1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGRecordLayout.h"
19 #include "CGObjCRuntime.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "llvm/Intrinsics.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===--------------------------------------------------------------------===//
29 //                        Miscellaneous Helper Methods
30 //===--------------------------------------------------------------------===//
31 
32 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
33   unsigned addressSpace =
34     cast<llvm::PointerType>(value->getType())->getAddressSpace();
35 
36   const llvm::PointerType *destType = Int8PtrTy;
37   if (addressSpace)
38     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
39 
40   if (value->getType() == destType) return value;
41   return Builder.CreateBitCast(value, destType);
42 }
43 
44 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
45 /// block.
46 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
47                                                     const llvm::Twine &Name) {
48   if (!Builder.isNamePreserving())
49     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
50   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
51 }
52 
53 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
54                                      llvm::Value *Init) {
55   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
56   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
57   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
58 }
59 
60 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
61                                                 const llvm::Twine &Name) {
62   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
63   // FIXME: Should we prefer the preferred type alignment here?
64   CharUnits Align = getContext().getTypeAlignInChars(Ty);
65   Alloc->setAlignment(Align.getQuantity());
66   return Alloc;
67 }
68 
69 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
70                                                  const llvm::Twine &Name) {
71   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
72   // FIXME: Should we prefer the preferred type alignment here?
73   CharUnits Align = getContext().getTypeAlignInChars(Ty);
74   Alloc->setAlignment(Align.getQuantity());
75   return Alloc;
76 }
77 
78 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
79 /// expression and compare the result against zero, returning an Int1Ty value.
80 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
81   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
82     llvm::Value *MemPtr = EmitScalarExpr(E);
83     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
84   }
85 
86   QualType BoolTy = getContext().BoolTy;
87   if (!E->getType()->isAnyComplexType())
88     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
89 
90   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
91 }
92 
93 /// EmitIgnoredExpr - Emit code to compute the specified expression,
94 /// ignoring the result.
95 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
96   if (E->isRValue())
97     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
98 
99   // Just emit it as an l-value and drop the result.
100   EmitLValue(E);
101 }
102 
103 /// EmitAnyExpr - Emit code to compute the specified expression which
104 /// can have any type.  The result is returned as an RValue struct.
105 /// If this is an aggregate expression, AggSlot indicates where the
106 /// result should be returned.
107 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
108                                     bool IgnoreResult) {
109   if (!hasAggregateLLVMType(E->getType()))
110     return RValue::get(EmitScalarExpr(E, IgnoreResult));
111   else if (E->getType()->isAnyComplexType())
112     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
113 
114   EmitAggExpr(E, AggSlot, IgnoreResult);
115   return AggSlot.asRValue();
116 }
117 
118 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
119 /// always be accessible even if no aggregate location is provided.
120 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
121   AggValueSlot AggSlot = AggValueSlot::ignored();
122 
123   if (hasAggregateLLVMType(E->getType()) &&
124       !E->getType()->isAnyComplexType())
125     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
126   return EmitAnyExpr(E, AggSlot);
127 }
128 
129 /// EmitAnyExprToMem - Evaluate an expression into a given memory
130 /// location.
131 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
132                                        llvm::Value *Location,
133                                        bool IsLocationVolatile,
134                                        bool IsInit) {
135   if (E->getType()->isComplexType())
136     EmitComplexExprIntoAddr(E, Location, IsLocationVolatile);
137   else if (hasAggregateLLVMType(E->getType()))
138     EmitAggExpr(E, AggValueSlot::forAddr(Location, IsLocationVolatile, IsInit));
139   else {
140     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
141     LValue LV = MakeAddrLValue(Location, E->getType());
142     EmitStoreThroughLValue(RV, LV, E->getType());
143   }
144 }
145 
146 namespace {
147 /// \brief An adjustment to be made to the temporary created when emitting a
148 /// reference binding, which accesses a particular subobject of that temporary.
149   struct SubobjectAdjustment {
150     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
151 
152     union {
153       struct {
154         const CastExpr *BasePath;
155         const CXXRecordDecl *DerivedClass;
156       } DerivedToBase;
157 
158       FieldDecl *Field;
159     };
160 
161     SubobjectAdjustment(const CastExpr *BasePath,
162                         const CXXRecordDecl *DerivedClass)
163       : Kind(DerivedToBaseAdjustment) {
164       DerivedToBase.BasePath = BasePath;
165       DerivedToBase.DerivedClass = DerivedClass;
166     }
167 
168     SubobjectAdjustment(FieldDecl *Field)
169       : Kind(FieldAdjustment) {
170       this->Field = Field;
171     }
172   };
173 }
174 
175 static llvm::Value *
176 CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type,
177                          const NamedDecl *InitializedDecl) {
178   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
179     if (VD->hasGlobalStorage()) {
180       llvm::SmallString<256> Name;
181       llvm::raw_svector_ostream Out(Name);
182       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
183       Out.flush();
184 
185       const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
186 
187       // Create the reference temporary.
188       llvm::GlobalValue *RefTemp =
189         new llvm::GlobalVariable(CGF.CGM.getModule(),
190                                  RefTempTy, /*isConstant=*/false,
191                                  llvm::GlobalValue::InternalLinkage,
192                                  llvm::Constant::getNullValue(RefTempTy),
193                                  Name.str());
194       return RefTemp;
195     }
196   }
197 
198   return CGF.CreateMemTemp(Type, "ref.tmp");
199 }
200 
201 static llvm::Value *
202 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
203                             llvm::Value *&ReferenceTemporary,
204                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
205                             const NamedDecl *InitializedDecl) {
206   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
207     E = DAE->getExpr();
208 
209   if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) {
210     CodeGenFunction::RunCleanupsScope Scope(CGF);
211 
212     return EmitExprForReferenceBinding(CGF, TE->getSubExpr(),
213                                        ReferenceTemporary,
214                                        ReferenceTemporaryDtor,
215                                        InitializedDecl);
216   }
217 
218   RValue RV;
219   if (E->isGLValue()) {
220     // Emit the expression as an lvalue.
221     LValue LV = CGF.EmitLValue(E);
222     if (LV.isSimple())
223       return LV.getAddress();
224 
225     // We have to load the lvalue.
226     RV = CGF.EmitLoadOfLValue(LV, E->getType());
227   } else {
228     QualType ResultTy = E->getType();
229 
230     llvm::SmallVector<SubobjectAdjustment, 2> Adjustments;
231     while (true) {
232       if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
233         E = PE->getSubExpr();
234         continue;
235       }
236 
237       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
238         if ((CE->getCastKind() == CK_DerivedToBase ||
239              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
240             E->getType()->isRecordType()) {
241           E = CE->getSubExpr();
242           CXXRecordDecl *Derived
243             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
244           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
245           continue;
246         }
247 
248         if (CE->getCastKind() == CK_NoOp) {
249           E = CE->getSubExpr();
250           continue;
251         }
252       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
253         if (!ME->isArrow() && ME->getBase()->isRValue()) {
254           assert(ME->getBase()->getType()->isRecordType());
255           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
256             E = ME->getBase();
257             Adjustments.push_back(SubobjectAdjustment(Field));
258             continue;
259           }
260         }
261       }
262 
263       // Nothing changed.
264       break;
265     }
266 
267     // Create a reference temporary if necessary.
268     AggValueSlot AggSlot = AggValueSlot::ignored();
269     if (CGF.hasAggregateLLVMType(E->getType()) &&
270         !E->getType()->isAnyComplexType()) {
271       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
272                                                     InitializedDecl);
273       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, false,
274                                       InitializedDecl != 0);
275     }
276 
277     RV = CGF.EmitAnyExpr(E, AggSlot);
278 
279     if (InitializedDecl) {
280       // Get the destructor for the reference temporary.
281       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
282         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
283         if (!ClassDecl->hasTrivialDestructor())
284           ReferenceTemporaryDtor = ClassDecl->getDestructor();
285       }
286     }
287 
288     // Check if need to perform derived-to-base casts and/or field accesses, to
289     // get from the temporary object we created (and, potentially, for which we
290     // extended the lifetime) to the subobject we're binding the reference to.
