1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name) { 65 auto Alloca = CreateTempAlloca(Ty, Name); 66 Alloca->setAlignment(Align.getQuantity()); 67 return Address(Alloca, Align); 68 } 69 70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 71 /// block. 72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 73 const Twine &Name) { 74 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 75 nullptr, Name, AllocaInsertPt); 76 } 77 78 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 79 /// default alignment of the corresponding LLVM type, which is *not* 80 /// guaranteed to be related in any way to the expected alignment of 81 /// an AST type that might have been lowered to Ty. 82 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 83 const Twine &Name) { 84 CharUnits Align = 85 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 86 return CreateTempAlloca(Ty, Align, Name); 87 } 88 89 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 90 assert(isa<llvm::AllocaInst>(Var.getPointer())); 91 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 92 Store->setAlignment(Var.getAlignment().getQuantity()); 93 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 94 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 95 } 96 97 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 98 CharUnits Align = getContext().getTypeAlignInChars(Ty); 99 return CreateTempAlloca(ConvertType(Ty), Align, Name); 100 } 101 102 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 103 // FIXME: Should we prefer the preferred type alignment here? 104 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 105 } 106 107 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 108 const Twine &Name) { 109 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 110 } 111 112 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 113 /// expression and compare the result against zero, returning an Int1Ty value. 114 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 115 PGO.setCurrentStmt(E); 116 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 117 llvm::Value *MemPtr = EmitScalarExpr(E); 118 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 119 } 120 121 QualType BoolTy = getContext().BoolTy; 122 SourceLocation Loc = E->getExprLoc(); 123 if (!E->getType()->isAnyComplexType()) 124 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 125 126 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 127 Loc); 128 } 129 130 /// EmitIgnoredExpr - Emit code to compute the specified expression, 131 /// ignoring the result. 132 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 133 if (E->isRValue()) 134 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 135 136 // Just emit it as an l-value and drop the result. 137 EmitLValue(E); 138 } 139 140 /// EmitAnyExpr - Emit code to compute the specified expression which 141 /// can have any type. The result is returned as an RValue struct. 142 /// If this is an aggregate expression, AggSlot indicates where the 143 /// result should be returned. 144 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 145 AggValueSlot aggSlot, 146 bool ignoreResult) { 147 switch (getEvaluationKind(E->getType())) { 148 case TEK_Scalar: 149 return RValue::get(EmitScalarExpr(E, ignoreResult)); 150 case TEK_Complex: 151 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 152 case TEK_Aggregate: 153 if (!ignoreResult && aggSlot.isIgnored()) 154 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 155 EmitAggExpr(E, aggSlot); 156 return aggSlot.asRValue(); 157 } 158 llvm_unreachable("bad evaluation kind"); 159 } 160 161 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 162 /// always be accessible even if no aggregate location is provided. 163 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 164 AggValueSlot AggSlot = AggValueSlot::ignored(); 165 166 if (hasAggregateEvaluationKind(E->getType())) 167 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 168 return EmitAnyExpr(E, AggSlot); 169 } 170 171 /// EmitAnyExprToMem - Evaluate an expression into a given memory 172 /// location. 173 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 174 Address Location, 175 Qualifiers Quals, 176 bool IsInit) { 177 // FIXME: This function should take an LValue as an argument. 178 switch (getEvaluationKind(E->getType())) { 179 case TEK_Complex: 180 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 181 /*isInit*/ false); 182 return; 183 184 case TEK_Aggregate: { 185 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 186 AggValueSlot::IsDestructed_t(IsInit), 187 AggValueSlot::DoesNotNeedGCBarriers, 188 AggValueSlot::IsAliased_t(!IsInit))); 189 return; 190 } 191 192 case TEK_Scalar: { 193 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 194 LValue LV = MakeAddrLValue(Location, E->getType()); 195 EmitStoreThroughLValue(RV, LV); 196 return; 197 } 198 } 199 llvm_unreachable("bad evaluation kind"); 200 } 201 202 static void 203 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 204 const Expr *E, Address ReferenceTemporary) { 205 // Objective-C++ ARC: 206 // If we are binding a reference to a temporary that has ownership, we 207 // need to perform retain/release operations on the temporary. 208 // 209 // FIXME: This should be looking at E, not M. 210 if (auto Lifetime = M->getType().getObjCLifetime()) { 211 switch (Lifetime) { 212 case Qualifiers::OCL_None: 213 case Qualifiers::OCL_ExplicitNone: 214 // Carry on to normal cleanup handling. 215 break; 216 217 case Qualifiers::OCL_Autoreleasing: 218 // Nothing to do; cleaned up by an autorelease pool. 219 return; 220 221 case Qualifiers::OCL_Strong: 222 case Qualifiers::OCL_Weak: 223 switch (StorageDuration Duration = M->getStorageDuration()) { 224 case SD_Static: 225 // Note: we intentionally do not register a cleanup to release 226 // the object on program termination. 227 return; 228 229 case SD_Thread: 230 // FIXME: We should probably register a cleanup in this case. 231 return; 232 233 case SD_Automatic: 234 case SD_FullExpression: 235 CodeGenFunction::Destroyer *Destroy; 236 CleanupKind CleanupKind; 237 if (Lifetime == Qualifiers::OCL_Strong) { 238 const ValueDecl *VD = M->getExtendingDecl(); 239 bool Precise = 240 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 241 CleanupKind = CGF.getARCCleanupKind(); 242 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 243 : &CodeGenFunction::destroyARCStrongImprecise; 244 } else { 245 // __weak objects always get EH cleanups; otherwise, exceptions 246 // could cause really nasty crashes instead of mere leaks. 247 CleanupKind = NormalAndEHCleanup; 248 Destroy = &CodeGenFunction::destroyARCWeak; 249 } 250 if (Duration == SD_FullExpression) 251 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), *Destroy, 253 CleanupKind & EHCleanup); 254 else 255 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 256 M->getType(), 257 *Destroy, CleanupKind & EHCleanup); 258 return; 259 260 case SD_Dynamic: 261 llvm_unreachable("temporary cannot have dynamic storage duration"); 262 } 263 llvm_unreachable("unknown storage duration"); 264 } 265 } 266 267 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 268 if (const RecordType *RT = 269 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 270 // Get the destructor for the reference temporary. 271 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 272 if (!ClassDecl->hasTrivialDestructor()) 273 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 274 } 275 276 if (!ReferenceTemporaryDtor) 277 return; 278 279 // Call the destructor for the temporary. 280 switch (M->getStorageDuration()) { 281 case SD_Static: 282 case SD_Thread: { 283 llvm::Constant *CleanupFn; 284 llvm::Constant *CleanupArg; 285 if (E->getType()->isArrayType()) { 286 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 287 ReferenceTemporary, E->getType(), 288 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 289 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 290 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 291 } else { 292 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 293 StructorType::Complete); 294 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 295 } 296 CGF.CGM.getCXXABI().registerGlobalDtor( 297 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 298 break; 299 } 300 301 case SD_FullExpression: 302 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 303 CodeGenFunction::destroyCXXObject, 304 CGF.getLangOpts().Exceptions); 305 break; 306 307 case SD_Automatic: 308 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 309 ReferenceTemporary, E->getType(), 310 CodeGenFunction::destroyCXXObject, 311 CGF.getLangOpts().Exceptions); 312 break; 313 314 case SD_Dynamic: 315 llvm_unreachable("temporary cannot have dynamic storage duration"); 316 } 317 } 318 319 static Address 320 createReferenceTemporary(CodeGenFunction &CGF, 321 const MaterializeTemporaryExpr *M, const Expr *Inner) { 322 switch (M->getStorageDuration()) { 323 case SD_FullExpression: 324 case SD_Automatic: { 325 // If we have a constant temporary array or record try to promote it into a 326 // constant global under the same rules a normal constant would've been 327 // promoted. This is easier on the optimizer and generally emits fewer 328 // instructions. 329 QualType Ty = Inner->getType(); 330 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 331 (Ty->isArrayType() || Ty->isRecordType()) && 332 CGF.CGM.isTypeConstant(Ty, true)) 333 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 334 auto *GV = new llvm::GlobalVariable( 335 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 336 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 337 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 338 GV->setAlignment(alignment.getQuantity()); 339 // FIXME: Should we put the new global into a COMDAT? 340 return Address(GV, alignment); 341 } 342 return CGF.CreateMemTemp(Ty, "ref.tmp"); 343 } 344 case SD_Thread: 345 case SD_Static: 346 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 347 348 case SD_Dynamic: 349 llvm_unreachable("temporary can't have dynamic storage duration"); 350 } 351 llvm_unreachable("unknown storage duration"); 352 } 353 354 LValue CodeGenFunction:: 355 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 356 const Expr *E = M->GetTemporaryExpr(); 357 358 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 359 // as that will cause the lifetime adjustment to be lost for ARC 360 auto ownership = M->getType().getObjCLifetime(); 361 if (ownership != Qualifiers::OCL_None && 362 ownership != Qualifiers::OCL_ExplicitNone) { 363 Address Object = createReferenceTemporary(*this, M, E); 364 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 365 Object = Address(llvm::ConstantExpr::getBitCast(Var, 366 ConvertTypeForMem(E->getType()) 367 ->getPointerTo(Object.getAddressSpace())), 368 Object.getAlignment()); 369 370 // createReferenceTemporary will promote the temporary to a global with a 371 // constant initializer if it can. It can only do this to a value of 372 // ARC-manageable type if the value is global and therefore "immune" to 373 // ref-counting operations. Therefore we have no need to emit either a 374 // dynamic initialization or a cleanup and we can just return the address 375 // of the temporary. 376 if (Var->hasInitializer()) 377 return MakeAddrLValue(Object, M->getType(), 378 LValueBaseInfo(AlignmentSource::Decl, false)); 379 380 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 381 } 382 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 383 LValueBaseInfo(AlignmentSource::Decl, 384 false)); 385 386 switch (getEvaluationKind(E->getType())) { 387 default: llvm_unreachable("expected scalar or aggregate expression"); 388 case TEK_Scalar: 389 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 390 break; 391 case TEK_Aggregate: { 392 EmitAggExpr(E, AggValueSlot::forAddr(Object, 393 E->getType().getQualifiers(), 394 AggValueSlot::IsDestructed, 395 AggValueSlot::DoesNotNeedGCBarriers, 396 AggValueSlot::IsNotAliased)); 397 break; 398 } 399 } 400 401 pushTemporaryCleanup(*this, M, E, Object); 402 return RefTempDst; 403 } 404 405 SmallVector<const Expr *, 2> CommaLHSs; 406 SmallVector<SubobjectAdjustment, 2> Adjustments; 407 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 408 409 for (const auto &Ignored : CommaLHSs) 410 EmitIgnoredExpr(Ignored); 411 412 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 413 if (opaque->getType()->isRecordType()) { 414 assert(Adjustments.empty()); 415 return EmitOpaqueValueLValue(opaque); 416 } 417 } 418 419 // Create and initialize the reference temporary. 420 Address Object = createReferenceTemporary(*this, M, E); 421 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 422 Object = Address(llvm::ConstantExpr::getBitCast( 423 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 424 Object.getAlignment()); 425 // If the temporary is a global and has a constant initializer or is a 426 // constant temporary that we promoted to a global, we may have already 427 // initialized it. 428 if (!Var->hasInitializer()) { 429 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 430 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 431 } 432 } else { 433 switch (M->getStorageDuration()) { 434 case SD_Automatic: 435 case SD_FullExpression: 436 if (auto *Size = EmitLifetimeStart( 437 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 438 Object.getPointer())) { 439 if (M->getStorageDuration() == SD_Automatic) 440 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 441 Object, Size); 442 else 443 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 444 Size); 445 } 446 break; 447 default: 448 break; 449 } 450 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 451 } 452 pushTemporaryCleanup(*this, M, E, Object); 453 454 // Perform derived-to-base casts and/or field accesses, to get from the 455 // temporary object we created (and, potentially, for which we extended 456 // the lifetime) to the subobject we're binding the reference to. 457 for (unsigned I = Adjustments.size(); I != 0; --I) { 458 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 459 switch (Adjustment.Kind) { 460 case SubobjectAdjustment::DerivedToBaseAdjustment: 461 Object = 462 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 463 Adjustment.DerivedToBase.BasePath->path_begin(), 464 Adjustment.DerivedToBase.BasePath->path_end(), 465 /*NullCheckValue=*/ false, E->getExprLoc()); 466 break; 467 468 case SubobjectAdjustment::FieldAdjustment: { 469 LValue LV = MakeAddrLValue(Object, E->getType(), 470 LValueBaseInfo(AlignmentSource::Decl, false)); 471 LV = EmitLValueForField(LV, Adjustment.Field); 472 assert(LV.isSimple() && 473 "materialized temporary field is not a simple lvalue"); 474 Object = LV.getAddress(); 475 break; 476 } 477 478 case SubobjectAdjustment::MemberPointerAdjustment: { 479 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 480 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 481 Adjustment.Ptr.MPT); 482 break; 483 } 484 } 485 } 486 487 return MakeAddrLValue(Object, M->getType(), 488 LValueBaseInfo(AlignmentSource::Decl, false)); 489 } 490 491 RValue 492 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 493 // Emit the expression as an lvalue. 494 LValue LV = EmitLValue(E); 495 assert(LV.isSimple()); 496 llvm::Value *Value = LV.getPointer(); 497 498 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 499 // C++11 [dcl.ref]p5 (as amended by core issue 453): 500 // If a glvalue to which a reference is directly bound designates neither 501 // an existing object or function of an appropriate type nor a region of 502 // storage of suitable size and alignment to contain an object of the 503 // reference's type, the behavior is undefined. 504 QualType Ty = E->getType(); 505 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 506 } 507 508 return RValue::get(Value); 509 } 510 511 512 /// getAccessedFieldNo - Given an encoded value and a result number, return the 513 /// input field number being accessed. 514 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 515 const llvm::Constant *Elts) { 516 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 517 ->getZExtValue(); 518 } 519 520 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 521 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 522 llvm::Value *High) { 523 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 524 llvm::Value *K47 = Builder.getInt64(47); 525 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 526 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 527 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 528 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 529 return Builder.CreateMul(B1, KMul); 530 } 531 532 bool CodeGenFunction::sanitizePerformTypeCheck() const { 533 return SanOpts.has(SanitizerKind::Null) | 534 SanOpts.has(SanitizerKind::Alignment) | 535 SanOpts.has(SanitizerKind::ObjectSize) | 536 SanOpts.has(SanitizerKind::Vptr); 537 } 538 539 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 540 llvm::Value *Ptr, QualType Ty, 541 CharUnits Alignment, 542 SanitizerSet SkippedChecks) { 543 if (!sanitizePerformTypeCheck()) 544 return; 545 546 // Don't check pointers outside the default address space. The null check 547 // isn't correct, the object-size check isn't supported by LLVM, and we can't 548 // communicate the addresses to the runtime handler for the vptr check. 549 if (Ptr->getType()->getPointerAddressSpace()) 550 return; 551 552 SanitizerScope SanScope(this); 553 554 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 555 llvm::BasicBlock *Done = nullptr; 556 557 // Quickly determine whether we have a pointer to an alloca. It's possible 558 // to skip null checks, and some alignment checks, for these pointers. This 559 // can reduce compile-time significantly. 560 auto PtrToAlloca = 561 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 562 563 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 564 TCK == TCK_UpcastToVirtualBase; 565 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 566 !SkippedChecks.has(SanitizerKind::Null) && !PtrToAlloca) { 567 // The glvalue must not be an empty glvalue. 568 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 569 570 // The IR builder can constant-fold the null check if the pointer points to 571 // a constant. 572 bool PtrIsNonNull = 573 IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext()); 574 575 // Skip the null check if the pointer is known to be non-null. 576 if (!PtrIsNonNull) { 577 if (AllowNullPointers) { 578 // When performing pointer casts, it's OK if the value is null. 579 // Skip the remaining checks in that case. 580 Done = createBasicBlock("null"); 581 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 582 Builder.CreateCondBr(IsNonNull, Rest, Done); 583 EmitBlock(Rest); 584 } else { 585 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 586 } 587 } 588 } 589 590 if (SanOpts.has(SanitizerKind::ObjectSize) && 591 !SkippedChecks.has(SanitizerKind::ObjectSize) && 592 !Ty->isIncompleteType()) { 593 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 594 595 // The glvalue must refer to a large enough storage region. 596 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 597 // to check this. 598 // FIXME: Get object address space 599 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 600 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 601 llvm::Value *Min = Builder.getFalse(); 602 llvm::Value *NullIsUnknown = Builder.getFalse(); 603 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 604 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 605 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 606 llvm::ConstantInt::get(IntPtrTy, Size)); 607 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 608 } 609 610 uint64_t AlignVal = 0; 611 612 if (SanOpts.has(SanitizerKind::Alignment) && 613 !SkippedChecks.has(SanitizerKind::Alignment)) { 614 AlignVal = Alignment.getQuantity(); 615 if (!Ty->isIncompleteType() && !AlignVal) 616 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 617 618 // The glvalue must be suitably aligned. 619 if (AlignVal > 1 && 620 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 621 llvm::Value *Align = 622 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 623 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 624 llvm::Value *Aligned = 625 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 626 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 627 } 628 } 629 630 if (Checks.size() > 0) { 631 // Make sure we're not losing information. Alignment needs to be a power of 632 // 2 633 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 634 llvm::Constant *StaticData[] = { 635 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 636 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 637 llvm::ConstantInt::get(Int8Ty, TCK)}; 638 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 639 } 640 641 // If possible, check that the vptr indicates that there is a subobject of 642 // type Ty at offset zero within this object. 