1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGRecordLayout.h" 19 #include "CGObjCRuntime.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "llvm/Intrinsics.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/Target/TargetData.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===--------------------------------------------------------------------===// 29 // Miscellaneous Helper Methods 30 //===--------------------------------------------------------------------===// 31 32 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 33 /// block. 34 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, 35 const llvm::Twine &Name) { 36 if (!Builder.isNamePreserving()) 37 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 38 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 39 } 40 41 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 42 llvm::Value *Init) { 43 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 44 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 45 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 46 } 47 48 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 49 const llvm::Twine &Name) { 50 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 51 // FIXME: Should we prefer the preferred type alignment here? 52 CharUnits Align = getContext().getTypeAlignInChars(Ty); 53 Alloc->setAlignment(Align.getQuantity()); 54 return Alloc; 55 } 56 57 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 58 const llvm::Twine &Name) { 59 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 60 // FIXME: Should we prefer the preferred type alignment here? 61 CharUnits Align = getContext().getTypeAlignInChars(Ty); 62 Alloc->setAlignment(Align.getQuantity()); 63 return Alloc; 64 } 65 66 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 67 /// expression and compare the result against zero, returning an Int1Ty value. 68 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 69 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 70 llvm::Value *MemPtr = EmitScalarExpr(E); 71 return CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 72 } 73 74 QualType BoolTy = getContext().BoolTy; 75 if (!E->getType()->isAnyComplexType()) 76 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 77 78 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 79 } 80 81 /// EmitAnyExpr - Emit code to compute the specified expression which can have 82 /// any type. The result is returned as an RValue struct. If this is an 83 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where the 84 /// result should be returned. 85 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc, 86 bool IsAggLocVolatile, bool IgnoreResult, 87 bool IsInitializer) { 88 if (!hasAggregateLLVMType(E->getType())) 89 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 90 else if (E->getType()->isAnyComplexType()) 91 return RValue::getComplex(EmitComplexExpr(E, false, false, 92 IgnoreResult, IgnoreResult)); 93 94 EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer); 95 return RValue::getAggregate(AggLoc, IsAggLocVolatile); 96 } 97 98 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 99 /// always be accessible even if no aggregate location is provided. 100 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E, 101 bool IsAggLocVolatile, 102 bool IsInitializer) { 103 llvm::Value *AggLoc = 0; 104 105 if (hasAggregateLLVMType(E->getType()) && 106 !E->getType()->isAnyComplexType()) 107 AggLoc = CreateMemTemp(E->getType(), "agg.tmp"); 108 return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false, 109 IsInitializer); 110 } 111 112 /// EmitAnyExprToMem - Evaluate an expression into a given memory 113 /// location. 114 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 115 llvm::Value *Location, 116 bool IsLocationVolatile, 117 bool IsInit) { 118 if (E->getType()->isComplexType()) 119 EmitComplexExprIntoAddr(E, Location, IsLocationVolatile); 120 else if (hasAggregateLLVMType(E->getType())) 121 EmitAggExpr(E, Location, IsLocationVolatile, /*Ignore*/ false, IsInit); 122 else { 123 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 124 LValue LV = MakeAddrLValue(Location, E->getType()); 125 EmitStoreThroughLValue(RV, LV, E->getType()); 126 } 127 } 128 129 /// \brief An adjustment to be made to the temporary created when emitting a 130 /// reference binding, which accesses a particular subobject of that temporary. 131 struct SubobjectAdjustment { 132 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 133 134 union { 135 struct { 136 const CastExpr *BasePath; 137 const CXXRecordDecl *DerivedClass; 138 } DerivedToBase; 139 140 FieldDecl *Field; 141 }; 142 143 SubobjectAdjustment(const CastExpr *BasePath, 144 const CXXRecordDecl *DerivedClass) 145 : Kind(DerivedToBaseAdjustment) 146 { 147 DerivedToBase.BasePath = BasePath; 148 DerivedToBase.DerivedClass = DerivedClass; 149 } 150 151 SubobjectAdjustment(FieldDecl *Field) 152 : Kind(FieldAdjustment) 153 { 154 this->Field = Field; 155 } 156 }; 157 158 static llvm::Value * 159 CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type, 160 const NamedDecl *InitializedDecl) { 161 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 162 if (VD->hasGlobalStorage()) { 163 llvm::SmallString<256> Name; 164 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Name); 165 166 const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 167 168 // Create the reference temporary. 169 llvm::GlobalValue *RefTemp = 170 new llvm::GlobalVariable(CGF.CGM.getModule(), 171 RefTempTy, /*isConstant=*/false, 172 llvm::GlobalValue::InternalLinkage, 173 llvm::Constant::getNullValue(RefTempTy), 174 Name.str()); 175 return RefTemp; 176 } 177 } 178 179 return CGF.CreateMemTemp(Type, "ref.tmp"); 180 } 181 182 static llvm::Value * 183 EmitExprForReferenceBinding(CodeGenFunction& CGF, const Expr* E, 184 llvm::Value *&ReferenceTemporary, 185 const CXXDestructorDecl *&ReferenceTemporaryDtor, 186 const NamedDecl *InitializedDecl) { 187 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 188 E = DAE->getExpr(); 189 190 if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) { 191 CodeGenFunction::RunCleanupsScope Scope(CGF); 192 193 return EmitExprForReferenceBinding(CGF, TE->getSubExpr(), 194 ReferenceTemporary, 195 ReferenceTemporaryDtor, 196 InitializedDecl); 197 } 198 199 RValue RV; 200 if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid) { 201 // Emit the expression as an lvalue. 202 LValue LV = CGF.EmitLValue(E); 203 204 if (LV.isSimple()) 205 return LV.getAddress(); 206 207 // We have to load the lvalue. 208 RV = CGF.EmitLoadOfLValue(LV, E->getType()); 209 } else { 210 QualType ResultTy = E->getType(); 211 212 llvm::SmallVector<SubobjectAdjustment, 2> Adjustments; 213 while (true) { 214 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 215 E = PE->getSubExpr(); 216 continue; 217 } 218 219 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 220 if ((CE->getCastKind() == CK_DerivedToBase || 221 CE->getCastKind() == CK_UncheckedDerivedToBase) && 222 E->getType()->isRecordType()) { 223 E = CE->getSubExpr(); 224 CXXRecordDecl *Derived 225 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 226 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 227 continue; 228 } 229 230 if (CE->getCastKind() == CK_NoOp) { 231 E = CE->getSubExpr(); 232 continue; 233 } 234 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 235 if (ME->getBase()->isLvalue(CGF.getContext()) != Expr::LV_Valid && 236 ME->getBase()->getType()->isRecordType()) { 237 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 238 E = ME->getBase(); 239 Adjustments.push_back(SubobjectAdjustment(Field)); 240 continue; 241 } 242 } 243 } 244 245 // Nothing changed. 246 break; 247 } 248 249 // Create a reference temporary if necessary. 250 if (CGF.hasAggregateLLVMType(E->getType()) && 251 !E->getType()->isAnyComplexType()) 252 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 253 InitializedDecl); 254 255 RV = CGF.EmitAnyExpr(E, ReferenceTemporary, /*IsAggLocVolatile=*/false, 256 /*IgnoreResult=*/false, InitializedDecl); 257 258 if (InitializedDecl) { 259 // Get the destructor for the reference temporary. 