant *Elts) {
485   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
486       ->getZExtValue();
487 }
488 
489 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
490 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
491                                     llvm::Value *High) {
492   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
493   llvm::Value *K47 = Builder.getInt64(47);
494   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
495   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
496   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
497   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
498   return Builder.CreateMul(B1, KMul);
499 }
500 
501 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
502                                     llvm::Value *Address,
503                                     QualType Ty, CharUnits Alignment) {
504   if (!SanitizePerformTypeCheck)
505     return;
506 
507   // Don't check pointers outside the default address space. The null check
508   // isn't correct, the object-size check isn't supported by LLVM, and we can't
509   // communicate the addresses to the runtime handler for the vptr check.
510   if (Address->getType()->getPointerAddressSpace())
511     return;
512 
513   llvm::Value *Cond = 0;
514   llvm::BasicBlock *Done = 0;
515 
516   if (SanOpts->Null) {
517     // The glvalue must not be an empty glvalue.
518     Cond = Builder.CreateICmpNE(
519         Address, llvm::Constant::getNullValue(Address->getType()));
520 
521     if (TCK == TCK_DowncastPointer) {
522       // When performing a pointer downcast, it's OK if the value is null.
523       // Skip the remaining checks in that case.
524       Done = createBasicBlock("null");
525       llvm::BasicBlock *Rest = createBasicBlock("not.null");
526       Builder.CreateCondBr(Cond, Rest, Done);
527       EmitBlock(Rest);
528       Cond = 0;
529     }
530   }
531 
532   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
533     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
534 
535     // The glvalue must refer to a large enough storage region.
536     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
537     //        to check this.
538     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
539     llvm::Value *Min = Builder.getFalse();
540     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
541     llvm::Value *LargeEnough =
542         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
543                               llvm::ConstantInt::get(IntPtrTy, Size));
544     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
545   }
546 
547   uint64_t AlignVal = 0;
548 
549   if (SanOpts->Alignment) {
550     AlignVal = Alignment.getQuantity();
551     if (!Ty->isIncompleteType() && !AlignVal)
552       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
553 
554     // The glvalue must be suitably aligned.
555     if (AlignVal) {
556       llvm::Value *Align =
557           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
558                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
559       llvm::Value *Aligned =
560         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
561       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
562     }
563   }
564 
565   if (Cond) {
566     llvm::Constant *StaticData[] = {
567       EmitCheckSourceLocation(Loc),
568       EmitCheckTypeDescriptor(Ty),
569       llvm::ConstantInt::get(SizeTy, AlignVal),
570       llvm::ConstantInt::get(Int8Ty, TCK)
571     };
572     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
573   }
574 
575   // If possible, check that the vptr indicates that there is a subobject of
576   // type Ty at offset zero within this object.
577   //
578   // C++11 [basic.life]p5,6:
579   //   [For storage which does not refer to an object within its lifetime]
580   //   The program has undefined behavior if:
581   //    -- the [pointer or glvalue] is used to access a non-static data member
582   //       or call a non-static member function
583   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
584   if (SanOpts->Vptr &&
585       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
586        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
587       RD && RD->hasDefinition() && RD->isDynamicClass()) {
588     // Compute a hash of the mangled name of the type.
589     //
590     // FIXME: This is not guaranteed to be deterministic! Move to a
591     //        fingerprinting mechanism once LLVM provides one. For the time
592     //        being the implementation happens to be deterministic.
593     SmallString<64> MangledName;
594     llvm::raw_svector_ostream Out(MangledName);
595     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
596                                                      Out);
597     llvm::hash_code TypeHash = hash_value(Out.str());
598 
599     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
600     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
601     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
602     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
603     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
604     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
605 
606     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
607     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
608 
609     // Look the hash up in our cache.
610     const int CacheSize = 128;
611     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
612     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
613                                                    "__ubsan_vptr_type_cache");
614     llvm::Value *Slot = Builder.CreateAnd(Hash,
615                                           llvm::ConstantInt::get(IntPtrTy,
616                                                                  CacheSize-1));
617     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
618     llvm::Value *CacheVal =
619       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
620 
621     // If the hash isn't in the cache, call a runtime handler to perform the
622     // hard work of checking whether the vptr is for an object of the right
623     // type. This will either fill in the cache and return, or produce a
624     // diagnostic.
625     llvm::Constant *StaticData[] = {
626       EmitCheckSourceLocation(Loc),
627       EmitCheckTypeDescriptor(Ty),
628       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
629       llvm::ConstantInt::get(Int8Ty, TCK)
630     };
631     llvm::Value *DynamicData[] = { Address, Hash };
632     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
633               "dynamic_type_cache_miss", StaticData, DynamicData,
634               CRK_AlwaysRecoverable);
635   }
636 
637   if (Done) {
638     Builder.CreateBr(Done);
639     EmitBlock(Done);
640   }
641 }
642 
643 /// Determine whether this expression refers to a flexible array member in a
644 /// struct. We disable array bounds checks for such members.
645 static bool isFlexibleArrayMemberExpr(const Expr *E) {
646   // For compatibility with existing code, we treat arrays of length 0 or
647   // 1 as flexible array members.
648   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
649   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
650     if (CAT->getSize().ugt(1))
651       return false;
652   } else if (!isa<IncompleteArrayType>(AT))
653     return false;
654 
655   E = E->IgnoreParens();
656 
657   // A flexible array member must be the last member in the class.
658   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
659     // FIXME: If the base type of the member expr is not FD->getParent(),
660     // this should not be treated as a flexible array member access.
661     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
662       RecordDecl::field_iterator FI(
663           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
664       return ++FI == FD->getParent()->field_end();
665     }
666   }
667 
668   return false;
669 }
670 
671 /// If Base is known to point to the start of an array, return the length of
672 /// that array. Return 0 if the length cannot be determined.
673 static llvm::Value *getArrayIndexingBound(
674     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
675   // For the vector indexing extension, the bound is the number of elements.
676   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
677     IndexedType = Base->getType();
678     return CGF.Builder.getInt32(VT->getNumElements());
679   }
680 
681   Base = Base->IgnoreParens();
682 
683   if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
684     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
685         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
686       IndexedType = CE->getSubExpr()->getType();
687       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
688       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
689         return CGF.Builder.getInt(CAT->getSize());
690       else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
691         return CGF.getVLASize(VAT).first;
692     }
693   }
694 
695   return 0;
696 }
697 
698 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
699                                       llvm::Value *Index, QualType IndexType,
700                                       bool Accessed) {
701   assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
702 
703   QualType IndexedType;
704   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
705   if (!Bound)
706     return;
707 
708   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
709   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
710   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
711 
712   llvm::Constant *StaticData[] = {
713     EmitCheckSourceLocation(E->getExprLoc()),
714     EmitCheckTypeDescriptor(IndexedType),
715     EmitCheckTypeDescriptor(IndexType)
716   };
717   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
718                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
719   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
720 }
721 
722 
723 CodeGenFunction::ComplexPairTy CodeGenFunction::
724 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
725                          bool isInc, bool isPre) {
726   ComplexPairTy InVal = EmitLoadOfComplex(LV);
727 
728   llvm::Value *NextVal;
729   if (isa<llvm::IntegerType>(InVal.first->getType())) {
730     uint64_t AmountVal = isInc ? 1 : -1;
731     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
732 
733     // Add the inc/dec to the real part.
734     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
735   } else {
736     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
737     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
738     if (!isInc)
739       FVal.changeSign();
740     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
741 
742     // Add the inc/dec to the real part.
743     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
744   }
745 
746   ComplexPairTy IncVal(NextVal, InVal.second);
747 
748   // Store the updated result through the lvalue.
749   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
750 
751   // If this is a postinc, return the value read from memory, otherwise use the
752   // updated value.
753   return isPre ? IncVal : InVal;
754 }
755 
756 
757 //===----------------------------------------------------------------------===//
758 //                         LValue Expression Emission
759 //===----------------------------------------------------------------------===//
760 
761 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
762   if (Ty->isVoidType())
763     return RValue::get(0);
764 
765   switch (getEvaluationKind(Ty)) {
766   case TEK_Complex: {
767     llvm::Type *EltTy =
768       ConvertType(Ty->castAs<ComplexType>()->getElementType());
769     llvm::Value *U = llvm::UndefValue::get(EltTy);
770     return RValue::getComplex(std::make_pair(U, U));
771   }
772 
773   // If this is a use of an undefined aggregate type, the aggregate must have an
774   // identifiable address.  Just because the contents of the value are undefined
775   // doesn't mean that the address can't be taken and compared.
776   case TEK_Aggregate: {
777     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
778     return RValue::getAggregate(DestPtr);
779   }
780 
781   case TEK_Scalar:
782     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
783   }
784   llvm_unreachable("bad evaluation kind");
785 }
786 
787 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
788                                               const char *Name) {
789   ErrorUnsupported(E, Name);
790   return GetUndefRValue(E->getType());
791 }
792 
793 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
794                                               const char *Name) {
795   ErrorUnsupported(E, Name);
796   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
797   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
798 }
799 
800 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
801   LValue LV;
802   if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
803     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
804   else
805     LV = EmitLValue(E);
806   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
807     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
808                   E->getType(), LV.getAlignment());
809   return LV;
810 }
811 
812 /// EmitLValue - Emit code to compute a designator that specifies the location
813 /// of the expression.
814 ///
815 /// This can return one of two things: a simple address or a bitfield reference.
816 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
817 /// an LLVM pointer type.
818 ///
819 /// If this returns a bitfield reference, nothing about the pointee type of the
820 /// LLVM value is known: For example, it may not be a pointer to an integer.
821 ///
822 /// If this returns a normal address, and if the lvalue's C type is fixed size,
823 /// this method guarantees that the returned pointer type will point to an LLVM
824 /// type of the same size of the lvalue's type.  If the lvalue has a variable
825 /// length type, this is not possible.
