1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===--------------------------------------------------------------------===//
32 //                        Miscellaneous Helper Methods
33 //===--------------------------------------------------------------------===//
34 
35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36   unsigned addressSpace =
37     cast<llvm::PointerType>(value->getType())->getAddressSpace();
38 
39   llvm::PointerType *destType = Int8PtrTy;
40   if (addressSpace)
41     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42 
43   if (value->getType() == destType) return value;
44   return Builder.CreateBitCast(value, destType);
45 }
46 
47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
48 /// block.
49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                     const Twine &Name) {
51   if (!Builder.isNamePreserving())
52     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54 }
55 
56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                      llvm::Value *Init) {
58   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61 }
62 
63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                 const Twine &Name) {
65   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66   // FIXME: Should we prefer the preferred type alignment here?
67   CharUnits Align = getContext().getTypeAlignInChars(Ty);
68   Alloc->setAlignment(Align.getQuantity());
69   return Alloc;
70 }
71 
72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                  const Twine &Name) {
74   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75   // FIXME: Should we prefer the preferred type alignment here?
76   CharUnits Align = getContext().getTypeAlignInChars(Ty);
77   Alloc->setAlignment(Align.getQuantity());
78   return Alloc;
79 }
80 
81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82 /// expression and compare the result against zero, returning an Int1Ty value.
83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85     llvm::Value *MemPtr = EmitScalarExpr(E);
86     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87   }
88 
89   QualType BoolTy = getContext().BoolTy;
90   if (!E->getType()->isAnyComplexType())
91     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92 
93   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94 }
95 
96 /// EmitIgnoredExpr - Emit code to compute the specified expression,
97 /// ignoring the result.
98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99   if (E->isRValue())
100     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101 
102   // Just emit it as an l-value and drop the result.
103   EmitLValue(E);
104 }
105 
106 /// EmitAnyExpr - Emit code to compute the specified expression which
107 /// can have any type.  The result is returned as an RValue struct.
108 /// If this is an aggregate expression, AggSlot indicates where the
109 /// result should be returned.
110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                     bool IgnoreResult) {
112   if (!hasAggregateLLVMType(E->getType()))
113     return RValue::get(EmitScalarExpr(E, IgnoreResult));
114   else if (E->getType()->isAnyComplexType())
115     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116 
117   EmitAggExpr(E, AggSlot, IgnoreResult);
118   return AggSlot.asRValue();
119 }
120 
121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122 /// always be accessible even if no aggregate location is provided.
123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124   AggValueSlot AggSlot = AggValueSlot::ignored();
125 
126   if (hasAggregateLLVMType(E->getType()) &&
127       !E->getType()->isAnyComplexType())
128     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129   return EmitAnyExpr(E, AggSlot);
130 }
131 
132 /// EmitAnyExprToMem - Evaluate an expression into a given memory
133 /// location.
134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                        llvm::Value *Location,
136                                        Qualifiers Quals,
137                                        bool IsInit) {
138   // FIXME: This function should take an LValue as an argument.
139   if (E->getType()->isAnyComplexType()) {
140     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
141   } else if (hasAggregateLLVMType(E->getType())) {
142     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
143     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
144                                          AggValueSlot::IsDestructed_t(IsInit),
145                                          AggValueSlot::DoesNotNeedGCBarriers,
146                                          AggValueSlot::IsAliased_t(!IsInit)));
147   } else {
148     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
149     LValue LV = MakeAddrLValue(Location, E->getType());
150     EmitStoreThroughLValue(RV, LV);
151   }
152 }
153 
154 namespace {
155 /// \brief An adjustment to be made to the temporary created when emitting a
156 /// reference binding, which accesses a particular subobject of that temporary.
157   struct SubobjectAdjustment {
158     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
159 
160     union {
161       struct {
162         const CastExpr *BasePath;
163         const CXXRecordDecl *DerivedClass;
164       } DerivedToBase;
165 
166       FieldDecl *Field;
167     };
168 
169     SubobjectAdjustment(const CastExpr *BasePath,
170                         const CXXRecordDecl *DerivedClass)
171       : Kind(DerivedToBaseAdjustment) {
172       DerivedToBase.BasePath = BasePath;
173       DerivedToBase.DerivedClass = DerivedClass;
174     }
175 
176     SubobjectAdjustment(FieldDecl *Field)
177       : Kind(FieldAdjustment) {
178       this->Field = Field;
179     }
180   };
181 }
182 
183 static llvm::Value *
184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
185                          const NamedDecl *InitializedDecl) {
186   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
187     if (VD->hasGlobalStorage()) {
188       SmallString<256> Name;
189       llvm::raw_svector_ostream Out(Name);
190       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
191       Out.flush();
192 
193       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
194 
195       // Create the reference temporary.
196       llvm::GlobalValue *RefTemp =
197         new llvm::GlobalVariable(CGF.CGM.getModule(),
198                                  RefTempTy, /*isConstant=*/false,
199                                  llvm::GlobalValue::InternalLinkage,
200                                  llvm::Constant::getNullValue(RefTempTy),
201                                  Name.str());
202       return RefTemp;
203     }
204   }
205 
206   return CGF.CreateMemTemp(Type, "ref.tmp");
207 }
208 
209 static llvm::Value *
210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
211                             llvm::Value *&ReferenceTemporary,
212                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
213                             QualType &ObjCARCReferenceLifetimeType,
214                             const NamedDecl *InitializedDecl) {
215   // Look through single-element init lists that claim to be lvalues. They're
216   // just syntactic wrappers in this case.
217   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
218     if (ILE->getNumInits() == 1 && ILE->isGLValue())
219       E = ILE->getInit(0);
220   }
221 
222   // Look through expressions for materialized temporaries (for now).
223   if (const MaterializeTemporaryExpr *M
224                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
225     // Objective-C++ ARC:
226     //   If we are binding a reference to a temporary that has ownership, we
227     //   need to perform retain/release operations on the temporary.
228     if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
229         E->getType()->isObjCLifetimeType() &&
230         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
231          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
232          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
233       ObjCARCReferenceLifetimeType = E->getType();
234 
235     E = M->GetTemporaryExpr();
236   }
237 
238   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
239     E = DAE->getExpr();
240 
241   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
242     CGF.enterFullExpression(EWC);
243     CodeGenFunction::RunCleanupsScope Scope(CGF);
244 
245     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
246                                        ReferenceTemporary,
247                                        ReferenceTemporaryDtor,
248                                        ObjCARCReferenceLifetimeType,
249                                        InitializedDecl);
250   }
251 
252   RValue RV;
253   if (E->isGLValue()) {
254     // Emit the expression as an lvalue.
255     LValue LV = CGF.EmitLValue(E);
256 
257     if (LV.isSimple())
258       return LV.getAddress();
259 
260     // We have to load the lvalue.
261     RV = CGF.EmitLoadOfLValue(LV);
262   } else {
263     if (!ObjCARCReferenceLifetimeType.isNull()) {
264       ReferenceTemporary = CreateReferenceTemporary(CGF,
265                                                   ObjCARCReferenceLifetimeType,
266                                                     InitializedDecl);
267 
268 
269       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
270                                              ObjCARCReferenceLifetimeType);
271 
272       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
273                          RefTempDst, false);
274 
275       bool ExtendsLifeOfTemporary = false;
276       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
277         if (Var->extendsLifetimeOfTemporary())
278           ExtendsLifeOfTemporary = true;
279       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
280         ExtendsLifeOfTemporary = true;
281       }
282 
283       if (!ExtendsLifeOfTemporary) {
284         // Since the lifetime of this temporary isn't going to be extended,
285         // we need to clean it up ourselves at the end of the full expression.
286         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
287         case Qualifiers::OCL_None:
288         case Qualifiers::OCL_ExplicitNone:
289         case Qualifiers::OCL_Autoreleasing:
290           break;
291 
292         case Qualifiers::OCL_Strong: {
293           assert(!ObjCARCReferenceLifetimeType->isArrayType());
294           CleanupKind cleanupKind = CGF.getARCCleanupKind();
295           CGF.pushDestroy(cleanupKind,
296                           ReferenceTemporary,
297                           ObjCARCReferenceLifetimeType,
298                           CodeGenFunction::destroyARCStrongImprecise,
299                           cleanupKind & EHCleanup);
300           break;
301         }
302 
303         case Qualifiers::OCL_Weak:
304           assert(!ObjCARCReferenceLifetimeType->isArrayType());
305           CGF.pushDestroy(NormalAndEHCleanup,
306                           ReferenceTemporary,
307                           ObjCARCReferenceLifetimeType,
308                           CodeGenFunction::destroyARCWeak,
309                           /*useEHCleanupForArray*/ true);
310           break;
311         }
312 
313         ObjCARCReferenceLifetimeType = QualType();
314       }
315 
316       return ReferenceTemporary;
317     }
318 
319     SmallVector<SubobjectAdjustment, 2> Adjustments;
320     while (true) {
321       E = E->IgnoreParens();
322 
323       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
324         if ((CE->getCastKind() == CK_DerivedToBase ||
325              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
326             E->getType()->isRecordType()) {
327           E = CE->getSubExpr();
328           CXXRecordDecl *Derived
329             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
330           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
331           continue;
332         }
333 
334         if (CE->getCastKind() == CK_NoOp) {
335           E = CE->getSubExpr();
336           continue;
337         }
338       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
339         if (!ME->isArrow() && ME->getBase()->isRValue()) {
340           assert(ME->getBase()->getType()->isRecordType());
341           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
342             E = ME->getBase();
343             Adjustments.push_back(SubobjectAdjustment(Field));
344             continue;
345           }
346         }
347       }
348 
349       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
350         if (opaque->getType()->isRecordType())
351           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
352 
353       // Nothing changed.
354       break;
355     }
356 
357     // Create a reference temporary if necessary.
358     AggValueSlot AggSlot = AggValueSlot::ignored();
359     if (CGF.hasAggregateLLVMType(E->getType()) &&
360         !E->getType()->isAnyComplexType()) {
361       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
362                                                     InitializedDecl);
363       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
364       AggValueSlot::IsDestructed_t isDestructed
365         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
366       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
367                                       Qualifiers(), isDestructed,
368                                       AggValueSlot::DoesNotNeedGCBarriers,
369                                       AggValueSlot::IsNotAliased);
370     }
371 
372     if (InitializedDecl) {
373       // Get the destructor for the reference temporary.
374       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
375         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
376         if (!ClassDecl->hasTrivialDestructor())
377           ReferenceTemporaryDtor = ClassDecl->getDestructor();
378       }
379     }
380 
381     RV = CGF.EmitAnyExpr(E, AggSlot);
382 
383     // Check if need to perform derived-to-base casts and/or field accesses, to
384     // get from the temporary object we created (and, potentially, for which we
385     // extended the lifetime) to the subobject we're binding the reference to.
386     if (!Adjustments.empty()) {
387       llvm::Value *Object = RV.getAggregateAddr();
388       for (unsigned I = Adjustments.size(); I != 0; --I) {
389         SubobjectAdjustment &Adjustment = Adjustments[I-1];
390         switch (Adjustment.Kind) {
391         case SubobjectAdjustment::DerivedToBaseAdjustment:
392           Object =
393               CGF.GetAddressOfBaseClass(Object,
394                                         Adjustment.DerivedToBase.DerivedClass,
395                               Adjustment.DerivedToBase.BasePath->path_begin(),
396                               Adjustment.DerivedToBase.BasePath->path_end(),
397                                         /*NullCheckValue=*/false);
398           break;
399 
400         case SubobjectAdjustment::FieldAdjustment: {
401           LValue LV =
402             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
403           if (LV.isSimple()) {
404             Object = LV.getAddress();
405             break;
406           }
407 
408           // For non-simple lvalues, we actually have to create a copy of
409           // the object we're binding to.
410           QualType T = Adjustment.Field->getType().getNonReferenceType()
411                                                   .getUnqualifiedType();
412           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
413           LValue TempLV = CGF.MakeAddrLValue(Object,
414                                              Adjustment.Field->getType());
415           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
416           break;
417         }
418 
419         }
420       }
421 
422       return Object;
423     }
424   }
425 
426   if (RV.isAggregate())
427     return RV.getAggregateAddr();
428 
429   // Create a temporary variable that we can bind the reference to.
430   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
431                                                 InitializedDecl);
432 
433 
434   unsigned Alignment =
435     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
436   if (RV.isScalar())
437     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
438                           /*Volatile=*/false, Alignment, E->getType());
439   else
440     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
441                            /*Volatile=*/false);
442   return ReferenceTemporary;
443 }
444 
445 RValue
446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
447                                             const NamedDecl *InitializedDecl) {
448   llvm::Value *ReferenceTemporary = 0;
449   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
450   QualType ObjCARCReferenceLifetimeType;
451   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
452                                                    ReferenceTemporaryDtor,
453                                                    ObjCARCReferenceLifetimeType,
454                                                    InitializedDecl);
455   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
456     return RValue::get(Value);
457 
458   // Make sure to call the destructor for the reference temporary.