643 // 644 // C++11 [basic.life]p5,6: 645 // [For storage which does not refer to an object within its lifetime] 646 // The program has undefined behavior if: 647 // -- the [pointer or glvalue] is used to access a non-static data member 648 // or call a non-static member function 649 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 650 if (SanOpts.has(SanitizerKind::Vptr) && 651 !SkippedChecks.has(SanitizerKind::Vptr) && 652 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 653 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 654 TCK == TCK_UpcastToVirtualBase) && 655 RD && RD->hasDefinition() && RD->isDynamicClass()) { 656 // Compute a hash of the mangled name of the type. 657 // 658 // FIXME: This is not guaranteed to be deterministic! Move to a 659 // fingerprinting mechanism once LLVM provides one. For the time 660 // being the implementation happens to be deterministic. 661 SmallString<64> MangledName; 662 llvm::raw_svector_ostream Out(MangledName); 663 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 664 Out); 665 666 // Blacklist based on the mangled type. 667 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 668 Out.str())) { 669 llvm::hash_code TypeHash = hash_value(Out.str()); 670 671 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 672 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 673 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 674 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 675 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 676 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 677 678 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 679 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 680 681 // Look the hash up in our cache. 682 const int CacheSize = 128; 683 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 684 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 685 "__ubsan_vptr_type_cache"); 686 llvm::Value *Slot = Builder.CreateAnd(Hash, 687 llvm::ConstantInt::get(IntPtrTy, 688 CacheSize-1)); 689 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 690 llvm::Value *CacheVal = 691 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 692 getPointerAlign()); 693 694 // If the hash isn't in the cache, call a runtime handler to perform the 695 // hard work of checking whether the vptr is for an object of the right 696 // type. This will either fill in the cache and return, or produce a 697 // diagnostic. 698 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 699 llvm::Constant *StaticData[] = { 700 EmitCheckSourceLocation(Loc), 701 EmitCheckTypeDescriptor(Ty), 702 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 703 llvm::ConstantInt::get(Int8Ty, TCK) 704 }; 705 llvm::Value *DynamicData[] = { Ptr, Hash }; 706 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 707 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 708 DynamicData); 709 } 710 } 711 712 if (Done) { 713 Builder.CreateBr(Done); 714 EmitBlock(Done); 715 } 716 } 717 718 /// Determine whether this expression refers to a flexible array member in a 719 /// struct. We disable array bounds checks for such members. 720 static bool isFlexibleArrayMemberExpr(const Expr *E) { 721 // For compatibility with existing code, we treat arrays of length 0 or 722 // 1 as flexible array members. 723 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 724 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 725 if (CAT->getSize().ugt(1)) 726 return false; 727 } else if (!isa<IncompleteArrayType>(AT)) 728 return false; 729 730 E = E->IgnoreParens(); 731 732 // A flexible array member must be the last member in the class. 733 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 734 // FIXME: If the base type of the member expr is not FD->getParent(), 735 // this should not be treated as a flexible array member access. 736 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 737 RecordDecl::field_iterator FI( 738 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 739 return ++FI == FD->getParent()->field_end(); 740 } 741 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 742 return IRE->getDecl()->getNextIvar() == nullptr; 743 } 744 745 return false; 746 } 747 748 /// If Base is known to point to the start of an array, return the length of 749 /// that array. Return 0 if the length cannot be determined. 750 static llvm::Value *getArrayIndexingBound( 751 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 752 // For the vector indexing extension, the bound is the number of elements. 753 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 754 IndexedType = Base->getType(); 755 return CGF.Builder.getInt32(VT->getNumElements()); 756 } 757 758 Base = Base->IgnoreParens(); 759 760 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 761 if (CE->getCastKind() == CK_ArrayToPointerDecay && 762 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 763 IndexedType = CE->getSubExpr()->getType(); 764 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 765 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 766 return CGF.Builder.getInt(CAT->getSize()); 767 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 768 return CGF.getVLASize(VAT).first; 769 } 770 } 771 772 return nullptr; 773 } 774 775 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 776 llvm::Value *Index, QualType IndexType, 777 bool Accessed) { 778 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 779 "should not be called unless adding bounds checks"); 780 SanitizerScope SanScope(this); 781 782 QualType IndexedType; 783 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 784 if (!Bound) 785 return; 786 787 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 788 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 789 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 790 791 llvm::Constant *StaticData[] = { 792 EmitCheckSourceLocation(E->getExprLoc()), 793 EmitCheckTypeDescriptor(IndexedType), 794 EmitCheckTypeDescriptor(IndexType) 795 }; 796 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 797 : Builder.CreateICmpULE(IndexVal, BoundVal); 798 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 799 SanitizerHandler::OutOfBounds, StaticData, Index); 800 } 801 802 803 CodeGenFunction::ComplexPairTy CodeGenFunction:: 804 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 805 bool isInc, bool isPre) { 806 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 807 808 llvm::Value *NextVal; 809 if (isa<llvm::IntegerType>(InVal.first->getType())) { 810 uint64_t AmountVal = isInc ? 1 : -1; 811 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 812 813 // Add the inc/dec to the real part. 814 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 815 } else { 816 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 817 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 818 if (!isInc) 819 FVal.changeSign(); 820 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 821 822 // Add the inc/dec to the real part. 823 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 824 } 825 826 ComplexPairTy IncVal(NextVal, InVal.second); 827 828 // Store the updated result through the lvalue. 829 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 830 831 // If this is a postinc, return the value read from memory, otherwise use the 832 // updated value. 833 return isPre ? IncVal : InVal; 834 } 835 836 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 837 CodeGenFunction *CGF) { 838 // Bind VLAs in the cast type. 839 if (CGF && E->getType()->isVariablyModifiedType()) 840 CGF->EmitVariablyModifiedType(E->getType()); 841 842 if (CGDebugInfo *DI = getModuleDebugInfo()) 843 DI->EmitExplicitCastType(E->getType()); 844 } 845 846 //===----------------------------------------------------------------------===// 847 // LValue Expression Emission 848 //===----------------------------------------------------------------------===// 849 850 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 851 /// derive a more accurate bound on the alignment of the pointer. 852 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 853 LValueBaseInfo *BaseInfo) { 854 // We allow this with ObjC object pointers because of fragile ABIs. 855 assert(E->getType()->isPointerType() || 856 E->getType()->isObjCObjectPointerType()); 857 E = E->IgnoreParens(); 858 859 // Casts: 860 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 861 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 862 CGM.EmitExplicitCastExprType(ECE, this); 863 864 switch (CE->getCastKind()) { 865 // Non-converting casts (but not C's implicit conversion from void*). 866 case CK_BitCast: 867 case CK_NoOp: 868 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 869 if (PtrTy->getPointeeType()->isVoidType()) 870 break; 871 872 LValueBaseInfo InnerInfo; 873 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo); 874 if (BaseInfo) *BaseInfo = InnerInfo; 875 876 // If this is an explicit bitcast, and the source l-value is 877 // opaque, honor the alignment of the casted-to type. 878 if (isa<ExplicitCastExpr>(CE) && 879 InnerInfo.getAlignmentSource() != AlignmentSource::Decl) { 880 LValueBaseInfo ExpInfo; 881 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 882 &ExpInfo); 883 if (BaseInfo) 884 BaseInfo->mergeForCast(ExpInfo); 885 Addr = Address(Addr.getPointer(), Align); 886 } 887 888 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 889 CE->getCastKind() == CK_BitCast) { 890 if (auto PT = E->getType()->getAs<PointerType>()) 891 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 892 /*MayBeNull=*/true, 893 CodeGenFunction::CFITCK_UnrelatedCast, 894 CE->getLocStart()); 895 } 896 897 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 898 } 899 break; 900 901 // Array-to-pointer decay. 902 case CK_ArrayToPointerDecay: 903 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo); 904 905 // Derived-to-base conversions. 906 case CK_UncheckedDerivedToBase: 907 case CK_DerivedToBase: { 908 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 909 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 910 return GetAddressOfBaseClass(Addr, Derived, 911 CE->path_begin(), CE->path_end(), 912 ShouldNullCheckClassCastValue(CE), 913 CE->getExprLoc()); 914 } 915 916 // TODO: Is there any reason to treat base-to-derived conversions 917 // specially? 918 default: 919 break; 920 } 921 } 922 923 // Unary &. 924 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 925 if (UO->getOpcode() == UO_AddrOf) { 926 LValue LV = EmitLValue(UO->getSubExpr()); 927 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 928 return LV.getAddress(); 929 } 930 } 931 932 // TODO: conditional operators, comma. 933 934 // Otherwise, use the alignment of the type. 935 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo); 936 return Address(EmitScalarExpr(E), Align); 937 } 938 939 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 940 if (Ty->isVoidType()) 941 return RValue::get(nullptr); 942 943 switch (getEvaluationKind(Ty)) { 944 case TEK_Complex: { 945 llvm::Type *EltTy = 946 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 947 llvm::Value *U = llvm::UndefValue::get(EltTy); 948 return RValue::getComplex(std::make_pair(U, U)); 949 } 950 951 // If this is a use of an undefined aggregate type, the aggregate must have an 952 // identifiable address. Just because the contents of the value are undefined 953 // doesn't mean that the address can't be taken and compared. 954 case TEK_Aggregate: { 955 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 956 return RValue::getAggregate(DestPtr); 957 } 958 959 case TEK_Scalar: 960 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 961 } 962 llvm_unreachable("bad evaluation kind"); 963 } 964 965 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 966 const char *Name) { 967 ErrorUnsupported(E, Name); 968 return GetUndefRValue(E->getType()); 969 } 970 971 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 972 const char *Name) { 973 ErrorUnsupported(E, Name); 974 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 975 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 976 E->getType()); 977 } 978 979 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 980 const Expr *Base = Obj; 981 while (!isa<CXXThisExpr>(Base)) { 982 // The result of a dynamic_cast can be null. 983 if (isa<CXXDynamicCastExpr>(Base)) 984 return false; 985 986 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 987 Base = CE->getSubExpr(); 988 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 989 Base = PE->getSubExpr(); 990 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 991 if (UO->getOpcode() == UO_Extension) 992 Base = UO->getSubExpr(); 993 else 994 return false; 995 } else { 996 return false; 997 } 998 } 999 return true; 1000 } 1001 1002 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1003 LValue LV; 1004 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1005 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1006 else 1007 LV = EmitLValue(E); 1008 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1009 SanitizerSet SkippedChecks; 1010 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1011 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1012 if (IsBaseCXXThis) 1013 SkippedChecks.set(SanitizerKind::Alignment, true); 1014 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1015 SkippedChecks.set(SanitizerKind::Null, true); 1016 } 1017 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1018 E->getType(), LV.getAlignment(), SkippedChecks); 1019 } 1020 return LV; 1021 } 1022 1023 /// EmitLValue - Emit code to compute a designator that specifies the location 1024 /// of the expression. 1025 /// 1026 /// This can return one of two things: a simple address or a bitfield reference. 1027 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1028 /// an LLVM pointer type. 1029 /// 1030 /// If this returns a bitfield reference, nothing about the pointee type of the 1031 /// LLVM value is known: For example, it may not be a pointer to an integer. 1032 /// 1033 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1034 /// this method guarantees that the returned pointer type will point to an LLVM 1035 /// type of the same size of the lvalue's type. If the lvalue has a variable 1036 /// length type, this is not possible. 1037 /// 1038 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1039 ApplyDebugLocation DL(*this, E); 1040 switch (E->getStmtClass()) { 1041 default: return EmitUnsupportedLValue(E, "l-value expression"); 1042 1043 case Expr::ObjCPropertyRefExprClass: 1044 llvm_unreachable("cannot emit a property reference directly"); 1045 1046 case Expr::ObjCSelectorExprClass: 1047 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1048 case Expr::ObjCIsaExprClass: 1049 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1050 case Expr::BinaryOperatorClass: 1051 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1052 case Expr::CompoundAssignOperatorClass: { 1053 QualType Ty = E->getType(); 1054 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1055 Ty = AT->getValueType(); 1056 if (!Ty->isAnyComplexType()) 1057 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1058 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1059 } 1060 case Expr::CallExprClass: 1061 case Expr::CXXMemberCallExprClass: 1062 case Expr::CXXOperatorCallExprClass: 1063 case Expr::UserDefinedLiteralClass: 1064 return EmitCallExprLValue(cast<CallExpr>(E)); 1065 case Expr::VAArgExprClass: 1066 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1067 case Expr::DeclRefExprClass: 1068 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1069 case Expr::ParenExprClass: 1070 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1071 case Expr::GenericSelectionExprClass: 1072 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1073 case Expr::PredefinedExprClass: 1074 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1075 case Expr::StringLiteralClass: 1076 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1077 case Expr::ObjCEncodeExprClass: 1078 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1079 case Expr::PseudoObjectExprClass: 1080 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1081 case Expr::InitListExprClass: 1082 return EmitInitListLValue(cast<InitListExpr>(E)); 1083 case Expr::CXXTemporaryObjectExprClass: 1084 case Expr::CXXConstructExprClass: 1085 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1086 case Expr::CXXBindTemporaryExprClass: 1087 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1088 case Expr::CXXUuidofExprClass: 1089 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1090 case Expr::LambdaExprClass: 1091 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1092 1093 case Expr::ExprWithCleanupsClass: { 1094 const auto *cleanups = cast<ExprWithCleanups>(E); 1095 enterFullExpression(cleanups); 1096 RunCleanupsScope Scope(*this); 1097 LValue LV = EmitLValue(cleanups->getSubExpr()); 1098 if (LV.isSimple()) { 1099 // Defend against branches out of gnu statement expressions surrounded by 1100 // cleanups. 1101 llvm::Value *V = LV.getPointer(); 1102 Scope.ForceCleanup({&V}); 1103 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1104 getContext(), LV.getBaseInfo(), 1105 LV.getTBAAInfo()); 1106 } 1107 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1108 // bitfield lvalue or some other non-simple lvalue? 1109 return LV; 1110 } 1111 1112 case Expr::CXXDefaultArgExprClass: 1113 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1114 case Expr::CXXDefaultInitExprClass: { 1115 CXXDefaultInitExprScope Scope(*this); 1116 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1117 } 1118 case Expr::CXXTypeidExprClass: 1119 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1120 1121 case Expr::ObjCMessageExprClass: 1122 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1123 case Expr::ObjCIvarRefExprClass: 1124 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1125 case Expr::StmtExprClass: 1126 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1127 case Expr::UnaryOperatorClass: 1128 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1129 case Expr::ArraySubscriptExprClass: 1130 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1131 case Expr::OMPArraySectionExprClass: 1132 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1133 case Expr::ExtVectorElementExprClass: 1134 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1135 case Expr::MemberExprClass: 1136 return EmitMemberExpr(cast<MemberExpr>(E)); 1137 case Expr::CompoundLiteralExprClass: 1138 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1139 case Expr::ConditionalOperatorClass: 1140 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1141 case Expr::BinaryConditionalOperatorClass: 1142 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1143 case Expr::ChooseExprClass: 1144 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1145 case Expr::OpaqueValueExprClass: 1146 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1147 case Expr::SubstNonTypeTemplateParmExprClass: 1148 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1149 case Expr::ImplicitCastExprClass: 1150 case Expr::CStyleCastExprClass: 1151 case Expr::CXXFunctionalCastExprClass: 1152 case Expr::CXXStaticCastExprClass: 1153 case Expr::CXXDynamicCastExprClass: 1154 case Expr::CXXReinterpretCastExprClass: 1155 case Expr::CXXConstCastExprClass: 1156 case Expr::ObjCBridgedCastExprClass: 1157 return EmitCastLValue(cast<CastExpr>(E)); 1158 1159 case Expr::MaterializeTemporaryExprClass: 1160 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1161 } 1162 } 1163 1164 /// Given an object of the given canonical type, can we safely copy a 1165 /// value out of it based on its initializer? 1166 static bool isConstantEmittableObjectType(QualType type) { 1167 assert(type.isCanonical()); 1168 assert(!type->isReferenceType()); 1169 1170 // Must be const-qualified but non-volatile. 1171 Qualifiers qs = type.getLocalQualifiers(); 1172 if (!qs.hasConst() || qs.hasVolatile()) return false; 1173 1174 // Otherwise, all object types satisfy this except C++ classes with 1175 // mutable subobjects or non-trivial copy/destroy behavior. 