291     if (!Adjustments.empty()) {
292       llvm::Value *Object = RV.getAggregateAddr();
293       for (unsigned I = Adjustments.size(); I != 0; --I) {
294         SubobjectAdjustment &Adjustment = Adjustments[I-1];
295         switch (Adjustment.Kind) {
296         case SubobjectAdjustment::DerivedToBaseAdjustment:
297           Object =
298               CGF.GetAddressOfBaseClass(Object,
299                                         Adjustment.DerivedToBase.DerivedClass,
300                               Adjustment.DerivedToBase.BasePath->path_begin(),
301                               Adjustment.DerivedToBase.BasePath->path_end(),
302                                         /*NullCheckValue=*/false);
303           break;
304 
305         case SubobjectAdjustment::FieldAdjustment: {
306           LValue LV =
307             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
308           if (LV.isSimple()) {
309             Object = LV.getAddress();
310             break;
311           }
312 
313           // For non-simple lvalues, we actually have to create a copy of
314           // the object we're binding to.
315           QualType T = Adjustment.Field->getType().getNonReferenceType()
316                                                   .getUnqualifiedType();
317           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
318           LValue TempLV = CGF.MakeAddrLValue(Object,
319                                              Adjustment.Field->getType());
320           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV, T), TempLV, T);
321           break;
322         }
323 
324         }
325       }
326 
327       const llvm::Type *ResultPtrTy = CGF.ConvertType(ResultTy)->getPointerTo();
328       return CGF.Builder.CreateBitCast(Object, ResultPtrTy, "temp");
329     }
330   }
331 
332   if (RV.isAggregate())
333     return RV.getAggregateAddr();
334 
335   // Create a temporary variable that we can bind the reference to.
336   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
337                                                 InitializedDecl);
338 
339 
340   unsigned Alignment =
341     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
342   if (RV.isScalar())
343     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
344                           /*Volatile=*/false, Alignment, E->getType());
345   else
346     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
347                            /*Volatile=*/false);
348   return ReferenceTemporary;
349 }
350 
351 RValue
352 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
353                                             const NamedDecl *InitializedDecl) {
354   llvm::Value *ReferenceTemporary = 0;
355   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
356   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
357                                                    ReferenceTemporaryDtor,
358                                                    InitializedDecl);
359   if (!ReferenceTemporaryDtor)
360     return RValue::get(Value);
361 
362   // Make sure to call the destructor for the reference temporary.
363   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
364     if (VD->hasGlobalStorage()) {
365       llvm::Constant *DtorFn =
366         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
367       EmitCXXGlobalDtorRegistration(DtorFn,
368                                     cast<llvm::Constant>(ReferenceTemporary));
369 
370       return RValue::get(Value);
371     }
372   }
373 
374   PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
375 
376   return RValue::get(Value);
377 }
378 
379 
380 /// getAccessedFieldNo - Given an encoded value and a result number, return the
381 /// input field number being accessed.
382 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
383                                              const llvm::Constant *Elts) {
384   if (isa<llvm::ConstantAggregateZero>(Elts))
385     return 0;
386 
387   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
388 }
389 
390 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
391   if (!CatchUndefined)
392     return;
393 
394   // This needs to be to the standard address space.
395   Address = Builder.CreateBitCast(Address, Int8PtrTy);
396 
397   const llvm::Type *IntPtrT = IntPtrTy;
398   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1);
399 
400   // In time, people may want to control this and use a 1 here.
401   llvm::Value *Arg = Builder.getFalse();
402   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
403   llvm::BasicBlock *Cont = createBasicBlock();
404   llvm::BasicBlock *Check = createBasicBlock();
405   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
406   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
407 
408   EmitBlock(Check);
409   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
410                                         llvm::ConstantInt::get(IntPtrTy, Size)),
411                        Cont, getTrapBB());
412   EmitBlock(Cont);
413 }
414 
415 
416 CodeGenFunction::ComplexPairTy CodeGenFunction::
417 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
418                          bool isInc, bool isPre) {
419   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
420                                             LV.isVolatileQualified());
421 
422   llvm::Value *NextVal;
423   if (isa<llvm::IntegerType>(InVal.first->getType())) {
424     uint64_t AmountVal = isInc ? 1 : -1;
425     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
426 
427     // Add the inc/dec to the real part.
428     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
429   } else {
430     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
431     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
432     if (!isInc)
433       FVal.changeSign();
434     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
435 
436     // Add the inc/dec to the real part.
437     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
438   }
439 
440   ComplexPairTy IncVal(NextVal, InVal.second);
441 
442   // Store the updated result through the lvalue.
443   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
444 
445   // If this is a postinc, return the value read from memory, otherwise use the
446   // updated value.
447   return isPre ? IncVal : InVal;
448 }
449 
450 
451 //===----------------------------------------------------------------------===//
452 //                         LValue Expression Emission
453 //===----------------------------------------------------------------------===//
454 
455 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
456   if (Ty->isVoidType())
457     return RValue::get(0);
458 
459   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
460     const llvm::Type *EltTy = ConvertType(CTy->getElementType());
461     llvm::Value *U = llvm::UndefValue::get(EltTy);
462     return RValue::getComplex(std::make_pair(U, U));
463   }
464 
465   // If this is a use of an undefined aggregate type, the aggregate must have an
466   // identifiable address.  Just because the contents of the value are undefined
467   // doesn't mean that the address can't be taken and compared.
468   if (hasAggregateLLVMType(Ty)) {
469     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
470     return RValue::getAggregate(DestPtr);
471   }
472 
473   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
474 }
475 
476 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
477                                               const char *Name) {
478   ErrorUnsupported(E, Name);
479   return GetUndefRValue(E->getType());
480 }
481 
482 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
483                                               const char *Name) {
484   ErrorUnsupported(E, Name);
485   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
486   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
487 }
488 
489 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
490   LValue LV = EmitLValue(E);
491   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
492     EmitCheck(LV.getAddress(),
493               getContext().getTypeSizeInChars(E->getType()).getQuantity());
494   return LV;
495 }
496 
497 /// EmitLValue - Emit code to compute a designator that specifies the location
498 /// of the expression.
499 ///
500 /// This can return one of two things: a simple address or a bitfield reference.
501 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
502 /// an LLVM pointer type.
503 ///
504 /// If this returns a bitfield reference, nothing about the pointee type of the
505 /// LLVM value is known: For example, it may not be a pointer to an integer.
506 ///
507 /// If this returns a normal address, and if the lvalue's C type is fixed size,
508 /// this method guarantees that the returned pointer type will point to an LLVM
509 /// type of the same size of the lvalue's type.  If the lvalue has a variable
510 /// length type, this is not possible.
511 ///
512 LValue CodeGenFunction::EmitLValue(const Expr *E) {
513   switch (E->getStmtClass()) {
514   default: return EmitUnsupportedLValue(E, "l-value expression");
515 
516   case Expr::ObjCSelectorExprClass:
517   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
518   case Expr::ObjCIsaExprClass:
519     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
520   case Expr::BinaryOperatorClass:
521     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
522   case Expr::CompoundAssignOperatorClass:
523     if (!E->getType()->isAnyComplexType())
524       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
525     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
526   case Expr::CallExprClass:
527   case Expr::CXXMemberCallExprClass:
528   case Expr::CXXOperatorCallExprClass:
529     return EmitCallExprLValue(cast<CallExpr>(E));
530   case Expr::VAArgExprClass:
531     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
532   case Expr::DeclRefExprClass:
533     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
534   case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
535   case Expr::PredefinedExprClass:
536     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
537   case Expr::StringLiteralClass:
538     return EmitStringLiteralLValue(cast<StringLiteral>(E));
539   case Expr::ObjCEncodeExprClass:
540     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
541 
542   case Expr::BlockDeclRefExprClass:
543     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
544 
545   case Expr::CXXTemporaryObjectExprClass:
546   case Expr::CXXConstructExprClass:
547     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
548   case Expr::CXXBindTemporaryExprClass:
549     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
550   case Expr::ExprWithCleanupsClass:
551     return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E));
552   case Expr::CXXScalarValueInitExprClass:
553     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
554   case Expr::CXXDefaultArgExprClass:
555     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
556   case Expr::CXXTypeidExprClass:
557     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
558 
559   case Expr::ObjCMessageExprClass:
560     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
561   case Expr::ObjCIvarRefExprClass:
562     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
563   case Expr::ObjCPropertyRefExprClass:
564     return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
565   case Expr::StmtExprClass:
566     return EmitStmtExprLValue(cast<StmtExpr>(E));
567   case Expr::UnaryOperatorClass:
568     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
569   case Expr::ArraySubscriptExprClass:
570     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
571   case Expr::ExtVectorElementExprClass:
572     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
573   case Expr::MemberExprClass:
574     return EmitMemberExpr(cast<MemberExpr>(E));
575   case Expr::CompoundLiteralExprClass:
576     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
577   case Expr::ConditionalOperatorClass:
578     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
579   case Expr::BinaryConditionalOperatorClass:
580     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
581   case Expr::ChooseExprClass:
582     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
583   case Expr::OpaqueValueExprClass:
584     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
585   case Expr::ImplicitCastExprClass:
586   case Expr::CStyleCastExprClass:
587   case Expr::CXXFunctionalCastExprClass:
588   case Expr::CXXStaticCastExprClass:
589   case Expr::CXXDynamicCastExprClass:
590   case Expr::CXXReinterpretCastExprClass:
591   case Expr::CXXConstCastExprClass:
592     return EmitCastLValue(cast<CastExpr>(E));
593   }
594 }
595 
596 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
597                                               unsigned Alignment, QualType Ty,
598                                               llvm::MDNode *TBAAInfo) {
599   llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
600   if (Volatile)
601     Load->setVolatile(true);
602   if (Alignment)
603     Load->setAlignment(Alignment);
604   if (TBAAInfo)
605     CGM.DecorateInstruction(Load, TBAAInfo);
606 
607   return EmitFromMemory(Load, Ty);
608 }
609 
610 static bool isBooleanUnderlyingType(QualType Ty) {
611   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
612     return ET->getDecl()->getIntegerType()->isBooleanType();
613   return false;
614 }
615 
616 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
617   // Bool has a different representation in memory than in registers.