459   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
460   if (VD && VD->hasGlobalStorage()) {
461     if (ReferenceTemporaryDtor) {
462       llvm::Constant *DtorFn =
463         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
464       EmitCXXGlobalDtorRegistration(DtorFn,
465                                     cast<llvm::Constant>(ReferenceTemporary));
466     } else {
467       assert(!ObjCARCReferenceLifetimeType.isNull());
468       // Note: We intentionally do not register a global "destructor" to
469       // release the object.
470     }
471 
472     return RValue::get(Value);
473   }
474 
475   if (ReferenceTemporaryDtor)
476     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
477   else {
478     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
479     case Qualifiers::OCL_None:
480       llvm_unreachable(
481                       "Not a reference temporary that needs to be deallocated");
482     case Qualifiers::OCL_ExplicitNone:
483     case Qualifiers::OCL_Autoreleasing:
484       // Nothing to do.
485       break;
486 
487     case Qualifiers::OCL_Strong: {
488       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
489       CleanupKind cleanupKind = getARCCleanupKind();
490       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
491                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
492                   cleanupKind & EHCleanup);
493       break;
494     }
495 
496     case Qualifiers::OCL_Weak: {
497       // __weak objects always get EH cleanups; otherwise, exceptions
498       // could cause really nasty crashes instead of mere leaks.
499       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
500                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
501       break;
502     }
503     }
504   }
505 
506   return RValue::get(Value);
507 }
508 
509 
510 /// getAccessedFieldNo - Given an encoded value and a result number, return the
511 /// input field number being accessed.
512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
513                                              const llvm::Constant *Elts) {
514   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
515       ->getZExtValue();
516 }
517 
518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
519   if (!CatchUndefined)
520     return;
521 
522   // This needs to be to the standard address space.
523   Address = Builder.CreateBitCast(Address, Int8PtrTy);
524 
525   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
526 
527   // In time, people may want to control this and use a 1 here.
528   llvm::Value *Arg = Builder.getFalse();
529   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
530   llvm::BasicBlock *Cont = createBasicBlock();
531   llvm::BasicBlock *Check = createBasicBlock();
532   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
533   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
534 
535   EmitBlock(Check);
536   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
537                                         llvm::ConstantInt::get(IntPtrTy, Size)),
538                        Cont, getTrapBB());
539   EmitBlock(Cont);
540 }
541 
542 
543 CodeGenFunction::ComplexPairTy CodeGenFunction::
544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
545                          bool isInc, bool isPre) {
546   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
547                                             LV.isVolatileQualified());
548 
549   llvm::Value *NextVal;
550   if (isa<llvm::IntegerType>(InVal.first->getType())) {
551     uint64_t AmountVal = isInc ? 1 : -1;
552     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
553 
554     // Add the inc/dec to the real part.
555     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
556   } else {
557     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
558     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
559     if (!isInc)
560       FVal.changeSign();
561     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
562 
563     // Add the inc/dec to the real part.
564     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
565   }
566 
567   ComplexPairTy IncVal(NextVal, InVal.second);
568 
569   // Store the updated result through the lvalue.
570   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
571 
572   // If this is a postinc, return the value read from memory, otherwise use the
573   // updated value.
574   return isPre ? IncVal : InVal;
575 }
576 
577 
578 //===----------------------------------------------------------------------===//
579 //                         LValue Expression Emission
580 //===----------------------------------------------------------------------===//
581 
582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
583   if (Ty->isVoidType())
584     return RValue::get(0);
585 
586   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
587     llvm::Type *EltTy = ConvertType(CTy->getElementType());
588     llvm::Value *U = llvm::UndefValue::get(EltTy);
589     return RValue::getComplex(std::make_pair(U, U));
590   }
591 
592   // If this is a use of an undefined aggregate type, the aggregate must have an
593   // identifiable address.  Just because the contents of the value are undefined
594   // doesn't mean that the address can't be taken and compared.
595   if (hasAggregateLLVMType(Ty)) {
596     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
597     return RValue::getAggregate(DestPtr);
598   }
599 
600   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
601 }
602 
603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
604                                               const char *Name) {
605   ErrorUnsupported(E, Name);
606   return GetUndefRValue(E->getType());
607 }
608 
609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
610                                               const char *Name) {
611   ErrorUnsupported(E, Name);
612   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
613   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
614 }
615 
616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
617   LValue LV = EmitLValue(E);
618   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
619     EmitCheck(LV.getAddress(),
620               getContext().getTypeSizeInChars(E->getType()).getQuantity());
621   return LV;
622 }
623 
624 /// EmitLValue - Emit code to compute a designator that specifies the location
625 /// of the expression.
626 ///
627 /// This can return one of two things: a simple address or a bitfield reference.
628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
629 /// an LLVM pointer type.
630 ///
631 /// If this returns a bitfield reference, nothing about the pointee type of the
632 /// LLVM value is known: For example, it may not be a pointer to an integer.
633 ///
634 /// If this returns a normal address, and if the lvalue's C type is fixed size,
635 /// this method guarantees that the returned pointer type will point to an LLVM
636 /// type of the same size of the lvalue's type.  If the lvalue has a variable
637 /// length type, this is not possible.
638 ///
639 LValue CodeGenFunction::EmitLValue(const Expr *E) {
640   switch (E->getStmtClass()) {
641   default: return EmitUnsupportedLValue(E, "l-value expression");
642 
643   case Expr::ObjCPropertyRefExprClass:
644     llvm_unreachable("cannot emit a property reference directly");
645 
646   case Expr::ObjCSelectorExprClass:
647   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
648   case Expr::ObjCIsaExprClass:
649     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
650   case Expr::BinaryOperatorClass:
651     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
652   case Expr::CompoundAssignOperatorClass:
653     if (!E->getType()->isAnyComplexType())
654       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
655     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
656   case Expr::CallExprClass:
657   case Expr::CXXMemberCallExprClass:
658   case Expr::CXXOperatorCallExprClass:
659   case Expr::UserDefinedLiteralClass:
660     return EmitCallExprLValue(cast<CallExpr>(E));
661   case Expr::VAArgExprClass:
662     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
663   case Expr::DeclRefExprClass:
664     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
665   case Expr::ParenExprClass:
666     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
667   case Expr::GenericSelectionExprClass:
668     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
669   case Expr::PredefinedExprClass:
670     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
671   case Expr::StringLiteralClass:
672     return EmitStringLiteralLValue(cast<StringLiteral>(E));
673   case Expr::ObjCEncodeExprClass:
674     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
675   case Expr::PseudoObjectExprClass:
676     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
677   case Expr::InitListExprClass:
678     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
679            "Only single-element init list can be lvalue.");
680     return EmitLValue(cast<InitListExpr>(E)->getInit(0));
681 
682   case Expr::CXXTemporaryObjectExprClass:
683   case Expr::CXXConstructExprClass:
684     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
685   case Expr::CXXBindTemporaryExprClass:
686     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
687   case Expr::LambdaExprClass:
688     return EmitLambdaLValue(cast<LambdaExpr>(E));
689 
690   case Expr::ExprWithCleanupsClass: {
691     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
692     enterFullExpression(cleanups);
693     RunCleanupsScope Scope(*this);
694     return EmitLValue(cleanups->getSubExpr());
695   }
696 
697   case Expr::CXXScalarValueInitExprClass:
698     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
699   case Expr::CXXDefaultArgExprClass:
700     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
701   case Expr::CXXTypeidExprClass:
702     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
703 
704   case Expr::ObjCMessageExprClass:
705     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
706   case Expr::ObjCIvarRefExprClass:
707     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
708   case Expr::StmtExprClass:
709     return EmitStmtExprLValue(cast<StmtExpr>(E));
710   case Expr::UnaryOperatorClass:
711     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
712   case Expr::ArraySubscriptExprClass:
713     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
714   case Expr::ExtVectorElementExprClass:
715     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
716   case Expr::MemberExprClass:
717     return EmitMemberExpr(cast<MemberExpr>(E));
718   case Expr::CompoundLiteralExprClass:
719     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
720   case Expr::ConditionalOperatorClass:
721     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
722   case Expr::BinaryConditionalOperatorClass:
723     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
724   case Expr::ChooseExprClass:
725     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
726   case Expr::OpaqueValueExprClass:
727     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
728   case Expr::SubstNonTypeTemplateParmExprClass:
729     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
730   case Expr::ImplicitCastExprClass:
731   case Expr::CStyleCastExprClass:
732   case Expr::CXXFunctionalCastExprClass:
733   case Expr::CXXStaticCastExprClass:
734   case Expr::CXXDynamicCastExprClass:
735   case Expr::CXXReinterpretCastExprClass:
736   case Expr::CXXConstCastExprClass:
737   case Expr::ObjCBridgedCastExprClass:
738     return EmitCastLValue(cast<CastExpr>(E));
739 
740   case Expr::MaterializeTemporaryExprClass:
741     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
742   }
743 }
744 
745 /// Given an object of the given canonical type, can we safely copy a
746 /// value out of it based on its initializer?
747 static bool isConstantEmittableObjectType(QualType type) {
748   assert(type.isCanonical());
749   assert(!type->isReferenceType());
750 
751   // Must be const-qualified but non-volatile.
752   Qualifiers qs = type.getLocalQualifiers();
753   if (!qs.hasConst() || qs.hasVolatile()) return false;
754 
755   // Otherwise, all object types satisfy this except C++ classes with
756   // mutable subobjects or non-trivial copy/destroy behavior.
757   if (const RecordType *RT = dyn_cast<RecordType>(type))
758     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
759       if (RD->hasMutableFields() || !RD->isTrivial())
760         return false;
761 
762   return true;
763 }
764 
765 /// Can we constant-emit a load of a reference to a variable of the
766 /// given type?  This is different from predicates like
767 /// Decl::isUsableInConstantExpressions because we do want it to apply
768 /// in situations that don't necessarily satisfy the language's rules
769 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
770 /// to do this with const float variables even if those variables
771 /// aren't marked 'constexpr'.
772 enum ConstantEmissionKind {
773   CEK_None,
774   CEK_AsReferenceOnly,
775   CEK_AsValueOrReference,
776   CEK_AsValueOnly
777 };
778 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
779   type = type.getCanonicalType();
780   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
781     if (isConstantEmittableObjectType(ref->getPointeeType()))
782       return CEK_AsValueOrReference;
783     return CEK_AsReferenceOnly;
784   }
785   if (isConstantEmittableObjectType(type))
786     return CEK_AsValueOnly;
787   return CEK_None;
788 }
789 
790 /// Try to emit a reference to the given value without producing it as
791 /// an l-value.  This is actually more than an optimization: we can't
792 /// produce an l-value for variables that we never actually captured
793 /// in a block or lambda, which means const int variables or constexpr
794 /// literals or similar.
795 CodeGenFunction::ConstantEmission
796 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
797   ValueDecl *value = refExpr->getDecl();
798 
799   // The value needs to be an enum constant or a constant variable.
800   ConstantEmissionKind CEK;
801   if (isa<ParmVarDecl>(value)) {
802     CEK = CEK_None;
803   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
804     CEK = checkVarTypeForConstantEmission(var->getType());
805   } else if (isa<EnumConstantDecl>(value)) {
806     CEK = CEK_AsValueOnly;
807   } else {
808     CEK = CEK_None;
809   }
810   if (CEK == CEK_None) return ConstantEmission();
811 
812   Expr::EvalResult result;
813   bool resultIsReference;
814   QualType resultType;
815 
816   // It's best to evaluate all the way as an r-value if that's permitted.
817   if (CEK != CEK_AsReferenceOnly &&
818       refExpr->EvaluateAsRValue(result, getContext())) {
819     resultIsReference = false;
820     resultType = refExpr->getType();
821 
822   // Otherwise, try to evaluate as an l-value.
823   } else if (CEK != CEK_AsValueOnly &&
824              refExpr->EvaluateAsLValue(result, getContext())) {
825     resultIsReference = true;
826     resultType = value->getType();
827 
828   // Failure.
829   } else {
830     return ConstantEmission();
831   }
832 
833   // In any case, if the initializer has side-effects, abandon ship.
834   if (result.HasSideEffects)
835     return ConstantEmission();
836 
837   // Emit as a constant.
838   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
839 
840   // Make sure we emit a debug reference to the global variable.
841   // This should probably fire even for
842   if (isa<VarDecl>(value)) {
843     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
844       EmitDeclRefExprDbgValue(refExpr, C);
845   } else {
846     assert(isa<EnumConstantDecl>(value));
847     EmitDeclRefExprDbgValue(refExpr, C);
848   }
849 
850   // If we emitted a reference constant, we need to dereference that.