1176 if (const auto *RT = dyn_cast<RecordType>(type)) 1177 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1178 if (RD->hasMutableFields() || !RD->isTrivial()) 1179 return false; 1180 1181 return true; 1182 } 1183 1184 /// Can we constant-emit a load of a reference to a variable of the 1185 /// given type? This is different from predicates like 1186 /// Decl::isUsableInConstantExpressions because we do want it to apply 1187 /// in situations that don't necessarily satisfy the language's rules 1188 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1189 /// to do this with const float variables even if those variables 1190 /// aren't marked 'constexpr'. 1191 enum ConstantEmissionKind { 1192 CEK_None, 1193 CEK_AsReferenceOnly, 1194 CEK_AsValueOrReference, 1195 CEK_AsValueOnly 1196 }; 1197 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1198 type = type.getCanonicalType(); 1199 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1200 if (isConstantEmittableObjectType(ref->getPointeeType())) 1201 return CEK_AsValueOrReference; 1202 return CEK_AsReferenceOnly; 1203 } 1204 if (isConstantEmittableObjectType(type)) 1205 return CEK_AsValueOnly; 1206 return CEK_None; 1207 } 1208 1209 /// Try to emit a reference to the given value without producing it as 1210 /// an l-value. This is actually more than an optimization: we can't 1211 /// produce an l-value for variables that we never actually captured 1212 /// in a block or lambda, which means const int variables or constexpr 1213 /// literals or similar. 1214 CodeGenFunction::ConstantEmission 1215 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1216 ValueDecl *value = refExpr->getDecl(); 1217 1218 // The value needs to be an enum constant or a constant variable. 1219 ConstantEmissionKind CEK; 1220 if (isa<ParmVarDecl>(value)) { 1221 CEK = CEK_None; 1222 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1223 CEK = checkVarTypeForConstantEmission(var->getType()); 1224 } else if (isa<EnumConstantDecl>(value)) { 1225 CEK = CEK_AsValueOnly; 1226 } else { 1227 CEK = CEK_None; 1228 } 1229 if (CEK == CEK_None) return ConstantEmission(); 1230 1231 Expr::EvalResult result; 1232 bool resultIsReference; 1233 QualType resultType; 1234 1235 // It's best to evaluate all the way as an r-value if that's permitted. 1236 if (CEK != CEK_AsReferenceOnly && 1237 refExpr->EvaluateAsRValue(result, getContext())) { 1238 resultIsReference = false; 1239 resultType = refExpr->getType(); 1240 1241 // Otherwise, try to evaluate as an l-value. 1242 } else if (CEK != CEK_AsValueOnly && 1243 refExpr->EvaluateAsLValue(result, getContext())) { 1244 resultIsReference = true; 1245 resultType = value->getType(); 1246 1247 // Failure. 1248 } else { 1249 return ConstantEmission(); 1250 } 1251 1252 // In any case, if the initializer has side-effects, abandon ship. 1253 if (result.HasSideEffects) 1254 return ConstantEmission(); 1255 1256 // Emit as a constant. 1257 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1258 1259 // Make sure we emit a debug reference to the global variable. 1260 // This should probably fire even for 1261 if (isa<VarDecl>(value)) { 1262 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1263 EmitDeclRefExprDbgValue(refExpr, result.Val); 1264 } else { 1265 assert(isa<EnumConstantDecl>(value)); 1266 EmitDeclRefExprDbgValue(refExpr, result.Val); 1267 } 1268 1269 // If we emitted a reference constant, we need to dereference that. 1270 if (resultIsReference) 1271 return ConstantEmission::forReference(C); 1272 1273 return ConstantEmission::forValue(C); 1274 } 1275 1276 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1277 SourceLocation Loc) { 1278 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1279 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1280 lvalue.getTBAAInfo(), 1281 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1282 lvalue.isNontemporal()); 1283 } 1284 1285 static bool hasBooleanRepresentation(QualType Ty) { 1286 if (Ty->isBooleanType()) 1287 return true; 1288 1289 if (const EnumType *ET = Ty->getAs<EnumType>()) 1290 return ET->getDecl()->getIntegerType()->isBooleanType(); 1291 1292 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1293 return hasBooleanRepresentation(AT->getValueType()); 1294 1295 return false; 1296 } 1297 1298 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1299 llvm::APInt &Min, llvm::APInt &End, 1300 bool StrictEnums, bool IsBool) { 1301 const EnumType *ET = Ty->getAs<EnumType>(); 1302 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1303 ET && !ET->getDecl()->isFixed(); 1304 if (!IsBool && !IsRegularCPlusPlusEnum) 1305 return false; 1306 1307 if (IsBool) { 1308 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1309 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1310 } else { 1311 const EnumDecl *ED = ET->getDecl(); 1312 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1313 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1314 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1315 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1316 1317 if (NumNegativeBits) { 1318 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1319 assert(NumBits <= Bitwidth); 1320 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1321 Min = -End; 1322 } else { 1323 assert(NumPositiveBits <= Bitwidth); 1324 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1325 Min = llvm::APInt(Bitwidth, 0); 1326 } 1327 } 1328 return true; 1329 } 1330 1331 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1332 llvm::APInt Min, End; 1333 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1334 hasBooleanRepresentation(Ty))) 1335 return nullptr; 1336 1337 llvm::MDBuilder MDHelper(getLLVMContext()); 1338 return MDHelper.createRange(Min, End); 1339 } 1340 1341 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1342 SourceLocation Loc) { 1343 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1344 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1345 if (!HasBoolCheck && !HasEnumCheck) 1346 return false; 1347 1348 bool IsBool = hasBooleanRepresentation(Ty) || 1349 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1350 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1351 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1352 if (!NeedsBoolCheck && !NeedsEnumCheck) 1353 return false; 1354 1355 // Single-bit booleans don't need to be checked. Special-case this to avoid 1356 // a bit width mismatch when handling bitfield values. This is handled by 1357 // EmitFromMemory for the non-bitfield case. 1358 if (IsBool && 1359 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1360 return false; 1361 1362 llvm::APInt Min, End; 1363 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1364 return true; 1365 1366 SanitizerScope SanScope(this); 1367 llvm::Value *Check; 1368 --End; 1369 if (!Min) { 1370 Check = Builder.CreateICmpULE( 1371 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1372 } else { 1373 llvm::Value *Upper = Builder.CreateICmpSLE( 1374 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1375 llvm::Value *Lower = Builder.CreateICmpSGE( 1376 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1377 Check = Builder.CreateAnd(Upper, Lower); 1378 } 1379 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1380 EmitCheckTypeDescriptor(Ty)}; 1381 SanitizerMask Kind = 1382 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1383 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1384 StaticArgs, EmitCheckValue(Value)); 1385 return true; 1386 } 1387 1388 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1389 QualType Ty, 1390 SourceLocation Loc, 1391 LValueBaseInfo BaseInfo, 1392 llvm::MDNode *TBAAInfo, 1393 QualType TBAABaseType, 1394 uint64_t TBAAOffset, 1395 bool isNontemporal) { 1396 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1397 // For better performance, handle vector loads differently. 1398 if (Ty->isVectorType()) { 1399 const llvm::Type *EltTy = Addr.getElementType(); 1400 1401 const auto *VTy = cast<llvm::VectorType>(EltTy); 1402 1403 // Handle vectors of size 3 like size 4 for better performance. 1404 if (VTy->getNumElements() == 3) { 1405 1406 // Bitcast to vec4 type. 1407 llvm::VectorType *vec4Ty = 1408 llvm::VectorType::get(VTy->getElementType(), 4); 1409 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1410 // Now load value. 1411 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1412 1413 // Shuffle vector to get vec3. 1414 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1415 {0, 1, 2}, "extractVec"); 1416 return EmitFromMemory(V, Ty); 1417 } 1418 } 1419 } 1420 1421 // Atomic operations have to be done on integral types. 1422 LValue AtomicLValue = 1423 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1424 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1425 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1426 } 1427 1428 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1429 if (isNontemporal) { 1430 llvm::MDNode *Node = llvm::MDNode::get( 1431 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1432 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1433 } 1434 if (TBAAInfo) { 1435 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1436 TBAAOffset); 1437 if (TBAAPath) 1438 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1439 false /*ConvertTypeToTag*/); 1440 } 1441 1442 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1443 // In order to prevent the optimizer from throwing away the check, don't 1444 // attach range metadata to the load. 1445 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1446 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1447 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1448 1449 return EmitFromMemory(Load, Ty); 1450 } 1451 1452 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1453 // Bool has a different representation in memory than in registers. 1454 if (hasBooleanRepresentation(Ty)) { 1455 // This should really always be an i1, but sometimes it's already 1456 // an i8, and it's awkward to track those cases down. 1457 if (Value->getType()->isIntegerTy(1)) 1458 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1459 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1460 "wrong value rep of bool"); 1461 } 1462 1463 return Value; 1464 } 1465 1466 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1467 // Bool has a different representation in memory than in registers. 1468 if (hasBooleanRepresentation(Ty)) { 1469 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1470 "wrong value rep of bool"); 1471 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1472 } 1473 1474 return Value; 1475 } 1476 1477 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1478 bool Volatile, QualType Ty, 1479 LValueBaseInfo BaseInfo, 1480 llvm::MDNode *TBAAInfo, 1481 bool isInit, QualType TBAABaseType, 1482 uint64_t TBAAOffset, 1483 bool isNontemporal) { 1484 1485 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1486 // Handle vectors differently to get better performance. 1487 if (Ty->isVectorType()) { 1488 llvm::Type *SrcTy = Value->getType(); 1489 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1490 // Handle vec3 special. 1491 if (VecTy->getNumElements() == 3) { 1492 // Our source is a vec3, do a shuffle vector to make it a vec4. 1493 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1494 Builder.getInt32(2), 1495 llvm::UndefValue::get(Builder.getInt32Ty())}; 1496 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1497 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1498 MaskV, "extractVec"); 1499 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1500 } 1501 if (Addr.getElementType() != SrcTy) { 1502 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1503 } 1504 } 1505 } 1506 1507 Value = EmitToMemory(Value, Ty); 1508 1509 LValue AtomicLValue = 1510 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1511 if (Ty->isAtomicType() || 1512 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1513 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1514 return; 1515 } 1516 1517 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1518 if (isNontemporal) { 1519 llvm::MDNode *Node = 1520 llvm::MDNode::get(Store->getContext(), 1521 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1522 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1523 } 1524 if (TBAAInfo) { 1525 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1526 TBAAOffset); 1527 if (TBAAPath) 1528 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1529 false /*ConvertTypeToTag*/); 1530 } 1531 } 1532 1533 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1534 bool isInit) { 1535 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1536 lvalue.getType(), lvalue.getBaseInfo(), 1537 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1538 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1539 } 1540 1541 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1542 /// method emits the address of the lvalue, then loads the result as an rvalue, 1543 /// returning the rvalue. 1544 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1545 if (LV.isObjCWeak()) { 1546 // load of a __weak object. 1547 Address AddrWeakObj = LV.getAddress(); 1548 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1549 AddrWeakObj)); 1550 } 1551 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1552 // In MRC mode, we do a load+autorelease. 1553 if (!getLangOpts().ObjCAutoRefCount) { 1554 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1555 } 1556 1557 // In ARC mode, we load retained and then consume the value. 1558 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1559 Object = EmitObjCConsumeObject(LV.getType(), Object); 1560 return RValue::get(Object); 1561 } 1562 1563 if (LV.isSimple()) { 1564 assert(!LV.getType()->isFunctionType()); 1565 1566 // Everything needs a load. 1567 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1568 } 1569 1570 if (LV.isVectorElt()) { 1571 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1572 LV.isVolatileQualified()); 1573 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1574 "vecext")); 1575 } 1576 1577 // If this is a reference to a subset of the elements of a vector, either 1578 // shuffle the input or extract/insert them as appropriate. 1579 if (LV.isExtVectorElt()) 1580 return EmitLoadOfExtVectorElementLValue(LV); 1581 1582 // Global Register variables always invoke intrinsics 1583 if (LV.isGlobalReg()) 1584 return EmitLoadOfGlobalRegLValue(LV); 1585 1586 assert(LV.isBitField() && "Unknown LValue type!"); 1587 return EmitLoadOfBitfieldLValue(LV, Loc); 1588 } 1589 1590 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1591 SourceLocation Loc) { 1592 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1593 1594 // Get the output type. 1595 llvm::Type *ResLTy = ConvertType(LV.getType()); 1596 1597 Address Ptr = LV.getBitFieldAddress(); 1598 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1599 1600 if (Info.IsSigned) { 1601 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1602 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1603 if (HighBits) 1604 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1605 if (Info.Offset + HighBits) 1606 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1607 } else { 1608 if (Info.Offset) 1609 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1610 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1611 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1612 Info.Size), 1613 "bf.clear"); 1614 } 1615 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1616 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1617 return RValue::get(Val); 1618 } 1619 1620 // If this is a reference to a subset of the elements of a vector, create an 1621 // appropriate shufflevector. 1622 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1623 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1624 LV.isVolatileQualified()); 1625 1626 const llvm::Constant *Elts = LV.getExtVectorElts(); 1627 1628 // If the result of the expression is a non-vector type, we must be extracting 1629 // a single element. Just codegen as an extractelement. 1630 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1631 if (!ExprVT) { 1632 unsigned InIdx = getAccessedFieldNo(0, Elts); 1633 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1634 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1635 } 1636 1637 // Always use shuffle vector to try to retain the original program structure 1638 unsigned NumResultElts = ExprVT->getNumElements(); 1639 1640 SmallVector<llvm::Constant*, 4> Mask; 1641 for (unsigned i = 0; i != NumResultElts; ++i) 1642 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1643 1644 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1645 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1646 MaskV); 1647 return RValue::get(Vec); 1648 } 1649 1650 /// @brief Generates lvalue for partial ext_vector access. 1651 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1652 Address VectorAddress = LV.getExtVectorAddress(); 1653 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1654 QualType EQT = ExprVT->getElementType(); 1655 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1656 1657 Address CastToPointerElement = 1658 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1659 "conv.ptr.element"); 1660 1661 const llvm::Constant *Elts = LV.getExtVectorElts(); 1662 unsigned ix = getAccessedFieldNo(0, Elts); 1663 1664 Address VectorBasePtrPlusIx = 1665 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1666 getContext().getTypeSizeInChars(EQT), 1667 "vector.elt"); 1668 1669 return VectorBasePtrPlusIx; 1670 } 1671 1672 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1673 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1674 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1675 "Bad type for register variable"); 1676 llvm::MDNode *RegName = cast<llvm::MDNode>( 1677 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1678 1679 // We accept integer and pointer types only 1680 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1681 llvm::Type *Ty = OrigTy; 1682 if (OrigTy->isPointerTy()) 1683 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1684 llvm::Type *Types[] = { Ty }; 1685 1686 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1687 llvm::Value *Call = Builder.CreateCall( 1688 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1689 if (OrigTy->isPointerTy()) 1690 Call = Builder.CreateIntToPtr(Call, OrigTy); 1691 return RValue::get(Call); 1692 } 1693 1694 1695 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1696 /// lvalue, where both are guaranteed to the have the same type, and that type 1697 /// is 'Ty'. 1698 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1699 bool isInit) { 1700 if (!Dst.isSimple()) { 1701 if (Dst.isVectorElt()) { 1702 // Read/modify/write the vector, inserting the new element. 1703 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1704 Dst.isVolatileQualified()); 1705 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1706 Dst.getVectorIdx(), "vecins"); 1707 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1708 Dst.isVolatileQualified()); 1709 return; 1710 } 1711 1712 // If this is an update of extended vector elements, insert them as 1713 // appropriate. 1714 if (Dst.isExtVectorElt()) 1715 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1716 1717 if (Dst.isGlobalReg()) 1718 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1719 1720 assert(Dst.isBitField() && "Unknown LValue type"); 1721 return EmitStoreThroughBitfieldLValue(Src, Dst); 1722 } 1723 1724 // There's special magic for assigning into an ARC-qualified l-value. 1725 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1726 switch (Lifetime) { 1727 case Qualifiers::OCL_None: 1728 llvm_unreachable("present but none"); 1729 1730 case Qualifiers::OCL_ExplicitNone: 1731 // nothing special 1732 break; 1733 1734 case Qualifiers::OCL_Strong: 1735 if (isInit) { 1736 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1737 break; 1738 } 1739 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1740 return; 1741 1742 case Qualifiers::OCL_Weak: 1743 if (isInit) 1744 // Initialize and then skip the primitive store. 1745 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1746 else 1747 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1748 return; 1749 1750 case Qualifiers::OCL_Autoreleasing: 1751 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1752 Src.getScalarVal())); 1753 // fall into the normal path 1754 break; 1755 } 1756 } 1757 1758 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1759 // load of a __weak object. 1760 Address LvalueDst = Dst.getAddress(); 1761 llvm::Value *src = Src.getScalarVal(); 1762 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1763 return; 1764 } 1765 1766 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1767 // load of a __strong object. 