826 ///
827 LValue CodeGenFunction::EmitLValue(const Expr *E) {
828   switch (E->getStmtClass()) {
829   default: return EmitUnsupportedLValue(E, "l-value expression");
830 
831   case Expr::ObjCPropertyRefExprClass:
832     llvm_unreachable("cannot emit a property reference directly");
833 
834   case Expr::ObjCSelectorExprClass:
835     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
836   case Expr::ObjCIsaExprClass:
837     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
838   case Expr::BinaryOperatorClass:
839     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
840   case Expr::CompoundAssignOperatorClass:
841     if (!E->getType()->isAnyComplexType())
842       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
843     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
844   case Expr::CallExprClass:
845   case Expr::CXXMemberCallExprClass:
846   case Expr::CXXOperatorCallExprClass:
847   case Expr::UserDefinedLiteralClass:
848     return EmitCallExprLValue(cast<CallExpr>(E));
849   case Expr::VAArgExprClass:
850     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
851   case Expr::DeclRefExprClass:
852     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
853   case Expr::ParenExprClass:
854     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
855   case Expr::GenericSelectionExprClass:
856     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
857   case Expr::PredefinedExprClass:
858     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
859   case Expr::StringLiteralClass:
860     return EmitStringLiteralLValue(cast<StringLiteral>(E));
861   case Expr::ObjCEncodeExprClass:
862     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
863   case Expr::PseudoObjectExprClass:
864     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
865   case Expr::InitListExprClass:
866     return EmitInitListLValue(cast<InitListExpr>(E));
867   case Expr::CXXTemporaryObjectExprClass:
868   case Expr::CXXConstructExprClass:
869     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
870   case Expr::CXXBindTemporaryExprClass:
871     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
872   case Expr::CXXUuidofExprClass:
873     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
874   case Expr::LambdaExprClass:
875     return EmitLambdaLValue(cast<LambdaExpr>(E));
876 
877   case Expr::ExprWithCleanupsClass: {
878     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
879     enterFullExpression(cleanups);
880     RunCleanupsScope Scope(*this);
881     return EmitLValue(cleanups->getSubExpr());
882   }
883 
884   case Expr::CXXScalarValueInitExprClass:
885     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
886   case Expr::CXXDefaultArgExprClass:
887     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
888   case Expr::CXXTypeidExprClass:
889     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
890 
891   case Expr::ObjCMessageExprClass:
892     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
893   case Expr::ObjCIvarRefExprClass:
894     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
895   case Expr::StmtExprClass:
896     return EmitStmtExprLValue(cast<StmtExpr>(E));
897   case Expr::UnaryOperatorClass:
898     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
899   case Expr::ArraySubscriptExprClass:
900     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
901   case Expr::ExtVectorElementExprClass:
902     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
903   case Expr::MemberExprClass:
904     return EmitMemberExpr(cast<MemberExpr>(E));
905   case Expr::CompoundLiteralExprClass:
906     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
907   case Expr::ConditionalOperatorClass:
908     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
909   case Expr::BinaryConditionalOperatorClass:
910     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
911   case Expr::ChooseExprClass:
912     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
913   case Expr::OpaqueValueExprClass:
914     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
915   case Expr::SubstNonTypeTemplateParmExprClass:
916     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
917   case Expr::ImplicitCastExprClass:
918   case Expr::CStyleCastExprClass:
919   case Expr::CXXFunctionalCastExprClass:
920   case Expr::CXXStaticCastExprClass:
921   case Expr::CXXDynamicCastExprClass:
922   case Expr::CXXReinterpretCastExprClass:
923   case Expr::CXXConstCastExprClass:
924   case Expr::ObjCBridgedCastExprClass:
925     return EmitCastLValue(cast<CastExpr>(E));
926 
927   case Expr::MaterializeTemporaryExprClass:
928     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
929   }
930 }
931 
932 /// Given an object of the given canonical type, can we safely copy a
933 /// value out of it based on its initializer?
934 static bool isConstantEmittableObjectType(QualType type) {
935   assert(type.isCanonical());
936   assert(!type->isReferenceType());
937 
938   // Must be const-qualified but non-volatile.
939   Qualifiers qs = type.getLocalQualifiers();
940   if (!qs.hasConst() || qs.hasVolatile()) return false;
941 
942   // Otherwise, all object types satisfy this except C++ classes with
943   // mutable subobjects or non-trivial copy/destroy behavior.
944   if (const RecordType *RT = dyn_cast<RecordType>(type))
945     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
946       if (RD->hasMutableFields() || !RD->isTrivial())
947         return false;
948 
949   return true;
950 }
951 
952 /// Can we constant-emit a load of a reference to a variable of the
953 /// given type?  This is different from predicates like
954 /// Decl::isUsableInConstantExpressions because we do want it to apply
955 /// in situations that don't necessarily satisfy the language's rules
956 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
957 /// to do this with const float variables even if those variables
958 /// aren't marked 'constexpr'.
959 enum ConstantEmissionKind {
960   CEK_None,
961   CEK_AsReferenceOnly,
962   CEK_AsValueOrReference,
963   CEK_AsValueOnly
964 };
965 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
966   type = type.getCanonicalType();
967   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
968     if (isConstantEmittableObjectType(ref->getPointeeType()))
969       return CEK_AsValueOrReference;
970     return CEK_AsReferenceOnly;
971   }
972   if (isConstantEmittableObjectType(type))
973     return CEK_AsValueOnly;
974   return CEK_None;
975 }
976 
977 /// Try to emit a reference to the given value without producing it as
978 /// an l-value.  This is actually more than an optimization: we can't
979 /// produce an l-value for variables that we never actually captured
980 /// in a block or lambda, which means const int variables or constexpr
981 /// literals or similar.
982 CodeGenFunction::ConstantEmission
983 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
984   ValueDecl *value = refExpr->getDecl();
985 
986   // The value needs to be an enum constant or a constant variable.
987   ConstantEmissionKind CEK;
988   if (isa<ParmVarDecl>(value)) {
989     CEK = CEK_None;
990   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
991     CEK = checkVarTypeForConstantEmission(var->getType());
992   } else if (isa<EnumConstantDecl>(value)) {
993     CEK = CEK_AsValueOnly;
994   } else {
995     CEK = CEK_None;
996   }
997   if (CEK == CEK_None) return ConstantEmission();
998 
999   Expr::EvalResult result;
1000   bool resultIsReference;
1001   QualType resultType;
1002 
1003   // It's best to evaluate all the way as an r-value if that's permitted.
1004   if (CEK != CEK_AsReferenceOnly &&
1005       refExpr->EvaluateAsRValue(result, getContext())) {
1006     resultIsReference = false;
1007     resultType = refExpr->getType();
1008 
1009   // Otherwise, try to evaluate as an l-value.
1010   } else if (CEK != CEK_AsValueOnly &&
1011              refExpr->EvaluateAsLValue(result, getContext())) {
1012     resultIsReference = true;
1013     resultType = value->getType();
1014 
1015   // Failure.
1016   } else {
1017     return ConstantEmission();
1018   }
1019 
1020   // In any case, if the initializer has side-effects, abandon ship.
1021   if (result.HasSideEffects)
1022     return ConstantEmission();
1023 
1024   // Emit as a constant.
1025   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1026 
1027   // Make sure we emit a debug reference to the global variable.
1028   // This should probably fire even for
1029   if (isa<VarDecl>(value)) {
1030     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1031       EmitDeclRefExprDbgValue(refExpr, C);
1032   } else {
1033     assert(isa<EnumConstantDecl>(value));
1034     EmitDeclRefExprDbgValue(refExpr, C);
1035   }
1036 
1037   // If we emitted a reference constant, we need to dereference that.
1038   if (resultIsReference)
1039     return ConstantEmission::forReference(C);
1040 
1041   return ConstantEmission::forValue(C);
1042 }
1043 
1044 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
1045   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1046                           lvalue.getAlignment().getQuantity(),
1047                           lvalue.getType(), lvalue.getTBAAInfo(),
1048                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1049 }
1050 
1051 static bool hasBooleanRepresentation(QualType Ty) {
1052   if (Ty->isBooleanType())
1053     return true;
1054 
1055   if (const EnumType *ET = Ty->getAs<EnumType>())
1056     return ET->getDecl()->getIntegerType()->isBooleanType();
1057 
1058   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1059     return hasBooleanRepresentation(AT->getValueType());
1060 
1061   return false;
1062 }
1063 
1064 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1065                             llvm::APInt &Min, llvm::APInt &End,
1066                             bool StrictEnums) {
1067   const EnumType *ET = Ty->getAs<EnumType>();
1068   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1069                                 ET && !ET->getDecl()->isFixed();
1070   bool IsBool = hasBooleanRepresentation(Ty);
1071   if (!IsBool && !IsRegularCPlusPlusEnum)
1072     return false;
1073 
1074   if (IsBool) {
1075     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1076     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1077   } else {
1078     const EnumDecl *ED = ET->getDecl();
1079     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1080     unsigned Bitwidth = LTy->getScalarSizeInBits();
1081     unsigned NumNegativeBits = ED->getNumNegativeBits();
1082     unsigned NumPositiveBits = ED->getNumPositiveBits();
1083 
1084     if (NumNegativeBits) {
1085       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1086       assert(NumBits <= Bitwidth);
1087       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1088       Min = -End;
1089     } else {
1090       assert(NumPositiveBits <= Bitwidth);
1091       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1092       Min = llvm::APInt(Bitwidth, 0);
1093     }
1094   }
1095   return true;
1096 }
1097 
1098 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1099   llvm::APInt Min, End;
1100   if (!getRangeForType(*this, Ty, Min, End,
1101                        CGM.getCodeGenOpts().StrictEnums))
1102     return 0;
1103 
1104   llvm::MDBuilder MDHelper(getLLVMContext());
1105   return MDHelper.createRange(Min, End);
1106 }
1107 
1108 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1109                                               unsigned Alignment, QualType Ty,
1110                                               llvm::MDNode *TBAAInfo,
1111                                               QualType TBAABaseType,
1112                                               uint64_t TBAAOffset) {
1113   // For better performance, handle vector loads differently.
1114   if (Ty->isVectorType()) {
1115     llvm::Value *V;
1116     const llvm::Type *EltTy =
1117     cast<llvm::PointerType>(Addr->getType())->getElementType();
1118 
1119     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1120 
1121     // Handle vectors of size 3, like size 4 for better performance.
1122     if (VTy->getNumElements() == 3) {
1123 
1124       // Bitcast to vec4 type.
1125       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1126                                                          4);
1127       llvm::PointerType *ptVec4Ty =
1128       llvm::PointerType::get(vec4Ty,
1129                              (cast<llvm::PointerType>(
1130                                       Addr->getType()))->getAddressSpace());
1131       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1132                                                 "castToVec4");
1133       // Now load value.
1134       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1135 
1136       // Shuffle vector to get vec3.
1137       llvm::Constant *Mask[] = {
1138         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1139         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1140         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1141       };
1142 
1143       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1144       V = Builder.CreateShuffleVector(LoadVal,
1145                                       llvm::UndefValue::get(vec4Ty),
1146                                       MaskV, "extractVec");
1147       return EmitFromMemory(V, Ty);
1148     }
1149   }
1150 
1151   // Atomic operations have to be done on integral types.
1152   if (Ty->isAtomicType()) {
1153     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1154                                      CharUnits::fromQuantity(Alignment),
1155                                      getContext(), TBAAInfo);
1156     return EmitAtomicLoad(lvalue).getScalarVal();
1157   }
1158 
1159   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1160   if (Volatile)
1161     Load->setVolatile(true);
1162   if (Alignment)
1163     Load->setAlignment(Alignment);
1164   if (TBAAInfo) {
1165     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1166                                                       TBAAOffset);
1167     CGM.DecorateInstruction(Load, TBAAPath);
1168   }
1169 
1170   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1171       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1172     llvm::APInt Min, End;
1173     if (getRangeForType(*this, Ty, Min, End, true)) {
1174       --End;
1175       llvm::Value *Check;
1176       if (!Min)
1177         Check = Builder.CreateICmpULE(
1178           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1179       else {
1180         llvm::Value *Upper = Builder.CreateICmpSLE(
1181           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1182         llvm::Value *Lower = Builder.CreateICmpSGE(
1183           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1184         Check = Builder.CreateAnd(Upper, Lower);
1185       }
1186       // FIXME: Provide a SourceLocation.
1187       EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1188                 EmitCheckValue(Load), CRK_Recoverable);
1189     }
1190   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1191     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1192       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1193 
1194   return EmitFromMemory(Load, Ty);
1195 }
1196 
1197 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1198   // Bool has a different representation in memory than in registers.
1199   if (hasBooleanRepresentation(Ty)) {
1200     // This should really always be an i1, but sometimes it's already
1201     // an i8, and it's awkward to track those cases down.
1202     if (Value->getType()->isIntegerTy(1))
1203       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1204     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1205            "wrong value rep of bool");
1206   }
1207 
1208   return Value;
1209 }
1210 
1211 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1212   // Bool has a different representation in memory than in registers.
