1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/LLVMContext.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===--------------------------------------------------------------------===// 32 // Miscellaneous Helper Methods 33 //===--------------------------------------------------------------------===// 34 35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 36 unsigned addressSpace = 37 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 38 39 llvm::PointerType *destType = Int8PtrTy; 40 if (addressSpace) 41 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 42 43 if (value->getType() == destType) return value; 44 return Builder.CreateBitCast(value, destType); 45 } 46 47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 48 /// block. 49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 50 const Twine &Name) { 51 if (!Builder.isNamePreserving()) 52 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 53 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 54 } 55 56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 57 llvm::Value *Init) { 58 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 59 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 60 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 61 } 62 63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 64 const Twine &Name) { 65 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 66 // FIXME: Should we prefer the preferred type alignment here? 67 CharUnits Align = getContext().getTypeAlignInChars(Ty); 68 Alloc->setAlignment(Align.getQuantity()); 69 return Alloc; 70 } 71 72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 73 const Twine &Name) { 74 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 75 // FIXME: Should we prefer the preferred type alignment here? 76 CharUnits Align = getContext().getTypeAlignInChars(Ty); 77 Alloc->setAlignment(Align.getQuantity()); 78 return Alloc; 79 } 80 81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 82 /// expression and compare the result against zero, returning an Int1Ty value. 83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 84 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 85 llvm::Value *MemPtr = EmitScalarExpr(E); 86 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 87 } 88 89 QualType BoolTy = getContext().BoolTy; 90 if (!E->getType()->isAnyComplexType()) 91 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 92 93 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 94 } 95 96 /// EmitIgnoredExpr - Emit code to compute the specified expression, 97 /// ignoring the result. 98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 99 if (E->isRValue()) 100 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 101 102 // Just emit it as an l-value and drop the result. 103 EmitLValue(E); 104 } 105 106 /// EmitAnyExpr - Emit code to compute the specified expression which 107 /// can have any type. The result is returned as an RValue struct. 108 /// If this is an aggregate expression, AggSlot indicates where the 109 /// result should be returned. 110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 111 bool IgnoreResult) { 112 if (!hasAggregateLLVMType(E->getType())) 113 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 114 else if (E->getType()->isAnyComplexType()) 115 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 116 117 EmitAggExpr(E, AggSlot, IgnoreResult); 118 return AggSlot.asRValue(); 119 } 120 121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 122 /// always be accessible even if no aggregate location is provided. 123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 124 AggValueSlot AggSlot = AggValueSlot::ignored(); 125 126 if (hasAggregateLLVMType(E->getType()) && 127 !E->getType()->isAnyComplexType()) 128 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 129 return EmitAnyExpr(E, AggSlot); 130 } 131 132 /// EmitAnyExprToMem - Evaluate an expression into a given memory 133 /// location. 134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 135 llvm::Value *Location, 136 Qualifiers Quals, 137 bool IsInit) { 138 // FIXME: This function should take an LValue as an argument. 139 if (E->getType()->isAnyComplexType()) { 140 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 141 } else if (hasAggregateLLVMType(E->getType())) { 142 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 143 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 144 AggValueSlot::IsDestructed_t(IsInit), 145 AggValueSlot::DoesNotNeedGCBarriers, 146 AggValueSlot::IsAliased_t(!IsInit))); 147 } else { 148 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 149 LValue LV = MakeAddrLValue(Location, E->getType()); 150 EmitStoreThroughLValue(RV, LV); 151 } 152 } 153 154 namespace { 155 /// \brief An adjustment to be made to the temporary created when emitting a 156 /// reference binding, which accesses a particular subobject of that temporary. 157 struct SubobjectAdjustment { 158 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 159 160 union { 161 struct { 162 const CastExpr *BasePath; 163 const CXXRecordDecl *DerivedClass; 164 } DerivedToBase; 165 166 FieldDecl *Field; 167 }; 168 169 SubobjectAdjustment(const CastExpr *BasePath, 170 const CXXRecordDecl *DerivedClass) 171 : Kind(DerivedToBaseAdjustment) { 172 DerivedToBase.BasePath = BasePath; 173 DerivedToBase.DerivedClass = DerivedClass; 174 } 175 176 SubobjectAdjustment(FieldDecl *Field) 177 : Kind(FieldAdjustment) { 178 this->Field = Field; 179 } 180 }; 181 } 182 183 static llvm::Value * 184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 185 const NamedDecl *InitializedDecl) { 186 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 187 if (VD->hasGlobalStorage()) { 188 SmallString<256> Name; 189 llvm::raw_svector_ostream Out(Name); 190 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 191 Out.flush(); 192 193 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 194 195 // Create the reference temporary. 196 llvm::GlobalValue *RefTemp = 197 new llvm::GlobalVariable(CGF.CGM.getModule(), 198 RefTempTy, /*isConstant=*/false, 199 llvm::GlobalValue::InternalLinkage, 200 llvm::Constant::getNullValue(RefTempTy), 201 Name.str()); 202 return RefTemp; 203 } 204 } 205 206 return CGF.CreateMemTemp(Type, "ref.tmp"); 207 } 208 209 static llvm::Value * 210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 211 llvm::Value *&ReferenceTemporary, 212 const CXXDestructorDecl *&ReferenceTemporaryDtor, 213 QualType &ObjCARCReferenceLifetimeType, 214 const NamedDecl *InitializedDecl) { 215 // Look through single-element init lists that claim to be lvalues. They're 216 // just syntactic wrappers in this case. 217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 218 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 219 E = ILE->getInit(0); 220 } 221 222 // Look through expressions for materialized temporaries (for now). 223 if (const MaterializeTemporaryExpr *M 224 = dyn_cast<MaterializeTemporaryExpr>(E)) { 225 // Objective-C++ ARC: 226 // If we are binding a reference to a temporary that has ownership, we 227 // need to perform retain/release operations on the temporary. 228 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 229 E->getType()->isObjCLifetimeType() && 230 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 231 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 233 ObjCARCReferenceLifetimeType = E->getType(); 234 235 E = M->GetTemporaryExpr(); 236 } 237 238 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 239 E = DAE->getExpr(); 240 241 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 242 CGF.enterFullExpression(EWC); 243 CodeGenFunction::RunCleanupsScope Scope(CGF); 244 245 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 246 ReferenceTemporary, 247 ReferenceTemporaryDtor, 248 ObjCARCReferenceLifetimeType, 249 InitializedDecl); 250 } 251 252 RValue RV; 253 if (E->isGLValue()) { 254 // Emit the expression as an lvalue. 255 LValue LV = CGF.EmitLValue(E); 256 257 if (LV.isSimple()) 258 return LV.getAddress(); 259 260 // We have to load the lvalue. 261 RV = CGF.EmitLoadOfLValue(LV); 262 } else { 263 if (!ObjCARCReferenceLifetimeType.isNull()) { 264 ReferenceTemporary = CreateReferenceTemporary(CGF, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 268 269 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 270 ObjCARCReferenceLifetimeType); 271 272 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 273 RefTempDst, false); 274 275 bool ExtendsLifeOfTemporary = false; 276 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 277 if (Var->extendsLifetimeOfTemporary()) 278 ExtendsLifeOfTemporary = true; 279 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 280 ExtendsLifeOfTemporary = true; 281 } 282 283 if (!ExtendsLifeOfTemporary) { 284 // Since the lifetime of this temporary isn't going to be extended, 285 // we need to clean it up ourselves at the end of the full expression. 286 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 287 case Qualifiers::OCL_None: 288 case Qualifiers::OCL_ExplicitNone: 289 case Qualifiers::OCL_Autoreleasing: 290 break; 291 292 case Qualifiers::OCL_Strong: { 293 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 294 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 295 CGF.pushDestroy(cleanupKind, 296 ReferenceTemporary, 297 ObjCARCReferenceLifetimeType, 298 CodeGenFunction::destroyARCStrongImprecise, 299 cleanupKind & EHCleanup); 300 break; 301 } 302 303 case Qualifiers::OCL_Weak: 304 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 305 CGF.pushDestroy(NormalAndEHCleanup, 306 ReferenceTemporary, 307 ObjCARCReferenceLifetimeType, 308 CodeGenFunction::destroyARCWeak, 309 /*useEHCleanupForArray*/ true); 310 break; 311 } 312 313 ObjCARCReferenceLifetimeType = QualType(); 314 } 315 316 return ReferenceTemporary; 317 } 318 319 SmallVector<SubobjectAdjustment, 2> Adjustments; 320 while (true) { 321 E = E->IgnoreParens(); 322 323 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 324 if ((CE->getCastKind() == CK_DerivedToBase || 325 CE->getCastKind() == CK_UncheckedDerivedToBase) && 326 E->getType()->isRecordType()) { 327 E = CE->getSubExpr(); 328 CXXRecordDecl *Derived 329 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 330 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 331 continue; 332 } 333 334 if (CE->getCastKind() == CK_NoOp) { 335 E = CE->getSubExpr(); 336 continue; 337 } 338 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 339 if (!ME->isArrow() && ME->getBase()->isRValue()) { 340 assert(ME->getBase()->getType()->isRecordType()); 341 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 342 E = ME->getBase(); 343 Adjustments.push_back(SubobjectAdjustment(Field)); 344 continue; 345 } 346 } 347 } 348 349 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 350 if (opaque->getType()->isRecordType()) 351 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 352 353 // Nothing changed. 354 break; 355 } 356 357 // Create a reference temporary if necessary. 358 AggValueSlot AggSlot = AggValueSlot::ignored(); 359 if (CGF.hasAggregateLLVMType(E->getType()) && 360 !E->getType()->isAnyComplexType()) { 361 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 362 InitializedDecl); 363 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 364 AggValueSlot::IsDestructed_t isDestructed 365 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 366 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 367 Qualifiers(), isDestructed, 368 AggValueSlot::DoesNotNeedGCBarriers, 369 AggValueSlot::IsNotAliased); 370 } 371 372 if (InitializedDecl) { 373 // Get the destructor for the reference temporary. 374 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 375 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 376 if (!ClassDecl->hasTrivialDestructor()) 377 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 378 } 379 } 380 381 RV = CGF.EmitAnyExpr(E, AggSlot); 382 383 // Check if need to perform derived-to-base casts and/or field accesses, to 384 // get from the temporary object we created (and, potentially, for which we 385 // extended the lifetime) to the subobject we're binding the reference to. 386 if (!Adjustments.empty()) { 387 llvm::Value *Object = RV.getAggregateAddr(); 388 for (unsigned I = Adjustments.size(); I != 0; --I) { 389 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 390 switch (Adjustment.Kind) { 391 case SubobjectAdjustment::DerivedToBaseAdjustment: 392 Object = 393 CGF.GetAddressOfBaseClass(Object, 394 Adjustment.DerivedToBase.DerivedClass, 395 Adjustment.DerivedToBase.BasePath->path_begin(), 396 Adjustment.DerivedToBase.BasePath->path_end(), 397 /*NullCheckValue=*/false); 398 break; 399 400 case SubobjectAdjustment::FieldAdjustment: { 401 LValue LV = 402 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 403 if (LV.isSimple()) { 404 Object = LV.getAddress(); 405 break; 406 } 407 408 // For non-simple lvalues, we actually have to create a copy of 409 // the object we're binding to. 410 QualType T = Adjustment.Field->getType().getNonReferenceType() 411 .getUnqualifiedType(); 412 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 413 LValue TempLV = CGF.MakeAddrLValue(Object, 414 Adjustment.Field->getType()); 415 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 416 break; 417 } 418 419 } 420 } 421 422 return Object; 423 } 424 } 425 426 if (RV.isAggregate()) 427 return RV.getAggregateAddr(); 428 429 // Create a temporary variable that we can bind the reference to. 430 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 431 InitializedDecl); 432 433 434 unsigned Alignment = 435 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 436 if (RV.isScalar()) 437 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 438 /*Volatile=*/false, Alignment, E->getType()); 439 else 440 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 441 /*Volatile=*/false); 442 return ReferenceTemporary; 443 } 444 445 RValue 446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 447 const NamedDecl *InitializedDecl) { 448 llvm::Value *ReferenceTemporary = 0; 449 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 450 QualType ObjCARCReferenceLifetimeType; 451 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 452 ReferenceTemporaryDtor, 453 ObjCARCReferenceLifetimeType, 454 InitializedDecl); 455 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 456 return RValue::get(Value); 457 458 // Make sure to call the destructor for the reference temporary. 