260 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 261 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 262 if (!ClassDecl->hasTrivialDestructor()) 263 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 264 } 265 } 266 267 // Check if need to perform derived-to-base casts and/or field accesses, to 268 // get from the temporary object we created (and, potentially, for which we 269 // extended the lifetime) to the subobject we're binding the reference to. 270 if (!Adjustments.empty()) { 271 llvm::Value *Object = RV.getAggregateAddr(); 272 for (unsigned I = Adjustments.size(); I != 0; --I) { 273 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 274 switch (Adjustment.Kind) { 275 case SubobjectAdjustment::DerivedToBaseAdjustment: 276 Object = 277 CGF.GetAddressOfBaseClass(Object, 278 Adjustment.DerivedToBase.DerivedClass, 279 Adjustment.DerivedToBase.BasePath->path_begin(), 280 Adjustment.DerivedToBase.BasePath->path_end(), 281 /*NullCheckValue=*/false); 282 break; 283 284 case SubobjectAdjustment::FieldAdjustment: { 285 LValue LV = 286 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 287 if (LV.isSimple()) { 288 Object = LV.getAddress(); 289 break; 290 } 291 292 // For non-simple lvalues, we actually have to create a copy of 293 // the object we're binding to. 294 QualType T = Adjustment.Field->getType().getNonReferenceType() 295 .getUnqualifiedType(); 296 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 297 LValue TempLV = CGF.MakeAddrLValue(Object, 298 Adjustment.Field->getType()); 299 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV, T), TempLV, T); 300 break; 301 } 302 303 } 304 } 305 306 const llvm::Type *ResultPtrTy = CGF.ConvertType(ResultTy)->getPointerTo(); 307 return CGF.Builder.CreateBitCast(Object, ResultPtrTy, "temp"); 308 } 309 } 310 311 if (RV.isAggregate()) 312 return RV.getAggregateAddr(); 313 314 // Create a temporary variable that we can bind the reference to. 315 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 316 InitializedDecl); 317 318 319 unsigned Alignment = 320 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 321 if (RV.isScalar()) 322 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 323 /*Volatile=*/false, Alignment, E->getType()); 324 else 325 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 326 /*Volatile=*/false); 327 return ReferenceTemporary; 328 } 329 330 RValue 331 CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E, 332 const NamedDecl *InitializedDecl) { 333 llvm::Value *ReferenceTemporary = 0; 334 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 335 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 336 ReferenceTemporaryDtor, 337 InitializedDecl); 338 if (!ReferenceTemporaryDtor) 339 return RValue::get(Value); 340 341 // Make sure to call the destructor for the reference temporary. 342 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 343 if (VD->hasGlobalStorage()) { 344 llvm::Constant *DtorFn = 345 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 346 CGF.EmitCXXGlobalDtorRegistration(DtorFn, 347 cast<llvm::Constant>(ReferenceTemporary)); 348 349 return RValue::get(Value); 350 } 351 } 352 353 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 354 355 return RValue::get(Value); 356 } 357 358 359 /// getAccessedFieldNo - Given an encoded value and a result number, return the 360 /// input field number being accessed. 361 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 362 const llvm::Constant *Elts) { 363 if (isa<llvm::ConstantAggregateZero>(Elts)) 364 return 0; 365 366 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 367 } 368 369 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 370 if (!CatchUndefined) 371 return; 372 373 Address = Builder.CreateBitCast(Address, PtrToInt8Ty); 374 375 const llvm::Type *IntPtrT = IntPtrTy; 376 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1); 377 const llvm::IntegerType *Int1Ty = llvm::Type::getInt1Ty(VMContext); 378 379 // In time, people may want to control this and use a 1 here. 380 llvm::Value *Arg = llvm::ConstantInt::get(Int1Ty, 0); 381 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 382 llvm::BasicBlock *Cont = createBasicBlock(); 383 llvm::BasicBlock *Check = createBasicBlock(); 384 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 385 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 386 387 EmitBlock(Check); 388 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 389 llvm::ConstantInt::get(IntPtrTy, Size)), 390 Cont, getTrapBB()); 391 EmitBlock(Cont); 392 } 393 394 395 CodeGenFunction::ComplexPairTy CodeGenFunction:: 396 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 397 bool isInc, bool isPre) { 398 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 399 LV.isVolatileQualified()); 400 401 llvm::Value *NextVal; 402 if (isa<llvm::IntegerType>(InVal.first->getType())) { 403 uint64_t AmountVal = isInc ? 1 : -1; 404 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 405 406 // Add the inc/dec to the real part. 407 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 408 } else { 409 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 410 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 411 if (!isInc) 412 FVal.changeSign(); 413 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 414 415 // Add the inc/dec to the real part. 416 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 417 } 418 419 ComplexPairTy IncVal(NextVal, InVal.second); 420 421 // Store the updated result through the lvalue. 422 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 423 424 // If this is a postinc, return the value read from memory, otherwise use the 425 // updated value. 426 return isPre ? IncVal : InVal; 427 } 428 429 430 //===----------------------------------------------------------------------===// 431 // LValue Expression Emission 432 //===----------------------------------------------------------------------===// 433 434 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 435 if (Ty->isVoidType()) 436 return RValue::get(0); 437 438 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 439 const llvm::Type *EltTy = ConvertType(CTy->getElementType()); 440 llvm::Value *U = llvm::UndefValue::get(EltTy); 441 return RValue::getComplex(std::make_pair(U, U)); 442 } 443 444 // If this is a use of an undefined aggregate type, the aggregate must have an 445 // identifiable address. Just because the contents of the value are undefined 446 // doesn't mean that the address can't be taken and compared. 447 if (hasAggregateLLVMType(Ty)) { 448 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 449 return RValue::getAggregate(DestPtr); 450 } 451 452 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 453 } 454 455 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 456 const char *Name) { 457 ErrorUnsupported(E, Name); 458 return GetUndefRValue(E->getType()); 459 } 460 461 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 462 const char *Name) { 463 ErrorUnsupported(E, Name); 464 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 465 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 466 } 467 468 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 469 LValue LV = EmitLValue(E); 470 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 471 EmitCheck(LV.getAddress(), getContext().getTypeSize(E->getType()) / 8); 472 return LV; 473 } 474 475 /// EmitLValue - Emit code to compute a designator that specifies the location 476 /// of the expression. 477 /// 478 /// This can return one of two things: a simple address or a bitfield reference. 479 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 480 /// an LLVM pointer type. 481 /// 482 /// If this returns a bitfield reference, nothing about the pointee type of the 483 /// LLVM value is known: For example, it may not be a pointer to an integer. 484 /// 485 /// If this returns a normal address, and if the lvalue's C type is fixed size, 486 /// this method guarantees that the returned pointer type will point to an LLVM 487 /// type of the same size of the lvalue's type. If the lvalue has a variable 488 /// length type, this is not possible. 489 /// 490 LValue CodeGenFunction::EmitLValue(const Expr *E) { 491 switch (E->getStmtClass()) { 492 default: return EmitUnsupportedLValue(E, "l-value expression"); 493 494 case Expr::ObjCSelectorExprClass: 495 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 496 case Expr::ObjCIsaExprClass: 497 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 498 case Expr::BinaryOperatorClass: 499 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 500 case Expr::CompoundAssignOperatorClass: 501 return EmitCompoundAssignOperatorLValue(cast<CompoundAssignOperator>(E)); 502 case Expr::CallExprClass: 503 case Expr::CXXMemberCallExprClass: 504 case Expr::CXXOperatorCallExprClass: 505 return EmitCallExprLValue(cast<CallExpr>(E)); 506 case Expr::VAArgExprClass: 507 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 508 case Expr::DeclRefExprClass: 509 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 510 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 511 case Expr::PredefinedExprClass: 512 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 513 case Expr::StringLiteralClass: 514 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 515 case Expr::ObjCEncodeExprClass: 516 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 517 518 case Expr::BlockDeclRefExprClass: 519 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 520 521 case Expr::CXXTemporaryObjectExprClass: 522 case Expr::CXXConstructExprClass: 523 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 524 case Expr::CXXBindTemporaryExprClass: 525 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 526 case Expr::CXXExprWithTemporariesClass: 527 return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E)); 528 case Expr::CXXScalarValueInitExprClass: 529 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 530 case Expr::CXXDefaultArgExprClass: 531 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 532 case Expr::CXXTypeidExprClass: 533 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 534 535 case Expr::ObjCMessageExprClass: 536 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 537 case Expr::ObjCIvarRefExprClass: 538 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 539 case Expr::ObjCPropertyRefExprClass: 540 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); 541 case Expr::ObjCImplicitSetterGetterRefExprClass: 542 return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E)); 543 case Expr::ObjCSuperExprClass: 544 