1213   if (hasBooleanRepresentation(Ty)) {
1214     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1215            "wrong value rep of bool");
1216     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1217   }
1218 
1219   return Value;
1220 }
1221 
1222 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1223                                         bool Volatile, unsigned Alignment,
1224                                         QualType Ty,
1225                                         llvm::MDNode *TBAAInfo,
1226                                         bool isInit, QualType TBAABaseType,
1227                                         uint64_t TBAAOffset) {
1228 
1229   // Handle vectors differently to get better performance.
1230   if (Ty->isVectorType()) {
1231     llvm::Type *SrcTy = Value->getType();
1232     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1233     // Handle vec3 special.
1234     if (VecTy->getNumElements() == 3) {
1235       llvm::LLVMContext &VMContext = getLLVMContext();
1236 
1237       // Our source is a vec3, do a shuffle vector to make it a vec4.
1238       SmallVector<llvm::Constant*, 4> Mask;
1239       Mask.push_back(llvm::ConstantInt::get(
1240                                             llvm::Type::getInt32Ty(VMContext),
1241                                             0));
1242       Mask.push_back(llvm::ConstantInt::get(
1243                                             llvm::Type::getInt32Ty(VMContext),
1244                                             1));
1245       Mask.push_back(llvm::ConstantInt::get(
1246                                             llvm::Type::getInt32Ty(VMContext),
1247                                             2));
1248       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1249 
1250       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1251       Value = Builder.CreateShuffleVector(Value,
1252                                           llvm::UndefValue::get(VecTy),
1253                                           MaskV, "extractVec");
1254       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1255     }
1256     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1257     if (DstPtr->getElementType() != SrcTy) {
1258       llvm::Type *MemTy =
1259       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1260       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1261     }
1262   }
1263 
1264   Value = EmitToMemory(Value, Ty);
1265 
1266   if (Ty->isAtomicType()) {
1267     EmitAtomicStore(RValue::get(Value),
1268                     LValue::MakeAddr(Addr, Ty,
1269                                      CharUnits::fromQuantity(Alignment),
1270                                      getContext(), TBAAInfo),
1271                     isInit);
1272     return;
1273   }
1274 
1275   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1276   if (Alignment)
1277     Store->setAlignment(Alignment);
1278   if (TBAAInfo) {
1279     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1280                                                       TBAAOffset);
1281     CGM.DecorateInstruction(Store, TBAAPath);
1282   }
1283 }
1284 
1285 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1286                                         bool isInit) {
1287   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1288                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1289                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1290                     lvalue.getTBAAOffset());
1291 }
1292 
1293 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1294 /// method emits the address of the lvalue, then loads the result as an rvalue,
1295 /// returning the rvalue.
1296 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1297   if (LV.isObjCWeak()) {
1298     // load of a __weak object.
1299     llvm::Value *AddrWeakObj = LV.getAddress();
1300     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1301                                                              AddrWeakObj));
1302   }
1303   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1304     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1305     Object = EmitObjCConsumeObject(LV.getType(), Object);
1306     return RValue::get(Object);
1307   }
1308 
1309   if (LV.isSimple()) {
1310     assert(!LV.getType()->isFunctionType());
1311 
1312     // Everything needs a load.
1313     return RValue::get(EmitLoadOfScalar(LV));
1314   }
1315 
1316   if (LV.isVectorElt()) {
1317     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1318                                               LV.isVolatileQualified());
1319     Load->setAlignment(LV.getAlignment().getQuantity());
1320     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1321                                                     "vecext"));
1322   }
1323 
1324   // If this is a reference to a subset of the elements of a vector, either
1325   // shuffle the input or extract/insert them as appropriate.
1326   if (LV.isExtVectorElt())
1327     return EmitLoadOfExtVectorElementLValue(LV);
1328 
1329   assert(LV.isBitField() && "Unknown LValue type!");
1330   return EmitLoadOfBitfieldLValue(LV);
1331 }
1332 
1333 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1334   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1335 
1336   // Get the output type.
1337   llvm::Type *ResLTy = ConvertType(LV.getType());
1338 
1339   llvm::Value *Ptr = LV.getBitFieldAddr();
1340   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1341                                         "bf.load");
1342   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1343 
1344   if (Info.IsSigned) {
1345     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1346     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1347     if (HighBits)
1348       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1349     if (Info.Offset + HighBits)
1350       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1351   } else {
1352     if (Info.Offset)
1353       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1354     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1355       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1356                                                               Info.Size),
1357                               "bf.clear");
1358   }
1359   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1360 
1361   return RValue::get(Val);
1362 }
1363 
1364 // If this is a reference to a subset of the elements of a vector, create an
1365 // appropriate shufflevector.
1366 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1367   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1368                                             LV.isVolatileQualified());
1369   Load->setAlignment(LV.getAlignment().getQuantity());
1370   llvm::Value *Vec = Load;
1371 
1372   const llvm::Constant *Elts = LV.getExtVectorElts();
1373 
1374   // If the result of the expression is a non-vector type, we must be extracting
1375   // a single element.  Just codegen as an extractelement.
1376   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1377   if (!ExprVT) {
1378     unsigned InIdx = getAccessedFieldNo(0, Elts);
1379     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1380     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1381   }
1382 
1383   // Always use shuffle vector to try to retain the original program structure
1384   unsigned NumResultElts = ExprVT->getNumElements();
1385 
1386   SmallVector<llvm::Constant*, 4> Mask;
1387   for (unsigned i = 0; i != NumResultElts; ++i)
1388     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1389 
1390   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1391   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1392                                     MaskV);
1393   return RValue::get(Vec);
1394 }
1395 
1396 
1397 
1398 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1399 /// lvalue, where both are guaranteed to the have the same type, and that type
1400 /// is 'Ty'.
1401 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1402   if (!Dst.isSimple()) {
1403     if (Dst.isVectorElt()) {
1404       // Read/modify/write the vector, inserting the new element.
1405       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1406                                                 Dst.isVolatileQualified());
1407       Load->setAlignment(Dst.getAlignment().getQuantity());
1408       llvm::Value *Vec = Load;
1409       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1410                                         Dst.getVectorIdx(), "vecins");
1411       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1412                                                    Dst.isVolatileQualified());
1413       Store->setAlignment(Dst.getAlignment().getQuantity());
1414       return;
1415     }
1416 
1417     // If this is an update of extended vector elements, insert them as
1418     // appropriate.
1419     if (Dst.isExtVectorElt())
1420       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1421 
1422     assert(Dst.isBitField() && "Unknown LValue type");
1423     return EmitStoreThroughBitfieldLValue(Src, Dst);
1424   }
1425 
1426   // There's special magic for assigning into an ARC-qualified l-value.
1427   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1428     switch (Lifetime) {
1429     case Qualifiers::OCL_None:
1430       llvm_unreachable("present but none");
1431 
1432     case Qualifiers::OCL_ExplicitNone:
1433       // nothing special
1434       break;
1435 
1436     case Qualifiers::OCL_Strong:
1437       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1438       return;
1439 
1440     case Qualifiers::OCL_Weak:
1441       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1442       return;
1443 
1444     case Qualifiers::OCL_Autoreleasing:
1445       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1446                                                      Src.getScalarVal()));
1447       // fall into the normal path
1448       break;
1449     }
1450   }
1451 
1452   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1453     // load of a __weak object.
1454     llvm::Value *LvalueDst = Dst.getAddress();
1455     llvm::Value *src = Src.getScalarVal();
1456      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1457     return;
1458   }
1459 
1460   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1461     // load of a __strong object.
1462     llvm::Value *LvalueDst = Dst.getAddress();
1463     llvm::Value *src = Src.getScalarVal();
1464     if (Dst.isObjCIvar()) {
1465       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1466       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1467       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1468       llvm::Value *dst = RHS;
1469       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1470       llvm::Value *LHS =
1471         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1472       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1473       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1474                                               BytesBetween);
1475     } else if (Dst.isGlobalObjCRef()) {
1476       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1477                                                 Dst.isThreadLocalRef());
1478     }
1479     else
1480       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1481     return;
1482   }
1483 
1484   assert(Src.isScalar() && "Can't emit an agg store with this method");
1485   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1486 }
1487 
1488 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1489                                                      llvm::Value **Result) {
1490   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1491   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1492   llvm::Value *Ptr = Dst.getBitFieldAddr();
1493 
1494   // Get the source value, truncated to the width of the bit-field.
1495   llvm::Value *SrcVal = Src.getScalarVal();
1496 
1497   // Cast the source to the storage type and shift it into place.
1498   SrcVal = Builder.CreateIntCast(SrcVal,
1499                                  Ptr->getType()->getPointerElementType(),
1500                                  /*IsSigned=*/false);
1501   llvm::Value *MaskedVal = SrcVal;
1502 
1503   // See if there are other bits in the bitfield's storage we'll need to load
1504   // and mask together with source before storing.
1505   if (Info.StorageSize != Info.Size) {
1506     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1507     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1508                                           "bf.load");
1509     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1510 
1511     // Mask the source value as needed.
1512     if (!hasBooleanRepresentation(Dst.getType()))
1513       SrcVal = Builder.CreateAnd(SrcVal,
1514                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1515                                                             Info.Size),
1516                                  "bf.value");
1517     MaskedVal = SrcVal;
1518     if (Info.Offset)
1519       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1520 
1521     // Mask out the original value.
1522     Val = Builder.CreateAnd(Val,
1523                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1524                                                      Info.Offset,
1525                                                      Info.Offset + Info.Size),
1526                             "bf.clear");
1527 
1528     // Or together the unchanged values and the source value.
1529     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1530   } else {
1531     assert(Info.Offset == 0);
1532   }
1533 
1534   // Write the new value back out.
1535   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1536                                                Dst.isVolatileQualified());
1537   Store->setAlignment(Info.StorageAlignment);
1538 
1539   // Return the new value of the bit-field, if requested.
1540   if (Result) {
1541     llvm::Value *ResultVal = MaskedVal;
1542 
1543     // Sign extend the value if needed.
1544     if (Info.IsSigned) {
1545       assert(Info.Size <= Info.StorageSize);
1546       unsigned HighBits = Info.StorageSize - Info.Size;
1547       if (HighBits) {
1548         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1549         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1550       }
1551     }
1552 
1553     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1554                                       "bf.result.cast");
1555     *Result = EmitFromMemory(ResultVal, Dst.getType());
1556   }
1557 }
1558 
1559 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1560                                                                LValue Dst) {
1561   // This access turns into a read/modify/write of the vector.  Load the input
1562   // value now.
1563   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1564                                             Dst.isVolatileQualified());
1565   Load->setAlignment(Dst.getAlignment().getQuantity());
1566   llvm::Value *Vec = Load;
1567   const llvm::Constant *Elts = Dst.getExtVectorElts();
1568 
1569   llvm::Value *SrcVal = Src.getScalarVal();
1570 
1571   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1572     unsigned NumSrcElts = VTy->getNumElements();
1573     unsigned NumDstElts =
1574        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1575     if (NumDstElts == NumSrcElts) {
1576       // Use shuffle vector is the src and destination are the same number of
1577       // elements and restore the vector mask since it is on the side it will be
1578       // stored.
1579       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1580       for (unsigned i = 0; i != NumSrcElts; ++i)
1581         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1582 
1583       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1584       Vec = Builder.CreateShuffleVector(SrcVal,
1585                                         llvm::UndefValue::get(Vec->getType()),
1586                                         MaskV);
1587     } else if (NumDstElts > NumSrcElts) {
1588       // Extended the source vector to the same length and then shuffle it
1589       // into the destination.