459 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 460 if (VD && VD->hasGlobalStorage()) { 461 if (ReferenceTemporaryDtor) { 462 llvm::Constant *DtorFn = 463 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 464 EmitCXXGlobalDtorRegistration(DtorFn, 465 cast<llvm::Constant>(ReferenceTemporary)); 466 } else { 467 assert(!ObjCARCReferenceLifetimeType.isNull()); 468 // Note: We intentionally do not register a global "destructor" to 469 // release the object. 470 } 471 472 return RValue::get(Value); 473 } 474 475 if (ReferenceTemporaryDtor) 476 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 477 else { 478 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 479 case Qualifiers::OCL_None: 480 llvm_unreachable( 481 "Not a reference temporary that needs to be deallocated"); 482 case Qualifiers::OCL_ExplicitNone: 483 case Qualifiers::OCL_Autoreleasing: 484 // Nothing to do. 485 break; 486 487 case Qualifiers::OCL_Strong: { 488 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 489 CleanupKind cleanupKind = getARCCleanupKind(); 490 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 491 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 492 cleanupKind & EHCleanup); 493 break; 494 } 495 496 case Qualifiers::OCL_Weak: { 497 // __weak objects always get EH cleanups; otherwise, exceptions 498 // could cause really nasty crashes instead of mere leaks. 499 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 500 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 501 break; 502 } 503 } 504 } 505 506 return RValue::get(Value); 507 } 508 509 510 /// getAccessedFieldNo - Given an encoded value and a result number, return the 511 /// input field number being accessed. 512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 513 const llvm::Constant *Elts) { 514 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 515 ->getZExtValue(); 516 } 517 518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 519 if (!CatchUndefined) 520 return; 521 522 // This needs to be to the standard address space. 523 Address = Builder.CreateBitCast(Address, Int8PtrTy); 524 525 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 526 527 // In time, people may want to control this and use a 1 here. 528 llvm::Value *Arg = Builder.getFalse(); 529 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 530 llvm::BasicBlock *Cont = createBasicBlock(); 531 llvm::BasicBlock *Check = createBasicBlock(); 532 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 533 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 534 535 EmitBlock(Check); 536 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 537 llvm::ConstantInt::get(IntPtrTy, Size)), 538 Cont, getTrapBB()); 539 EmitBlock(Cont); 540 } 541 542 543 CodeGenFunction::ComplexPairTy CodeGenFunction:: 544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 545 bool isInc, bool isPre) { 546 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 547 LV.isVolatileQualified()); 548 549 llvm::Value *NextVal; 550 if (isa<llvm::IntegerType>(InVal.first->getType())) { 551 uint64_t AmountVal = isInc ? 1 : -1; 552 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 553 554 // Add the inc/dec to the real part. 555 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 556 } else { 557 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 558 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 559 if (!isInc) 560 FVal.changeSign(); 561 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 562 563 // Add the inc/dec to the real part. 564 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 565 } 566 567 ComplexPairTy IncVal(NextVal, InVal.second); 568 569 // Store the updated result through the lvalue. 570 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 571 572 // If this is a postinc, return the value read from memory, otherwise use the 573 // updated value. 574 return isPre ? IncVal : InVal; 575 } 576 577 578 //===----------------------------------------------------------------------===// 579 // LValue Expression Emission 580 //===----------------------------------------------------------------------===// 581 582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 583 if (Ty->isVoidType()) 584 return RValue::get(0); 585 586 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 587 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 588 llvm::Value *U = llvm::UndefValue::get(EltTy); 589 return RValue::getComplex(std::make_pair(U, U)); 590 } 591 592 // If this is a use of an undefined aggregate type, the aggregate must have an 593 // identifiable address. Just because the contents of the value are undefined 594 // doesn't mean that the address can't be taken and compared. 595 if (hasAggregateLLVMType(Ty)) { 596 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 597 return RValue::getAggregate(DestPtr); 598 } 599 600 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 601 } 602 603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 604 const char *Name) { 605 ErrorUnsupported(E, Name); 606 return GetUndefRValue(E->getType()); 607 } 608 609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 610 const char *Name) { 611 ErrorUnsupported(E, Name); 612 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 613 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 614 } 615 616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 617 LValue LV = EmitLValue(E); 618 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 619 EmitCheck(LV.getAddress(), 620 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 621 return LV; 622 } 623 624 /// EmitLValue - Emit code to compute a designator that specifies the location 625 /// of the expression. 626 /// 627 /// This can return one of two things: a simple address or a bitfield reference. 628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 629 /// an LLVM pointer type. 630 /// 631 /// If this returns a bitfield reference, nothing about the pointee type of the 632 /// LLVM value is known: For example, it may not be a pointer to an integer. 633 /// 634 /// If this returns a normal address, and if the lvalue's C type is fixed size, 635 /// this method guarantees that the returned pointer type will point to an LLVM 636 /// type of the same size of the lvalue's type. If the lvalue has a variable 637 /// length type, this is not possible. 638 /// 639 LValue CodeGenFunction::EmitLValue(const Expr *E) { 640 switch (E->getStmtClass()) { 641 default: return EmitUnsupportedLValue(E, "l-value expression"); 642 643 case Expr::ObjCPropertyRefExprClass: 644 llvm_unreachable("cannot emit a property reference directly"); 645 646 case Expr::ObjCSelectorExprClass: 647 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 648 case Expr::ObjCIsaExprClass: 649 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 650 case Expr::BinaryOperatorClass: 651 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 652 case Expr::CompoundAssignOperatorClass: 653 if (!E->getType()->isAnyComplexType()) 654 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 655 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 656 case Expr::CallExprClass: 657 case Expr::CXXMemberCallExprClass: 658 case Expr::CXXOperatorCallExprClass: 659 case Expr::UserDefinedLiteralClass: 660 return EmitCallExprLValue(cast<CallExpr>(E)); 661 case Expr::VAArgExprClass: 662 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 663 case Expr::DeclRefExprClass: 664 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 665 case Expr::ParenExprClass: 666 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 667 case Expr::GenericSelectionExprClass: 668 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 669 case Expr::PredefinedExprClass: 670 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 671 case Expr::StringLiteralClass: 672 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 673 case Expr::ObjCEncodeExprClass: 674 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 675 case Expr::PseudoObjectExprClass: 676 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 677 case Expr::InitListExprClass: 678 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 679 "Only single-element init list can be lvalue."); 680 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 681 682 case Expr::CXXTemporaryObjectExprClass: 683 case Expr::CXXConstructExprClass: 684 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 685 case Expr::CXXBindTemporaryExprClass: 686 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 687 case Expr::LambdaExprClass: 688 return EmitLambdaLValue(cast<LambdaExpr>(E)); 689 690 case Expr::ExprWithCleanupsClass: { 691 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 692 enterFullExpression(cleanups); 693 RunCleanupsScope Scope(*this); 694 return EmitLValue(cleanups->getSubExpr()); 695 } 696 697 case Expr::CXXScalarValueInitExprClass: 698 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 699 case Expr::CXXDefaultArgExprClass: 700 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 701 case Expr::CXXTypeidExprClass: 702 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 703 704 case Expr::ObjCMessageExprClass: 705 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 706 case Expr::ObjCIvarRefExprClass: 707 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 708 case Expr::StmtExprClass: 709 return EmitStmtExprLValue(cast<StmtExpr>(E)); 710 case Expr::UnaryOperatorClass: 711 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 712 case Expr::ArraySubscriptExprClass: 713 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 714 case Expr::ExtVectorElementExprClass: 715 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 716 case Expr::MemberExprClass: 717 return EmitMemberExpr(cast<MemberExpr>(E)); 718 case Expr::CompoundLiteralExprClass: 719 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 720 case Expr::ConditionalOperatorClass: 721 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 722 case Expr::BinaryConditionalOperatorClass: 723 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 724 case Expr::ChooseExprClass: 725 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 726 case Expr::OpaqueValueExprClass: 727 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 728 case Expr::SubstNonTypeTemplateParmExprClass: 729 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 730 case Expr::ImplicitCastExprClass: 731 case Expr::CStyleCastExprClass: 732 case Expr::CXXFunctionalCastExprClass: 733 case Expr::CXXStaticCastExprClass: 734 case Expr::CXXDynamicCastExprClass: 735 case Expr::CXXReinterpretCastExprClass: 736 case Expr::CXXConstCastExprClass: 737 case Expr::ObjCBridgedCastExprClass: 738 return EmitCastLValue(cast<CastExpr>(E)); 739 740 case Expr::MaterializeTemporaryExprClass: 741 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 742 } 743 } 744 745 /// Given an object of the given canonical type, can we safely copy a 746 /// value out of it based on its initializer? 747 static bool isConstantEmittableObjectType(QualType type) { 748 assert(type.isCanonical()); 749 assert(!type->isReferenceType()); 750 751 // Must be const-qualified but non-volatile. 752 Qualifiers qs = type.getLocalQualifiers(); 753 if (!qs.hasConst() || qs.hasVolatile()) return false; 754 755 // Otherwise, all object types satisfy this except C++ classes with 756 // mutable subobjects or non-trivial copy/destroy behavior. 757 if (const RecordType *RT = dyn_cast<RecordType>(type)) 758 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 759 if (RD->hasMutableFields() || !RD->isTrivial()) 760 return false; 761 762 return true; 763 } 764 765 /// Can we constant-emit a load of a reference to a variable of the 766 /// given type? This is different from predicates like 767 /// Decl::isUsableInConstantExpressions because we do want it to apply 768 /// in situations that don't necessarily satisfy the language's rules 769 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 770 /// to do this with const float variables even if those variables 771 /// aren't marked 'constexpr'. 772 enum ConstantEmissionKind { 773 CEK_None, 774 CEK_AsReferenceOnly, 775 CEK_AsValueOrReference, 776 CEK_AsValueOnly 777 }; 778 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 779 type = type.getCanonicalType(); 780 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 781 if (isConstantEmittableObjectType(ref->getPointeeType())) 782 return CEK_AsValueOrReference; 783 return CEK_AsReferenceOnly; 784 } 785 if (isConstantEmittableObjectType(type)) 786 return CEK_AsValueOnly; 787 return CEK_None; 788 } 789 790 /// Try to emit a reference to the given value without producing it as 791 /// an l-value. This is actually more than an optimization: we can't 792 /// produce an l-value for variables that we never actually captured 793 /// in a block or lambda, which means const int variables or constexpr 794 /// literals or similar. 795 CodeGenFunction::ConstantEmission 796 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 797 ValueDecl *value = refExpr->getDecl(); 798 799 // The value needs to be an enum constant or a constant variable. 800 ConstantEmissionKind CEK; 801 if (isa<ParmVarDecl>(value)) { 802 CEK = CEK_None; 803 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 804 CEK = checkVarTypeForConstantEmission(var->getType()); 805 } else if (isa<EnumConstantDecl>(value)) { 806 CEK = CEK_AsValueOnly; 807 } else { 808 CEK = CEK_None; 809 } 810 if (CEK == CEK_None) return ConstantEmission(); 811 812 Expr::EvalResult result; 813 bool resultIsReference; 814 QualType resultType; 815 816 // It's best to evaluate all the way as an r-value if that's permitted. 817 if (CEK != CEK_AsReferenceOnly && 818 refExpr->EvaluateAsRValue(result, getContext())) { 819 resultIsReference = false; 820 resultType = refExpr->getType(); 821 822 // Otherwise, try to evaluate as an l-value. 823 } else if (CEK != CEK_AsValueOnly && 824 refExpr->EvaluateAsLValue(result, getContext())) { 825 resultIsReference = true; 826 resultType = value->getType(); 827 828 // Failure. 829 } else { 830 return ConstantEmission(); 831 } 832 833 // In any case, if the initializer has side-effects, abandon ship. 834 if (result.HasSideEffects) 835 return ConstantEmission(); 836 837 // Emit as a constant. 838 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 839 840 // Make sure we emit a debug reference to the global variable. 