return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E)); 545 546 case Expr::StmtExprClass: 547 return EmitStmtExprLValue(cast<StmtExpr>(E)); 548 case Expr::UnaryOperatorClass: 549 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 550 case Expr::ArraySubscriptExprClass: 551 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 552 case Expr::ExtVectorElementExprClass: 553 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 554 case Expr::MemberExprClass: 555 return EmitMemberExpr(cast<MemberExpr>(E)); 556 case Expr::CompoundLiteralExprClass: 557 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 558 case Expr::ConditionalOperatorClass: 559 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 560 case Expr::ChooseExprClass: 561 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 562 case Expr::ImplicitCastExprClass: 563 case Expr::CStyleCastExprClass: 564 case Expr::CXXFunctionalCastExprClass: 565 case Expr::CXXStaticCastExprClass: 566 case Expr::CXXDynamicCastExprClass: 567 case Expr::CXXReinterpretCastExprClass: 568 case Expr::CXXConstCastExprClass: 569 return EmitCastLValue(cast<CastExpr>(E)); 570 } 571 } 572 573 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 574 unsigned Alignment, QualType Ty) { 575 llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp"); 576 if (Volatile) 577 Load->setVolatile(true); 578 if (Alignment) 579 Load->setAlignment(Alignment); 580 581 // Bool can have different representation in memory than in registers. 582 llvm::Value *V = Load; 583 if (Ty->isBooleanType()) 584 if (V->getType() != llvm::Type::getInt1Ty(VMContext)) 585 V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool"); 586 587 return V; 588 } 589 590 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 591 bool Volatile, unsigned Alignment, 592 QualType Ty) { 593 594 if (Ty->isBooleanType()) { 595 // Bool can have different representation in memory than in registers. 596 const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 597 Value = Builder.CreateIntCast(Value, DstPtr->getElementType(), false); 598 } 599 600 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 601 if (Alignment) 602 Store->setAlignment(Alignment); 603 } 604 605 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 606 /// method emits the address of the lvalue, then loads the result as an rvalue, 607 /// returning the rvalue. 608 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { 609 if (LV.isObjCWeak()) { 610 // load of a __weak object. 611 llvm::Value *AddrWeakObj = LV.getAddress(); 612 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 613 AddrWeakObj)); 614 } 615 616 if (LV.isSimple()) { 617 llvm::Value *Ptr = LV.getAddress(); 618 619 // Functions are l-values that don't require loading. 620 if (ExprType->isFunctionType()) 621 return RValue::get(Ptr); 622 623 // Everything needs a load. 624 return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(), 625 LV.getAlignment(), ExprType)); 626 627 } 628 629 if (LV.isVectorElt()) { 630 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 631 LV.isVolatileQualified(), "tmp"); 632 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 633 "vecext")); 634 } 635 636 // If this is a reference to a subset of the elements of a vector, either 637 // shuffle the input or extract/insert them as appropriate. 638 if (LV.isExtVectorElt()) 639 return EmitLoadOfExtVectorElementLValue(LV, ExprType); 640 641 if (LV.isBitField()) 642 return EmitLoadOfBitfieldLValue(LV, ExprType); 643 644 if (LV.isPropertyRef()) 645 return EmitLoadOfPropertyRefLValue(LV, ExprType); 646 647 assert(LV.isKVCRef() && "Unknown LValue type!"); 648 return EmitLoadOfKVCRefLValue(LV, ExprType); 649 } 650 651 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 652 QualType ExprType) { 653 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 654 655 // Get the output type. 656 const llvm::Type *ResLTy = ConvertType(ExprType); 657 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 658 659 // Compute the result as an OR of all of the individual component accesses. 660 llvm::Value *Res = 0; 661 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 662 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 663 664 // Get the field pointer. 665 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 666 667 // Only offset by the field index if used, so that incoming values are not 668 // required to be structures. 669 if (AI.FieldIndex) 670 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 671 672 // Offset by the byte offset, if used. 673 if (AI.FieldByteOffset) { 674 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 675 Ptr = Builder.CreateBitCast(Ptr, i8PTy); 676 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs"); 677 } 678 679 // Cast to the access type. 680 const llvm::Type *PTy = llvm::Type::getIntNPtrTy(VMContext, AI.AccessWidth, 681 ExprType.getAddressSpace()); 682 Ptr = Builder.CreateBitCast(Ptr, PTy); 683 684 // Perform the load. 685 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 686 if (AI.AccessAlignment) 687 Load->setAlignment(AI.AccessAlignment); 688 689 // Shift out unused low bits and mask out unused high bits. 690 llvm::Value *Val = Load; 691 if (AI.FieldBitStart) 692 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 693 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 694 AI.TargetBitWidth), 695 "bf.clear"); 696 697 // Extend or truncate to the target size. 698 if (AI.AccessWidth < ResSizeInBits) 699 Val = Builder.CreateZExt(Val, ResLTy); 700 else if (AI.AccessWidth > ResSizeInBits) 701 Val = Builder.CreateTrunc(Val, ResLTy); 702 703 // Shift into place, and OR into the result. 704 if (AI.TargetBitOffset) 705 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 706 Res = Res ? Builder.CreateOr(Res, Val) : Val; 707 } 708 709 // If the bit-field is signed, perform the sign-extension. 710 // 711 // FIXME: This can easily be folded into the load of the high bits, which 712 // could also eliminate the mask of high bits in some situations. 713 if (Info.isSigned()) { 714 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 715 if (ExtraBits) 716 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 717 ExtraBits, "bf.val.sext"); 718 } 719 720 return RValue::get(Res); 721 } 722 723 RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV, 724 QualType ExprType) { 725 return EmitObjCPropertyGet(LV.getPropertyRefExpr()); 726 } 727 728 RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV, 729 QualType ExprType) { 730 return EmitObjCPropertyGet(LV.getKVCRefExpr()); 731 } 732 733 // If this is a reference to a subset of the elements of a vector, create an 734 // appropriate shufflevector. 735 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV, 736 QualType ExprType) { 737 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 738 LV.isVolatileQualified(), "tmp"); 739 740 const llvm::Constant *Elts = LV.getExtVectorElts(); 741 742 // If the result of the expression is a non-vector type, we must be extracting 743 // a single element. Just codegen as an extractelement. 744 const VectorType *ExprVT = ExprType->getAs<VectorType>(); 745 if (!ExprVT) { 746 unsigned InIdx = getAccessedFieldNo(0, Elts); 747 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 748 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); 749 } 750 751 // Always use shuffle vector to try to retain the original program structure 752 unsigned NumResultElts = ExprVT->getNumElements(); 753 754 llvm::SmallVector<llvm::Constant*, 4> Mask; 755 for (unsigned i = 0; i != NumResultElts; ++i) { 756 unsigned InIdx = getAccessedFieldNo(i, Elts); 757 Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx)); 758 } 759 760 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 761 Vec = Builder.CreateShuffleVector(Vec, 762 llvm::UndefValue::get(Vec->getType()), 763 MaskV, "tmp"); 764 return RValue::get(Vec); 765 } 766 767 768 769 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 770 /// lvalue, where both are guaranteed to the have the same type, and that type 771 /// is 'Ty'. 772 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 773 QualType Ty) { 774 if (!Dst.isSimple()) { 775 if (Dst.isVectorElt()) { 776 // Read/modify/write the vector, inserting the new element. 777 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 778 Dst.isVolatileQualified(), "tmp"); 779 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 780 Dst.getVectorIdx(), "vecins"); 781 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 782 return; 783 } 784 785 // If this is an update of extended vector elements, insert them as 786 // appropriate. 787 if (Dst.isExtVectorElt()) 788 return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty); 789 790 if (Dst.isBitField()) 791 return EmitStoreThroughBitfieldLValue(Src, Dst, Ty); 792 793 if (Dst.isPropertyRef()) 794 return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty); 795 796 assert(Dst.isKVCRef() && "Unknown LValue type"); 797 return EmitStoreThroughKVCRefLValue(Src, Dst, Ty); 798 } 799 800 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 801 // load of a __weak object. 802 llvm::Value *LvalueDst = Dst.getAddress(); 803 llvm::Value *src = Src.getScalarVal(); 804 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 805 return; 806 } 807 808 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 809 // load of a __strong object. 