1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name, 65 llvm::Value *ArraySize, 66 bool CastToDefaultAddrSpace) { 67 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 68 Alloca->setAlignment(Align.getQuantity()); 69 llvm::Value *V = Alloca; 70 // Alloca always returns a pointer in alloca address space, which may 71 // be different from the type defined by the language. For example, 72 // in C++ the auto variables are in the default address space. Therefore 73 // cast alloca to the default address space when necessary. 74 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 75 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 76 auto CurIP = Builder.saveIP(); 77 Builder.SetInsertPoint(AllocaInsertPt); 78 V = getTargetHooks().performAddrSpaceCast( 79 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 80 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 81 Builder.restoreIP(CurIP); 82 } 83 84 return Address(V, Align); 85 } 86 87 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 88 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 89 /// insertion point of the builder. 90 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 91 const Twine &Name, 92 llvm::Value *ArraySize) { 93 if (ArraySize) 94 return Builder.CreateAlloca(Ty, ArraySize, Name); 95 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 96 ArraySize, Name, AllocaInsertPt); 97 } 98 99 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 100 /// default alignment of the corresponding LLVM type, which is *not* 101 /// guaranteed to be related in any way to the expected alignment of 102 /// an AST type that might have been lowered to Ty. 103 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 104 const Twine &Name) { 105 CharUnits Align = 106 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 107 return CreateTempAlloca(Ty, Align, Name); 108 } 109 110 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 111 assert(isa<llvm::AllocaInst>(Var.getPointer())); 112 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 113 Store->setAlignment(Var.getAlignment().getQuantity()); 114 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 115 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 116 } 117 118 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 119 CharUnits Align = getContext().getTypeAlignInChars(Ty); 120 return CreateTempAlloca(ConvertType(Ty), Align, Name); 121 } 122 123 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 124 bool CastToDefaultAddrSpace) { 125 // FIXME: Should we prefer the preferred type alignment here? 126 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 127 CastToDefaultAddrSpace); 128 } 129 130 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 131 const Twine &Name, 132 bool CastToDefaultAddrSpace) { 133 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 134 CastToDefaultAddrSpace); 135 } 136 137 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 138 /// expression and compare the result against zero, returning an Int1Ty value. 139 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 140 PGO.setCurrentStmt(E); 141 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 142 llvm::Value *MemPtr = EmitScalarExpr(E); 143 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 144 } 145 146 QualType BoolTy = getContext().BoolTy; 147 SourceLocation Loc = E->getExprLoc(); 148 if (!E->getType()->isAnyComplexType()) 149 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 150 151 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 152 Loc); 153 } 154 155 /// EmitIgnoredExpr - Emit code to compute the specified expression, 156 /// ignoring the result. 157 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 158 if (E->isRValue()) 159 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 160 161 // Just emit it as an l-value and drop the result. 162 EmitLValue(E); 163 } 164 165 /// EmitAnyExpr - Emit code to compute the specified expression which 166 /// can have any type. The result is returned as an RValue struct. 167 /// If this is an aggregate expression, AggSlot indicates where the 168 /// result should be returned. 169 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 170 AggValueSlot aggSlot, 171 bool ignoreResult) { 172 switch (getEvaluationKind(E->getType())) { 173 case TEK_Scalar: 174 return RValue::get(EmitScalarExpr(E, ignoreResult)); 175 case TEK_Complex: 176 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 177 case TEK_Aggregate: 178 if (!ignoreResult && aggSlot.isIgnored()) 179 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 180 EmitAggExpr(E, aggSlot); 181 return aggSlot.asRValue(); 182 } 183 llvm_unreachable("bad evaluation kind"); 184 } 185 186 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 187 /// always be accessible even if no aggregate location is provided. 188 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 189 AggValueSlot AggSlot = AggValueSlot::ignored(); 190 191 if (hasAggregateEvaluationKind(E->getType())) 192 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 193 return EmitAnyExpr(E, AggSlot); 194 } 195 196 /// EmitAnyExprToMem - Evaluate an expression into a given memory 197 /// location. 198 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 199 Address Location, 200 Qualifiers Quals, 201 bool IsInit) { 202 // FIXME: This function should take an LValue as an argument. 