618   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
619     // This should really always be an i1, but sometimes it's already
620     // an i8, and it's awkward to track those cases down.
621     if (Value->getType()->isIntegerTy(1))
622       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
623     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
624   }
625 
626   return Value;
627 }
628 
629 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
630   // Bool has a different representation in memory than in registers.
631   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
632     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
633     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
634   }
635 
636   return Value;
637 }
638 
639 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
640                                         bool Volatile, unsigned Alignment,
641                                         QualType Ty,
642                                         llvm::MDNode *TBAAInfo) {
643   Value = EmitToMemory(Value, Ty);
644   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
645   if (Alignment)
646     Store->setAlignment(Alignment);
647   if (TBAAInfo)
648     CGM.DecorateInstruction(Store, TBAAInfo);
649 }
650 
651 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
652 /// method emits the address of the lvalue, then loads the result as an rvalue,
653 /// returning the rvalue.
654 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
655   if (LV.isObjCWeak()) {
656     // load of a __weak object.
657     llvm::Value *AddrWeakObj = LV.getAddress();
658     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
659                                                              AddrWeakObj));
660   }
661 
662   if (LV.isSimple()) {
663     llvm::Value *Ptr = LV.getAddress();
664 
665     // Functions are l-values that don't require loading.
666     if (ExprType->isFunctionType())
667       return RValue::get(Ptr);
668 
669     // Everything needs a load.
670     return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
671                                         LV.getAlignment(), ExprType,
672                                         LV.getTBAAInfo()));
673 
674   }
675 
676   if (LV.isVectorElt()) {
677     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
678                                           LV.isVolatileQualified(), "tmp");
679     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
680                                                     "vecext"));
681   }
682 
683   // If this is a reference to a subset of the elements of a vector, either
684   // shuffle the input or extract/insert them as appropriate.
685   if (LV.isExtVectorElt())
686     return EmitLoadOfExtVectorElementLValue(LV, ExprType);
687 
688   if (LV.isBitField())
689     return EmitLoadOfBitfieldLValue(LV, ExprType);
690 
691   assert(LV.isPropertyRef() && "Unknown LValue type!");
692   return EmitLoadOfPropertyRefLValue(LV);
693 }
694 
695 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
696                                                  QualType ExprType) {
697   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
698 
699   // Get the output type.
700   const llvm::Type *ResLTy = ConvertType(ExprType);
701   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
702 
703   // Compute the result as an OR of all of the individual component accesses.
704   llvm::Value *Res = 0;
705   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
706     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
707 
708     // Get the field pointer.
709     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
710 
711     // Only offset by the field index if used, so that incoming values are not
712     // required to be structures.
713     if (AI.FieldIndex)
714       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
715 
716     // Offset by the byte offset, if used.
717     if (AI.FieldByteOffset) {
718       Ptr = EmitCastToVoidPtr(Ptr);
719       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs");
720     }
721 
722     // Cast to the access type.
723     const llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
724                                                      AI.AccessWidth,
725                                                     ExprType.getAddressSpace());
726     Ptr = Builder.CreateBitCast(Ptr, PTy);
727 
728     // Perform the load.
729     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
730     if (AI.AccessAlignment)
731       Load->setAlignment(AI.AccessAlignment);
732 
733     // Shift out unused low bits and mask out unused high bits.
734     llvm::Value *Val = Load;
735     if (AI.FieldBitStart)
736       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
737     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
738                                                             AI.TargetBitWidth),
739                             "bf.clear");
740 
741     // Extend or truncate to the target size.
742     if (AI.AccessWidth < ResSizeInBits)
743       Val = Builder.CreateZExt(Val, ResLTy);
744     else if (AI.AccessWidth > ResSizeInBits)
745       Val = Builder.CreateTrunc(Val, ResLTy);
746 
747     // Shift into place, and OR into the result.
748     if (AI.TargetBitOffset)
749       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
750     Res = Res ? Builder.CreateOr(Res, Val) : Val;
751   }
752 
753   // If the bit-field is signed, perform the sign-extension.
754   //
755   // FIXME: This can easily be folded into the load of the high bits, which
756   // could also eliminate the mask of high bits in some situations.
757   if (Info.isSigned()) {
758     unsigned ExtraBits = ResSizeInBits - Info.getSize();
759     if (ExtraBits)
760       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
761                                ExtraBits, "bf.val.sext");
762   }
763 
764   return RValue::get(Res);
765 }
766 
767 // If this is a reference to a subset of the elements of a vector, create an
768 // appropriate shufflevector.
769 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
770                                                          QualType ExprType) {
771   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
772                                         LV.isVolatileQualified(), "tmp");
773 
774   const llvm::Constant *Elts = LV.getExtVectorElts();
775 
776   // If the result of the expression is a non-vector type, we must be extracting
777   // a single element.  Just codegen as an extractelement.
778   const VectorType *ExprVT = ExprType->getAs<VectorType>();
779   if (!ExprVT) {
780     unsigned InIdx = getAccessedFieldNo(0, Elts);
781     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
782     return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
783   }
784 
785   // Always use shuffle vector to try to retain the original program structure
786   unsigned NumResultElts = ExprVT->getNumElements();
787 
788   llvm::SmallVector<llvm::Constant*, 4> Mask;
789   for (unsigned i = 0; i != NumResultElts; ++i) {
790     unsigned InIdx = getAccessedFieldNo(i, Elts);
791     Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
792   }
793 
794   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
795   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
796                                     MaskV, "tmp");
797   return RValue::get(Vec);
798 }
799 
800 
801 
802 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
803 /// lvalue, where both are guaranteed to the have the same type, and that type
804 /// is 'Ty'.
805 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
806                                              QualType Ty) {
807   if (!Dst.isSimple()) {
808     if (Dst.isVectorElt()) {
809       // Read/modify/write the vector, inserting the new element.
810       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
811                                             Dst.isVolatileQualified(), "tmp");
812       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
813                                         Dst.getVectorIdx(), "vecins");
814       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
815       return;
816     }
817 
818     // If this is an update of extended vector elements, insert them as
819     // appropriate.
820     if (Dst.isExtVectorElt())
821       return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
822 
823     if (Dst.isBitField())
824       return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
825 
826     assert(Dst.isPropertyRef() && "Unknown LValue type");
827     return EmitStoreThroughPropertyRefLValue(Src, Dst);
828   }
829 
830   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
831     // load of a __weak object.
832     llvm::Value *LvalueDst = Dst.getAddress();
833     llvm::Value *src = Src.getScalarVal();
834      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
835     return;
836   }
837 
838   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
839     // load of a __strong object.