810 llvm::Value *LvalueDst = Dst.getAddress(); 811 llvm::Value *src = Src.getScalarVal(); 812 if (Dst.isObjCIvar()) { 813 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 814 const llvm::Type *ResultType = ConvertType(getContext().LongTy); 815 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 816 llvm::Value *dst = RHS; 817 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 818 llvm::Value *LHS = 819 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 820 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 821 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 822 BytesBetween); 823 } else if (Dst.isGlobalObjCRef()) { 824 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 825 Dst.isThreadLocalRef()); 826 } 827 else 828 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 829 return; 830 } 831 832 assert(Src.isScalar() && "Can't emit an agg store with this method"); 833 EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(), 834 Dst.isVolatileQualified(), Dst.getAlignment(), Ty); 835 } 836 837 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 838 QualType Ty, 839 llvm::Value **Result) { 840 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 841 842 // Get the output type. 843 const llvm::Type *ResLTy = ConvertTypeForMem(Ty); 844 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 845 846 // Get the source value, truncated to the width of the bit-field. 847 llvm::Value *SrcVal = Src.getScalarVal(); 848 849 if (Ty->isBooleanType()) 850 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 851 852 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 853 Info.getSize()), 854 "bf.value"); 855 856 // Return the new value of the bit-field, if requested. 857 if (Result) { 858 // Cast back to the proper type for result. 859 const llvm::Type *SrcTy = Src.getScalarVal()->getType(); 860 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 861 "bf.reload.val"); 862 863 // Sign extend if necessary. 864 if (Info.isSigned()) { 865 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 866 if (ExtraBits) 867 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 868 ExtraBits, "bf.reload.sext"); 869 } 870 871 *Result = ReloadVal; 872 } 873 874 // Iterate over the components, writing each piece to memory. 875 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 876 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 877 878 // Get the field pointer. 879 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 880 881 // Only offset by the field index if used, so that incoming values are not 882 // required to be structures. 883 if (AI.FieldIndex) 884 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 885 886 // Offset by the byte offset, if used. 887 if (AI.FieldByteOffset) { 888 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 889 Ptr = Builder.CreateBitCast(Ptr, i8PTy); 890 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs"); 891 } 892 893 // Cast to the access type. 894 const llvm::Type *PTy = llvm::Type::getIntNPtrTy(VMContext, AI.AccessWidth, 895 Ty.getAddressSpace()); 896 Ptr = Builder.CreateBitCast(Ptr, PTy); 897 898 // Extract the piece of the bit-field value to write in this access, limited 899 // to the values that are part of this access. 900 llvm::Value *Val = SrcVal; 901 if (AI.TargetBitOffset) 902 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 903 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 904 AI.TargetBitWidth)); 905 906 // Extend or truncate to the access size. 907 const llvm::Type *AccessLTy = 908 llvm::Type::getIntNTy(VMContext, AI.AccessWidth); 909 if (ResSizeInBits < AI.AccessWidth) 910 Val = Builder.CreateZExt(Val, AccessLTy); 911 else if (ResSizeInBits > AI.AccessWidth) 912 Val = Builder.CreateTrunc(Val, AccessLTy); 913 914 // Shift into the position in memory. 915 if (AI.FieldBitStart) 916 Val = Builder.CreateShl(Val, AI.FieldBitStart); 917 918 // If necessary, load and OR in bits that are outside of the bit-field. 919 if (AI.TargetBitWidth != AI.AccessWidth) { 920 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 921 if (AI.AccessAlignment) 922 Load->setAlignment(AI.AccessAlignment); 923 924 // Compute the mask for zeroing the bits that are part of the bit-field. 925 llvm::APInt InvMask = 926 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 927 AI.FieldBitStart + AI.TargetBitWidth); 928 929 // Apply the mask and OR in to the value to write. 930 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 931 } 932 933 // Write the value. 934 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 935 Dst.isVolatileQualified()); 936 if (AI.AccessAlignment) 937 Store->setAlignment(AI.AccessAlignment); 938 } 939 } 940 941 void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src, 942 LValue Dst, 943 QualType Ty) { 944 EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src); 945 } 946 947 void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src, 948 LValue Dst, 949 QualType Ty) { 950 EmitObjCPropertySet(Dst.getKVCRefExpr(), Src); 951 } 952 953 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 954 LValue Dst, 955 QualType Ty) { 956 // This access turns into a read/modify/write of the vector. Load the input 957 // value now. 958 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 959 Dst.isVolatileQualified(), "tmp"); 960 const llvm::Constant *Elts = Dst.getExtVectorElts(); 961 962 llvm::Value *SrcVal = Src.getScalarVal(); 963 964 if (const VectorType *VTy = Ty->getAs<VectorType>()) { 965 unsigned NumSrcElts = VTy->getNumElements(); 966 unsigned NumDstElts = 967 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 968 if (NumDstElts == NumSrcElts) { 969 // Use shuffle vector is the src and destination are the same number of 970 // elements and restore the vector mask since it is on the side it will be 971 // stored. 972 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 973 for (unsigned i = 0; i != NumSrcElts; ++i) { 974 unsigned InIdx = getAccessedFieldNo(i, Elts); 975 Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i); 976 } 977 978 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 979 Vec = Builder.CreateShuffleVector(SrcVal, 980 llvm::UndefValue::get(Vec->getType()), 981 MaskV, "tmp"); 982 } else if (NumDstElts > NumSrcElts) { 983 // Extended the source vector to the same length and then shuffle it 984 // into the destination. 985 // FIXME: since we're shuffling with undef, can we just use the indices 986 // into that? This could be simpler. 987 llvm::SmallVector<llvm::Constant*, 4> ExtMask; 988 unsigned i; 989 for (i = 0; i != NumSrcElts; ++i) 990 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 991 for (; i != NumDstElts; ++i) 992 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 993 llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0], 994 ExtMask.size()); 995 llvm::Value *ExtSrcVal = 996 Builder.CreateShuffleVector(SrcVal, 997 llvm::UndefValue::get(SrcVal->getType()), 998 ExtMaskV, "tmp"); 999 // build identity 1000 llvm::SmallVector<llvm::Constant*, 4> Mask; 1001 for (unsigned i = 0; i != NumDstElts; ++i) 1002 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1003 1004 // modify when what gets shuffled in 1005 for (unsigned i = 0; i != NumSrcElts; ++i) { 1006 unsigned Idx = getAccessedFieldNo(i, Elts); 1007 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); 1008 } 1009 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); 1010 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); 1011 } else { 1012 // We should never shorten the vector 1013 assert(0 && "unexpected shorten vector length"); 1014 } 1015 } else { 1016 // If the Src is a scalar (not a vector) it must be updating one element. 1017 unsigned InIdx = getAccessedFieldNo(0, Elts); 1018 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1019 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); 1020 } 1021 1022 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1023 } 1024 1025 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1026 // generating write-barries API. It is currently a global, ivar, 1027 // or neither. 1028 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1029 LValue &LV) { 1030 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) 1031 return; 1032 1033 if (isa<ObjCIvarRefExpr>(E)) { 1034 LV.setObjCIvar(true); 1035 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1036 LV.setBaseIvarExp(Exp->getBase()); 1037 LV.setObjCArray(E->getType()->isArrayType()); 1038 return; 1039 } 1040 1041 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1042 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1043 if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) || 1044 VD->isFileVarDecl()) { 1045 LV.setGlobalObjCRef(true); 1046 LV.setThreadLocalRef(VD->isThreadSpecified()); 1047 } 1048 } 1049 LV.setObjCArray(E->getType()->isArrayType()); 1050 return; 1051 } 1052 1053 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1054 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1055 return; 1056 } 1057 1058 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1059 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1060 if (LV.isObjCIvar()) { 1061 // If cast is to a structure pointer, follow gcc's behavior and make it 1062 // a non-ivar write-barrier. 