851   if (resultIsReference)
852     return ConstantEmission::forReference(C);
853 
854   return ConstantEmission::forValue(C);
855 }
856 
857 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
858   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
859                           lvalue.getAlignment().getQuantity(),
860                           lvalue.getType(), lvalue.getTBAAInfo());
861 }
862 
863 static bool hasBooleanRepresentation(QualType Ty) {
864   if (Ty->isBooleanType())
865     return true;
866 
867   if (const EnumType *ET = Ty->getAs<EnumType>())
868     return ET->getDecl()->getIntegerType()->isBooleanType();
869 
870   if (const AtomicType *AT = Ty->getAs<AtomicType>())
871     return hasBooleanRepresentation(AT->getValueType());
872 
873   return false;
874 }
875 
876 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
877   const EnumType *ET = Ty->getAs<EnumType>();
878   bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
879                                  CGM.getCodeGenOpts().StrictEnums &&
880                                  !ET->getDecl()->isFixed());
881   bool IsBool = hasBooleanRepresentation(Ty);
882   llvm::Type *LTy;
883   if (!IsBool && !IsRegularCPlusPlusEnum)
884     return NULL;
885 
886   llvm::APInt Min;
887   llvm::APInt End;
888   if (IsBool) {
889     Min = llvm::APInt(8, 0);
890     End = llvm::APInt(8, 2);
891     LTy = Int8Ty;
892   } else {
893     const EnumDecl *ED = ET->getDecl();
894     LTy = ConvertTypeForMem(ED->getIntegerType());
895     unsigned Bitwidth = LTy->getScalarSizeInBits();
896     unsigned NumNegativeBits = ED->getNumNegativeBits();
897     unsigned NumPositiveBits = ED->getNumPositiveBits();
898 
899     if (NumNegativeBits) {
900       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
901       assert(NumBits <= Bitwidth);
902       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
903       Min = -End;
904     } else {
905       assert(NumPositiveBits <= Bitwidth);
906       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
907       Min = llvm::APInt(Bitwidth, 0);
908     }
909   }
910 
911   if (End == Min)
912     return NULL;
913 
914   llvm::Value *LowAndHigh[2];
915   LowAndHigh[0] = llvm::ConstantInt::get(LTy, Min);
916   LowAndHigh[1] = llvm::ConstantInt::get(LTy, End);
917 
918   llvm::LLVMContext &C = getLLVMContext();
919   llvm::MDNode *Range = llvm::MDNode::get(C, LowAndHigh);
920   return Range;
921 }
922 
923 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
924                                               unsigned Alignment, QualType Ty,
925                                               llvm::MDNode *TBAAInfo) {
926   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
927   if (Volatile)
928     Load->setVolatile(true);
929   if (Alignment)
930     Load->setAlignment(Alignment);
931   if (TBAAInfo)
932     CGM.DecorateInstruction(Load, TBAAInfo);
933   // If this is an atomic type, all normal reads must be atomic
934   if (Ty->isAtomicType())
935     Load->setAtomic(llvm::SequentiallyConsistent);
936 
937   if (CGM.getCodeGenOpts().OptimizationLevel > 0)
938     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
939       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
940 
941   return EmitFromMemory(Load, Ty);
942 }
943 
944 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
945   // Bool has a different representation in memory than in registers.
946   if (hasBooleanRepresentation(Ty)) {
947     // This should really always be an i1, but sometimes it's already
948     // an i8, and it's awkward to track those cases down.
949     if (Value->getType()->isIntegerTy(1))
950       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
951     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
952   }
953 
954   return Value;
955 }
956 
957 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
958   // Bool has a different representation in memory than in registers.
959   if (hasBooleanRepresentation(Ty)) {
960     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
961     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
962   }
963 
964   return Value;
965 }
966 
967 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
968                                         bool Volatile, unsigned Alignment,
969                                         QualType Ty,
970                                         llvm::MDNode *TBAAInfo,
971                                         bool isInit) {
972   Value = EmitToMemory(Value, Ty);
973 
974   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
975   if (Alignment)
976     Store->setAlignment(Alignment);
977   if (TBAAInfo)
978     CGM.DecorateInstruction(Store, TBAAInfo);
979   if (!isInit && Ty->isAtomicType())
980     Store->setAtomic(llvm::SequentiallyConsistent);
981 }
982 
983 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
984     bool isInit) {
985   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
986                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
987                     lvalue.getTBAAInfo(), isInit);
988 }
989 
990 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
991 /// method emits the address of the lvalue, then loads the result as an rvalue,
992 /// returning the rvalue.
993 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
994   if (LV.isObjCWeak()) {
995     // load of a __weak object.
996     llvm::Value *AddrWeakObj = LV.getAddress();
997     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
998                                                              AddrWeakObj));
999   }
1000   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
1001     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1002 
1003   if (LV.isSimple()) {
1004     assert(!LV.getType()->isFunctionType());
1005 
1006     // Everything needs a load.
1007     return RValue::get(EmitLoadOfScalar(LV));
1008   }
1009 
1010   if (LV.isVectorElt()) {
1011     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1012                                               LV.isVolatileQualified());
1013     Load->setAlignment(LV.getAlignment().getQuantity());
1014     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1015                                                     "vecext"));
1016   }
1017 
1018   // If this is a reference to a subset of the elements of a vector, either
1019   // shuffle the input or extract/insert them as appropriate.
1020   if (LV.isExtVectorElt())
1021     return EmitLoadOfExtVectorElementLValue(LV);
1022 
1023   assert(LV.isBitField() && "Unknown LValue type!");
1024   return EmitLoadOfBitfieldLValue(LV);
1025 }
1026 
1027 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1028   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1029 
1030   // Get the output type.
1031   llvm::Type *ResLTy = ConvertType(LV.getType());
1032   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1033 
1034   // Compute the result as an OR of all of the individual component accesses.
1035   llvm::Value *Res = 0;
1036   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1037     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1038 
1039     // Get the field pointer.
1040     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1041 
1042     // Only offset by the field index if used, so that incoming values are not
1043     // required to be structures.
1044     if (AI.FieldIndex)
1045       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1046 
1047     // Offset by the byte offset, if used.
1048     if (!AI.FieldByteOffset.isZero()) {
1049       Ptr = EmitCastToVoidPtr(Ptr);
1050       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1051                                        "bf.field.offs");
1052     }
1053 
1054     // Cast to the access type.
1055     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1056                        CGM.getContext().getTargetAddressSpace(LV.getType()));
1057     Ptr = Builder.CreateBitCast(Ptr, PTy);
1058 
1059     // Perform the load.
1060     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1061     if (!AI.AccessAlignment.isZero())
1062       Load->setAlignment(AI.AccessAlignment.getQuantity());
1063 
1064     // Shift out unused low bits and mask out unused high bits.
1065     llvm::Value *Val = Load;
1066     if (AI.FieldBitStart)
1067       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1068     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1069                                                             AI.TargetBitWidth),
1070                             "bf.clear");
1071 
1072     // Extend or truncate to the target size.
1073     if (AI.AccessWidth < ResSizeInBits)
1074       Val = Builder.CreateZExt(Val, ResLTy);
1075     else if (AI.AccessWidth > ResSizeInBits)
1076       Val = Builder.CreateTrunc(Val, ResLTy);
1077 
1078     // Shift into place, and OR into the result.
1079     if (AI.TargetBitOffset)
1080       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1081     Res = Res ? Builder.CreateOr(Res, Val) : Val;
1082   }
1083 
1084   // If the bit-field is signed, perform the sign-extension.
1085   //
1086   // FIXME: This can easily be folded into the load of the high bits, which
1087   // could also eliminate the mask of high bits in some situations.
1088   if (Info.isSigned()) {
1089     unsigned ExtraBits = ResSizeInBits - Info.getSize();
1090     if (ExtraBits)
1091       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1092                                ExtraBits, "bf.val.sext");
1093   }
1094 
1095   return RValue::get(Res);
1096 }
1097 
1098 // If this is a reference to a subset of the elements of a vector, create an
1099 // appropriate shufflevector.
1100 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1101   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1102                                             LV.isVolatileQualified());
1103   Load->setAlignment(LV.getAlignment().getQuantity());
1104   llvm::Value *Vec = Load;
1105 
1106   const llvm::Constant *Elts = LV.getExtVectorElts();
1107 
1108   // If the result of the expression is a non-vector type, we must be extracting
1109   // a single element.  Just codegen as an extractelement.
1110   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1111   if (!ExprVT) {
1112     unsigned InIdx = getAccessedFieldNo(0, Elts);
1113     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1114     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1115   }
1116 
1117   // Always use shuffle vector to try to retain the original program structure
1118   unsigned NumResultElts = ExprVT->getNumElements();
1119 
1120   SmallVector<llvm::Constant*, 4> Mask;
1121   for (unsigned i = 0; i != NumResultElts; ++i)
1122     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1123 
1124   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1125   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1126                                     MaskV);
1127   return RValue::get(Vec);
1128 }
1129 
1130 
1131 
1132 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1133 /// lvalue, where both are guaranteed to the have the same type, and that type
1134 /// is 'Ty'.
1135 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1136   if (!Dst.isSimple()) {
1137     if (Dst.isVectorElt()) {
1138       // Read/modify/write the vector, inserting the new element.
1139       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1140                                                 Dst.isVolatileQualified());
1141       Load->setAlignment(Dst.getAlignment().getQuantity());
1142       llvm::Value *Vec = Load;
1143       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1144                                         Dst.getVectorIdx(), "vecins");
1145       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1146                                                    Dst.isVolatileQualified());
1147       Store->setAlignment(Dst.getAlignment().getQuantity());
1148       return;
1149     }
1150 
1151     // If this is an update of extended vector elements, insert them as
1152     // appropriate.
1153     if (Dst.isExtVectorElt())
1154       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1155 
1156     assert(Dst.isBitField() && "Unknown LValue type");
1157     return EmitStoreThroughBitfieldLValue(Src, Dst);
1158   }
1159 
1160   // There's special magic for assigning into an ARC-qualified l-value.
1161   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1162     switch (Lifetime) {
1163     case Qualifiers::OCL_None:
1164       llvm_unreachable("present but none");
1165 
1166     case Qualifiers::OCL_ExplicitNone:
1167       // nothing special
1168       break;
1169 
1170     case Qualifiers::OCL_Strong:
1171       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1172       return;
1173 
1174     case Qualifiers::OCL_Weak:
1175       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1176       return;
1177 
1178     case Qualifiers::OCL_Autoreleasing:
1179       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1180                                                      Src.getScalarVal()));
1181       // fall into the normal path
1182       break;
1183     }
1184   }
1185 
1186   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1187     // load of a __weak object.
1188     llvm::Value *LvalueDst = Dst.getAddress();
1189     llvm::Value *src = Src.getScalarVal();
1190      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1191     return;
1192   }
1193 
1194   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1195     // load of a __strong object.
1196     llvm::Value *LvalueDst = Dst.getAddress();
1197     llvm::Value *src = Src.getScalarVal();
1198     if (Dst.isObjCIvar()) {
1199       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1200       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1201       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1202       llvm::Value *dst = RHS;
1203       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1204       llvm::Value *LHS =
1205         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1206       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1207       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1208                                               BytesBetween);
1209     } else if (Dst.isGlobalObjCRef()) {
1210       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1211                                                 Dst.isThreadLocalRef());
1212     }
1213     else
1214       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1215     return;
1216   }
1217 
1218   assert(Src.isScalar() && "Can't emit an agg store with this method");
1219   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1220 }
1221 
1222 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1223                                                      llvm::Value **Result) {
1224   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1225 
1226   // Get the output type.
1227   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1228   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1229 
1230   // Get the source value, truncated to the width of the bit-field.
1231   llvm::Value *SrcVal = Src.getScalarVal();
1232 
1233   if (hasBooleanRepresentation(Dst.getType()))
1234     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1235 
1236   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1237                                                                 Info.getSize()),
1238                              "bf.value");
1239 
1240   // Return the new value of the bit-field, if requested.
1241   if (Result) {
1242     // Cast back to the proper type for result.
1243     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1244     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1245                                                    "bf.reload.val");
1246 
1247     // Sign extend if necessary.
1248     if (Info.isSigned()) {
1249       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1250       if (ExtraBits)
1251         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1252                                        ExtraBits, "bf.reload.sext");
1253     }
1254 
1255     *Result = ReloadVal;
1256   }
1257 
1258   // Iterate over the components, writing each piece to memory.
1259   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1260     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1261 
1262     // Get the field pointer.
1263     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1264     unsigned addressSpace =
1265       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1266 
1267     // Only offset by the field index if used, so that incoming values are not
1268     // required to be structures.
1269     if (AI.FieldIndex)
1270       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1271 
1272     // Offset by the byte offset, if used.
1273     if (!AI.FieldByteOffset.isZero()) {
1274       Ptr = EmitCastToVoidPtr(Ptr);
1275       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1276                                        "bf.field.offs");
1277     }
1278 
1279     // Cast to the access type.
1280     llvm::Type *AccessLTy =
1281       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1282 
1283     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1284     Ptr = Builder.CreateBitCast(Ptr, PTy);
1285 
1286     // Extract the piece of the bit-field value to write in this access, limited
1287     // to the values that are part of this access.
1288     llvm::Value *Val = SrcVal;
1289     if (AI.TargetBitOffset)
1290       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1291     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1292                                                             AI.TargetBitWidth));
1293 
1294     // Extend or truncate to the access size.
1295     if (ResSizeInBits < AI.AccessWidth)
1296       Val = Builder.CreateZExt(Val, AccessLTy);
1297     else if (ResSizeInBits > AI.AccessWidth)
1298       Val = Builder.CreateTrunc(Val, AccessLTy);
1299 
1300     // Shift into the position in memory.
