1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name, 65 llvm::Value *ArraySize, 66 bool CastToDefaultAddrSpace) { 67 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 68 Alloca->setAlignment(Align.getQuantity()); 69 llvm::Value *V = Alloca; 70 // Alloca always returns a pointer in alloca address space, which may 71 // be different from the type defined by the language. For example, 72 // in C++ the auto variables are in the default address space. Therefore 73 // cast alloca to the default address space when necessary. 74 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 75 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 76 V = getTargetHooks().performAddrSpaceCast( 77 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 78 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 79 } 80 81 return Address(V, Align); 82 } 83 84 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 85 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 86 /// insertion point of the builder. 87 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 88 const Twine &Name, 89 llvm::Value *ArraySize) { 90 if (ArraySize) 91 return Builder.CreateAlloca(Ty, ArraySize, Name); 92 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 93 ArraySize, Name, AllocaInsertPt); 94 } 95 96 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 97 /// default alignment of the corresponding LLVM type, which is *not* 98 /// guaranteed to be related in any way to the expected alignment of 99 /// an AST type that might have been lowered to Ty. 100 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 101 const Twine &Name) { 102 CharUnits Align = 103 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 104 return CreateTempAlloca(Ty, Align, Name); 105 } 106 107 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 108 assert(isa<llvm::AllocaInst>(Var.getPointer())); 109 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 110 Store->setAlignment(Var.getAlignment().getQuantity()); 111 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 112 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 113 } 114 115 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 116 CharUnits Align = getContext().getTypeAlignInChars(Ty); 117 return CreateTempAlloca(ConvertType(Ty), Align, Name); 118 } 119 120 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 121 bool CastToDefaultAddrSpace) { 122 // FIXME: Should we prefer the preferred type alignment here? 123 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 124 CastToDefaultAddrSpace); 125 } 126 127 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 128 const Twine &Name, 129 bool CastToDefaultAddrSpace) { 130 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 131 CastToDefaultAddrSpace); 132 } 133 134 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 135 /// expression and compare the result against zero, returning an Int1Ty value. 136 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 137 PGO.setCurrentStmt(E); 138 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 139 llvm::Value *MemPtr = EmitScalarExpr(E); 140 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 141 } 142 143 QualType BoolTy = getContext().BoolTy; 144 SourceLocation Loc = E->getExprLoc(); 145 if (!E->getType()->isAnyComplexType()) 146 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 147 148 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 149 Loc); 150 } 151 152 /// EmitIgnoredExpr - Emit code to compute the specified expression, 153 /// ignoring the result. 154 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 155 if (E->isRValue()) 156 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 157 158 // Just emit it as an l-value and drop the result. 159 EmitLValue(E); 160 } 161 162 /// EmitAnyExpr - Emit code to compute the specified expression which 163 /// can have any type. The result is returned as an RValue struct. 164 /// If this is an aggregate expression, AggSlot indicates where the 165 /// result should be returned. 166 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 167 AggValueSlot aggSlot, 168 bool ignoreResult) { 169 switch (getEvaluationKind(E->getType())) { 170 case TEK_Scalar: 171 return RValue::get(EmitScalarExpr(E, ignoreResult)); 172 case TEK_Complex: 173 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 174 case TEK_Aggregate: 175 if (!ignoreResult && aggSlot.isIgnored()) 176 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 177 EmitAggExpr(E, aggSlot); 178 return aggSlot.asRValue(); 179 } 180 llvm_unreachable("bad evaluation kind"); 181 } 182 183 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 184 /// always be accessible even if no aggregate location is provided. 185 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 186 AggValueSlot AggSlot = AggValueSlot::ignored(); 187 188 if (hasAggregateEvaluationKind(E->getType())) 189 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 190 return EmitAnyExpr(E, AggSlot); 191 } 192 193 /// EmitAnyExprToMem - Evaluate an expression into a given memory 194 /// location. 195 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 196 Address Location, 197 Qualifiers Quals, 198 bool IsInit) { 199 // FIXME: This function should take an LValue as an argument. 200 switch (getEvaluationKind(E->getType())) { 201 case TEK_Complex: 202 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 203 /*isInit*/ false); 204 return; 205 206 case TEK_Aggregate: { 207 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 208 AggValueSlot::IsDestructed_t(IsInit), 209 AggValueSlot::DoesNotNeedGCBarriers, 210 AggValueSlot::IsAliased_t(!IsInit))); 211 return; 212 } 213 214 case TEK_Scalar: { 215 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 216 LValue LV = MakeAddrLValue(Location, E->getType()); 217 EmitStoreThroughLValue(RV, LV); 218 return; 219 } 220 } 221 llvm_unreachable("bad evaluation kind"); 222 } 223 224 static void 225 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 226 const Expr *E, Address ReferenceTemporary) { 227 // Objective-C++ ARC: 228 // If we are binding a reference to a temporary that has ownership, we 229 // need to perform retain/release operations on the temporary. 230 // 231 // FIXME: This should be looking at E, not M. 232 if (auto Lifetime = M->getType().getObjCLifetime()) { 233 switch (Lifetime) { 234 case Qualifiers::OCL_None: 235 case Qualifiers::OCL_ExplicitNone: 236 // Carry on to normal cleanup handling. 237 break; 238 239 case Qualifiers::OCL_Autoreleasing: 240 // Nothing to do; cleaned up by an autorelease pool. 241 return; 242 243 case Qualifiers::OCL_Strong: 244 case Qualifiers::OCL_Weak: 245 switch (StorageDuration Duration = M->getStorageDuration()) { 246 case SD_Static: 247 // Note: we intentionally do not register a cleanup to release 248 // the object on program termination. 249 return; 250 251 case SD_Thread: 252 // FIXME: We should probably register a cleanup in this case. 253 return; 254 255 case SD_Automatic: 256 case SD_FullExpression: 257 CodeGenFunction::Destroyer *Destroy; 258 CleanupKind CleanupKind; 259 if (Lifetime == Qualifiers::OCL_Strong) { 260 const ValueDecl *VD = M->getExtendingDecl(); 261 bool Precise = 262 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 263 CleanupKind = CGF.getARCCleanupKind(); 264 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 265 : &CodeGenFunction::destroyARCStrongImprecise; 266 } else { 267 // __weak objects always get EH cleanups; otherwise, exceptions 268 // could cause really nasty crashes instead of mere leaks. 269 CleanupKind = NormalAndEHCleanup; 270 Destroy = &CodeGenFunction::destroyARCWeak; 271 } 272 if (Duration == SD_FullExpression) 273 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 274 M->getType(), *Destroy, 275 CleanupKind & EHCleanup); 276 else 277 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 278 M->getType(), 279 *Destroy, CleanupKind & EHCleanup); 280 return; 281 282 case SD_Dynamic: 283 llvm_unreachable("temporary cannot have dynamic storage duration"); 284 } 285 llvm_unreachable("unknown storage duration"); 286 } 287 } 288 289 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 290 if (const RecordType *RT = 291 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 292 // Get the destructor for the reference temporary. 293 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 294 if (!ClassDecl->hasTrivialDestructor()) 295 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 296 } 297 298 if (!ReferenceTemporaryDtor) 299 return; 300 301 // Call the destructor for the temporary. 302 switch (M->getStorageDuration()) { 303 case SD_Static: 304 case SD_Thread: { 305 llvm::Constant *CleanupFn; 306 llvm::Constant *CleanupArg; 307 if (E->getType()->isArrayType()) { 308 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 309 ReferenceTemporary, E->getType(), 310 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 311 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 312 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 313 } else { 314 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 315 StructorType::Complete); 316 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 317 } 318 CGF.CGM.getCXXABI().registerGlobalDtor( 319 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 320 break; 321 } 322 323 case SD_FullExpression: 324 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 325 CodeGenFunction::destroyCXXObject, 326 CGF.getLangOpts().Exceptions); 327 break; 328 329 case SD_Automatic: 330 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 331 ReferenceTemporary, E->getType(), 332 CodeGenFunction::destroyCXXObject, 333 CGF.getLangOpts().Exceptions); 334 break; 335 336 case SD_Dynamic: 337 llvm_unreachable("temporary cannot have dynamic storage duration"); 338 } 339 } 340 341 static Address createReferenceTemporary(CodeGenFunction &CGF, 342 const MaterializeTemporaryExpr *M, 343 const Expr *Inner) { 344 auto &TCG = CGF.getTargetHooks(); 345 switch (M->getStorageDuration()) { 346 case SD_FullExpression: 347 case SD_Automatic: { 348 // If we have a constant temporary array or record try to promote it into a 349 // constant global under the same rules a normal constant would've been 350 // promoted. This is easier on the optimizer and generally emits fewer 351 // instructions. 352 QualType Ty = Inner->getType(); 353 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 354 (Ty->isArrayType() || Ty->isRecordType()) && 355 CGF.CGM.isTypeConstant(Ty, true)) 356 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 357 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 358 auto AS = AddrSpace.getValue(); 359 auto *GV = new llvm::GlobalVariable( 360 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 361 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 362 llvm::GlobalValue::NotThreadLocal, 363 CGF.getContext().getTargetAddressSpace(AS)); 364 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 365 GV->setAlignment(alignment.getQuantity()); 366 llvm::Constant *C = GV; 367 if (AS != LangAS::Default) 368 C = TCG.performAddrSpaceCast( 369 CGF.CGM, GV, AS, LangAS::Default, 370 GV->getValueType()->getPointerTo( 371 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 372 // FIXME: Should we put the new global into a COMDAT? 373 return Address(C, alignment); 374 } 375 } 376 return CGF.CreateMemTemp(Ty, "ref.tmp"); 377 } 378 case SD_Thread: 379 case SD_Static: 380 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 381 382 case SD_Dynamic: 383 llvm_unreachable("temporary can't have dynamic storage duration"); 384 } 385 llvm_unreachable("unknown storage duration"); 386 } 387 388 LValue CodeGenFunction:: 389 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 390 const Expr *E = M->GetTemporaryExpr(); 391 392 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 393 // as that will cause the lifetime adjustment to be lost for ARC 394 auto ownership = M->getType().getObjCLifetime(); 395 if (ownership != Qualifiers::OCL_None && 396 ownership != Qualifiers::OCL_ExplicitNone) { 397 Address Object = createReferenceTemporary(*this, M, E); 398 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 399 Object = Address(llvm::ConstantExpr::getBitCast(Var, 400 ConvertTypeForMem(E->getType()) 401 ->getPointerTo(Object.getAddressSpace())), 402 Object.getAlignment()); 403 404 // createReferenceTemporary will promote the temporary to a global with a 405 // constant initializer if it can. It can only do this to a value of 406 // ARC-manageable type if the value is global and therefore "immune" to 407 // ref-counting operations. Therefore we have no need to emit either a 408 // dynamic initialization or a cleanup and we can just return the address 409 // of the temporary. 410 if (Var->hasInitializer()) 411 return MakeAddrLValue(Object, M->getType(), 412 LValueBaseInfo(AlignmentSource::Decl, false)); 413 414 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 415 } 416 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 417 LValueBaseInfo(AlignmentSource::Decl, 418 false)); 419 420 switch (getEvaluationKind(E->getType())) { 421 default: llvm_unreachable("expected scalar or aggregate expression"); 422 case TEK_Scalar: 423 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 424 break; 425 case TEK_Aggregate: { 426 EmitAggExpr(E, AggValueSlot::forAddr(Object, 427 E->getType().getQualifiers(), 428 AggValueSlot::IsDestructed, 429 AggValueSlot::DoesNotNeedGCBarriers, 430 AggValueSlot::IsNotAliased)); 431 break; 432 } 433 } 434 435 pushTemporaryCleanup(*this, M, E, Object); 436 return RefTempDst; 437 } 438 439 SmallVector<const Expr *, 2> CommaLHSs; 440 SmallVector<SubobjectAdjustment, 2> Adjustments; 441 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 442 443 for (const auto &Ignored : CommaLHSs) 444 EmitIgnoredExpr(Ignored); 445 446 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 447 if (opaque->getType()->isRecordType()) { 448 assert(Adjustments.empty()); 449 return EmitOpaqueValueLValue(opaque); 450 } 451 } 452 453 // Create and initialize the reference temporary. 454 Address Object = createReferenceTemporary(*this, M, E); 455 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 456 Object.getPointer()->stripPointerCasts())) { 457 Object = Address(llvm::ConstantExpr::getBitCast( 458 cast<llvm::Constant>(Object.getPointer()), 459 ConvertTypeForMem(E->getType())->getPointerTo()), 460 Object.getAlignment()); 461 // If the temporary is a global and has a constant initializer or is a 462 // constant temporary that we promoted to a global, we may have already 463 // initialized it. 464 if (!Var->hasInitializer()) { 465 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 466 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 467 } 468 } else { 469 switch (M->getStorageDuration()) { 470 case SD_Automatic: 471 case SD_FullExpression: 472 if (auto *Size = EmitLifetimeStart( 473 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 474 Object.getPointer())) { 475 if (M->getStorageDuration() == SD_Automatic) 476 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 477 Object, Size); 478 else 479 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 480 Size); 481 } 482 break; 483 default: 484 break; 485 } 486 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 487 } 488 pushTemporaryCleanup(*this, M, E, Object); 489 490 // Perform derived-to-base casts and/or field accesses, to get from the 491 // temporary object we created (and, potentially, for which we extended 492 // the lifetime) to the subobject we're binding the reference to. 493 for (unsigned I = Adjustments.size(); I != 0; --I) { 494 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 495 switch (Adjustment.Kind) { 496 case SubobjectAdjustment::DerivedToBaseAdjustment: 497 Object = 498 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 499 Adjustment.DerivedToBase.BasePath->path_begin(), 500 Adjustment.DerivedToBase.BasePath->path_end(), 501 /*NullCheckValue=*/ false, E->getExprLoc()); 502 break; 503 504 case SubobjectAdjustment::FieldAdjustment: { 505 LValue LV = MakeAddrLValue(Object, E->getType(), 506 LValueBaseInfo(AlignmentSource::Decl, false)); 507 LV = EmitLValueForField(LV, Adjustment.Field); 508 assert(LV.isSimple() && 509 "materialized temporary field is not a simple lvalue"); 510 Object = LV.getAddress(); 511 break; 512 } 513 514 case SubobjectAdjustment::MemberPointerAdjustment: { 515 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 516 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 517 Adjustment.Ptr.MPT); 518 break; 519 } 520 } 521 } 522 523 return MakeAddrLValue(Object, M->getType(), 524 LValueBaseInfo(AlignmentSource::Decl, false)); 525 } 526 527 RValue 528 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 529 // Emit the expression as an lvalue. 530 LValue LV = EmitLValue(E); 531 assert(LV.isSimple()); 532 llvm::Value *Value = LV.getPointer(); 533 534 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 535 // C++11 [dcl.ref]p5 (as amended by core issue 453): 536 // If a glvalue to which a reference is directly bound designates neither 537 // an existing object or function of an appropriate type nor a region of 538 // storage of suitable size and alignment to contain an object of the 539 // reference's type, the behavior is undefined. 540 QualType Ty = E->getType(); 541 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 542 } 543 544 return RValue::get(Value); 545 } 546 547 548 /// getAccessedFieldNo - Given an encoded value and a result number, return the 549 /// input field number being accessed. 550 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 551 const llvm::Constant *Elts) { 552 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 553 ->getZExtValue(); 554 } 555 556 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 557 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 558 llvm::Value *High) { 559 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 560 llvm::Value *K47 = Builder.getInt64(47); 561 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 562 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 563 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 564 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 565 return Builder.CreateMul(B1, KMul); 566 } 567 568 bool CodeGenFunction::sanitizePerformTypeCheck() const { 569 return SanOpts.has(SanitizerKind::Null) | 570 SanOpts.has(SanitizerKind::Alignment) | 571 SanOpts.has(SanitizerKind::ObjectSize) | 572 SanOpts.has(SanitizerKind::Vptr); 573 } 574 575 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 576 llvm::Value *Ptr, QualType Ty, 577 CharUnits Alignment, 578 SanitizerSet SkippedChecks) { 579 if (!sanitizePerformTypeCheck()) 580 return; 581 582 // Don't check pointers outside the default address space. The null check 583 // isn't correct, the object-size check isn't supported by LLVM, and we can't 584 // communicate the addresses to the runtime handler for the vptr check. 585 if (Ptr->getType()->getPointerAddressSpace()) 586 return; 587 588 // Don't check pointers to volatile data. The behavior here is implementation- 589 // defined. 590 if (Ty.isVolatileQualified()) 591 return; 592 593 SanitizerScope SanScope(this); 594 595 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 596 llvm::BasicBlock *Done = nullptr; 597 598 // Quickly determine whether we have a pointer to an alloca. It's possible 599 // to skip null checks, and some alignment checks, for these pointers. This 600 // can reduce compile-time significantly. 601 auto PtrToAlloca = 602 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 603 604 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 605 TCK == TCK_UpcastToVirtualBase; 606 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 607 !SkippedChecks.has(SanitizerKind::Null) && !PtrToAlloca) { 608 // The glvalue must not be an empty glvalue. 609 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 610 611 // The IR builder can constant-fold the null check if the pointer points to 612 // a constant. 613 bool PtrIsNonNull = 614 IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext()); 615 616 // Skip the null check if the pointer is known to be non-null. 617 if (!PtrIsNonNull) { 618 if (AllowNullPointers) { 619 // When performing pointer casts, it's OK if the value is null. 620 // Skip the remaining checks in that case. 621 Done = createBasicBlock("null"); 622 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 623 Builder.CreateCondBr(IsNonNull, Rest, Done); 624 EmitBlock(Rest); 625 } else { 626 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 627 } 628 } 629 } 630 631 if (SanOpts.has(SanitizerKind::ObjectSize) && 632 !SkippedChecks.has(SanitizerKind::ObjectSize) && 633 !Ty->isIncompleteType()) { 634 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 635 636 // The glvalue must refer to a large enough storage region. 