840     llvm::Value *LvalueDst = Dst.getAddress();
841     llvm::Value *src = Src.getScalarVal();
842     if (Dst.isObjCIvar()) {
843       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
844       const llvm::Type *ResultType = ConvertType(getContext().LongTy);
845       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
846       llvm::Value *dst = RHS;
847       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
848       llvm::Value *LHS =
849         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
850       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
851       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
852                                               BytesBetween);
853     } else if (Dst.isGlobalObjCRef()) {
854       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
855                                                 Dst.isThreadLocalRef());
856     }
857     else
858       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
859     return;
860   }
861 
862   assert(Src.isScalar() && "Can't emit an agg store with this method");
863   EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
864                     Dst.isVolatileQualified(), Dst.getAlignment(), Ty,
865                     Dst.getTBAAInfo());
866 }
867 
868 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
869                                                      QualType Ty,
870                                                      llvm::Value **Result) {
871   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
872 
873   // Get the output type.
874   const llvm::Type *ResLTy = ConvertTypeForMem(Ty);
875   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
876 
877   // Get the source value, truncated to the width of the bit-field.
878   llvm::Value *SrcVal = Src.getScalarVal();
879 
880   if (Ty->isBooleanType())
881     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
882 
883   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
884                                                                 Info.getSize()),
885                              "bf.value");
886 
887   // Return the new value of the bit-field, if requested.
888   if (Result) {
889     // Cast back to the proper type for result.
890     const llvm::Type *SrcTy = Src.getScalarVal()->getType();
891     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
892                                                    "bf.reload.val");
893 
894     // Sign extend if necessary.
895     if (Info.isSigned()) {
896       unsigned ExtraBits = ResSizeInBits - Info.getSize();
897       if (ExtraBits)
898         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
899                                        ExtraBits, "bf.reload.sext");
900     }
901 
902     *Result = ReloadVal;
903   }
904 
905   // Iterate over the components, writing each piece to memory.
906   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
907     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
908 
909     // Get the field pointer.
910     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
911     unsigned addressSpace =
912       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
913 
914     // Only offset by the field index if used, so that incoming values are not
915     // required to be structures.
916     if (AI.FieldIndex)
917       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
918 
919     // Offset by the byte offset, if used.
920     if (AI.FieldByteOffset) {
921       Ptr = EmitCastToVoidPtr(Ptr);
922       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs");
923     }
924 
925     // Cast to the access type.
926     const llvm::Type *AccessLTy =
927       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
928 
929     const llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
930     Ptr = Builder.CreateBitCast(Ptr, PTy);
931 
932     // Extract the piece of the bit-field value to write in this access, limited
933     // to the values that are part of this access.
934     llvm::Value *Val = SrcVal;
935     if (AI.TargetBitOffset)
936       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
937     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
938                                                             AI.TargetBitWidth));
939 
940     // Extend or truncate to the access size.
941     if (ResSizeInBits < AI.AccessWidth)
942       Val = Builder.CreateZExt(Val, AccessLTy);
943     else if (ResSizeInBits > AI.AccessWidth)
944       Val = Builder.CreateTrunc(Val, AccessLTy);
945 
946     // Shift into the position in memory.
947     if (AI.FieldBitStart)
948       Val = Builder.CreateShl(Val, AI.FieldBitStart);
949 
950     // If necessary, load and OR in bits that are outside of the bit-field.
951     if (AI.TargetBitWidth != AI.AccessWidth) {
952       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
953       if (AI.AccessAlignment)
954         Load->setAlignment(AI.AccessAlignment);
955 
956       // Compute the mask for zeroing the bits that are part of the bit-field.
957       llvm::APInt InvMask =
958         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
959                                  AI.FieldBitStart + AI.TargetBitWidth);
960 
961       // Apply the mask and OR in to the value to write.
962       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
963     }
964 
965     // Write the value.
966     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
967                                                  Dst.isVolatileQualified());
968     if (AI.AccessAlignment)
969       Store->setAlignment(AI.AccessAlignment);
970   }
971 }
972 
973 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
974                                                                LValue Dst,
975                                                                QualType Ty) {
976   // This access turns into a read/modify/write of the vector.  Load the input
977   // value now.
978   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
979                                         Dst.isVolatileQualified(), "tmp");
980   const llvm::Constant *Elts = Dst.getExtVectorElts();
981 
982   llvm::Value *SrcVal = Src.getScalarVal();
983 
984   if (const VectorType *VTy = Ty->getAs<VectorType>()) {
985     unsigned NumSrcElts = VTy->getNumElements();
986     unsigned NumDstElts =
987        cast<llvm::VectorType>(Vec->getType())->getNumElements();
988     if (NumDstElts == NumSrcElts) {
989       // Use shuffle vector is the src and destination are the same number of
990       // elements and restore the vector mask since it is on the side it will be
991       // stored.
992       llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
993       for (unsigned i = 0; i != NumSrcElts; ++i) {
994         unsigned InIdx = getAccessedFieldNo(i, Elts);
995         Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
996       }
997 
998       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
999       Vec = Builder.CreateShuffleVector(SrcVal,
1000                                         llvm::UndefValue::get(Vec->getType()),
1001                                         MaskV, "tmp");
1002     } else if (NumDstElts > NumSrcElts) {
1003       // Extended the source vector to the same length and then shuffle it
1004       // into the destination.
1005       // FIXME: since we're shuffling with undef, can we just use the indices
1006       //        into that?  This could be simpler.
1007       llvm::SmallVector<llvm::Constant*, 4> ExtMask;
1008       unsigned i;
1009       for (i = 0; i != NumSrcElts; ++i)
1010         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1011       for (; i != NumDstElts; ++i)
1012         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1013       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1014       llvm::Value *ExtSrcVal =
1015         Builder.CreateShuffleVector(SrcVal,
1016                                     llvm::UndefValue::get(SrcVal->getType()),
1017                                     ExtMaskV, "tmp");
1018       // build identity
1019       llvm::SmallVector<llvm::Constant*, 4> Mask;
1020       for (unsigned i = 0; i != NumDstElts; ++i)
1021         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1022 
1023       // modify when what gets shuffled in
1024       for (unsigned i = 0; i != NumSrcElts; ++i) {
1025         unsigned Idx = getAccessedFieldNo(i, Elts);
1026         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1027       }
1028       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1029       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
1030     } else {
1031       // We should never shorten the vector
1032       assert(0 && "unexpected shorten vector length");
1033     }
1034   } else {
1035     // If the Src is a scalar (not a vector) it must be updating one element.
1036     unsigned InIdx = getAccessedFieldNo(0, Elts);
1037     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1038     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
1039   }
1040 
1041   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1042 }
1043 
1044 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1045 // generating write-barries API. It is currently a global, ivar,
1046 // or neither.
1047 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1048                                  LValue &LV) {
1049   if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
1050     return;
1051 
1052   if (isa<ObjCIvarRefExpr>(E)) {
1053     LV.setObjCIvar(true);
1054     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1055     LV.setBaseIvarExp(Exp->getBase());
1056     LV.setObjCArray(E->getType()->isArrayType());
1057     return;
1058   }
1059 
1060   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1061     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1062       if (VD->hasGlobalStorage()) {
1063         LV.setGlobalObjCRef(true);
1064         LV.setThreadLocalRef(VD->isThreadSpecified());
1065       }
1066     }
1067     LV.setObjCArray(E->getType()->isArrayType());
1068     return;
1069   }
1070 
1071   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1072     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1073     return;
1074   }
1075 
1076   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1077     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1078     if (LV.isObjCIvar()) {
1079       // If cast is to a structure pointer, follow gcc's behavior and make it
1080       // a non-ivar write-barrier.
1081       QualType ExpTy = E->getType();
1082       if (ExpTy->isPointerType())
1083         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1084       if (ExpTy->isRecordType())
1085         LV.setObjCIvar(false);
1086     }
1087     return;
1088   }
1089   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1090     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1091     return;
1092   }
1093 
1094   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1095     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1096     return;
1097   }
1098 
1099   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1100     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1101     if (LV.isObjCIvar() && !LV.isObjCArray())
1102       // Using array syntax to assigning to what an ivar points to is not
1103       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1104       LV.setObjCIvar(false);
1105     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1106       // Using array syntax to assigning to what global points to is not
1107       // same as assigning to the global itself. {id *G;} G[i] = 0;
1108       LV.setGlobalObjCRef(false);
1109     return;
1110   }
1111 
1112   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1113     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1114     // We don't know if member is an 'ivar', but this flag is looked at
1115     // only in the context of LV.isObjCIvar().