1301     if (AI.FieldBitStart)
1302       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1303 
1304     // If necessary, load and OR in bits that are outside of the bit-field.
1305     if (AI.TargetBitWidth != AI.AccessWidth) {
1306       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1307       if (!AI.AccessAlignment.isZero())
1308         Load->setAlignment(AI.AccessAlignment.getQuantity());
1309 
1310       // Compute the mask for zeroing the bits that are part of the bit-field.
1311       llvm::APInt InvMask =
1312         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1313                                  AI.FieldBitStart + AI.TargetBitWidth);
1314 
1315       // Apply the mask and OR in to the value to write.
1316       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1317     }
1318 
1319     // Write the value.
1320     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1321                                                  Dst.isVolatileQualified());
1322     if (!AI.AccessAlignment.isZero())
1323       Store->setAlignment(AI.AccessAlignment.getQuantity());
1324   }
1325 }
1326 
1327 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1328                                                                LValue Dst) {
1329   // This access turns into a read/modify/write of the vector.  Load the input
1330   // value now.
1331   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1332                                             Dst.isVolatileQualified());
1333   Load->setAlignment(Dst.getAlignment().getQuantity());
1334   llvm::Value *Vec = Load;
1335   const llvm::Constant *Elts = Dst.getExtVectorElts();
1336 
1337   llvm::Value *SrcVal = Src.getScalarVal();
1338 
1339   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1340     unsigned NumSrcElts = VTy->getNumElements();
1341     unsigned NumDstElts =
1342        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1343     if (NumDstElts == NumSrcElts) {
1344       // Use shuffle vector is the src and destination are the same number of
1345       // elements and restore the vector mask since it is on the side it will be
1346       // stored.
1347       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1348       for (unsigned i = 0; i != NumSrcElts; ++i)
1349         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1350 
1351       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1352       Vec = Builder.CreateShuffleVector(SrcVal,
1353                                         llvm::UndefValue::get(Vec->getType()),
1354                                         MaskV);
1355     } else if (NumDstElts > NumSrcElts) {
1356       // Extended the source vector to the same length and then shuffle it
1357       // into the destination.
1358       // FIXME: since we're shuffling with undef, can we just use the indices
1359       //        into that?  This could be simpler.
1360       SmallVector<llvm::Constant*, 4> ExtMask;
1361       for (unsigned i = 0; i != NumSrcElts; ++i)
1362         ExtMask.push_back(Builder.getInt32(i));
1363       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1364       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1365       llvm::Value *ExtSrcVal =
1366         Builder.CreateShuffleVector(SrcVal,
1367                                     llvm::UndefValue::get(SrcVal->getType()),
1368                                     ExtMaskV);
1369       // build identity
1370       SmallVector<llvm::Constant*, 4> Mask;
1371       for (unsigned i = 0; i != NumDstElts; ++i)
1372         Mask.push_back(Builder.getInt32(i));
1373 
1374       // modify when what gets shuffled in
1375       for (unsigned i = 0; i != NumSrcElts; ++i)
1376         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1377       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1378       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1379     } else {
1380       // We should never shorten the vector
1381       llvm_unreachable("unexpected shorten vector length");
1382     }
1383   } else {
1384     // If the Src is a scalar (not a vector) it must be updating one element.
1385     unsigned InIdx = getAccessedFieldNo(0, Elts);
1386     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1387     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1388   }
1389 
1390   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1391                                                Dst.isVolatileQualified());
1392   Store->setAlignment(Dst.getAlignment().getQuantity());
1393 }
1394 
1395 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1396 // generating write-barries API. It is currently a global, ivar,
1397 // or neither.
1398 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1399                                  LValue &LV,
1400                                  bool IsMemberAccess=false) {
1401   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1402     return;
1403 
1404   if (isa<ObjCIvarRefExpr>(E)) {
1405     QualType ExpTy = E->getType();
1406     if (IsMemberAccess && ExpTy->isPointerType()) {
1407       // If ivar is a structure pointer, assigning to field of
1408       // this struct follows gcc's behavior and makes it a non-ivar
1409       // writer-barrier conservatively.
1410       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1411       if (ExpTy->isRecordType()) {
1412         LV.setObjCIvar(false);
1413         return;
1414       }
1415     }
1416     LV.setObjCIvar(true);
1417     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1418     LV.setBaseIvarExp(Exp->getBase());
1419     LV.setObjCArray(E->getType()->isArrayType());
1420     return;
1421   }
1422 
1423   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1424     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1425       if (VD->hasGlobalStorage()) {
1426         LV.setGlobalObjCRef(true);
1427         LV.setThreadLocalRef(VD->isThreadSpecified());
1428       }
1429     }
1430     LV.setObjCArray(E->getType()->isArrayType());
1431     return;
1432   }
1433 
1434   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1435     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1436     return;
1437   }
1438 
1439   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1440     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1441     if (LV.isObjCIvar()) {
1442       // If cast is to a structure pointer, follow gcc's behavior and make it
1443       // a non-ivar write-barrier.
1444       QualType ExpTy = E->getType();
1445       if (ExpTy->isPointerType())
1446         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1447       if (ExpTy->isRecordType())
1448         LV.setObjCIvar(false);
1449     }
1450     return;
1451   }
1452 
1453   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1454     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1455     return;
1456   }
1457 
1458   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1459     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1460     return;
1461   }
1462 
1463   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1464     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1465     return;
1466   }
1467 
1468   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1469     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1470     return;
1471   }
1472 
1473   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1474     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1475     if (LV.isObjCIvar() && !LV.isObjCArray())
1476       // Using array syntax to assigning to what an ivar points to is not
1477       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1478       LV.setObjCIvar(false);
1479     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1480       // Using array syntax to assigning to what global points to is not
1481       // same as assigning to the global itself. {id *G;} G[i] = 0;
1482       LV.setGlobalObjCRef(false);
1483     return;
1484   }
1485 
1486   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1487     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1488     // We don't know if member is an 'ivar', but this flag is looked at
1489     // only in the context of LV.isObjCIvar().
1490     LV.setObjCArray(E->getType()->isArrayType());
1491     return;
1492   }
1493 }
1494 
1495 static llvm::Value *
1496 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1497                                 llvm::Value *V, llvm::Type *IRType,
1498                                 StringRef Name = StringRef()) {
1499   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1500   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1501 }
1502 
1503 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1504                                       const Expr *E, const VarDecl *VD) {
1505   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1506          "Var decl must have external storage or be a file var decl!");
1507 
1508   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1509   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1510   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1511   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1512   QualType T = E->getType();
1513   LValue LV;
1514   if (VD->getType()->isReferenceType()) {
1515     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1516     LI->setAlignment(Alignment.getQuantity());
1517     V = LI;
1518     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1519   } else {
1520     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1521   }
1522   setObjCGCLValueClass(CGF.getContext(), E, LV);
1523   return LV;
1524 }
1525 
1526 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1527                                      const Expr *E, const FunctionDecl *FD) {
1528   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1529   if (!FD->hasPrototype()) {
1530     if (const FunctionProtoType *Proto =
1531             FD->getType()->getAs<FunctionProtoType>()) {
1532       // Ugly case: for a K&R-style definition, the type of the definition
1533       // isn't the same as the type of a use.  Correct for this with a
1534       // bitcast.
1535       QualType NoProtoType =
1536           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1537       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1538       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1539     }
1540   }
1541   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1542   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1543 }
1544 
1545 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1546   const NamedDecl *ND = E->getDecl();
1547   CharUnits Alignment = getContext().getDeclAlign(ND);
1548   QualType T = E->getType();
1549 
1550   // FIXME: We should be able to assert this for FunctionDecls as well!
1551   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1552   // those with a valid source location.
1553   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1554           !E->getLocation().isValid()) &&
1555          "Should not use decl without marking it used!");
1556 
1557   if (ND->hasAttr<WeakRefAttr>()) {
1558     const ValueDecl *VD = cast<ValueDecl>(ND);
1559     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1560     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1561   }
1562 
1563   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1564     // Check if this is a global variable.
1565     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1566       return EmitGlobalVarDeclLValue(*this, E, VD);
1567 
1568     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1569 
1570     bool NonGCable = VD->hasLocalStorage() &&
1571                      !VD->getType()->isReferenceType() &&
1572                      !isBlockVariable;
1573 
1574     llvm::Value *V = LocalDeclMap[VD];
1575     if (!V && VD->isStaticLocal())
1576       V = CGM.getStaticLocalDeclAddress(VD);
1577 
1578     // Use special handling for lambdas.
1579     if (!V) {
1580       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD))
1581         return EmitLValueForField(CXXABIThisValue, FD, 0);
1582 
1583       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1584       CharUnits alignment = getContext().getDeclAlign(VD);
1585       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1586                             E->getType(), alignment);
1587     }
1588 
1589     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1590 
1591     if (isBlockVariable)
1592       V = BuildBlockByrefAddress(V, VD);
1593 
1594     LValue LV;
1595     if (VD->getType()->isReferenceType()) {
1596       llvm::LoadInst *LI = Builder.CreateLoad(V);
1597       LI->setAlignment(Alignment.getQuantity());
1598       V = LI;
1599       LV = MakeNaturalAlignAddrLValue(V, T);
1600     } else {
1601       LV = MakeAddrLValue(V, T, Alignment);
1602     }
1603 
1604     if (NonGCable) {
1605       LV.getQuals().removeObjCGCAttr();
1606       LV.setNonGC(true);
1607     }
1608     setObjCGCLValueClass(getContext(), E, LV);
1609     return LV;
1610   }
1611 
1612   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1613     return EmitFunctionDeclLValue(*this, E, fn);
1614 
1615   llvm_unreachable("Unhandled DeclRefExpr");
1616 }
1617 
1618 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1619   // __extension__ doesn't affect lvalue-ness.
1620   if (E->getOpcode() == UO_Extension)
1621     return EmitLValue(E->getSubExpr());
1622 
1623   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1624   switch (E->getOpcode()) {
1625   default: llvm_unreachable("Unknown unary operator lvalue!");
1626   case UO_Deref: {
1627     QualType T = E->getSubExpr()->getType()->getPointeeType();
1628     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1629 
1630     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1631     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1632 
1633     // We should not generate __weak write barrier on indirect reference
1634     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1635     // But, we continue to generate __strong write barrier on indirect write
1636     // into a pointer to object.
1637     if (getContext().getLangOpts().ObjC1 &&
1638         getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1639         LV.isObjCWeak())
1640       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1641     return LV;
1642   }
1643   case UO_Real:
1644   case UO_Imag: {
1645     LValue LV = EmitLValue(E->getSubExpr());
1646     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1647     llvm::Value *Addr = LV.getAddress();
1648 
1649     // __real is valid on scalars.  This is a faster way of testing that.
1650     // __imag can only produce an rvalue on scalars.
1651     if (E->getOpcode() == UO_Real &&
1652         !cast<llvm::PointerType>(Addr->getType())
1653            ->getElementType()->isStructTy()) {
1654       assert(E->getSubExpr()->getType()->isArithmeticType());
1655       return LV;
1656     }
1657 
1658     assert(E->getSubExpr()->getType()->isAnyComplexType());
1659 
1660     unsigned Idx = E->getOpcode() == UO_Imag;
1661     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1662                                                   Idx, "idx"),
1663                           ExprTy);
1664   }
1665   case UO_PreInc:
1666   case UO_PreDec: {
1667     LValue LV = EmitLValue(E->getSubExpr());
1668     bool isInc = E->getOpcode() == UO_PreInc;
1669 
1670     if (E->getType()->isAnyComplexType())
1671       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1672     else
1673       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1674     return LV;
1675   }
1676   }
1677 }
1678 
1679 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1680   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1681                         E->getType());
1682 }
1683 
1684 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1685   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1686                         E->getType());
1687 }
1688 
1689 
1690 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1691   switch (E->getIdentType()) {
1692   default:
1693     return EmitUnsupportedLValue(E, "predefined expression");
1694 
1695   case PredefinedExpr::Func:
1696   case PredefinedExpr::Function:
1697   case PredefinedExpr::PrettyFunction: {
1698     unsigned Type = E->getIdentType();
1699     std::string GlobalVarName;
1700 
1701     switch (Type) {
1702     default: llvm_unreachable("Invalid type");
1703     case PredefinedExpr::Func:
1704       GlobalVarName = "__func__.";
1705       break;
1706     case PredefinedExpr::Function:
1707       GlobalVarName = "__FUNCTION__.";
1708       break;
1709     case PredefinedExpr::PrettyFunction:
1710       GlobalVarName = "__PRETTY_FUNCTION__.";
1711       break;
1712     }
1713 
1714     StringRef FnName = CurFn->getName();
1715     if (FnName.startswith("\01"))
1716       FnName = FnName.substr(1);
1717     GlobalVarName += FnName;
1718 
1719     const Decl *CurDecl = CurCodeDecl;
1720     if (CurDecl == 0)
1721       CurDecl = getContext().getTranslationUnitDecl();
1722 
1723     std::string FunctionName =
1724         (isa<BlockDecl>(CurDecl)
1725          ? FnName.str()
1726          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1727 
1728     llvm::Constant *C =
1729       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1730     return MakeAddrLValue(C, E->getType());
1731   }
1732   }
1733 }
1734 
1735 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1736   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1737 
1738   // If we are not optimzing, don't collapse all calls to trap in the function
1739   // to the same call, that way, in the debugger they can see which operation
1740   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1741   // to just one per function to save on codesize.