1768 Address LvalueDst = Dst.getAddress(); 1769 llvm::Value *src = Src.getScalarVal(); 1770 if (Dst.isObjCIvar()) { 1771 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1772 llvm::Type *ResultType = IntPtrTy; 1773 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1774 llvm::Value *RHS = dst.getPointer(); 1775 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1776 llvm::Value *LHS = 1777 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1778 "sub.ptr.lhs.cast"); 1779 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1780 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1781 BytesBetween); 1782 } else if (Dst.isGlobalObjCRef()) { 1783 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1784 Dst.isThreadLocalRef()); 1785 } 1786 else 1787 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1788 return; 1789 } 1790 1791 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1792 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1793 } 1794 1795 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1796 llvm::Value **Result) { 1797 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1798 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1799 Address Ptr = Dst.getBitFieldAddress(); 1800 1801 // Get the source value, truncated to the width of the bit-field. 1802 llvm::Value *SrcVal = Src.getScalarVal(); 1803 1804 // Cast the source to the storage type and shift it into place. 1805 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1806 /*IsSigned=*/false); 1807 llvm::Value *MaskedVal = SrcVal; 1808 1809 // See if there are other bits in the bitfield's storage we'll need to load 1810 // and mask together with source before storing. 1811 if (Info.StorageSize != Info.Size) { 1812 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1813 llvm::Value *Val = 1814 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1815 1816 // Mask the source value as needed. 1817 if (!hasBooleanRepresentation(Dst.getType())) 1818 SrcVal = Builder.CreateAnd(SrcVal, 1819 llvm::APInt::getLowBitsSet(Info.StorageSize, 1820 Info.Size), 1821 "bf.value"); 1822 MaskedVal = SrcVal; 1823 if (Info.Offset) 1824 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1825 1826 // Mask out the original value. 1827 Val = Builder.CreateAnd(Val, 1828 ~llvm::APInt::getBitsSet(Info.StorageSize, 1829 Info.Offset, 1830 Info.Offset + Info.Size), 1831 "bf.clear"); 1832 1833 // Or together the unchanged values and the source value. 1834 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1835 } else { 1836 assert(Info.Offset == 0); 1837 } 1838 1839 // Write the new value back out. 1840 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1841 1842 // Return the new value of the bit-field, if requested. 1843 if (Result) { 1844 llvm::Value *ResultVal = MaskedVal; 1845 1846 // Sign extend the value if needed. 1847 if (Info.IsSigned) { 1848 assert(Info.Size <= Info.StorageSize); 1849 unsigned HighBits = Info.StorageSize - Info.Size; 1850 if (HighBits) { 1851 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1852 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1853 } 1854 } 1855 1856 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1857 "bf.result.cast"); 1858 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1859 } 1860 } 1861 1862 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1863 LValue Dst) { 1864 // This access turns into a read/modify/write of the vector. Load the input 1865 // value now. 1866 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1867 Dst.isVolatileQualified()); 1868 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1869 1870 llvm::Value *SrcVal = Src.getScalarVal(); 1871 1872 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1873 unsigned NumSrcElts = VTy->getNumElements(); 1874 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1875 if (NumDstElts == NumSrcElts) { 1876 // Use shuffle vector is the src and destination are the same number of 1877 // elements and restore the vector mask since it is on the side it will be 1878 // stored. 1879 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1880 for (unsigned i = 0; i != NumSrcElts; ++i) 1881 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1882 1883 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1884 Vec = Builder.CreateShuffleVector(SrcVal, 1885 llvm::UndefValue::get(Vec->getType()), 1886 MaskV); 1887 } else if (NumDstElts > NumSrcElts) { 1888 // Extended the source vector to the same length and then shuffle it 1889 // into the destination. 1890 // FIXME: since we're shuffling with undef, can we just use the indices 1891 // into that? This could be simpler. 1892 SmallVector<llvm::Constant*, 4> ExtMask; 1893 for (unsigned i = 0; i != NumSrcElts; ++i) 1894 ExtMask.push_back(Builder.getInt32(i)); 1895 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1896 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1897 llvm::Value *ExtSrcVal = 1898 Builder.CreateShuffleVector(SrcVal, 1899 llvm::UndefValue::get(SrcVal->getType()), 1900 ExtMaskV); 1901 // build identity 1902 SmallVector<llvm::Constant*, 4> Mask; 1903 for (unsigned i = 0; i != NumDstElts; ++i) 1904 Mask.push_back(Builder.getInt32(i)); 1905 1906 // When the vector size is odd and .odd or .hi is used, the last element 1907 // of the Elts constant array will be one past the size of the vector. 1908 // Ignore the last element here, if it is greater than the mask size. 1909 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1910 NumSrcElts--; 1911 1912 // modify when what gets shuffled in 1913 for (unsigned i = 0; i != NumSrcElts; ++i) 1914 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1915 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1916 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1917 } else { 1918 // We should never shorten the vector 1919 llvm_unreachable("unexpected shorten vector length"); 1920 } 1921 } else { 1922 // If the Src is a scalar (not a vector) it must be updating one element. 1923 unsigned InIdx = getAccessedFieldNo(0, Elts); 1924 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1925 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1926 } 1927 1928 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1929 Dst.isVolatileQualified()); 1930 } 1931 1932 /// @brief Store of global named registers are always calls to intrinsics. 1933 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1934 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1935 "Bad type for register variable"); 1936 llvm::MDNode *RegName = cast<llvm::MDNode>( 1937 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1938 assert(RegName && "Register LValue is not metadata"); 1939 1940 // We accept integer and pointer types only 1941 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1942 llvm::Type *Ty = OrigTy; 1943 if (OrigTy->isPointerTy()) 1944 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1945 llvm::Type *Types[] = { Ty }; 1946 1947 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1948 llvm::Value *Value = Src.getScalarVal(); 1949 if (OrigTy->isPointerTy()) 1950 Value = Builder.CreatePtrToInt(Value, Ty); 1951 Builder.CreateCall( 1952 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1953 } 1954 1955 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1956 // generating write-barries API. It is currently a global, ivar, 1957 // or neither. 1958 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1959 LValue &LV, 1960 bool IsMemberAccess=false) { 1961 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1962 return; 1963 1964 if (isa<ObjCIvarRefExpr>(E)) { 1965 QualType ExpTy = E->getType(); 1966 if (IsMemberAccess && ExpTy->isPointerType()) { 1967 // If ivar is a structure pointer, assigning to field of 1968 // this struct follows gcc's behavior and makes it a non-ivar 1969 // writer-barrier conservatively. 1970 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1971 if (ExpTy->isRecordType()) { 1972 LV.setObjCIvar(false); 1973 return; 1974 } 1975 } 1976 LV.setObjCIvar(true); 1977 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1978 LV.setBaseIvarExp(Exp->getBase()); 1979 LV.setObjCArray(E->getType()->isArrayType()); 1980 return; 1981 } 1982 1983 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1984 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1985 if (VD->hasGlobalStorage()) { 1986 LV.setGlobalObjCRef(true); 1987 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1988 } 1989 } 1990 LV.setObjCArray(E->getType()->isArrayType()); 1991 return; 1992 } 1993 1994 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1995 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1996 return; 1997 } 1998 1999 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2000 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2001 if (LV.isObjCIvar()) { 2002 // If cast is to a structure pointer, follow gcc's behavior and make it 2003 // a non-ivar write-barrier. 2004 QualType ExpTy = E->getType(); 2005 if (ExpTy->isPointerType()) 2006 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2007 if (ExpTy->isRecordType()) 2008 LV.setObjCIvar(false); 2009 } 2010 return; 2011 } 2012 2013 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2014 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2015 return; 2016 } 2017 2018 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2019 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2020 return; 2021 } 2022 2023 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2024 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2025 return; 2026 } 2027 2028 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2029 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2030 return; 2031 } 2032 2033 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2034 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2035 if (LV.isObjCIvar() && !LV.isObjCArray()) 2036 // Using array syntax to assigning to what an ivar points to is not 2037 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2038 LV.setObjCIvar(false); 2039 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2040 // Using array syntax to assigning to what global points to is not 2041 // same as assigning to the global itself. {id *G;} G[i] = 0; 2042 LV.setGlobalObjCRef(false); 2043 return; 2044 } 2045 2046 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2047 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2048 // We don't know if member is an 'ivar', but this flag is looked at 2049 // only in the context of LV.isObjCIvar(). 2050 LV.setObjCArray(E->getType()->isArrayType()); 2051 return; 2052 } 2053 } 2054 2055 static llvm::Value * 2056 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2057 llvm::Value *V, llvm::Type *IRType, 2058 StringRef Name = StringRef()) { 2059 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2060 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2061 } 2062 2063 static LValue EmitThreadPrivateVarDeclLValue( 2064 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2065 llvm::Type *RealVarTy, SourceLocation Loc) { 2066 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2067 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2068 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2069 return CGF.MakeAddrLValue(Addr, T, BaseInfo); 2070 } 2071 2072 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2073 const ReferenceType *RefTy, 2074 LValueBaseInfo *BaseInfo) { 2075 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2076 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2077 BaseInfo, /*forPointee*/ true)); 2078 } 2079 2080 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2081 const ReferenceType *RefTy) { 2082 LValueBaseInfo BaseInfo; 2083 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo); 2084 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo); 2085 } 2086 2087 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2088 const PointerType *PtrTy, 2089 LValueBaseInfo *BaseInfo) { 2090 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2091 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2092 BaseInfo, 2093 /*forPointeeType=*/true)); 2094 } 2095 2096 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2097 const PointerType *PtrTy) { 2098 LValueBaseInfo BaseInfo; 2099 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo); 2100 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo); 2101 } 2102 2103 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2104 const Expr *E, const VarDecl *VD) { 2105 QualType T = E->getType(); 2106 2107 // If it's thread_local, emit a call to its wrapper function instead. 2108 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2109 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2110 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2111 2112 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2113 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2114 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2115 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2116 Address Addr(V, Alignment); 2117 LValue LV; 2118 // Emit reference to the private copy of the variable if it is an OpenMP 2119 // threadprivate variable. 2120 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2121 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2122 E->getExprLoc()); 2123 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2124 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2125 } else { 2126 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2127 LV = CGF.MakeAddrLValue(Addr, T, BaseInfo); 2128 } 2129 setObjCGCLValueClass(CGF.getContext(), E, LV); 2130 return LV; 2131 } 2132 2133 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2134 const FunctionDecl *FD) { 2135 if (FD->hasAttr<WeakRefAttr>()) { 2136 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2137 return aliasee.getPointer(); 2138 } 2139 2140 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2141 if (!FD->hasPrototype()) { 2142 if (const FunctionProtoType *Proto = 2143 FD->getType()->getAs<FunctionProtoType>()) { 2144 // Ugly case: for a K&R-style definition, the type of the definition 2145 // isn't the same as the type of a use. Correct for this with a 2146 // bitcast. 2147 QualType NoProtoType = 2148 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2149 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2150 V = llvm::ConstantExpr::getBitCast(V, 2151 CGM.getTypes().ConvertType(NoProtoType)); 2152 } 2153 } 2154 return V; 2155 } 2156 2157 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2158 const Expr *E, const FunctionDecl *FD) { 2159 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2160 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2161 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2162 return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo); 2163 } 2164 2165 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2166 llvm::Value *ThisValue) { 2167 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2168 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2169 return CGF.EmitLValueForField(LV, FD); 2170 } 2171 2172 /// Named Registers are named metadata pointing to the register name 2173 /// which will be read from/written to as an argument to the intrinsic 2174 /// @llvm.read/write_register. 2175 /// So far, only the name is being passed down, but other options such as 2176 /// register type, allocation type or even optimization options could be 2177 /// passed down via the metadata node. 2178 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2179 SmallString<64> Name("llvm.named.register."); 2180 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2181 assert(Asm->getLabel().size() < 64-Name.size() && 2182 "Register name too big"); 2183 Name.append(Asm->getLabel()); 2184 llvm::NamedMDNode *M = 2185 CGM.getModule().getOrInsertNamedMetadata(Name); 2186 if (M->getNumOperands() == 0) { 2187 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2188 Asm->getLabel()); 2189 llvm::Metadata *Ops[] = {Str}; 2190 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2191 } 2192 2193 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2194 2195 llvm::Value *Ptr = 2196 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2197 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2198 } 2199 2200 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2201 const NamedDecl *ND = E->getDecl(); 2202 QualType T = E->getType(); 2203 2204 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2205 // Global Named registers access via intrinsics only 2206 if (VD->getStorageClass() == SC_Register && 2207 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2208 return EmitGlobalNamedRegister(VD, CGM); 2209 2210 // A DeclRefExpr for a reference initialized by a constant expression can 2211 // appear without being odr-used. Directly emit the constant initializer. 2212 const Expr *Init = VD->getAnyInitializer(VD); 2213 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2214 VD->isUsableInConstantExpressions(getContext()) && 2215 VD->checkInitIsICE() && 2216 // Do not emit if it is private OpenMP variable. 2217 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2218 LocalDeclMap.count(VD))) { 2219 llvm::Constant *Val = 2220 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2221 assert(Val && "failed to emit reference constant expression"); 2222 // FIXME: Eventually we will want to emit vector element references. 2223 2224 // Should we be using the alignment of the constant pointer we emitted? 2225 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2226 /*pointee*/ true); 2227 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2228 return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo); 2229 } 2230 2231 // Check for captured variables. 2232 if (E->refersToEnclosingVariableOrCapture()) { 2233 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2234 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2235 else if (CapturedStmtInfo) { 2236 auto I = LocalDeclMap.find(VD); 2237 if (I != LocalDeclMap.end()) { 2238 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2239 return EmitLoadOfReferenceLValue(I->second, RefTy); 2240 return MakeAddrLValue(I->second, T); 2241 } 2242 LValue CapLVal = 2243 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2244 CapturedStmtInfo->getContextValue()); 2245 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2246 return MakeAddrLValue( 2247 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2248 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias)); 2249 } 2250 2251 assert(isa<BlockDecl>(CurCodeDecl)); 2252 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2253 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2254 return MakeAddrLValue(addr, T, BaseInfo); 2255 } 2256 } 2257 2258 // FIXME: We should be able to assert this for FunctionDecls as well! 2259 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2260 // those with a valid source location. 2261 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2262 !E->getLocation().isValid()) && 2263 "Should not use decl without marking it used!"); 2264 2265 if (ND->hasAttr<WeakRefAttr>()) { 2266 const auto *VD = cast<ValueDecl>(ND); 2267 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2268 return MakeAddrLValue(Aliasee, T, 2269 LValueBaseInfo(AlignmentSource::Decl, false)); 2270 } 2271 2272 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2273 // Check if this is a global variable. 2274 if (VD->hasLinkage() || VD->isStaticDataMember()) 2275 return EmitGlobalVarDeclLValue(*this, E, VD); 2276 2277 Address addr = Address::invalid(); 2278 2279 // The variable should generally be present in the local decl map. 2280 auto iter = LocalDeclMap.find(VD); 2281 if (iter != LocalDeclMap.end()) { 2282 addr = iter->second; 2283 2284 // Otherwise, it might be static local we haven't emitted yet for 2285 // some reason; most likely, because it's in an outer function. 2286 } else if (VD->isStaticLocal()) { 2287 addr = Address(CGM.getOrCreateStaticVarDecl( 2288 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2289 getContext().getDeclAlign(VD)); 2290 2291 // No other cases for now. 2292 } else { 2293 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2294 } 2295 2296 2297 // Check for OpenMP threadprivate variables. 2298 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2299 return EmitThreadPrivateVarDeclLValue( 2300 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2301 E->getExprLoc()); 2302 } 2303 2304 // Drill into block byref variables. 2305 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2306 if (isBlockByref) { 2307 addr = emitBlockByrefAddress(addr, VD); 2308 } 2309 2310 // Drill into reference types. 