1063 QualType ExpTy = E->getType(); 1064 if (ExpTy->isPointerType()) 1065 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1066 if (ExpTy->isRecordType()) 1067 LV.setObjCIvar(false); 1068 } 1069 return; 1070 } 1071 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1072 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1073 return; 1074 } 1075 1076 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1077 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1078 return; 1079 } 1080 1081 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1082 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1083 if (LV.isObjCIvar() && !LV.isObjCArray()) 1084 // Using array syntax to assigning to what an ivar points to is not 1085 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1086 LV.setObjCIvar(false); 1087 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1088 // Using array syntax to assigning to what global points to is not 1089 // same as assigning to the global itself. {id *G;} G[i] = 0; 1090 LV.setGlobalObjCRef(false); 1091 return; 1092 } 1093 1094 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1095 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1096 // We don't know if member is an 'ivar', but this flag is looked at 1097 // only in the context of LV.isObjCIvar(). 1098 LV.setObjCArray(E->getType()->isArrayType()); 1099 return; 1100 } 1101 } 1102 1103 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1104 const Expr *E, const VarDecl *VD) { 1105 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1106 "Var decl must have external storage or be a file var decl!"); 1107 1108 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1109 if (VD->getType()->isReferenceType()) 1110 V = CGF.Builder.CreateLoad(V, "tmp"); 1111 unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity(); 1112 LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1113 setObjCGCLValueClass(CGF.getContext(), E, LV); 1114 return LV; 1115 } 1116 1117 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1118 const Expr *E, const FunctionDecl *FD) { 1119 llvm::Value* V = CGF.CGM.GetAddrOfFunction(FD); 1120 if (!FD->hasPrototype()) { 1121 if (const FunctionProtoType *Proto = 1122 FD->getType()->getAs<FunctionProtoType>()) { 1123 // Ugly case: for a K&R-style definition, the type of the definition 1124 // isn't the same as the type of a use. Correct for this with a 1125 // bitcast. 1126 QualType NoProtoType = 1127 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1128 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1129 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp"); 1130 } 1131 } 1132 unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity(); 1133 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1134 } 1135 1136 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1137 const NamedDecl *ND = E->getDecl(); 1138 unsigned Alignment = CGF.getContext().getDeclAlign(ND).getQuantity(); 1139 1140 if (ND->hasAttr<WeakRefAttr>()) { 1141 const ValueDecl* VD = cast<ValueDecl>(ND); 1142 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1143 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1144 } 1145 1146 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1147 1148 // Check if this is a global variable. 1149 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1150 return EmitGlobalVarDeclLValue(*this, E, VD); 1151 1152 bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>(); 1153 1154 llvm::Value *V = LocalDeclMap[VD]; 1155 if (!V && getContext().getLangOptions().CPlusPlus && 1156 VD->isStaticLocal()) 1157 V = CGM.getStaticLocalDeclAddress(VD); 1158 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1159 1160 if (VD->hasAttr<BlocksAttr>()) { 1161 V = Builder.CreateStructGEP(V, 1, "forwarding"); 1162 V = Builder.CreateLoad(V); 1163 V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD), 1164 VD->getNameAsString()); 1165 } 1166 if (VD->getType()->isReferenceType()) 1167 V = Builder.CreateLoad(V, "tmp"); 1168 1169 LValue LV = MakeAddrLValue(V, E->getType(), Alignment); 1170 if (NonGCable) { 1171 LV.getQuals().removeObjCGCAttr(); 1172 LV.setNonGC(true); 1173 } 1174 setObjCGCLValueClass(getContext(), E, LV); 1175 return LV; 1176 } 1177 1178 // If we're emitting an instance method as an independent lvalue, 1179 // we're actually emitting a member pointer. 1180 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 1181 if (MD->isInstance()) { 1182 llvm::Value *V = CGM.getCXXABI().EmitMemberPointer(MD); 1183 return MakeAddrLValue(V, MD->getType(), Alignment); 1184 } 1185 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1186 return EmitFunctionDeclLValue(*this, E, FD); 1187 1188 // If we're emitting a field as an independent lvalue, we're 1189 // actually emitting a member pointer. 1190 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ND)) { 1191 llvm::Value *V = CGM.getCXXABI().EmitMemberPointer(FD); 1192 return MakeAddrLValue(V, FD->getType(), Alignment); 1193 } 1194 1195 assert(false && "Unhandled DeclRefExpr"); 1196 1197 // an invalid LValue, but the assert will 1198 // ensure that this point is never reached. 1199 return LValue(); 1200 } 1201 1202 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1203 unsigned Alignment = 1204 CGF.getContext().getDeclAlign(E->getDecl()).getQuantity(); 1205 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1206 } 1207 1208 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1209 // __extension__ doesn't affect lvalue-ness. 1210 if (E->getOpcode() == UO_Extension) 1211 return EmitLValue(E->getSubExpr()); 1212 1213 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1214 switch (E->getOpcode()) { 1215 default: assert(0 && "Unknown unary operator lvalue!"); 1216 case UO_Deref: { 1217 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1218 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1219 1220 LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1221 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1222 1223 // We should not generate __weak write barrier on indirect reference 1224 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1225 // But, we continue to generate __strong write barrier on indirect write 1226 // into a pointer to object. 1227 if (getContext().getLangOptions().ObjC1 && 1228 getContext().getLangOptions().getGCMode() != LangOptions::NonGC && 1229 LV.isObjCWeak()) 1230 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1231 return LV; 1232 } 1233 case UO_Real: 1234 case UO_Imag: { 1235 LValue LV = EmitLValue(E->getSubExpr()); 1236 unsigned Idx = E->getOpcode() == UO_Imag; 1237 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1238 Idx, "idx"), 1239 ExprTy); 1240 } 1241 case UO_PreInc: 1242 case UO_PreDec: { 1243 LValue LV = EmitLValue(E->getSubExpr()); 1244 bool isInc = E->getOpcode() == UO_PreInc; 1245 1246 if (E->getType()->isAnyComplexType()) 1247 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1248 else 1249 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1250 return LV; 1251 } 1252 } 1253 } 1254 1255 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1256 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1257 E->getType()); 1258 } 1259 1260 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1261 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1262 E->getType()); 1263 } 1264 1265 1266 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1267 switch (E->getIdentType()) { 1268 default: 1269 return EmitUnsupportedLValue(E, "predefined expression"); 1270 1271 case PredefinedExpr::Func: 1272 case PredefinedExpr::Function: 1273 case PredefinedExpr::PrettyFunction: { 1274 unsigned Type = E->getIdentType(); 1275 std::string GlobalVarName; 1276 1277 switch (Type) { 1278 default: assert(0 && "Invalid type"); 1279 case PredefinedExpr::Func: 1280 GlobalVarName = "__func__."; 1281 break; 1282 case PredefinedExpr::Function: 1283 GlobalVarName = "__FUNCTION__."; 1284 break; 1285 case PredefinedExpr::PrettyFunction: 1286 GlobalVarName = "__PRETTY_FUNCTION__."; 1287 break; 1288 } 1289 1290 llvm::StringRef FnName = CurFn->getName(); 1291 if (FnName.startswith("\01")) 1292 FnName = FnName.substr(1); 1293 GlobalVarName += FnName; 1294 1295 const Decl *CurDecl = CurCodeDecl; 1296 if (CurDecl == 0) 1297 CurDecl = getContext().getTranslationUnitDecl(); 1298 1299 std::string FunctionName = 1300 PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl); 1301 1302 llvm::Constant *C = 1303 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1304 return MakeAddrLValue(C, E->getType()); 1305 } 1306 } 1307 } 1308 1309 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1310 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1311 1312 // If we are not optimzing, don't collapse all calls to trap in the function 1313 // to the same call, that way, in the debugger they can see which operation 1314 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1315 // to just one per function to save on codesize. 1316 if (GCO.OptimizationLevel && TrapBB) 1317 return TrapBB; 1318 1319 llvm::BasicBlock *Cont = 0; 1320 if (HaveInsertPoint()) { 1321 Cont = createBasicBlock("cont"); 1322 EmitBranch(Cont); 1323 } 1324 TrapBB = createBasicBlock("trap"); 1325 EmitBlock(TrapBB); 1326 1327 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0); 1328 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1329 TrapCall->setDoesNotReturn(); 1330 TrapCall->setDoesNotThrow(); 1331 Builder.CreateUnreachable(); 1332 1333 if (Cont) 1334 EmitBlock(Cont); 1335 return TrapBB; 1336 } 1337 1338 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1339 /// array to pointer, return the array subexpression. 