1590       // FIXME: since we're shuffling with undef, can we just use the indices
1591       //        into that?  This could be simpler.
1592       SmallVector<llvm::Constant*, 4> ExtMask;
1593       for (unsigned i = 0; i != NumSrcElts; ++i)
1594         ExtMask.push_back(Builder.getInt32(i));
1595       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1596       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1597       llvm::Value *ExtSrcVal =
1598         Builder.CreateShuffleVector(SrcVal,
1599                                     llvm::UndefValue::get(SrcVal->getType()),
1600                                     ExtMaskV);
1601       // build identity
1602       SmallVector<llvm::Constant*, 4> Mask;
1603       for (unsigned i = 0; i != NumDstElts; ++i)
1604         Mask.push_back(Builder.getInt32(i));
1605 
1606       // modify when what gets shuffled in
1607       for (unsigned i = 0; i != NumSrcElts; ++i)
1608         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1609       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1610       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1611     } else {
1612       // We should never shorten the vector
1613       llvm_unreachable("unexpected shorten vector length");
1614     }
1615   } else {
1616     // If the Src is a scalar (not a vector) it must be updating one element.
1617     unsigned InIdx = getAccessedFieldNo(0, Elts);
1618     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1619     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1620   }
1621 
1622   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1623                                                Dst.isVolatileQualified());
1624   Store->setAlignment(Dst.getAlignment().getQuantity());
1625 }
1626 
1627 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1628 // generating write-barries API. It is currently a global, ivar,
1629 // or neither.
1630 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1631                                  LValue &LV,
1632                                  bool IsMemberAccess=false) {
1633   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1634     return;
1635 
1636   if (isa<ObjCIvarRefExpr>(E)) {
1637     QualType ExpTy = E->getType();
1638     if (IsMemberAccess && ExpTy->isPointerType()) {
1639       // If ivar is a structure pointer, assigning to field of
1640       // this struct follows gcc's behavior and makes it a non-ivar
1641       // writer-barrier conservatively.
1642       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1643       if (ExpTy->isRecordType()) {
1644         LV.setObjCIvar(false);
1645         return;
1646       }
1647     }
1648     LV.setObjCIvar(true);
1649     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1650     LV.setBaseIvarExp(Exp->getBase());
1651     LV.setObjCArray(E->getType()->isArrayType());
1652     return;
1653   }
1654 
1655   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1656     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1657       if (VD->hasGlobalStorage()) {
1658         LV.setGlobalObjCRef(true);
1659         LV.setThreadLocalRef(VD->isThreadSpecified());
1660       }
1661     }
1662     LV.setObjCArray(E->getType()->isArrayType());
1663     return;
1664   }
1665 
1666   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1667     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1668     return;
1669   }
1670 
1671   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1672     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1673     if (LV.isObjCIvar()) {
1674       // If cast is to a structure pointer, follow gcc's behavior and make it
1675       // a non-ivar write-barrier.
1676       QualType ExpTy = E->getType();
1677       if (ExpTy->isPointerType())
1678         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1679       if (ExpTy->isRecordType())
1680         LV.setObjCIvar(false);
1681     }
1682     return;
1683   }
1684 
1685   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1686     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1687     return;
1688   }
1689 
1690   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1691     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1692     return;
1693   }
1694 
1695   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1696     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1697     return;
1698   }
1699 
1700   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1701     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1702     return;
1703   }
1704 
1705   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1706     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1707     if (LV.isObjCIvar() && !LV.isObjCArray())
1708       // Using array syntax to assigning to what an ivar points to is not
1709       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1710       LV.setObjCIvar(false);
1711     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1712       // Using array syntax to assigning to what global points to is not
1713       // same as assigning to the global itself. {id *G;} G[i] = 0;
1714       LV.setGlobalObjCRef(false);
1715     return;
1716   }
1717 
1718   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1719     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1720     // We don't know if member is an 'ivar', but this flag is looked at
1721     // only in the context of LV.isObjCIvar().
1722     LV.setObjCArray(E->getType()->isArrayType());
1723     return;
1724   }
1725 }
1726 
1727 static llvm::Value *
1728 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1729                                 llvm::Value *V, llvm::Type *IRType,
1730                                 StringRef Name = StringRef()) {
1731   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1732   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1733 }
1734 
1735 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1736                                       const Expr *E, const VarDecl *VD) {
1737   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1738   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1739   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1740   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1741   QualType T = E->getType();
1742   LValue LV;
1743   if (VD->getType()->isReferenceType()) {
1744     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1745     LI->setAlignment(Alignment.getQuantity());
1746     V = LI;
1747     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1748   } else {
1749     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1750   }
1751   setObjCGCLValueClass(CGF.getContext(), E, LV);
1752   return LV;
1753 }
1754 
1755 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1756                                      const Expr *E, const FunctionDecl *FD) {
1757   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1758   if (!FD->hasPrototype()) {
1759     if (const FunctionProtoType *Proto =
1760             FD->getType()->getAs<FunctionProtoType>()) {
1761       // Ugly case: for a K&R-style definition, the type of the definition
1762       // isn't the same as the type of a use.  Correct for this with a
1763       // bitcast.
1764       QualType NoProtoType =
1765           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1766       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1767       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1768     }
1769   }
1770   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1771   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1772 }
1773 
1774 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1775   const NamedDecl *ND = E->getDecl();
1776   CharUnits Alignment = getContext().getDeclAlign(ND);
1777   QualType T = E->getType();
1778 
1779   // A DeclRefExpr for a reference initialized by a constant expression can
1780   // appear without being odr-used. Directly emit the constant initializer.
1781   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1782     const Expr *Init = VD->getAnyInitializer(VD);
1783     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1784         VD->isUsableInConstantExpressions(getContext()) &&
1785         VD->checkInitIsICE()) {
1786       llvm::Constant *Val =
1787         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1788       assert(Val && "failed to emit reference constant expression");
1789       // FIXME: Eventually we will want to emit vector element references.
1790       return MakeAddrLValue(Val, T, Alignment);
1791     }
1792   }
1793 
1794   // FIXME: We should be able to assert this for FunctionDecls as well!
1795   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1796   // those with a valid source location.
1797   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1798           !E->getLocation().isValid()) &&
1799          "Should not use decl without marking it used!");
1800 
1801   if (ND->hasAttr<WeakRefAttr>()) {
1802     const ValueDecl *VD = cast<ValueDecl>(ND);
1803     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1804     return MakeAddrLValue(Aliasee, T, Alignment);
1805   }
1806 
1807   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1808     // Check if this is a global variable.
1809     if (VD->hasLinkage() || VD->isStaticDataMember())
1810       return EmitGlobalVarDeclLValue(*this, E, VD);
1811 
1812     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1813 
1814     llvm::Value *V = LocalDeclMap.lookup(VD);
1815     if (!V && VD->isStaticLocal())
1816       V = CGM.getStaticLocalDeclAddress(VD);
1817 
1818     // Use special handling for lambdas.
1819     if (!V) {
1820       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1821         QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1822         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1823                                                      LambdaTagType);
1824         return EmitLValueForField(LambdaLV, FD);
1825       }
1826 
1827       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1828       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1829                             T, Alignment);
1830     }
1831 
1832     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1833 
1834     if (isBlockVariable)
1835       V = BuildBlockByrefAddress(V, VD);
1836 
1837     LValue LV;
1838     if (VD->getType()->isReferenceType()) {
1839       llvm::LoadInst *LI = Builder.CreateLoad(V);
1840       LI->setAlignment(Alignment.getQuantity());
1841       V = LI;
1842       LV = MakeNaturalAlignAddrLValue(V, T);
1843     } else {
1844       LV = MakeAddrLValue(V, T, Alignment);
1845     }
1846 
1847     bool isLocalStorage = VD->hasLocalStorage();
1848 
1849     bool NonGCable = isLocalStorage &&
1850                      !VD->getType()->isReferenceType() &&
1851                      !isBlockVariable;
1852     if (NonGCable) {
1853       LV.getQuals().removeObjCGCAttr();
1854       LV.setNonGC(true);
1855     }
1856 
1857     bool isImpreciseLifetime =
1858       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1859     if (isImpreciseLifetime)
1860       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1861     setObjCGCLValueClass(getContext(), E, LV);
1862     return LV;
1863   }
1864 
1865   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1866     return EmitFunctionDeclLValue(*this, E, fn);
1867 
1868   llvm_unreachable("Unhandled DeclRefExpr");
1869 }
1870 
1871 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1872   // __extension__ doesn't affect lvalue-ness.
1873   if (E->getOpcode() == UO_Extension)
1874     return EmitLValue(E->getSubExpr());
1875 
1876   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1877   switch (E->getOpcode()) {
1878   default: llvm_unreachable("Unknown unary operator lvalue!");
1879   case UO_Deref: {
1880     QualType T = E->getSubExpr()->getType()->getPointeeType();
1881     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1882 
1883     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1884     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1885 
1886     // We should not generate __weak write barrier on indirect reference
1887     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1888     // But, we continue to generate __strong write barrier on indirect write
1889     // into a pointer to object.
1890     if (getLangOpts().ObjC1 &&
1891         getLangOpts().getGC() != LangOptions::NonGC &&
1892         LV.isObjCWeak())
1893       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1894     return LV;
1895   }
1896   case UO_Real:
1897   case UO_Imag: {
1898     LValue LV = EmitLValue(E->getSubExpr());
1899     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1900     llvm::Value *Addr = LV.getAddress();
1901 
1902     // __real is valid on scalars.  This is a faster way of testing that.
1903     // __imag can only produce an rvalue on scalars.