2311 LValue LV; 2312 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2313 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2314 } else { 2315 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2316 LV = MakeAddrLValue(addr, T, BaseInfo); 2317 } 2318 2319 bool isLocalStorage = VD->hasLocalStorage(); 2320 2321 bool NonGCable = isLocalStorage && 2322 !VD->getType()->isReferenceType() && 2323 !isBlockByref; 2324 if (NonGCable) { 2325 LV.getQuals().removeObjCGCAttr(); 2326 LV.setNonGC(true); 2327 } 2328 2329 bool isImpreciseLifetime = 2330 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2331 if (isImpreciseLifetime) 2332 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2333 setObjCGCLValueClass(getContext(), E, LV); 2334 return LV; 2335 } 2336 2337 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2338 return EmitFunctionDeclLValue(*this, E, FD); 2339 2340 // FIXME: While we're emitting a binding from an enclosing scope, all other 2341 // DeclRefExprs we see should be implicitly treated as if they also refer to 2342 // an enclosing scope. 2343 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2344 return EmitLValue(BD->getBinding()); 2345 2346 llvm_unreachable("Unhandled DeclRefExpr"); 2347 } 2348 2349 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2350 // __extension__ doesn't affect lvalue-ness. 2351 if (E->getOpcode() == UO_Extension) 2352 return EmitLValue(E->getSubExpr()); 2353 2354 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2355 switch (E->getOpcode()) { 2356 default: llvm_unreachable("Unknown unary operator lvalue!"); 2357 case UO_Deref: { 2358 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2359 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2360 2361 LValueBaseInfo BaseInfo; 2362 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo); 2363 LValue LV = MakeAddrLValue(Addr, T, BaseInfo); 2364 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2365 2366 // We should not generate __weak write barrier on indirect reference 2367 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2368 // But, we continue to generate __strong write barrier on indirect write 2369 // into a pointer to object. 2370 if (getLangOpts().ObjC1 && 2371 getLangOpts().getGC() != LangOptions::NonGC && 2372 LV.isObjCWeak()) 2373 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2374 return LV; 2375 } 2376 case UO_Real: 2377 case UO_Imag: { 2378 LValue LV = EmitLValue(E->getSubExpr()); 2379 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2380 2381 // __real is valid on scalars. This is a faster way of testing that. 2382 // __imag can only produce an rvalue on scalars. 2383 if (E->getOpcode() == UO_Real && 2384 !LV.getAddress().getElementType()->isStructTy()) { 2385 assert(E->getSubExpr()->getType()->isArithmeticType()); 2386 return LV; 2387 } 2388 2389 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2390 2391 Address Component = 2392 (E->getOpcode() == UO_Real 2393 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2394 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2395 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo()); 2396 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2397 return ElemLV; 2398 } 2399 case UO_PreInc: 2400 case UO_PreDec: { 2401 LValue LV = EmitLValue(E->getSubExpr()); 2402 bool isInc = E->getOpcode() == UO_PreInc; 2403 2404 if (E->getType()->isAnyComplexType()) 2405 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2406 else 2407 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2408 return LV; 2409 } 2410 } 2411 } 2412 2413 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2414 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2415 E->getType(), 2416 LValueBaseInfo(AlignmentSource::Decl, false)); 2417 } 2418 2419 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2420 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2421 E->getType(), 2422 LValueBaseInfo(AlignmentSource::Decl, false)); 2423 } 2424 2425 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2426 auto SL = E->getFunctionName(); 2427 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2428 StringRef FnName = CurFn->getName(); 2429 if (FnName.startswith("\01")) 2430 FnName = FnName.substr(1); 2431 StringRef NameItems[] = { 2432 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2433 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2434 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2435 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2436 std::string Name = SL->getString(); 2437 if (!Name.empty()) { 2438 unsigned Discriminator = 2439 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2440 if (Discriminator) 2441 Name += "_" + Twine(Discriminator + 1).str(); 2442 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2443 return MakeAddrLValue(C, E->getType(), BaseInfo); 2444 } else { 2445 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2446 return MakeAddrLValue(C, E->getType(), BaseInfo); 2447 } 2448 } 2449 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2450 return MakeAddrLValue(C, E->getType(), BaseInfo); 2451 } 2452 2453 /// Emit a type description suitable for use by a runtime sanitizer library. The 2454 /// format of a type descriptor is 2455 /// 2456 /// \code 2457 /// { i16 TypeKind, i16 TypeInfo } 2458 /// \endcode 2459 /// 2460 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2461 /// integer, 1 for a floating point value, and -1 for anything else. 2462 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2463 // Only emit each type's descriptor once. 2464 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2465 return C; 2466 2467 uint16_t TypeKind = -1; 2468 uint16_t TypeInfo = 0; 2469 2470 if (T->isIntegerType()) { 2471 TypeKind = 0; 2472 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2473 (T->isSignedIntegerType() ? 1 : 0); 2474 } else if (T->isFloatingType()) { 2475 TypeKind = 1; 2476 TypeInfo = getContext().getTypeSize(T); 2477 } 2478 2479 // Format the type name as if for a diagnostic, including quotes and 2480 // optionally an 'aka'. 2481 SmallString<32> Buffer; 2482 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2483 (intptr_t)T.getAsOpaquePtr(), 2484 StringRef(), StringRef(), None, Buffer, 2485 None); 2486 2487 llvm::Constant *Components[] = { 2488 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2489 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2490 }; 2491 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2492 2493 auto *GV = new llvm::GlobalVariable( 2494 CGM.getModule(), Descriptor->getType(), 2495 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2496 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2497 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2498 2499 // Remember the descriptor for this type. 2500 CGM.setTypeDescriptorInMap(T, GV); 2501 2502 return GV; 2503 } 2504 2505 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2506 llvm::Type *TargetTy = IntPtrTy; 2507 2508 // Floating-point types which fit into intptr_t are bitcast to integers 2509 // and then passed directly (after zero-extension, if necessary). 2510 if (V->getType()->isFloatingPointTy()) { 2511 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2512 if (Bits <= TargetTy->getIntegerBitWidth()) 2513 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2514 Bits)); 2515 } 2516 2517 // Integers which fit in intptr_t are zero-extended and passed directly. 2518 if (V->getType()->isIntegerTy() && 2519 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2520 return Builder.CreateZExt(V, TargetTy); 2521 2522 // Pointers are passed directly, everything else is passed by address. 2523 if (!V->getType()->isPointerTy()) { 2524 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2525 Builder.CreateStore(V, Ptr); 2526 V = Ptr.getPointer(); 2527 } 2528 return Builder.CreatePtrToInt(V, TargetTy); 2529 } 2530 2531 /// \brief Emit a representation of a SourceLocation for passing to a handler 2532 /// in a sanitizer runtime library. The format for this data is: 2533 /// \code 2534 /// struct SourceLocation { 2535 /// const char *Filename; 2536 /// int32_t Line, Column; 2537 /// }; 2538 /// \endcode 2539 /// For an invalid SourceLocation, the Filename pointer is null. 2540 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2541 llvm::Constant *Filename; 2542 int Line, Column; 2543 2544 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2545 if (PLoc.isValid()) { 2546 StringRef FilenameString = PLoc.getFilename(); 2547 2548 int PathComponentsToStrip = 2549 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2550 if (PathComponentsToStrip < 0) { 2551 assert(PathComponentsToStrip != INT_MIN); 2552 int PathComponentsToKeep = -PathComponentsToStrip; 2553 auto I = llvm::sys::path::rbegin(FilenameString); 2554 auto E = llvm::sys::path::rend(FilenameString); 2555 while (I != E && --PathComponentsToKeep) 2556 ++I; 2557 2558 FilenameString = FilenameString.substr(I - E); 2559 } else if (PathComponentsToStrip > 0) { 2560 auto I = llvm::sys::path::begin(FilenameString); 2561 auto E = llvm::sys::path::end(FilenameString); 2562 while (I != E && PathComponentsToStrip--) 2563 ++I; 2564 2565 if (I != E) 2566 FilenameString = 2567 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2568 else 2569 FilenameString = llvm::sys::path::filename(FilenameString); 2570 } 2571 2572 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2573 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2574 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2575 Filename = FilenameGV.getPointer(); 2576 Line = PLoc.getLine(); 2577 Column = PLoc.getColumn(); 2578 } else { 2579 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2580 Line = Column = 0; 2581 } 2582 2583 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2584 Builder.getInt32(Column)}; 2585 2586 return llvm::ConstantStruct::getAnon(Data); 2587 } 2588 2589 namespace { 2590 /// \brief Specify under what conditions this check can be recovered 2591 enum class CheckRecoverableKind { 2592 /// Always terminate program execution if this check fails. 2593 Unrecoverable, 2594 /// Check supports recovering, runtime has both fatal (noreturn) and 2595 /// non-fatal handlers for this check. 2596 Recoverable, 2597 /// Runtime conditionally aborts, always need to support recovery. 2598 AlwaysRecoverable 2599 }; 2600 } 2601 2602 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2603 assert(llvm::countPopulation(Kind) == 1); 2604 switch (Kind) { 2605 case SanitizerKind::Vptr: 2606 return CheckRecoverableKind::AlwaysRecoverable; 2607 case SanitizerKind::Return: 2608 case SanitizerKind::Unreachable: 2609 return CheckRecoverableKind::Unrecoverable; 2610 default: 2611 return CheckRecoverableKind::Recoverable; 2612 } 2613 } 2614 2615 namespace { 2616 struct SanitizerHandlerInfo { 2617 char const *const Name; 2618 unsigned Version; 2619 }; 2620 } 2621 2622 const SanitizerHandlerInfo SanitizerHandlers[] = { 2623 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2624 LIST_SANITIZER_CHECKS 2625 #undef SANITIZER_CHECK 2626 }; 2627 2628 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2629 llvm::FunctionType *FnType, 2630 ArrayRef<llvm::Value *> FnArgs, 2631 SanitizerHandler CheckHandler, 2632 CheckRecoverableKind RecoverKind, bool IsFatal, 2633 llvm::BasicBlock *ContBB) { 2634 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2635 bool NeedsAbortSuffix = 2636 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2637 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2638 const StringRef CheckName = CheckInfo.Name; 2639 std::string FnName = 2640 ("__ubsan_handle_" + CheckName + 2641 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2642 (NeedsAbortSuffix ? "_abort" : "")) 2643 .str(); 2644 bool MayReturn = 2645 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2646 2647 llvm::AttrBuilder B; 2648 if (!MayReturn) { 2649 B.addAttribute(llvm::Attribute::NoReturn) 2650 .addAttribute(llvm::Attribute::NoUnwind); 2651 } 2652 B.addAttribute(llvm::Attribute::UWTable); 2653 2654 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2655 FnType, FnName, 2656 llvm::AttributeList::get(CGF.getLLVMContext(), 2657 llvm::AttributeList::FunctionIndex, B), 2658 /*Local=*/true); 2659 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2660 if (!MayReturn) { 2661 HandlerCall->setDoesNotReturn(); 2662 CGF.Builder.CreateUnreachable(); 2663 } else { 2664 CGF.Builder.CreateBr(ContBB); 2665 } 2666 } 2667 2668 void CodeGenFunction::EmitCheck( 2669 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2670 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2671 ArrayRef<llvm::Value *> DynamicArgs) { 2672 assert(IsSanitizerScope); 2673 assert(Checked.size() > 0); 2674 assert(CheckHandler >= 0 && 2675 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2676 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2677 2678 llvm::Value *FatalCond = nullptr; 2679 llvm::Value *RecoverableCond = nullptr; 2680 llvm::Value *TrapCond = nullptr; 2681 for (int i = 0, n = Checked.size(); i < n; ++i) { 2682 llvm::Value *Check = Checked[i].first; 2683 // -fsanitize-trap= overrides -fsanitize-recover=. 2684 llvm::Value *&Cond = 2685 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2686 ? TrapCond 2687 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2688 ? RecoverableCond 2689 : FatalCond; 2690 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2691 } 2692 2693 if (TrapCond) 2694 EmitTrapCheck(TrapCond); 2695 if (!FatalCond && !RecoverableCond) 2696 return; 2697 2698 llvm::Value *JointCond; 2699 if (FatalCond && RecoverableCond) 2700 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2701 else 2702 JointCond = FatalCond ? FatalCond : RecoverableCond; 2703 assert(JointCond); 2704 2705 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2706 assert(SanOpts.has(Checked[0].second)); 2707 #ifndef NDEBUG 2708 for (int i = 1, n = Checked.size(); i < n; ++i) { 2709 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2710 "All recoverable kinds in a single check must be same!"); 2711 assert(SanOpts.has(Checked[i].second)); 2712 } 2713 #endif 2714 2715 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2716 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2717 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2718 // Give hint that we very much don't expect to execute the handler 2719 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2720 llvm::MDBuilder MDHelper(getLLVMContext()); 2721 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2722 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2723 EmitBlock(Handlers); 2724 2725 // Handler functions take an i8* pointing to the (handler-specific) static 2726 // information block, followed by a sequence of intptr_t arguments 2727 // representing operand values. 2728 SmallVector<llvm::Value *, 4> Args; 2729 SmallVector<llvm::Type *, 4> ArgTypes; 2730 Args.reserve(DynamicArgs.size() + 1); 2731 ArgTypes.reserve(DynamicArgs.size() + 1); 2732 2733 // Emit handler arguments and create handler function type. 2734 if (!StaticArgs.empty()) { 2735 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2736 auto *InfoPtr = 2737 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2738 llvm::GlobalVariable::PrivateLinkage, Info); 2739 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2740 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2741 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2742 ArgTypes.push_back(Int8PtrTy); 2743 } 2744 2745 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2746 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2747 ArgTypes.push_back(IntPtrTy); 2748 } 2749 2750 llvm::FunctionType *FnType = 2751 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2752 2753 if (!FatalCond || !RecoverableCond) { 2754 // Simple case: we need to generate a single handler call, either 2755 // fatal, or non-fatal. 2756 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2757 (FatalCond != nullptr), Cont); 2758 } else { 2759 // Emit two handler calls: first one for set of unrecoverable checks, 2760 // another one for recoverable. 2761 llvm::BasicBlock *NonFatalHandlerBB = 2762 createBasicBlock("non_fatal." + CheckName); 2763 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2764 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2765 EmitBlock(FatalHandlerBB); 2766 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2767 NonFatalHandlerBB); 2768 EmitBlock(NonFatalHandlerBB); 2769 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2770 Cont); 2771 } 2772 2773 EmitBlock(Cont); 2774 } 2775 2776 void CodeGenFunction::EmitCfiSlowPathCheck( 2777 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2778 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2779 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2780 2781 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2782 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2783 2784 llvm::MDBuilder MDHelper(getLLVMContext()); 2785 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2786 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2787 2788 EmitBlock(CheckBB); 2789 2790 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2791 2792 llvm::CallInst *CheckCall; 2793 if (WithDiag) { 2794 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2795 auto *InfoPtr = 2796 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2797 llvm::GlobalVariable::PrivateLinkage, Info); 2798 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2799 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2800 2801 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2802 "__cfi_slowpath_diag", 2803 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2804 false)); 2805 CheckCall = Builder.CreateCall( 2806 SlowPathDiagFn, 2807 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2808 } else { 2809 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2810 "__cfi_slowpath", 2811 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2812 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2813 } 2814 2815 CheckCall->setDoesNotThrow(); 2816 2817 EmitBlock(Cont); 2818 } 2819 2820 // Emit a stub for __cfi_check function so that the linker knows about this 2821 // symbol in LTO mode. 2822 void CodeGenFunction::EmitCfiCheckStub() { 2823 llvm::Module *M = &CGM.getModule(); 2824 auto &Ctx = M->getContext(); 2825 llvm::Function *F = llvm::Function::Create( 2826 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2827 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2828 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2829 // FIXME: consider emitting an intrinsic call like 2830 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2831 // which can be lowered in CrossDSOCFI pass to the actual contents of 2832 // __cfi_check. This would allow inlining of __cfi_check calls. 2833 llvm::CallInst::Create( 2834 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2835 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2836 } 2837 2838 // This function is basically a switch over the CFI failure kind, which is 2839 // extracted from CFICheckFailData (1st function argument). Each case is either 2840 // llvm.trap or a call to one of the two runtime handlers, based on 2841 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2842 // failure kind) traps, but this should really never happen. CFICheckFailData 2843 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2844 // check kind; in this case __cfi_check_fail traps as well. 2845 void CodeGenFunction::EmitCfiCheckFail() { 2846 SanitizerScope SanScope(this); 2847 FunctionArgList Args; 2848 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2849 getContext().VoidPtrTy); 2850 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2851 getContext().VoidPtrTy); 2852 Args.push_back(&ArgData); 2853 Args.push_back(&ArgAddr); 2854 2855 const CGFunctionInfo &FI = 2856 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2857 2858 llvm::Function *F = llvm::Function::Create( 2859 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2860 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2861 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2862 2863 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2864 SourceLocation()); 2865 2866 llvm::Value *Data = 2867 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2868 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2869 llvm::Value *Addr = 2870 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2871 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2872 2873 // Data == nullptr means the calling module has trap behaviour for this check. 