1116     LV.setObjCArray(E->getType()->isArrayType());
1117     return;
1118   }
1119 }
1120 
1121 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1122                                       const Expr *E, const VarDecl *VD) {
1123   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1124          "Var decl must have external storage or be a file var decl!");
1125 
1126   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1127   if (VD->getType()->isReferenceType())
1128     V = CGF.Builder.CreateLoad(V, "tmp");
1129   unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity();
1130   LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1131   setObjCGCLValueClass(CGF.getContext(), E, LV);
1132   return LV;
1133 }
1134 
1135 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1136                                       const Expr *E, const FunctionDecl *FD) {
1137   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1138   if (!FD->hasPrototype()) {
1139     if (const FunctionProtoType *Proto =
1140             FD->getType()->getAs<FunctionProtoType>()) {
1141       // Ugly case: for a K&R-style definition, the type of the definition
1142       // isn't the same as the type of a use.  Correct for this with a
1143       // bitcast.
1144       QualType NoProtoType =
1145           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1146       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1147       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
1148     }
1149   }
1150   unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity();
1151   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1152 }
1153 
1154 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1155   const NamedDecl *ND = E->getDecl();
1156   unsigned Alignment = getContext().getDeclAlign(ND).getQuantity();
1157 
1158   if (ND->hasAttr<WeakRefAttr>()) {
1159     const ValueDecl *VD = cast<ValueDecl>(ND);
1160     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1161     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1162   }
1163 
1164   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1165 
1166     // Check if this is a global variable.
1167     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1168       return EmitGlobalVarDeclLValue(*this, E, VD);
1169 
1170     bool NonGCable = VD->hasLocalStorage() &&
1171                      !VD->getType()->isReferenceType() &&
1172                      !VD->hasAttr<BlocksAttr>();
1173 
1174     llvm::Value *V = LocalDeclMap[VD];
1175     if (!V && VD->isStaticLocal())
1176       V = CGM.getStaticLocalDeclAddress(VD);
1177     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1178 
1179     if (VD->hasAttr<BlocksAttr>())
1180       V = BuildBlockByrefAddress(V, VD);
1181 
1182     if (VD->getType()->isReferenceType())
1183       V = Builder.CreateLoad(V, "tmp");
1184 
1185     LValue LV = MakeAddrLValue(V, E->getType(), Alignment);
1186     if (NonGCable) {
1187       LV.getQuals().removeObjCGCAttr();
1188       LV.setNonGC(true);
1189     }
1190     setObjCGCLValueClass(getContext(), E, LV);
1191     return LV;
1192   }
1193 
1194   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1195     return EmitFunctionDeclLValue(*this, E, fn);
1196 
1197   assert(false && "Unhandled DeclRefExpr");
1198 
1199   // an invalid LValue, but the assert will
1200   // ensure that this point is never reached.
1201   return LValue();
1202 }
1203 
1204 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1205   unsigned Alignment =
1206     getContext().getDeclAlign(E->getDecl()).getQuantity();
1207   return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1208 }
1209 
1210 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1211   // __extension__ doesn't affect lvalue-ness.
1212   if (E->getOpcode() == UO_Extension)
1213     return EmitLValue(E->getSubExpr());
1214 
1215   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1216   switch (E->getOpcode()) {
1217   default: assert(0 && "Unknown unary operator lvalue!");
1218   case UO_Deref: {
1219     QualType T = E->getSubExpr()->getType()->getPointeeType();
1220     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1221 
1222     LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1223     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1224 
1225     // We should not generate __weak write barrier on indirect reference
1226     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1227     // But, we continue to generate __strong write barrier on indirect write
1228     // into a pointer to object.
1229     if (getContext().getLangOptions().ObjC1 &&
1230         getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
1231         LV.isObjCWeak())
1232       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1233     return LV;
1234   }
1235   case UO_Real:
1236   case UO_Imag: {
1237     LValue LV = EmitLValue(E->getSubExpr());
1238     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1239     llvm::Value *Addr = LV.getAddress();
1240 
1241     // real and imag are valid on scalars.  This is a faster way of
1242     // testing that.
1243     if (!cast<llvm::PointerType>(Addr->getType())
1244            ->getElementType()->isStructTy()) {
1245       assert(E->getSubExpr()->getType()->isArithmeticType());
1246       return LV;
1247     }
1248 
1249     assert(E->getSubExpr()->getType()->isAnyComplexType());
1250 
1251     unsigned Idx = E->getOpcode() == UO_Imag;
1252     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1253                                                   Idx, "idx"),
1254                           ExprTy);
1255   }
1256   case UO_PreInc:
1257   case UO_PreDec: {
1258     LValue LV = EmitLValue(E->getSubExpr());
1259     bool isInc = E->getOpcode() == UO_PreInc;
1260 
1261     if (E->getType()->isAnyComplexType())
1262       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1263     else
1264       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1265     return LV;
1266   }
1267   }
1268 }
1269 
1270 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1271   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1272                         E->getType());
1273 }
1274 
1275 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1276   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1277                         E->getType());
1278 }
1279 
1280 
1281 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1282   switch (E->getIdentType()) {
1283   default:
1284     return EmitUnsupportedLValue(E, "predefined expression");
1285 
1286   case PredefinedExpr::Func:
1287   case PredefinedExpr::Function:
1288   case PredefinedExpr::PrettyFunction: {
1289     unsigned Type = E->getIdentType();
1290     std::string GlobalVarName;
1291 
1292     switch (Type) {
1293     default: assert(0 && "Invalid type");
1294     case PredefinedExpr::Func:
1295       GlobalVarName = "__func__.";
1296       break;
1297     case PredefinedExpr::Function:
1298       GlobalVarName = "__FUNCTION__.";
1299       break;
1300     case PredefinedExpr::PrettyFunction:
1301       GlobalVarName = "__PRETTY_FUNCTION__.";
1302       break;
1303     }
1304 
1305     llvm::StringRef FnName = CurFn->getName();
1306     if (FnName.startswith("\01"))
1307       FnName = FnName.substr(1);
1308     GlobalVarName += FnName;
1309 
1310     const Decl *CurDecl = CurCodeDecl;
1311     if (CurDecl == 0)
1312       CurDecl = getContext().getTranslationUnitDecl();
1313 
1314     std::string FunctionName =
1315         (isa<BlockDecl>(CurDecl)
1316          ? FnName.str()
1317          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1318 
1319     llvm::Constant *C =
1320       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1321     return MakeAddrLValue(C, E->getType());
1322   }
1323   }
1324 }
1325 
1326 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1327   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1328 
1329   // If we are not optimzing, don't collapse all calls to trap in the function
1330   // to the same call, that way, in the debugger they can see which operation
1331   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1332   // to just one per function to save on codesize.
1333   if (GCO.OptimizationLevel && TrapBB)
1334     return TrapBB;
1335 
1336   llvm::BasicBlock *Cont = 0;
1337   if (HaveInsertPoint()) {
1338     Cont = createBasicBlock("cont");
1339     EmitBranch(Cont);
1340   }
1341   TrapBB = createBasicBlock("trap");
1342   EmitBlock(TrapBB);
1343 
1344   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0);
1345   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1346   TrapCall->setDoesNotReturn();
1347   TrapCall->setDoesNotThrow();
1348   Builder.CreateUnreachable();
1349 
1350   if (Cont)
1351     EmitBlock(Cont);
1352   return TrapBB;
1353 }
1354 
1355 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1356 /// array to pointer, return the array subexpression.
1357 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1358   // If this isn't just an array->pointer decay, bail out.
1359   const CastExpr *CE = dyn_cast<CastExpr>(E);
1360   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1361     return 0;
1362 
1363   // If this is a decay from variable width array, bail out.
1364   const Expr *SubExpr = CE->getSubExpr();
1365   if (SubExpr->getType()->isVariableArrayType())
1366     return 0;
1367 
1368   return SubExpr;
1369 }
1370 
1371 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1372   // The index must always be an integer, which is not an aggregate.  Emit it.
1373   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1374   QualType IdxTy  = E->getIdx()->getType();
1375   bool IdxSigned = IdxTy->isSignedIntegerType();
1376 
1377   // If the base is a vector type, then we are forming a vector element lvalue
1378   // with this subscript.