1904     if (E->getOpcode() == UO_Real &&
1905         !cast<llvm::PointerType>(Addr->getType())
1906            ->getElementType()->isStructTy()) {
1907       assert(E->getSubExpr()->getType()->isArithmeticType());
1908       return LV;
1909     }
1910 
1911     assert(E->getSubExpr()->getType()->isAnyComplexType());
1912 
1913     unsigned Idx = E->getOpcode() == UO_Imag;
1914     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1915                                                   Idx, "idx"),
1916                           ExprTy);
1917   }
1918   case UO_PreInc:
1919   case UO_PreDec: {
1920     LValue LV = EmitLValue(E->getSubExpr());
1921     bool isInc = E->getOpcode() == UO_PreInc;
1922 
1923     if (E->getType()->isAnyComplexType())
1924       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1925     else
1926       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1927     return LV;
1928   }
1929   }
1930 }
1931 
1932 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1933   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1934                         E->getType());
1935 }
1936 
1937 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1938   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1939                         E->getType());
1940 }
1941 
1942 static llvm::Constant*
1943 GetAddrOfConstantWideString(StringRef Str,
1944                             const char *GlobalName,
1945                             ASTContext &Context,
1946                             QualType Ty, SourceLocation Loc,
1947                             CodeGenModule &CGM) {
1948 
1949   StringLiteral *SL = StringLiteral::Create(Context,
1950                                             Str,
1951                                             StringLiteral::Wide,
1952                                             /*Pascal = */false,
1953                                             Ty, Loc);
1954   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1955   llvm::GlobalVariable *GV =
1956     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1957                              !CGM.getLangOpts().WritableStrings,
1958                              llvm::GlobalValue::PrivateLinkage,
1959                              C, GlobalName);
1960   const unsigned WideAlignment =
1961     Context.getTypeAlignInChars(Ty).getQuantity();
1962   GV->setAlignment(WideAlignment);
1963   return GV;
1964 }
1965 
1966 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1967                                     SmallString<32>& Target) {
1968   Target.resize(CharByteWidth * (Source.size() + 1));
1969   char *ResultPtr = &Target[0];
1970   const UTF8 *ErrorPtr;
1971   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1972   (void)success;
1973   assert(success);
1974   Target.resize(ResultPtr - &Target[0]);
1975 }
1976 
1977 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1978   switch (E->getIdentType()) {
1979   default:
1980     return EmitUnsupportedLValue(E, "predefined expression");
1981 
1982   case PredefinedExpr::Func:
1983   case PredefinedExpr::Function:
1984   case PredefinedExpr::LFunction:
1985   case PredefinedExpr::PrettyFunction: {
1986     unsigned IdentType = E->getIdentType();
1987     std::string GlobalVarName;
1988 
1989     switch (IdentType) {
1990     default: llvm_unreachable("Invalid type");
1991     case PredefinedExpr::Func:
1992       GlobalVarName = "__func__.";
1993       break;
1994     case PredefinedExpr::Function:
1995       GlobalVarName = "__FUNCTION__.";
1996       break;
1997     case PredefinedExpr::LFunction:
1998       GlobalVarName = "L__FUNCTION__.";
1999       break;
2000     case PredefinedExpr::PrettyFunction:
2001       GlobalVarName = "__PRETTY_FUNCTION__.";
2002       break;
2003     }
2004 
2005     StringRef FnName = CurFn->getName();
2006     if (FnName.startswith("\01"))
2007       FnName = FnName.substr(1);
2008     GlobalVarName += FnName;
2009 
2010     const Decl *CurDecl = CurCodeDecl;
2011     if (CurDecl == 0)
2012       CurDecl = getContext().getTranslationUnitDecl();
2013 
2014     std::string FunctionName =
2015         (isa<BlockDecl>(CurDecl)
2016          ? FnName.str()
2017          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
2018                                        CurDecl));
2019 
2020     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2021     llvm::Constant *C;
2022     if (ElemType->isWideCharType()) {
2023       SmallString<32> RawChars;
2024       ConvertUTF8ToWideString(
2025           getContext().getTypeSizeInChars(ElemType).getQuantity(),
2026           FunctionName, RawChars);
2027       C = GetAddrOfConstantWideString(RawChars,
2028                                       GlobalVarName.c_str(),
2029                                       getContext(),
2030                                       E->getType(),
2031                                       E->getLocation(),
2032                                       CGM);
2033     } else {
2034       C = CGM.GetAddrOfConstantCString(FunctionName,
2035                                        GlobalVarName.c_str(),
2036                                        1);
2037     }
2038     return MakeAddrLValue(C, E->getType());
2039   }
2040   }
2041 }
2042 
2043 /// Emit a type description suitable for use by a runtime sanitizer library. The
2044 /// format of a type descriptor is
2045 ///
2046 /// \code
2047 ///   { i16 TypeKind, i16 TypeInfo }
2048 /// \endcode
2049 ///
2050 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2051 /// integer, 1 for a floating point value, and -1 for anything else.
2052 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2053   // FIXME: Only emit each type's descriptor once.
2054   uint16_t TypeKind = -1;
2055   uint16_t TypeInfo = 0;
2056 
2057   if (T->isIntegerType()) {
2058     TypeKind = 0;
2059     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2060                (T->isSignedIntegerType() ? 1 : 0);
2061   } else if (T->isFloatingType()) {
2062     TypeKind = 1;
2063     TypeInfo = getContext().getTypeSize(T);
2064   }
2065 
2066   // Format the type name as if for a diagnostic, including quotes and
2067   // optionally an 'aka'.
2068   SmallString<32> Buffer;
2069   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2070                                     (intptr_t)T.getAsOpaquePtr(),
2071                                     0, 0, 0, 0, 0, 0, Buffer,
2072                                     ArrayRef<intptr_t>());
2073 
2074   llvm::Constant *Components[] = {
2075     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2076     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2077   };
2078   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2079 
2080   llvm::GlobalVariable *GV =
2081     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2082                              /*isConstant=*/true,
2083                              llvm::GlobalVariable::PrivateLinkage,
2084                              Descriptor);
2085   GV->setUnnamedAddr(true);
2086   return GV;
2087 }
2088 
2089 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2090   llvm::Type *TargetTy = IntPtrTy;
2091 
2092   // Floating-point types which fit into intptr_t are bitcast to integers
2093   // and then passed directly (after zero-extension, if necessary).
2094   if (V->getType()->isFloatingPointTy()) {
2095     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2096     if (Bits <= TargetTy->getIntegerBitWidth())
2097       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2098                                                          Bits));
2099   }
2100 
2101   // Integers which fit in intptr_t are zero-extended and passed directly.
2102   if (V->getType()->isIntegerTy() &&
2103       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2104     return Builder.CreateZExt(V, TargetTy);
2105 
2106   // Pointers are passed directly, everything else is passed by address.
2107   if (!V->getType()->isPointerTy()) {
2108     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2109     Builder.CreateStore(V, Ptr);
2110     V = Ptr;
2111   }
2112   return Builder.CreatePtrToInt(V, TargetTy);
2113 }
2114 
2115 /// \brief Emit a representation of a SourceLocation for passing to a handler
2116 /// in a sanitizer runtime library. The format for this data is:
2117 /// \code
2118 ///   struct SourceLocation {
2119 ///     const char *Filename;
2120 ///     int32_t Line, Column;
2121 ///   };
2122 /// \endcode
2123 /// For an invalid SourceLocation, the Filename pointer is null.
2124 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2125   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2126 
2127   llvm::Constant *Data[] = {
2128     // FIXME: Only emit each file name once.
2129     PLoc.isValid() ? cast<llvm::Constant>(
2130                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2131                    : llvm::Constant::getNullValue(Int8PtrTy),
2132     Builder.getInt32(PLoc.getLine()),
2133     Builder.getInt32(PLoc.getColumn())
2134   };
2135 
2136   return llvm::ConstantStruct::getAnon(Data);
2137 }
2138 
2139 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2140                                 ArrayRef<llvm::Constant *> StaticArgs,
2141                                 ArrayRef<llvm::Value *> DynamicArgs,
2142                                 CheckRecoverableKind RecoverKind) {
2143   assert(SanOpts != &SanitizerOptions::Disabled);
2144 
2145   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2146     assert (RecoverKind != CRK_AlwaysRecoverable &&
2147             "Runtime call required for AlwaysRecoverable kind!");
2148     return EmitTrapCheck(Checked);
2149   }
2150 
2151   llvm::BasicBlock *Cont = createBasicBlock("cont");
2152 
2153   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2154 
2155   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2156 
2157   // Give hint that we very much don't expect to execute the handler
2158   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2159   llvm::MDBuilder MDHelper(getLLVMContext());
2160   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2161   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2162 
2163   EmitBlock(Handler);
2164 
2165   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2166   llvm::GlobalValue *InfoPtr =
2167       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2168                                llvm::GlobalVariable::PrivateLinkage, Info);
2169   InfoPtr->setUnnamedAddr(true);
2170 
2171   SmallVector<llvm::Value *, 4> Args;
2172   SmallVector<llvm::Type *, 4> ArgTypes;
2173   Args.reserve(DynamicArgs.size() + 1);
2174   ArgTypes.reserve(DynamicArgs.size() + 1);
2175 
2176   // Handler functions take an i8* pointing to the (handler-specific) static
2177   // information block, followed by a sequence of intptr_t arguments
2178   // representing operand values.
2179   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2180   ArgTypes.push_back(Int8PtrTy);
2181   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2182     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2183     ArgTypes.push_back(IntPtrTy);
2184   }
2185 
2186   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2187                  ((RecoverKind == CRK_Recoverable) &&
2188                    CGM.getCodeGenOpts().SanitizeRecover);
2189 
2190   llvm::FunctionType *FnType =
2191     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2192   llvm::AttrBuilder B;
2193   if (!Recover) {
2194     B.addAttribute(llvm::Attribute::NoReturn)
2195      .addAttribute(llvm::Attribute::NoUnwind);
2196   }
2197   B.addAttribute(llvm::Attribute::UWTable);
2198 
2199   // Checks that have two variants use a suffix to differentiate them
2200   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2201                            !CGM.getCodeGenOpts().SanitizeRecover;
2202   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2203                               (NeedsAbortSuffix? "_abort" : "")).str();
2204   llvm::Value *Fn =
2205     CGM.CreateRuntimeFunction(FnType, FunctionName,
2206                               llvm::AttributeSet::get(getLLVMContext(),
2207                                               llvm::AttributeSet::FunctionIndex,
2208                                                       B));
2209   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2210   if (Recover) {
2211     Builder.CreateBr(Cont);
2212   } else {
2213     HandlerCall->setDoesNotReturn();
2214     Builder.CreateUnreachable();
2215   }
2216 
2217   EmitBlock(Cont);
2218 }
2219 
2220 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2221   llvm::BasicBlock *Cont = createBasicBlock("cont");
2222 
2223   // If we're optimizing, collapse all calls to trap down to just one per
2224   // function to save on code size.
2225   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2226     TrapBB = createBasicBlock("trap");
2227     Builder.CreateCondBr(Checked, Cont, TrapBB);
2228     EmitBlock(TrapBB);
2229     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2230     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2231     TrapCall->setDoesNotReturn();
2232     TrapCall->setDoesNotThrow();
2233     Builder.CreateUnreachable();
2234   } else {
2235     Builder.CreateCondBr(Checked, Cont, TrapBB);
2236   }
2237 
2238   EmitBlock(Cont);
2239 }
2240 
2241 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2242 /// array to pointer, return the array subexpression.
2243 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2244   // If this isn't just an array->pointer decay, bail out.
2245   const CastExpr *CE = dyn_cast<CastExpr>(E);
2246   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2247     return 0;
2248 
2249   // If this is a decay from variable width array, bail out.
2250   const Expr *SubExpr = CE->getSubExpr();
2251   if (SubExpr->getType()->isVariableArrayType())
2252     return 0;
2253 
2254   return SubExpr;
2255 }
2256 
2257 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2258                                                bool Accessed) {
2259   // The index must always be an integer, which is not an aggregate.  Emit it.
2260   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2261   QualType IdxTy  = E->getIdx()->getType();
2262   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2263 
2264   if (SanOpts->Bounds)
2265     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2266 
2267   // If the base is a vector type, then we are forming a vector element lvalue
2268   // with this subscript.
2269   if (E->getBase()->getType()->isVectorType()) {
2270     // Emit the vector as an lvalue to get its address.
2271     LValue LHS = EmitLValue(E->getBase());
2272     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2273     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2274     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2275                                  E->getBase()->getType(), LHS.getAlignment());
2276   }
2277 
2278   // Extend or truncate the index type to 32 or 64-bits.
2279   if (Idx->getType() != IntPtrTy)
2280     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2281 
2282   // We know that the pointer points to a type of the correct size, unless the
2283   // size is a VLA or Objective-C interface.
2284   llvm::Value *Address = 0;
2285   CharUnits ArrayAlignment;
2286   if (const VariableArrayType *vla =
2287         getContext().getAsVariableArrayType(E->getType())) {
2288     // The base must be a pointer, which is not an aggregate.  Emit
2289     // it.  It needs to be emitted first in case it's what captures
2290     // the VLA bounds.