1742   if (GCO.OptimizationLevel && TrapBB)
1743     return TrapBB;
1744 
1745   llvm::BasicBlock *Cont = 0;
1746   if (HaveInsertPoint()) {
1747     Cont = createBasicBlock("cont");
1748     EmitBranch(Cont);
1749   }
1750   TrapBB = createBasicBlock("trap");
1751   EmitBlock(TrapBB);
1752 
1753   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1754   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1755   TrapCall->setDoesNotReturn();
1756   TrapCall->setDoesNotThrow();
1757   Builder.CreateUnreachable();
1758 
1759   if (Cont)
1760     EmitBlock(Cont);
1761   return TrapBB;
1762 }
1763 
1764 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1765 /// array to pointer, return the array subexpression.
1766 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1767   // If this isn't just an array->pointer decay, bail out.
1768   const CastExpr *CE = dyn_cast<CastExpr>(E);
1769   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1770     return 0;
1771 
1772   // If this is a decay from variable width array, bail out.
1773   const Expr *SubExpr = CE->getSubExpr();
1774   if (SubExpr->getType()->isVariableArrayType())
1775     return 0;
1776 
1777   return SubExpr;
1778 }
1779 
1780 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1781   // The index must always be an integer, which is not an aggregate.  Emit it.
1782   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1783   QualType IdxTy  = E->getIdx()->getType();
1784   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1785 
1786   // If the base is a vector type, then we are forming a vector element lvalue
1787   // with this subscript.
1788   if (E->getBase()->getType()->isVectorType()) {
1789     // Emit the vector as an lvalue to get its address.
1790     LValue LHS = EmitLValue(E->getBase());
1791     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1792     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1793     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1794                                  E->getBase()->getType(), LHS.getAlignment());
1795   }
1796 
1797   // Extend or truncate the index type to 32 or 64-bits.
1798   if (Idx->getType() != IntPtrTy)
1799     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1800 
1801   // FIXME: As llvm implements the object size checking, this can come out.
1802   if (CatchUndefined) {
1803     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1804       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1805         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1806           if (const ConstantArrayType *CAT
1807               = getContext().getAsConstantArrayType(DRE->getType())) {
1808             llvm::APInt Size = CAT->getSize();
1809             llvm::BasicBlock *Cont = createBasicBlock("cont");
1810             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1811                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1812                                  Cont, getTrapBB());
1813             EmitBlock(Cont);
1814           }
1815         }
1816       }
1817     }
1818   }
1819 
1820   // We know that the pointer points to a type of the correct size, unless the
1821   // size is a VLA or Objective-C interface.
1822   llvm::Value *Address = 0;
1823   CharUnits ArrayAlignment;
1824   if (const VariableArrayType *vla =
1825         getContext().getAsVariableArrayType(E->getType())) {
1826     // The base must be a pointer, which is not an aggregate.  Emit
1827     // it.  It needs to be emitted first in case it's what captures
1828     // the VLA bounds.
1829     Address = EmitScalarExpr(E->getBase());
1830 
1831     // The element count here is the total number of non-VLA elements.
1832     llvm::Value *numElements = getVLASize(vla).first;
1833 
1834     // Effectively, the multiply by the VLA size is part of the GEP.
1835     // GEP indexes are signed, and scaling an index isn't permitted to
1836     // signed-overflow, so we use the same semantics for our explicit
1837     // multiply.  We suppress this if overflow is not undefined behavior.
1838     if (getLangOpts().isSignedOverflowDefined()) {
1839       Idx = Builder.CreateMul(Idx, numElements);
1840       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1841     } else {
1842       Idx = Builder.CreateNSWMul(Idx, numElements);
1843       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1844     }
1845   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1846     // Indexing over an interface, as in "NSString *P; P[4];"
1847     llvm::Value *InterfaceSize =
1848       llvm::ConstantInt::get(Idx->getType(),
1849           getContext().getTypeSizeInChars(OIT).getQuantity());
1850 
1851     Idx = Builder.CreateMul(Idx, InterfaceSize);
1852 
1853     // The base must be a pointer, which is not an aggregate.  Emit it.
1854     llvm::Value *Base = EmitScalarExpr(E->getBase());
1855     Address = EmitCastToVoidPtr(Base);
1856     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1857     Address = Builder.CreateBitCast(Address, Base->getType());
1858   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1859     // If this is A[i] where A is an array, the frontend will have decayed the
1860     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1861     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1862     // "gep x, i" here.  Emit one "gep A, 0, i".
1863     assert(Array->getType()->isArrayType() &&
1864            "Array to pointer decay must have array source type!");
1865     LValue ArrayLV = EmitLValue(Array);
1866     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1867     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1868     llvm::Value *Args[] = { Zero, Idx };
1869 
1870     // Propagate the alignment from the array itself to the result.
1871     ArrayAlignment = ArrayLV.getAlignment();
1872 
1873     if (getContext().getLangOpts().isSignedOverflowDefined())
1874       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1875     else
1876       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1877   } else {
1878     // The base must be a pointer, which is not an aggregate.  Emit it.
1879     llvm::Value *Base = EmitScalarExpr(E->getBase());
1880     if (getContext().getLangOpts().isSignedOverflowDefined())
1881       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1882     else
1883       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1884   }
1885 
1886   QualType T = E->getBase()->getType()->getPointeeType();
1887   assert(!T.isNull() &&
1888          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1889 
1890 
1891   // Limit the alignment to that of the result type.
1892   LValue LV;
1893   if (!ArrayAlignment.isZero()) {
1894     CharUnits Align = getContext().getTypeAlignInChars(T);
1895     ArrayAlignment = std::min(Align, ArrayAlignment);
1896     LV = MakeAddrLValue(Address, T, ArrayAlignment);
1897   } else {
1898     LV = MakeNaturalAlignAddrLValue(Address, T);
1899   }
1900 
1901   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1902 
1903   if (getContext().getLangOpts().ObjC1 &&
1904       getContext().getLangOpts().getGC() != LangOptions::NonGC) {
1905     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1906     setObjCGCLValueClass(getContext(), E, LV);
1907   }
1908   return LV;
1909 }
1910 
1911 static
1912 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
1913                                        SmallVector<unsigned, 4> &Elts) {
1914   SmallVector<llvm::Constant*, 4> CElts;
1915   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1916     CElts.push_back(Builder.getInt32(Elts[i]));
1917 
1918   return llvm::ConstantVector::get(CElts);
1919 }
1920 
1921 LValue CodeGenFunction::
1922 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1923   // Emit the base vector as an l-value.
1924   LValue Base;
1925 
1926   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1927   if (E->isArrow()) {
1928     // If it is a pointer to a vector, emit the address and form an lvalue with
1929     // it.
1930     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1931     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1932     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1933     Base.getQuals().removeObjCGCAttr();
1934   } else if (E->getBase()->isGLValue()) {
1935     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1936     // emit the base as an lvalue.
1937     assert(E->getBase()->getType()->isVectorType());
1938     Base = EmitLValue(E->getBase());
1939   } else {
1940     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1941     assert(E->getBase()->getType()->isVectorType() &&
1942            "Result must be a vector");
1943     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1944 
1945     // Store the vector to memory (because LValue wants an address).
1946     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1947     Builder.CreateStore(Vec, VecMem);
1948     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1949   }
1950 
1951   QualType type =
1952     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1953 
1954   // Encode the element access list into a vector of unsigned indices.
1955   SmallVector<unsigned, 4> Indices;
1956   E->getEncodedElementAccess(Indices);
1957 
1958   if (Base.isSimple()) {
1959     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
1960     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
1961                                     Base.getAlignment());
1962   }
1963   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1964 
1965   llvm::Constant *BaseElts = Base.getExtVectorElts();
1966   SmallVector<llvm::Constant *, 4> CElts;
1967 
1968   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1969     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
1970   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1971   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
1972                                   Base.getAlignment());
1973 }
1974 
1975 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1976   bool isNonGC = false;
1977   Expr *BaseExpr = E->getBase();
1978   llvm::Value *BaseValue = NULL;
1979   Qualifiers BaseQuals;
1980 
1981   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1982   if (E->isArrow()) {
1983     BaseValue = EmitScalarExpr(BaseExpr);
1984     const PointerType *PTy =
1985       BaseExpr->getType()->getAs<PointerType>();
1986     BaseQuals = PTy->getPointeeType().getQualifiers();
1987   } else {
1988     LValue BaseLV = EmitLValue(BaseExpr);
1989     if (BaseLV.isNonGC())
1990       isNonGC = true;
1991     // FIXME: this isn't right for bitfields.
1992     BaseValue = BaseLV.getAddress();
1993     QualType BaseTy = BaseExpr->getType();
1994     BaseQuals = BaseTy.getQualifiers();
1995   }
1996 
1997   NamedDecl *ND = E->getMemberDecl();
1998   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1999     LValue LV = EmitLValueForField(BaseValue, Field,
2000                                    BaseQuals.getCVRQualifiers());
2001     LV.setNonGC(isNonGC);
2002     setObjCGCLValueClass(getContext(), E, LV);
2003     return LV;
2004   }
2005 
2006   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2007     return EmitGlobalVarDeclLValue(*this, E, VD);
2008 
2009   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2010     return EmitFunctionDeclLValue(*this, E, FD);
2011 
2012   llvm_unreachable("Unhandled member declaration!");
2013 }
2014 
2015 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
2016                                               const FieldDecl *Field,
2017                                               unsigned CVRQualifiers) {
2018   const CGRecordLayout &RL =
2019     CGM.getTypes().getCGRecordLayout(Field->getParent());
2020   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
2021   return LValue::MakeBitfield(BaseValue, Info,
2022                           Field->getType().withCVRQualifiers(CVRQualifiers));
2023 }
2024 
2025 /// EmitLValueForAnonRecordField - Given that the field is a member of
2026 /// an anonymous struct or union buried inside a record, and given
2027 /// that the base value is a pointer to the enclosing record, derive
2028 /// an lvalue for the ultimate field.
2029 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
2030                                              const IndirectFieldDecl *Field,
2031                                                      unsigned CVRQualifiers) {
2032   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
2033     IEnd = Field->chain_end();
2034   while (true) {
2035     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
2036                                    CVRQualifiers);
2037     if (++I == IEnd) return LV;
2038 
2039     assert(LV.isSimple());
2040     BaseValue = LV.getAddress();
2041     CVRQualifiers |= LV.getVRQualifiers();
2042   }
2043 }
2044 
2045 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
2046                                            const FieldDecl *field,
2047                                            unsigned cvr) {
2048   if (field->isBitField())
2049     return EmitLValueForBitfield(baseAddr, field, cvr);
2050 
2051   const RecordDecl *rec = field->getParent();
2052   QualType type = field->getType();
2053   CharUnits alignment = getContext().getDeclAlign(field);
2054 
2055   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2056 
2057   llvm::Value *addr = baseAddr;
2058   if (rec->isUnion()) {
2059     // For unions, there is no pointer adjustment.
2060     assert(!type->isReferenceType() && "union has reference member");
2061   } else {
2062     // For structs, we GEP to the field that the record layout suggests.
2063     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2064     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2065 
2066     // If this is a reference field, load the reference right now.
2067     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2068       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2069       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2070       load->setAlignment(alignment.getQuantity());
2071 
2072       if (CGM.shouldUseTBAA()) {
2073         llvm::MDNode *tbaa;
2074         if (mayAlias)
2075           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2076         else
2077           tbaa = CGM.getTBAAInfo(type);
2078         CGM.DecorateInstruction(load, tbaa);
2079       }
2080 
2081       addr = load;
2082       mayAlias = false;
2083       type = refType->getPointeeType();
2084       if (type->isIncompleteType())
2085         alignment = CharUnits();
2086       else
2087         alignment = getContext().getTypeAlignInChars(type);
2088       cvr = 0; // qualifiers don't recursively apply to referencee
2089     }
2090   }
2091 
2092   // Make sure that the address is pointing to the right type.  This is critical
2093   // for both unions and structs.  A union needs a bitcast, a struct element
2094   // will need a bitcast if the LLVM type laid out doesn't match the desired
2095   // type.
2096   addr = EmitBitCastOfLValueToProperType(*this, addr,
2097                                          CGM.getTypes().ConvertTypeForMem(type),
2098                                          field->getName());
2099 
2100   if (field->hasAttr<AnnotateAttr>())
2101     addr = EmitFieldAnnotations(field, addr);
2102 
2103   LValue LV = MakeAddrLValue(addr, type, alignment);
2104   LV.getQuals().addCVRQualifiers(cvr);
2105 
2106   // __weak attribute on a field is ignored.