1340 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1341 // If this isn't just an array->pointer decay, bail out. 1342 const CastExpr *CE = dyn_cast<CastExpr>(E); 1343 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1344 return 0; 1345 1346 // If this is a decay from variable width array, bail out. 1347 const Expr *SubExpr = CE->getSubExpr(); 1348 if (SubExpr->getType()->isVariableArrayType()) 1349 return 0; 1350 1351 return SubExpr; 1352 } 1353 1354 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1355 // The index must always be an integer, which is not an aggregate. Emit it. 1356 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1357 QualType IdxTy = E->getIdx()->getType(); 1358 bool IdxSigned = IdxTy->isSignedIntegerType(); 1359 1360 // If the base is a vector type, then we are forming a vector element lvalue 1361 // with this subscript. 1362 if (E->getBase()->getType()->isVectorType()) { 1363 // Emit the vector as an lvalue to get its address. 1364 LValue LHS = EmitLValue(E->getBase()); 1365 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1366 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vidx"); 1367 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1368 E->getBase()->getType().getCVRQualifiers()); 1369 } 1370 1371 // Extend or truncate the index type to 32 or 64-bits. 1372 if (!Idx->getType()->isIntegerTy(LLVMPointerWidth)) 1373 Idx = Builder.CreateIntCast(Idx, IntPtrTy, 1374 IdxSigned, "idxprom"); 1375 1376 // FIXME: As llvm implements the object size checking, this can come out. 1377 if (CatchUndefined) { 1378 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1379 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1380 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1381 if (const ConstantArrayType *CAT 1382 = getContext().getAsConstantArrayType(DRE->getType())) { 1383 llvm::APInt Size = CAT->getSize(); 1384 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1385 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1386 llvm::ConstantInt::get(Idx->getType(), Size)), 1387 Cont, getTrapBB()); 1388 EmitBlock(Cont); 1389 } 1390 } 1391 } 1392 } 1393 } 1394 1395 // We know that the pointer points to a type of the correct size, unless the 1396 // size is a VLA or Objective-C interface. 1397 llvm::Value *Address = 0; 1398 if (const VariableArrayType *VAT = 1399 getContext().getAsVariableArrayType(E->getType())) { 1400 llvm::Value *VLASize = GetVLASize(VAT); 1401 1402 Idx = Builder.CreateMul(Idx, VLASize); 1403 1404 QualType BaseType = getContext().getBaseElementType(VAT); 1405 1406 CharUnits BaseTypeSize = getContext().getTypeSizeInChars(BaseType); 1407 Idx = Builder.CreateUDiv(Idx, 1408 llvm::ConstantInt::get(Idx->getType(), 1409 BaseTypeSize.getQuantity())); 1410 1411 // The base must be a pointer, which is not an aggregate. Emit it. 1412 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1413 1414 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1415 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1416 // Indexing over an interface, as in "NSString *P; P[4];" 1417 llvm::Value *InterfaceSize = 1418 llvm::ConstantInt::get(Idx->getType(), 1419 getContext().getTypeSizeInChars(OIT).getQuantity()); 1420 1421 Idx = Builder.CreateMul(Idx, InterfaceSize); 1422 1423 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 1424 1425 // The base must be a pointer, which is not an aggregate. Emit it. 1426 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1427 Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy), 1428 Idx, "arrayidx"); 1429 Address = Builder.CreateBitCast(Address, Base->getType()); 1430 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1431 // If this is A[i] where A is an array, the frontend will have decayed the 1432 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1433 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1434 // "gep x, i" here. Emit one "gep A, 0, i". 1435 assert(Array->getType()->isArrayType() && 1436 "Array to pointer decay must have array source type!"); 1437 llvm::Value *ArrayPtr = EmitLValue(Array).getAddress(); 1438 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1439 llvm::Value *Args[] = { Zero, Idx }; 1440 1441 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1442 } else { 1443 // The base must be a pointer, which is not an aggregate. Emit it. 1444 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1445 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1446 } 1447 1448 QualType T = E->getBase()->getType()->getPointeeType(); 1449 assert(!T.isNull() && 1450 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1451 1452 LValue LV = MakeAddrLValue(Address, T); 1453 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1454 1455 if (getContext().getLangOptions().ObjC1 && 1456 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { 1457 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1458 setObjCGCLValueClass(getContext(), E, LV); 1459 } 1460 return LV; 1461 } 1462 1463 static 1464 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1465 llvm::SmallVector<unsigned, 4> &Elts) { 1466 llvm::SmallVector<llvm::Constant*, 4> CElts; 1467 1468 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 1469 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1470 CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i])); 1471 1472 return llvm::ConstantVector::get(&CElts[0], CElts.size()); 1473 } 1474 1475 LValue CodeGenFunction:: 1476 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1477 // Emit the base vector as an l-value. 1478 LValue Base; 1479 1480 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1481 if (E->isArrow()) { 1482 // If it is a pointer to a vector, emit the address and form an lvalue with 1483 // it. 1484 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1485 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1486 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1487 Base.getQuals().removeObjCGCAttr(); 1488 } else if (E->getBase()->isLvalue(getContext()) == Expr::LV_Valid) { 1489 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1490 // emit the base as an lvalue. 1491 assert(E->getBase()->getType()->isVectorType()); 1492 Base = EmitLValue(E->getBase()); 1493 } else { 1494 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1495 assert(E->getBase()->getType()->getAs<VectorType>() && 1496 "Result must be a vector"); 1497 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1498 1499 // Store the vector to memory (because LValue wants an address). 1500 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1501 Builder.CreateStore(Vec, VecMem); 1502 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1503 } 1504 1505 // Encode the element access list into a vector of unsigned indices. 1506 llvm::SmallVector<unsigned, 4> Indices; 1507 E->getEncodedElementAccess(Indices); 1508 1509 if (Base.isSimple()) { 1510 llvm::Constant *CV = GenerateConstantVector(VMContext, Indices); 1511 return LValue::MakeExtVectorElt(Base.getAddress(), CV, 1512 Base.getVRQualifiers()); 1513 } 1514 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1515 1516 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1517 llvm::SmallVector<llvm::Constant *, 4> CElts; 1518 1519 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1520 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1521 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); 1522 else 1523 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i]))); 1524 } 1525 llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size()); 1526 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, 1527 Base.getVRQualifiers()); 1528 } 1529 1530 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1531 bool isNonGC = false; 1532 Expr *BaseExpr = E->getBase(); 1533 llvm::Value *BaseValue = NULL; 1534 Qualifiers BaseQuals; 1535 1536 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1537 if (E->isArrow()) { 1538 BaseValue = EmitScalarExpr(BaseExpr); 1539 const PointerType *PTy = 1540 BaseExpr->getType()->getAs<PointerType>(); 1541 BaseQuals = PTy->getPointeeType().getQualifiers(); 1542 } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) || 1543 isa<ObjCImplicitSetterGetterRefExpr>( 1544 BaseExpr->IgnoreParens())) { 1545 RValue RV = EmitObjCPropertyGet(BaseExpr); 1546 BaseValue = RV.getAggregateAddr(); 1547 BaseQuals = BaseExpr->getType().getQualifiers(); 1548 } else { 1549 LValue BaseLV = EmitLValue(BaseExpr); 1550 if (BaseLV.isNonGC()) 1551 isNonGC = true; 1552 // FIXME: this isn't right for bitfields. 1553 BaseValue = BaseLV.getAddress(); 1554 QualType BaseTy = BaseExpr->getType(); 1555 BaseQuals = BaseTy.getQualifiers(); 1556 } 1557 1558 NamedDecl *ND = E->getMemberDecl(); 1559 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1560 LValue LV = EmitLValueForField(BaseValue, Field, 1561 BaseQuals.getCVRQualifiers()); 1562 LV.setNonGC(isNonGC); 1563 setObjCGCLValueClass(getContext(), E, LV); 1564 return LV; 1565 } 1566 1567 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1568 return EmitGlobalVarDeclLValue(*this, E, VD); 1569 1570 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1571 return EmitFunctionDeclLValue(*this, E, FD); 1572 1573 assert(false && "Unhandled member declaration!"); 1574 return LValue(); 1575 } 1576 1577 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue, 1578 const FieldDecl* Field, 1579 unsigned CVRQualifiers) { 1580 const CGRecordLayout &RL = 1581 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1582 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1583 return LValue::MakeBitfield(BaseValue, Info, 1584 Field->getType().getCVRQualifiers()|CVRQualifiers); 1585 } 1586 1587 /// EmitLValueForAnonRecordField - Given that the field is a member of 1588 /// an anonymous struct or union buried inside a record, and given 1589 /// that the base value is a pointer to the enclosing record, derive 1590 /// an lvalue for the ultimate field. 