2291     Address = EmitScalarExpr(E->getBase());
2292 
2293     // The element count here is the total number of non-VLA elements.
2294     llvm::Value *numElements = getVLASize(vla).first;
2295 
2296     // Effectively, the multiply by the VLA size is part of the GEP.
2297     // GEP indexes are signed, and scaling an index isn't permitted to
2298     // signed-overflow, so we use the same semantics for our explicit
2299     // multiply.  We suppress this if overflow is not undefined behavior.
2300     if (getLangOpts().isSignedOverflowDefined()) {
2301       Idx = Builder.CreateMul(Idx, numElements);
2302       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2303     } else {
2304       Idx = Builder.CreateNSWMul(Idx, numElements);
2305       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2306     }
2307   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2308     // Indexing over an interface, as in "NSString *P; P[4];"
2309     llvm::Value *InterfaceSize =
2310       llvm::ConstantInt::get(Idx->getType(),
2311           getContext().getTypeSizeInChars(OIT).getQuantity());
2312 
2313     Idx = Builder.CreateMul(Idx, InterfaceSize);
2314 
2315     // The base must be a pointer, which is not an aggregate.  Emit it.
2316     llvm::Value *Base = EmitScalarExpr(E->getBase());
2317     Address = EmitCastToVoidPtr(Base);
2318     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2319     Address = Builder.CreateBitCast(Address, Base->getType());
2320   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2321     // If this is A[i] where A is an array, the frontend will have decayed the
2322     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2323     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2324     // "gep x, i" here.  Emit one "gep A, 0, i".
2325     assert(Array->getType()->isArrayType() &&
2326            "Array to pointer decay must have array source type!");
2327     LValue ArrayLV;
2328     // For simple multidimensional array indexing, set the 'accessed' flag for
2329     // better bounds-checking of the base expression.
2330     if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2331       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2332     else
2333       ArrayLV = EmitLValue(Array);
2334     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2335     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2336     llvm::Value *Args[] = { Zero, Idx };
2337 
2338     // Propagate the alignment from the array itself to the result.
2339     ArrayAlignment = ArrayLV.getAlignment();
2340 
2341     if (getLangOpts().isSignedOverflowDefined())
2342       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2343     else
2344       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2345   } else {
2346     // The base must be a pointer, which is not an aggregate.  Emit it.
2347     llvm::Value *Base = EmitScalarExpr(E->getBase());
2348     if (getLangOpts().isSignedOverflowDefined())
2349       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2350     else
2351       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2352   }
2353 
2354   QualType T = E->getBase()->getType()->getPointeeType();
2355   assert(!T.isNull() &&
2356          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2357 
2358 
2359   // Limit the alignment to that of the result type.
2360   LValue LV;
2361   if (!ArrayAlignment.isZero()) {
2362     CharUnits Align = getContext().getTypeAlignInChars(T);
2363     ArrayAlignment = std::min(Align, ArrayAlignment);
2364     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2365   } else {
2366     LV = MakeNaturalAlignAddrLValue(Address, T);
2367   }
2368 
2369   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2370 
2371   if (getLangOpts().ObjC1 &&
2372       getLangOpts().getGC() != LangOptions::NonGC) {
2373     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2374     setObjCGCLValueClass(getContext(), E, LV);
2375   }
2376   return LV;
2377 }
2378 
2379 static
2380 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2381                                        SmallVector<unsigned, 4> &Elts) {
2382   SmallVector<llvm::Constant*, 4> CElts;
2383   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2384     CElts.push_back(Builder.getInt32(Elts[i]));
2385 
2386   return llvm::ConstantVector::get(CElts);
2387 }
2388 
2389 LValue CodeGenFunction::
2390 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2391   // Emit the base vector as an l-value.
2392   LValue Base;
2393 
2394   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2395   if (E->isArrow()) {
2396     // If it is a pointer to a vector, emit the address and form an lvalue with
2397     // it.
2398     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2399     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2400     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2401     Base.getQuals().removeObjCGCAttr();
2402   } else if (E->getBase()->isGLValue()) {
2403     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2404     // emit the base as an lvalue.
2405     assert(E->getBase()->getType()->isVectorType());
2406     Base = EmitLValue(E->getBase());
2407   } else {
2408     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2409     assert(E->getBase()->getType()->isVectorType() &&
2410            "Result must be a vector");
2411     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2412 
2413     // Store the vector to memory (because LValue wants an address).
2414     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2415     Builder.CreateStore(Vec, VecMem);
2416     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2417   }
2418 
2419   QualType type =
2420     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2421 
2422   // Encode the element access list into a vector of unsigned indices.
2423   SmallVector<unsigned, 4> Indices;
2424   E->getEncodedElementAccess(Indices);
2425 
2426   if (Base.isSimple()) {
2427     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2428     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2429                                     Base.getAlignment());
2430   }
2431   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2432 
2433   llvm::Constant *BaseElts = Base.getExtVectorElts();
2434   SmallVector<llvm::Constant *, 4> CElts;
2435 
2436   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2437     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2438   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2439   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2440                                   Base.getAlignment());
2441 }
2442 
2443 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2444   Expr *BaseExpr = E->getBase();
2445 
2446   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2447   LValue BaseLV;
2448   if (E->isArrow()) {
2449     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2450     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2451     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2452     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2453   } else
2454     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2455 
2456   NamedDecl *ND = E->getMemberDecl();
2457   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2458     LValue LV = EmitLValueForField(BaseLV, Field);
2459     setObjCGCLValueClass(getContext(), E, LV);
2460     return LV;
2461   }
2462 
2463   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2464     return EmitGlobalVarDeclLValue(*this, E, VD);
2465 
2466   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2467     return EmitFunctionDeclLValue(*this, E, FD);
2468 
2469   llvm_unreachable("Unhandled member declaration!");
2470 }
2471 
2472 LValue CodeGenFunction::EmitLValueForField(LValue base,
2473                                            const FieldDecl *field) {
2474   if (field->isBitField()) {
2475     const CGRecordLayout &RL =
2476       CGM.getTypes().getCGRecordLayout(field->getParent());
2477     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2478     llvm::Value *Addr = base.getAddress();
2479     unsigned Idx = RL.getLLVMFieldNo(field);
2480     if (Idx != 0)
2481       // For structs, we GEP to the field that the record layout suggests.
2482       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2483     // Get the access type.
2484     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2485       getLLVMContext(), Info.StorageSize,
2486       CGM.getContext().getTargetAddressSpace(base.getType()));
2487     if (Addr->getType() != PtrTy)
2488       Addr = Builder.CreateBitCast(Addr, PtrTy);
2489 
2490     QualType fieldType =
2491       field->getType().withCVRQualifiers(base.getVRQualifiers());
2492     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2493   }
2494 
2495   const RecordDecl *rec = field->getParent();
2496   QualType type = field->getType();
2497   CharUnits alignment = getContext().getDeclAlign(field);
2498 
2499   // FIXME: It should be impossible to have an LValue without alignment for a
2500   // complete type.
2501   if (!base.getAlignment().isZero())
2502     alignment = std::min(alignment, base.getAlignment());
2503 
2504   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2505 
2506   llvm::Value *addr = base.getAddress();
2507   unsigned cvr = base.getVRQualifiers();
2508   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2509   if (rec->isUnion()) {
2510     // For unions, there is no pointer adjustment.
2511     assert(!type->isReferenceType() && "union has reference member");
2512     // TODO: handle path-aware TBAA for union.
2513     TBAAPath = false;
2514   } else {
2515     // For structs, we GEP to the field that the record layout suggests.
2516     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2517     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2518 
2519     // If this is a reference field, load the reference right now.
2520     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2521       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2522       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2523       load->setAlignment(alignment.getQuantity());
2524 
2525       // Loading the reference will disable path-aware TBAA.
2526       TBAAPath = false;
2527       if (CGM.shouldUseTBAA()) {
2528         llvm::MDNode *tbaa;
2529         if (mayAlias)
2530           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2531         else
2532           tbaa = CGM.getTBAAInfo(type);
2533         CGM.DecorateInstruction(load, tbaa);
2534       }
2535 
2536       addr = load;
2537       mayAlias = false;
2538       type = refType->getPointeeType();
2539       if (type->isIncompleteType())
2540         alignment = CharUnits();
2541       else
2542         alignment = getContext().getTypeAlignInChars(type);
2543       cvr = 0; // qualifiers don't recursively apply to referencee
2544     }
2545   }
2546 
2547   // Make sure that the address is pointing to the right type.  This is critical
2548   // for both unions and structs.  A union needs a bitcast, a struct element
2549   // will need a bitcast if the LLVM type laid out doesn't match the desired
2550   // type.
2551   addr = EmitBitCastOfLValueToProperType(*this, addr,
2552                                          CGM.getTypes().ConvertTypeForMem(type),
2553                                          field->getName());
2554 
2555   if (field->hasAttr<AnnotateAttr>())
2556     addr = EmitFieldAnnotations(field, addr);
2557 
2558   LValue LV = MakeAddrLValue(addr, type, alignment);
2559   LV.getQuals().addCVRQualifiers(cvr);
2560   if (TBAAPath) {
2561     const ASTRecordLayout &Layout =
2562         getContext().getASTRecordLayout(field->getParent());
2563     // Set the base type to be the base type of the base LValue and
2564     // update offset to be relative to the base type.
2565     LV.setTBAABaseType(base.getTBAABaseType());
2566     LV.setTBAAOffset(base.getTBAAOffset() +
2567                      Layout.getFieldOffset(field->getFieldIndex()) /
2568                                            getContext().getCharWidth());
2569   }
2570 
2571   // __weak attribute on a field is ignored.
2572   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2573     LV.getQuals().removeObjCGCAttr();
2574 
2575   // Fields of may_alias structs act like 'char' for TBAA purposes.
2576   // FIXME: this should get propagated down through anonymous structs
2577   // and unions.
2578   if (mayAlias && LV.getTBAAInfo())
2579     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2580 
2581   return LV;
2582 }
2583 
2584 LValue
2585 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2586                                                   const FieldDecl *Field) {
2587   QualType FieldType = Field->getType();
2588 
2589   if (!FieldType->isReferenceType())
2590     return EmitLValueForField(Base, Field);
2591 
2592   const CGRecordLayout &RL =
2593     CGM.getTypes().getCGRecordLayout(Field->getParent());
2594   unsigned idx = RL.getLLVMFieldNo(Field);
2595   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2596   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2597 
2598   // Make sure that the address is pointing to the right type.  This is critical
2599   // for both unions and structs.  A union needs a bitcast, a struct element
2600   // will need a bitcast if the LLVM type laid out doesn't match the desired
2601   // type.
2602   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2603   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2604 
2605   CharUnits Alignment = getContext().getDeclAlign(Field);
2606 
2607   // FIXME: It should be impossible to have an LValue without alignment for a
2608   // complete type.
2609   if (!Base.getAlignment().isZero())
2610     Alignment = std::min(Alignment, Base.getAlignment());
2611 
2612   return MakeAddrLValue(V, FieldType, Alignment);
2613 }
2614 
2615 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2616   if (E->isFileScope()) {
2617     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2618     return MakeAddrLValue(GlobalPtr, E->getType());
2619   }
2620   if (E->getType()->isVariablyModifiedType())
2621     // make sure to emit the VLA size.