637 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 638 // to check this. 639 // FIXME: Get object address space 640 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 641 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 642 llvm::Value *Min = Builder.getFalse(); 643 llvm::Value *NullIsUnknown = Builder.getFalse(); 644 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 645 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 646 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 647 llvm::ConstantInt::get(IntPtrTy, Size)); 648 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 649 } 650 651 uint64_t AlignVal = 0; 652 653 if (SanOpts.has(SanitizerKind::Alignment) && 654 !SkippedChecks.has(SanitizerKind::Alignment)) { 655 AlignVal = Alignment.getQuantity(); 656 if (!Ty->isIncompleteType() && !AlignVal) 657 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 658 659 // The glvalue must be suitably aligned. 660 if (AlignVal > 1 && 661 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 662 llvm::Value *Align = 663 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 664 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 665 llvm::Value *Aligned = 666 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 667 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 668 } 669 } 670 671 if (Checks.size() > 0) { 672 // Make sure we're not losing information. Alignment needs to be a power of 673 // 2 674 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 675 llvm::Constant *StaticData[] = { 676 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 677 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 678 llvm::ConstantInt::get(Int8Ty, TCK)}; 679 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 680 } 681 682 // If possible, check that the vptr indicates that there is a subobject of 683 // type Ty at offset zero within this object. 684 // 685 // C++11 [basic.life]p5,6: 686 // [For storage which does not refer to an object within its lifetime] 687 // The program has undefined behavior if: 688 // -- the [pointer or glvalue] is used to access a non-static data member 689 // or call a non-static member function 690 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 691 if (SanOpts.has(SanitizerKind::Vptr) && 692 !SkippedChecks.has(SanitizerKind::Vptr) && 693 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 694 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 695 TCK == TCK_UpcastToVirtualBase) && 696 RD && RD->hasDefinition() && RD->isDynamicClass()) { 697 // Compute a hash of the mangled name of the type. 698 // 699 // FIXME: This is not guaranteed to be deterministic! Move to a 700 // fingerprinting mechanism once LLVM provides one. For the time 701 // being the implementation happens to be deterministic. 702 SmallString<64> MangledName; 703 llvm::raw_svector_ostream Out(MangledName); 704 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 705 Out); 706 707 // Blacklist based on the mangled type. 708 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 709 Out.str())) { 710 llvm::hash_code TypeHash = hash_value(Out.str()); 711 712 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 713 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 714 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 715 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 716 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 717 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 718 719 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 720 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 721 722 // Look the hash up in our cache. 723 const int CacheSize = 128; 724 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 725 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 726 "__ubsan_vptr_type_cache"); 727 llvm::Value *Slot = Builder.CreateAnd(Hash, 728 llvm::ConstantInt::get(IntPtrTy, 729 CacheSize-1)); 730 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 731 llvm::Value *CacheVal = 732 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 733 getPointerAlign()); 734 735 // If the hash isn't in the cache, call a runtime handler to perform the 736 // hard work of checking whether the vptr is for an object of the right 737 // type. This will either fill in the cache and return, or produce a 738 // diagnostic. 739 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 740 llvm::Constant *StaticData[] = { 741 EmitCheckSourceLocation(Loc), 742 EmitCheckTypeDescriptor(Ty), 743 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 744 llvm::ConstantInt::get(Int8Ty, TCK) 745 }; 746 llvm::Value *DynamicData[] = { Ptr, Hash }; 747 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 748 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 749 DynamicData); 750 } 751 } 752 753 if (Done) { 754 Builder.CreateBr(Done); 755 EmitBlock(Done); 756 } 757 } 758 759 /// Determine whether this expression refers to a flexible array member in a 760 /// struct. We disable array bounds checks for such members. 761 static bool isFlexibleArrayMemberExpr(const Expr *E) { 762 // For compatibility with existing code, we treat arrays of length 0 or 763 // 1 as flexible array members. 764 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 765 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 766 if (CAT->getSize().ugt(1)) 767 return false; 768 } else if (!isa<IncompleteArrayType>(AT)) 769 return false; 770 771 E = E->IgnoreParens(); 772 773 // A flexible array member must be the last member in the class. 774 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 775 // FIXME: If the base type of the member expr is not FD->getParent(), 776 // this should not be treated as a flexible array member access. 777 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 778 RecordDecl::field_iterator FI( 779 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 780 return ++FI == FD->getParent()->field_end(); 781 } 782 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 783 return IRE->getDecl()->getNextIvar() == nullptr; 784 } 785 786 return false; 787 } 788 789 /// If Base is known to point to the start of an array, return the length of 790 /// that array. Return 0 if the length cannot be determined. 791 static llvm::Value *getArrayIndexingBound( 792 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 793 // For the vector indexing extension, the bound is the number of elements. 794 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 795 IndexedType = Base->getType(); 796 return CGF.Builder.getInt32(VT->getNumElements()); 797 } 798 799 Base = Base->IgnoreParens(); 800 801 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 802 if (CE->getCastKind() == CK_ArrayToPointerDecay && 803 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 804 IndexedType = CE->getSubExpr()->getType(); 805 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 806 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 807 return CGF.Builder.getInt(CAT->getSize()); 808 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 809 return CGF.getVLASize(VAT).first; 810 } 811 } 812 813 return nullptr; 814 } 815 816 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 817 llvm::Value *Index, QualType IndexType, 818 bool Accessed) { 819 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 820 "should not be called unless adding bounds checks"); 821 SanitizerScope SanScope(this); 822 823 QualType IndexedType; 824 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 825 if (!Bound) 826 return; 827 828 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 829 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 830 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 831 832 llvm::Constant *StaticData[] = { 833 EmitCheckSourceLocation(E->getExprLoc()), 834 EmitCheckTypeDescriptor(IndexedType), 835 EmitCheckTypeDescriptor(IndexType) 836 }; 837 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 838 : Builder.CreateICmpULE(IndexVal, BoundVal); 839 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 840 SanitizerHandler::OutOfBounds, StaticData, Index); 841 } 842 843 844 CodeGenFunction::ComplexPairTy CodeGenFunction:: 845 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 846 bool isInc, bool isPre) { 847 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 848 849 llvm::Value *NextVal; 850 if (isa<llvm::IntegerType>(InVal.first->getType())) { 851 uint64_t AmountVal = isInc ? 1 : -1; 852 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 853 854 // Add the inc/dec to the real part. 855 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 856 } else { 857 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 858 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 859 if (!isInc) 860 FVal.changeSign(); 861 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 862 863 // Add the inc/dec to the real part. 864 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 865 } 866 867 ComplexPairTy IncVal(NextVal, InVal.second); 868 869 // Store the updated result through the lvalue. 870 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 871 872 // If this is a postinc, return the value read from memory, otherwise use the 873 // updated value. 874 return isPre ? IncVal : InVal; 875 } 876 877 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 878 CodeGenFunction *CGF) { 879 // Bind VLAs in the cast type. 880 if (CGF && E->getType()->isVariablyModifiedType()) 881 CGF->EmitVariablyModifiedType(E->getType()); 882 883 if (CGDebugInfo *DI = getModuleDebugInfo()) 884 DI->EmitExplicitCastType(E->getType()); 885 } 886 887 //===----------------------------------------------------------------------===// 888 // LValue Expression Emission 889 //===----------------------------------------------------------------------===// 890 891 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 892 /// derive a more accurate bound on the alignment of the pointer. 893 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 894 LValueBaseInfo *BaseInfo) { 895 // We allow this with ObjC object pointers because of fragile ABIs. 896 assert(E->getType()->isPointerType() || 897 E->getType()->isObjCObjectPointerType()); 898 E = E->IgnoreParens(); 899 900 // Casts: 901 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 902 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 903 CGM.EmitExplicitCastExprType(ECE, this); 904 905 switch (CE->getCastKind()) { 906 // Non-converting casts (but not C's implicit conversion from void*). 907 case CK_BitCast: 908 case CK_NoOp: 909 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 910 if (PtrTy->getPointeeType()->isVoidType()) 911 break; 912 913 LValueBaseInfo InnerInfo; 914 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo); 915 if (BaseInfo) *BaseInfo = InnerInfo; 916 917 // If this is an explicit bitcast, and the source l-value is 918 // opaque, honor the alignment of the casted-to type. 919 if (isa<ExplicitCastExpr>(CE) && 920 InnerInfo.getAlignmentSource() != AlignmentSource::Decl) { 921 LValueBaseInfo ExpInfo; 922 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 923 &ExpInfo); 924 if (BaseInfo) 925 BaseInfo->mergeForCast(ExpInfo); 926 Addr = Address(Addr.getPointer(), Align); 927 } 928 929 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 930 CE->getCastKind() == CK_BitCast) { 931 if (auto PT = E->getType()->getAs<PointerType>()) 932 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 933 /*MayBeNull=*/true, 934 CodeGenFunction::CFITCK_UnrelatedCast, 935 CE->getLocStart()); 936 } 937 938 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 939 } 940 break; 941 942 // Array-to-pointer decay. 943 case CK_ArrayToPointerDecay: 944 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo); 945 946 // Derived-to-base conversions. 947 case CK_UncheckedDerivedToBase: 948 case CK_DerivedToBase: { 949 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 950 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 951 return GetAddressOfBaseClass(Addr, Derived, 952 CE->path_begin(), CE->path_end(), 953 ShouldNullCheckClassCastValue(CE), 954 CE->getExprLoc()); 955 } 956 957 // TODO: Is there any reason to treat base-to-derived conversions 958 // specially? 959 default: 960 break; 961 } 962 } 963 964 // Unary &. 965 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 966 if (UO->getOpcode() == UO_AddrOf) { 967 LValue LV = EmitLValue(UO->getSubExpr()); 968 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 969 return LV.getAddress(); 970 } 971 } 972 973 // TODO: conditional operators, comma. 974 975 // Otherwise, use the alignment of the type. 976 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo); 977 return Address(EmitScalarExpr(E), Align); 978 } 979 980 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 981 if (Ty->isVoidType()) 982 return RValue::get(nullptr); 983 984 switch (getEvaluationKind(Ty)) { 985 case TEK_Complex: { 986 llvm::Type *EltTy = 987 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 988 llvm::Value *U = llvm::UndefValue::get(EltTy); 989 return RValue::getComplex(std::make_pair(U, U)); 990 } 991 992 // If this is a use of an undefined aggregate type, the aggregate must have an 993 // identifiable address. Just because the contents of the value are undefined 994 // doesn't mean that the address can't be taken and compared. 995 case TEK_Aggregate: { 996 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 997 return RValue::getAggregate(DestPtr); 998 } 999 1000 case TEK_Scalar: 1001 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1002 } 1003 llvm_unreachable("bad evaluation kind"); 1004 } 1005 1006 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1007 const char *Name) { 1008 ErrorUnsupported(E, Name); 1009 return GetUndefRValue(E->getType()); 1010 } 1011 1012 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1013 const char *Name) { 1014 ErrorUnsupported(E, Name); 1015 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1016 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1017 E->getType()); 1018 } 1019 1020 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1021 const Expr *Base = Obj; 1022 while (!isa<CXXThisExpr>(Base)) { 1023 // The result of a dynamic_cast can be null. 1024 if (isa<CXXDynamicCastExpr>(Base)) 1025 return false; 1026 1027 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1028 Base = CE->getSubExpr(); 1029 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1030 Base = PE->getSubExpr(); 1031 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1032 if (UO->getOpcode() == UO_Extension) 1033 Base = UO->getSubExpr(); 1034 else 1035 return false; 1036 } else { 1037 return false; 1038 } 1039 } 1040 return true; 1041 } 1042 1043 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1044 LValue LV; 1045 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1046 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1047 else 1048 LV = EmitLValue(E); 1049 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1050 SanitizerSet SkippedChecks; 1051 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1052 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1053 if (IsBaseCXXThis) 1054 SkippedChecks.set(SanitizerKind::Alignment, true); 1055 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1056 SkippedChecks.set(SanitizerKind::Null, true); 1057 } 1058 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1059 E->getType(), LV.getAlignment(), SkippedChecks); 1060 } 1061 return LV; 1062 } 1063 1064 /// EmitLValue - Emit code to compute a designator that specifies the location 1065 /// of the expression. 1066 /// 1067 /// This can return one of two things: a simple address or a bitfield reference. 1068 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1069 /// an LLVM pointer type. 1070 /// 1071 /// If this returns a bitfield reference, nothing about the pointee type of the 1072 /// LLVM value is known: For example, it may not be a pointer to an integer. 1073 /// 1074 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1075 /// this method guarantees that the returned pointer type will point to an LLVM 1076 /// type of the same size of the lvalue's type. If the lvalue has a variable 1077 /// length type, this is not possible. 1078 /// 1079 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1080 ApplyDebugLocation DL(*this, E); 1081 switch (E->getStmtClass()) { 1082 default: return EmitUnsupportedLValue(E, "l-value expression"); 1083 1084 case Expr::ObjCPropertyRefExprClass: 1085 llvm_unreachable("cannot emit a property reference directly"); 1086 1087 case Expr::ObjCSelectorExprClass: 1088 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1089 case Expr::ObjCIsaExprClass: 1090 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1091 case Expr::BinaryOperatorClass: 1092 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1093 case Expr::CompoundAssignOperatorClass: { 1094 QualType Ty = E->getType(); 1095 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1096 Ty = AT->getValueType(); 1097 if (!Ty->isAnyComplexType()) 1098 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1099 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1100 } 1101 case Expr::CallExprClass: 1102 case Expr::CXXMemberCallExprClass: 1103 case Expr::CXXOperatorCallExprClass: 1104 case Expr::UserDefinedLiteralClass: 1105 return EmitCallExprLValue(cast<CallExpr>(E)); 1106 case Expr::VAArgExprClass: 1107 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1108 case Expr::DeclRefExprClass: 1109 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1110 case Expr::ParenExprClass: 1111 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1112 case Expr::GenericSelectionExprClass: 1113 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1114 case Expr::PredefinedExprClass: 1115 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1116 case Expr::StringLiteralClass: 1117 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1118 case Expr::ObjCEncodeExprClass: 1119 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1120 case Expr::PseudoObjectExprClass: 1121 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1122 case Expr::InitListExprClass: 1123 return EmitInitListLValue(cast<InitListExpr>(E)); 1124 case Expr::CXXTemporaryObjectExprClass: 1125 case Expr::CXXConstructExprClass: 1126 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1127 case Expr::CXXBindTemporaryExprClass: 1128 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1129 case Expr::CXXUuidofExprClass: 1130 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1131 case Expr::LambdaExprClass: 1132 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1133 1134 case Expr::ExprWithCleanupsClass: { 1135 const auto *cleanups = cast<ExprWithCleanups>(E); 1136 enterFullExpression(cleanups); 1137 RunCleanupsScope Scope(*this); 1138 LValue LV = EmitLValue(cleanups->getSubExpr()); 1139 if (LV.isSimple()) { 1140 // Defend against branches out of gnu statement expressions surrounded by 1141 // cleanups. 1142 llvm::Value *V = LV.getPointer(); 1143 Scope.ForceCleanup({&V}); 1144 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1145 getContext(), LV.getBaseInfo(), 1146 LV.getTBAAInfo()); 1147 } 1148 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1149 // bitfield lvalue or some other non-simple lvalue? 1150 return LV; 1151 } 1152 1153 case Expr::CXXDefaultArgExprClass: 1154 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1155 case Expr::CXXDefaultInitExprClass: { 1156 CXXDefaultInitExprScope Scope(*this); 1157 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1158 } 1159 case Expr::CXXTypeidExprClass: 1160 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1161 1162 case Expr::ObjCMessageExprClass: 1163 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1164 case Expr::ObjCIvarRefExprClass: 1165 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1166 case Expr::StmtExprClass: 1167 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1168 case Expr::UnaryOperatorClass: 1169 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1170 case Expr::ArraySubscriptExprClass: 1171 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1172 case Expr::OMPArraySectionExprClass: 1173 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1174 case Expr::ExtVectorElementExprClass: 1175 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1176 case Expr::MemberExprClass: 1177 return EmitMemberExpr(cast<MemberExpr>(E)); 1178 case Expr::CompoundLiteralExprClass: 1179 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1180 case Expr::ConditionalOperatorClass: 1181 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1182 case Expr::BinaryConditionalOperatorClass: 1183 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1184 case Expr::ChooseExprClass: 1185 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1186 case Expr::OpaqueValueExprClass: 1187 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1188 case Expr::SubstNonTypeTemplateParmExprClass: 1189 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1190 case Expr::ImplicitCastExprClass: 1191 case Expr::CStyleCastExprClass: 1192 case Expr::CXXFunctionalCastExprClass: 1193 case Expr::CXXStaticCastExprClass: 1194 case Expr::CXXDynamicCastExprClass: 1195 case Expr::CXXReinterpretCastExprClass: 1196 case Expr::CXXConstCastExprClass: 1197 case Expr::ObjCBridgedCastExprClass: 1198 return EmitCastLValue(cast<CastExpr>(E)); 1199 1200 case Expr::MaterializeTemporaryExprClass: 1201 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1202 1203 case Expr::CoawaitExprClass: 1204 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1205 case Expr::CoyieldExprClass: 1206 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1207 } 1208 } 1209 1210 /// Given an object of the given canonical type, can we safely copy a 1211 /// value out of it based on its initializer? 