841 // This should probably fire even for 842 if (isa<VarDecl>(value)) { 843 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 844 EmitDeclRefExprDbgValue(refExpr, C); 845 } else { 846 assert(isa<EnumConstantDecl>(value)); 847 EmitDeclRefExprDbgValue(refExpr, C); 848 } 849 850 // If we emitted a reference constant, we need to dereference that. 851 if (resultIsReference) 852 return ConstantEmission::forReference(C); 853 854 return ConstantEmission::forValue(C); 855 } 856 857 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 858 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 859 lvalue.getAlignment().getQuantity(), 860 lvalue.getType(), lvalue.getTBAAInfo()); 861 } 862 863 static bool hasBooleanRepresentation(QualType Ty) { 864 if (Ty->isBooleanType()) 865 return true; 866 867 if (const EnumType *ET = Ty->getAs<EnumType>()) 868 return ET->getDecl()->getIntegerType()->isBooleanType(); 869 870 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 871 return hasBooleanRepresentation(AT->getValueType()); 872 873 return false; 874 } 875 876 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 877 const EnumType *ET = Ty->getAs<EnumType>(); 878 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 879 CGM.getCodeGenOpts().StrictEnums && 880 !ET->getDecl()->isFixed()); 881 bool IsBool = hasBooleanRepresentation(Ty); 882 llvm::Type *LTy; 883 if (!IsBool && !IsRegularCPlusPlusEnum) 884 return NULL; 885 886 llvm::APInt Min; 887 llvm::APInt End; 888 if (IsBool) { 889 Min = llvm::APInt(8, 0); 890 End = llvm::APInt(8, 2); 891 LTy = Int8Ty; 892 } else { 893 const EnumDecl *ED = ET->getDecl(); 894 LTy = ConvertTypeForMem(ED->getIntegerType()); 895 unsigned Bitwidth = LTy->getScalarSizeInBits(); 896 unsigned NumNegativeBits = ED->getNumNegativeBits(); 897 unsigned NumPositiveBits = ED->getNumPositiveBits(); 898 899 if (NumNegativeBits) { 900 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 901 assert(NumBits <= Bitwidth); 902 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 903 Min = -End; 904 } else { 905 assert(NumPositiveBits <= Bitwidth); 906 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 907 Min = llvm::APInt(Bitwidth, 0); 908 } 909 } 910 911 if (End == Min) 912 return NULL; 913 914 llvm::Value *LowAndHigh[2]; 915 LowAndHigh[0] = llvm::ConstantInt::get(LTy, Min); 916 LowAndHigh[1] = llvm::ConstantInt::get(LTy, End); 917 918 llvm::LLVMContext &C = getLLVMContext(); 919 llvm::MDNode *Range = llvm::MDNode::get(C, LowAndHigh); 920 return Range; 921 } 922 923 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 924 unsigned Alignment, QualType Ty, 925 llvm::MDNode *TBAAInfo) { 926 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 927 if (Volatile) 928 Load->setVolatile(true); 929 if (Alignment) 930 Load->setAlignment(Alignment); 931 if (TBAAInfo) 932 CGM.DecorateInstruction(Load, TBAAInfo); 933 // If this is an atomic type, all normal reads must be atomic 934 if (Ty->isAtomicType()) 935 Load->setAtomic(llvm::SequentiallyConsistent); 936 937 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 938 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 939 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 940 941 return EmitFromMemory(Load, Ty); 942 } 943 944 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 945 // Bool has a different representation in memory than in registers. 946 if (hasBooleanRepresentation(Ty)) { 947 // This should really always be an i1, but sometimes it's already 948 // an i8, and it's awkward to track those cases down. 949 if (Value->getType()->isIntegerTy(1)) 950 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 951 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 952 } 953 954 return Value; 955 } 956 957 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 958 // Bool has a different representation in memory than in registers. 959 if (hasBooleanRepresentation(Ty)) { 960 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 961 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 962 } 963 964 return Value; 965 } 966 967 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 968 bool Volatile, unsigned Alignment, 969 QualType Ty, 970 llvm::MDNode *TBAAInfo, 971 bool isInit) { 972 Value = EmitToMemory(Value, Ty); 973 974 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 975 if (Alignment) 976 Store->setAlignment(Alignment); 977 if (TBAAInfo) 978 CGM.DecorateInstruction(Store, TBAAInfo); 979 if (!isInit && Ty->isAtomicType()) 980 Store->setAtomic(llvm::SequentiallyConsistent); 981 } 982 983 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 984 bool isInit) { 985 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 986 lvalue.getAlignment().getQuantity(), lvalue.getType(), 987 lvalue.getTBAAInfo(), isInit); 988 } 989 990 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 991 /// method emits the address of the lvalue, then loads the result as an rvalue, 992 /// returning the rvalue. 993 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 994 if (LV.isObjCWeak()) { 995 // load of a __weak object. 996 llvm::Value *AddrWeakObj = LV.getAddress(); 997 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 998 AddrWeakObj)); 999 } 1000 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 1001 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1002 1003 if (LV.isSimple()) { 1004 assert(!LV.getType()->isFunctionType()); 1005 1006 // Everything needs a load. 1007 return RValue::get(EmitLoadOfScalar(LV)); 1008 } 1009 1010 if (LV.isVectorElt()) { 1011 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1012 LV.isVolatileQualified()); 1013 Load->setAlignment(LV.getAlignment().getQuantity()); 1014 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1015 "vecext")); 1016 } 1017 1018 // If this is a reference to a subset of the elements of a vector, either 1019 // shuffle the input or extract/insert them as appropriate. 1020 if (LV.isExtVectorElt()) 1021 return EmitLoadOfExtVectorElementLValue(LV); 1022 1023 assert(LV.isBitField() && "Unknown LValue type!"); 1024 return EmitLoadOfBitfieldLValue(LV); 1025 } 1026 1027 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1028 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1029 1030 // Get the output type. 1031 llvm::Type *ResLTy = ConvertType(LV.getType()); 1032 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1033 1034 // Compute the result as an OR of all of the individual component accesses. 1035 llvm::Value *Res = 0; 1036 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1037 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1038 1039 // Get the field pointer. 1040 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1041 1042 // Only offset by the field index if used, so that incoming values are not 1043 // required to be structures. 1044 if (AI.FieldIndex) 1045 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1046 1047 // Offset by the byte offset, if used. 1048 if (!AI.FieldByteOffset.isZero()) { 1049 Ptr = EmitCastToVoidPtr(Ptr); 1050 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1051 "bf.field.offs"); 1052 } 1053 1054 // Cast to the access type. 1055 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1056 CGM.getContext().getTargetAddressSpace(LV.getType())); 1057 Ptr = Builder.CreateBitCast(Ptr, PTy); 1058 1059 // Perform the load. 1060 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1061 if (!AI.AccessAlignment.isZero()) 1062 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1063 1064 // Shift out unused low bits and mask out unused high bits. 1065 llvm::Value *Val = Load; 1066 if (AI.FieldBitStart) 1067 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1068 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1069 AI.TargetBitWidth), 1070 "bf.clear"); 1071 1072 // Extend or truncate to the target size. 1073 if (AI.AccessWidth < ResSizeInBits) 1074 Val = Builder.CreateZExt(Val, ResLTy); 1075 else if (AI.AccessWidth > ResSizeInBits) 1076 Val = Builder.CreateTrunc(Val, ResLTy); 1077 1078 // Shift into place, and OR into the result. 1079 if (AI.TargetBitOffset) 1080 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1081 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1082 } 1083 1084 // If the bit-field is signed, perform the sign-extension. 1085 // 1086 // FIXME: This can easily be folded into the load of the high bits, which 1087 // could also eliminate the mask of high bits in some situations. 1088 if (Info.isSigned()) { 1089 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1090 if (ExtraBits) 1091 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1092 ExtraBits, "bf.val.sext"); 1093 } 1094 1095 return RValue::get(Res); 1096 } 1097 1098 // If this is a reference to a subset of the elements of a vector, create an 1099 // appropriate shufflevector. 1100 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1101 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1102 LV.isVolatileQualified()); 1103 Load->setAlignment(LV.getAlignment().getQuantity()); 1104 llvm::Value *Vec = Load; 1105 1106 const llvm::Constant *Elts = LV.getExtVectorElts(); 1107 1108 // If the result of the expression is a non-vector type, we must be extracting 1109 // a single element. Just codegen as an extractelement. 1110 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1111 if (!ExprVT) { 1112 unsigned InIdx = getAccessedFieldNo(0, Elts); 1113 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1114 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1115 } 1116 1117 // Always use shuffle vector to try to retain the original program structure 1118 unsigned NumResultElts = ExprVT->getNumElements(); 1119 1120 SmallVector<llvm::Constant*, 4> Mask; 1121 for (unsigned i = 0; i != NumResultElts; ++i) 1122 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1123 1124 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1125 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1126 MaskV); 1127 return RValue::get(Vec); 1128 } 1129 1130 1131 1132 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1133 /// lvalue, where both are guaranteed to the have the same type, and that type 1134 /// is 'Ty'. 1135 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1136 if (!Dst.isSimple()) { 1137 if (Dst.isVectorElt()) { 1138 // Read/modify/write the vector, inserting the new element. 1139 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1140 Dst.isVolatileQualified()); 1141 Load->setAlignment(Dst.getAlignment().getQuantity()); 1142 llvm::Value *Vec = Load; 1143 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1144 Dst.getVectorIdx(), "vecins"); 1145 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1146 Dst.isVolatileQualified()); 1147 Store->setAlignment(Dst.getAlignment().getQuantity()); 1148 return; 1149 } 1150 1151 // If this is an update of extended vector elements, insert them as 1152 // appropriate. 1153 if (Dst.isExtVectorElt()) 1154 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1155 1156 assert(Dst.isBitField() && "Unknown LValue type"); 1157 return EmitStoreThroughBitfieldLValue(Src, Dst); 1158 } 1159 1160 // There's special magic for assigning into an ARC-qualified l-value. 1161 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1162 switch (Lifetime) { 1163 case Qualifiers::OCL_None: 1164 llvm_unreachable("present but none"); 1165 1166 case Qualifiers::OCL_ExplicitNone: 1167 // nothing special 1168 break; 1169 1170 case Qualifiers::OCL_Strong: 1171 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1172 return; 1173 1174 case Qualifiers::OCL_Weak: 1175 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1176 return; 1177 1178 case Qualifiers::OCL_Autoreleasing: 1179 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1180 Src.getScalarVal())); 1181 // fall into the normal path 1182 break; 1183 } 1184 } 1185 1186 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1187 // load of a __weak object. 1188 llvm::Value *LvalueDst = Dst.getAddress(); 1189 llvm::Value *src = Src.getScalarVal(); 1190 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1191 return; 1192 } 1193 1194 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1195 // load of a __strong object. 1196 llvm::Value *LvalueDst = Dst.getAddress(); 1197 llvm::Value *src = Src.getScalarVal(); 1198 if (Dst.isObjCIvar()) { 1199 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1200 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1201 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1202 llvm::Value *dst = RHS; 1203 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1204 llvm::Value *LHS = 1205 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1206 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1207 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1208 BytesBetween); 1209 } else if (Dst.isGlobalObjCRef()) { 1210 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1211 Dst.isThreadLocalRef()); 1212 } 1213 else 1214 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1215 return; 1216 } 1217 1218 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1219 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1220 } 1221 1222 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1223 llvm::Value **Result) { 1224 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1225 1226 // Get the output type. 1227 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1228 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1229 1230 // Get the source value, truncated to the width of the bit-field. 1231 llvm::Value *SrcVal = Src.getScalarVal(); 1232 1233 if (hasBooleanRepresentation(Dst.getType())) 1234 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1235 1236 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1237 Info.getSize()), 1238 "bf.value"); 1239 1240 // Return the new value of the bit-field, if requested. 1241 if (Result) { 1242 // Cast back to the proper type for result. 1243 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1244 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1245 "bf.reload.val"); 1246 1247 // Sign extend if necessary. 1248 if (Info.isSigned()) { 1249 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1250 if (ExtraBits) 1251 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1252 ExtraBits, "bf.reload.sext"); 1253 } 1254 1255 *Result = ReloadVal; 1256 } 1257 1258 // Iterate over the components, writing each piece to memory. 1259 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1260 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1261 1262 // Get the field pointer. 