2622     EmitVariablyModifiedType(E->getType());
2623 
2624   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2625   const Expr *InitExpr = E->getInitializer();
2626   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2627 
2628   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2629                    /*Init*/ true);
2630 
2631   return Result;
2632 }
2633 
2634 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2635   if (!E->isGLValue())
2636     // Initializing an aggregate temporary in C++11: T{...}.
2637     return EmitAggExprToLValue(E);
2638 
2639   // An lvalue initializer list must be initializing a reference.
2640   assert(E->getNumInits() == 1 && "reference init with multiple values");
2641   return EmitLValue(E->getInit(0));
2642 }
2643 
2644 LValue CodeGenFunction::
2645 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2646   if (!expr->isGLValue()) {
2647     // ?: here should be an aggregate.
2648     assert(hasAggregateEvaluationKind(expr->getType()) &&
2649            "Unexpected conditional operator!");
2650     return EmitAggExprToLValue(expr);
2651   }
2652 
2653   OpaqueValueMapping binding(*this, expr);
2654 
2655   const Expr *condExpr = expr->getCond();
2656   bool CondExprBool;
2657   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2658     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2659     if (!CondExprBool) std::swap(live, dead);
2660 
2661     if (!ContainsLabel(dead))
2662       return EmitLValue(live);
2663   }
2664 
2665   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2666   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2667   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2668 
2669   ConditionalEvaluation eval(*this);
2670   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2671 
2672   // Any temporaries created here are conditional.
2673   EmitBlock(lhsBlock);
2674   eval.begin(*this);
2675   LValue lhs = EmitLValue(expr->getTrueExpr());
2676   eval.end(*this);
2677 
2678   if (!lhs.isSimple())
2679     return EmitUnsupportedLValue(expr, "conditional operator");
2680 
2681   lhsBlock = Builder.GetInsertBlock();
2682   Builder.CreateBr(contBlock);
2683 
2684   // Any temporaries created here are conditional.
2685   EmitBlock(rhsBlock);
2686   eval.begin(*this);
2687   LValue rhs = EmitLValue(expr->getFalseExpr());
2688   eval.end(*this);
2689   if (!rhs.isSimple())
2690     return EmitUnsupportedLValue(expr, "conditional operator");
2691   rhsBlock = Builder.GetInsertBlock();
2692 
2693   EmitBlock(contBlock);
2694 
2695   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2696                                          "cond-lvalue");
2697   phi->addIncoming(lhs.getAddress(), lhsBlock);
2698   phi->addIncoming(rhs.getAddress(), rhsBlock);
2699   return MakeAddrLValue(phi, expr->getType());
2700 }
2701 
2702 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2703 /// type. If the cast is to a reference, we can have the usual lvalue result,
2704 /// otherwise if a cast is needed by the code generator in an lvalue context,
2705 /// then it must mean that we need the address of an aggregate in order to
2706 /// access one of its members.  This can happen for all the reasons that casts
2707 /// are permitted with aggregate result, including noop aggregate casts, and
2708 /// cast from scalar to union.
2709 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2710   switch (E->getCastKind()) {
2711   case CK_ToVoid:
2712     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2713 
2714   case CK_Dependent:
2715     llvm_unreachable("dependent cast kind in IR gen!");
2716 
2717   case CK_BuiltinFnToFnPtr:
2718     llvm_unreachable("builtin functions are handled elsewhere");
2719 
2720   // These two casts are currently treated as no-ops, although they could
2721   // potentially be real operations depending on the target's ABI.
2722   case CK_NonAtomicToAtomic:
2723   case CK_AtomicToNonAtomic:
2724 
2725   case CK_NoOp:
2726   case CK_LValueToRValue:
2727     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2728         || E->getType()->isRecordType())
2729       return EmitLValue(E->getSubExpr());
2730     // Fall through to synthesize a temporary.
2731 
2732   case CK_BitCast:
2733   case CK_ArrayToPointerDecay:
2734   case CK_FunctionToPointerDecay:
2735   case CK_NullToMemberPointer:
2736   case CK_NullToPointer:
2737   case CK_IntegralToPointer:
2738   case CK_PointerToIntegral:
2739   case CK_PointerToBoolean:
2740   case CK_VectorSplat:
2741   case CK_IntegralCast:
2742   case CK_IntegralToBoolean:
2743   case CK_IntegralToFloating:
2744   case CK_FloatingToIntegral:
2745   case CK_FloatingToBoolean:
2746   case CK_FloatingCast:
2747   case CK_FloatingRealToComplex:
2748   case CK_FloatingComplexToReal:
2749   case CK_FloatingComplexToBoolean:
2750   case CK_FloatingComplexCast:
2751   case CK_FloatingComplexToIntegralComplex:
2752   case CK_IntegralRealToComplex:
2753   case CK_IntegralComplexToReal:
2754   case CK_IntegralComplexToBoolean:
2755   case CK_IntegralComplexCast:
2756   case CK_IntegralComplexToFloatingComplex:
2757   case CK_DerivedToBaseMemberPointer:
2758   case CK_BaseToDerivedMemberPointer:
2759   case CK_MemberPointerToBoolean:
2760   case CK_ReinterpretMemberPointer:
2761   case CK_AnyPointerToBlockPointerCast:
2762   case CK_ARCProduceObject:
2763   case CK_ARCConsumeObject:
2764   case CK_ARCReclaimReturnedObject:
2765   case CK_ARCExtendBlockObject:
2766   case CK_CopyAndAutoreleaseBlockObject: {
2767     // These casts only produce lvalues when we're binding a reference to a
2768     // temporary realized from a (converted) pure rvalue. Emit the expression
2769     // as a value, copy it into a temporary, and return an lvalue referring to
2770     // that temporary.
2771     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2772     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2773     return MakeAddrLValue(V, E->getType());
2774   }
2775 
2776   case CK_Dynamic: {
2777     LValue LV = EmitLValue(E->getSubExpr());
2778     llvm::Value *V = LV.getAddress();
2779     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2780     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2781   }
2782 
2783   case CK_ConstructorConversion:
2784   case CK_UserDefinedConversion:
2785   case CK_CPointerToObjCPointerCast:
2786   case CK_BlockPointerToObjCPointerCast:
2787     return EmitLValue(E->getSubExpr());
2788 
2789   case CK_UncheckedDerivedToBase:
2790   case CK_DerivedToBase: {
2791     const RecordType *DerivedClassTy =
2792       E->getSubExpr()->getType()->getAs<RecordType>();
2793     CXXRecordDecl *DerivedClassDecl =
2794       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2795 
2796     LValue LV = EmitLValue(E->getSubExpr());
2797     llvm::Value *This = LV.getAddress();
2798 
2799     // Perform the derived-to-base conversion
2800     llvm::Value *Base =
2801       GetAddressOfBaseClass(This, DerivedClassDecl,
2802                             E->path_begin(), E->path_end(),
2803                             /*NullCheckValue=*/false);
2804 
2805     return MakeAddrLValue(Base, E->getType());
2806   }
2807   case CK_ToUnion:
2808     return EmitAggExprToLValue(E);
2809   case CK_BaseToDerived: {
2810     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2811     CXXRecordDecl *DerivedClassDecl =
2812       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2813 
2814     LValue LV = EmitLValue(E->getSubExpr());
2815 
2816     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2817     // performed and the object is not of the derived type.
2818     if (SanitizePerformTypeCheck)
2819       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2820                     LV.getAddress(), E->getType());
2821 
2822     // Perform the base-to-derived conversion
2823     llvm::Value *Derived =
2824       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2825                                E->path_begin(), E->path_end(),
2826                                /*NullCheckValue=*/false);
2827 
2828     return MakeAddrLValue(Derived, E->getType());
2829   }
2830   case CK_LValueBitCast: {
2831     // This must be a reinterpret_cast (or c-style equivalent).
2832     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2833 
2834     LValue LV = EmitLValue(E->getSubExpr());
2835     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2836                                            ConvertType(CE->getTypeAsWritten()));
2837     return MakeAddrLValue(V, E->getType());
2838   }
2839   case CK_ObjCObjectLValueCast: {
2840     LValue LV = EmitLValue(E->getSubExpr());
2841     QualType ToType = getContext().getLValueReferenceType(E->getType());
2842     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2843                                            ConvertType(ToType));
2844     return MakeAddrLValue(V, E->getType());
2845   }
2846   case CK_ZeroToOCLEvent:
2847     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2848   }
2849 
2850   llvm_unreachable("Unhandled lvalue cast kind?");
2851 }
2852 
2853 LValue CodeGenFunction::EmitNullInitializationLValue(
2854                                               const CXXScalarValueInitExpr *E) {
2855   QualType Ty = E->getType();
2856   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2857   EmitNullInitialization(LV.getAddress(), Ty);
2858   return LV;
2859 }
2860 
2861 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2862   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2863   return getOpaqueLValueMapping(e);
2864 }
2865 
2866 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2867                                            const MaterializeTemporaryExpr *E) {
2868   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2869   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2870 }
2871 
2872 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2873                                            const FieldDecl *FD) {
2874   QualType FT = FD->getType();
2875   LValue FieldLV = EmitLValueForField(LV, FD);
2876   switch (getEvaluationKind(FT)) {
2877   case TEK_Complex:
2878     return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2879   case TEK_Aggregate:
2880     return FieldLV.asAggregateRValue();
2881   case TEK_Scalar:
2882     return EmitLoadOfLValue(FieldLV);
2883   }
2884   llvm_unreachable("bad evaluation kind");
2885 }
2886 
2887 //===--------------------------------------------------------------------===//
2888 //                             Expression Emission
2889 //===--------------------------------------------------------------------===//
2890 
2891 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2892                                      ReturnValueSlot ReturnValue) {
2893   if (CGDebugInfo *DI = getDebugInfo()) {
2894     SourceLocation Loc = E->getLocStart();
2895     // Force column info to be generated so we can differentiate
2896     // multiple call sites on the same line in the debug info.
2897     const FunctionDecl* Callee = E->getDirectCallee();
2898     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2899     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2900   }
2901 
2902   // Builtins never have block type.
2903   if (E->getCallee()->getType()->isBlockPointerType())
2904     return EmitBlockCallExpr(E, ReturnValue);
2905 
2906   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2907     return EmitCXXMemberCallExpr(CE, ReturnValue);
2908 
2909   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2910     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2911 
2912   const Decl *TargetDecl = E->getCalleeDecl();
2913   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2914     if (unsigned builtinID = FD->getBuiltinID())
2915       return EmitBuiltinExpr(FD, builtinID, E);
2916   }
2917 
2918   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2919     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2920       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2921 
2922   if (const CXXPseudoDestructorExpr *PseudoDtor
2923           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2924     QualType DestroyedType = PseudoDtor->getDestroyedType();
2925     if (getLangOpts().ObjCAutoRefCount &&
2926         DestroyedType->isObjCLifetimeType() &&
2927         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2928          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2929       // Automatic Reference Counting:
2930       //   If the pseudo-expression names a retainable object with weak or
2931       //   strong lifetime, the object shall be released.