1212 static bool isConstantEmittableObjectType(QualType type) { 1213 assert(type.isCanonical()); 1214 assert(!type->isReferenceType()); 1215 1216 // Must be const-qualified but non-volatile. 1217 Qualifiers qs = type.getLocalQualifiers(); 1218 if (!qs.hasConst() || qs.hasVolatile()) return false; 1219 1220 // Otherwise, all object types satisfy this except C++ classes with 1221 // mutable subobjects or non-trivial copy/destroy behavior. 1222 if (const auto *RT = dyn_cast<RecordType>(type)) 1223 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1224 if (RD->hasMutableFields() || !RD->isTrivial()) 1225 return false; 1226 1227 return true; 1228 } 1229 1230 /// Can we constant-emit a load of a reference to a variable of the 1231 /// given type? This is different from predicates like 1232 /// Decl::isUsableInConstantExpressions because we do want it to apply 1233 /// in situations that don't necessarily satisfy the language's rules 1234 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1235 /// to do this with const float variables even if those variables 1236 /// aren't marked 'constexpr'. 1237 enum ConstantEmissionKind { 1238 CEK_None, 1239 CEK_AsReferenceOnly, 1240 CEK_AsValueOrReference, 1241 CEK_AsValueOnly 1242 }; 1243 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1244 type = type.getCanonicalType(); 1245 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1246 if (isConstantEmittableObjectType(ref->getPointeeType())) 1247 return CEK_AsValueOrReference; 1248 return CEK_AsReferenceOnly; 1249 } 1250 if (isConstantEmittableObjectType(type)) 1251 return CEK_AsValueOnly; 1252 return CEK_None; 1253 } 1254 1255 /// Try to emit a reference to the given value without producing it as 1256 /// an l-value. This is actually more than an optimization: we can't 1257 /// produce an l-value for variables that we never actually captured 1258 /// in a block or lambda, which means const int variables or constexpr 1259 /// literals or similar. 1260 CodeGenFunction::ConstantEmission 1261 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1262 ValueDecl *value = refExpr->getDecl(); 1263 1264 // The value needs to be an enum constant or a constant variable. 1265 ConstantEmissionKind CEK; 1266 if (isa<ParmVarDecl>(value)) { 1267 CEK = CEK_None; 1268 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1269 CEK = checkVarTypeForConstantEmission(var->getType()); 1270 } else if (isa<EnumConstantDecl>(value)) { 1271 CEK = CEK_AsValueOnly; 1272 } else { 1273 CEK = CEK_None; 1274 } 1275 if (CEK == CEK_None) return ConstantEmission(); 1276 1277 Expr::EvalResult result; 1278 bool resultIsReference; 1279 QualType resultType; 1280 1281 // It's best to evaluate all the way as an r-value if that's permitted. 1282 if (CEK != CEK_AsReferenceOnly && 1283 refExpr->EvaluateAsRValue(result, getContext())) { 1284 resultIsReference = false; 1285 resultType = refExpr->getType(); 1286 1287 // Otherwise, try to evaluate as an l-value. 1288 } else if (CEK != CEK_AsValueOnly && 1289 refExpr->EvaluateAsLValue(result, getContext())) { 1290 resultIsReference = true; 1291 resultType = value->getType(); 1292 1293 // Failure. 1294 } else { 1295 return ConstantEmission(); 1296 } 1297 1298 // In any case, if the initializer has side-effects, abandon ship. 1299 if (result.HasSideEffects) 1300 return ConstantEmission(); 1301 1302 // Emit as a constant. 1303 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1304 1305 // Make sure we emit a debug reference to the global variable. 1306 // This should probably fire even for 1307 if (isa<VarDecl>(value)) { 1308 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1309 EmitDeclRefExprDbgValue(refExpr, result.Val); 1310 } else { 1311 assert(isa<EnumConstantDecl>(value)); 1312 EmitDeclRefExprDbgValue(refExpr, result.Val); 1313 } 1314 1315 // If we emitted a reference constant, we need to dereference that. 1316 if (resultIsReference) 1317 return ConstantEmission::forReference(C); 1318 1319 return ConstantEmission::forValue(C); 1320 } 1321 1322 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1323 SourceLocation Loc) { 1324 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1325 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1326 lvalue.getTBAAInfo(), 1327 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1328 lvalue.isNontemporal()); 1329 } 1330 1331 static bool hasBooleanRepresentation(QualType Ty) { 1332 if (Ty->isBooleanType()) 1333 return true; 1334 1335 if (const EnumType *ET = Ty->getAs<EnumType>()) 1336 return ET->getDecl()->getIntegerType()->isBooleanType(); 1337 1338 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1339 return hasBooleanRepresentation(AT->getValueType()); 1340 1341 return false; 1342 } 1343 1344 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1345 llvm::APInt &Min, llvm::APInt &End, 1346 bool StrictEnums, bool IsBool) { 1347 const EnumType *ET = Ty->getAs<EnumType>(); 1348 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1349 ET && !ET->getDecl()->isFixed(); 1350 if (!IsBool && !IsRegularCPlusPlusEnum) 1351 return false; 1352 1353 if (IsBool) { 1354 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1355 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1356 } else { 1357 const EnumDecl *ED = ET->getDecl(); 1358 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1359 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1360 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1361 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1362 1363 if (NumNegativeBits) { 1364 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1365 assert(NumBits <= Bitwidth); 1366 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1367 Min = -End; 1368 } else { 1369 assert(NumPositiveBits <= Bitwidth); 1370 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1371 Min = llvm::APInt(Bitwidth, 0); 1372 } 1373 } 1374 return true; 1375 } 1376 1377 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1378 llvm::APInt Min, End; 1379 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1380 hasBooleanRepresentation(Ty))) 1381 return nullptr; 1382 1383 llvm::MDBuilder MDHelper(getLLVMContext()); 1384 return MDHelper.createRange(Min, End); 1385 } 1386 1387 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1388 SourceLocation Loc) { 1389 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1390 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1391 if (!HasBoolCheck && !HasEnumCheck) 1392 return false; 1393 1394 bool IsBool = hasBooleanRepresentation(Ty) || 1395 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1396 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1397 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1398 if (!NeedsBoolCheck && !NeedsEnumCheck) 1399 return false; 1400 1401 // Single-bit booleans don't need to be checked. Special-case this to avoid 1402 // a bit width mismatch when handling bitfield values. This is handled by 1403 // EmitFromMemory for the non-bitfield case. 1404 if (IsBool && 1405 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1406 return false; 1407 1408 llvm::APInt Min, End; 1409 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1410 return true; 1411 1412 SanitizerScope SanScope(this); 1413 llvm::Value *Check; 1414 --End; 1415 if (!Min) { 1416 Check = Builder.CreateICmpULE( 1417 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1418 } else { 1419 llvm::Value *Upper = Builder.CreateICmpSLE( 1420 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1421 llvm::Value *Lower = Builder.CreateICmpSGE( 1422 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1423 Check = Builder.CreateAnd(Upper, Lower); 1424 } 1425 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1426 EmitCheckTypeDescriptor(Ty)}; 1427 SanitizerMask Kind = 1428 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1429 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1430 StaticArgs, EmitCheckValue(Value)); 1431 return true; 1432 } 1433 1434 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1435 QualType Ty, 1436 SourceLocation Loc, 1437 LValueBaseInfo BaseInfo, 1438 llvm::MDNode *TBAAInfo, 1439 QualType TBAABaseType, 1440 uint64_t TBAAOffset, 1441 bool isNontemporal) { 1442 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1443 // For better performance, handle vector loads differently. 1444 if (Ty->isVectorType()) { 1445 const llvm::Type *EltTy = Addr.getElementType(); 1446 1447 const auto *VTy = cast<llvm::VectorType>(EltTy); 1448 1449 // Handle vectors of size 3 like size 4 for better performance. 1450 if (VTy->getNumElements() == 3) { 1451 1452 // Bitcast to vec4 type. 1453 llvm::VectorType *vec4Ty = 1454 llvm::VectorType::get(VTy->getElementType(), 4); 1455 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1456 // Now load value. 1457 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1458 1459 // Shuffle vector to get vec3. 1460 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1461 {0, 1, 2}, "extractVec"); 1462 return EmitFromMemory(V, Ty); 1463 } 1464 } 1465 } 1466 1467 // Atomic operations have to be done on integral types. 1468 LValue AtomicLValue = 1469 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1470 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1471 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1472 } 1473 1474 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1475 if (isNontemporal) { 1476 llvm::MDNode *Node = llvm::MDNode::get( 1477 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1478 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1479 } 1480 if (TBAAInfo) { 1481 bool MayAlias = BaseInfo.getMayAlias(); 1482 llvm::MDNode *TBAA = MayAlias 1483 ? CGM.getTBAAInfo(getContext().CharTy) 1484 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1485 if (TBAA) 1486 CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias); 1487 } 1488 1489 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1490 // In order to prevent the optimizer from throwing away the check, don't 1491 // attach range metadata to the load. 1492 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1493 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1494 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1495 1496 return EmitFromMemory(Load, Ty); 1497 } 1498 1499 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1500 // Bool has a different representation in memory than in registers. 1501 if (hasBooleanRepresentation(Ty)) { 1502 // This should really always be an i1, but sometimes it's already 1503 // an i8, and it's awkward to track those cases down. 1504 if (Value->getType()->isIntegerTy(1)) 1505 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1506 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1507 "wrong value rep of bool"); 1508 } 1509 1510 return Value; 1511 } 1512 1513 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1514 // Bool has a different representation in memory than in registers. 1515 if (hasBooleanRepresentation(Ty)) { 1516 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1517 "wrong value rep of bool"); 1518 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1519 } 1520 1521 return Value; 1522 } 1523 1524 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1525 bool Volatile, QualType Ty, 1526 LValueBaseInfo BaseInfo, 1527 llvm::MDNode *TBAAInfo, 1528 bool isInit, QualType TBAABaseType, 1529 uint64_t TBAAOffset, 1530 bool isNontemporal) { 1531 1532 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1533 // Handle vectors differently to get better performance. 1534 if (Ty->isVectorType()) { 1535 llvm::Type *SrcTy = Value->getType(); 1536 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1537 // Handle vec3 special. 1538 if (VecTy && VecTy->getNumElements() == 3) { 1539 // Our source is a vec3, do a shuffle vector to make it a vec4. 1540 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1541 Builder.getInt32(2), 1542 llvm::UndefValue::get(Builder.getInt32Ty())}; 1543 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1544 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1545 MaskV, "extractVec"); 1546 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1547 } 1548 if (Addr.getElementType() != SrcTy) { 1549 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1550 } 1551 } 1552 } 1553 1554 Value = EmitToMemory(Value, Ty); 1555 1556 LValue AtomicLValue = 1557 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1558 if (Ty->isAtomicType() || 1559 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1560 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1561 return; 1562 } 1563 1564 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1565 if (isNontemporal) { 1566 llvm::MDNode *Node = 1567 llvm::MDNode::get(Store->getContext(), 1568 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1569 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1570 } 1571 if (TBAAInfo) { 1572 bool MayAlias = BaseInfo.getMayAlias(); 1573 llvm::MDNode *TBAA = MayAlias 1574 ? CGM.getTBAAInfo(getContext().CharTy) 1575 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1576 if (TBAA) 1577 CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias); 1578 } 1579 } 1580 1581 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1582 bool isInit) { 1583 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1584 lvalue.getType(), lvalue.getBaseInfo(), 1585 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1586 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1587 } 1588 1589 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1590 /// method emits the address of the lvalue, then loads the result as an rvalue, 1591 /// returning the rvalue. 1592 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1593 if (LV.isObjCWeak()) { 1594 // load of a __weak object. 1595 Address AddrWeakObj = LV.getAddress(); 1596 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1597 AddrWeakObj)); 1598 } 1599 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1600 // In MRC mode, we do a load+autorelease. 1601 if (!getLangOpts().ObjCAutoRefCount) { 1602 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1603 } 1604 1605 // In ARC mode, we load retained and then consume the value. 1606 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1607 Object = EmitObjCConsumeObject(LV.getType(), Object); 1608 return RValue::get(Object); 1609 } 1610 1611 if (LV.isSimple()) { 1612 assert(!LV.getType()->isFunctionType()); 1613 1614 // Everything needs a load. 1615 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1616 } 1617 1618 if (LV.isVectorElt()) { 1619 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1620 LV.isVolatileQualified()); 1621 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1622 "vecext")); 1623 } 1624 1625 // If this is a reference to a subset of the elements of a vector, either 1626 // shuffle the input or extract/insert them as appropriate. 1627 if (LV.isExtVectorElt()) 1628 return EmitLoadOfExtVectorElementLValue(LV); 1629 1630 // Global Register variables always invoke intrinsics 1631 if (LV.isGlobalReg()) 1632 return EmitLoadOfGlobalRegLValue(LV); 1633 1634 assert(LV.isBitField() && "Unknown LValue type!"); 1635 return EmitLoadOfBitfieldLValue(LV, Loc); 1636 } 1637 1638 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1639 SourceLocation Loc) { 1640 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1641 1642 // Get the output type. 1643 llvm::Type *ResLTy = ConvertType(LV.getType()); 1644 1645 Address Ptr = LV.getBitFieldAddress(); 1646 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1647 1648 if (Info.IsSigned) { 1649 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1650 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1651 if (HighBits) 1652 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1653 if (Info.Offset + HighBits) 1654 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1655 } else { 1656 if (Info.Offset) 1657 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1658 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1659 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1660 Info.Size), 1661 "bf.clear"); 1662 } 1663 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1664 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1665 return RValue::get(Val); 1666 } 1667 1668 // If this is a reference to a subset of the elements of a vector, create an 1669 // appropriate shufflevector. 1670 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1671 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1672 LV.isVolatileQualified()); 1673 1674 const llvm::Constant *Elts = LV.getExtVectorElts(); 1675 1676 // If the result of the expression is a non-vector type, we must be extracting 1677 // a single element. Just codegen as an extractelement. 1678 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1679 if (!ExprVT) { 1680 unsigned InIdx = getAccessedFieldNo(0, Elts); 1681 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1682 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1683 } 1684 1685 // Always use shuffle vector to try to retain the original program structure 1686 unsigned NumResultElts = ExprVT->getNumElements(); 1687 1688 SmallVector<llvm::Constant*, 4> Mask; 1689 for (unsigned i = 0; i != NumResultElts; ++i) 1690 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1691 1692 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1693 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1694 MaskV); 1695 return RValue::get(Vec); 1696 } 1697 1698 /// @brief Generates lvalue for partial ext_vector access. 1699 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1700 Address VectorAddress = LV.getExtVectorAddress(); 1701 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1702 QualType EQT = ExprVT->getElementType(); 1703 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1704 1705 Address CastToPointerElement = 1706 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1707 "conv.ptr.element"); 1708 1709 const llvm::Constant *Elts = LV.getExtVectorElts(); 1710 unsigned ix = getAccessedFieldNo(0, Elts); 1711 1712 Address VectorBasePtrPlusIx = 1713 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1714 getContext().getTypeSizeInChars(EQT), 1715 "vector.elt"); 1716 1717 return VectorBasePtrPlusIx; 1718 } 1719 1720 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1721 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1722 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1723 "Bad type for register variable"); 1724 llvm::MDNode *RegName = cast<llvm::MDNode>( 1725 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1726 1727 // We accept integer and pointer types only 1728 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1729 llvm::Type *Ty = OrigTy; 1730 if (OrigTy->isPointerTy()) 1731 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1732 llvm::Type *Types[] = { Ty }; 1733 1734 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1735 llvm::Value *Call = Builder.CreateCall( 1736 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1737 if (OrigTy->isPointerTy()) 1738 Call = Builder.CreateIntToPtr(Call, OrigTy); 1739 return RValue::get(Call); 1740 } 1741 1742 1743 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1744 /// lvalue, where both are guaranteed to the have the same type, and that type 1745 /// is 'Ty'. 1746 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1747 bool isInit) { 1748 if (!Dst.isSimple()) { 1749 if (Dst.isVectorElt()) { 1750 // Read/modify/write the vector, inserting the new element. 1751 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1752 Dst.isVolatileQualified()); 1753 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1754 Dst.getVectorIdx(), "vecins"); 1755 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1756 Dst.isVolatileQualified()); 1757 return; 1758 } 1759 1760 // If this is an update of extended vector elements, insert them as 1761 // appropriate. 1762 if (Dst.isExtVectorElt()) 1763 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1764 1765 if (Dst.isGlobalReg()) 1766 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1767 1768 assert(Dst.isBitField() && "Unknown LValue type"); 1769 return EmitStoreThroughBitfieldLValue(Src, Dst); 1770 } 1771 1772 // There's special magic for assigning into an ARC-qualified l-value. 1773 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1774 switch (Lifetime) { 1775 case Qualifiers::OCL_None: 1776 llvm_unreachable("present but none"); 1777 1778 case Qualifiers::OCL_ExplicitNone: 1779 // nothing special 1780 break; 1781 1782 case Qualifiers::OCL_Strong: 1783 if (isInit) { 1784 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1785 break; 1786 } 1787 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1788 return; 1789 1790 case Qualifiers::OCL_Weak: 1791 if (isInit) 1792 // Initialize and then skip the primitive store. 