1263 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1264 unsigned addressSpace = 1265 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1266 1267 // Only offset by the field index if used, so that incoming values are not 1268 // required to be structures. 1269 if (AI.FieldIndex) 1270 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1271 1272 // Offset by the byte offset, if used. 1273 if (!AI.FieldByteOffset.isZero()) { 1274 Ptr = EmitCastToVoidPtr(Ptr); 1275 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1276 "bf.field.offs"); 1277 } 1278 1279 // Cast to the access type. 1280 llvm::Type *AccessLTy = 1281 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1282 1283 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1284 Ptr = Builder.CreateBitCast(Ptr, PTy); 1285 1286 // Extract the piece of the bit-field value to write in this access, limited 1287 // to the values that are part of this access. 1288 llvm::Value *Val = SrcVal; 1289 if (AI.TargetBitOffset) 1290 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1291 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1292 AI.TargetBitWidth)); 1293 1294 // Extend or truncate to the access size. 1295 if (ResSizeInBits < AI.AccessWidth) 1296 Val = Builder.CreateZExt(Val, AccessLTy); 1297 else if (ResSizeInBits > AI.AccessWidth) 1298 Val = Builder.CreateTrunc(Val, AccessLTy); 1299 1300 // Shift into the position in memory. 1301 if (AI.FieldBitStart) 1302 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1303 1304 // If necessary, load and OR in bits that are outside of the bit-field. 1305 if (AI.TargetBitWidth != AI.AccessWidth) { 1306 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1307 if (!AI.AccessAlignment.isZero()) 1308 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1309 1310 // Compute the mask for zeroing the bits that are part of the bit-field. 1311 llvm::APInt InvMask = 1312 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1313 AI.FieldBitStart + AI.TargetBitWidth); 1314 1315 // Apply the mask and OR in to the value to write. 1316 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1317 } 1318 1319 // Write the value. 1320 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1321 Dst.isVolatileQualified()); 1322 if (!AI.AccessAlignment.isZero()) 1323 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1324 } 1325 } 1326 1327 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1328 LValue Dst) { 1329 // This access turns into a read/modify/write of the vector. Load the input 1330 // value now. 1331 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1332 Dst.isVolatileQualified()); 1333 Load->setAlignment(Dst.getAlignment().getQuantity()); 1334 llvm::Value *Vec = Load; 1335 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1336 1337 llvm::Value *SrcVal = Src.getScalarVal(); 1338 1339 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1340 unsigned NumSrcElts = VTy->getNumElements(); 1341 unsigned NumDstElts = 1342 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1343 if (NumDstElts == NumSrcElts) { 1344 // Use shuffle vector is the src and destination are the same number of 1345 // elements and restore the vector mask since it is on the side it will be 1346 // stored. 1347 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1348 for (unsigned i = 0; i != NumSrcElts; ++i) 1349 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1350 1351 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1352 Vec = Builder.CreateShuffleVector(SrcVal, 1353 llvm::UndefValue::get(Vec->getType()), 1354 MaskV); 1355 } else if (NumDstElts > NumSrcElts) { 1356 // Extended the source vector to the same length and then shuffle it 1357 // into the destination. 1358 // FIXME: since we're shuffling with undef, can we just use the indices 1359 // into that? This could be simpler. 1360 SmallVector<llvm::Constant*, 4> ExtMask; 1361 for (unsigned i = 0; i != NumSrcElts; ++i) 1362 ExtMask.push_back(Builder.getInt32(i)); 1363 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1364 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1365 llvm::Value *ExtSrcVal = 1366 Builder.CreateShuffleVector(SrcVal, 1367 llvm::UndefValue::get(SrcVal->getType()), 1368 ExtMaskV); 1369 // build identity 1370 SmallVector<llvm::Constant*, 4> Mask; 1371 for (unsigned i = 0; i != NumDstElts; ++i) 1372 Mask.push_back(Builder.getInt32(i)); 1373 1374 // modify when what gets shuffled in 1375 for (unsigned i = 0; i != NumSrcElts; ++i) 1376 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1377 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1378 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1379 } else { 1380 // We should never shorten the vector 1381 llvm_unreachable("unexpected shorten vector length"); 1382 } 1383 } else { 1384 // If the Src is a scalar (not a vector) it must be updating one element. 1385 unsigned InIdx = getAccessedFieldNo(0, Elts); 1386 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1387 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1388 } 1389 1390 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1391 Dst.isVolatileQualified()); 1392 Store->setAlignment(Dst.getAlignment().getQuantity()); 1393 } 1394 1395 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1396 // generating write-barries API. It is currently a global, ivar, 1397 // or neither. 1398 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1399 LValue &LV, 1400 bool IsMemberAccess=false) { 1401 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1402 return; 1403 1404 if (isa<ObjCIvarRefExpr>(E)) { 1405 QualType ExpTy = E->getType(); 1406 if (IsMemberAccess && ExpTy->isPointerType()) { 1407 // If ivar is a structure pointer, assigning to field of 1408 // this struct follows gcc's behavior and makes it a non-ivar 1409 // writer-barrier conservatively. 1410 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1411 if (ExpTy->isRecordType()) { 1412 LV.setObjCIvar(false); 1413 return; 1414 } 1415 } 1416 LV.setObjCIvar(true); 1417 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1418 LV.setBaseIvarExp(Exp->getBase()); 1419 LV.setObjCArray(E->getType()->isArrayType()); 1420 return; 1421 } 1422 1423 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1424 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1425 if (VD->hasGlobalStorage()) { 1426 LV.setGlobalObjCRef(true); 1427 LV.setThreadLocalRef(VD->isThreadSpecified()); 1428 } 1429 } 1430 LV.setObjCArray(E->getType()->isArrayType()); 1431 return; 1432 } 1433 1434 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1435 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1436 return; 1437 } 1438 1439 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1440 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1441 if (LV.isObjCIvar()) { 1442 // If cast is to a structure pointer, follow gcc's behavior and make it 1443 // a non-ivar write-barrier. 1444 QualType ExpTy = E->getType(); 1445 if (ExpTy->isPointerType()) 1446 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1447 if (ExpTy->isRecordType()) 1448 LV.setObjCIvar(false); 1449 } 1450 return; 1451 } 1452 1453 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1454 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1455 return; 1456 } 1457 1458 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1459 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1460 return; 1461 } 1462 1463 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1464 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1465 return; 1466 } 1467 1468 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1469 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1470 return; 1471 } 1472 1473 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1474 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1475 if (LV.isObjCIvar() && !LV.isObjCArray()) 1476 // Using array syntax to assigning to what an ivar points to is not 1477 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1478 LV.setObjCIvar(false); 1479 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1480 // Using array syntax to assigning to what global points to is not 1481 // same as assigning to the global itself. {id *G;} G[i] = 0; 1482 LV.setGlobalObjCRef(false); 1483 return; 1484 } 1485 1486 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1487 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1488 // We don't know if member is an 'ivar', but this flag is looked at 1489 // only in the context of LV.isObjCIvar(). 1490 LV.setObjCArray(E->getType()->isArrayType()); 1491 return; 1492 } 1493 } 1494 1495 static llvm::Value * 1496 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1497 llvm::Value *V, llvm::Type *IRType, 1498 StringRef Name = StringRef()) { 1499 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1500 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1501 } 1502 1503 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1504 const Expr *E, const VarDecl *VD) { 1505 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1506 "Var decl must have external storage or be a file var decl!"); 1507 1508 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1509 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1510 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1511 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1512 QualType T = E->getType(); 1513 LValue LV; 1514 if (VD->getType()->isReferenceType()) { 1515 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1516 LI->setAlignment(Alignment.getQuantity()); 1517 V = LI; 1518 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1519 } else { 1520 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1521 } 1522 setObjCGCLValueClass(CGF.getContext(), E, LV); 1523 return LV; 1524 } 1525 1526 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1527 const Expr *E, const FunctionDecl *FD) { 1528 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1529 if (!FD->hasPrototype()) { 1530 if (const FunctionProtoType *Proto = 1531 FD->getType()->getAs<FunctionProtoType>()) { 1532 // Ugly case: for a K&R-style definition, the type of the definition 1533 // isn't the same as the type of a use. Correct for this with a 1534 // bitcast. 1535 QualType NoProtoType = 1536 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1537 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1538 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1539 } 1540 } 1541 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1542 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1543 } 1544 1545 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1546 const NamedDecl *ND = E->getDecl(); 1547 CharUnits Alignment = getContext().getDeclAlign(ND); 1548 QualType T = E->getType(); 1549 1550 // FIXME: We should be able to assert this for FunctionDecls as well! 1551 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1552 // those with a valid source location. 1553 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1554 !E->getLocation().isValid()) && 1555 "Should not use decl without marking it used!"); 1556 1557 if (ND->hasAttr<WeakRefAttr>()) { 1558 const ValueDecl *VD = cast<ValueDecl>(ND); 1559 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1560 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1561 } 1562 1563 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1564 // Check if this is a global variable. 1565 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1566 return EmitGlobalVarDeclLValue(*this, E, VD); 1567 1568 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1569 1570 bool NonGCable = VD->hasLocalStorage() && 1571 !VD->getType()->isReferenceType() && 1572 !isBlockVariable; 1573 1574 llvm::Value *V = LocalDeclMap[VD]; 1575 if (!V && VD->isStaticLocal()) 1576 V = CGM.getStaticLocalDeclAddress(VD); 1577 1578 // Use special handling for lambdas. 1579 if (!V) { 1580 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) 1581 return EmitLValueForField(CXXABIThisValue, FD, 0); 1582 1583 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1584 CharUnits alignment = getContext().getDeclAlign(VD); 1585 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1586 E->getType(), alignment); 1587 } 1588 1589 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1590 1591 if (isBlockVariable) 1592 V = BuildBlockByrefAddress(V, VD); 1593 1594 LValue LV; 1595 if (VD->getType()->isReferenceType()) { 1596 llvm::LoadInst *LI = Builder.CreateLoad(V); 1597 LI->setAlignment(Alignment.getQuantity()); 1598 V = LI; 1599 LV = MakeNaturalAlignAddrLValue(V, T); 1600 } else { 1601 LV = MakeAddrLValue(V, T, Alignment); 1602 } 1603 1604 if (NonGCable) { 1605 LV.getQuals().removeObjCGCAttr(); 1606 LV.setNonGC(true); 1607 } 1608 setObjCGCLValueClass(getContext(), E, LV); 1609 return LV; 1610 } 1611 1612 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1613 return EmitFunctionDeclLValue(*this, E, fn); 1614 1615 llvm_unreachable("Unhandled DeclRefExpr"); 1616 } 1617 1618 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1619 // __extension__ doesn't affect lvalue-ness. 1620 if (E->getOpcode() == UO_Extension) 1621 return EmitLValue(E->getSubExpr()); 1622 1623 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1624 switch (E->getOpcode()) { 1625 default: llvm_unreachable("Unknown unary operator lvalue!"); 1626 case UO_Deref: { 1627 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1628 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1629 1630 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1631 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1632 1633 // We should not generate __weak write barrier on indirect reference 1634 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1635 // But, we continue to generate __strong write barrier on indirect write 1636 // into a pointer to object. 1637 if (getContext().getLangOpts().ObjC1 && 1638 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1639 LV.isObjCWeak()) 1640 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1641 return LV; 1642 } 1643 case UO_Real: 1644 case UO_Imag: { 1645 LValue LV = EmitLValue(E->getSubExpr()); 1646 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1647 llvm::Value *Addr = LV.getAddress(); 1648 1649 // __real is valid on scalars. This is a faster way of testing that. 1650 // __imag can only produce an rvalue on scalars. 