203 switch (getEvaluationKind(E->getType())) { 204 case TEK_Complex: 205 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 206 /*isInit*/ false); 207 return; 208 209 case TEK_Aggregate: { 210 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 211 AggValueSlot::IsDestructed_t(IsInit), 212 AggValueSlot::DoesNotNeedGCBarriers, 213 AggValueSlot::IsAliased_t(!IsInit))); 214 return; 215 } 216 217 case TEK_Scalar: { 218 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 219 LValue LV = MakeAddrLValue(Location, E->getType()); 220 EmitStoreThroughLValue(RV, LV); 221 return; 222 } 223 } 224 llvm_unreachable("bad evaluation kind"); 225 } 226 227 static void 228 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 229 const Expr *E, Address ReferenceTemporary) { 230 // Objective-C++ ARC: 231 // If we are binding a reference to a temporary that has ownership, we 232 // need to perform retain/release operations on the temporary. 233 // 234 // FIXME: This should be looking at E, not M. 235 if (auto Lifetime = M->getType().getObjCLifetime()) { 236 switch (Lifetime) { 237 case Qualifiers::OCL_None: 238 case Qualifiers::OCL_ExplicitNone: 239 // Carry on to normal cleanup handling. 240 break; 241 242 case Qualifiers::OCL_Autoreleasing: 243 // Nothing to do; cleaned up by an autorelease pool. 244 return; 245 246 case Qualifiers::OCL_Strong: 247 case Qualifiers::OCL_Weak: 248 switch (StorageDuration Duration = M->getStorageDuration()) { 249 case SD_Static: 250 // Note: we intentionally do not register a cleanup to release 251 // the object on program termination. 252 return; 253 254 case SD_Thread: 255 // FIXME: We should probably register a cleanup in this case. 256 return; 257 258 case SD_Automatic: 259 case SD_FullExpression: 260 CodeGenFunction::Destroyer *Destroy; 261 CleanupKind CleanupKind; 262 if (Lifetime == Qualifiers::OCL_Strong) { 263 const ValueDecl *VD = M->getExtendingDecl(); 264 bool Precise = 265 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 266 CleanupKind = CGF.getARCCleanupKind(); 267 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 268 : &CodeGenFunction::destroyARCStrongImprecise; 269 } else { 270 // __weak objects always get EH cleanups; otherwise, exceptions 271 // could cause really nasty crashes instead of mere leaks. 272 CleanupKind = NormalAndEHCleanup; 273 Destroy = &CodeGenFunction::destroyARCWeak; 274 } 275 if (Duration == SD_FullExpression) 276 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 277 M->getType(), *Destroy, 278 CleanupKind & EHCleanup); 279 else 280 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 281 M->getType(), 282 *Destroy, CleanupKind & EHCleanup); 283 return; 284 285 case SD_Dynamic: 286 llvm_unreachable("temporary cannot have dynamic storage duration"); 287 } 288 llvm_unreachable("unknown storage duration"); 289 } 290 } 291 292 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 293 if (const RecordType *RT = 294 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 295 // Get the destructor for the reference temporary. 296 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 297 if (!ClassDecl->hasTrivialDestructor()) 298 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 299 } 300 301 if (!ReferenceTemporaryDtor) 302 return; 303 304 // Call the destructor for the temporary. 305 switch (M->getStorageDuration()) { 306 case SD_Static: 307 case SD_Thread: { 308 llvm::Constant *CleanupFn; 309 llvm::Constant *CleanupArg; 310 if (E->getType()->isArrayType()) { 311 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 312 ReferenceTemporary, E->getType(), 313 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 314 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 315 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 316 } else { 317 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 318 StructorType::Complete); 319 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 320 } 321 CGF.CGM.getCXXABI().registerGlobalDtor( 322 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 323 break; 324 } 325 326 case SD_FullExpression: 327 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 328 CodeGenFunction::destroyCXXObject, 329 CGF.getLangOpts().Exceptions); 330 break; 331 332 case SD_Automatic: 333 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 334 ReferenceTemporary, E->getType(), 335 CodeGenFunction::destroyCXXObject, 336 CGF.getLangOpts().Exceptions); 337 break; 338 339 case SD_Dynamic: 340 llvm_unreachable("temporary cannot have dynamic storage duration"); 341 } 342 } 343 344 static Address createReferenceTemporary(CodeGenFunction &CGF, 345 const MaterializeTemporaryExpr *M, 346 const Expr *Inner) { 347 auto &TCG = CGF.getTargetHooks(); 348 switch (M->getStorageDuration()) { 349 case SD_FullExpression: 350 case SD_Automatic: { 351 // If we have a constant temporary array or record try to promote it into a 352 // constant global under the same rules a normal constant would've been 353 // promoted. This is easier on the optimizer and generally emits fewer 354 // instructions. 