1793 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1794 else 1795 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1796 return; 1797 1798 case Qualifiers::OCL_Autoreleasing: 1799 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1800 Src.getScalarVal())); 1801 // fall into the normal path 1802 break; 1803 } 1804 } 1805 1806 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1807 // load of a __weak object. 1808 Address LvalueDst = Dst.getAddress(); 1809 llvm::Value *src = Src.getScalarVal(); 1810 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1811 return; 1812 } 1813 1814 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1815 // load of a __strong object. 1816 Address LvalueDst = Dst.getAddress(); 1817 llvm::Value *src = Src.getScalarVal(); 1818 if (Dst.isObjCIvar()) { 1819 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1820 llvm::Type *ResultType = IntPtrTy; 1821 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1822 llvm::Value *RHS = dst.getPointer(); 1823 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1824 llvm::Value *LHS = 1825 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1826 "sub.ptr.lhs.cast"); 1827 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1828 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1829 BytesBetween); 1830 } else if (Dst.isGlobalObjCRef()) { 1831 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1832 Dst.isThreadLocalRef()); 1833 } 1834 else 1835 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1836 return; 1837 } 1838 1839 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1840 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1841 } 1842 1843 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1844 llvm::Value **Result) { 1845 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1846 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1847 Address Ptr = Dst.getBitFieldAddress(); 1848 1849 // Get the source value, truncated to the width of the bit-field. 1850 llvm::Value *SrcVal = Src.getScalarVal(); 1851 1852 // Cast the source to the storage type and shift it into place. 1853 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1854 /*IsSigned=*/false); 1855 llvm::Value *MaskedVal = SrcVal; 1856 1857 // See if there are other bits in the bitfield's storage we'll need to load 1858 // and mask together with source before storing. 1859 if (Info.StorageSize != Info.Size) { 1860 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1861 llvm::Value *Val = 1862 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1863 1864 // Mask the source value as needed. 1865 if (!hasBooleanRepresentation(Dst.getType())) 1866 SrcVal = Builder.CreateAnd(SrcVal, 1867 llvm::APInt::getLowBitsSet(Info.StorageSize, 1868 Info.Size), 1869 "bf.value"); 1870 MaskedVal = SrcVal; 1871 if (Info.Offset) 1872 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1873 1874 // Mask out the original value. 1875 Val = Builder.CreateAnd(Val, 1876 ~llvm::APInt::getBitsSet(Info.StorageSize, 1877 Info.Offset, 1878 Info.Offset + Info.Size), 1879 "bf.clear"); 1880 1881 // Or together the unchanged values and the source value. 1882 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1883 } else { 1884 assert(Info.Offset == 0); 1885 } 1886 1887 // Write the new value back out. 1888 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1889 1890 // Return the new value of the bit-field, if requested. 1891 if (Result) { 1892 llvm::Value *ResultVal = MaskedVal; 1893 1894 // Sign extend the value if needed. 1895 if (Info.IsSigned) { 1896 assert(Info.Size <= Info.StorageSize); 1897 unsigned HighBits = Info.StorageSize - Info.Size; 1898 if (HighBits) { 1899 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1900 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1901 } 1902 } 1903 1904 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1905 "bf.result.cast"); 1906 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1907 } 1908 } 1909 1910 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1911 LValue Dst) { 1912 // This access turns into a read/modify/write of the vector. Load the input 1913 // value now. 1914 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1915 Dst.isVolatileQualified()); 1916 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1917 1918 llvm::Value *SrcVal = Src.getScalarVal(); 1919 1920 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1921 unsigned NumSrcElts = VTy->getNumElements(); 1922 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1923 if (NumDstElts == NumSrcElts) { 1924 // Use shuffle vector is the src and destination are the same number of 1925 // elements and restore the vector mask since it is on the side it will be 1926 // stored. 1927 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1928 for (unsigned i = 0; i != NumSrcElts; ++i) 1929 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1930 1931 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1932 Vec = Builder.CreateShuffleVector(SrcVal, 1933 llvm::UndefValue::get(Vec->getType()), 1934 MaskV); 1935 } else if (NumDstElts > NumSrcElts) { 1936 // Extended the source vector to the same length and then shuffle it 1937 // into the destination. 1938 // FIXME: since we're shuffling with undef, can we just use the indices 1939 // into that? This could be simpler. 1940 SmallVector<llvm::Constant*, 4> ExtMask; 1941 for (unsigned i = 0; i != NumSrcElts; ++i) 1942 ExtMask.push_back(Builder.getInt32(i)); 1943 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1944 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1945 llvm::Value *ExtSrcVal = 1946 Builder.CreateShuffleVector(SrcVal, 1947 llvm::UndefValue::get(SrcVal->getType()), 1948 ExtMaskV); 1949 // build identity 1950 SmallVector<llvm::Constant*, 4> Mask; 1951 for (unsigned i = 0; i != NumDstElts; ++i) 1952 Mask.push_back(Builder.getInt32(i)); 1953 1954 // When the vector size is odd and .odd or .hi is used, the last element 1955 // of the Elts constant array will be one past the size of the vector. 1956 // Ignore the last element here, if it is greater than the mask size. 1957 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1958 NumSrcElts--; 1959 1960 // modify when what gets shuffled in 1961 for (unsigned i = 0; i != NumSrcElts; ++i) 1962 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1963 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1964 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1965 } else { 1966 // We should never shorten the vector 1967 llvm_unreachable("unexpected shorten vector length"); 1968 } 1969 } else { 1970 // If the Src is a scalar (not a vector) it must be updating one element. 1971 unsigned InIdx = getAccessedFieldNo(0, Elts); 1972 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1973 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1974 } 1975 1976 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1977 Dst.isVolatileQualified()); 1978 } 1979 1980 /// @brief Store of global named registers are always calls to intrinsics. 1981 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1982 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1983 "Bad type for register variable"); 1984 llvm::MDNode *RegName = cast<llvm::MDNode>( 1985 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1986 assert(RegName && "Register LValue is not metadata"); 1987 1988 // We accept integer and pointer types only 1989 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1990 llvm::Type *Ty = OrigTy; 1991 if (OrigTy->isPointerTy()) 1992 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1993 llvm::Type *Types[] = { Ty }; 1994 1995 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1996 llvm::Value *Value = Src.getScalarVal(); 1997 if (OrigTy->isPointerTy()) 1998 Value = Builder.CreatePtrToInt(Value, Ty); 1999 Builder.CreateCall( 2000 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2001 } 2002 2003 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2004 // generating write-barries API. It is currently a global, ivar, 2005 // or neither. 2006 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2007 LValue &LV, 2008 bool IsMemberAccess=false) { 2009 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2010 return; 2011 2012 if (isa<ObjCIvarRefExpr>(E)) { 2013 QualType ExpTy = E->getType(); 2014 if (IsMemberAccess && ExpTy->isPointerType()) { 2015 // If ivar is a structure pointer, assigning to field of 2016 // this struct follows gcc's behavior and makes it a non-ivar 2017 // writer-barrier conservatively. 2018 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2019 if (ExpTy->isRecordType()) { 2020 LV.setObjCIvar(false); 2021 return; 2022 } 2023 } 2024 LV.setObjCIvar(true); 2025 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2026 LV.setBaseIvarExp(Exp->getBase()); 2027 LV.setObjCArray(E->getType()->isArrayType()); 2028 return; 2029 } 2030 2031 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2032 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2033 if (VD->hasGlobalStorage()) { 2034 LV.setGlobalObjCRef(true); 2035 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2036 } 2037 } 2038 LV.setObjCArray(E->getType()->isArrayType()); 2039 return; 2040 } 2041 2042 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2043 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2044 return; 2045 } 2046 2047 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2048 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2049 if (LV.isObjCIvar()) { 2050 // If cast is to a structure pointer, follow gcc's behavior and make it 2051 // a non-ivar write-barrier. 2052 QualType ExpTy = E->getType(); 2053 if (ExpTy->isPointerType()) 2054 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2055 if (ExpTy->isRecordType()) 2056 LV.setObjCIvar(false); 2057 } 2058 return; 2059 } 2060 2061 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2062 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2063 return; 2064 } 2065 2066 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2067 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2068 return; 2069 } 2070 2071 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2072 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2073 return; 2074 } 2075 2076 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2077 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2078 return; 2079 } 2080 2081 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2082 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2083 if (LV.isObjCIvar() && !LV.isObjCArray()) 2084 // Using array syntax to assigning to what an ivar points to is not 2085 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2086 LV.setObjCIvar(false); 2087 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2088 // Using array syntax to assigning to what global points to is not 2089 // same as assigning to the global itself. {id *G;} G[i] = 0; 2090 LV.setGlobalObjCRef(false); 2091 return; 2092 } 2093 2094 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2095 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2096 // We don't know if member is an 'ivar', but this flag is looked at 2097 // only in the context of LV.isObjCIvar(). 2098 LV.setObjCArray(E->getType()->isArrayType()); 2099 return; 2100 } 2101 } 2102 2103 static llvm::Value * 2104 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2105 llvm::Value *V, llvm::Type *IRType, 2106 StringRef Name = StringRef()) { 2107 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2108 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2109 } 2110 2111 static LValue EmitThreadPrivateVarDeclLValue( 2112 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2113 llvm::Type *RealVarTy, SourceLocation Loc) { 2114 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2115 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2116 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2117 return CGF.MakeAddrLValue(Addr, T, BaseInfo); 2118 } 2119 2120 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2121 const ReferenceType *RefTy, 2122 LValueBaseInfo *BaseInfo) { 2123 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2124 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2125 BaseInfo, /*forPointee*/ true)); 2126 } 2127 2128 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2129 const ReferenceType *RefTy) { 2130 LValueBaseInfo BaseInfo; 2131 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo); 2132 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo); 2133 } 2134 2135 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2136 const PointerType *PtrTy, 2137 LValueBaseInfo *BaseInfo) { 2138 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2139 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2140 BaseInfo, 2141 /*forPointeeType=*/true)); 2142 } 2143 2144 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2145 const PointerType *PtrTy) { 2146 LValueBaseInfo BaseInfo; 2147 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo); 2148 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo); 2149 } 2150 2151 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2152 const Expr *E, const VarDecl *VD) { 2153 QualType T = E->getType(); 2154 2155 // If it's thread_local, emit a call to its wrapper function instead. 2156 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2157 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2158 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2159 2160 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2161 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2162 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2163 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2164 Address Addr(V, Alignment); 2165 LValue LV; 2166 // Emit reference to the private copy of the variable if it is an OpenMP 2167 // threadprivate variable. 2168 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2169 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2170 E->getExprLoc()); 2171 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2172 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2173 } else { 2174 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2175 LV = CGF.MakeAddrLValue(Addr, T, BaseInfo); 2176 } 2177 setObjCGCLValueClass(CGF.getContext(), E, LV); 2178 return LV; 2179 } 2180 2181 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2182 const FunctionDecl *FD) { 2183 if (FD->hasAttr<WeakRefAttr>()) { 2184 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2185 return aliasee.getPointer(); 2186 } 2187 2188 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2189 if (!FD->hasPrototype()) { 2190 if (const FunctionProtoType *Proto = 2191 FD->getType()->getAs<FunctionProtoType>()) { 2192 // Ugly case: for a K&R-style definition, the type of the definition 2193 // isn't the same as the type of a use. Correct for this with a 2194 // bitcast. 2195 QualType NoProtoType = 2196 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2197 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2198 V = llvm::ConstantExpr::getBitCast(V, 2199 CGM.getTypes().ConvertType(NoProtoType)); 2200 } 2201 } 2202 return V; 2203 } 2204 2205 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2206 const Expr *E, const FunctionDecl *FD) { 2207 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2208 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2209 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2210 return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo); 2211 } 2212 2213 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2214 llvm::Value *ThisValue) { 2215 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2216 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2217 return CGF.EmitLValueForField(LV, FD); 2218 } 2219 2220 /// Named Registers are named metadata pointing to the register name 2221 /// which will be read from/written to as an argument to the intrinsic 2222 /// @llvm.read/write_register. 2223 /// So far, only the name is being passed down, but other options such as 2224 /// register type, allocation type or even optimization options could be 2225 /// passed down via the metadata node. 2226 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2227 SmallString<64> Name("llvm.named.register."); 2228 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2229 assert(Asm->getLabel().size() < 64-Name.size() && 2230 "Register name too big"); 2231 Name.append(Asm->getLabel()); 2232 llvm::NamedMDNode *M = 2233 CGM.getModule().getOrInsertNamedMetadata(Name); 2234 if (M->getNumOperands() == 0) { 2235 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2236 Asm->getLabel()); 2237 llvm::Metadata *Ops[] = {Str}; 2238 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2239 } 2240 2241 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2242 2243 llvm::Value *Ptr = 2244 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2245 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2246 } 2247 2248 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2249 const NamedDecl *ND = E->getDecl(); 2250 QualType T = E->getType(); 2251 2252 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2253 // Global Named registers access via intrinsics only 2254 if (VD->getStorageClass() == SC_Register && 2255 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2256 return EmitGlobalNamedRegister(VD, CGM); 2257 2258 // A DeclRefExpr for a reference initialized by a constant expression can 2259 // appear without being odr-used. Directly emit the constant initializer. 2260 const Expr *Init = VD->getAnyInitializer(VD); 2261 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2262 VD->isUsableInConstantExpressions(getContext()) && 2263 VD->checkInitIsICE() && 2264 // Do not emit if it is private OpenMP variable. 2265 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2266 LocalDeclMap.count(VD))) { 2267 llvm::Constant *Val = 2268 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2269 assert(Val && "failed to emit reference constant expression"); 2270 // FIXME: Eventually we will want to emit vector element references. 2271 2272 // Should we be using the alignment of the constant pointer we emitted? 2273 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2274 /*pointee*/ true); 2275 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2276 return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo); 2277 } 2278 2279 // Check for captured variables. 2280 if (E->refersToEnclosingVariableOrCapture()) { 2281 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2282 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2283 else if (CapturedStmtInfo) { 2284 auto I = LocalDeclMap.find(VD); 2285 if (I != LocalDeclMap.end()) { 2286 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2287 return EmitLoadOfReferenceLValue(I->second, RefTy); 2288 return MakeAddrLValue(I->second, T); 2289 } 2290 LValue CapLVal = 2291 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2292 CapturedStmtInfo->getContextValue()); 2293 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2294 return MakeAddrLValue( 2295 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2296 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias)); 2297 } 2298 2299 assert(isa<BlockDecl>(CurCodeDecl)); 2300 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2301 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2302 return MakeAddrLValue(addr, T, BaseInfo); 2303 } 2304 } 2305 2306 // FIXME: We should be able to assert this for FunctionDecls as well! 2307 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2308 // those with a valid source location. 2309 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2310 !E->getLocation().isValid()) && 2311 "Should not use decl without marking it used!"); 2312 2313 if (ND->hasAttr<WeakRefAttr>()) { 2314 const auto *VD = cast<ValueDecl>(ND); 2315 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2316 return MakeAddrLValue(Aliasee, T, 2317 LValueBaseInfo(AlignmentSource::Decl, false)); 2318 } 2319 2320 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2321 // Check if this is a global variable. 2322 if (VD->hasLinkage() || VD->isStaticDataMember()) 2323 return EmitGlobalVarDeclLValue(*this, E, VD); 2324 2325 Address addr = Address::invalid(); 2326 2327 // The variable should generally be present in the local decl map. 2328 auto iter = LocalDeclMap.find(VD); 2329 if (iter != LocalDeclMap.end()) { 2330 addr = iter->second; 2331 2332 // Otherwise, it might be static local we haven't emitted yet for 2333 // some reason; most likely, because it's in an outer function. 2334 } else if (VD->isStaticLocal()) { 2335 addr = Address(CGM.getOrCreateStaticVarDecl( 2336 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2337 getContext().getDeclAlign(VD)); 2338 2339 // No other cases for now. 2340 } else { 2341 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2342 } 2343 2344 2345 // Check for OpenMP threadprivate variables. 