2107   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2108     LV.getQuals().removeObjCGCAttr();
2109 
2110   // Fields of may_alias structs act like 'char' for TBAA purposes.
2111   // FIXME: this should get propagated down through anonymous structs
2112   // and unions.
2113   if (mayAlias && LV.getTBAAInfo())
2114     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2115 
2116   return LV;
2117 }
2118 
2119 LValue
2120 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
2121                                                   const FieldDecl *Field,
2122                                                   unsigned CVRQualifiers) {
2123   QualType FieldType = Field->getType();
2124 
2125   if (!FieldType->isReferenceType())
2126     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
2127 
2128   const CGRecordLayout &RL =
2129     CGM.getTypes().getCGRecordLayout(Field->getParent());
2130   unsigned idx = RL.getLLVMFieldNo(Field);
2131   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
2132   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2133 
2134 
2135   // Make sure that the address is pointing to the right type.  This is critical
2136   // for both unions and structs.  A union needs a bitcast, a struct element
2137   // will need a bitcast if the LLVM type laid out doesn't match the desired
2138   // type.
2139   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2140   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2141   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
2142 
2143   CharUnits Alignment = getContext().getDeclAlign(Field);
2144   return MakeAddrLValue(V, FieldType, Alignment);
2145 }
2146 
2147 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2148   if (E->isFileScope()) {
2149     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2150     return MakeAddrLValue(GlobalPtr, E->getType());
2151   }
2152 
2153   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2154   const Expr *InitExpr = E->getInitializer();
2155   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2156 
2157   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2158                    /*Init*/ true);
2159 
2160   return Result;
2161 }
2162 
2163 LValue CodeGenFunction::
2164 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2165   if (!expr->isGLValue()) {
2166     // ?: here should be an aggregate.
2167     assert((hasAggregateLLVMType(expr->getType()) &&
2168             !expr->getType()->isAnyComplexType()) &&
2169            "Unexpected conditional operator!");
2170     return EmitAggExprToLValue(expr);
2171   }
2172 
2173   OpaqueValueMapping binding(*this, expr);
2174 
2175   const Expr *condExpr = expr->getCond();
2176   bool CondExprBool;
2177   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2178     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2179     if (!CondExprBool) std::swap(live, dead);
2180 
2181     if (!ContainsLabel(dead))
2182       return EmitLValue(live);
2183   }
2184 
2185   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2186   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2187   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2188 
2189   ConditionalEvaluation eval(*this);
2190   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2191 
2192   // Any temporaries created here are conditional.
2193   EmitBlock(lhsBlock);
2194   eval.begin(*this);
2195   LValue lhs = EmitLValue(expr->getTrueExpr());
2196   eval.end(*this);
2197 
2198   if (!lhs.isSimple())
2199     return EmitUnsupportedLValue(expr, "conditional operator");
2200 
2201   lhsBlock = Builder.GetInsertBlock();
2202   Builder.CreateBr(contBlock);
2203 
2204   // Any temporaries created here are conditional.
2205   EmitBlock(rhsBlock);
2206   eval.begin(*this);
2207   LValue rhs = EmitLValue(expr->getFalseExpr());
2208   eval.end(*this);
2209   if (!rhs.isSimple())
2210     return EmitUnsupportedLValue(expr, "conditional operator");
2211   rhsBlock = Builder.GetInsertBlock();
2212 
2213   EmitBlock(contBlock);
2214 
2215   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2216                                          "cond-lvalue");
2217   phi->addIncoming(lhs.getAddress(), lhsBlock);
2218   phi->addIncoming(rhs.getAddress(), rhsBlock);
2219   return MakeAddrLValue(phi, expr->getType());
2220 }
2221 
2222 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2223 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
2224 /// otherwise if a cast is needed by the code generator in an lvalue context,
2225 /// then it must mean that we need the address of an aggregate in order to
2226 /// access one of its fields.  This can happen for all the reasons that casts
2227 /// are permitted with aggregate result, including noop aggregate casts, and
2228 /// cast from scalar to union.
2229 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2230   switch (E->getCastKind()) {
2231   case CK_ToVoid:
2232     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2233 
2234   case CK_Dependent:
2235     llvm_unreachable("dependent cast kind in IR gen!");
2236 
2237   // These two casts are currently treated as no-ops, although they could
2238   // potentially be real operations depending on the target's ABI.
2239   case CK_NonAtomicToAtomic:
2240   case CK_AtomicToNonAtomic:
2241 
2242   case CK_NoOp:
2243   case CK_LValueToRValue:
2244     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2245         || E->getType()->isRecordType())
2246       return EmitLValue(E->getSubExpr());
2247     // Fall through to synthesize a temporary.
2248 
2249   case CK_BitCast:
2250   case CK_ArrayToPointerDecay:
2251   case CK_FunctionToPointerDecay:
2252   case CK_NullToMemberPointer:
2253   case CK_NullToPointer:
2254   case CK_IntegralToPointer:
2255   case CK_PointerToIntegral:
2256   case CK_PointerToBoolean:
2257   case CK_VectorSplat:
2258   case CK_IntegralCast:
2259   case CK_IntegralToBoolean:
2260   case CK_IntegralToFloating:
2261   case CK_FloatingToIntegral:
2262   case CK_FloatingToBoolean:
2263   case CK_FloatingCast:
2264   case CK_FloatingRealToComplex:
2265   case CK_FloatingComplexToReal:
2266   case CK_FloatingComplexToBoolean:
2267   case CK_FloatingComplexCast:
2268   case CK_FloatingComplexToIntegralComplex:
2269   case CK_IntegralRealToComplex:
2270   case CK_IntegralComplexToReal:
2271   case CK_IntegralComplexToBoolean:
2272   case CK_IntegralComplexCast:
2273   case CK_IntegralComplexToFloatingComplex:
2274   case CK_DerivedToBaseMemberPointer:
2275   case CK_BaseToDerivedMemberPointer:
2276   case CK_MemberPointerToBoolean:
2277   case CK_ReinterpretMemberPointer:
2278   case CK_AnyPointerToBlockPointerCast:
2279   case CK_ARCProduceObject:
2280   case CK_ARCConsumeObject:
2281   case CK_ARCReclaimReturnedObject:
2282   case CK_ARCExtendBlockObject:
2283   case CK_CopyAndAutoreleaseBlockObject: {
2284     // These casts only produce lvalues when we're binding a reference to a
2285     // temporary realized from a (converted) pure rvalue. Emit the expression
2286     // as a value, copy it into a temporary, and return an lvalue referring to
2287     // that temporary.
2288     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2289     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2290     return MakeAddrLValue(V, E->getType());
2291   }
2292 
2293   case CK_Dynamic: {
2294     LValue LV = EmitLValue(E->getSubExpr());
2295     llvm::Value *V = LV.getAddress();
2296     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2297     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2298   }
2299 
2300   case CK_ConstructorConversion:
2301   case CK_UserDefinedConversion:
2302   case CK_CPointerToObjCPointerCast:
2303   case CK_BlockPointerToObjCPointerCast:
2304     return EmitLValue(E->getSubExpr());
2305 
2306   case CK_UncheckedDerivedToBase:
2307   case CK_DerivedToBase: {
2308     const RecordType *DerivedClassTy =
2309       E->getSubExpr()->getType()->getAs<RecordType>();
2310     CXXRecordDecl *DerivedClassDecl =
2311       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2312 
2313     LValue LV = EmitLValue(E->getSubExpr());
2314     llvm::Value *This = LV.getAddress();
2315 
2316     // Perform the derived-to-base conversion
2317     llvm::Value *Base =
2318       GetAddressOfBaseClass(This, DerivedClassDecl,
2319                             E->path_begin(), E->path_end(),
2320                             /*NullCheckValue=*/false);
2321 
2322     return MakeAddrLValue(Base, E->getType());
2323   }
2324   case CK_ToUnion:
2325     return EmitAggExprToLValue(E);
2326   case CK_BaseToDerived: {
2327     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2328     CXXRecordDecl *DerivedClassDecl =
2329       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2330 
2331     LValue LV = EmitLValue(E->getSubExpr());
2332 
2333     // Perform the base-to-derived conversion
2334     llvm::Value *Derived =
2335       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2336                                E->path_begin(), E->path_end(),
2337                                /*NullCheckValue=*/false);
2338 
2339     return MakeAddrLValue(Derived, E->getType());
2340   }
2341   case CK_LValueBitCast: {
2342     // This must be a reinterpret_cast (or c-style equivalent).
2343     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2344 
2345     LValue LV = EmitLValue(E->getSubExpr());
2346     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2347                                            ConvertType(CE->getTypeAsWritten()));
2348     return MakeAddrLValue(V, E->getType());
2349   }
2350   case CK_ObjCObjectLValueCast: {
2351     LValue LV = EmitLValue(E->getSubExpr());
2352     QualType ToType = getContext().getLValueReferenceType(E->getType());
2353     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2354                                            ConvertType(ToType));
2355     return MakeAddrLValue(V, E->getType());
2356   }
2357   }
2358 
2359   llvm_unreachable("Unhandled lvalue cast kind?");
2360 }
2361 
2362 LValue CodeGenFunction::EmitNullInitializationLValue(
2363                                               const CXXScalarValueInitExpr *E) {
2364   QualType Ty = E->getType();
2365   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2366   EmitNullInitialization(LV.getAddress(), Ty);
2367   return LV;
2368 }
2369 
2370 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2371   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2372   return getOpaqueLValueMapping(e);
2373 }
2374 
2375 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2376                                            const MaterializeTemporaryExpr *E) {
2377   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2378   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2379 }
2380 
2381 
2382 //===--------------------------------------------------------------------===//
2383 //                             Expression Emission
2384 //===--------------------------------------------------------------------===//
2385 
2386 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2387                                      ReturnValueSlot ReturnValue) {
2388   if (CGDebugInfo *DI = getDebugInfo())
2389     DI->EmitLocation(Builder, E->getLocStart());
2390 
2391   // Builtins never have block type.
2392   if (E->getCallee()->getType()->isBlockPointerType())
2393     return EmitBlockCallExpr(E, ReturnValue);
2394 
2395   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2396     return EmitCXXMemberCallExpr(CE, ReturnValue);
2397 
2398   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2399     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2400 
2401   const Decl *TargetDecl = E->getCalleeDecl();
2402   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2403     if (unsigned builtinID = FD->getBuiltinID())
2404       return EmitBuiltinExpr(FD, builtinID, E);
2405   }
2406 
2407   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2408     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2409       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2410 
2411   if (const CXXPseudoDestructorExpr *PseudoDtor
2412           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2413     QualType DestroyedType = PseudoDtor->getDestroyedType();
2414     if (getContext().getLangOpts().ObjCAutoRefCount &&
2415         DestroyedType->isObjCLifetimeType() &&
2416         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2417          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2418       // Automatic Reference Counting:
2419       //   If the pseudo-expression names a retainable object with weak or
2420       //   strong lifetime, the object shall be released.
2421       Expr *BaseExpr = PseudoDtor->getBase();
2422       llvm::Value *BaseValue = NULL;
2423       Qualifiers BaseQuals;
2424 
2425       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2426       if (PseudoDtor->isArrow()) {
2427         BaseValue = EmitScalarExpr(BaseExpr);
2428         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2429         BaseQuals = PTy->getPointeeType().getQualifiers();
2430       } else {
2431         LValue BaseLV = EmitLValue(BaseExpr);
2432         BaseValue = BaseLV.getAddress();
2433         QualType BaseTy = BaseExpr->getType();
2434         BaseQuals = BaseTy.getQualifiers();
2435       }
2436 
2437       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2438       case Qualifiers::OCL_None:
2439       case Qualifiers::OCL_ExplicitNone:
2440       case Qualifiers::OCL_Autoreleasing:
2441         break;
2442 
2443       case Qualifiers::OCL_Strong:
2444         EmitARCRelease(Builder.CreateLoad(BaseValue,
2445                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2446                        /*precise*/ true);
2447         break;
2448 
2449       case Qualifiers::OCL_Weak:
2450         EmitARCDestroyWeak(BaseValue);
2451         break;
2452       }
2453     } else {
2454       // C++ [expr.pseudo]p1:
2455       //   The result shall only be used as the operand for the function call
2456       //   operator (), and the result of such a call has type void. The only
2457       //   effect is the evaluation of the postfix-expression before the dot or
2458       //   arrow.
2459       EmitScalarExpr(E->getCallee());
2460     }
2461 
2462     return RValue::get(0);
2463   }
2464 
2465   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2466   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2467                   E->arg_begin(), E->arg_end(), TargetDecl);
2468 }
2469 
2470 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2471   // Comma expressions just emit their LHS then their RHS as an l-value.
2472   if (E->getOpcode() == BO_Comma) {
2473     EmitIgnoredExpr(E->getLHS());
2474     EnsureInsertPoint();
2475     return EmitLValue(E->getRHS());
2476   }
2477 
2478   if (E->getOpcode() == BO_PtrMemD ||
2479       E->getOpcode() == BO_PtrMemI)
2480     return EmitPointerToDataMemberBinaryExpr(E);
2481 
2482   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2483 
2484   // Note that in all of these cases, __block variables need the RHS
2485   // evaluated first just in case the variable gets moved by the RHS.