1591 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1592 const FieldDecl *Field, 1593 unsigned CVRQualifiers) { 1594 llvm::SmallVector<const FieldDecl *, 8> Path; 1595 Path.push_back(Field); 1596 1597 while (Field->getParent()->isAnonymousStructOrUnion()) { 1598 const ValueDecl *VD = Field->getParent()->getAnonymousStructOrUnionObject(); 1599 if (!isa<FieldDecl>(VD)) break; 1600 Field = cast<FieldDecl>(VD); 1601 Path.push_back(Field); 1602 } 1603 1604 llvm::SmallVectorImpl<const FieldDecl*>::reverse_iterator 1605 I = Path.rbegin(), E = Path.rend(); 1606 while (true) { 1607 LValue LV = EmitLValueForField(BaseValue, *I, CVRQualifiers); 1608 if (++I == E) return LV; 1609 1610 assert(LV.isSimple()); 1611 BaseValue = LV.getAddress(); 1612 CVRQualifiers |= LV.getVRQualifiers(); 1613 } 1614 } 1615 1616 LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue, 1617 const FieldDecl* Field, 1618 unsigned CVRQualifiers) { 1619 if (Field->isBitField()) 1620 return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers); 1621 1622 const CGRecordLayout &RL = 1623 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1624 unsigned idx = RL.getLLVMFieldNo(Field); 1625 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1626 1627 // Match union field type. 1628 if (Field->getParent()->isUnion()) { 1629 const llvm::Type *FieldTy = 1630 CGM.getTypes().ConvertTypeForMem(Field->getType()); 1631 const llvm::PointerType * BaseTy = 1632 cast<llvm::PointerType>(BaseValue->getType()); 1633 unsigned AS = BaseTy->getAddressSpace(); 1634 V = Builder.CreateBitCast(V, 1635 llvm::PointerType::get(FieldTy, AS), 1636 "tmp"); 1637 } 1638 if (Field->getType()->isReferenceType()) 1639 V = Builder.CreateLoad(V, "tmp"); 1640 1641 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); 1642 LValue LV = MakeAddrLValue(V, Field->getType(), Alignment); 1643 LV.getQuals().addCVRQualifiers(CVRQualifiers); 1644 1645 // __weak attribute on a field is ignored. 1646 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1647 LV.getQuals().removeObjCGCAttr(); 1648 1649 return LV; 1650 } 1651 1652 LValue 1653 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value* BaseValue, 1654 const FieldDecl* Field, 1655 unsigned CVRQualifiers) { 1656 QualType FieldType = Field->getType(); 1657 1658 if (!FieldType->isReferenceType()) 1659 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1660 1661 const CGRecordLayout &RL = 1662 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1663 unsigned idx = RL.getLLVMFieldNo(Field); 1664 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1665 1666 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1667 1668 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); 1669 return MakeAddrLValue(V, FieldType, Alignment); 1670 } 1671 1672 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){ 1673 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1674 const Expr* InitExpr = E->getInitializer(); 1675 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1676 1677 EmitAnyExprToMem(InitExpr, DeclPtr, /*Volatile*/ false); 1678 1679 return Result; 1680 } 1681 1682 LValue 1683 CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator* E) { 1684 if (E->isLvalue(getContext()) == Expr::LV_Valid) { 1685 if (int Cond = ConstantFoldsToSimpleInteger(E->getCond())) { 1686 Expr *Live = Cond == 1 ? E->getLHS() : E->getRHS(); 1687 if (Live) 1688 return EmitLValue(Live); 1689 } 1690 1691 if (!E->getLHS()) 1692 return EmitUnsupportedLValue(E, "conditional operator with missing LHS"); 1693 1694 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1695 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1696 llvm::BasicBlock *ContBlock = createBasicBlock("cond.end"); 1697 1698 EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 1699 1700 // Any temporaries created here are conditional. 1701 BeginConditionalBranch(); 1702 EmitBlock(LHSBlock); 1703 LValue LHS = EmitLValue(E->getLHS()); 1704 EndConditionalBranch(); 1705 1706 if (!LHS.isSimple()) 1707 return EmitUnsupportedLValue(E, "conditional operator"); 1708 1709 // FIXME: We shouldn't need an alloca for this. 1710 llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(),"condtmp"); 1711 Builder.CreateStore(LHS.getAddress(), Temp); 1712 EmitBranch(ContBlock); 1713 1714 // Any temporaries created here are conditional. 1715 BeginConditionalBranch(); 1716 EmitBlock(RHSBlock); 1717 LValue RHS = EmitLValue(E->getRHS()); 1718 EndConditionalBranch(); 1719 if (!RHS.isSimple()) 1720 return EmitUnsupportedLValue(E, "conditional operator"); 1721 1722 Builder.CreateStore(RHS.getAddress(), Temp); 1723 EmitBranch(ContBlock); 1724 1725 EmitBlock(ContBlock); 1726 1727 Temp = Builder.CreateLoad(Temp, "lv"); 1728 return MakeAddrLValue(Temp, E->getType()); 1729 } 1730 1731 // ?: here should be an aggregate. 1732 assert((hasAggregateLLVMType(E->getType()) && 1733 !E->getType()->isAnyComplexType()) && 1734 "Unexpected conditional operator!"); 1735 1736 return EmitAggExprToLValue(E); 1737 } 1738 1739 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 1740 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 1741 /// otherwise if a cast is needed by the code generator in an lvalue context, 1742 /// then it must mean that we need the address of an aggregate in order to 1743 /// access one of its fields. This can happen for all the reasons that casts 1744 /// are permitted with aggregate result, including noop aggregate casts, and 1745 /// cast from scalar to union. 1746 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 1747 switch (E->getCastKind()) { 1748 case CK_ToVoid: 1749 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 1750 1751 case CK_NoOp: 1752 if (E->getSubExpr()->Classify(getContext()).getKind() 1753 != Expr::Classification::CL_PRValue) { 1754 LValue LV = EmitLValue(E->getSubExpr()); 1755 if (LV.isPropertyRef() || LV.isKVCRef()) { 1756 QualType QT = E->getSubExpr()->getType(); 1757 RValue RV = 1758 LV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(LV, QT) 1759 : EmitLoadOfKVCRefLValue(LV, QT); 1760 assert(!RV.isScalar() && "EmitCastLValue-scalar cast of property ref"); 1761 llvm::Value *V = RV.getAggregateAddr(); 1762 return MakeAddrLValue(V, QT); 1763 } 1764 return LV; 1765 } 1766 // Fall through to synthesize a temporary. 1767 1768 case CK_Unknown: 1769 case CK_BitCast: 1770 case CK_ArrayToPointerDecay: 1771 case CK_FunctionToPointerDecay: 1772 case CK_NullToMemberPointer: 1773 case CK_IntegralToPointer: 1774 case CK_PointerToIntegral: 1775 case CK_VectorSplat: 1776 case CK_IntegralCast: 1777 case CK_IntegralToFloating: 1778 case CK_FloatingToIntegral: 1779 case CK_FloatingCast: 1780 case CK_DerivedToBaseMemberPointer: 1781 case CK_BaseToDerivedMemberPointer: 1782 case CK_MemberPointerToBoolean: 1783 case CK_AnyPointerToBlockPointerCast: { 1784 // These casts only produce lvalues when we're binding a reference to a 1785 // temporary realized from a (converted) pure rvalue. Emit the expression 1786 // as a value, copy it into a temporary, and return an lvalue referring to 1787 // that temporary. 1788 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 1789 EmitAnyExprToMem(E, V, false, false); 1790 return MakeAddrLValue(V, E->getType()); 1791 } 1792 1793 case CK_Dynamic: { 1794 LValue LV = EmitLValue(E->getSubExpr()); 1795 llvm::Value *V = LV.getAddress(); 1796 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 1797 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 1798 } 1799 1800 case CK_ConstructorConversion: 1801 case CK_UserDefinedConversion: 1802 case CK_AnyPointerToObjCPointerCast: 1803 return EmitLValue(E->getSubExpr()); 1804 1805 case CK_UncheckedDerivedToBase: 1806 case CK_DerivedToBase: { 1807 const RecordType *DerivedClassTy = 1808 E->getSubExpr()->getType()->getAs<RecordType>(); 1809 CXXRecordDecl *DerivedClassDecl = 1810 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1811 1812 LValue LV = EmitLValue(E->getSubExpr()); 1813 llvm::Value *This; 1814 if (LV.isPropertyRef() || LV.isKVCRef()) { 1815 QualType QT = E->getSubExpr()->getType(); 1816 RValue RV = 1817 LV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(LV, QT) 1818 : EmitLoadOfKVCRefLValue(LV, QT); 1819 assert (!RV.isScalar() && "EmitCastLValue"); 1820 This = RV.getAggregateAddr(); 1821 } 1822 else 1823 This = LV.getAddress(); 1824 1825 // Perform the derived-to-base conversion 1826 llvm::Value *Base = 1827 GetAddressOfBaseClass(This, DerivedClassDecl, 1828 E->path_begin(), E->path_end(), 1829 /*NullCheckValue=*/false); 1830 1831 return MakeAddrLValue(Base, E->getType()); 1832 } 1833 case CK_ToUnion: 1834 return EmitAggExprToLValue(E); 1835 case CK_BaseToDerived: { 1836 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 1837 CXXRecordDecl *DerivedClassDecl = 1838 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1839 1840 LValue LV = EmitLValue(E->getSubExpr()); 1841 1842 // Perform the base-to-derived conversion 1843 llvm::Value *Derived = 1844 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 1845 E->path_begin(), E->path_end(), 1846 /*NullCheckValue=*/false); 1847 1848 return MakeAddrLValue(Derived, E->getType()); 1849 } 1850 case CK_LValueBitCast: { 1851 // This must be a reinterpret_cast (or c-style equivalent). 