1651 if (E->getOpcode() == UO_Real && 1652 !cast<llvm::PointerType>(Addr->getType()) 1653 ->getElementType()->isStructTy()) { 1654 assert(E->getSubExpr()->getType()->isArithmeticType()); 1655 return LV; 1656 } 1657 1658 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1659 1660 unsigned Idx = E->getOpcode() == UO_Imag; 1661 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1662 Idx, "idx"), 1663 ExprTy); 1664 } 1665 case UO_PreInc: 1666 case UO_PreDec: { 1667 LValue LV = EmitLValue(E->getSubExpr()); 1668 bool isInc = E->getOpcode() == UO_PreInc; 1669 1670 if (E->getType()->isAnyComplexType()) 1671 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1672 else 1673 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1674 return LV; 1675 } 1676 } 1677 } 1678 1679 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1680 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1681 E->getType()); 1682 } 1683 1684 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1685 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1686 E->getType()); 1687 } 1688 1689 1690 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1691 switch (E->getIdentType()) { 1692 default: 1693 return EmitUnsupportedLValue(E, "predefined expression"); 1694 1695 case PredefinedExpr::Func: 1696 case PredefinedExpr::Function: 1697 case PredefinedExpr::PrettyFunction: { 1698 unsigned Type = E->getIdentType(); 1699 std::string GlobalVarName; 1700 1701 switch (Type) { 1702 default: llvm_unreachable("Invalid type"); 1703 case PredefinedExpr::Func: 1704 GlobalVarName = "__func__."; 1705 break; 1706 case PredefinedExpr::Function: 1707 GlobalVarName = "__FUNCTION__."; 1708 break; 1709 case PredefinedExpr::PrettyFunction: 1710 GlobalVarName = "__PRETTY_FUNCTION__."; 1711 break; 1712 } 1713 1714 StringRef FnName = CurFn->getName(); 1715 if (FnName.startswith("\01")) 1716 FnName = FnName.substr(1); 1717 GlobalVarName += FnName; 1718 1719 const Decl *CurDecl = CurCodeDecl; 1720 if (CurDecl == 0) 1721 CurDecl = getContext().getTranslationUnitDecl(); 1722 1723 std::string FunctionName = 1724 (isa<BlockDecl>(CurDecl) 1725 ? FnName.str() 1726 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1727 1728 llvm::Constant *C = 1729 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1730 return MakeAddrLValue(C, E->getType()); 1731 } 1732 } 1733 } 1734 1735 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1736 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1737 1738 // If we are not optimzing, don't collapse all calls to trap in the function 1739 // to the same call, that way, in the debugger they can see which operation 1740 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1741 // to just one per function to save on codesize. 1742 if (GCO.OptimizationLevel && TrapBB) 1743 return TrapBB; 1744 1745 llvm::BasicBlock *Cont = 0; 1746 if (HaveInsertPoint()) { 1747 Cont = createBasicBlock("cont"); 1748 EmitBranch(Cont); 1749 } 1750 TrapBB = createBasicBlock("trap"); 1751 EmitBlock(TrapBB); 1752 1753 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1754 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1755 TrapCall->setDoesNotReturn(); 1756 TrapCall->setDoesNotThrow(); 1757 Builder.CreateUnreachable(); 1758 1759 if (Cont) 1760 EmitBlock(Cont); 1761 return TrapBB; 1762 } 1763 1764 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1765 /// array to pointer, return the array subexpression. 1766 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1767 // If this isn't just an array->pointer decay, bail out. 1768 const CastExpr *CE = dyn_cast<CastExpr>(E); 1769 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1770 return 0; 1771 1772 // If this is a decay from variable width array, bail out. 1773 const Expr *SubExpr = CE->getSubExpr(); 1774 if (SubExpr->getType()->isVariableArrayType()) 1775 return 0; 1776 1777 return SubExpr; 1778 } 1779 1780 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1781 // The index must always be an integer, which is not an aggregate. Emit it. 1782 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1783 QualType IdxTy = E->getIdx()->getType(); 1784 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1785 1786 // If the base is a vector type, then we are forming a vector element lvalue 1787 // with this subscript. 1788 if (E->getBase()->getType()->isVectorType()) { 1789 // Emit the vector as an lvalue to get its address. 1790 LValue LHS = EmitLValue(E->getBase()); 1791 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1792 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1793 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1794 E->getBase()->getType(), LHS.getAlignment()); 1795 } 1796 1797 // Extend or truncate the index type to 32 or 64-bits. 1798 if (Idx->getType() != IntPtrTy) 1799 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1800 1801 // FIXME: As llvm implements the object size checking, this can come out. 1802 if (CatchUndefined) { 1803 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1804 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1805 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1806 if (const ConstantArrayType *CAT 1807 = getContext().getAsConstantArrayType(DRE->getType())) { 1808 llvm::APInt Size = CAT->getSize(); 1809 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1810 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1811 llvm::ConstantInt::get(Idx->getType(), Size)), 1812 Cont, getTrapBB()); 1813 EmitBlock(Cont); 1814 } 1815 } 1816 } 1817 } 1818 } 1819 1820 // We know that the pointer points to a type of the correct size, unless the 1821 // size is a VLA or Objective-C interface. 1822 llvm::Value *Address = 0; 1823 CharUnits ArrayAlignment; 1824 if (const VariableArrayType *vla = 1825 getContext().getAsVariableArrayType(E->getType())) { 1826 // The base must be a pointer, which is not an aggregate. Emit 1827 // it. It needs to be emitted first in case it's what captures 1828 // the VLA bounds. 1829 Address = EmitScalarExpr(E->getBase()); 1830 1831 // The element count here is the total number of non-VLA elements. 1832 llvm::Value *numElements = getVLASize(vla).first; 1833 1834 // Effectively, the multiply by the VLA size is part of the GEP. 1835 // GEP indexes are signed, and scaling an index isn't permitted to 1836 // signed-overflow, so we use the same semantics for our explicit 1837 // multiply. We suppress this if overflow is not undefined behavior. 1838 if (getLangOpts().isSignedOverflowDefined()) { 1839 Idx = Builder.CreateMul(Idx, numElements); 1840 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1841 } else { 1842 Idx = Builder.CreateNSWMul(Idx, numElements); 1843 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1844 } 1845 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1846 // Indexing over an interface, as in "NSString *P; P[4];" 1847 llvm::Value *InterfaceSize = 1848 llvm::ConstantInt::get(Idx->getType(), 1849 getContext().getTypeSizeInChars(OIT).getQuantity()); 1850 1851 Idx = Builder.CreateMul(Idx, InterfaceSize); 1852 1853 // The base must be a pointer, which is not an aggregate. Emit it. 1854 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1855 Address = EmitCastToVoidPtr(Base); 1856 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1857 Address = Builder.CreateBitCast(Address, Base->getType()); 1858 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1859 // If this is A[i] where A is an array, the frontend will have decayed the 1860 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1861 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1862 // "gep x, i" here. Emit one "gep A, 0, i". 1863 assert(Array->getType()->isArrayType() && 1864 "Array to pointer decay must have array source type!"); 1865 LValue ArrayLV = EmitLValue(Array); 1866 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1867 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1868 llvm::Value *Args[] = { Zero, Idx }; 1869 1870 // Propagate the alignment from the array itself to the result. 1871 ArrayAlignment = ArrayLV.getAlignment(); 1872 1873 if (getContext().getLangOpts().isSignedOverflowDefined()) 1874 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1875 else 1876 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1877 } else { 1878 // The base must be a pointer, which is not an aggregate. Emit it. 1879 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1880 if (getContext().getLangOpts().isSignedOverflowDefined()) 1881 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1882 else 1883 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1884 } 1885 1886 QualType T = E->getBase()->getType()->getPointeeType(); 1887 assert(!T.isNull() && 1888 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1889 1890 1891 // Limit the alignment to that of the result type. 1892 LValue LV; 1893 if (!ArrayAlignment.isZero()) { 1894 CharUnits Align = getContext().getTypeAlignInChars(T); 1895 ArrayAlignment = std::min(Align, ArrayAlignment); 1896 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1897 } else { 1898 LV = MakeNaturalAlignAddrLValue(Address, T); 1899 } 1900 1901 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1902 1903 if (getContext().getLangOpts().ObjC1 && 1904 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 1905 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1906 setObjCGCLValueClass(getContext(), E, LV); 1907 } 1908 return LV; 1909 } 1910 1911 static 1912 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1913 SmallVector<unsigned, 4> &Elts) { 1914 SmallVector<llvm::Constant*, 4> CElts; 1915 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1916 CElts.push_back(Builder.getInt32(Elts[i])); 1917 1918 return llvm::ConstantVector::get(CElts); 1919 } 1920 1921 LValue CodeGenFunction:: 1922 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1923 // Emit the base vector as an l-value. 1924 LValue Base; 1925 1926 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1927 if (E->isArrow()) { 1928 // If it is a pointer to a vector, emit the address and form an lvalue with 1929 // it. 1930 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1931 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1932 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1933 Base.getQuals().removeObjCGCAttr(); 1934 } else if (E->getBase()->isGLValue()) { 1935 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1936 // emit the base as an lvalue. 1937 assert(E->getBase()->getType()->isVectorType()); 1938 Base = EmitLValue(E->getBase()); 1939 } else { 1940 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1941 assert(E->getBase()->getType()->isVectorType() && 1942 "Result must be a vector"); 1943 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1944 1945 // Store the vector to memory (because LValue wants an address). 1946 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1947 Builder.CreateStore(Vec, VecMem); 1948 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1949 } 1950 1951 QualType type = 1952 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1953 1954 // Encode the element access list into a vector of unsigned indices. 1955 SmallVector<unsigned, 4> Indices; 1956 E->getEncodedElementAccess(Indices); 1957 1958 if (Base.isSimple()) { 1959 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1960 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 1961 Base.getAlignment()); 1962 } 1963 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1964 1965 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1966 SmallVector<llvm::Constant *, 4> CElts; 1967 1968 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1969 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1970 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1971 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 1972 Base.getAlignment()); 1973 } 1974 1975 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1976 bool isNonGC = false; 1977 Expr *BaseExpr = E->getBase(); 1978 llvm::Value *BaseValue = NULL; 1979 Qualifiers BaseQuals; 1980 1981 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1982 if (E->isArrow()) { 1983 BaseValue = EmitScalarExpr(BaseExpr); 1984 const PointerType *PTy = 1985 BaseExpr->getType()->getAs<PointerType>(); 1986 BaseQuals = PTy->getPointeeType().getQualifiers(); 1987 } else { 1988 LValue BaseLV = EmitLValue(BaseExpr); 1989 if (BaseLV.isNonGC()) 1990 isNonGC = true; 1991 // FIXME: this isn't right for bitfields. 1992 BaseValue = BaseLV.getAddress(); 1993 QualType BaseTy = BaseExpr->getType(); 1994 BaseQuals = BaseTy.getQualifiers(); 1995 } 1996 1997 NamedDecl *ND = E->getMemberDecl(); 1998 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1999 LValue LV = EmitLValueForField(BaseValue, Field, 2000 BaseQuals.getCVRQualifiers()); 2001 LV.setNonGC(isNonGC); 2002 setObjCGCLValueClass(getContext(), E, LV); 2003 return LV; 2004 } 2005 2006 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2007 return EmitGlobalVarDeclLValue(*this, E, VD); 2008 2009 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2010 return EmitFunctionDeclLValue(*this, E, FD); 2011 2012 llvm_unreachable("Unhandled member declaration!"); 2013 } 2014 2015 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 2016 const FieldDecl *Field, 2017 unsigned CVRQualifiers) { 2018 const CGRecordLayout &RL = 2019 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2020 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 2021 return LValue::MakeBitfield(BaseValue, Info, 2022 Field->getType().withCVRQualifiers(CVRQualifiers)); 2023 } 2024 2025 /// EmitLValueForAnonRecordField - Given that the field is a member of 2026 /// an anonymous struct or union buried inside a record, and given 2027 /// that the base value is a pointer to the enclosing record, derive 2028 /// an lvalue for the ultimate field. 2029 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 2030 const IndirectFieldDecl *Field, 2031 unsigned CVRQualifiers) { 2032 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 2033 IEnd = Field->chain_end(); 2034 while (true) { 2035 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 2036 CVRQualifiers); 2037 if (++I == IEnd) return LV; 2038 2039 assert(LV.isSimple()); 2040 BaseValue = LV.getAddress(); 2041 CVRQualifiers |= LV.getVRQualifiers(); 2042 } 2043 } 2044 2045 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 2046 const FieldDecl *field, 2047 unsigned cvr) { 2048 if (field->isBitField()) 2049 return EmitLValueForBitfield(baseAddr, field, cvr); 2050 2051 const RecordDecl *rec = field->getParent(); 2052 QualType type = field->getType(); 2053 CharUnits alignment = getContext().getDeclAlign(field); 2054 2055 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2056 2057 llvm::Value *addr = baseAddr; 2058 if (rec->isUnion()) { 2059 // For unions, there is no pointer adjustment. 