2346 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2347 return EmitThreadPrivateVarDeclLValue( 2348 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2349 E->getExprLoc()); 2350 } 2351 2352 // Drill into block byref variables. 2353 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2354 if (isBlockByref) { 2355 addr = emitBlockByrefAddress(addr, VD); 2356 } 2357 2358 // Drill into reference types. 2359 LValue LV; 2360 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2361 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2362 } else { 2363 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2364 LV = MakeAddrLValue(addr, T, BaseInfo); 2365 } 2366 2367 bool isLocalStorage = VD->hasLocalStorage(); 2368 2369 bool NonGCable = isLocalStorage && 2370 !VD->getType()->isReferenceType() && 2371 !isBlockByref; 2372 if (NonGCable) { 2373 LV.getQuals().removeObjCGCAttr(); 2374 LV.setNonGC(true); 2375 } 2376 2377 bool isImpreciseLifetime = 2378 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2379 if (isImpreciseLifetime) 2380 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2381 setObjCGCLValueClass(getContext(), E, LV); 2382 return LV; 2383 } 2384 2385 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2386 return EmitFunctionDeclLValue(*this, E, FD); 2387 2388 // FIXME: While we're emitting a binding from an enclosing scope, all other 2389 // DeclRefExprs we see should be implicitly treated as if they also refer to 2390 // an enclosing scope. 2391 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2392 return EmitLValue(BD->getBinding()); 2393 2394 llvm_unreachable("Unhandled DeclRefExpr"); 2395 } 2396 2397 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2398 // __extension__ doesn't affect lvalue-ness. 2399 if (E->getOpcode() == UO_Extension) 2400 return EmitLValue(E->getSubExpr()); 2401 2402 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2403 switch (E->getOpcode()) { 2404 default: llvm_unreachable("Unknown unary operator lvalue!"); 2405 case UO_Deref: { 2406 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2407 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2408 2409 LValueBaseInfo BaseInfo; 2410 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo); 2411 LValue LV = MakeAddrLValue(Addr, T, BaseInfo); 2412 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2413 2414 // We should not generate __weak write barrier on indirect reference 2415 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2416 // But, we continue to generate __strong write barrier on indirect write 2417 // into a pointer to object. 2418 if (getLangOpts().ObjC1 && 2419 getLangOpts().getGC() != LangOptions::NonGC && 2420 LV.isObjCWeak()) 2421 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2422 return LV; 2423 } 2424 case UO_Real: 2425 case UO_Imag: { 2426 LValue LV = EmitLValue(E->getSubExpr()); 2427 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2428 2429 // __real is valid on scalars. This is a faster way of testing that. 2430 // __imag can only produce an rvalue on scalars. 2431 if (E->getOpcode() == UO_Real && 2432 !LV.getAddress().getElementType()->isStructTy()) { 2433 assert(E->getSubExpr()->getType()->isArithmeticType()); 2434 return LV; 2435 } 2436 2437 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2438 2439 Address Component = 2440 (E->getOpcode() == UO_Real 2441 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2442 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2443 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo()); 2444 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2445 return ElemLV; 2446 } 2447 case UO_PreInc: 2448 case UO_PreDec: { 2449 LValue LV = EmitLValue(E->getSubExpr()); 2450 bool isInc = E->getOpcode() == UO_PreInc; 2451 2452 if (E->getType()->isAnyComplexType()) 2453 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2454 else 2455 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2456 return LV; 2457 } 2458 } 2459 } 2460 2461 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2462 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2463 E->getType(), 2464 LValueBaseInfo(AlignmentSource::Decl, false)); 2465 } 2466 2467 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2468 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2469 E->getType(), 2470 LValueBaseInfo(AlignmentSource::Decl, false)); 2471 } 2472 2473 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2474 auto SL = E->getFunctionName(); 2475 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2476 StringRef FnName = CurFn->getName(); 2477 if (FnName.startswith("\01")) 2478 FnName = FnName.substr(1); 2479 StringRef NameItems[] = { 2480 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2481 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2482 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2483 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2484 std::string Name = SL->getString(); 2485 if (!Name.empty()) { 2486 unsigned Discriminator = 2487 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2488 if (Discriminator) 2489 Name += "_" + Twine(Discriminator + 1).str(); 2490 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2491 return MakeAddrLValue(C, E->getType(), BaseInfo); 2492 } else { 2493 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2494 return MakeAddrLValue(C, E->getType(), BaseInfo); 2495 } 2496 } 2497 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2498 return MakeAddrLValue(C, E->getType(), BaseInfo); 2499 } 2500 2501 /// Emit a type description suitable for use by a runtime sanitizer library. The 2502 /// format of a type descriptor is 2503 /// 2504 /// \code 2505 /// { i16 TypeKind, i16 TypeInfo } 2506 /// \endcode 2507 /// 2508 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2509 /// integer, 1 for a floating point value, and -1 for anything else. 2510 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2511 // Only emit each type's descriptor once. 2512 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2513 return C; 2514 2515 uint16_t TypeKind = -1; 2516 uint16_t TypeInfo = 0; 2517 2518 if (T->isIntegerType()) { 2519 TypeKind = 0; 2520 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2521 (T->isSignedIntegerType() ? 1 : 0); 2522 } else if (T->isFloatingType()) { 2523 TypeKind = 1; 2524 TypeInfo = getContext().getTypeSize(T); 2525 } 2526 2527 // Format the type name as if for a diagnostic, including quotes and 2528 // optionally an 'aka'. 2529 SmallString<32> Buffer; 2530 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2531 (intptr_t)T.getAsOpaquePtr(), 2532 StringRef(), StringRef(), None, Buffer, 2533 None); 2534 2535 llvm::Constant *Components[] = { 2536 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2537 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2538 }; 2539 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2540 2541 auto *GV = new llvm::GlobalVariable( 2542 CGM.getModule(), Descriptor->getType(), 2543 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2544 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2545 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2546 2547 // Remember the descriptor for this type. 2548 CGM.setTypeDescriptorInMap(T, GV); 2549 2550 return GV; 2551 } 2552 2553 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2554 llvm::Type *TargetTy = IntPtrTy; 2555 2556 // Floating-point types which fit into intptr_t are bitcast to integers 2557 // and then passed directly (after zero-extension, if necessary). 2558 if (V->getType()->isFloatingPointTy()) { 2559 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2560 if (Bits <= TargetTy->getIntegerBitWidth()) 2561 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2562 Bits)); 2563 } 2564 2565 // Integers which fit in intptr_t are zero-extended and passed directly. 2566 if (V->getType()->isIntegerTy() && 2567 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2568 return Builder.CreateZExt(V, TargetTy); 2569 2570 // Pointers are passed directly, everything else is passed by address. 2571 if (!V->getType()->isPointerTy()) { 2572 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2573 Builder.CreateStore(V, Ptr); 2574 V = Ptr.getPointer(); 2575 } 2576 return Builder.CreatePtrToInt(V, TargetTy); 2577 } 2578 2579 /// \brief Emit a representation of a SourceLocation for passing to a handler 2580 /// in a sanitizer runtime library. The format for this data is: 2581 /// \code 2582 /// struct SourceLocation { 2583 /// const char *Filename; 2584 /// int32_t Line, Column; 2585 /// }; 2586 /// \endcode 2587 /// For an invalid SourceLocation, the Filename pointer is null. 2588 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2589 llvm::Constant *Filename; 2590 int Line, Column; 2591 2592 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2593 if (PLoc.isValid()) { 2594 StringRef FilenameString = PLoc.getFilename(); 2595 2596 int PathComponentsToStrip = 2597 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2598 if (PathComponentsToStrip < 0) { 2599 assert(PathComponentsToStrip != INT_MIN); 2600 int PathComponentsToKeep = -PathComponentsToStrip; 2601 auto I = llvm::sys::path::rbegin(FilenameString); 2602 auto E = llvm::sys::path::rend(FilenameString); 2603 while (I != E && --PathComponentsToKeep) 2604 ++I; 2605 2606 FilenameString = FilenameString.substr(I - E); 2607 } else if (PathComponentsToStrip > 0) { 2608 auto I = llvm::sys::path::begin(FilenameString); 2609 auto E = llvm::sys::path::end(FilenameString); 2610 while (I != E && PathComponentsToStrip--) 2611 ++I; 2612 2613 if (I != E) 2614 FilenameString = 2615 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2616 else 2617 FilenameString = llvm::sys::path::filename(FilenameString); 2618 } 2619 2620 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2621 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2622 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2623 Filename = FilenameGV.getPointer(); 2624 Line = PLoc.getLine(); 2625 Column = PLoc.getColumn(); 2626 } else { 2627 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2628 Line = Column = 0; 2629 } 2630 2631 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2632 Builder.getInt32(Column)}; 2633 2634 return llvm::ConstantStruct::getAnon(Data); 2635 } 2636 2637 namespace { 2638 /// \brief Specify under what conditions this check can be recovered 2639 enum class CheckRecoverableKind { 2640 /// Always terminate program execution if this check fails. 2641 Unrecoverable, 2642 /// Check supports recovering, runtime has both fatal (noreturn) and 2643 /// non-fatal handlers for this check. 2644 Recoverable, 2645 /// Runtime conditionally aborts, always need to support recovery. 2646 AlwaysRecoverable 2647 }; 2648 } 2649 2650 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2651 assert(llvm::countPopulation(Kind) == 1); 2652 switch (Kind) { 2653 case SanitizerKind::Vptr: 2654 return CheckRecoverableKind::AlwaysRecoverable; 2655 case SanitizerKind::Return: 2656 case SanitizerKind::Unreachable: 2657 return CheckRecoverableKind::Unrecoverable; 2658 default: 2659 return CheckRecoverableKind::Recoverable; 2660 } 2661 } 2662 2663 namespace { 2664 struct SanitizerHandlerInfo { 2665 char const *const Name; 2666 unsigned Version; 2667 }; 2668 } 2669 2670 const SanitizerHandlerInfo SanitizerHandlers[] = { 2671 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2672 LIST_SANITIZER_CHECKS 2673 #undef SANITIZER_CHECK 2674 }; 2675 2676 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2677 llvm::FunctionType *FnType, 2678 ArrayRef<llvm::Value *> FnArgs, 2679 SanitizerHandler CheckHandler, 2680 CheckRecoverableKind RecoverKind, bool IsFatal, 2681 llvm::BasicBlock *ContBB) { 2682 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2683 bool NeedsAbortSuffix = 2684 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2685 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2686 const StringRef CheckName = CheckInfo.Name; 2687 std::string FnName = 2688 ("__ubsan_handle_" + CheckName + 2689 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2690 (NeedsAbortSuffix ? "_abort" : "")) 2691 .str(); 2692 bool MayReturn = 2693 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2694 2695 llvm::AttrBuilder B; 2696 if (!MayReturn) { 2697 B.addAttribute(llvm::Attribute::NoReturn) 2698 .addAttribute(llvm::Attribute::NoUnwind); 2699 } 2700 B.addAttribute(llvm::Attribute::UWTable); 2701 2702 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2703 FnType, FnName, 2704 llvm::AttributeList::get(CGF.getLLVMContext(), 2705 llvm::AttributeList::FunctionIndex, B), 2706 /*Local=*/true); 2707 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2708 if (!MayReturn) { 2709 HandlerCall->setDoesNotReturn(); 2710 CGF.Builder.CreateUnreachable(); 2711 } else { 2712 CGF.Builder.CreateBr(ContBB); 2713 } 2714 } 2715 2716 void CodeGenFunction::EmitCheck( 2717 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2718 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2719 ArrayRef<llvm::Value *> DynamicArgs) { 2720 assert(IsSanitizerScope); 2721 assert(Checked.size() > 0); 2722 assert(CheckHandler >= 0 && 2723 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2724 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2725 2726 llvm::Value *FatalCond = nullptr; 2727 llvm::Value *RecoverableCond = nullptr; 2728 llvm::Value *TrapCond = nullptr; 2729 for (int i = 0, n = Checked.size(); i < n; ++i) { 2730 llvm::Value *Check = Checked[i].first; 2731 // -fsanitize-trap= overrides -fsanitize-recover=. 2732 llvm::Value *&Cond = 2733 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2734 ? TrapCond 2735 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2736 ? RecoverableCond 2737 : FatalCond; 2738 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2739 } 2740 2741 if (TrapCond) 2742 EmitTrapCheck(TrapCond); 2743 if (!FatalCond && !RecoverableCond) 2744 return; 2745 2746 llvm::Value *JointCond; 2747 if (FatalCond && RecoverableCond) 2748 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2749 else 2750 JointCond = FatalCond ? FatalCond : RecoverableCond; 2751 assert(JointCond); 2752 2753 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2754 assert(SanOpts.has(Checked[0].second)); 2755 #ifndef NDEBUG 2756 for (int i = 1, n = Checked.size(); i < n; ++i) { 2757 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2758 "All recoverable kinds in a single check must be same!"); 2759 assert(SanOpts.has(Checked[i].second)); 2760 } 2761 #endif 2762 2763 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2764 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2765 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2766 // Give hint that we very much don't expect to execute the handler 2767 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2768 llvm::MDBuilder MDHelper(getLLVMContext()); 2769 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2770 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2771 EmitBlock(Handlers); 2772 2773 // Handler functions take an i8* pointing to the (handler-specific) static 2774 // information block, followed by a sequence of intptr_t arguments 2775 // representing operand values. 2776 SmallVector<llvm::Value *, 4> Args; 2777 SmallVector<llvm::Type *, 4> ArgTypes; 2778 Args.reserve(DynamicArgs.size() + 1); 2779 ArgTypes.reserve(DynamicArgs.size() + 1); 2780 2781 // Emit handler arguments and create handler function type. 2782 if (!StaticArgs.empty()) { 2783 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2784 auto *InfoPtr = 2785 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2786 llvm::GlobalVariable::PrivateLinkage, Info); 2787 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2788 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2789 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2790 ArgTypes.push_back(Int8PtrTy); 2791 } 2792 2793 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2794 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2795 ArgTypes.push_back(IntPtrTy); 2796 } 2797 2798 llvm::FunctionType *FnType = 2799 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2800 2801 if (!FatalCond || !RecoverableCond) { 2802 // Simple case: we need to generate a single handler call, either 2803 // fatal, or non-fatal. 2804 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2805 (FatalCond != nullptr), Cont); 2806 } else { 2807 // Emit two handler calls: first one for set of unrecoverable checks, 2808 // another one for recoverable. 2809 llvm::BasicBlock *NonFatalHandlerBB = 2810 createBasicBlock("non_fatal." + CheckName); 2811 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2812 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2813 EmitBlock(FatalHandlerBB); 2814 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2815 NonFatalHandlerBB); 2816 EmitBlock(NonFatalHandlerBB); 2817 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2818 Cont); 2819 } 2820 2821 EmitBlock(Cont); 2822 } 2823 2824 void CodeGenFunction::EmitCfiSlowPathCheck( 2825 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2826 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2827 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2828 2829 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2830 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2831 2832 llvm::MDBuilder MDHelper(getLLVMContext()); 2833 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2834 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2835 2836 EmitBlock(CheckBB); 2837 2838 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2839 2840 llvm::CallInst *CheckCall; 2841 if (WithDiag) { 2842 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2843 auto *InfoPtr = 2844 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2845 llvm::GlobalVariable::PrivateLinkage, Info); 2846 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2847 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2848 2849 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2850 "__cfi_slowpath_diag", 2851 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2852 false)); 2853 CheckCall = Builder.CreateCall( 2854 SlowPathDiagFn, 2855 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2856 } else { 2857 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2858 "__cfi_slowpath", 2859 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2860 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2861 } 2862 2863 CheckCall->setDoesNotThrow(); 2864 2865 EmitBlock(Cont); 2866 } 2867 2868 // Emit a stub for __cfi_check function so that the linker knows about this 2869 // symbol in LTO mode. 2870 void CodeGenFunction::EmitCfiCheckStub() { 2871 llvm::Module *M = &CGM.getModule(); 2872 auto &Ctx = M->getContext(); 2873 llvm::Function *F = llvm::Function::Create( 2874 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2875 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2876 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2877 // FIXME: consider emitting an intrinsic call like 2878 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2879 // which can be lowered in CrossDSOCFI pass to the actual contents of 2880 // __cfi_check. This would allow inlining of __cfi_check calls. 2881 llvm::CallInst::Create( 2882 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2883 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2884 } 2885 2886 // This function is basically a switch over the CFI failure kind, which is 2887 // extracted from CFICheckFailData (1st function argument). Each case is either 2888 // llvm.trap or a call to one of the two runtime handlers, based on 2889 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2890 // failure kind) traps, but this should really never happen. CFICheckFailData 2891 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2892 // check kind; in this case __cfi_check_fail traps as well. 2893 void CodeGenFunction::EmitCfiCheckFail() { 2894 SanitizerScope SanScope(this); 2895 FunctionArgList Args; 2896 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2897 ImplicitParamDecl::Other); 2898 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2899 ImplicitParamDecl::Other); 2900 Args.push_back(&ArgData); 2901 Args.push_back(&ArgAddr); 2902 2903 const CGFunctionInfo &FI = 2904 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2905 2906 llvm::Function *F = llvm::Function::Create( 2907 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2908 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2909 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2910 2911 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2912 SourceLocation()); 2913 2914 llvm::Value *Data = 2915 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2916 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2917 llvm::Value *Addr = 2918 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2919 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2920 2921 // Data == nullptr means the calling module has trap behaviour for this check. 