1852 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 1853 1854 LValue LV = EmitLValue(E->getSubExpr()); 1855 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 1856 ConvertType(CE->getTypeAsWritten())); 1857 return MakeAddrLValue(V, E->getType()); 1858 } 1859 case CK_ObjCObjectLValueCast: { 1860 LValue LV = EmitLValue(E->getSubExpr()); 1861 QualType ToType = getContext().getLValueReferenceType(E->getType()); 1862 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 1863 ConvertType(ToType)); 1864 return MakeAddrLValue(V, E->getType()); 1865 } 1866 } 1867 1868 llvm_unreachable("Unhandled lvalue cast kind?"); 1869 } 1870 1871 LValue CodeGenFunction::EmitNullInitializationLValue( 1872 const CXXScalarValueInitExpr *E) { 1873 QualType Ty = E->getType(); 1874 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 1875 EmitNullInitialization(LV.getAddress(), Ty); 1876 return LV; 1877 } 1878 1879 //===--------------------------------------------------------------------===// 1880 // Expression Emission 1881 //===--------------------------------------------------------------------===// 1882 1883 1884 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 1885 ReturnValueSlot ReturnValue) { 1886 // Builtins never have block type. 1887 if (E->getCallee()->getType()->isBlockPointerType()) 1888 return EmitBlockCallExpr(E, ReturnValue); 1889 1890 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 1891 return EmitCXXMemberCallExpr(CE, ReturnValue); 1892 1893 const Decl *TargetDecl = 0; 1894 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) { 1895 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 1896 TargetDecl = DRE->getDecl(); 1897 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl)) 1898 if (unsigned builtinID = FD->getBuiltinID()) 1899 return EmitBuiltinExpr(FD, builtinID, E); 1900 } 1901 } 1902 1903 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 1904 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 1905 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 1906 1907 if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 1908 // C++ [expr.pseudo]p1: 1909 // The result shall only be used as the operand for the function call 1910 // operator (), and the result of such a call has type void. The only 1911 // effect is the evaluation of the postfix-expression before the dot or 1912 // arrow. 1913 EmitScalarExpr(E->getCallee()); 1914 return RValue::get(0); 1915 } 1916 1917 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 1918 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 1919 E->arg_begin(), E->arg_end(), TargetDecl); 1920 } 1921 1922 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 1923 // Comma expressions just emit their LHS then their RHS as an l-value. 1924 if (E->getOpcode() == BO_Comma) { 1925 EmitAnyExpr(E->getLHS()); 1926 EnsureInsertPoint(); 1927 return EmitLValue(E->getRHS()); 1928 } 1929 1930 if (E->getOpcode() == BO_PtrMemD || 1931 E->getOpcode() == BO_PtrMemI) 1932 return EmitPointerToDataMemberBinaryExpr(E); 1933 1934 // Can only get l-value for binary operator expressions which are a 1935 // simple assignment of aggregate type. 1936 if (E->getOpcode() != BO_Assign) 1937 return EmitUnsupportedLValue(E, "binary l-value expression"); 1938 1939 if (!hasAggregateLLVMType(E->getType())) { 1940 // Emit the LHS as an l-value. 1941 LValue LV = EmitLValue(E->getLHS()); 1942 // Store the value through the l-value. 1943 EmitStoreThroughLValue(EmitAnyExpr(E->getRHS()), LV, E->getType()); 1944 return LV; 1945 } 1946 1947 return EmitAggExprToLValue(E); 1948 } 1949 1950 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 1951 RValue RV = EmitCallExpr(E); 1952 1953 if (!RV.isScalar()) 1954 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 1955 1956 assert(E->getCallReturnType()->isReferenceType() && 1957 "Can't have a scalar return unless the return type is a " 1958 "reference type!"); 1959 1960 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 1961 } 1962 1963 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 1964 // FIXME: This shouldn't require another copy. 1965 return EmitAggExprToLValue(E); 1966 } 1967 1968 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 1969 llvm::Value *Temp = CreateMemTemp(E->getType(), "tmp"); 1970 EmitCXXConstructExpr(Temp, E); 1971 return MakeAddrLValue(Temp, E->getType()); 1972 } 1973 1974 LValue 1975 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 1976 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 1977 } 1978 1979 LValue 1980 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 1981 LValue LV = EmitLValue(E->getSubExpr()); 1982 EmitCXXTemporary(E->getTemporary(), LV.getAddress()); 1983 return LV; 1984 } 1985 1986 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 1987 RValue RV = EmitObjCMessageExpr(E); 1988 1989 if (!RV.isScalar()) 1990 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 1991 1992 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 1993 "Can't have a scalar return unless the return type is a " 1994 "reference type!"); 1995 1996 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 1997 } 1998 1999 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2000 llvm::Value *V = 2001 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2002 return MakeAddrLValue(V, E->getType()); 2003 } 2004 2005 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2006 const ObjCIvarDecl *Ivar) { 2007 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2008 } 2009 2010 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2011 llvm::Value *BaseValue, 2012 const ObjCIvarDecl *Ivar, 2013 unsigned CVRQualifiers) { 2014 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2015 Ivar, CVRQualifiers); 2016 } 2017 2018 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2019 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2020 llvm::Value *BaseValue = 0; 2021 const Expr *BaseExpr = E->getBase(); 2022 Qualifiers BaseQuals; 2023 QualType ObjectTy; 2024 if (E->isArrow()) { 2025 BaseValue = EmitScalarExpr(BaseExpr); 2026 ObjectTy = BaseExpr->getType()->getPointeeType(); 2027 BaseQuals = ObjectTy.getQualifiers(); 2028 } else { 2029 LValue BaseLV = EmitLValue(BaseExpr); 2030 // FIXME: this isn't right for bitfields. 2031 BaseValue = BaseLV.getAddress(); 2032 ObjectTy = BaseExpr->getType(); 2033 BaseQuals = ObjectTy.getQualifiers(); 2034 } 2035 2036 LValue LV = 2037 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2038 BaseQuals.getCVRQualifiers()); 2039 setObjCGCLValueClass(getContext(), E, LV); 2040 return LV; 2041 } 2042 2043 LValue 2044 CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) { 2045 // This is a special l-value that just issues sends when we load or store 2046 // through it. 2047 return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers()); 2048 } 2049 2050 LValue CodeGenFunction::EmitObjCKVCRefLValue( 2051 const ObjCImplicitSetterGetterRefExpr *E) { 2052 // This is a special l-value that just issues sends when we load or store 2053 // through it. 2054 return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers()); 2055 } 2056 2057 LValue CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) { 2058 return EmitUnsupportedLValue(E, "use of super"); 2059 } 2060 2061 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2062 // Can only get l-value for message expression returning aggregate type 2063 RValue RV = EmitAnyExprToTemp(E); 2064 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2065 } 2066 2067 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2068 ReturnValueSlot ReturnValue, 2069 CallExpr::const_arg_iterator ArgBeg, 2070 CallExpr::const_arg_iterator ArgEnd, 2071 const Decl *TargetDecl) { 2072 // Get the actual function type. The callee type will always be a pointer to 2073 // function type or a block pointer type. 2074 assert(CalleeType->isFunctionPointerType() && 2075 "Call must have function pointer type!"); 2076 2077 CalleeType = getContext().getCanonicalType(CalleeType); 2078 2079 const FunctionType *FnType 2080 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2081 QualType ResultType = FnType->getResultType(); 2082 2083 CallArgList Args; 2084 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2085 2086 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType), 2087 Callee, ReturnValue, Args, TargetDecl); 2088 } 2089 2090 LValue CodeGenFunction:: 2091 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2092 llvm::Value *BaseV; 2093 if (E->getOpcode() == BO_PtrMemI) 2094 BaseV = EmitScalarExpr(E->getLHS()); 2095 else 2096 BaseV = EmitLValue(E->getLHS()).getAddress(); 2097 2098 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2099 2100 const MemberPointerType *MPT 2101 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2102 2103 llvm::Value *AddV = 2104 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2105 2106 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2107 } 2108 2109