2486 
2487   if (!hasAggregateLLVMType(E->getType())) {
2488     switch (E->getLHS()->getType().getObjCLifetime()) {
2489     case Qualifiers::OCL_Strong:
2490       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2491 
2492     case Qualifiers::OCL_Autoreleasing:
2493       return EmitARCStoreAutoreleasing(E).first;
2494 
2495     // No reason to do any of these differently.
2496     case Qualifiers::OCL_None:
2497     case Qualifiers::OCL_ExplicitNone:
2498     case Qualifiers::OCL_Weak:
2499       break;
2500     }
2501 
2502     RValue RV = EmitAnyExpr(E->getRHS());
2503     LValue LV = EmitLValue(E->getLHS());
2504     EmitStoreThroughLValue(RV, LV);
2505     return LV;
2506   }
2507 
2508   if (E->getType()->isAnyComplexType())
2509     return EmitComplexAssignmentLValue(E);
2510 
2511   return EmitAggExprToLValue(E);
2512 }
2513 
2514 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2515   RValue RV = EmitCallExpr(E);
2516 
2517   if (!RV.isScalar())
2518     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2519 
2520   assert(E->getCallReturnType()->isReferenceType() &&
2521          "Can't have a scalar return unless the return type is a "
2522          "reference type!");
2523 
2524   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2525 }
2526 
2527 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2528   // FIXME: This shouldn't require another copy.
2529   return EmitAggExprToLValue(E);
2530 }
2531 
2532 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2533   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2534          && "binding l-value to type which needs a temporary");
2535   AggValueSlot Slot = CreateAggTemp(E->getType());
2536   EmitCXXConstructExpr(E, Slot);
2537   return MakeAddrLValue(Slot.getAddr(), E->getType());
2538 }
2539 
2540 LValue
2541 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2542   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2543 }
2544 
2545 LValue
2546 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2547   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2548   Slot.setExternallyDestructed();
2549   EmitAggExpr(E->getSubExpr(), Slot);
2550   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2551   return MakeAddrLValue(Slot.getAddr(), E->getType());
2552 }
2553 
2554 LValue
2555 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2556   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2557   EmitLambdaExpr(E, Slot);
2558   return MakeAddrLValue(Slot.getAddr(), E->getType());
2559 }
2560 
2561 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2562   RValue RV = EmitObjCMessageExpr(E);
2563 
2564   if (!RV.isScalar())
2565     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2566 
2567   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2568          "Can't have a scalar return unless the return type is a "
2569          "reference type!");
2570 
2571   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2572 }
2573 
2574 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2575   llvm::Value *V =
2576     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2577   return MakeAddrLValue(V, E->getType());
2578 }
2579 
2580 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2581                                              const ObjCIvarDecl *Ivar) {
2582   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2583 }
2584 
2585 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2586                                           llvm::Value *BaseValue,
2587                                           const ObjCIvarDecl *Ivar,
2588                                           unsigned CVRQualifiers) {
2589   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2590                                                    Ivar, CVRQualifiers);
2591 }
2592 
2593 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2594   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2595   llvm::Value *BaseValue = 0;
2596   const Expr *BaseExpr = E->getBase();
2597   Qualifiers BaseQuals;
2598   QualType ObjectTy;
2599   if (E->isArrow()) {
2600     BaseValue = EmitScalarExpr(BaseExpr);
2601     ObjectTy = BaseExpr->getType()->getPointeeType();
2602     BaseQuals = ObjectTy.getQualifiers();
2603   } else {
2604     LValue BaseLV = EmitLValue(BaseExpr);
2605     // FIXME: this isn't right for bitfields.
2606     BaseValue = BaseLV.getAddress();
2607     ObjectTy = BaseExpr->getType();
2608     BaseQuals = ObjectTy.getQualifiers();
2609   }
2610 
2611   LValue LV =
2612     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2613                       BaseQuals.getCVRQualifiers());
2614   setObjCGCLValueClass(getContext(), E, LV);
2615   return LV;
2616 }
2617 
2618 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2619   // Can only get l-value for message expression returning aggregate type
2620   RValue RV = EmitAnyExprToTemp(E);
2621   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2622 }
2623 
2624 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2625                                  ReturnValueSlot ReturnValue,
2626                                  CallExpr::const_arg_iterator ArgBeg,
2627                                  CallExpr::const_arg_iterator ArgEnd,
2628                                  const Decl *TargetDecl) {
2629   // Get the actual function type. The callee type will always be a pointer to
2630   // function type or a block pointer type.
2631   assert(CalleeType->isFunctionPointerType() &&
2632          "Call must have function pointer type!");
2633 
2634   CalleeType = getContext().getCanonicalType(CalleeType);
2635 
2636   const FunctionType *FnType
2637     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2638 
2639   CallArgList Args;
2640   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2641 
2642   const CGFunctionInfo &FnInfo =
2643     CGM.getTypes().arrangeFunctionCall(Args, FnType);
2644 
2645   // C99 6.5.2.2p6:
2646   //   If the expression that denotes the called function has a type
2647   //   that does not include a prototype, [the default argument
2648   //   promotions are performed]. If the number of arguments does not
2649   //   equal the number of parameters, the behavior is undefined. If
2650   //   the function is defined with a type that includes a prototype,
2651   //   and either the prototype ends with an ellipsis (, ...) or the
2652   //   types of the arguments after promotion are not compatible with
2653   //   the types of the parameters, the behavior is undefined. If the
2654   //   function is defined with a type that does not include a
2655   //   prototype, and the types of the arguments after promotion are
2656   //   not compatible with those of the parameters after promotion,
2657   //   the behavior is undefined [except in some trivial cases].
2658   // That is, in the general case, we should assume that a call
2659   // through an unprototyped function type works like a *non-variadic*
2660   // call.  The way we make this work is to cast to the exact type
2661   // of the promoted arguments.
2662   if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2663     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2664     CalleeTy = CalleeTy->getPointerTo();
2665     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2666   }
2667 
2668   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2669 }
2670 
2671 LValue CodeGenFunction::
2672 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2673   llvm::Value *BaseV;
2674   if (E->getOpcode() == BO_PtrMemI)
2675     BaseV = EmitScalarExpr(E->getLHS());
2676   else
2677     BaseV = EmitLValue(E->getLHS()).getAddress();
2678 
2679   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2680 
2681   const MemberPointerType *MPT
2682     = E->getRHS()->getType()->getAs<MemberPointerType>();
2683 
2684   llvm::Value *AddV =
2685     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2686 
2687   return MakeAddrLValue(AddV, MPT->getPointeeType());
2688 }
2689 
2690 static void
2691 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2692              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2693              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2694   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2695   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
2696 
2697   switch (E->getOp()) {
2698   case AtomicExpr::AO__c11_atomic_init:
2699     llvm_unreachable("Already handled!");
2700 
2701   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2702   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2703   case AtomicExpr::AO__atomic_compare_exchange:
2704   case AtomicExpr::AO__atomic_compare_exchange_n: {
2705     // Note that cmpxchg only supports specifying one ordering and
2706     // doesn't support weak cmpxchg, at least at the moment.
2707     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2708     LoadVal1->setAlignment(Align);
2709     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2710     LoadVal2->setAlignment(Align);
2711     llvm::AtomicCmpXchgInst *CXI =
2712         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2713     CXI->setVolatile(E->isVolatile());
2714     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2715     StoreVal1->setAlignment(Align);
2716     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2717     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2718     return;
2719   }
2720 
2721   case AtomicExpr::AO__c11_atomic_load:
2722   case AtomicExpr::AO__atomic_load_n:
2723   case AtomicExpr::AO__atomic_load: {
2724     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2725     Load->setAtomic(Order);
2726     Load->setAlignment(Size);
2727     Load->setVolatile(E->isVolatile());
2728     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2729     StoreDest->setAlignment(Align);
2730     return;
2731   }
2732 
2733   case AtomicExpr::AO__c11_atomic_store:
2734   case AtomicExpr::AO__atomic_store:
2735   case AtomicExpr::AO__atomic_store_n: {
2736     assert(!Dest && "Store does not return a value");
2737     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2738     LoadVal1->setAlignment(Align);
2739     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2740     Store->setAtomic(Order);
2741     Store->setAlignment(Size);
2742     Store->setVolatile(E->isVolatile());
2743     return;
2744   }
2745 
2746   case AtomicExpr::AO__c11_atomic_exchange:
2747   case AtomicExpr::AO__atomic_exchange_n:
2748   case AtomicExpr::AO__atomic_exchange:
2749     Op = llvm::AtomicRMWInst::Xchg;
2750     break;
2751 
2752   case AtomicExpr::AO__atomic_add_fetch:
2753     PostOp = llvm::Instruction::Add;
2754     // Fall through.
2755   case AtomicExpr::AO__c11_atomic_fetch_add:
2756   case AtomicExpr::AO__atomic_fetch_add:
2757     Op = llvm::AtomicRMWInst::Add;
2758     break;
2759 
2760   case AtomicExpr::AO__atomic_sub_fetch:
2761     PostOp = llvm::Instruction::Sub;
2762     // Fall through.
2763   case AtomicExpr::AO__c11_atomic_fetch_sub:
2764   case AtomicExpr::AO__atomic_fetch_sub:
2765     Op = llvm::AtomicRMWInst::Sub;
2766     break;
2767 
2768   case AtomicExpr::AO__atomic_and_fetch:
2769     PostOp = llvm::Instruction::And;
2770     // Fall through.
2771   case AtomicExpr::AO__c11_atomic_fetch_and:
2772   case AtomicExpr::AO__atomic_fetch_and:
2773     Op = llvm::AtomicRMWInst::And;
2774     break;
2775 
2776   case AtomicExpr::AO__atomic_or_fetch:
2777     PostOp = llvm::Instruction::Or;
2778     // Fall through.
2779   case AtomicExpr::AO__c11_atomic_fetch_or:
2780   case AtomicExpr::AO__atomic_fetch_or:
2781     Op = llvm::AtomicRMWInst::Or;
2782     break;
2783 
2784   case AtomicExpr::AO__atomic_xor_fetch:
2785     PostOp = llvm::Instruction::Xor;
2786     // Fall through.
2787   case AtomicExpr::AO__c11_atomic_fetch_xor:
2788   case AtomicExpr::AO__atomic_fetch_xor:
2789     Op = llvm::AtomicRMWInst::Xor;
2790     break;
2791 
2792   case AtomicExpr::AO__atomic_nand_fetch:
2793     PostOp = llvm::Instruction::And;
2794     // Fall through.
2795   case AtomicExpr::AO__atomic_fetch_nand:
2796     Op = llvm::AtomicRMWInst::Nand;
2797     break;
2798   }
2799 
2800   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2801   LoadVal1->setAlignment(Align);
2802   llvm::AtomicRMWInst *RMWI =
2803       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2804   RMWI->setVolatile(E->isVolatile());
2805 
2806   // For __atomic_*_fetch operations, perform the operation again to
2807   // determine the value which was written.
2808   llvm::Value *Result = RMWI;
2809   if (PostOp)
2810     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
2811   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
2812     Result = CGF.Builder.CreateNot(Result);
2813   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
2814   StoreDest->setAlignment(Align);
2815 }
2816 
2817 // This function emits any expression (scalar, complex, or aggregate)
2818 // into a temporary alloca.
2819 static llvm::Value *
2820 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2821   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2822   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2823                        /*Init*/ true);
2824   return DeclPtr;
2825 }
2826 
2827 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2828                                   llvm::Value *Dest) {
2829   if (Ty->isAnyComplexType())
2830     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2831   if (CGF.hasAggregateLLVMType(Ty))
2832     return RValue::getAggregate(Dest);
2833   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2834 }
2835 
2836 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2837   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2838   QualType MemTy = AtomicTy;
2839   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
2840     MemTy = AT->getValueType();
2841   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2842   uint64_t Size = sizeChars.getQuantity();
2843   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2844   unsigned Align = alignChars.getQuantity();
2845   unsigned MaxInlineWidth =
2846       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2847   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2848 
2849 
2850 
2851   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2852   Ptr = EmitScalarExpr(E->getPtr());
2853 
2854   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
2855     assert(!Dest && "Init does not return a value");
2856     if (!hasAggregateLLVMType(E->getVal1()->getType())) {
2857       QualType PointeeType
2858         = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
2859       EmitScalarInit(EmitScalarExpr(E->getVal1()),
2860                      LValue::MakeAddr(Ptr, PointeeType, alignChars,
2861                                       getContext()));
2862     } else if (E->getType()->isAnyComplexType()) {
2863       EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
2864     } else {
2865       AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
2866                                         AtomicTy.getQualifiers(),
2867                                         AggValueSlot::IsNotDestructed,
2868                                         AggValueSlot::DoesNotNeedGCBarriers,
2869                                         AggValueSlot::IsNotAliased);
2870       EmitAggExpr(E->getVal1(), Slot);
2871     }
2872     return RValue::get(0);
2873   }
2874 
2875   Order = EmitScalarExpr(E->getOrder());
2876 
2877   switch (E->getOp()) {
2878   case AtomicExpr::AO__c11_atomic_init:
2879     llvm_unreachable("Already handled!");
2880 
2881   case AtomicExpr::AO__c11_atomic_load:
2882   case AtomicExpr::AO__atomic_load_n:
2883     break;
2884 
2885   case AtomicExpr::AO__atomic_load:
2886     Dest = EmitScalarExpr(E->getVal1());
2887     break;
2888 
2889   case AtomicExpr::AO__atomic_store:
2890     Val1 = EmitScalarExpr(E->getVal1());
2891     break;
2892 
2893   case AtomicExpr::AO__atomic_exchange:
2894     Val1 = EmitScalarExpr(E->getVal1());
2895     Dest = EmitScalarExpr(E->getVal2());
2896     break;
2897 
2898   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2899   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2900   case AtomicExpr::AO__atomic_compare_exchange_n:
2901   case AtomicExpr::AO__atomic_compare_exchange:
2902     Val1 = EmitScalarExpr(E->getVal1());
2903     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
2904       Val2 = EmitScalarExpr(E->getVal2());
2905     else
2906       Val2 = EmitValToTemp(*this, E->getVal2());
2907     OrderFail = EmitScalarExpr(E->getOrderFail());
2908     // Evaluate and discard the 'weak' argument.