2874 llvm::Value *DataIsNotNullPtr = 2875 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2876 EmitTrapCheck(DataIsNotNullPtr); 2877 2878 llvm::StructType *SourceLocationTy = 2879 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2880 llvm::StructType *CfiCheckFailDataTy = 2881 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2882 2883 llvm::Value *V = Builder.CreateConstGEP2_32( 2884 CfiCheckFailDataTy, 2885 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2886 0); 2887 Address CheckKindAddr(V, getIntAlign()); 2888 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2889 2890 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2891 CGM.getLLVMContext(), 2892 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2893 llvm::Value *ValidVtable = Builder.CreateZExt( 2894 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2895 {Addr, AllVtables}), 2896 IntPtrTy); 2897 2898 const std::pair<int, SanitizerMask> CheckKinds[] = { 2899 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2900 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2901 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2902 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2903 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2904 2905 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2906 for (auto CheckKindMaskPair : CheckKinds) { 2907 int Kind = CheckKindMaskPair.first; 2908 SanitizerMask Mask = CheckKindMaskPair.second; 2909 llvm::Value *Cond = 2910 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2911 if (CGM.getLangOpts().Sanitize.has(Mask)) 2912 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2913 {Data, Addr, ValidVtable}); 2914 else 2915 EmitTrapCheck(Cond); 2916 } 2917 2918 FinishFunction(); 2919 // The only reference to this function will be created during LTO link. 2920 // Make sure it survives until then. 2921 CGM.addUsedGlobal(F); 2922 } 2923 2924 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2925 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2926 2927 // If we're optimizing, collapse all calls to trap down to just one per 2928 // function to save on code size. 2929 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2930 TrapBB = createBasicBlock("trap"); 2931 Builder.CreateCondBr(Checked, Cont, TrapBB); 2932 EmitBlock(TrapBB); 2933 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2934 TrapCall->setDoesNotReturn(); 2935 TrapCall->setDoesNotThrow(); 2936 Builder.CreateUnreachable(); 2937 } else { 2938 Builder.CreateCondBr(Checked, Cont, TrapBB); 2939 } 2940 2941 EmitBlock(Cont); 2942 } 2943 2944 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2945 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2946 2947 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2948 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2949 CGM.getCodeGenOpts().TrapFuncName); 2950 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 2951 } 2952 2953 return TrapCall; 2954 } 2955 2956 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2957 LValueBaseInfo *BaseInfo) { 2958 assert(E->getType()->isArrayType() && 2959 "Array to pointer decay must have array source type!"); 2960 2961 // Expressions of array type can't be bitfields or vector elements. 2962 LValue LV = EmitLValue(E); 2963 Address Addr = LV.getAddress(); 2964 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 2965 2966 // If the array type was an incomplete type, we need to make sure 2967 // the decay ends up being the right type. 2968 llvm::Type *NewTy = ConvertType(E->getType()); 2969 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2970 2971 // Note that VLA pointers are always decayed, so we don't need to do 2972 // anything here. 2973 if (!E->getType()->isVariableArrayType()) { 2974 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2975 "Expected pointer to array"); 2976 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2977 } 2978 2979 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2980 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2981 } 2982 2983 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2984 /// array to pointer, return the array subexpression. 2985 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2986 // If this isn't just an array->pointer decay, bail out. 2987 const auto *CE = dyn_cast<CastExpr>(E); 2988 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2989 return nullptr; 2990 2991 // If this is a decay from variable width array, bail out. 2992 const Expr *SubExpr = CE->getSubExpr(); 2993 if (SubExpr->getType()->isVariableArrayType()) 2994 return nullptr; 2995 2996 return SubExpr; 2997 } 2998 2999 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3000 llvm::Value *ptr, 3001 ArrayRef<llvm::Value*> indices, 3002 bool inbounds, 3003 const llvm::Twine &name = "arrayidx") { 3004 if (inbounds) { 3005 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 3006 } else { 3007 return CGF.Builder.CreateGEP(ptr, indices, name); 3008 } 3009 } 3010 3011 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3012 llvm::Value *idx, 3013 CharUnits eltSize) { 3014 // If we have a constant index, we can use the exact offset of the 3015 // element we're accessing. 3016 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3017 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3018 return arrayAlign.alignmentAtOffset(offset); 3019 3020 // Otherwise, use the worst-case alignment for any element. 3021 } else { 3022 return arrayAlign.alignmentOfArrayElement(eltSize); 3023 } 3024 } 3025 3026 static QualType getFixedSizeElementType(const ASTContext &ctx, 3027 const VariableArrayType *vla) { 3028 QualType eltType; 3029 do { 3030 eltType = vla->getElementType(); 3031 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3032 return eltType; 3033 } 3034 3035 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3036 ArrayRef<llvm::Value*> indices, 3037 QualType eltType, bool inbounds, 3038 const llvm::Twine &name = "arrayidx") { 3039 // All the indices except that last must be zero. 3040 #ifndef NDEBUG 3041 for (auto idx : indices.drop_back()) 3042 assert(isa<llvm::ConstantInt>(idx) && 3043 cast<llvm::ConstantInt>(idx)->isZero()); 3044 #endif 3045 3046 // Determine the element size of the statically-sized base. This is 3047 // the thing that the indices are expressed in terms of. 3048 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3049 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3050 } 3051 3052 // We can use that to compute the best alignment of the element. 3053 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3054 CharUnits eltAlign = 3055 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3056 3057 llvm::Value *eltPtr = 3058 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 3059 return Address(eltPtr, eltAlign); 3060 } 3061 3062 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3063 bool Accessed) { 3064 // The index must always be an integer, which is not an aggregate. Emit it 3065 // in lexical order (this complexity is, sadly, required by C++17). 3066 llvm::Value *IdxPre = 3067 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3068 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3069 auto *Idx = IdxPre; 3070 if (E->getLHS() != E->getIdx()) { 3071 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3072 Idx = EmitScalarExpr(E->getIdx()); 3073 } 3074 3075 QualType IdxTy = E->getIdx()->getType(); 3076 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3077 3078 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3079 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3080 3081 // Extend or truncate the index type to 32 or 64-bits. 3082 if (Promote && Idx->getType() != IntPtrTy) 3083 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3084 3085 return Idx; 3086 }; 3087 IdxPre = nullptr; 3088 3089 // If the base is a vector type, then we are forming a vector element lvalue 3090 // with this subscript. 3091 if (E->getBase()->getType()->isVectorType() && 3092 !isa<ExtVectorElementExpr>(E->getBase())) { 3093 // Emit the vector as an lvalue to get its address. 3094 LValue LHS = EmitLValue(E->getBase()); 3095 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3096 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3097 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3098 E->getBase()->getType(), 3099 LHS.getBaseInfo()); 3100 } 3101 3102 // All the other cases basically behave like simple offsetting. 3103 3104 // Handle the extvector case we ignored above. 3105 if (isa<ExtVectorElementExpr>(E->getBase())) { 3106 LValue LV = EmitLValue(E->getBase()); 3107 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3108 Address Addr = EmitExtVectorElementLValue(LV); 3109 3110 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3111 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 3112 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo()); 3113 } 3114 3115 LValueBaseInfo BaseInfo; 3116 Address Addr = Address::invalid(); 3117 if (const VariableArrayType *vla = 3118 getContext().getAsVariableArrayType(E->getType())) { 3119 // The base must be a pointer, which is not an aggregate. Emit 3120 // it. It needs to be emitted first in case it's what captures 3121 // the VLA bounds. 3122 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3123 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3124 3125 // The element count here is the total number of non-VLA elements. 3126 llvm::Value *numElements = getVLASize(vla).first; 3127 3128 // Effectively, the multiply by the VLA size is part of the GEP. 3129 // GEP indexes are signed, and scaling an index isn't permitted to 3130 // signed-overflow, so we use the same semantics for our explicit 3131 // multiply. We suppress this if overflow is not undefined behavior. 3132 if (getLangOpts().isSignedOverflowDefined()) { 3133 Idx = Builder.CreateMul(Idx, numElements); 3134 } else { 3135 Idx = Builder.CreateNSWMul(Idx, numElements); 3136 } 3137 3138 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3139 !getLangOpts().isSignedOverflowDefined()); 3140 3141 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3142 // Indexing over an interface, as in "NSString *P; P[4];" 3143 3144 // Emit the base pointer. 3145 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3146 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3147 3148 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3149 llvm::Value *InterfaceSizeVal = 3150 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3151 3152 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3153 3154 // We don't necessarily build correct LLVM struct types for ObjC 3155 // interfaces, so we can't rely on GEP to do this scaling 3156 // correctly, so we need to cast to i8*. FIXME: is this actually 3157 // true? A lot of other things in the fragile ABI would break... 3158 llvm::Type *OrigBaseTy = Addr.getType(); 3159 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3160 3161 // Do the GEP. 3162 CharUnits EltAlign = 3163 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3164 llvm::Value *EltPtr = 3165 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 3166 Addr = Address(EltPtr, EltAlign); 3167 3168 // Cast back. 3169 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3170 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3171 // If this is A[i] where A is an array, the frontend will have decayed the 3172 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3173 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3174 // "gep x, i" here. Emit one "gep A, 0, i". 3175 assert(Array->getType()->isArrayType() && 3176 "Array to pointer decay must have array source type!"); 3177 LValue ArrayLV; 3178 // For simple multidimensional array indexing, set the 'accessed' flag for 3179 // better bounds-checking of the base expression. 3180 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3181 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3182 else 3183 ArrayLV = EmitLValue(Array); 3184 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3185 3186 // Propagate the alignment from the array itself to the result. 3187 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 3188 {CGM.getSize(CharUnits::Zero()), Idx}, 3189 E->getType(), 3190 !getLangOpts().isSignedOverflowDefined()); 3191 BaseInfo = ArrayLV.getBaseInfo(); 3192 } else { 3193 // The base must be a pointer; emit it with an estimate of its alignment. 3194 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3195 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3196 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3197 !getLangOpts().isSignedOverflowDefined()); 3198 } 3199 3200 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo); 3201 3202 // TODO: Preserve/extend path TBAA metadata? 3203 3204 if (getLangOpts().ObjC1 && 3205 getLangOpts().getGC() != LangOptions::NonGC) { 3206 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3207 setObjCGCLValueClass(getContext(), E, LV); 3208 } 3209 return LV; 3210 } 3211 3212 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3213 LValueBaseInfo &BaseInfo, 3214 QualType BaseTy, QualType ElTy, 3215 bool IsLowerBound) { 3216 LValue BaseLVal; 3217 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3218 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3219 if (BaseTy->isArrayType()) { 3220 Address Addr = BaseLVal.getAddress(); 3221 BaseInfo = BaseLVal.getBaseInfo(); 3222 3223 // If the array type was an incomplete type, we need to make sure 3224 // the decay ends up being the right type. 3225 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3226 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3227 3228 // Note that VLA pointers are always decayed, so we don't need to do 3229 // anything here. 3230 if (!BaseTy->isVariableArrayType()) { 3231 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3232 "Expected pointer to array"); 3233 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3234 "arraydecay"); 3235 } 3236 3237 return CGF.Builder.CreateElementBitCast(Addr, 3238 CGF.ConvertTypeForMem(ElTy)); 3239 } 3240 LValueBaseInfo TypeInfo; 3241 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3242 BaseInfo.mergeForCast(TypeInfo); 3243 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3244 } 3245 return CGF.EmitPointerWithAlignment(Base, &BaseInfo); 3246 } 3247 3248 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3249 bool IsLowerBound) { 3250 QualType BaseTy; 3251 if (auto *ASE = 3252 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3253 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3254 else 3255 BaseTy = E->getBase()->getType(); 3256 QualType ResultExprTy; 3257 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3258 ResultExprTy = AT->getElementType(); 3259 else 3260 ResultExprTy = BaseTy->getPointeeType(); 3261 llvm::Value *Idx = nullptr; 3262 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3263 // Requesting lower bound or upper bound, but without provided length and 3264 // without ':' symbol for the default length -> length = 1. 3265 // Idx = LowerBound ?: 0; 3266 if (auto *LowerBound = E->getLowerBound()) { 3267 Idx = Builder.CreateIntCast( 3268 EmitScalarExpr(LowerBound), IntPtrTy, 3269 LowerBound->getType()->hasSignedIntegerRepresentation()); 3270 } else 3271 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3272 } else { 3273 // Try to emit length or lower bound as constant. If this is possible, 1 3274 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3275 // IR (LB + Len) - 1. 3276 auto &C = CGM.getContext(); 3277 auto *Length = E->getLength(); 3278 llvm::APSInt ConstLength; 3279 if (Length) { 3280 // Idx = LowerBound + Length - 1; 3281 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3282 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3283 Length = nullptr; 3284 } 3285 auto *LowerBound = E->getLowerBound(); 3286 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3287 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3288 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3289 LowerBound = nullptr; 3290 } 3291 if (!Length) 3292 --ConstLength; 3293 else if (!LowerBound) 3294 --ConstLowerBound; 3295 3296 if (Length || LowerBound) { 3297 auto *LowerBoundVal = 3298 LowerBound 3299 ? Builder.CreateIntCast( 3300 EmitScalarExpr(LowerBound), IntPtrTy, 3301 LowerBound->getType()->hasSignedIntegerRepresentation()) 3302 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3303 auto *LengthVal = 3304 Length 3305 ? Builder.CreateIntCast( 3306 EmitScalarExpr(Length), IntPtrTy, 3307 Length->getType()->hasSignedIntegerRepresentation()) 3308 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3309 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3310 /*HasNUW=*/false, 3311 !getLangOpts().isSignedOverflowDefined()); 3312 if (Length && LowerBound) { 3313 Idx = Builder.CreateSub( 3314 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3315 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3316 } 3317 } else 3318 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3319 } else { 3320 // Idx = ArraySize - 1; 3321 QualType ArrayTy = BaseTy->isPointerType() 3322 ? E->getBase()->IgnoreParenImpCasts()->getType() 3323 : BaseTy; 3324 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3325 Length = VAT->getSizeExpr(); 3326 if (Length->isIntegerConstantExpr(ConstLength, C)) 3327 Length = nullptr; 3328 } else { 3329 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3330 ConstLength = CAT->getSize(); 3331 } 3332 if (Length) { 3333 auto *LengthVal = Builder.CreateIntCast( 3334 EmitScalarExpr(Length), IntPtrTy, 3335 Length->getType()->hasSignedIntegerRepresentation()); 3336 Idx = Builder.CreateSub( 3337 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3338 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3339 } else { 3340 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3341 --ConstLength; 3342 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3343 } 3344 } 3345 } 3346 assert(Idx); 3347 3348 Address EltPtr = Address::invalid(); 3349 LValueBaseInfo BaseInfo; 3350 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3351 // The base must be a pointer, which is not an aggregate. Emit 3352 // it. It needs to be emitted first in case it's what captures 3353 // the VLA bounds. 3354 Address Base = 3355 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy, 3356 VLA->getElementType(), IsLowerBound); 3357 // The element count here is the total number of non-VLA elements. 3358 llvm::Value *NumElements = getVLASize(VLA).first; 3359 3360 // Effectively, the multiply by the VLA size is part of the GEP. 3361 // GEP indexes are signed, and scaling an index isn't permitted to 3362 // signed-overflow, so we use the same semantics for our explicit 3363 // multiply. We suppress this if overflow is not undefined behavior. 3364 if (getLangOpts().isSignedOverflowDefined()) 3365 Idx = Builder.CreateMul(Idx, NumElements); 3366 else 3367 Idx = Builder.CreateNSWMul(Idx, NumElements); 3368 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3369 !getLangOpts().isSignedOverflowDefined()); 3370 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3371 // If this is A[i] where A is an array, the frontend will have decayed the 3372 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3373 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3374 // "gep x, i" here. Emit one "gep A, 0, i". 3375 assert(Array->getType()->isArrayType() && 3376 "Array to pointer decay must have array source type!"); 3377 LValue ArrayLV; 3378 // For simple multidimensional array indexing, set the 'accessed' flag for 3379 // better bounds-checking of the base expression. 3380 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3381 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3382 else 3383 ArrayLV = EmitLValue(Array); 3384 3385 // Propagate the alignment from the array itself to the result. 3386 EltPtr = emitArraySubscriptGEP( 3387 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3388 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3389 BaseInfo = ArrayLV.getBaseInfo(); 3390 } else { 3391 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3392 BaseTy, ResultExprTy, IsLowerBound); 3393 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3394 !getLangOpts().isSignedOverflowDefined()); 3395 } 3396 3397 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo); 3398 } 3399 3400 LValue CodeGenFunction:: 3401 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3402 // Emit the base vector as an l-value. 