2922 llvm::Value *DataIsNotNullPtr = 2923 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2924 EmitTrapCheck(DataIsNotNullPtr); 2925 2926 llvm::StructType *SourceLocationTy = 2927 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2928 llvm::StructType *CfiCheckFailDataTy = 2929 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2930 2931 llvm::Value *V = Builder.CreateConstGEP2_32( 2932 CfiCheckFailDataTy, 2933 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2934 0); 2935 Address CheckKindAddr(V, getIntAlign()); 2936 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2937 2938 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2939 CGM.getLLVMContext(), 2940 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2941 llvm::Value *ValidVtable = Builder.CreateZExt( 2942 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2943 {Addr, AllVtables}), 2944 IntPtrTy); 2945 2946 const std::pair<int, SanitizerMask> CheckKinds[] = { 2947 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2948 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2949 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2950 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2951 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2952 2953 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2954 for (auto CheckKindMaskPair : CheckKinds) { 2955 int Kind = CheckKindMaskPair.first; 2956 SanitizerMask Mask = CheckKindMaskPair.second; 2957 llvm::Value *Cond = 2958 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2959 if (CGM.getLangOpts().Sanitize.has(Mask)) 2960 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2961 {Data, Addr, ValidVtable}); 2962 else 2963 EmitTrapCheck(Cond); 2964 } 2965 2966 FinishFunction(); 2967 // The only reference to this function will be created during LTO link. 2968 // Make sure it survives until then. 2969 CGM.addUsedGlobal(F); 2970 } 2971 2972 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2973 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2974 2975 // If we're optimizing, collapse all calls to trap down to just one per 2976 // function to save on code size. 2977 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2978 TrapBB = createBasicBlock("trap"); 2979 Builder.CreateCondBr(Checked, Cont, TrapBB); 2980 EmitBlock(TrapBB); 2981 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2982 TrapCall->setDoesNotReturn(); 2983 TrapCall->setDoesNotThrow(); 2984 Builder.CreateUnreachable(); 2985 } else { 2986 Builder.CreateCondBr(Checked, Cont, TrapBB); 2987 } 2988 2989 EmitBlock(Cont); 2990 } 2991 2992 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2993 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2994 2995 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2996 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2997 CGM.getCodeGenOpts().TrapFuncName); 2998 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 2999 } 3000 3001 return TrapCall; 3002 } 3003 3004 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3005 LValueBaseInfo *BaseInfo) { 3006 assert(E->getType()->isArrayType() && 3007 "Array to pointer decay must have array source type!"); 3008 3009 // Expressions of array type can't be bitfields or vector elements. 3010 LValue LV = EmitLValue(E); 3011 Address Addr = LV.getAddress(); 3012 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3013 3014 // If the array type was an incomplete type, we need to make sure 3015 // the decay ends up being the right type. 3016 llvm::Type *NewTy = ConvertType(E->getType()); 3017 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3018 3019 // Note that VLA pointers are always decayed, so we don't need to do 3020 // anything here. 3021 if (!E->getType()->isVariableArrayType()) { 3022 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3023 "Expected pointer to array"); 3024 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3025 } 3026 3027 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3028 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3029 } 3030 3031 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3032 /// array to pointer, return the array subexpression. 3033 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3034 // If this isn't just an array->pointer decay, bail out. 3035 const auto *CE = dyn_cast<CastExpr>(E); 3036 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3037 return nullptr; 3038 3039 // If this is a decay from variable width array, bail out. 3040 const Expr *SubExpr = CE->getSubExpr(); 3041 if (SubExpr->getType()->isVariableArrayType()) 3042 return nullptr; 3043 3044 return SubExpr; 3045 } 3046 3047 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3048 llvm::Value *ptr, 3049 ArrayRef<llvm::Value*> indices, 3050 bool inbounds, 3051 bool signedIndices, 3052 SourceLocation loc, 3053 const llvm::Twine &name = "arrayidx") { 3054 if (inbounds) { 3055 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, loc, name); 3056 } else { 3057 return CGF.Builder.CreateGEP(ptr, indices, name); 3058 } 3059 } 3060 3061 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3062 llvm::Value *idx, 3063 CharUnits eltSize) { 3064 // If we have a constant index, we can use the exact offset of the 3065 // element we're accessing. 3066 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3067 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3068 return arrayAlign.alignmentAtOffset(offset); 3069 3070 // Otherwise, use the worst-case alignment for any element. 3071 } else { 3072 return arrayAlign.alignmentOfArrayElement(eltSize); 3073 } 3074 } 3075 3076 static QualType getFixedSizeElementType(const ASTContext &ctx, 3077 const VariableArrayType *vla) { 3078 QualType eltType; 3079 do { 3080 eltType = vla->getElementType(); 3081 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3082 return eltType; 3083 } 3084 3085 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3086 ArrayRef<llvm::Value *> indices, 3087 QualType eltType, bool inbounds, 3088 bool signedIndices, SourceLocation loc, 3089 const llvm::Twine &name = "arrayidx") { 3090 // All the indices except that last must be zero. 3091 #ifndef NDEBUG 3092 for (auto idx : indices.drop_back()) 3093 assert(isa<llvm::ConstantInt>(idx) && 3094 cast<llvm::ConstantInt>(idx)->isZero()); 3095 #endif 3096 3097 // Determine the element size of the statically-sized base. This is 3098 // the thing that the indices are expressed in terms of. 3099 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3100 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3101 } 3102 3103 // We can use that to compute the best alignment of the element. 3104 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3105 CharUnits eltAlign = 3106 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3107 3108 llvm::Value *eltPtr = emitArraySubscriptGEP( 3109 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3110 return Address(eltPtr, eltAlign); 3111 } 3112 3113 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3114 bool Accessed) { 3115 // The index must always be an integer, which is not an aggregate. Emit it 3116 // in lexical order (this complexity is, sadly, required by C++17). 3117 llvm::Value *IdxPre = 3118 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3119 bool SignedIndices = false; 3120 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3121 auto *Idx = IdxPre; 3122 if (E->getLHS() != E->getIdx()) { 3123 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3124 Idx = EmitScalarExpr(E->getIdx()); 3125 } 3126 3127 QualType IdxTy = E->getIdx()->getType(); 3128 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3129 SignedIndices |= IdxSigned; 3130 3131 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3132 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3133 3134 // Extend or truncate the index type to 32 or 64-bits. 3135 if (Promote && Idx->getType() != IntPtrTy) 3136 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3137 3138 return Idx; 3139 }; 3140 IdxPre = nullptr; 3141 3142 // If the base is a vector type, then we are forming a vector element lvalue 3143 // with this subscript. 3144 if (E->getBase()->getType()->isVectorType() && 3145 !isa<ExtVectorElementExpr>(E->getBase())) { 3146 // Emit the vector as an lvalue to get its address. 3147 LValue LHS = EmitLValue(E->getBase()); 3148 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3149 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3150 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3151 E->getBase()->getType(), 3152 LHS.getBaseInfo()); 3153 } 3154 3155 // All the other cases basically behave like simple offsetting. 3156 3157 // Handle the extvector case we ignored above. 3158 if (isa<ExtVectorElementExpr>(E->getBase())) { 3159 LValue LV = EmitLValue(E->getBase()); 3160 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3161 Address Addr = EmitExtVectorElementLValue(LV); 3162 3163 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3164 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3165 SignedIndices, E->getExprLoc()); 3166 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo()); 3167 } 3168 3169 LValueBaseInfo BaseInfo; 3170 Address Addr = Address::invalid(); 3171 if (const VariableArrayType *vla = 3172 getContext().getAsVariableArrayType(E->getType())) { 3173 // The base must be a pointer, which is not an aggregate. Emit 3174 // it. It needs to be emitted first in case it's what captures 3175 // the VLA bounds. 3176 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3177 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3178 3179 // The element count here is the total number of non-VLA elements. 3180 llvm::Value *numElements = getVLASize(vla).first; 3181 3182 // Effectively, the multiply by the VLA size is part of the GEP. 3183 // GEP indexes are signed, and scaling an index isn't permitted to 3184 // signed-overflow, so we use the same semantics for our explicit 3185 // multiply. We suppress this if overflow is not undefined behavior. 3186 if (getLangOpts().isSignedOverflowDefined()) { 3187 Idx = Builder.CreateMul(Idx, numElements); 3188 } else { 3189 Idx = Builder.CreateNSWMul(Idx, numElements); 3190 } 3191 3192 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3193 !getLangOpts().isSignedOverflowDefined(), 3194 SignedIndices, E->getExprLoc()); 3195 3196 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3197 // Indexing over an interface, as in "NSString *P; P[4];" 3198 3199 // Emit the base pointer. 3200 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3201 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3202 3203 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3204 llvm::Value *InterfaceSizeVal = 3205 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3206 3207 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3208 3209 // We don't necessarily build correct LLVM struct types for ObjC 3210 // interfaces, so we can't rely on GEP to do this scaling 3211 // correctly, so we need to cast to i8*. FIXME: is this actually 3212 // true? A lot of other things in the fragile ABI would break... 3213 llvm::Type *OrigBaseTy = Addr.getType(); 3214 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3215 3216 // Do the GEP. 3217 CharUnits EltAlign = 3218 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3219 llvm::Value *EltPtr = 3220 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3221 SignedIndices, E->getExprLoc()); 3222 Addr = Address(EltPtr, EltAlign); 3223 3224 // Cast back. 3225 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3226 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3227 // If this is A[i] where A is an array, the frontend will have decayed the 3228 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3229 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3230 // "gep x, i" here. Emit one "gep A, 0, i". 3231 assert(Array->getType()->isArrayType() && 3232 "Array to pointer decay must have array source type!"); 3233 LValue ArrayLV; 3234 // For simple multidimensional array indexing, set the 'accessed' flag for 3235 // better bounds-checking of the base expression. 3236 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3237 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3238 else 3239 ArrayLV = EmitLValue(Array); 3240 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3241 3242 // Propagate the alignment from the array itself to the result. 3243 Addr = emitArraySubscriptGEP( 3244 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3245 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3246 E->getExprLoc()); 3247 BaseInfo = ArrayLV.getBaseInfo(); 3248 } else { 3249 // The base must be a pointer; emit it with an estimate of its alignment. 3250 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3251 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3252 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3253 !getLangOpts().isSignedOverflowDefined(), 3254 SignedIndices, E->getExprLoc()); 3255 } 3256 3257 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo); 3258 3259 // TODO: Preserve/extend path TBAA metadata? 3260 3261 if (getLangOpts().ObjC1 && 3262 getLangOpts().getGC() != LangOptions::NonGC) { 3263 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3264 setObjCGCLValueClass(getContext(), E, LV); 3265 } 3266 return LV; 3267 } 3268 3269 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3270 LValueBaseInfo &BaseInfo, 3271 QualType BaseTy, QualType ElTy, 3272 bool IsLowerBound) { 3273 LValue BaseLVal; 3274 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3275 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3276 if (BaseTy->isArrayType()) { 3277 Address Addr = BaseLVal.getAddress(); 3278 BaseInfo = BaseLVal.getBaseInfo(); 3279 3280 // If the array type was an incomplete type, we need to make sure 3281 // the decay ends up being the right type. 3282 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3283 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3284 3285 // Note that VLA pointers are always decayed, so we don't need to do 3286 // anything here. 3287 if (!BaseTy->isVariableArrayType()) { 3288 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3289 "Expected pointer to array"); 3290 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3291 "arraydecay"); 3292 } 3293 3294 return CGF.Builder.CreateElementBitCast(Addr, 3295 CGF.ConvertTypeForMem(ElTy)); 3296 } 3297 LValueBaseInfo TypeInfo; 3298 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3299 BaseInfo.mergeForCast(TypeInfo); 3300 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3301 } 3302 return CGF.EmitPointerWithAlignment(Base, &BaseInfo); 3303 } 3304 3305 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3306 bool IsLowerBound) { 3307 QualType BaseTy; 3308 if (auto *ASE = 3309 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3310 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3311 else 3312 BaseTy = E->getBase()->getType(); 3313 QualType ResultExprTy; 3314 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3315 ResultExprTy = AT->getElementType(); 3316 else 3317 ResultExprTy = BaseTy->getPointeeType(); 3318 llvm::Value *Idx = nullptr; 3319 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3320 // Requesting lower bound or upper bound, but without provided length and 3321 // without ':' symbol for the default length -> length = 1. 3322 // Idx = LowerBound ?: 0; 3323 if (auto *LowerBound = E->getLowerBound()) { 3324 Idx = Builder.CreateIntCast( 3325 EmitScalarExpr(LowerBound), IntPtrTy, 3326 LowerBound->getType()->hasSignedIntegerRepresentation()); 3327 } else 3328 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3329 } else { 3330 // Try to emit length or lower bound as constant. If this is possible, 1 3331 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3332 // IR (LB + Len) - 1. 3333 auto &C = CGM.getContext(); 3334 auto *Length = E->getLength(); 3335 llvm::APSInt ConstLength; 3336 if (Length) { 3337 // Idx = LowerBound + Length - 1; 3338 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3339 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3340 Length = nullptr; 3341 } 3342 auto *LowerBound = E->getLowerBound(); 3343 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3344 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3345 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3346 LowerBound = nullptr; 3347 } 3348 if (!Length) 3349 --ConstLength; 3350 else if (!LowerBound) 3351 --ConstLowerBound; 3352 3353 if (Length || LowerBound) { 3354 auto *LowerBoundVal = 3355 LowerBound 3356 ? Builder.CreateIntCast( 3357 EmitScalarExpr(LowerBound), IntPtrTy, 3358 LowerBound->getType()->hasSignedIntegerRepresentation()) 3359 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3360 auto *LengthVal = 3361 Length 3362 ? Builder.CreateIntCast( 3363 EmitScalarExpr(Length), IntPtrTy, 3364 Length->getType()->hasSignedIntegerRepresentation()) 3365 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3366 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3367 /*HasNUW=*/false, 3368 !getLangOpts().isSignedOverflowDefined()); 3369 if (Length && LowerBound) { 3370 Idx = Builder.CreateSub( 3371 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3372 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3373 } 3374 } else 3375 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3376 } else { 3377 // Idx = ArraySize - 1; 3378 QualType ArrayTy = BaseTy->isPointerType() 3379 ? E->getBase()->IgnoreParenImpCasts()->getType() 3380 : BaseTy; 3381 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3382 Length = VAT->getSizeExpr(); 3383 if (Length->isIntegerConstantExpr(ConstLength, C)) 3384 Length = nullptr; 3385 } else { 3386 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3387 ConstLength = CAT->getSize(); 3388 } 3389 if (Length) { 3390 auto *LengthVal = Builder.CreateIntCast( 3391 EmitScalarExpr(Length), IntPtrTy, 3392 Length->getType()->hasSignedIntegerRepresentation()); 3393 Idx = Builder.CreateSub( 3394 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3395 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3396 } else { 3397 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3398 --ConstLength; 3399 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3400 } 3401 } 3402 } 3403 assert(Idx); 3404 3405 Address EltPtr = Address::invalid(); 3406 LValueBaseInfo BaseInfo; 3407 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3408 // The base must be a pointer, which is not an aggregate. Emit 3409 // it. It needs to be emitted first in case it's what captures 3410 // the VLA bounds. 3411 Address Base = 3412 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy, 3413 VLA->getElementType(), IsLowerBound); 3414 // The element count here is the total number of non-VLA elements. 3415 llvm::Value *NumElements = getVLASize(VLA).first; 3416 3417 // Effectively, the multiply by the VLA size is part of the GEP. 3418 // GEP indexes are signed, and scaling an index isn't permitted to 3419 // signed-overflow, so we use the same semantics for our explicit 3420 // multiply. We suppress this if overflow is not undefined behavior. 3421 if (getLangOpts().isSignedOverflowDefined()) 3422 Idx = Builder.CreateMul(Idx, NumElements); 3423 else 3424 Idx = Builder.CreateNSWMul(Idx, NumElements); 3425 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3426 !getLangOpts().isSignedOverflowDefined(), 3427 /*SignedIndices=*/false, E->getExprLoc()); 3428 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3429 // If this is A[i] where A is an array, the frontend will have decayed the 3430 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3431 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3432 // "gep x, i" here. Emit one "gep A, 0, i". 3433 assert(Array->getType()->isArrayType() && 3434 "Array to pointer decay must have array source type!"); 3435 LValue ArrayLV; 3436 // For simple multidimensional array indexing, set the 'accessed' flag for 3437 // better bounds-checking of the base expression. 3438 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3439 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3440 else 3441 ArrayLV = EmitLValue(Array); 3442 3443 // Propagate the alignment from the array itself to the result. 3444 EltPtr = emitArraySubscriptGEP( 3445 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3446 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3447 /*SignedIndices=*/false, E->getExprLoc()); 3448 BaseInfo = ArrayLV.getBaseInfo(); 3449 } else { 3450 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3451 BaseTy, ResultExprTy, IsLowerBound); 3452 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3453 !getLangOpts().isSignedOverflowDefined(), 3454 /*SignedIndices=*/false, E->getExprLoc()); 3455 } 3456 3457 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo); 3458 } 3459 3460 LValue CodeGenFunction:: 3461 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3462 // Emit the base vector as an l-value. 3463 LValue Base; 3464 3465 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3466 if (E->isArrow()) { 3467 // If it is a pointer to a vector, emit the address and form an lvalue with 3468 // it. 3469 LValueBaseInfo BaseInfo; 3470 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3471 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3472 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo); 3473 Base.getQuals().removeObjCGCAttr(); 3474 } else if (E->getBase()->isGLValue()) { 3475 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3476 // emit the base as an lvalue. 