355 QualType Ty = Inner->getType(); 356 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 357 (Ty->isArrayType() || Ty->isRecordType()) && 358 CGF.CGM.isTypeConstant(Ty, true)) 359 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 360 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 361 auto AS = AddrSpace.getValue(); 362 auto *GV = new llvm::GlobalVariable( 363 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 364 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 365 llvm::GlobalValue::NotThreadLocal, 366 CGF.getContext().getTargetAddressSpace(AS)); 367 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 368 GV->setAlignment(alignment.getQuantity()); 369 llvm::Constant *C = GV; 370 if (AS != LangAS::Default) 371 C = TCG.performAddrSpaceCast( 372 CGF.CGM, GV, AS, LangAS::Default, 373 GV->getValueType()->getPointerTo( 374 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 375 // FIXME: Should we put the new global into a COMDAT? 376 return Address(C, alignment); 377 } 378 } 379 return CGF.CreateMemTemp(Ty, "ref.tmp"); 380 } 381 case SD_Thread: 382 case SD_Static: 383 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 384 385 case SD_Dynamic: 386 llvm_unreachable("temporary can't have dynamic storage duration"); 387 } 388 llvm_unreachable("unknown storage duration"); 389 } 390 391 LValue CodeGenFunction:: 392 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 393 const Expr *E = M->GetTemporaryExpr(); 394 395 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 396 // as that will cause the lifetime adjustment to be lost for ARC 397 auto ownership = M->getType().getObjCLifetime(); 398 if (ownership != Qualifiers::OCL_None && 399 ownership != Qualifiers::OCL_ExplicitNone) { 400 Address Object = createReferenceTemporary(*this, M, E); 401 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 402 Object = Address(llvm::ConstantExpr::getBitCast(Var, 403 ConvertTypeForMem(E->getType()) 404 ->getPointerTo(Object.getAddressSpace())), 405 Object.getAlignment()); 406 407 // createReferenceTemporary will promote the temporary to a global with a 408 // constant initializer if it can. It can only do this to a value of 409 // ARC-manageable type if the value is global and therefore "immune" to 410 // ref-counting operations. Therefore we have no need to emit either a 411 // dynamic initialization or a cleanup and we can just return the address 412 // of the temporary. 413 if (Var->hasInitializer()) 414 return MakeAddrLValue(Object, M->getType(), 415 LValueBaseInfo(AlignmentSource::Decl, false)); 416 417 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 418 } 419 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 420 LValueBaseInfo(AlignmentSource::Decl, 421 false)); 422 423 switch (getEvaluationKind(E->getType())) { 424 default: llvm_unreachable("expected scalar or aggregate expression"); 425 case TEK_Scalar: 426 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 427 break; 428 case TEK_Aggregate: { 429 EmitAggExpr(E, AggValueSlot::forAddr(Object, 430 E->getType().getQualifiers(), 431 AggValueSlot::IsDestructed, 432 AggValueSlot::DoesNotNeedGCBarriers, 433 AggValueSlot::IsNotAliased)); 434 break; 435 } 436 } 437 438 pushTemporaryCleanup(*this, M, E, Object); 439 return RefTempDst; 440 } 441 442 SmallVector<const Expr *, 2> CommaLHSs; 443 SmallVector<SubobjectAdjustment, 2> Adjustments; 444 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 445 446 for (const auto &Ignored : CommaLHSs) 447 EmitIgnoredExpr(Ignored); 448 449 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 450 if (opaque->getType()->isRecordType()) { 451 assert(Adjustments.empty()); 452 return EmitOpaqueValueLValue(opaque); 453 } 454 } 455 456 // Create and initialize the reference temporary. 457 Address Object = createReferenceTemporary(*this, M, E); 458 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 459 Object.getPointer()->stripPointerCasts())) { 460 Object = Address(llvm::ConstantExpr::getBitCast( 461 cast<llvm::Constant>(Object.getPointer()), 462 ConvertTypeForMem(E->getType())->getPointerTo()), 463 Object.getAlignment()); 464 // If the temporary is a global and has a constant initializer or is a 465 // constant temporary that we promoted to a global, we may have already 466 // initialized it. 467 if (!Var->hasInitializer()) { 468 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 469 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 470 } 471 } else { 472 switch (M->getStorageDuration()) { 473 case SD_Automatic: 474 case SD_FullExpression: 475 if (auto *Size = EmitLifetimeStart( 476 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 477 Object.getPointer())) { 478 if (M->getStorageDuration() == SD_Automatic) 479 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 480 Object, Size); 481 else 482 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 483 Size); 484 } 485 break; 486 default: 487 break; 488 } 489 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 490 } 491 pushTemporaryCleanup(*this, M, E, Object); 492 493 // Perform derived-to-base casts and/or field accesses, to get from the 494 // temporary object we created (and, potentially, for which we extended 495 // the lifetime) to the subobject we're binding the reference to. 496 for (unsigned I = Adjustments.size(); I != 0; --I) { 497 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 498 switch (Adjustment.Kind) { 499 case SubobjectAdjustment::DerivedToBaseAdjustment: 500 Object = 501 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 502 Adjustment.DerivedToBase.BasePath->path_begin(), 503 Adjustment.DerivedToBase.BasePath->path_end(), 504 /*NullCheckValue=*/ false, E->getExprLoc()); 505 break; 506 507 case SubobjectAdjustment::FieldAdjustment: { 508 LValue LV = MakeAddrLValue(Object, E->getType(), 509 LValueBaseInfo(AlignmentSource::Decl, false)); 510 LV = EmitLValueForField(LV, Adjustment.Field); 511 assert(LV.isSimple() && 512 "materialized temporary field is not a simple lvalue"); 513 Object = LV.getAddress(); 514 break; 515 } 516 517 case SubobjectAdjustment::MemberPointerAdjustment: { 518 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 519 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 520 Adjustment.Ptr.MPT); 521 break; 522 } 523 } 524 } 525 526 return MakeAddrLValue(Object, M->getType(), 527 LValueBaseInfo(AlignmentSource::Decl, false)); 528 } 529 530 RValue 531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 532 // Emit the expression as an lvalue. 