3403 LValue Base; 3404 3405 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3406 if (E->isArrow()) { 3407 // If it is a pointer to a vector, emit the address and form an lvalue with 3408 // it. 3409 LValueBaseInfo BaseInfo; 3410 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3411 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3412 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo); 3413 Base.getQuals().removeObjCGCAttr(); 3414 } else if (E->getBase()->isGLValue()) { 3415 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3416 // emit the base as an lvalue. 3417 assert(E->getBase()->getType()->isVectorType()); 3418 Base = EmitLValue(E->getBase()); 3419 } else { 3420 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3421 assert(E->getBase()->getType()->isVectorType() && 3422 "Result must be a vector"); 3423 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3424 3425 // Store the vector to memory (because LValue wants an address). 3426 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3427 Builder.CreateStore(Vec, VecMem); 3428 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3429 LValueBaseInfo(AlignmentSource::Decl, false)); 3430 } 3431 3432 QualType type = 3433 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3434 3435 // Encode the element access list into a vector of unsigned indices. 3436 SmallVector<uint32_t, 4> Indices; 3437 E->getEncodedElementAccess(Indices); 3438 3439 if (Base.isSimple()) { 3440 llvm::Constant *CV = 3441 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3442 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3443 Base.getBaseInfo()); 3444 } 3445 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3446 3447 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3448 SmallVector<llvm::Constant *, 4> CElts; 3449 3450 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3451 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3452 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3453 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3454 Base.getBaseInfo()); 3455 } 3456 3457 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3458 Expr *BaseExpr = E->getBase(); 3459 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3460 LValue BaseLV; 3461 if (E->isArrow()) { 3462 LValueBaseInfo BaseInfo; 3463 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo); 3464 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3465 SanitizerSet SkippedChecks; 3466 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3467 if (IsBaseCXXThis) 3468 SkippedChecks.set(SanitizerKind::Alignment, true); 3469 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3470 SkippedChecks.set(SanitizerKind::Null, true); 3471 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3472 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3473 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo); 3474 } else 3475 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3476 3477 NamedDecl *ND = E->getMemberDecl(); 3478 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3479 LValue LV = EmitLValueForField(BaseLV, Field); 3480 setObjCGCLValueClass(getContext(), E, LV); 3481 return LV; 3482 } 3483 3484 if (auto *VD = dyn_cast<VarDecl>(ND)) 3485 return EmitGlobalVarDeclLValue(*this, E, VD); 3486 3487 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3488 return EmitFunctionDeclLValue(*this, E, FD); 3489 3490 llvm_unreachable("Unhandled member declaration!"); 3491 } 3492 3493 /// Given that we are currently emitting a lambda, emit an l-value for 3494 /// one of its members. 3495 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3496 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3497 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3498 QualType LambdaTagType = 3499 getContext().getTagDeclType(Field->getParent()); 3500 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3501 return EmitLValueForField(LambdaLV, Field); 3502 } 3503 3504 /// Drill down to the storage of a field without walking into 3505 /// reference types. 3506 /// 3507 /// The resulting address doesn't necessarily have the right type. 3508 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3509 const FieldDecl *field) { 3510 const RecordDecl *rec = field->getParent(); 3511 3512 unsigned idx = 3513 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3514 3515 CharUnits offset; 3516 // Adjust the alignment down to the given offset. 3517 // As a special case, if the LLVM field index is 0, we know that this 3518 // is zero. 3519 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3520 .getFieldOffset(field->getFieldIndex()) == 0) && 3521 "LLVM field at index zero had non-zero offset?"); 3522 if (idx != 0) { 3523 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3524 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3525 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3526 } 3527 3528 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3529 } 3530 3531 LValue CodeGenFunction::EmitLValueForField(LValue base, 3532 const FieldDecl *field) { 3533 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3534 AlignmentSource fieldAlignSource = 3535 getFieldAlignmentSource(BaseInfo.getAlignmentSource()); 3536 LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias()); 3537 3538 if (field->isBitField()) { 3539 const CGRecordLayout &RL = 3540 CGM.getTypes().getCGRecordLayout(field->getParent()); 3541 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3542 Address Addr = base.getAddress(); 3543 unsigned Idx = RL.getLLVMFieldNo(field); 3544 if (Idx != 0) 3545 // For structs, we GEP to the field that the record layout suggests. 3546 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3547 field->getName()); 3548 // Get the access type. 3549 llvm::Type *FieldIntTy = 3550 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3551 if (Addr.getElementType() != FieldIntTy) 3552 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3553 3554 QualType fieldType = 3555 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3556 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo); 3557 } 3558 3559 const RecordDecl *rec = field->getParent(); 3560 QualType type = field->getType(); 3561 3562 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3563 3564 Address addr = base.getAddress(); 3565 unsigned cvr = base.getVRQualifiers(); 3566 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3567 if (rec->isUnion()) { 3568 // For unions, there is no pointer adjustment. 3569 assert(!type->isReferenceType() && "union has reference member"); 3570 // TODO: handle path-aware TBAA for union. 3571 TBAAPath = false; 3572 } else { 3573 // For structs, we GEP to the field that the record layout suggests. 3574 addr = emitAddrOfFieldStorage(*this, addr, field); 3575 3576 // If this is a reference field, load the reference right now. 3577 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3578 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3579 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3580 3581 // Loading the reference will disable path-aware TBAA. 3582 TBAAPath = false; 3583 if (CGM.shouldUseTBAA()) { 3584 llvm::MDNode *tbaa; 3585 if (mayAlias) 3586 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3587 else 3588 tbaa = CGM.getTBAAInfo(type); 3589 if (tbaa) 3590 CGM.DecorateInstructionWithTBAA(load, tbaa); 3591 } 3592 3593 mayAlias = false; 3594 type = refType->getPointeeType(); 3595 3596 CharUnits alignment = 3597 getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true); 3598 FieldBaseInfo.setMayAlias(false); 3599 addr = Address(load, alignment); 3600 3601 // Qualifiers on the struct don't apply to the referencee, and 3602 // we'll pick up CVR from the actual type later, so reset these 3603 // additional qualifiers now. 3604 cvr = 0; 3605 } 3606 } 3607 3608 // Make sure that the address is pointing to the right type. This is critical 3609 // for both unions and structs. A union needs a bitcast, a struct element 3610 // will need a bitcast if the LLVM type laid out doesn't match the desired 3611 // type. 3612 addr = Builder.CreateElementBitCast(addr, 3613 CGM.getTypes().ConvertTypeForMem(type), 3614 field->getName()); 3615 3616 if (field->hasAttr<AnnotateAttr>()) 3617 addr = EmitFieldAnnotations(field, addr); 3618 3619 LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo); 3620 LV.getQuals().addCVRQualifiers(cvr); 3621 if (TBAAPath) { 3622 const ASTRecordLayout &Layout = 3623 getContext().getASTRecordLayout(field->getParent()); 3624 // Set the base type to be the base type of the base LValue and 3625 // update offset to be relative to the base type. 3626 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3627 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3628 Layout.getFieldOffset(field->getFieldIndex()) / 3629 getContext().getCharWidth()); 3630 } 3631 3632 // __weak attribute on a field is ignored. 3633 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3634 LV.getQuals().removeObjCGCAttr(); 3635 3636 // Fields of may_alias structs act like 'char' for TBAA purposes. 3637 // FIXME: this should get propagated down through anonymous structs 3638 // and unions. 3639 if (mayAlias && LV.getTBAAInfo()) 3640 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3641 3642 return LV; 3643 } 3644 3645 LValue 3646 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3647 const FieldDecl *Field) { 3648 QualType FieldType = Field->getType(); 3649 3650 if (!FieldType->isReferenceType()) 3651 return EmitLValueForField(Base, Field); 3652 3653 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3654 3655 // Make sure that the address is pointing to the right type. 3656 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3657 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3658 3659 // TODO: access-path TBAA? 3660 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3661 LValueBaseInfo FieldBaseInfo( 3662 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3663 BaseInfo.getMayAlias()); 3664 return MakeAddrLValue(V, FieldType, FieldBaseInfo); 3665 } 3666 3667 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3668 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 3669 if (E->isFileScope()) { 3670 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3671 return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo); 3672 } 3673 if (E->getType()->isVariablyModifiedType()) 3674 // make sure to emit the VLA size. 3675 EmitVariablyModifiedType(E->getType()); 3676 3677 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3678 const Expr *InitExpr = E->getInitializer(); 3679 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo); 3680 3681 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3682 /*Init*/ true); 3683 3684 return Result; 3685 } 3686 3687 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3688 if (!E->isGLValue()) 3689 // Initializing an aggregate temporary in C++11: T{...}. 3690 return EmitAggExprToLValue(E); 3691 3692 // An lvalue initializer list must be initializing a reference. 3693 assert(E->isTransparent() && "non-transparent glvalue init list"); 3694 return EmitLValue(E->getInit(0)); 3695 } 3696 3697 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3698 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3699 /// LValue is returned and the current block has been terminated. 3700 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3701 const Expr *Operand) { 3702 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3703 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3704 return None; 3705 } 3706 3707 return CGF.EmitLValue(Operand); 3708 } 3709 3710 LValue CodeGenFunction:: 3711 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3712 if (!expr->isGLValue()) { 3713 // ?: here should be an aggregate. 3714 assert(hasAggregateEvaluationKind(expr->getType()) && 3715 "Unexpected conditional operator!"); 3716 return EmitAggExprToLValue(expr); 3717 } 3718 3719 OpaqueValueMapping binding(*this, expr); 3720 3721 const Expr *condExpr = expr->getCond(); 3722 bool CondExprBool; 3723 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3724 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3725 if (!CondExprBool) std::swap(live, dead); 3726 3727 if (!ContainsLabel(dead)) { 3728 // If the true case is live, we need to track its region. 3729 if (CondExprBool) 3730 incrementProfileCounter(expr); 3731 return EmitLValue(live); 3732 } 3733 } 3734 3735 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3736 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3737 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3738 3739 ConditionalEvaluation eval(*this); 3740 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3741 3742 // Any temporaries created here are conditional. 3743 EmitBlock(lhsBlock); 3744 incrementProfileCounter(expr); 3745 eval.begin(*this); 3746 Optional<LValue> lhs = 3747 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3748 eval.end(*this); 3749 3750 if (lhs && !lhs->isSimple()) 3751 return EmitUnsupportedLValue(expr, "conditional operator"); 3752 3753 lhsBlock = Builder.GetInsertBlock(); 3754 if (lhs) 3755 Builder.CreateBr(contBlock); 3756 3757 // Any temporaries created here are conditional. 3758 EmitBlock(rhsBlock); 3759 eval.begin(*this); 3760 Optional<LValue> rhs = 3761 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3762 eval.end(*this); 3763 if (rhs && !rhs->isSimple()) 3764 return EmitUnsupportedLValue(expr, "conditional operator"); 3765 rhsBlock = Builder.GetInsertBlock(); 3766 3767 EmitBlock(contBlock); 3768 3769 if (lhs && rhs) { 3770 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3771 2, "cond-lvalue"); 3772 phi->addIncoming(lhs->getPointer(), lhsBlock); 3773 phi->addIncoming(rhs->getPointer(), rhsBlock); 3774 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3775 AlignmentSource alignSource = 3776 std::max(lhs->getBaseInfo().getAlignmentSource(), 3777 rhs->getBaseInfo().getAlignmentSource()); 3778 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3779 rhs->getBaseInfo().getMayAlias(); 3780 return MakeAddrLValue(result, expr->getType(), 3781 LValueBaseInfo(alignSource, MayAlias)); 3782 } else { 3783 assert((lhs || rhs) && 3784 "both operands of glvalue conditional are throw-expressions?"); 3785 return lhs ? *lhs : *rhs; 3786 } 3787 } 3788 3789 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3790 /// type. If the cast is to a reference, we can have the usual lvalue result, 3791 /// otherwise if a cast is needed by the code generator in an lvalue context, 3792 /// then it must mean that we need the address of an aggregate in order to 3793 /// access one of its members. This can happen for all the reasons that casts 3794 /// are permitted with aggregate result, including noop aggregate casts, and 3795 /// cast from scalar to union. 3796 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3797 switch (E->getCastKind()) { 3798 case CK_ToVoid: 3799 case CK_BitCast: 3800 case CK_ArrayToPointerDecay: 3801 case CK_FunctionToPointerDecay: 3802 case CK_NullToMemberPointer: 3803 case CK_NullToPointer: 3804 case CK_IntegralToPointer: 3805 case CK_PointerToIntegral: 3806 case CK_PointerToBoolean: 3807 case CK_VectorSplat: 3808 case CK_IntegralCast: 3809 case CK_BooleanToSignedIntegral: 3810 case CK_IntegralToBoolean: 3811 case CK_IntegralToFloating: 3812 case CK_FloatingToIntegral: 3813 case CK_FloatingToBoolean: 3814 case CK_FloatingCast: 3815 case CK_FloatingRealToComplex: 3816 case CK_FloatingComplexToReal: 3817 case CK_FloatingComplexToBoolean: 3818 case CK_FloatingComplexCast: 3819 case CK_FloatingComplexToIntegralComplex: 3820 case CK_IntegralRealToComplex: 3821 case CK_IntegralComplexToReal: 3822 case CK_IntegralComplexToBoolean: 3823 case CK_IntegralComplexCast: 3824 case CK_IntegralComplexToFloatingComplex: 3825 case CK_DerivedToBaseMemberPointer: 3826 case CK_BaseToDerivedMemberPointer: 3827 case CK_MemberPointerToBoolean: 3828 case CK_ReinterpretMemberPointer: 3829 case CK_AnyPointerToBlockPointerCast: 3830 case CK_ARCProduceObject: 3831 case CK_ARCConsumeObject: 3832 case CK_ARCReclaimReturnedObject: 3833 case CK_ARCExtendBlockObject: 3834 case CK_CopyAndAutoreleaseBlockObject: 3835 case CK_AddressSpaceConversion: 3836 case CK_IntToOCLSampler: 3837 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3838 3839 case CK_Dependent: 3840 llvm_unreachable("dependent cast kind in IR gen!"); 3841 3842 case CK_BuiltinFnToFnPtr: 3843 llvm_unreachable("builtin functions are handled elsewhere"); 3844 3845 // These are never l-values; just use the aggregate emission code. 3846 case CK_NonAtomicToAtomic: 3847 case CK_AtomicToNonAtomic: 3848 return EmitAggExprToLValue(E); 3849 3850 case CK_Dynamic: { 3851 LValue LV = EmitLValue(E->getSubExpr()); 3852 Address V = LV.getAddress(); 3853 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3854 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3855 } 3856 3857 case CK_ConstructorConversion: 3858 case CK_UserDefinedConversion: 3859 case CK_CPointerToObjCPointerCast: 3860 case CK_BlockPointerToObjCPointerCast: 3861 case CK_NoOp: 3862 case CK_LValueToRValue: 3863 return EmitLValue(E->getSubExpr()); 3864 3865 case CK_UncheckedDerivedToBase: 3866 case CK_DerivedToBase: { 3867 const RecordType *DerivedClassTy = 3868 E->getSubExpr()->getType()->getAs<RecordType>(); 3869 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3870 3871 LValue LV = EmitLValue(E->getSubExpr()); 3872 Address This = LV.getAddress(); 3873 3874 // Perform the derived-to-base conversion 3875 Address Base = GetAddressOfBaseClass( 3876 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3877 /*NullCheckValue=*/false, E->getExprLoc()); 3878 3879 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo()); 3880 } 3881 case CK_ToUnion: 3882 return EmitAggExprToLValue(E); 3883 case CK_BaseToDerived: { 3884 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3885 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3886 3887 LValue LV = EmitLValue(E->getSubExpr()); 3888 3889 // Perform the base-to-derived conversion 3890 Address Derived = 3891 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3892 E->path_begin(), E->path_end(), 3893 /*NullCheckValue=*/false); 3894 3895 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3896 // performed and the object is not of the derived type. 3897 if (sanitizePerformTypeCheck()) 3898 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3899 Derived.getPointer(), E->getType()); 3900 3901 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3902 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3903 /*MayBeNull=*/false, 3904 CFITCK_DerivedCast, E->getLocStart()); 3905 3906 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo()); 3907 } 3908 case CK_LValueBitCast: { 3909 // This must be a reinterpret_cast (or c-style equivalent). 3910 const auto *CE = cast<ExplicitCastExpr>(E); 3911 3912 CGM.EmitExplicitCastExprType(CE, this); 3913 LValue LV = EmitLValue(E->getSubExpr()); 3914 Address V = Builder.CreateBitCast(LV.getAddress(), 3915 ConvertType(CE->getTypeAsWritten())); 3916 3917 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3918 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3919 /*MayBeNull=*/false, 3920 CFITCK_UnrelatedCast, E->getLocStart()); 3921 3922 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 3923 } 3924 case CK_ObjCObjectLValueCast: { 3925 LValue LV = EmitLValue(E->getSubExpr()); 3926 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3927 ConvertType(E->getType())); 3928 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 3929 } 3930 case CK_ZeroToOCLQueue: 3931 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 3932 case CK_ZeroToOCLEvent: 3933 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3934 } 3935 3936 llvm_unreachable("Unhandled lvalue cast kind?"); 3937 } 3938 3939 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3940 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3941 return getOpaqueLValueMapping(e); 3942 } 3943 3944 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3945 const FieldDecl *FD, 3946 SourceLocation Loc) { 3947 QualType FT = FD->getType(); 3948 LValue FieldLV = EmitLValueForField(LV, FD); 3949 switch (getEvaluationKind(FT)) { 3950 case TEK_Complex: 3951 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3952 case TEK_Aggregate: 3953 return FieldLV.asAggregateRValue(); 3954 case TEK_Scalar: 3955 // This routine is used to load fields one-by-one to perform a copy, so 3956 // don't load reference fields. 