3477 assert(E->getBase()->getType()->isVectorType()); 3478 Base = EmitLValue(E->getBase()); 3479 } else { 3480 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3481 assert(E->getBase()->getType()->isVectorType() && 3482 "Result must be a vector"); 3483 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3484 3485 // Store the vector to memory (because LValue wants an address). 3486 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3487 Builder.CreateStore(Vec, VecMem); 3488 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3489 LValueBaseInfo(AlignmentSource::Decl, false)); 3490 } 3491 3492 QualType type = 3493 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3494 3495 // Encode the element access list into a vector of unsigned indices. 3496 SmallVector<uint32_t, 4> Indices; 3497 E->getEncodedElementAccess(Indices); 3498 3499 if (Base.isSimple()) { 3500 llvm::Constant *CV = 3501 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3502 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3503 Base.getBaseInfo()); 3504 } 3505 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3506 3507 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3508 SmallVector<llvm::Constant *, 4> CElts; 3509 3510 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3511 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3512 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3513 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3514 Base.getBaseInfo()); 3515 } 3516 3517 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3518 Expr *BaseExpr = E->getBase(); 3519 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3520 LValue BaseLV; 3521 if (E->isArrow()) { 3522 LValueBaseInfo BaseInfo; 3523 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo); 3524 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3525 SanitizerSet SkippedChecks; 3526 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3527 if (IsBaseCXXThis) 3528 SkippedChecks.set(SanitizerKind::Alignment, true); 3529 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3530 SkippedChecks.set(SanitizerKind::Null, true); 3531 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3532 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3533 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo); 3534 } else 3535 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3536 3537 NamedDecl *ND = E->getMemberDecl(); 3538 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3539 LValue LV = EmitLValueForField(BaseLV, Field); 3540 setObjCGCLValueClass(getContext(), E, LV); 3541 return LV; 3542 } 3543 3544 if (auto *VD = dyn_cast<VarDecl>(ND)) 3545 return EmitGlobalVarDeclLValue(*this, E, VD); 3546 3547 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3548 return EmitFunctionDeclLValue(*this, E, FD); 3549 3550 llvm_unreachable("Unhandled member declaration!"); 3551 } 3552 3553 /// Given that we are currently emitting a lambda, emit an l-value for 3554 /// one of its members. 3555 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3556 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3557 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3558 QualType LambdaTagType = 3559 getContext().getTagDeclType(Field->getParent()); 3560 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3561 return EmitLValueForField(LambdaLV, Field); 3562 } 3563 3564 /// Drill down to the storage of a field without walking into 3565 /// reference types. 3566 /// 3567 /// The resulting address doesn't necessarily have the right type. 3568 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3569 const FieldDecl *field) { 3570 const RecordDecl *rec = field->getParent(); 3571 3572 unsigned idx = 3573 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3574 3575 CharUnits offset; 3576 // Adjust the alignment down to the given offset. 3577 // As a special case, if the LLVM field index is 0, we know that this 3578 // is zero. 3579 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3580 .getFieldOffset(field->getFieldIndex()) == 0) && 3581 "LLVM field at index zero had non-zero offset?"); 3582 if (idx != 0) { 3583 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3584 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3585 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3586 } 3587 3588 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3589 } 3590 3591 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3592 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3593 if (!RD) 3594 return false; 3595 3596 if (RD->isDynamicClass()) 3597 return true; 3598 3599 for (const auto &Base : RD->bases()) 3600 if (hasAnyVptr(Base.getType(), Context)) 3601 return true; 3602 3603 for (const FieldDecl *Field : RD->fields()) 3604 if (hasAnyVptr(Field->getType(), Context)) 3605 return true; 3606 3607 return false; 3608 } 3609 3610 LValue CodeGenFunction::EmitLValueForField(LValue base, 3611 const FieldDecl *field) { 3612 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3613 AlignmentSource fieldAlignSource = 3614 getFieldAlignmentSource(BaseInfo.getAlignmentSource()); 3615 LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias()); 3616 3617 const RecordDecl *rec = field->getParent(); 3618 if (rec->isUnion() || rec->hasAttr<MayAliasAttr>()) 3619 FieldBaseInfo.setMayAlias(true); 3620 bool mayAlias = FieldBaseInfo.getMayAlias(); 3621 3622 if (field->isBitField()) { 3623 const CGRecordLayout &RL = 3624 CGM.getTypes().getCGRecordLayout(field->getParent()); 3625 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3626 Address Addr = base.getAddress(); 3627 unsigned Idx = RL.getLLVMFieldNo(field); 3628 if (Idx != 0) 3629 // For structs, we GEP to the field that the record layout suggests. 3630 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3631 field->getName()); 3632 // Get the access type. 3633 llvm::Type *FieldIntTy = 3634 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3635 if (Addr.getElementType() != FieldIntTy) 3636 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3637 3638 QualType fieldType = 3639 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3640 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo); 3641 } 3642 3643 QualType type = field->getType(); 3644 Address addr = base.getAddress(); 3645 unsigned cvr = base.getVRQualifiers(); 3646 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3647 if (rec->isUnion()) { 3648 // For unions, there is no pointer adjustment. 3649 assert(!type->isReferenceType() && "union has reference member"); 3650 // TODO: handle path-aware TBAA for union. 3651 TBAAPath = false; 3652 3653 const auto FieldType = field->getType(); 3654 if (CGM.getCodeGenOpts().StrictVTablePointers && 3655 hasAnyVptr(FieldType, getContext())) 3656 // Because unions can easily skip invariant.barriers, we need to add 3657 // a barrier every time CXXRecord field with vptr is referenced. 3658 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3659 addr.getAlignment()); 3660 } else { 3661 // For structs, we GEP to the field that the record layout suggests. 3662 addr = emitAddrOfFieldStorage(*this, addr, field); 3663 3664 // If this is a reference field, load the reference right now. 3665 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3666 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3667 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3668 3669 // Loading the reference will disable path-aware TBAA. 3670 TBAAPath = false; 3671 if (CGM.shouldUseTBAA()) { 3672 llvm::MDNode *tbaa; 3673 if (mayAlias) 3674 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3675 else 3676 tbaa = CGM.getTBAAInfo(type); 3677 if (tbaa) 3678 CGM.DecorateInstructionWithTBAA(load, tbaa); 3679 } 3680 3681 mayAlias = false; 3682 type = refType->getPointeeType(); 3683 3684 CharUnits alignment = 3685 getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true); 3686 FieldBaseInfo.setMayAlias(false); 3687 addr = Address(load, alignment); 3688 3689 // Qualifiers on the struct don't apply to the referencee, and 3690 // we'll pick up CVR from the actual type later, so reset these 3691 // additional qualifiers now. 3692 cvr = 0; 3693 } 3694 } 3695 3696 // Make sure that the address is pointing to the right type. This is critical 3697 // for both unions and structs. A union needs a bitcast, a struct element 3698 // will need a bitcast if the LLVM type laid out doesn't match the desired 3699 // type. 3700 addr = Builder.CreateElementBitCast(addr, 3701 CGM.getTypes().ConvertTypeForMem(type), 3702 field->getName()); 3703 3704 if (field->hasAttr<AnnotateAttr>()) 3705 addr = EmitFieldAnnotations(field, addr); 3706 3707 LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo); 3708 LV.getQuals().addCVRQualifiers(cvr); 3709 if (TBAAPath) { 3710 const ASTRecordLayout &Layout = 3711 getContext().getASTRecordLayout(field->getParent()); 3712 // Set the base type to be the base type of the base LValue and 3713 // update offset to be relative to the base type. 3714 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3715 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3716 Layout.getFieldOffset(field->getFieldIndex()) / 3717 getContext().getCharWidth()); 3718 } 3719 3720 // __weak attribute on a field is ignored. 3721 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3722 LV.getQuals().removeObjCGCAttr(); 3723 3724 // Fields of may_alias structs act like 'char' for TBAA purposes. 3725 // FIXME: this should get propagated down through anonymous structs 3726 // and unions. 3727 if (mayAlias && LV.getTBAAInfo()) 3728 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3729 3730 return LV; 3731 } 3732 3733 LValue 3734 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3735 const FieldDecl *Field) { 3736 QualType FieldType = Field->getType(); 3737 3738 if (!FieldType->isReferenceType()) 3739 return EmitLValueForField(Base, Field); 3740 3741 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3742 3743 // Make sure that the address is pointing to the right type. 3744 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3745 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3746 3747 // TODO: access-path TBAA? 3748 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3749 LValueBaseInfo FieldBaseInfo( 3750 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3751 BaseInfo.getMayAlias()); 3752 return MakeAddrLValue(V, FieldType, FieldBaseInfo); 3753 } 3754 3755 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3756 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 3757 if (E->isFileScope()) { 3758 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3759 return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo); 3760 } 3761 if (E->getType()->isVariablyModifiedType()) 3762 // make sure to emit the VLA size. 3763 EmitVariablyModifiedType(E->getType()); 3764 3765 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3766 const Expr *InitExpr = E->getInitializer(); 3767 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo); 3768 3769 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3770 /*Init*/ true); 3771 3772 return Result; 3773 } 3774 3775 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3776 if (!E->isGLValue()) 3777 // Initializing an aggregate temporary in C++11: T{...}. 3778 return EmitAggExprToLValue(E); 3779 3780 // An lvalue initializer list must be initializing a reference. 3781 assert(E->isTransparent() && "non-transparent glvalue init list"); 3782 return EmitLValue(E->getInit(0)); 3783 } 3784 3785 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3786 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3787 /// LValue is returned and the current block has been terminated. 3788 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3789 const Expr *Operand) { 3790 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3791 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3792 return None; 3793 } 3794 3795 return CGF.EmitLValue(Operand); 3796 } 3797 3798 LValue CodeGenFunction:: 3799 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3800 if (!expr->isGLValue()) { 3801 // ?: here should be an aggregate. 3802 assert(hasAggregateEvaluationKind(expr->getType()) && 3803 "Unexpected conditional operator!"); 3804 return EmitAggExprToLValue(expr); 3805 } 3806 3807 OpaqueValueMapping binding(*this, expr); 3808 3809 const Expr *condExpr = expr->getCond(); 3810 bool CondExprBool; 3811 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3812 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3813 if (!CondExprBool) std::swap(live, dead); 3814 3815 if (!ContainsLabel(dead)) { 3816 // If the true case is live, we need to track its region. 3817 if (CondExprBool) 3818 incrementProfileCounter(expr); 3819 return EmitLValue(live); 3820 } 3821 } 3822 3823 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3824 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3825 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3826 3827 ConditionalEvaluation eval(*this); 3828 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3829 3830 // Any temporaries created here are conditional. 3831 EmitBlock(lhsBlock); 3832 incrementProfileCounter(expr); 3833 eval.begin(*this); 3834 Optional<LValue> lhs = 3835 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3836 eval.end(*this); 3837 3838 if (lhs && !lhs->isSimple()) 3839 return EmitUnsupportedLValue(expr, "conditional operator"); 3840 3841 lhsBlock = Builder.GetInsertBlock(); 3842 if (lhs) 3843 Builder.CreateBr(contBlock); 3844 3845 // Any temporaries created here are conditional. 3846 EmitBlock(rhsBlock); 3847 eval.begin(*this); 3848 Optional<LValue> rhs = 3849 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3850 eval.end(*this); 3851 if (rhs && !rhs->isSimple()) 3852 return EmitUnsupportedLValue(expr, "conditional operator"); 3853 rhsBlock = Builder.GetInsertBlock(); 3854 3855 EmitBlock(contBlock); 3856 3857 if (lhs && rhs) { 3858 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3859 2, "cond-lvalue"); 3860 phi->addIncoming(lhs->getPointer(), lhsBlock); 3861 phi->addIncoming(rhs->getPointer(), rhsBlock); 3862 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3863 AlignmentSource alignSource = 3864 std::max(lhs->getBaseInfo().getAlignmentSource(), 3865 rhs->getBaseInfo().getAlignmentSource()); 3866 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3867 rhs->getBaseInfo().getMayAlias(); 3868 return MakeAddrLValue(result, expr->getType(), 3869 LValueBaseInfo(alignSource, MayAlias)); 3870 } else { 3871 assert((lhs || rhs) && 3872 "both operands of glvalue conditional are throw-expressions?"); 3873 return lhs ? *lhs : *rhs; 3874 } 3875 } 3876 3877 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3878 /// type. If the cast is to a reference, we can have the usual lvalue result, 3879 /// otherwise if a cast is needed by the code generator in an lvalue context, 3880 /// then it must mean that we need the address of an aggregate in order to 3881 /// access one of its members. This can happen for all the reasons that casts 3882 /// are permitted with aggregate result, including noop aggregate casts, and 3883 /// cast from scalar to union. 3884 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3885 switch (E->getCastKind()) { 3886 case CK_ToVoid: 3887 case CK_BitCast: 3888 case CK_ArrayToPointerDecay: 3889 case CK_FunctionToPointerDecay: 3890 case CK_NullToMemberPointer: 3891 case CK_NullToPointer: 3892 case CK_IntegralToPointer: 3893 case CK_PointerToIntegral: 3894 case CK_PointerToBoolean: 3895 case CK_VectorSplat: 3896 case CK_IntegralCast: 3897 case CK_BooleanToSignedIntegral: 3898 case CK_IntegralToBoolean: 3899 case CK_IntegralToFloating: 3900 case CK_FloatingToIntegral: 3901 case CK_FloatingToBoolean: 3902 case CK_FloatingCast: 3903 case CK_FloatingRealToComplex: 3904 case CK_FloatingComplexToReal: 3905 case CK_FloatingComplexToBoolean: 3906 case CK_FloatingComplexCast: 3907 case CK_FloatingComplexToIntegralComplex: 3908 case CK_IntegralRealToComplex: 3909 case CK_IntegralComplexToReal: 3910 case CK_IntegralComplexToBoolean: 3911 case CK_IntegralComplexCast: 3912 case CK_IntegralComplexToFloatingComplex: 3913 case CK_DerivedToBaseMemberPointer: 3914 case CK_BaseToDerivedMemberPointer: 3915 case CK_MemberPointerToBoolean: 3916 case CK_ReinterpretMemberPointer: 3917 case CK_AnyPointerToBlockPointerCast: 3918 case CK_ARCProduceObject: 3919 case CK_ARCConsumeObject: 3920 case CK_ARCReclaimReturnedObject: 3921 case CK_ARCExtendBlockObject: 3922 case CK_CopyAndAutoreleaseBlockObject: 3923 case CK_AddressSpaceConversion: 3924 case CK_IntToOCLSampler: 3925 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3926 3927 case CK_Dependent: 3928 llvm_unreachable("dependent cast kind in IR gen!"); 3929 3930 case CK_BuiltinFnToFnPtr: 3931 llvm_unreachable("builtin functions are handled elsewhere"); 3932 3933 // These are never l-values; just use the aggregate emission code. 3934 case CK_NonAtomicToAtomic: 3935 case CK_AtomicToNonAtomic: 3936 return EmitAggExprToLValue(E); 3937 3938 case CK_Dynamic: { 3939 LValue LV = EmitLValue(E->getSubExpr()); 3940 Address V = LV.getAddress(); 3941 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3942 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3943 } 3944 3945 case CK_ConstructorConversion: 3946 case CK_UserDefinedConversion: 3947 case CK_CPointerToObjCPointerCast: 3948 case CK_BlockPointerToObjCPointerCast: 3949 case CK_NoOp: 3950 case CK_LValueToRValue: 3951 return EmitLValue(E->getSubExpr()); 3952 3953 case CK_UncheckedDerivedToBase: 3954 case CK_DerivedToBase: { 3955 const RecordType *DerivedClassTy = 3956 E->getSubExpr()->getType()->getAs<RecordType>(); 3957 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3958 3959 LValue LV = EmitLValue(E->getSubExpr()); 3960 Address This = LV.getAddress(); 3961 3962 // Perform the derived-to-base conversion 3963 Address Base = GetAddressOfBaseClass( 3964 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3965 /*NullCheckValue=*/false, E->getExprLoc()); 3966 3967 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo()); 3968 } 3969 case CK_ToUnion: 3970 return EmitAggExprToLValue(E); 3971 case CK_BaseToDerived: { 3972 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3973 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3974 3975 LValue LV = EmitLValue(E->getSubExpr()); 3976 3977 // Perform the base-to-derived conversion 3978 Address Derived = 3979 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3980 E->path_begin(), E->path_end(), 3981 /*NullCheckValue=*/false); 3982 3983 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3984 // performed and the object is not of the derived type. 3985 if (sanitizePerformTypeCheck()) 3986 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3987 Derived.getPointer(), E->getType()); 3988 3989 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3990 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3991 /*MayBeNull=*/false, 3992 CFITCK_DerivedCast, E->getLocStart()); 3993 3994 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo()); 3995 } 3996 case CK_LValueBitCast: { 3997 // This must be a reinterpret_cast (or c-style equivalent). 3998 const auto *CE = cast<ExplicitCastExpr>(E); 3999 4000 CGM.EmitExplicitCastExprType(CE, this); 4001 LValue LV = EmitLValue(E->getSubExpr()); 4002 Address V = Builder.CreateBitCast(LV.getAddress(), 4003 ConvertType(CE->getTypeAsWritten())); 4004 4005 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4006 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4007 /*MayBeNull=*/false, 4008 CFITCK_UnrelatedCast, E->getLocStart()); 4009 4010 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4011 } 4012 case CK_ObjCObjectLValueCast: { 4013 LValue LV = EmitLValue(E->getSubExpr()); 4014 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4015 ConvertType(E->getType())); 4016 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4017 } 4018 case CK_ZeroToOCLQueue: 4019 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4020 case CK_ZeroToOCLEvent: 4021 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4022 } 4023 4024 llvm_unreachable("Unhandled lvalue cast kind?"); 4025 } 4026 4027 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4028 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4029 return getOpaqueLValueMapping(e); 4030 } 4031 4032 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4033 const FieldDecl *FD, 4034 SourceLocation Loc) { 4035 QualType FT = FD->getType(); 4036 LValue FieldLV = EmitLValueForField(LV, FD); 4037 switch (getEvaluationKind(FT)) { 4038 case TEK_Complex: 4039 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4040 case TEK_Aggregate: 4041 return FieldLV.asAggregateRValue(); 4042 case TEK_Scalar: 4043 // This routine is used to load fields one-by-one to perform a copy, so 4044 // don't load reference fields. 