2932       Expr *BaseExpr = PseudoDtor->getBase();
2933       llvm::Value *BaseValue = NULL;
2934       Qualifiers BaseQuals;
2935 
2936       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2937       if (PseudoDtor->isArrow()) {
2938         BaseValue = EmitScalarExpr(BaseExpr);
2939         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2940         BaseQuals = PTy->getPointeeType().getQualifiers();
2941       } else {
2942         LValue BaseLV = EmitLValue(BaseExpr);
2943         BaseValue = BaseLV.getAddress();
2944         QualType BaseTy = BaseExpr->getType();
2945         BaseQuals = BaseTy.getQualifiers();
2946       }
2947 
2948       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2949       case Qualifiers::OCL_None:
2950       case Qualifiers::OCL_ExplicitNone:
2951       case Qualifiers::OCL_Autoreleasing:
2952         break;
2953 
2954       case Qualifiers::OCL_Strong:
2955         EmitARCRelease(Builder.CreateLoad(BaseValue,
2956                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2957                        ARCPreciseLifetime);
2958         break;
2959 
2960       case Qualifiers::OCL_Weak:
2961         EmitARCDestroyWeak(BaseValue);
2962         break;
2963       }
2964     } else {
2965       // C++ [expr.pseudo]p1:
2966       //   The result shall only be used as the operand for the function call
2967       //   operator (), and the result of such a call has type void. The only
2968       //   effect is the evaluation of the postfix-expression before the dot or
2969       //   arrow.
2970       EmitScalarExpr(E->getCallee());
2971     }
2972 
2973     return RValue::get(0);
2974   }
2975 
2976   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2977   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2978                   E->arg_begin(), E->arg_end(), TargetDecl);
2979 }
2980 
2981 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2982   // Comma expressions just emit their LHS then their RHS as an l-value.
2983   if (E->getOpcode() == BO_Comma) {
2984     EmitIgnoredExpr(E->getLHS());
2985     EnsureInsertPoint();
2986     return EmitLValue(E->getRHS());
2987   }
2988 
2989   if (E->getOpcode() == BO_PtrMemD ||
2990       E->getOpcode() == BO_PtrMemI)
2991     return EmitPointerToDataMemberBinaryExpr(E);
2992 
2993   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2994 
2995   // Note that in all of these cases, __block variables need the RHS
2996   // evaluated first just in case the variable gets moved by the RHS.
2997 
2998   switch (getEvaluationKind(E->getType())) {
2999   case TEK_Scalar: {
3000     switch (E->getLHS()->getType().getObjCLifetime()) {
3001     case Qualifiers::OCL_Strong:
3002       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3003 
3004     case Qualifiers::OCL_Autoreleasing:
3005       return EmitARCStoreAutoreleasing(E).first;
3006 
3007     // No reason to do any of these differently.
3008     case Qualifiers::OCL_None:
3009     case Qualifiers::OCL_ExplicitNone:
3010     case Qualifiers::OCL_Weak:
3011       break;
3012     }
3013 
3014     RValue RV = EmitAnyExpr(E->getRHS());
3015     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3016     EmitStoreThroughLValue(RV, LV);
3017     return LV;
3018   }
3019 
3020   case TEK_Complex:
3021     return EmitComplexAssignmentLValue(E);
3022 
3023   case TEK_Aggregate:
3024     return EmitAggExprToLValue(E);
3025   }
3026   llvm_unreachable("bad evaluation kind");
3027 }
3028 
3029 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3030   RValue RV = EmitCallExpr(E);
3031 
3032   if (!RV.isScalar())
3033     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3034 
3035   assert(E->getCallReturnType()->isReferenceType() &&
3036          "Can't have a scalar return unless the return type is a "
3037          "reference type!");
3038 
3039   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3040 }
3041 
3042 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3043   // FIXME: This shouldn't require another copy.
3044   return EmitAggExprToLValue(E);
3045 }
3046 
3047 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3048   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3049          && "binding l-value to type which needs a temporary");
3050   AggValueSlot Slot = CreateAggTemp(E->getType());
3051   EmitCXXConstructExpr(E, Slot);
3052   return MakeAddrLValue(Slot.getAddr(), E->getType());
3053 }
3054 
3055 LValue
3056 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3057   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3058 }
3059 
3060 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3061   return CGM.GetAddrOfUuidDescriptor(E);
3062 }
3063 
3064 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3065   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3066 }
3067 
3068 LValue
3069 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3070   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3071   Slot.setExternallyDestructed();
3072   EmitAggExpr(E->getSubExpr(), Slot);
3073   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3074   return MakeAddrLValue(Slot.getAddr(), E->getType());
3075 }
3076 
3077 LValue
3078 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3079   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3080   EmitLambdaExpr(E, Slot);
3081   return MakeAddrLValue(Slot.getAddr(), E->getType());
3082 }
3083 
3084 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3085   RValue RV = EmitObjCMessageExpr(E);
3086 
3087   if (!RV.isScalar())
3088     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3089 
3090   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3091          "Can't have a scalar return unless the return type is a "
3092          "reference type!");
3093 
3094   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3095 }
3096 
3097 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3098   llvm::Value *V =
3099     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3100   return MakeAddrLValue(V, E->getType());
3101 }
3102 
3103 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3104                                              const ObjCIvarDecl *Ivar) {
3105   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3106 }
3107 
3108 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3109                                           llvm::Value *BaseValue,
3110                                           const ObjCIvarDecl *Ivar,
3111                                           unsigned CVRQualifiers) {
3112   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3113                                                    Ivar, CVRQualifiers);
3114 }
3115 
3116 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3117   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3118   llvm::Value *BaseValue = 0;
3119   const Expr *BaseExpr = E->getBase();
3120   Qualifiers BaseQuals;
3121   QualType ObjectTy;
3122   if (E->isArrow()) {
3123     BaseValue = EmitScalarExpr(BaseExpr);
3124     ObjectTy = BaseExpr->getType()->getPointeeType();
3125     BaseQuals = ObjectTy.getQualifiers();
3126   } else {
3127     LValue BaseLV = EmitLValue(BaseExpr);
3128     // FIXME: this isn't right for bitfields.
3129     BaseValue = BaseLV.getAddress();
3130     ObjectTy = BaseExpr->getType();
3131     BaseQuals = ObjectTy.getQualifiers();
3132   }
3133 
3134   LValue LV =
3135     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3136                       BaseQuals.getCVRQualifiers());
3137   setObjCGCLValueClass(getContext(), E, LV);
3138   return LV;
3139 }
3140 
3141 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3142   // Can only get l-value for message expression returning aggregate type
3143   RValue RV = EmitAnyExprToTemp(E);
3144   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3145 }
3146 
3147 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3148                                  ReturnValueSlot ReturnValue,
3149                                  CallExpr::const_arg_iterator ArgBeg,
3150                                  CallExpr::const_arg_iterator ArgEnd,
3151                                  const Decl *TargetDecl) {
3152   // Get the actual function type. The callee type will always be a pointer to
3153   // function type or a block pointer type.
3154   assert(CalleeType->isFunctionPointerType() &&
3155          "Call must have function pointer type!");
3156 
3157   CalleeType = getContext().getCanonicalType(CalleeType);
3158 
3159   const FunctionType *FnType
3160     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3161 
3162   CallArgList Args;
3163   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
3164 
3165   const CGFunctionInfo &FnInfo =
3166     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3167 
3168   // C99 6.5.2.2p6:
3169   //   If the expression that denotes the called function has a type
3170   //   that does not include a prototype, [the default argument
3171   //   promotions are performed]. If the number of arguments does not
3172   //   equal the number of parameters, the behavior is undefined. If
3173   //   the function is defined with a type that includes a prototype,
3174   //   and either the prototype ends with an ellipsis (, ...) or the
3175   //   types of the arguments after promotion are not compatible with
3176   //   the types of the parameters, the behavior is undefined. If the
3177   //   function is defined with a type that does not include a
3178   //   prototype, and the types of the arguments after promotion are
3179   //   not compatible with those of the parameters after promotion,
3180   //   the behavior is undefined [except in some trivial cases].
3181   // That is, in the general case, we should assume that a call
3182   // through an unprototyped function type works like a *non-variadic*
3183   // call.  The way we make this work is to cast to the exact type
3184   // of the promoted arguments.
3185   if (isa<FunctionNoProtoType>(FnType)) {
3186     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3187     CalleeTy = CalleeTy->getPointerTo();
3188     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3189   }
3190 
3191   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3192 }
3193 
3194 LValue CodeGenFunction::
3195 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3196   llvm::Value *BaseV;
3197   if (E->getOpcode() == BO_PtrMemI)
3198     BaseV = EmitScalarExpr(E->getLHS());
3199   else
3200     BaseV = EmitLValue(E->getLHS()).getAddress();
3201 
3202   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3203 
3204   const MemberPointerType *MPT
3205     = E->getRHS()->getType()->getAs<MemberPointerType>();
3206 
3207   llvm::Value *AddV =
3208     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3209 
3210   return MakeAddrLValue(AddV, MPT->getPointeeType());
3211 }
3212 
3213 /// Given the address of a temporary variable, produce an r-value of
3214 /// its type.
3215 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3216                                             QualType type) {
3217   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3218   switch (getEvaluationKind(type)) {
3219   case TEK_Complex:
3220     return RValue::getComplex(EmitLoadOfComplex(lvalue));
3221   case TEK_Aggregate:
3222     return lvalue.asAggregateRValue();
3223   case TEK_Scalar:
3224     return RValue::get(EmitLoadOfScalar(lvalue));
3225   }
3226   llvm_unreachable("bad evaluation kind");
3227 }
3228 
3229 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3230   assert(Val->getType()->isFPOrFPVectorTy());
3231   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3232     return;
3233 
3234   llvm::MDBuilder MDHelper(getLLVMContext());
3235   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3236 
3237   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3238 }
3239 
3240 namespace {
3241   struct LValueOrRValue {
3242     LValue LV;
3243     RValue RV;
3244   };
3245 }
3246 
3247 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3248                                            const PseudoObjectExpr *E,
3249                                            bool forLValue,
3250                                            AggValueSlot slot) {
3251   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3252 
3253   // Find the result expression, if any.
3254   const Expr *resultExpr = E->getResultExpr();
3255   LValueOrRValue result;
3256 
3257   for (PseudoObjectExpr::const_semantics_iterator
3258          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3259     const Expr *semantic = *i;
3260 
3261     // If this semantic expression is an opaque value, bind it
3262     // to the result of its source expression.
3263     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3264 
3265       // If this is the result expression, we may need to evaluate
3266       // directly into the slot.
3267       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3268       OVMA opaqueData;
3269       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3270           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3271         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3272 
3273         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3274         opaqueData = OVMA::bind(CGF, ov, LV);
3275         result.RV = slot.asRValue();
3276 
3277       // Otherwise, emit as normal.
3278       } else {
3279         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3280 
3281         // If this is the result, also evaluate the result now.
3282         if (ov == resultExpr) {
3283           if (forLValue)
3284             result.LV = CGF.EmitLValue(ov);
3285           else
3286             result.RV = CGF.EmitAnyExpr(ov, slot);
3287         }
3288       }
3289 
3290       opaques.push_back(opaqueData);
3291 
3292     // Otherwise, if the expression is the result, evaluate it
3293     // and remember the result.
3294     } else if (semantic == resultExpr) {
3295       if (forLValue)
3296         result.LV = CGF.EmitLValue(semantic);
3297       else
3298         result.RV = CGF.EmitAnyExpr(semantic, slot);
3299 
3300     // Otherwise, evaluate the expression in an ignored context.
3301     } else {
3302       CGF.EmitIgnoredExpr(semantic);
3303     }
3304   }
3305 
3306   // Unbind all the opaques now.
3307   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3308     opaques[i].unbind(CGF);
3309 
3310   return result;
3311 }
3312 
3313 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3314                                                AggValueSlot slot) {
3315   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3316 }
3317 
3318 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3319   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3320 }
3321