1379   if (E->getBase()->getType()->isVectorType()) {
1380     // Emit the vector as an lvalue to get its address.
1381     LValue LHS = EmitLValue(E->getBase());
1382     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1383     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1384     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1385                                  E->getBase()->getType().getCVRQualifiers());
1386   }
1387 
1388   // Extend or truncate the index type to 32 or 64-bits.
1389   if (Idx->getType() != IntPtrTy)
1390     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1391 
1392   // FIXME: As llvm implements the object size checking, this can come out.
1393   if (CatchUndefined) {
1394     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1395       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1396         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1397           if (const ConstantArrayType *CAT
1398               = getContext().getAsConstantArrayType(DRE->getType())) {
1399             llvm::APInt Size = CAT->getSize();
1400             llvm::BasicBlock *Cont = createBasicBlock("cont");
1401             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1402                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1403                                  Cont, getTrapBB());
1404             EmitBlock(Cont);
1405           }
1406         }
1407       }
1408     }
1409   }
1410 
1411   // We know that the pointer points to a type of the correct size, unless the
1412   // size is a VLA or Objective-C interface.
1413   llvm::Value *Address = 0;
1414   if (const VariableArrayType *VAT =
1415         getContext().getAsVariableArrayType(E->getType())) {
1416     llvm::Value *VLASize = GetVLASize(VAT);
1417 
1418     Idx = Builder.CreateMul(Idx, VLASize);
1419 
1420     // The base must be a pointer, which is not an aggregate.  Emit it.
1421     llvm::Value *Base = EmitScalarExpr(E->getBase());
1422 
1423     Address = EmitCastToVoidPtr(Base);
1424     Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1425     Address = Builder.CreateBitCast(Address, Base->getType());
1426   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1427     // Indexing over an interface, as in "NSString *P; P[4];"
1428     llvm::Value *InterfaceSize =
1429       llvm::ConstantInt::get(Idx->getType(),
1430           getContext().getTypeSizeInChars(OIT).getQuantity());
1431 
1432     Idx = Builder.CreateMul(Idx, InterfaceSize);
1433 
1434     // The base must be a pointer, which is not an aggregate.  Emit it.
1435     llvm::Value *Base = EmitScalarExpr(E->getBase());
1436     Address = EmitCastToVoidPtr(Base);
1437     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1438     Address = Builder.CreateBitCast(Address, Base->getType());
1439   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1440     // If this is A[i] where A is an array, the frontend will have decayed the
1441     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1442     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1443     // "gep x, i" here.  Emit one "gep A, 0, i".
1444     assert(Array->getType()->isArrayType() &&
1445            "Array to pointer decay must have array source type!");
1446     llvm::Value *ArrayPtr = EmitLValue(Array).getAddress();
1447     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1448     llvm::Value *Args[] = { Zero, Idx };
1449 
1450     Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx");
1451   } else {
1452     // The base must be a pointer, which is not an aggregate.  Emit it.
1453     llvm::Value *Base = EmitScalarExpr(E->getBase());
1454     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1455   }
1456 
1457   QualType T = E->getBase()->getType()->getPointeeType();
1458   assert(!T.isNull() &&
1459          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1460 
1461   LValue LV = MakeAddrLValue(Address, T);
1462   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1463 
1464   if (getContext().getLangOptions().ObjC1 &&
1465       getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1466     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1467     setObjCGCLValueClass(getContext(), E, LV);
1468   }
1469   return LV;
1470 }
1471 
1472 static
1473 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1474                                        llvm::SmallVector<unsigned, 4> &Elts) {
1475   llvm::SmallVector<llvm::Constant*, 4> CElts;
1476 
1477   const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1478   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1479     CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1480 
1481   return llvm::ConstantVector::get(CElts);
1482 }
1483 
1484 LValue CodeGenFunction::
1485 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1486   // Emit the base vector as an l-value.
1487   LValue Base;
1488 
1489   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1490   if (E->isArrow()) {
1491     // If it is a pointer to a vector, emit the address and form an lvalue with
1492     // it.
1493     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1494     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1495     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1496     Base.getQuals().removeObjCGCAttr();
1497   } else if (E->getBase()->isGLValue()) {
1498     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1499     // emit the base as an lvalue.
1500     assert(E->getBase()->getType()->isVectorType());
1501     Base = EmitLValue(E->getBase());
1502   } else {
1503     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1504     assert(E->getBase()->getType()->getAs<VectorType>() &&
1505            "Result must be a vector");
1506     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1507 
1508     // Store the vector to memory (because LValue wants an address).
1509     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1510     Builder.CreateStore(Vec, VecMem);
1511     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1512   }
1513 
1514   // Encode the element access list into a vector of unsigned indices.
1515   llvm::SmallVector<unsigned, 4> Indices;
1516   E->getEncodedElementAccess(Indices);
1517 
1518   if (Base.isSimple()) {
1519     llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1520     return LValue::MakeExtVectorElt(Base.getAddress(), CV,
1521                                     Base.getVRQualifiers());
1522   }
1523   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1524 
1525   llvm::Constant *BaseElts = Base.getExtVectorElts();
1526   llvm::SmallVector<llvm::Constant *, 4> CElts;
1527 
1528   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1529     if (isa<llvm::ConstantAggregateZero>(BaseElts))
1530       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1531     else
1532       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1533   }
1534   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1535   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
1536                                   Base.getVRQualifiers());
1537 }
1538 
1539 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1540   bool isNonGC = false;
1541   Expr *BaseExpr = E->getBase();
1542   llvm::Value *BaseValue = NULL;
1543   Qualifiers BaseQuals;
1544 
1545   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1546   if (E->isArrow()) {
1547     BaseValue = EmitScalarExpr(BaseExpr);
1548     const PointerType *PTy =
1549       BaseExpr->getType()->getAs<PointerType>();
1550     BaseQuals = PTy->getPointeeType().getQualifiers();
1551   } else {
1552     LValue BaseLV = EmitLValue(BaseExpr);
1553     if (BaseLV.isNonGC())
1554       isNonGC = true;
1555     // FIXME: this isn't right for bitfields.
1556     BaseValue = BaseLV.getAddress();
1557     QualType BaseTy = BaseExpr->getType();
1558     BaseQuals = BaseTy.getQualifiers();
1559   }
1560 
1561   NamedDecl *ND = E->getMemberDecl();
1562   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1563     LValue LV = EmitLValueForField(BaseValue, Field,
1564                                    BaseQuals.getCVRQualifiers());
1565     LV.setNonGC(isNonGC);
1566     setObjCGCLValueClass(getContext(), E, LV);
1567     return LV;
1568   }
1569 
1570   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1571     return EmitGlobalVarDeclLValue(*this, E, VD);
1572 
1573   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1574     return EmitFunctionDeclLValue(*this, E, FD);
1575 
1576   assert(false && "Unhandled member declaration!");
1577   return LValue();
1578 }
1579 
1580 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1581                                               const FieldDecl *Field,
1582                                               unsigned CVRQualifiers) {
1583   const CGRecordLayout &RL =
1584     CGM.getTypes().getCGRecordLayout(Field->getParent());
1585   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1586   return LValue::MakeBitfield(BaseValue, Info,
1587                              Field->getType().getCVRQualifiers()|CVRQualifiers);
1588 }
1589 
1590 /// EmitLValueForAnonRecordField - Given that the field is a member of
1591 /// an anonymous struct or union buried inside a record, and given
1592 /// that the base value is a pointer to the enclosing record, derive
1593 /// an lvalue for the ultimate field.
1594 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1595                                              const IndirectFieldDecl *Field,
1596                                                      unsigned CVRQualifiers) {
1597   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1598     IEnd = Field->chain_end();
1599   while (true) {
1600     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), CVRQualifiers);
1601     if (++I == IEnd) return LV;
1602 
1603     assert(LV.isSimple());
1604     BaseValue = LV.getAddress();
1605     CVRQualifiers |= LV.getVRQualifiers();
1606   }
1607 }
1608 
1609 LValue CodeGenFunction::EmitLValueForField(llvm::Value *BaseValue,
1610                                            const FieldDecl *Field,
1611                                            unsigned CVRQualifiers) {
1612   if (Field->isBitField())
1613     return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
1614 
1615   const CGRecordLayout &RL =
1616     CGM.getTypes().getCGRecordLayout(Field->getParent());
1617   unsigned idx = RL.getLLVMFieldNo(Field);
1618   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1619 
1620   // Match union field type.