4045 if (FD->getType()->isReferenceType()) 4046 return RValue::get(FieldLV.getPointer()); 4047 return EmitLoadOfLValue(FieldLV, Loc); 4048 } 4049 llvm_unreachable("bad evaluation kind"); 4050 } 4051 4052 //===--------------------------------------------------------------------===// 4053 // Expression Emission 4054 //===--------------------------------------------------------------------===// 4055 4056 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4057 ReturnValueSlot ReturnValue) { 4058 // Builtins never have block type. 4059 if (E->getCallee()->getType()->isBlockPointerType()) 4060 return EmitBlockCallExpr(E, ReturnValue); 4061 4062 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4063 return EmitCXXMemberCallExpr(CE, ReturnValue); 4064 4065 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4066 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4067 4068 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4069 if (const CXXMethodDecl *MD = 4070 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4071 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4072 4073 CGCallee callee = EmitCallee(E->getCallee()); 4074 4075 if (callee.isBuiltin()) { 4076 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4077 E, ReturnValue); 4078 } 4079 4080 if (callee.isPseudoDestructor()) { 4081 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4082 } 4083 4084 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4085 } 4086 4087 /// Emit a CallExpr without considering whether it might be a subclass. 4088 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4089 ReturnValueSlot ReturnValue) { 4090 CGCallee Callee = EmitCallee(E->getCallee()); 4091 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4092 } 4093 4094 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4095 if (auto builtinID = FD->getBuiltinID()) { 4096 return CGCallee::forBuiltin(builtinID, FD); 4097 } 4098 4099 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4100 return CGCallee::forDirect(calleePtr, FD); 4101 } 4102 4103 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4104 E = E->IgnoreParens(); 4105 4106 // Look through function-to-pointer decay. 4107 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4108 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4109 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4110 return EmitCallee(ICE->getSubExpr()); 4111 } 4112 4113 // Resolve direct calls. 4114 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4115 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4116 return EmitDirectCallee(*this, FD); 4117 } 4118 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4119 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4120 EmitIgnoredExpr(ME->getBase()); 4121 return EmitDirectCallee(*this, FD); 4122 } 4123 4124 // Look through template substitutions. 4125 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4126 return EmitCallee(NTTP->getReplacement()); 4127 4128 // Treat pseudo-destructor calls differently. 4129 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4130 return CGCallee::forPseudoDestructor(PDE); 4131 } 4132 4133 // Otherwise, we have an indirect reference. 4134 llvm::Value *calleePtr; 4135 QualType functionType; 4136 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4137 calleePtr = EmitScalarExpr(E); 4138 functionType = ptrType->getPointeeType(); 4139 } else { 4140 functionType = E->getType(); 4141 calleePtr = EmitLValue(E).getPointer(); 4142 } 4143 assert(functionType->isFunctionType()); 4144 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4145 E->getReferencedDeclOfCallee()); 4146 CGCallee callee(calleeInfo, calleePtr); 4147 return callee; 4148 } 4149 4150 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4151 // Comma expressions just emit their LHS then their RHS as an l-value. 4152 if (E->getOpcode() == BO_Comma) { 4153 EmitIgnoredExpr(E->getLHS()); 4154 EnsureInsertPoint(); 4155 return EmitLValue(E->getRHS()); 4156 } 4157 4158 if (E->getOpcode() == BO_PtrMemD || 4159 E->getOpcode() == BO_PtrMemI) 4160 return EmitPointerToDataMemberBinaryExpr(E); 4161 4162 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4163 4164 // Note that in all of these cases, __block variables need the RHS 4165 // evaluated first just in case the variable gets moved by the RHS. 4166 4167 switch (getEvaluationKind(E->getType())) { 4168 case TEK_Scalar: { 4169 switch (E->getLHS()->getType().getObjCLifetime()) { 4170 case Qualifiers::OCL_Strong: 4171 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4172 4173 case Qualifiers::OCL_Autoreleasing: 4174 return EmitARCStoreAutoreleasing(E).first; 4175 4176 // No reason to do any of these differently. 4177 case Qualifiers::OCL_None: 4178 case Qualifiers::OCL_ExplicitNone: 4179 case Qualifiers::OCL_Weak: 4180 break; 4181 } 4182 4183 RValue RV = EmitAnyExpr(E->getRHS()); 4184 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4185 if (RV.isScalar()) 4186 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4187 EmitStoreThroughLValue(RV, LV); 4188 return LV; 4189 } 4190 4191 case TEK_Complex: 4192 return EmitComplexAssignmentLValue(E); 4193 4194 case TEK_Aggregate: 4195 return EmitAggExprToLValue(E); 4196 } 4197 llvm_unreachable("bad evaluation kind"); 4198 } 4199 4200 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4201 RValue RV = EmitCallExpr(E); 4202 4203 if (!RV.isScalar()) 4204 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4205 LValueBaseInfo(AlignmentSource::Decl, false)); 4206 4207 assert(E->getCallReturnType(getContext())->isReferenceType() && 4208 "Can't have a scalar return unless the return type is a " 4209 "reference type!"); 4210 4211 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4212 } 4213 4214 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4215 // FIXME: This shouldn't require another copy. 4216 return EmitAggExprToLValue(E); 4217 } 4218 4219 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4220 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4221 && "binding l-value to type which needs a temporary"); 4222 AggValueSlot Slot = CreateAggTemp(E->getType()); 4223 EmitCXXConstructExpr(E, Slot); 4224 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4225 LValueBaseInfo(AlignmentSource::Decl, false)); 4226 } 4227 4228 LValue 4229 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4230 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4231 } 4232 4233 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4234 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4235 ConvertType(E->getType())); 4236 } 4237 4238 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4239 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4240 LValueBaseInfo(AlignmentSource::Decl, false)); 4241 } 4242 4243 LValue 4244 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4245 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4246 Slot.setExternallyDestructed(); 4247 EmitAggExpr(E->getSubExpr(), Slot); 4248 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4249 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4250 LValueBaseInfo(AlignmentSource::Decl, false)); 4251 } 4252 4253 LValue 4254 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4255 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4256 EmitLambdaExpr(E, Slot); 4257 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4258 LValueBaseInfo(AlignmentSource::Decl, false)); 4259 } 4260 4261 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4262 RValue RV = EmitObjCMessageExpr(E); 4263 4264 if (!RV.isScalar()) 4265 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4266 LValueBaseInfo(AlignmentSource::Decl, false)); 4267 4268 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4269 "Can't have a scalar return unless the return type is a " 4270 "reference type!"); 4271 4272 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4273 } 4274 4275 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4276 Address V = 4277 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4278 return MakeAddrLValue(V, E->getType(), 4279 LValueBaseInfo(AlignmentSource::Decl, false)); 4280 } 4281 4282 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4283 const ObjCIvarDecl *Ivar) { 4284 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4285 } 4286 4287 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4288 llvm::Value *BaseValue, 4289 const ObjCIvarDecl *Ivar, 4290 unsigned CVRQualifiers) { 4291 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4292 Ivar, CVRQualifiers); 4293 } 4294 4295 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4296 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4297 llvm::Value *BaseValue = nullptr; 4298 const Expr *BaseExpr = E->getBase(); 4299 Qualifiers BaseQuals; 4300 QualType ObjectTy; 4301 if (E->isArrow()) { 4302 BaseValue = EmitScalarExpr(BaseExpr); 4303 ObjectTy = BaseExpr->getType()->getPointeeType(); 4304 BaseQuals = ObjectTy.getQualifiers(); 4305 } else { 4306 LValue BaseLV = EmitLValue(BaseExpr); 4307 BaseValue = BaseLV.getPointer(); 4308 ObjectTy = BaseExpr->getType(); 4309 BaseQuals = ObjectTy.getQualifiers(); 4310 } 4311 4312 LValue LV = 4313 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4314 BaseQuals.getCVRQualifiers()); 4315 setObjCGCLValueClass(getContext(), E, LV); 4316 return LV; 4317 } 4318 4319 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4320 // Can only get l-value for message expression returning aggregate type 4321 RValue RV = EmitAnyExprToTemp(E); 4322 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4323 LValueBaseInfo(AlignmentSource::Decl, false)); 4324 } 4325 4326 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4327 const CallExpr *E, ReturnValueSlot ReturnValue, 4328 llvm::Value *Chain) { 4329 // Get the actual function type. The callee type will always be a pointer to 4330 // function type or a block pointer type. 4331 assert(CalleeType->isFunctionPointerType() && 4332 "Call must have function pointer type!"); 4333 4334 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4335 4336 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4337 // We can only guarantee that a function is called from the correct 4338 // context/function based on the appropriate target attributes, 4339 // so only check in the case where we have both always_inline and target 4340 // since otherwise we could be making a conditional call after a check for 4341 // the proper cpu features (and it won't cause code generation issues due to 4342 // function based code generation). 4343 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4344 TargetDecl->hasAttr<TargetAttr>()) 4345 checkTargetFeatures(E, FD); 4346 4347 CalleeType = getContext().getCanonicalType(CalleeType); 4348 4349 const auto *FnType = 4350 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4351 4352 CGCallee Callee = OrigCallee; 4353 4354 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4355 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4356 if (llvm::Constant *PrefixSig = 4357 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4358 SanitizerScope SanScope(this); 4359 llvm::Constant *FTRTTIConst = 4360 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4361 llvm::Type *PrefixStructTyElems[] = { 4362 PrefixSig->getType(), 4363 FTRTTIConst->getType() 4364 }; 4365 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4366 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4367 4368 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4369 4370 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4371 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4372 llvm::Value *CalleeSigPtr = 4373 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4374 llvm::Value *CalleeSig = 4375 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4376 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4377 4378 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4379 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4380 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4381 4382 EmitBlock(TypeCheck); 4383 llvm::Value *CalleeRTTIPtr = 4384 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4385 llvm::Value *CalleeRTTI = 4386 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4387 llvm::Value *CalleeRTTIMatch = 4388 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4389 llvm::Constant *StaticData[] = { 4390 EmitCheckSourceLocation(E->getLocStart()), 4391 EmitCheckTypeDescriptor(CalleeType) 4392 }; 4393 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4394 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4395 4396 Builder.CreateBr(Cont); 4397 EmitBlock(Cont); 4398 } 4399 } 4400 4401 // If we are checking indirect calls and this call is indirect, check that the 4402 // function pointer is a member of the bit set for the function type. 4403 if (SanOpts.has(SanitizerKind::CFIICall) && 4404 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4405 SanitizerScope SanScope(this); 4406 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4407 4408 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4409 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4410 4411 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4412 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4413 llvm::Value *TypeTest = Builder.CreateCall( 4414 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4415 4416 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4417 llvm::Constant *StaticData[] = { 4418 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4419 EmitCheckSourceLocation(E->getLocStart()), 4420 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4421 }; 4422 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4423 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4424 CastedCallee, StaticData); 4425 } else { 4426 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4427 SanitizerHandler::CFICheckFail, StaticData, 4428 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4429 } 4430 } 4431 4432 CallArgList Args; 4433 if (Chain) 4434 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4435 CGM.getContext().VoidPtrTy); 4436 4437 // C++17 requires that we evaluate arguments to a call using assignment syntax 4438 // right-to-left, and that we evaluate arguments to certain other operators 4439 // left-to-right. Note that we allow this to override the order dictated by 4440 // the calling convention on the MS ABI, which means that parameter 4441 // destruction order is not necessarily reverse construction order. 4442 // FIXME: Revisit this based on C++ committee response to unimplementability. 4443 EvaluationOrder Order = EvaluationOrder::Default; 4444 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4445 if (OCE->isAssignmentOp()) 4446 Order = EvaluationOrder::ForceRightToLeft; 4447 else { 4448 switch (OCE->getOperator()) { 4449 case OO_LessLess: 4450 case OO_GreaterGreater: 4451 case OO_AmpAmp: 4452 case OO_PipePipe: 4453 case OO_Comma: 4454 case OO_ArrowStar: 4455 Order = EvaluationOrder::ForceLeftToRight; 4456 break; 4457 default: 4458 break; 4459 } 4460 } 4461 } 4462 4463 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4464 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4465 4466 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4467 Args, FnType, /*isChainCall=*/Chain); 4468 4469 // C99 6.5.2.2p6: 4470 // If the expression that denotes the called function has a type 4471 // that does not include a prototype, [the default argument 4472 // promotions are performed]. If the number of arguments does not 4473 // equal the number of parameters, the behavior is undefined. If 4474 // the function is defined with a type that includes a prototype, 4475 // and either the prototype ends with an ellipsis (, ...) or the 4476 // types of the arguments after promotion are not compatible with 4477 // the types of the parameters, the behavior is undefined. If the 4478 // function is defined with a type that does not include a 4479 // prototype, and the types of the arguments after promotion are 4480 // not compatible with those of the parameters after promotion, 4481 // the behavior is undefined [except in some trivial cases]. 4482 // That is, in the general case, we should assume that a call 4483 // through an unprototyped function type works like a *non-variadic* 4484 // call. The way we make this work is to cast to the exact type 4485 // of the promoted arguments. 4486 // 4487 // Chain calls use this same code path to add the invisible chain parameter 4488 // to the function type. 4489 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4490 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4491 CalleeTy = CalleeTy->getPointerTo(); 4492 4493 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4494 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4495 Callee.setFunctionPointer(CalleePtr); 4496 } 4497 4498 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4499 } 4500 4501 LValue CodeGenFunction:: 4502 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4503 Address BaseAddr = Address::invalid(); 4504 if (E->getOpcode() == BO_PtrMemI) { 4505 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4506 } else { 4507 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4508 } 4509 4510 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4511 4512 const MemberPointerType *MPT 4513 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4514 4515 LValueBaseInfo BaseInfo; 4516 Address MemberAddr = 4517 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo); 4518 4519 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo); 4520 } 4521 4522 /// Given the address of a temporary variable, produce an r-value of 4523 /// its type. 4524 RValue CodeGenFunction::convertTempToRValue(Address addr, 4525 QualType type, 4526 SourceLocation loc) { 4527 LValue lvalue = MakeAddrLValue(addr, type, 4528 LValueBaseInfo(AlignmentSource::Decl, false)); 4529 switch (getEvaluationKind(type)) { 4530 case TEK_Complex: 4531 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4532 case TEK_Aggregate: 4533 return lvalue.asAggregateRValue(); 4534 case TEK_Scalar: 4535 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4536 } 4537 llvm_unreachable("bad evaluation kind"); 4538 } 4539 4540 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4541 assert(Val->getType()->isFPOrFPVectorTy()); 4542 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4543 return; 4544 4545 llvm::MDBuilder MDHelper(getLLVMContext()); 4546 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4547 4548 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4549 } 4550 4551 namespace { 4552 struct LValueOrRValue { 4553 LValue LV; 4554 RValue RV; 4555 }; 4556 } 4557 4558 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4559 const PseudoObjectExpr *E, 4560 bool forLValue, 4561 AggValueSlot slot) { 4562 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4563 4564 // Find the result expression, if any. 4565 const Expr *resultExpr = E->getResultExpr(); 4566 LValueOrRValue result; 4567 4568 for (PseudoObjectExpr::const_semantics_iterator 4569 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4570 const Expr *semantic = *i; 4571 4572 // If this semantic expression is an opaque value, bind it 4573 // to the result of its source expression. 4574 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4575 4576 // If this is the result expression, we may need to evaluate 4577 // directly into the slot. 4578 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4579 OVMA opaqueData; 4580 if (ov == resultExpr && ov->isRValue() && !forLValue && 4581 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4582 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4583 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 4584 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4585 BaseInfo); 4586 opaqueData = OVMA::bind(CGF, ov, LV); 4587 result.RV = slot.asRValue(); 4588 4589 // Otherwise, emit as normal. 4590 } else { 4591 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4592 4593 // If this is the result, also evaluate the result now. 4594 if (ov == resultExpr) { 4595 if (forLValue) 4596 result.LV = CGF.EmitLValue(ov); 4597 else 4598 result.RV = CGF.EmitAnyExpr(ov, slot); 4599 } 4600 } 4601 4602 opaques.push_back(opaqueData); 4603 4604 // Otherwise, if the expression is the result, evaluate it 4605 // and remember the result. 4606 } else if (semantic == resultExpr) { 4607 if (forLValue) 4608 result.LV = CGF.EmitLValue(semantic); 4609 else 4610 result.RV = CGF.EmitAnyExpr(semantic, slot); 4611 4612 // Otherwise, evaluate the expression in an ignored context. 4613 } else { 4614 CGF.EmitIgnoredExpr(semantic); 4615 } 4616 } 4617 4618 // Unbind all the opaques now. 4619 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4620 opaques[i].unbind(CGF); 4621 4622 return result; 4623 } 4624 4625 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4626 AggValueSlot slot) { 4627 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4628 } 4629 4630 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4631 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4632 } 4633