2060 assert(!type->isReferenceType() && "union has reference member"); 2061 } else { 2062 // For structs, we GEP to the field that the record layout suggests. 2063 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2064 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2065 2066 // If this is a reference field, load the reference right now. 2067 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2068 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2069 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2070 load->setAlignment(alignment.getQuantity()); 2071 2072 if (CGM.shouldUseTBAA()) { 2073 llvm::MDNode *tbaa; 2074 if (mayAlias) 2075 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2076 else 2077 tbaa = CGM.getTBAAInfo(type); 2078 CGM.DecorateInstruction(load, tbaa); 2079 } 2080 2081 addr = load; 2082 mayAlias = false; 2083 type = refType->getPointeeType(); 2084 if (type->isIncompleteType()) 2085 alignment = CharUnits(); 2086 else 2087 alignment = getContext().getTypeAlignInChars(type); 2088 cvr = 0; // qualifiers don't recursively apply to referencee 2089 } 2090 } 2091 2092 // Make sure that the address is pointing to the right type. This is critical 2093 // for both unions and structs. A union needs a bitcast, a struct element 2094 // will need a bitcast if the LLVM type laid out doesn't match the desired 2095 // type. 2096 addr = EmitBitCastOfLValueToProperType(*this, addr, 2097 CGM.getTypes().ConvertTypeForMem(type), 2098 field->getName()); 2099 2100 if (field->hasAttr<AnnotateAttr>()) 2101 addr = EmitFieldAnnotations(field, addr); 2102 2103 LValue LV = MakeAddrLValue(addr, type, alignment); 2104 LV.getQuals().addCVRQualifiers(cvr); 2105 2106 // __weak attribute on a field is ignored. 2107 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2108 LV.getQuals().removeObjCGCAttr(); 2109 2110 // Fields of may_alias structs act like 'char' for TBAA purposes. 2111 // FIXME: this should get propagated down through anonymous structs 2112 // and unions. 2113 if (mayAlias && LV.getTBAAInfo()) 2114 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2115 2116 return LV; 2117 } 2118 2119 LValue 2120 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 2121 const FieldDecl *Field, 2122 unsigned CVRQualifiers) { 2123 QualType FieldType = Field->getType(); 2124 2125 if (!FieldType->isReferenceType()) 2126 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 2127 2128 const CGRecordLayout &RL = 2129 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2130 unsigned idx = RL.getLLVMFieldNo(Field); 2131 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx); 2132 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2133 2134 2135 // Make sure that the address is pointing to the right type. This is critical 2136 // for both unions and structs. A union needs a bitcast, a struct element 2137 // will need a bitcast if the LLVM type laid out doesn't match the desired 2138 // type. 2139 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2140 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2141 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 2142 2143 CharUnits Alignment = getContext().getDeclAlign(Field); 2144 return MakeAddrLValue(V, FieldType, Alignment); 2145 } 2146 2147 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2148 if (E->isFileScope()) { 2149 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2150 return MakeAddrLValue(GlobalPtr, E->getType()); 2151 } 2152 2153 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2154 const Expr *InitExpr = E->getInitializer(); 2155 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2156 2157 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2158 /*Init*/ true); 2159 2160 return Result; 2161 } 2162 2163 LValue CodeGenFunction:: 2164 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2165 if (!expr->isGLValue()) { 2166 // ?: here should be an aggregate. 2167 assert((hasAggregateLLVMType(expr->getType()) && 2168 !expr->getType()->isAnyComplexType()) && 2169 "Unexpected conditional operator!"); 2170 return EmitAggExprToLValue(expr); 2171 } 2172 2173 OpaqueValueMapping binding(*this, expr); 2174 2175 const Expr *condExpr = expr->getCond(); 2176 bool CondExprBool; 2177 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2178 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2179 if (!CondExprBool) std::swap(live, dead); 2180 2181 if (!ContainsLabel(dead)) 2182 return EmitLValue(live); 2183 } 2184 2185 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2186 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2187 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2188 2189 ConditionalEvaluation eval(*this); 2190 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2191 2192 // Any temporaries created here are conditional. 2193 EmitBlock(lhsBlock); 2194 eval.begin(*this); 2195 LValue lhs = EmitLValue(expr->getTrueExpr()); 2196 eval.end(*this); 2197 2198 if (!lhs.isSimple()) 2199 return EmitUnsupportedLValue(expr, "conditional operator"); 2200 2201 lhsBlock = Builder.GetInsertBlock(); 2202 Builder.CreateBr(contBlock); 2203 2204 // Any temporaries created here are conditional. 2205 EmitBlock(rhsBlock); 2206 eval.begin(*this); 2207 LValue rhs = EmitLValue(expr->getFalseExpr()); 2208 eval.end(*this); 2209 if (!rhs.isSimple()) 2210 return EmitUnsupportedLValue(expr, "conditional operator"); 2211 rhsBlock = Builder.GetInsertBlock(); 2212 2213 EmitBlock(contBlock); 2214 2215 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2216 "cond-lvalue"); 2217 phi->addIncoming(lhs.getAddress(), lhsBlock); 2218 phi->addIncoming(rhs.getAddress(), rhsBlock); 2219 return MakeAddrLValue(phi, expr->getType()); 2220 } 2221 2222 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2223 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 2224 /// otherwise if a cast is needed by the code generator in an lvalue context, 2225 /// then it must mean that we need the address of an aggregate in order to 2226 /// access one of its fields. This can happen for all the reasons that casts 2227 /// are permitted with aggregate result, including noop aggregate casts, and 2228 /// cast from scalar to union. 2229 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2230 switch (E->getCastKind()) { 2231 case CK_ToVoid: 2232 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2233 2234 case CK_Dependent: 2235 llvm_unreachable("dependent cast kind in IR gen!"); 2236 2237 // These two casts are currently treated as no-ops, although they could 2238 // potentially be real operations depending on the target's ABI. 2239 case CK_NonAtomicToAtomic: 2240 case CK_AtomicToNonAtomic: 2241 2242 case CK_NoOp: 2243 case CK_LValueToRValue: 2244 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2245 || E->getType()->isRecordType()) 2246 return EmitLValue(E->getSubExpr()); 2247 // Fall through to synthesize a temporary. 2248 2249 case CK_BitCast: 2250 case CK_ArrayToPointerDecay: 2251 case CK_FunctionToPointerDecay: 2252 case CK_NullToMemberPointer: 2253 case CK_NullToPointer: 2254 case CK_IntegralToPointer: 2255 case CK_PointerToIntegral: 2256 case CK_PointerToBoolean: 2257 case CK_VectorSplat: 2258 case CK_IntegralCast: 2259 case CK_IntegralToBoolean: 2260 case CK_IntegralToFloating: 2261 case CK_FloatingToIntegral: 2262 case CK_FloatingToBoolean: 2263 case CK_FloatingCast: 2264 case CK_FloatingRealToComplex: 2265 case CK_FloatingComplexToReal: 2266 case CK_FloatingComplexToBoolean: 2267 case CK_FloatingComplexCast: 2268 case CK_FloatingComplexToIntegralComplex: 2269 case CK_IntegralRealToComplex: 2270 case CK_IntegralComplexToReal: 2271 case CK_IntegralComplexToBoolean: 2272 case CK_IntegralComplexCast: 2273 case CK_IntegralComplexToFloatingComplex: 2274 case CK_DerivedToBaseMemberPointer: 2275 case CK_BaseToDerivedMemberPointer: 2276 case CK_MemberPointerToBoolean: 2277 case CK_ReinterpretMemberPointer: 2278 case CK_AnyPointerToBlockPointerCast: 2279 case CK_ARCProduceObject: 2280 case CK_ARCConsumeObject: 2281 case CK_ARCReclaimReturnedObject: 2282 case CK_ARCExtendBlockObject: 2283 case CK_CopyAndAutoreleaseBlockObject: { 2284 // These casts only produce lvalues when we're binding a reference to a 2285 // temporary realized from a (converted) pure rvalue. Emit the expression 2286 // as a value, copy it into a temporary, and return an lvalue referring to 2287 // that temporary. 2288 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2289 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2290 return MakeAddrLValue(V, E->getType()); 2291 } 2292 2293 case CK_Dynamic: { 2294 LValue LV = EmitLValue(E->getSubExpr()); 2295 llvm::Value *V = LV.getAddress(); 2296 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2297 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2298 } 2299 2300 case CK_ConstructorConversion: 2301 case CK_UserDefinedConversion: 2302 case CK_CPointerToObjCPointerCast: 2303 case CK_BlockPointerToObjCPointerCast: 2304 return EmitLValue(E->getSubExpr()); 2305 2306 case CK_UncheckedDerivedToBase: 2307 case CK_DerivedToBase: { 2308 const RecordType *DerivedClassTy = 2309 E->getSubExpr()->getType()->getAs<RecordType>(); 2310 CXXRecordDecl *DerivedClassDecl = 2311 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2312 2313 LValue LV = EmitLValue(E->getSubExpr()); 2314 llvm::Value *This = LV.getAddress(); 2315 2316 // Perform the derived-to-base conversion 2317 llvm::Value *Base = 2318 GetAddressOfBaseClass(This, DerivedClassDecl, 2319 E->path_begin(), E->path_end(), 2320 /*NullCheckValue=*/false); 2321 2322 return MakeAddrLValue(Base, E->getType()); 2323 } 2324 case CK_ToUnion: 2325 return EmitAggExprToLValue(E); 2326 case CK_BaseToDerived: { 2327 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2328 CXXRecordDecl *DerivedClassDecl = 2329 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2330 2331 LValue LV = EmitLValue(E->getSubExpr()); 2332 2333 // Perform the base-to-derived conversion 2334 llvm::Value *Derived = 2335 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2336 E->path_begin(), E->path_end(), 2337 /*NullCheckValue=*/false); 2338 2339 return MakeAddrLValue(Derived, E->getType()); 2340 } 2341 case CK_LValueBitCast: { 2342 // This must be a reinterpret_cast (or c-style equivalent). 2343 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2344 2345 LValue LV = EmitLValue(E->getSubExpr()); 2346 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2347 ConvertType(CE->getTypeAsWritten())); 2348 return MakeAddrLValue(V, E->getType()); 2349 } 2350 case CK_ObjCObjectLValueCast: { 2351 LValue LV = EmitLValue(E->getSubExpr()); 2352 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2353 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2354 ConvertType(ToType)); 2355 return MakeAddrLValue(V, E->getType()); 2356 } 2357 } 2358 2359 llvm_unreachable("Unhandled lvalue cast kind?"); 2360 } 2361 2362 LValue CodeGenFunction::EmitNullInitializationLValue( 2363 const CXXScalarValueInitExpr *E) { 2364 QualType Ty = E->getType(); 2365 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2366 EmitNullInitialization(LV.getAddress(), Ty); 2367 return LV; 2368 } 2369 2370 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2371 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2372 return getOpaqueLValueMapping(e); 2373 } 2374 2375 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2376 const MaterializeTemporaryExpr *E) { 2377 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2378 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2379 } 2380 2381 2382 //===--------------------------------------------------------------------===// 2383 // Expression Emission 2384 //===--------------------------------------------------------------------===// 2385 2386 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2387 ReturnValueSlot ReturnValue) { 2388 if (CGDebugInfo *DI = getDebugInfo()) 2389 DI->EmitLocation(Builder, E->getLocStart()); 2390 2391 // Builtins never have block type. 2392 if (E->getCallee()->getType()->isBlockPointerType()) 2393 return EmitBlockCallExpr(E, ReturnValue); 2394 2395 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2396 return EmitCXXMemberCallExpr(CE, ReturnValue); 2397 2398 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2399 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2400 2401 const Decl *TargetDecl = E->getCalleeDecl(); 2402 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2403 if (unsigned builtinID = FD->getBuiltinID()) 2404 return EmitBuiltinExpr(FD, builtinID, E); 2405 } 2406 2407 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2408 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2409 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2410 2411 if (const CXXPseudoDestructorExpr *PseudoDtor 2412 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2413 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2414 if (getContext().getLangOpts().ObjCAutoRefCount && 2415 DestroyedType->isObjCLifetimeType() && 2416 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2417 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2418 // Automatic Reference Counting: 2419 // If the pseudo-expression names a retainable object with weak or 2420 // strong lifetime, the object shall be released. 2421 Expr *BaseExpr = PseudoDtor->getBase(); 2422 llvm::Value *BaseValue = NULL; 2423 Qualifiers BaseQuals; 2424 2425 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2426 if (PseudoDtor->isArrow()) { 2427 BaseValue = EmitScalarExpr(BaseExpr); 2428 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2429 BaseQuals = PTy->getPointeeType().getQualifiers(); 2430 } else { 2431 LValue BaseLV = EmitLValue(BaseExpr); 2432 BaseValue = BaseLV.getAddress(); 2433 QualType BaseTy = BaseExpr->getType(); 2434 BaseQuals = BaseTy.getQualifiers(); 2435 } 2436 2437 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2438 case Qualifiers::OCL_None: 2439 case Qualifiers::OCL_ExplicitNone: 2440 case Qualifiers::OCL_Autoreleasing: 2441 break; 2442 2443 case Qualifiers::OCL_Strong: 2444 EmitARCRelease(Builder.CreateLoad(BaseValue, 2445 PseudoDtor->getDestroyedType().isVolatileQualified()), 2446 /*precise*/ true); 2447 break; 2448 2449 case Qualifiers::OCL_Weak: 2450 EmitARCDestroyWeak(BaseValue); 2451 break; 2452 } 2453 } else { 2454 // C++ [expr.pseudo]p1: 2455 // The result shall only be used as the operand for the function call 2456 // operator (), and the result of such a call has type void. The only 2457 // effect is the evaluation of the postfix-expression before the dot or 2458 // arrow. 