1621   if (Field->getParent()->isUnion()) {
1622     const llvm::Type *FieldTy =
1623       CGM.getTypes().ConvertTypeForMem(Field->getType());
1624     const llvm::PointerType *BaseTy =
1625       cast<llvm::PointerType>(BaseValue->getType());
1626     unsigned AS = BaseTy->getAddressSpace();
1627     V = Builder.CreateBitCast(V,
1628                               llvm::PointerType::get(FieldTy, AS),
1629                               "tmp");
1630   }
1631   if (Field->getType()->isReferenceType())
1632     V = Builder.CreateLoad(V, "tmp");
1633 
1634   unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
1635   LValue LV = MakeAddrLValue(V, Field->getType(), Alignment);
1636   LV.getQuals().addCVRQualifiers(CVRQualifiers);
1637 
1638   // __weak attribute on a field is ignored.
1639   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1640     LV.getQuals().removeObjCGCAttr();
1641 
1642   return LV;
1643 }
1644 
1645 LValue
1646 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1647                                                   const FieldDecl *Field,
1648                                                   unsigned CVRQualifiers) {
1649   QualType FieldType = Field->getType();
1650 
1651   if (!FieldType->isReferenceType())
1652     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1653 
1654   const CGRecordLayout &RL =
1655     CGM.getTypes().getCGRecordLayout(Field->getParent());
1656   unsigned idx = RL.getLLVMFieldNo(Field);
1657   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1658 
1659   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1660 
1661   unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
1662   return MakeAddrLValue(V, FieldType, Alignment);
1663 }
1664 
1665 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1666   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1667   const Expr *InitExpr = E->getInitializer();
1668   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1669 
1670   EmitAnyExprToMem(InitExpr, DeclPtr, /*Volatile*/ false, /*Init*/ true);
1671 
1672   return Result;
1673 }
1674 
1675 LValue CodeGenFunction::
1676 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1677   if (!expr->isGLValue()) {
1678     // ?: here should be an aggregate.
1679     assert((hasAggregateLLVMType(expr->getType()) &&
1680             !expr->getType()->isAnyComplexType()) &&
1681            "Unexpected conditional operator!");
1682     return EmitAggExprToLValue(expr);
1683   }
1684 
1685   const Expr *condExpr = expr->getCond();
1686 
1687   if (int condValue = ConstantFoldsToSimpleInteger(condExpr)) {
1688     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1689     if (condValue == -1) std::swap(live, dead);
1690 
1691     if (!ContainsLabel(dead))
1692       return EmitLValue(live);
1693   }
1694 
1695   OpaqueValueMapping binding(*this, expr);
1696 
1697   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
1698   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
1699   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
1700 
1701   ConditionalEvaluation eval(*this);
1702   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
1703 
1704   // Any temporaries created here are conditional.
1705   EmitBlock(lhsBlock);
1706   eval.begin(*this);
1707   LValue lhs = EmitLValue(expr->getTrueExpr());
1708   eval.end(*this);
1709 
1710   if (!lhs.isSimple())
1711     return EmitUnsupportedLValue(expr, "conditional operator");
1712 
1713   lhsBlock = Builder.GetInsertBlock();
1714   Builder.CreateBr(contBlock);
1715 
1716   // Any temporaries created here are conditional.
1717   EmitBlock(rhsBlock);
1718   eval.begin(*this);
1719   LValue rhs = EmitLValue(expr->getFalseExpr());
1720   eval.end(*this);
1721   if (!rhs.isSimple())
1722     return EmitUnsupportedLValue(expr, "conditional operator");
1723   rhsBlock = Builder.GetInsertBlock();
1724 
1725   EmitBlock(contBlock);
1726 
1727   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(),
1728                                          "cond-lvalue");
1729   phi->reserveOperandSpace(2);
1730   phi->addIncoming(lhs.getAddress(), lhsBlock);
1731   phi->addIncoming(rhs.getAddress(), rhsBlock);
1732   return MakeAddrLValue(phi, expr->getType());
1733 }
1734 
1735 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1736 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
1737 /// otherwise if a cast is needed by the code generator in an lvalue context,
1738 /// then it must mean that we need the address of an aggregate in order to
1739 /// access one of its fields.  This can happen for all the reasons that casts
1740 /// are permitted with aggregate result, including noop aggregate casts, and
1741 /// cast from scalar to union.
1742 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1743   switch (E->getCastKind()) {
1744   case CK_ToVoid:
1745     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
1746 
1747   case CK_Dependent:
1748     llvm_unreachable("dependent cast kind in IR gen!");
1749 
1750   case CK_GetObjCProperty: {
1751     LValue LV = EmitLValue(E->getSubExpr());
1752     assert(LV.isPropertyRef());
1753     RValue RV = EmitLoadOfPropertyRefLValue(LV);
1754 
1755     // Property is an aggregate r-value.
1756     if (RV.isAggregate()) {
1757       return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
1758     }
1759 
1760     // Implicit property returns an l-value.
1761     assert(RV.isScalar());
1762     return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType());
1763   }
1764 
1765   case CK_NoOp:
1766   case CK_LValueToRValue:
1767     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
1768         || E->getType()->isRecordType())
1769       return EmitLValue(E->getSubExpr());
1770     // Fall through to synthesize a temporary.
1771 
1772   case CK_BitCast:
1773   case CK_ArrayToPointerDecay:
1774   case CK_FunctionToPointerDecay:
1775   case CK_NullToMemberPointer:
1776   case CK_NullToPointer:
1777   case CK_IntegralToPointer:
1778   case CK_PointerToIntegral:
1779   case CK_PointerToBoolean:
1780   case CK_VectorSplat:
1781   case CK_IntegralCast:
1782   case CK_IntegralToBoolean:
1783   case CK_IntegralToFloating:
1784   case CK_FloatingToIntegral:
1785   case CK_FloatingToBoolean:
1786   case CK_FloatingCast:
1787   case CK_FloatingRealToComplex:
1788   case CK_FloatingComplexToReal:
1789   case CK_FloatingComplexToBoolean:
1790   case CK_FloatingComplexCast:
1791   case CK_FloatingComplexToIntegralComplex:
1792   case CK_IntegralRealToComplex:
1793   case CK_IntegralComplexToReal:
1794   case CK_IntegralComplexToBoolean:
1795   case CK_IntegralComplexCast:
1796   case CK_IntegralComplexToFloatingComplex:
1797   case CK_DerivedToBaseMemberPointer:
1798   case CK_BaseToDerivedMemberPointer:
1799   case CK_MemberPointerToBoolean:
1800   case CK_AnyPointerToBlockPointerCast: {
1801     // These casts only produce lvalues when we're binding a reference to a
1802     // temporary realized from a (converted) pure rvalue. Emit the expression
1803     // as a value, copy it into a temporary, and return an lvalue referring to
1804     // that temporary.
1805     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
1806     EmitAnyExprToMem(E, V, false, false);
1807     return MakeAddrLValue(V, E->getType());
1808   }
1809 
1810   case CK_Dynamic: {
1811     LValue LV = EmitLValue(E->getSubExpr());
1812     llvm::Value *V = LV.getAddress();
1813     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
1814     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
1815   }
1816 
1817   case CK_ConstructorConversion:
1818   case CK_UserDefinedConversion:
1819   case CK_AnyPointerToObjCPointerCast:
1820     return EmitLValue(E->getSubExpr());
1821 
1822   case CK_UncheckedDerivedToBase:
1823   case CK_DerivedToBase: {
1824     const RecordType *DerivedClassTy =
1825       E->getSubExpr()->getType()->getAs<RecordType>();
1826     CXXRecordDecl *DerivedClassDecl =
1827       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1828 
1829     LValue LV = EmitLValue(E->getSubExpr());
1830     llvm::Value *This = LV.getAddress();
1831 
1832     // Perform the derived-to-base conversion
1833     llvm::Value *Base =
1834       GetAddressOfBaseClass(This, DerivedClassDecl,
1835                             E->path_begin(), E->path_end(),
1836                             /*NullCheckValue=*/false);
1837 
1838     return MakeAddrLValue(Base, E->getType());
1839   }
1840   case CK_ToUnion:
1841     return EmitAggExprToLValue(E);
1842   case CK_BaseToDerived: {
1843     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
1844     CXXRecordDecl *DerivedClassDecl =
1845       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1846 
1847     LValue LV = EmitLValue(E->getSubExpr());
1848 
1849     // Perform the base-to-derived conversion
1850     llvm::Value *Derived =
1851       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
1852                                E->path_begin(), E->path_end(),
1853                                /*NullCheckValue=*/false);
1854 
1855     return MakeAddrLValue(Derived, E->getType());
1856   }
1857   case CK_LValueBitCast: {
1858     // This must be a reinterpret_cast (or c-style equivalent).