3957 if (FD->getType()->isReferenceType()) 3958 return RValue::get(FieldLV.getPointer()); 3959 return EmitLoadOfLValue(FieldLV, Loc); 3960 } 3961 llvm_unreachable("bad evaluation kind"); 3962 } 3963 3964 //===--------------------------------------------------------------------===// 3965 // Expression Emission 3966 //===--------------------------------------------------------------------===// 3967 3968 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3969 ReturnValueSlot ReturnValue) { 3970 // Builtins never have block type. 3971 if (E->getCallee()->getType()->isBlockPointerType()) 3972 return EmitBlockCallExpr(E, ReturnValue); 3973 3974 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3975 return EmitCXXMemberCallExpr(CE, ReturnValue); 3976 3977 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3978 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3979 3980 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3981 if (const CXXMethodDecl *MD = 3982 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 3983 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3984 3985 CGCallee callee = EmitCallee(E->getCallee()); 3986 3987 if (callee.isBuiltin()) { 3988 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 3989 E, ReturnValue); 3990 } 3991 3992 if (callee.isPseudoDestructor()) { 3993 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 3994 } 3995 3996 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 3997 } 3998 3999 /// Emit a CallExpr without considering whether it might be a subclass. 4000 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4001 ReturnValueSlot ReturnValue) { 4002 CGCallee Callee = EmitCallee(E->getCallee()); 4003 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4004 } 4005 4006 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4007 if (auto builtinID = FD->getBuiltinID()) { 4008 return CGCallee::forBuiltin(builtinID, FD); 4009 } 4010 4011 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4012 return CGCallee::forDirect(calleePtr, FD); 4013 } 4014 4015 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4016 E = E->IgnoreParens(); 4017 4018 // Look through function-to-pointer decay. 4019 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4020 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4021 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4022 return EmitCallee(ICE->getSubExpr()); 4023 } 4024 4025 // Resolve direct calls. 4026 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4027 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4028 return EmitDirectCallee(*this, FD); 4029 } 4030 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4031 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4032 EmitIgnoredExpr(ME->getBase()); 4033 return EmitDirectCallee(*this, FD); 4034 } 4035 4036 // Look through template substitutions. 4037 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4038 return EmitCallee(NTTP->getReplacement()); 4039 4040 // Treat pseudo-destructor calls differently. 4041 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4042 return CGCallee::forPseudoDestructor(PDE); 4043 } 4044 4045 // Otherwise, we have an indirect reference. 4046 llvm::Value *calleePtr; 4047 QualType functionType; 4048 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4049 calleePtr = EmitScalarExpr(E); 4050 functionType = ptrType->getPointeeType(); 4051 } else { 4052 functionType = E->getType(); 4053 calleePtr = EmitLValue(E).getPointer(); 4054 } 4055 assert(functionType->isFunctionType()); 4056 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4057 E->getReferencedDeclOfCallee()); 4058 CGCallee callee(calleeInfo, calleePtr); 4059 return callee; 4060 } 4061 4062 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4063 // Comma expressions just emit their LHS then their RHS as an l-value. 4064 if (E->getOpcode() == BO_Comma) { 4065 EmitIgnoredExpr(E->getLHS()); 4066 EnsureInsertPoint(); 4067 return EmitLValue(E->getRHS()); 4068 } 4069 4070 if (E->getOpcode() == BO_PtrMemD || 4071 E->getOpcode() == BO_PtrMemI) 4072 return EmitPointerToDataMemberBinaryExpr(E); 4073 4074 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4075 4076 // Note that in all of these cases, __block variables need the RHS 4077 // evaluated first just in case the variable gets moved by the RHS. 4078 4079 switch (getEvaluationKind(E->getType())) { 4080 case TEK_Scalar: { 4081 switch (E->getLHS()->getType().getObjCLifetime()) { 4082 case Qualifiers::OCL_Strong: 4083 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4084 4085 case Qualifiers::OCL_Autoreleasing: 4086 return EmitARCStoreAutoreleasing(E).first; 4087 4088 // No reason to do any of these differently. 4089 case Qualifiers::OCL_None: 4090 case Qualifiers::OCL_ExplicitNone: 4091 case Qualifiers::OCL_Weak: 4092 break; 4093 } 4094 4095 RValue RV = EmitAnyExpr(E->getRHS()); 4096 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4097 if (RV.isScalar()) 4098 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4099 EmitStoreThroughLValue(RV, LV); 4100 return LV; 4101 } 4102 4103 case TEK_Complex: 4104 return EmitComplexAssignmentLValue(E); 4105 4106 case TEK_Aggregate: 4107 return EmitAggExprToLValue(E); 4108 } 4109 llvm_unreachable("bad evaluation kind"); 4110 } 4111 4112 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4113 RValue RV = EmitCallExpr(E); 4114 4115 if (!RV.isScalar()) 4116 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4117 LValueBaseInfo(AlignmentSource::Decl, false)); 4118 4119 assert(E->getCallReturnType(getContext())->isReferenceType() && 4120 "Can't have a scalar return unless the return type is a " 4121 "reference type!"); 4122 4123 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4124 } 4125 4126 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4127 // FIXME: This shouldn't require another copy. 4128 return EmitAggExprToLValue(E); 4129 } 4130 4131 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4132 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4133 && "binding l-value to type which needs a temporary"); 4134 AggValueSlot Slot = CreateAggTemp(E->getType()); 4135 EmitCXXConstructExpr(E, Slot); 4136 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4137 LValueBaseInfo(AlignmentSource::Decl, false)); 4138 } 4139 4140 LValue 4141 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4142 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4143 } 4144 4145 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4146 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4147 ConvertType(E->getType())); 4148 } 4149 4150 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4151 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4152 LValueBaseInfo(AlignmentSource::Decl, false)); 4153 } 4154 4155 LValue 4156 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4157 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4158 Slot.setExternallyDestructed(); 4159 EmitAggExpr(E->getSubExpr(), Slot); 4160 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4161 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4162 LValueBaseInfo(AlignmentSource::Decl, false)); 4163 } 4164 4165 LValue 4166 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4167 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4168 EmitLambdaExpr(E, Slot); 4169 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4170 LValueBaseInfo(AlignmentSource::Decl, false)); 4171 } 4172 4173 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4174 RValue RV = EmitObjCMessageExpr(E); 4175 4176 if (!RV.isScalar()) 4177 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4178 LValueBaseInfo(AlignmentSource::Decl, false)); 4179 4180 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4181 "Can't have a scalar return unless the return type is a " 4182 "reference type!"); 4183 4184 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4185 } 4186 4187 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4188 Address V = 4189 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4190 return MakeAddrLValue(V, E->getType(), 4191 LValueBaseInfo(AlignmentSource::Decl, false)); 4192 } 4193 4194 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4195 const ObjCIvarDecl *Ivar) { 4196 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4197 } 4198 4199 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4200 llvm::Value *BaseValue, 4201 const ObjCIvarDecl *Ivar, 4202 unsigned CVRQualifiers) { 4203 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4204 Ivar, CVRQualifiers); 4205 } 4206 4207 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4208 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4209 llvm::Value *BaseValue = nullptr; 4210 const Expr *BaseExpr = E->getBase(); 4211 Qualifiers BaseQuals; 4212 QualType ObjectTy; 4213 if (E->isArrow()) { 4214 BaseValue = EmitScalarExpr(BaseExpr); 4215 ObjectTy = BaseExpr->getType()->getPointeeType(); 4216 BaseQuals = ObjectTy.getQualifiers(); 4217 } else { 4218 LValue BaseLV = EmitLValue(BaseExpr); 4219 BaseValue = BaseLV.getPointer(); 4220 ObjectTy = BaseExpr->getType(); 4221 BaseQuals = ObjectTy.getQualifiers(); 4222 } 4223 4224 LValue LV = 4225 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4226 BaseQuals.getCVRQualifiers()); 4227 setObjCGCLValueClass(getContext(), E, LV); 4228 return LV; 4229 } 4230 4231 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4232 // Can only get l-value for message expression returning aggregate type 4233 RValue RV = EmitAnyExprToTemp(E); 4234 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4235 LValueBaseInfo(AlignmentSource::Decl, false)); 4236 } 4237 4238 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4239 const CallExpr *E, ReturnValueSlot ReturnValue, 4240 llvm::Value *Chain) { 4241 // Get the actual function type. The callee type will always be a pointer to 4242 // function type or a block pointer type. 4243 assert(CalleeType->isFunctionPointerType() && 4244 "Call must have function pointer type!"); 4245 4246 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4247 4248 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4249 // We can only guarantee that a function is called from the correct 4250 // context/function based on the appropriate target attributes, 4251 // so only check in the case where we have both always_inline and target 4252 // since otherwise we could be making a conditional call after a check for 4253 // the proper cpu features (and it won't cause code generation issues due to 4254 // function based code generation). 4255 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4256 TargetDecl->hasAttr<TargetAttr>()) 4257 checkTargetFeatures(E, FD); 4258 4259 CalleeType = getContext().getCanonicalType(CalleeType); 4260 4261 const auto *FnType = 4262 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4263 4264 CGCallee Callee = OrigCallee; 4265 4266 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4267 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4268 if (llvm::Constant *PrefixSig = 4269 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4270 SanitizerScope SanScope(this); 4271 llvm::Constant *FTRTTIConst = 4272 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4273 llvm::Type *PrefixStructTyElems[] = { 4274 PrefixSig->getType(), 4275 FTRTTIConst->getType() 4276 }; 4277 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4278 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4279 4280 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4281 4282 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4283 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4284 llvm::Value *CalleeSigPtr = 4285 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4286 llvm::Value *CalleeSig = 4287 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4288 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4289 4290 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4291 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4292 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4293 4294 EmitBlock(TypeCheck); 4295 llvm::Value *CalleeRTTIPtr = 4296 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4297 llvm::Value *CalleeRTTI = 4298 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4299 llvm::Value *CalleeRTTIMatch = 4300 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4301 llvm::Constant *StaticData[] = { 4302 EmitCheckSourceLocation(E->getLocStart()), 4303 EmitCheckTypeDescriptor(CalleeType) 4304 }; 4305 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4306 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4307 4308 Builder.CreateBr(Cont); 4309 EmitBlock(Cont); 4310 } 4311 } 4312 4313 // If we are checking indirect calls and this call is indirect, check that the 4314 // function pointer is a member of the bit set for the function type. 4315 if (SanOpts.has(SanitizerKind::CFIICall) && 4316 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4317 SanitizerScope SanScope(this); 4318 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4319 4320 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4321 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4322 4323 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4324 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4325 llvm::Value *TypeTest = Builder.CreateCall( 4326 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4327 4328 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4329 llvm::Constant *StaticData[] = { 4330 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4331 EmitCheckSourceLocation(E->getLocStart()), 4332 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4333 }; 4334 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4335 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4336 CastedCallee, StaticData); 4337 } else { 4338 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4339 SanitizerHandler::CFICheckFail, StaticData, 4340 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4341 } 4342 } 4343 4344 CallArgList Args; 4345 if (Chain) 4346 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4347 CGM.getContext().VoidPtrTy); 4348 4349 // C++17 requires that we evaluate arguments to a call using assignment syntax 4350 // right-to-left, and that we evaluate arguments to certain other operators 4351 // left-to-right. Note that we allow this to override the order dictated by 4352 // the calling convention on the MS ABI, which means that parameter 4353 // destruction order is not necessarily reverse construction order. 4354 // FIXME: Revisit this based on C++ committee response to unimplementability. 4355 EvaluationOrder Order = EvaluationOrder::Default; 4356 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4357 if (OCE->isAssignmentOp()) 4358 Order = EvaluationOrder::ForceRightToLeft; 4359 else { 4360 switch (OCE->getOperator()) { 4361 case OO_LessLess: 4362 case OO_GreaterGreater: 4363 case OO_AmpAmp: 4364 case OO_PipePipe: 4365 case OO_Comma: 4366 case OO_ArrowStar: 4367 Order = EvaluationOrder::ForceLeftToRight; 4368 break; 4369 default: 4370 break; 4371 } 4372 } 4373 } 4374 4375 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4376 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4377 4378 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4379 Args, FnType, /*isChainCall=*/Chain); 4380 4381 // C99 6.5.2.2p6: 4382 // If the expression that denotes the called function has a type 4383 // that does not include a prototype, [the default argument 4384 // promotions are performed]. If the number of arguments does not 4385 // equal the number of parameters, the behavior is undefined. If 4386 // the function is defined with a type that includes a prototype, 4387 // and either the prototype ends with an ellipsis (, ...) or the 4388 // types of the arguments after promotion are not compatible with 4389 // the types of the parameters, the behavior is undefined. If the 4390 // function is defined with a type that does not include a 4391 // prototype, and the types of the arguments after promotion are 4392 // not compatible with those of the parameters after promotion, 4393 // the behavior is undefined [except in some trivial cases]. 4394 // That is, in the general case, we should assume that a call 4395 // through an unprototyped function type works like a *non-variadic* 4396 // call. The way we make this work is to cast to the exact type 4397 // of the promoted arguments. 4398 // 4399 // Chain calls use this same code path to add the invisible chain parameter 4400 // to the function type. 4401 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4402 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4403 CalleeTy = CalleeTy->getPointerTo(); 4404 4405 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4406 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4407 Callee.setFunctionPointer(CalleePtr); 4408 } 4409 4410 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4411 } 4412 4413 LValue CodeGenFunction:: 4414 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4415 Address BaseAddr = Address::invalid(); 4416 if (E->getOpcode() == BO_PtrMemI) { 4417 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4418 } else { 4419 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4420 } 4421 4422 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4423 4424 const MemberPointerType *MPT 4425 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4426 4427 LValueBaseInfo BaseInfo; 4428 Address MemberAddr = 4429 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo); 4430 4431 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo); 4432 } 4433 4434 /// Given the address of a temporary variable, produce an r-value of 4435 /// its type. 4436 RValue CodeGenFunction::convertTempToRValue(Address addr, 4437 QualType type, 4438 SourceLocation loc) { 4439 LValue lvalue = MakeAddrLValue(addr, type, 4440 LValueBaseInfo(AlignmentSource::Decl, false)); 4441 switch (getEvaluationKind(type)) { 4442 case TEK_Complex: 4443 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4444 case TEK_Aggregate: 4445 return lvalue.asAggregateRValue(); 4446 case TEK_Scalar: 4447 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4448 } 4449 llvm_unreachable("bad evaluation kind"); 4450 } 4451 4452 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4453 assert(Val->getType()->isFPOrFPVectorTy()); 4454 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4455 return; 4456 4457 llvm::MDBuilder MDHelper(getLLVMContext()); 4458 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4459 4460 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4461 } 4462 4463 namespace { 4464 struct LValueOrRValue { 4465 LValue LV; 4466 RValue RV; 4467 }; 4468 } 4469 4470 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4471 const PseudoObjectExpr *E, 4472 bool forLValue, 4473 AggValueSlot slot) { 4474 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4475 4476 // Find the result expression, if any. 4477 const Expr *resultExpr = E->getResultExpr(); 4478 LValueOrRValue result; 4479 4480 for (PseudoObjectExpr::const_semantics_iterator 4481 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4482 const Expr *semantic = *i; 4483 4484 // If this semantic expression is an opaque value, bind it 4485 // to the result of its source expression. 4486 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4487 4488 // If this is the result expression, we may need to evaluate 4489 // directly into the slot. 4490 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4491 OVMA opaqueData; 4492 if (ov == resultExpr && ov->isRValue() && !forLValue && 4493 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4494 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4495 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 4496 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4497 BaseInfo); 4498 opaqueData = OVMA::bind(CGF, ov, LV); 4499 result.RV = slot.asRValue(); 4500 4501 // Otherwise, emit as normal. 4502 } else { 4503 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4504 4505 // If this is the result, also evaluate the result now. 4506 if (ov == resultExpr) { 4507 if (forLValue) 4508 result.LV = CGF.EmitLValue(ov); 4509 else 4510 result.RV = CGF.EmitAnyExpr(ov, slot); 4511 } 4512 } 4513 4514 opaques.push_back(opaqueData); 4515 4516 // Otherwise, if the expression is the result, evaluate it 4517 // and remember the result. 4518 } else if (semantic == resultExpr) { 4519 if (forLValue) 4520 result.LV = CGF.EmitLValue(semantic); 4521 else 4522 result.RV = CGF.EmitAnyExpr(semantic, slot); 4523 4524 // Otherwise, evaluate the expression in an ignored context. 4525 } else { 4526 CGF.EmitIgnoredExpr(semantic); 4527 } 4528 } 4529 4530 // Unbind all the opaques now. 4531 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4532 opaques[i].unbind(CGF); 4533 4534 return result; 4535 } 4536 4537 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4538 AggValueSlot slot) { 4539 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4540 } 4541 4542 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4543 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4544 } 4545