2459 EmitScalarExpr(E->getCallee()); 2460 } 2461 2462 return RValue::get(0); 2463 } 2464 2465 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2466 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2467 E->arg_begin(), E->arg_end(), TargetDecl); 2468 } 2469 2470 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2471 // Comma expressions just emit their LHS then their RHS as an l-value. 2472 if (E->getOpcode() == BO_Comma) { 2473 EmitIgnoredExpr(E->getLHS()); 2474 EnsureInsertPoint(); 2475 return EmitLValue(E->getRHS()); 2476 } 2477 2478 if (E->getOpcode() == BO_PtrMemD || 2479 E->getOpcode() == BO_PtrMemI) 2480 return EmitPointerToDataMemberBinaryExpr(E); 2481 2482 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2483 2484 // Note that in all of these cases, __block variables need the RHS 2485 // evaluated first just in case the variable gets moved by the RHS. 2486 2487 if (!hasAggregateLLVMType(E->getType())) { 2488 switch (E->getLHS()->getType().getObjCLifetime()) { 2489 case Qualifiers::OCL_Strong: 2490 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2491 2492 case Qualifiers::OCL_Autoreleasing: 2493 return EmitARCStoreAutoreleasing(E).first; 2494 2495 // No reason to do any of these differently. 2496 case Qualifiers::OCL_None: 2497 case Qualifiers::OCL_ExplicitNone: 2498 case Qualifiers::OCL_Weak: 2499 break; 2500 } 2501 2502 RValue RV = EmitAnyExpr(E->getRHS()); 2503 LValue LV = EmitLValue(E->getLHS()); 2504 EmitStoreThroughLValue(RV, LV); 2505 return LV; 2506 } 2507 2508 if (E->getType()->isAnyComplexType()) 2509 return EmitComplexAssignmentLValue(E); 2510 2511 return EmitAggExprToLValue(E); 2512 } 2513 2514 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2515 RValue RV = EmitCallExpr(E); 2516 2517 if (!RV.isScalar()) 2518 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2519 2520 assert(E->getCallReturnType()->isReferenceType() && 2521 "Can't have a scalar return unless the return type is a " 2522 "reference type!"); 2523 2524 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2525 } 2526 2527 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2528 // FIXME: This shouldn't require another copy. 2529 return EmitAggExprToLValue(E); 2530 } 2531 2532 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2533 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2534 && "binding l-value to type which needs a temporary"); 2535 AggValueSlot Slot = CreateAggTemp(E->getType()); 2536 EmitCXXConstructExpr(E, Slot); 2537 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2538 } 2539 2540 LValue 2541 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2542 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2543 } 2544 2545 LValue 2546 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2547 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2548 Slot.setExternallyDestructed(); 2549 EmitAggExpr(E->getSubExpr(), Slot); 2550 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2551 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2552 } 2553 2554 LValue 2555 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2556 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2557 EmitLambdaExpr(E, Slot); 2558 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2559 } 2560 2561 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2562 RValue RV = EmitObjCMessageExpr(E); 2563 2564 if (!RV.isScalar()) 2565 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2566 2567 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2568 "Can't have a scalar return unless the return type is a " 2569 "reference type!"); 2570 2571 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2572 } 2573 2574 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2575 llvm::Value *V = 2576 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2577 return MakeAddrLValue(V, E->getType()); 2578 } 2579 2580 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2581 const ObjCIvarDecl *Ivar) { 2582 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2583 } 2584 2585 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2586 llvm::Value *BaseValue, 2587 const ObjCIvarDecl *Ivar, 2588 unsigned CVRQualifiers) { 2589 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2590 Ivar, CVRQualifiers); 2591 } 2592 2593 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2594 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2595 llvm::Value *BaseValue = 0; 2596 const Expr *BaseExpr = E->getBase(); 2597 Qualifiers BaseQuals; 2598 QualType ObjectTy; 2599 if (E->isArrow()) { 2600 BaseValue = EmitScalarExpr(BaseExpr); 2601 ObjectTy = BaseExpr->getType()->getPointeeType(); 2602 BaseQuals = ObjectTy.getQualifiers(); 2603 } else { 2604 LValue BaseLV = EmitLValue(BaseExpr); 2605 // FIXME: this isn't right for bitfields. 2606 BaseValue = BaseLV.getAddress(); 2607 ObjectTy = BaseExpr->getType(); 2608 BaseQuals = ObjectTy.getQualifiers(); 2609 } 2610 2611 LValue LV = 2612 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2613 BaseQuals.getCVRQualifiers()); 2614 setObjCGCLValueClass(getContext(), E, LV); 2615 return LV; 2616 } 2617 2618 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2619 // Can only get l-value for message expression returning aggregate type 2620 RValue RV = EmitAnyExprToTemp(E); 2621 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2622 } 2623 2624 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2625 ReturnValueSlot ReturnValue, 2626 CallExpr::const_arg_iterator ArgBeg, 2627 CallExpr::const_arg_iterator ArgEnd, 2628 const Decl *TargetDecl) { 2629 // Get the actual function type. The callee type will always be a pointer to 2630 // function type or a block pointer type. 2631 assert(CalleeType->isFunctionPointerType() && 2632 "Call must have function pointer type!"); 2633 2634 CalleeType = getContext().getCanonicalType(CalleeType); 2635 2636 const FunctionType *FnType 2637 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2638 2639 CallArgList Args; 2640 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2641 2642 const CGFunctionInfo &FnInfo = 2643 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2644 2645 // C99 6.5.2.2p6: 2646 // If the expression that denotes the called function has a type 2647 // that does not include a prototype, [the default argument 2648 // promotions are performed]. If the number of arguments does not 2649 // equal the number of parameters, the behavior is undefined. If 2650 // the function is defined with a type that includes a prototype, 2651 // and either the prototype ends with an ellipsis (, ...) or the 2652 // types of the arguments after promotion are not compatible with 2653 // the types of the parameters, the behavior is undefined. If the 2654 // function is defined with a type that does not include a 2655 // prototype, and the types of the arguments after promotion are 2656 // not compatible with those of the parameters after promotion, 2657 // the behavior is undefined [except in some trivial cases]. 2658 // That is, in the general case, we should assume that a call 2659 // through an unprototyped function type works like a *non-variadic* 2660 // call. The way we make this work is to cast to the exact type 2661 // of the promoted arguments. 2662 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2663 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2664 CalleeTy = CalleeTy->getPointerTo(); 2665 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2666 } 2667 2668 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2669 } 2670 2671 LValue CodeGenFunction:: 2672 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2673 llvm::Value *BaseV; 2674 if (E->getOpcode() == BO_PtrMemI) 2675 BaseV = EmitScalarExpr(E->getLHS()); 2676 else 2677 BaseV = EmitLValue(E->getLHS()).getAddress(); 2678 2679 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2680 2681 const MemberPointerType *MPT 2682 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2683 2684 llvm::Value *AddV = 2685 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2686 2687 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2688 } 2689 2690 static void 2691 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2692 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2693 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2694 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2695 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 2696 2697 switch (E->getOp()) { 2698 case AtomicExpr::AO__c11_atomic_init: 2699 llvm_unreachable("Already handled!"); 2700 2701 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2702 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2703 case AtomicExpr::AO__atomic_compare_exchange: 2704 case AtomicExpr::AO__atomic_compare_exchange_n: { 2705 // Note that cmpxchg only supports specifying one ordering and 2706 // doesn't support weak cmpxchg, at least at the moment. 2707 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2708 LoadVal1->setAlignment(Align); 2709 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2710 LoadVal2->setAlignment(Align); 2711 llvm::AtomicCmpXchgInst *CXI = 2712 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2713 CXI->setVolatile(E->isVolatile()); 2714 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2715 StoreVal1->setAlignment(Align); 2716 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2717 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2718 return; 2719 } 2720 2721 case AtomicExpr::AO__c11_atomic_load: 2722 case AtomicExpr::AO__atomic_load_n: 2723 case AtomicExpr::AO__atomic_load: { 2724 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2725 Load->setAtomic(Order); 2726 Load->setAlignment(Size); 2727 Load->setVolatile(E->isVolatile()); 2728 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2729 StoreDest->setAlignment(Align); 2730 return; 2731 } 2732 2733 case AtomicExpr::AO__c11_atomic_store: 2734 case AtomicExpr::AO__atomic_store: 2735 case AtomicExpr::AO__atomic_store_n: { 2736 assert(!Dest && "Store does not return a value"); 2737 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2738 LoadVal1->setAlignment(Align); 2739 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2740 Store->setAtomic(Order); 2741 Store->setAlignment(Size); 2742 Store->setVolatile(E->isVolatile()); 2743 return; 2744 } 2745 2746 case AtomicExpr::AO__c11_atomic_exchange: 2747 case AtomicExpr::AO__atomic_exchange_n: 2748 case AtomicExpr::AO__atomic_exchange: 2749 Op = llvm::AtomicRMWInst::Xchg; 2750 break; 2751 2752 case AtomicExpr::AO__atomic_add_fetch: 2753 PostOp = llvm::Instruction::Add; 2754 // Fall through. 2755 case AtomicExpr::AO__c11_atomic_fetch_add: 2756 case AtomicExpr::AO__atomic_fetch_add: 2757 Op = llvm::AtomicRMWInst::Add; 2758 break; 2759 2760 case AtomicExpr::AO__atomic_sub_fetch: 2761 PostOp = llvm::Instruction::Sub; 2762 // Fall through. 2763 case AtomicExpr::AO__c11_atomic_fetch_sub: 2764 case AtomicExpr::AO__atomic_fetch_sub: 2765 Op = llvm::AtomicRMWInst::Sub; 2766 break; 2767 2768 case AtomicExpr::AO__atomic_and_fetch: 2769 PostOp = llvm::Instruction::And; 2770 // Fall through. 2771 case AtomicExpr::AO__c11_atomic_fetch_and: 2772 case AtomicExpr::AO__atomic_fetch_and: 2773 Op = llvm::AtomicRMWInst::And; 2774 break; 2775 2776 case AtomicExpr::AO__atomic_or_fetch: 2777 PostOp = llvm::Instruction::Or; 2778 // Fall through. 2779 case AtomicExpr::AO__c11_atomic_fetch_or: 2780 case AtomicExpr::AO__atomic_fetch_or: 2781 Op = llvm::AtomicRMWInst::Or; 2782 break; 2783 2784 case AtomicExpr::AO__atomic_xor_fetch: 2785 PostOp = llvm::Instruction::Xor; 2786 // Fall through. 2787 case AtomicExpr::AO__c11_atomic_fetch_xor: 2788 case AtomicExpr::AO__atomic_fetch_xor: 2789 Op = llvm::AtomicRMWInst::Xor; 2790 break; 2791 2792 case AtomicExpr::AO__atomic_nand_fetch: 2793 PostOp = llvm::Instruction::And; 2794 // Fall through. 2795 case AtomicExpr::AO__atomic_fetch_nand: 2796 Op = llvm::AtomicRMWInst::Nand; 2797 break; 2798 } 2799 2800 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2801 LoadVal1->setAlignment(Align); 2802 llvm::AtomicRMWInst *RMWI = 2803 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2804 RMWI->setVolatile(E->isVolatile()); 2805 2806 // For __atomic_*_fetch operations, perform the operation again to 2807 // determine the value which was written. 2808 llvm::Value *Result = RMWI; 2809 if (PostOp) 2810 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 2811 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 2812 Result = CGF.Builder.CreateNot(Result); 2813 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 2814 StoreDest->setAlignment(Align); 2815 } 2816 2817 // This function emits any expression (scalar, complex, or aggregate) 2818 // into a temporary alloca. 