2909     if (E->getNumSubExprs() == 6)
2910       EmitScalarExpr(E->getWeak());
2911     break;
2912 
2913   case AtomicExpr::AO__c11_atomic_fetch_add:
2914   case AtomicExpr::AO__c11_atomic_fetch_sub:
2915     if (MemTy->isPointerType()) {
2916       // For pointer arithmetic, we're required to do a bit of math:
2917       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
2918       // ... but only for the C11 builtins. The GNU builtins expect the
2919       // user to multiply by sizeof(T).
2920       QualType Val1Ty = E->getVal1()->getType();
2921       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2922       CharUnits PointeeIncAmt =
2923           getContext().getTypeSizeInChars(MemTy->getPointeeType());
2924       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2925       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2926       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2927       break;
2928     }
2929     // Fall through.
2930   case AtomicExpr::AO__atomic_fetch_add:
2931   case AtomicExpr::AO__atomic_fetch_sub:
2932   case AtomicExpr::AO__atomic_add_fetch:
2933   case AtomicExpr::AO__atomic_sub_fetch:
2934   case AtomicExpr::AO__c11_atomic_store:
2935   case AtomicExpr::AO__c11_atomic_exchange:
2936   case AtomicExpr::AO__atomic_store_n:
2937   case AtomicExpr::AO__atomic_exchange_n:
2938   case AtomicExpr::AO__c11_atomic_fetch_and:
2939   case AtomicExpr::AO__c11_atomic_fetch_or:
2940   case AtomicExpr::AO__c11_atomic_fetch_xor:
2941   case AtomicExpr::AO__atomic_fetch_and:
2942   case AtomicExpr::AO__atomic_fetch_or:
2943   case AtomicExpr::AO__atomic_fetch_xor:
2944   case AtomicExpr::AO__atomic_fetch_nand:
2945   case AtomicExpr::AO__atomic_and_fetch:
2946   case AtomicExpr::AO__atomic_or_fetch:
2947   case AtomicExpr::AO__atomic_xor_fetch:
2948   case AtomicExpr::AO__atomic_nand_fetch:
2949     Val1 = EmitValToTemp(*this, E->getVal1());
2950     break;
2951   }
2952 
2953   if (!E->getType()->isVoidType() && !Dest)
2954     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2955 
2956   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2957   if (UseLibcall) {
2958 
2959     llvm::SmallVector<QualType, 5> Params;
2960     CallArgList Args;
2961     // Size is always the first parameter
2962     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2963              getContext().getSizeType());
2964     // Atomic address is always the second parameter
2965     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2966              getContext().VoidPtrTy);
2967 
2968     const char* LibCallName;
2969     QualType RetTy = getContext().VoidTy;
2970     switch (E->getOp()) {
2971     // There is only one libcall for compare an exchange, because there is no
2972     // optimisation benefit possible from a libcall version of a weak compare
2973     // and exchange.
2974     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
2975     //                                void *desired, int success, int failure)
2976     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2977     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2978     case AtomicExpr::AO__atomic_compare_exchange:
2979     case AtomicExpr::AO__atomic_compare_exchange_n:
2980       LibCallName = "__atomic_compare_exchange";
2981       RetTy = getContext().BoolTy;
2982       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2983                getContext().VoidPtrTy);
2984       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2985                getContext().VoidPtrTy);
2986       Args.add(RValue::get(Order),
2987                getContext().IntTy);
2988       Order = OrderFail;
2989       break;
2990     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
2991     //                        int order)
2992     case AtomicExpr::AO__c11_atomic_exchange:
2993     case AtomicExpr::AO__atomic_exchange_n:
2994     case AtomicExpr::AO__atomic_exchange:
2995       LibCallName = "__atomic_exchange";
2996       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2997                getContext().VoidPtrTy);
2998       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2999                getContext().VoidPtrTy);
3000       break;
3001     // void __atomic_store(size_t size, void *mem, void *val, int order)
3002     case AtomicExpr::AO__c11_atomic_store:
3003     case AtomicExpr::AO__atomic_store:
3004     case AtomicExpr::AO__atomic_store_n:
3005       LibCallName = "__atomic_store";
3006       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3007                getContext().VoidPtrTy);
3008       break;
3009     // void __atomic_load(size_t size, void *mem, void *return, int order)
3010     case AtomicExpr::AO__c11_atomic_load:
3011     case AtomicExpr::AO__atomic_load:
3012     case AtomicExpr::AO__atomic_load_n:
3013       LibCallName = "__atomic_load";
3014       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3015                getContext().VoidPtrTy);
3016       break;
3017 #if 0
3018     // These are only defined for 1-16 byte integers.  It is not clear what
3019     // their semantics would be on anything else...
3020     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3021     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3022     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3023     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3024     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3025 #endif
3026     default: return EmitUnsupportedRValue(E, "atomic library call");
3027     }
3028     // order is always the last parameter
3029     Args.add(RValue::get(Order),
3030              getContext().IntTy);
3031 
3032     const CGFunctionInfo &FuncInfo =
3033         CGM.getTypes().arrangeFunctionCall(RetTy, Args,
3034             FunctionType::ExtInfo(), RequiredArgs::All);
3035     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3036     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3037     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3038     if (E->isCmpXChg())
3039       return Res;
3040     if (E->getType()->isVoidType())
3041       return RValue::get(0);
3042     return ConvertTempToRValue(*this, E->getType(), Dest);
3043   }
3044 
3045   llvm::Type *IPtrTy =
3046       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3047   llvm::Value *OrigDest = Dest;
3048   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3049   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3050   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3051   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3052 
3053   if (isa<llvm::ConstantInt>(Order)) {
3054     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3055     switch (ord) {
3056     case 0:  // memory_order_relaxed
3057       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3058                    llvm::Monotonic);
3059       break;
3060     case 1:  // memory_order_consume
3061     case 2:  // memory_order_acquire
3062       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3063                    llvm::Acquire);
3064       break;
3065     case 3:  // memory_order_release
3066       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3067                    llvm::Release);
3068       break;
3069     case 4:  // memory_order_acq_rel
3070       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3071                    llvm::AcquireRelease);
3072       break;
3073     case 5:  // memory_order_seq_cst
3074       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3075                    llvm::SequentiallyConsistent);
3076       break;
3077     default: // invalid order
3078       // We should not ever get here normally, but it's hard to
3079       // enforce that in general.
3080       break;
3081     }
3082     if (E->getType()->isVoidType())
3083       return RValue::get(0);
3084     return ConvertTempToRValue(*this, E->getType(), OrigDest);
3085   }
3086 
3087   // Long case, when Order isn't obviously constant.
3088 
3089   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3090                  E->getOp() == AtomicExpr::AO__atomic_store ||
3091                  E->getOp() == AtomicExpr::AO__atomic_store_n;
3092   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3093                 E->getOp() == AtomicExpr::AO__atomic_load ||
3094                 E->getOp() == AtomicExpr::AO__atomic_load_n;
3095 
3096   // Create all the relevant BB's
3097   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3098                    *AcqRelBB = 0, *SeqCstBB = 0;
3099   MonotonicBB = createBasicBlock("monotonic", CurFn);
3100   if (!IsStore)
3101     AcquireBB = createBasicBlock("acquire", CurFn);
3102   if (!IsLoad)
3103     ReleaseBB = createBasicBlock("release", CurFn);
3104   if (!IsLoad && !IsStore)
3105     AcqRelBB = createBasicBlock("acqrel", CurFn);
3106   SeqCstBB = createBasicBlock("seqcst", CurFn);
3107   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3108 
3109   // Create the switch for the split
3110   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3111   // doesn't matter unless someone is crazy enough to use something that
3112   // doesn't fold to a constant for the ordering.
3113   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3114   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3115 
3116   // Emit all the different atomics
3117   Builder.SetInsertPoint(MonotonicBB);
3118   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3119                llvm::Monotonic);
3120   Builder.CreateBr(ContBB);
3121   if (!IsStore) {
3122     Builder.SetInsertPoint(AcquireBB);
3123     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3124                  llvm::Acquire);
3125     Builder.CreateBr(ContBB);
3126     SI->addCase(Builder.getInt32(1), AcquireBB);
3127     SI->addCase(Builder.getInt32(2), AcquireBB);
3128   }
3129   if (!IsLoad) {
3130     Builder.SetInsertPoint(ReleaseBB);
3131     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3132                  llvm::Release);
3133     Builder.CreateBr(ContBB);
3134     SI->addCase(Builder.getInt32(3), ReleaseBB);
3135   }
3136   if (!IsLoad && !IsStore) {
3137     Builder.SetInsertPoint(AcqRelBB);
3138     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3139                  llvm::AcquireRelease);
3140     Builder.CreateBr(ContBB);
3141     SI->addCase(Builder.getInt32(4), AcqRelBB);
3142   }
3143   Builder.SetInsertPoint(SeqCstBB);
3144   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3145                llvm::SequentiallyConsistent);
3146   Builder.CreateBr(ContBB);
3147   SI->addCase(Builder.getInt32(5), SeqCstBB);
3148 
3149   // Cleanup and return
3150   Builder.SetInsertPoint(ContBB);
3151   if (E->getType()->isVoidType())
3152     return RValue::get(0);
3153   return ConvertTempToRValue(*this, E->getType(), OrigDest);
3154 }
3155 
3156 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3157   assert(Val->getType()->isFPOrFPVectorTy());
3158   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3159     return;
3160 
3161   llvm::Value *ULPs = llvm::ConstantFP::get(Builder.getFloatTy(), Accuracy);
3162   llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), ULPs);
3163 
3164   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
3165                                             Node);
3166 }
3167 
3168 namespace {
3169   struct LValueOrRValue {
3170     LValue LV;
3171     RValue RV;
3172   };
3173 }
3174 
3175 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3176                                            const PseudoObjectExpr *E,
3177                                            bool forLValue,
3178                                            AggValueSlot slot) {
3179   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3180 
3181   // Find the result expression, if any.
3182   const Expr *resultExpr = E->getResultExpr();
3183   LValueOrRValue result;
3184 
3185   for (PseudoObjectExpr::const_semantics_iterator
3186          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3187     const Expr *semantic = *i;
3188 
3189     // If this semantic expression is an opaque value, bind it
3190     // to the result of its source expression.
3191     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3192 
3193       // If this is the result expression, we may need to evaluate
3194       // directly into the slot.
3195       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3196       OVMA opaqueData;
3197       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3198           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3199           !ov->getType()->isAnyComplexType()) {
3200         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3201 
3202         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3203         opaqueData = OVMA::bind(CGF, ov, LV);
3204         result.RV = slot.asRValue();
3205 
3206       // Otherwise, emit as normal.
3207       } else {
3208         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3209 
3210         // If this is the result, also evaluate the result now.
3211         if (ov == resultExpr) {
3212           if (forLValue)
3213             result.LV = CGF.EmitLValue(ov);
3214           else
3215             result.RV = CGF.EmitAnyExpr(ov, slot);
3216         }
3217       }
3218 
3219       opaques.push_back(opaqueData);
3220 
3221     // Otherwise, if the expression is the result, evaluate it
3222     // and remember the result.
3223     } else if (semantic == resultExpr) {
3224       if (forLValue)
3225         result.LV = CGF.EmitLValue(semantic);
3226       else
3227         result.RV = CGF.EmitAnyExpr(semantic, slot);
3228 
3229     // Otherwise, evaluate the expression in an ignored context.
3230     } else {
3231       CGF.EmitIgnoredExpr(semantic);
3232     }
3233   }
3234 
3235   // Unbind all the opaques now.
3236   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3237     opaques[i].unbind(CGF);
3238 
3239   return result;
3240 }
3241 
3242 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3243                                                AggValueSlot slot) {
3244   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3245 }
3246 
3247 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3248   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3249 }
3250