1859     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
1860 
1861     LValue LV = EmitLValue(E->getSubExpr());
1862     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1863                                            ConvertType(CE->getTypeAsWritten()));
1864     return MakeAddrLValue(V, E->getType());
1865   }
1866   case CK_ObjCObjectLValueCast: {
1867     LValue LV = EmitLValue(E->getSubExpr());
1868     QualType ToType = getContext().getLValueReferenceType(E->getType());
1869     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1870                                            ConvertType(ToType));
1871     return MakeAddrLValue(V, E->getType());
1872   }
1873   }
1874 
1875   llvm_unreachable("Unhandled lvalue cast kind?");
1876 }
1877 
1878 LValue CodeGenFunction::EmitNullInitializationLValue(
1879                                               const CXXScalarValueInitExpr *E) {
1880   QualType Ty = E->getType();
1881   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
1882   EmitNullInitialization(LV.getAddress(), Ty);
1883   return LV;
1884 }
1885 
1886 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
1887   assert(e->isGLValue() || e->getType()->isRecordType());
1888   return getOpaqueLValueMapping(e);
1889 }
1890 
1891 //===--------------------------------------------------------------------===//
1892 //                             Expression Emission
1893 //===--------------------------------------------------------------------===//
1894 
1895 
1896 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
1897                                      ReturnValueSlot ReturnValue) {
1898   // Builtins never have block type.
1899   if (E->getCallee()->getType()->isBlockPointerType())
1900     return EmitBlockCallExpr(E, ReturnValue);
1901 
1902   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
1903     return EmitCXXMemberCallExpr(CE, ReturnValue);
1904 
1905   const Decl *TargetDecl = 0;
1906   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
1907     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
1908       TargetDecl = DRE->getDecl();
1909       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
1910         if (unsigned builtinID = FD->getBuiltinID())
1911           return EmitBuiltinExpr(FD, builtinID, E);
1912     }
1913   }
1914 
1915   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
1916     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
1917       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
1918 
1919   if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
1920     // C++ [expr.pseudo]p1:
1921     //   The result shall only be used as the operand for the function call
1922     //   operator (), and the result of such a call has type void. The only
1923     //   effect is the evaluation of the postfix-expression before the dot or
1924     //   arrow.
1925     EmitScalarExpr(E->getCallee());
1926     return RValue::get(0);
1927   }
1928 
1929   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
1930   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
1931                   E->arg_begin(), E->arg_end(), TargetDecl);
1932 }
1933 
1934 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
1935   // Comma expressions just emit their LHS then their RHS as an l-value.
1936   if (E->getOpcode() == BO_Comma) {
1937     EmitIgnoredExpr(E->getLHS());
1938     EnsureInsertPoint();
1939     return EmitLValue(E->getRHS());
1940   }
1941 
1942   if (E->getOpcode() == BO_PtrMemD ||
1943       E->getOpcode() == BO_PtrMemI)
1944     return EmitPointerToDataMemberBinaryExpr(E);
1945 
1946   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
1947 
1948   if (!hasAggregateLLVMType(E->getType())) {
1949     // __block variables need the RHS evaluated first.
1950     RValue RV = EmitAnyExpr(E->getRHS());
1951     LValue LV = EmitLValue(E->getLHS());
1952     EmitStoreThroughLValue(RV, LV, E->getType());
1953     return LV;
1954   }
1955 
1956   if (E->getType()->isAnyComplexType())
1957     return EmitComplexAssignmentLValue(E);
1958 
1959   return EmitAggExprToLValue(E);
1960 }
1961 
1962 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
1963   RValue RV = EmitCallExpr(E);
1964 
1965   if (!RV.isScalar())
1966     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
1967 
1968   assert(E->getCallReturnType()->isReferenceType() &&
1969          "Can't have a scalar return unless the return type is a "
1970          "reference type!");
1971 
1972   return MakeAddrLValue(RV.getScalarVal(), E->getType());
1973 }
1974 
1975 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
1976   // FIXME: This shouldn't require another copy.
1977   return EmitAggExprToLValue(E);
1978 }
1979 
1980 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
1981   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
1982          && "binding l-value to type which needs a temporary");
1983   AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp");
1984   EmitCXXConstructExpr(E, Slot);
1985   return MakeAddrLValue(Slot.getAddr(), E->getType());
1986 }
1987 
1988 LValue
1989 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
1990   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
1991 }
1992 
1993 LValue
1994 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
1995   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
1996   Slot.setLifetimeExternallyManaged();
1997   EmitAggExpr(E->getSubExpr(), Slot);
1998   EmitCXXTemporary(E->getTemporary(), Slot.getAddr());
1999   return MakeAddrLValue(Slot.getAddr(), E->getType());
2000 }
2001 
2002 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2003   RValue RV = EmitObjCMessageExpr(E);
2004 
2005   if (!RV.isScalar())
2006     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2007 
2008   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2009          "Can't have a scalar return unless the return type is a "
2010          "reference type!");
2011 
2012   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2013 }
2014 
2015 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2016   llvm::Value *V =
2017     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2018   return MakeAddrLValue(V, E->getType());
2019 }
2020 
2021 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2022                                              const ObjCIvarDecl *Ivar) {
2023   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2024 }
2025 
2026 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2027                                           llvm::Value *BaseValue,
2028                                           const ObjCIvarDecl *Ivar,
2029                                           unsigned CVRQualifiers) {
2030   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2031                                                    Ivar, CVRQualifiers);
2032 }
2033 
2034 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2035   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2036   llvm::Value *BaseValue = 0;
2037   const Expr *BaseExpr = E->getBase();
2038   Qualifiers BaseQuals;
2039   QualType ObjectTy;
2040   if (E->isArrow()) {
2041     BaseValue = EmitScalarExpr(BaseExpr);
2042     ObjectTy = BaseExpr->getType()->getPointeeType();
2043     BaseQuals = ObjectTy.getQualifiers();
2044   } else {
2045     LValue BaseLV = EmitLValue(BaseExpr);
2046     // FIXME: this isn't right for bitfields.
2047     BaseValue = BaseLV.getAddress();
2048     ObjectTy = BaseExpr->getType();
2049     BaseQuals = ObjectTy.getQualifiers();
2050   }
2051 
2052   LValue LV =
2053     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2054                       BaseQuals.getCVRQualifiers());
2055   setObjCGCLValueClass(getContext(), E, LV);
2056   return LV;
2057 }
2058 
2059 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2060   // Can only get l-value for message expression returning aggregate type
2061   RValue RV = EmitAnyExprToTemp(E);
2062   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2063 }
2064 
2065 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2066                                  ReturnValueSlot ReturnValue,
2067                                  CallExpr::const_arg_iterator ArgBeg,
2068                                  CallExpr::const_arg_iterator ArgEnd,
2069                                  const Decl *TargetDecl) {
2070   // Get the actual function type. The callee type will always be a pointer to
2071   // function type or a block pointer type.
2072   assert(CalleeType->isFunctionPointerType() &&
2073          "Call must have function pointer type!");
2074 
2075   CalleeType = getContext().getCanonicalType(CalleeType);
2076 
2077   const FunctionType *FnType
2078     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2079 
2080   CallArgList Args;
2081   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2082 
2083   return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
2084                   Callee, ReturnValue, Args, TargetDecl);
2085 }
2086 
2087 LValue CodeGenFunction::
2088 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2089   llvm::Value *BaseV;
2090   if (E->getOpcode() == BO_PtrMemI)
2091     BaseV = EmitScalarExpr(E->getLHS());
2092   else
2093     BaseV = EmitLValue(E->getLHS()).getAddress();
2094 
2095   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2096 
2097   const MemberPointerType *MPT
2098     = E->getRHS()->getType()->getAs<MemberPointerType>();
2099 
2100   llvm::Value *AddV =
2101     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2102 
2103   return MakeAddrLValue(AddV, MPT->getPointeeType());
2104 }
2105