2819 static llvm::Value * 2820 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2821 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2822 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2823 /*Init*/ true); 2824 return DeclPtr; 2825 } 2826 2827 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2828 llvm::Value *Dest) { 2829 if (Ty->isAnyComplexType()) 2830 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2831 if (CGF.hasAggregateLLVMType(Ty)) 2832 return RValue::getAggregate(Dest); 2833 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2834 } 2835 2836 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2837 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2838 QualType MemTy = AtomicTy; 2839 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 2840 MemTy = AT->getValueType(); 2841 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2842 uint64_t Size = sizeChars.getQuantity(); 2843 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2844 unsigned Align = alignChars.getQuantity(); 2845 unsigned MaxInlineWidth = 2846 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2847 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2848 2849 2850 2851 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2852 Ptr = EmitScalarExpr(E->getPtr()); 2853 2854 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 2855 assert(!Dest && "Init does not return a value"); 2856 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 2857 QualType PointeeType 2858 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 2859 EmitScalarInit(EmitScalarExpr(E->getVal1()), 2860 LValue::MakeAddr(Ptr, PointeeType, alignChars, 2861 getContext())); 2862 } else if (E->getType()->isAnyComplexType()) { 2863 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 2864 } else { 2865 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 2866 AtomicTy.getQualifiers(), 2867 AggValueSlot::IsNotDestructed, 2868 AggValueSlot::DoesNotNeedGCBarriers, 2869 AggValueSlot::IsNotAliased); 2870 EmitAggExpr(E->getVal1(), Slot); 2871 } 2872 return RValue::get(0); 2873 } 2874 2875 Order = EmitScalarExpr(E->getOrder()); 2876 2877 switch (E->getOp()) { 2878 case AtomicExpr::AO__c11_atomic_init: 2879 llvm_unreachable("Already handled!"); 2880 2881 case AtomicExpr::AO__c11_atomic_load: 2882 case AtomicExpr::AO__atomic_load_n: 2883 break; 2884 2885 case AtomicExpr::AO__atomic_load: 2886 Dest = EmitScalarExpr(E->getVal1()); 2887 break; 2888 2889 case AtomicExpr::AO__atomic_store: 2890 Val1 = EmitScalarExpr(E->getVal1()); 2891 break; 2892 2893 case AtomicExpr::AO__atomic_exchange: 2894 Val1 = EmitScalarExpr(E->getVal1()); 2895 Dest = EmitScalarExpr(E->getVal2()); 2896 break; 2897 2898 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2899 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2900 case AtomicExpr::AO__atomic_compare_exchange_n: 2901 case AtomicExpr::AO__atomic_compare_exchange: 2902 Val1 = EmitScalarExpr(E->getVal1()); 2903 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 2904 Val2 = EmitScalarExpr(E->getVal2()); 2905 else 2906 Val2 = EmitValToTemp(*this, E->getVal2()); 2907 OrderFail = EmitScalarExpr(E->getOrderFail()); 2908 // Evaluate and discard the 'weak' argument. 2909 if (E->getNumSubExprs() == 6) 2910 EmitScalarExpr(E->getWeak()); 2911 break; 2912 2913 case AtomicExpr::AO__c11_atomic_fetch_add: 2914 case AtomicExpr::AO__c11_atomic_fetch_sub: 2915 if (MemTy->isPointerType()) { 2916 // For pointer arithmetic, we're required to do a bit of math: 2917 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 2918 // ... but only for the C11 builtins. The GNU builtins expect the 2919 // user to multiply by sizeof(T). 2920 QualType Val1Ty = E->getVal1()->getType(); 2921 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2922 CharUnits PointeeIncAmt = 2923 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2924 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2925 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2926 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2927 break; 2928 } 2929 // Fall through. 2930 case AtomicExpr::AO__atomic_fetch_add: 2931 case AtomicExpr::AO__atomic_fetch_sub: 2932 case AtomicExpr::AO__atomic_add_fetch: 2933 case AtomicExpr::AO__atomic_sub_fetch: 2934 case AtomicExpr::AO__c11_atomic_store: 2935 case AtomicExpr::AO__c11_atomic_exchange: 2936 case AtomicExpr::AO__atomic_store_n: 2937 case AtomicExpr::AO__atomic_exchange_n: 2938 case AtomicExpr::AO__c11_atomic_fetch_and: 2939 case AtomicExpr::AO__c11_atomic_fetch_or: 2940 case AtomicExpr::AO__c11_atomic_fetch_xor: 2941 case AtomicExpr::AO__atomic_fetch_and: 2942 case AtomicExpr::AO__atomic_fetch_or: 2943 case AtomicExpr::AO__atomic_fetch_xor: 2944 case AtomicExpr::AO__atomic_fetch_nand: 2945 case AtomicExpr::AO__atomic_and_fetch: 2946 case AtomicExpr::AO__atomic_or_fetch: 2947 case AtomicExpr::AO__atomic_xor_fetch: 2948 case AtomicExpr::AO__atomic_nand_fetch: 2949 Val1 = EmitValToTemp(*this, E->getVal1()); 2950 break; 2951 } 2952 2953 if (!E->getType()->isVoidType() && !Dest) 2954 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2955 2956 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2957 if (UseLibcall) { 2958 2959 llvm::SmallVector<QualType, 5> Params; 2960 CallArgList Args; 2961 // Size is always the first parameter 2962 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2963 getContext().getSizeType()); 2964 // Atomic address is always the second parameter 2965 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2966 getContext().VoidPtrTy); 2967 2968 const char* LibCallName; 2969 QualType RetTy = getContext().VoidTy; 2970 switch (E->getOp()) { 2971 // There is only one libcall for compare an exchange, because there is no 2972 // optimisation benefit possible from a libcall version of a weak compare 2973 // and exchange. 2974 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 2975 // void *desired, int success, int failure) 2976 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2977 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2978 case AtomicExpr::AO__atomic_compare_exchange: 2979 case AtomicExpr::AO__atomic_compare_exchange_n: 2980 LibCallName = "__atomic_compare_exchange"; 2981 RetTy = getContext().BoolTy; 2982 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2983 getContext().VoidPtrTy); 2984 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2985 getContext().VoidPtrTy); 2986 Args.add(RValue::get(Order), 2987 getContext().IntTy); 2988 Order = OrderFail; 2989 break; 2990 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 2991 // int order) 2992 case AtomicExpr::AO__c11_atomic_exchange: 2993 case AtomicExpr::AO__atomic_exchange_n: 2994 case AtomicExpr::AO__atomic_exchange: 2995 LibCallName = "__atomic_exchange"; 2996 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2997 getContext().VoidPtrTy); 2998 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2999 getContext().VoidPtrTy); 3000 break; 3001 // void __atomic_store(size_t size, void *mem, void *val, int order) 3002 case AtomicExpr::AO__c11_atomic_store: 3003 case AtomicExpr::AO__atomic_store: 3004 case AtomicExpr::AO__atomic_store_n: 3005 LibCallName = "__atomic_store"; 3006 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3007 getContext().VoidPtrTy); 3008 break; 3009 // void __atomic_load(size_t size, void *mem, void *return, int order) 3010 case AtomicExpr::AO__c11_atomic_load: 3011 case AtomicExpr::AO__atomic_load: 3012 case AtomicExpr::AO__atomic_load_n: 3013 LibCallName = "__atomic_load"; 3014 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3015 getContext().VoidPtrTy); 3016 break; 3017 #if 0 3018 // These are only defined for 1-16 byte integers. It is not clear what 3019 // their semantics would be on anything else... 3020 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3021 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3022 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3023 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3024 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3025 #endif 3026 default: return EmitUnsupportedRValue(E, "atomic library call"); 3027 } 3028 // order is always the last parameter 3029 Args.add(RValue::get(Order), 3030 getContext().IntTy); 3031 3032 const CGFunctionInfo &FuncInfo = 3033 CGM.getTypes().arrangeFunctionCall(RetTy, Args, 3034 FunctionType::ExtInfo(), RequiredArgs::All); 3035 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3036 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3037 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3038 if (E->isCmpXChg()) 3039 return Res; 3040 if (E->getType()->isVoidType()) 3041 return RValue::get(0); 3042 return ConvertTempToRValue(*this, E->getType(), Dest); 3043 } 3044 3045 llvm::Type *IPtrTy = 3046 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3047 llvm::Value *OrigDest = Dest; 3048 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3049 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3050 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3051 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3052 3053 if (isa<llvm::ConstantInt>(Order)) { 3054 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3055 switch (ord) { 3056 case 0: // memory_order_relaxed 3057 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3058 llvm::Monotonic); 3059 break; 3060 case 1: // memory_order_consume 3061 case 2: // memory_order_acquire 3062 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3063 llvm::Acquire); 3064 break; 3065 case 3: // memory_order_release 3066 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3067 llvm::Release); 3068 break; 3069 case 4: // memory_order_acq_rel 3070 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3071 llvm::AcquireRelease); 3072 break; 3073 case 5: // memory_order_seq_cst 3074 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3075 llvm::SequentiallyConsistent); 3076 break; 3077 default: // invalid order 3078 // We should not ever get here normally, but it's hard to 3079 // enforce that in general. 3080 break; 3081 } 3082 if (E->getType()->isVoidType()) 3083 return RValue::get(0); 3084 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3085 } 3086 3087 // Long case, when Order isn't obviously constant. 3088 3089 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3090 E->getOp() == AtomicExpr::AO__atomic_store || 3091 E->getOp() == AtomicExpr::AO__atomic_store_n; 3092 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3093 E->getOp() == AtomicExpr::AO__atomic_load || 3094 E->getOp() == AtomicExpr::AO__atomic_load_n; 3095 3096 // Create all the relevant BB's 3097 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3098 *AcqRelBB = 0, *SeqCstBB = 0; 3099 MonotonicBB = createBasicBlock("monotonic", CurFn); 3100 if (!IsStore) 3101 AcquireBB = createBasicBlock("acquire", CurFn); 3102 if (!IsLoad) 3103 ReleaseBB = createBasicBlock("release", CurFn); 3104 if (!IsLoad && !IsStore) 3105 AcqRelBB = createBasicBlock("acqrel", CurFn); 3106 SeqCstBB = createBasicBlock("seqcst", CurFn); 3107 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3108 3109 // Create the switch for the split 3110 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3111 // doesn't matter unless someone is crazy enough to use something that 3112 // doesn't fold to a constant for the ordering. 3113 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3114 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3115 3116 // Emit all the different atomics 3117 Builder.SetInsertPoint(MonotonicBB); 3118 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3119 llvm::Monotonic); 3120 Builder.CreateBr(ContBB); 3121 if (!IsStore) { 3122 Builder.SetInsertPoint(AcquireBB); 3123 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3124 llvm::Acquire); 3125 Builder.CreateBr(ContBB); 3126 SI->addCase(Builder.getInt32(1), AcquireBB); 3127 SI->addCase(Builder.getInt32(2), AcquireBB); 3128 } 3129 if (!IsLoad) { 3130 Builder.SetInsertPoint(ReleaseBB); 3131 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3132 llvm::Release); 3133 Builder.CreateBr(ContBB); 3134 SI->addCase(Builder.getInt32(3), ReleaseBB); 3135 } 3136 if (!IsLoad && !IsStore) { 3137 Builder.SetInsertPoint(AcqRelBB); 3138 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3139 llvm::AcquireRelease); 3140 Builder.CreateBr(ContBB); 3141 SI->addCase(Builder.getInt32(4), AcqRelBB); 3142 } 3143 Builder.SetInsertPoint(SeqCstBB); 3144 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3145 llvm::SequentiallyConsistent); 3146 Builder.CreateBr(ContBB); 3147 SI->addCase(Builder.getInt32(5), SeqCstBB); 3148 3149 // Cleanup and return 3150 Builder.SetInsertPoint(ContBB); 3151 if (E->getType()->isVoidType()) 3152 return RValue::get(0); 3153 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3154 } 3155 3156 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3157 assert(Val->getType()->isFPOrFPVectorTy()); 3158 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3159 return; 3160 3161 llvm::Value *ULPs = llvm::ConstantFP::get(Builder.getFloatTy(), Accuracy); 3162 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), ULPs); 3163 3164 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy, 3165 Node); 3166 } 3167 3168 namespace { 3169 struct LValueOrRValue { 3170 LValue LV; 3171 RValue RV; 3172 }; 3173 } 3174 3175 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3176 const PseudoObjectExpr *E, 3177 bool forLValue, 3178 AggValueSlot slot) { 3179 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3180 3181 // Find the result expression, if any. 3182 const Expr *resultExpr = E->getResultExpr(); 3183 LValueOrRValue result; 3184 3185 for (PseudoObjectExpr::const_semantics_iterator 3186 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3187 const Expr *semantic = *i; 3188 3189 // If this semantic expression is an opaque value, bind it 3190 // to the result of its source expression. 3191 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3192 3193 // If this is the result expression, we may need to evaluate 3194 // directly into the slot. 3195 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3196 OVMA opaqueData; 3197 if (ov == resultExpr && ov->isRValue() && !forLValue && 3198 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3199 !ov->getType()->isAnyComplexType()) { 3200 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3201 3202 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3203 opaqueData = OVMA::bind(CGF, ov, LV); 3204 result.RV = slot.asRValue(); 3205 3206 // Otherwise, emit as normal. 3207 } else { 3208 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3209 3210 // If this is the result, also evaluate the result now. 3211 if (ov == resultExpr) { 3212 if (forLValue) 3213 result.LV = CGF.EmitLValue(ov); 3214 else 3215 result.RV = CGF.EmitAnyExpr(ov, slot); 3216 } 3217 } 3218 3219 opaques.push_back(opaqueData); 3220 3221 // Otherwise, if the expression is the result, evaluate it 3222 // and remember the result. 3223 } else if (semantic == resultExpr) { 3224 if (forLValue) 3225 result.LV = CGF.EmitLValue(semantic); 3226 else 3227 result.RV = CGF.EmitAnyExpr(semantic, slot); 3228 3229 // Otherwise, evaluate the expression in an ignored context. 3230 } else { 3231 CGF.EmitIgnoredExpr(semantic); 3232 } 3233 } 3234 3235 // Unbind all the opaques now. 3236 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3237 opaques[i].unbind(CGF); 3238 3239 return result; 3240 } 3241 3242 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3243 AggValueSlot slot) { 3244 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3245 } 3246 3247 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3248 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3249 } 3250