533 LValue LV = EmitLValue(E); 534 assert(LV.isSimple()); 535 llvm::Value *Value = LV.getPointer(); 536 537 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 538 // C++11 [dcl.ref]p5 (as amended by core issue 453): 539 // If a glvalue to which a reference is directly bound designates neither 540 // an existing object or function of an appropriate type nor a region of 541 // storage of suitable size and alignment to contain an object of the 542 // reference's type, the behavior is undefined. 543 QualType Ty = E->getType(); 544 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 545 } 546 547 return RValue::get(Value); 548 } 549 550 551 /// getAccessedFieldNo - Given an encoded value and a result number, return the 552 /// input field number being accessed. 553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 554 const llvm::Constant *Elts) { 555 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 556 ->getZExtValue(); 557 } 558 559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 561 llvm::Value *High) { 562 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 563 llvm::Value *K47 = Builder.getInt64(47); 564 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 565 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 566 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 567 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 568 return Builder.CreateMul(B1, KMul); 569 } 570 571 bool CodeGenFunction::sanitizePerformTypeCheck() const { 572 return SanOpts.has(SanitizerKind::Null) | 573 SanOpts.has(SanitizerKind::Alignment) | 574 SanOpts.has(SanitizerKind::ObjectSize) | 575 SanOpts.has(SanitizerKind::Vptr); 576 } 577 578 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 579 llvm::Value *Ptr, QualType Ty, 580 CharUnits Alignment, 581 SanitizerSet SkippedChecks) { 582 if (!sanitizePerformTypeCheck()) 583 return; 584 585 // Don't check pointers outside the default address space. The null check 586 // isn't correct, the object-size check isn't supported by LLVM, and we can't 587 // communicate the addresses to the runtime handler for the vptr check. 588 if (Ptr->getType()->getPointerAddressSpace()) 589 return; 590 591 // Don't check pointers to volatile data. The behavior here is implementation- 592 // defined. 593 if (Ty.isVolatileQualified()) 594 return; 595 596 SanitizerScope SanScope(this); 597 598 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 599 llvm::BasicBlock *Done = nullptr; 600 601 // Quickly determine whether we have a pointer to an alloca. It's possible 602 // to skip null checks, and some alignment checks, for these pointers. This 603 // can reduce compile-time significantly. 604 auto PtrToAlloca = 605 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 606 607 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 608 TCK == TCK_UpcastToVirtualBase; 609 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 610 !SkippedChecks.has(SanitizerKind::Null) && !PtrToAlloca) { 611 // The glvalue must not be an empty glvalue. 612 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 613 614 // The IR builder can constant-fold the null check if the pointer points to 615 // a constant. 616 bool PtrIsNonNull = 617 IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext()); 618 619 // Skip the null check if the pointer is known to be non-null. 620 if (!PtrIsNonNull) { 621 if (AllowNullPointers) { 622 // When performing pointer casts, it's OK if the value is null. 623 // Skip the remaining checks in that case. 624 Done = createBasicBlock("null"); 625 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 626 Builder.CreateCondBr(IsNonNull, Rest, Done); 627 EmitBlock(Rest); 628 } else { 629 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 630 } 631 } 632 } 633 634 if (SanOpts.has(SanitizerKind::ObjectSize) && 635 !SkippedChecks.has(SanitizerKind::ObjectSize) && 636 !Ty->isIncompleteType()) { 637 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 638 639 // The glvalue must refer to a large enough storage region. 640 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 641 // to check this. 642 // FIXME: Get object address space 643 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 644 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 645 llvm::Value *Min = Builder.getFalse(); 646 llvm::Value *NullIsUnknown = Builder.getFalse(); 647 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 648 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 649 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 650 llvm::ConstantInt::get(IntPtrTy, Size)); 651 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 652 } 653 654 uint64_t AlignVal = 0; 655 656 if (SanOpts.has(SanitizerKind::Alignment) && 657 !SkippedChecks.has(SanitizerKind::Alignment)) { 658 AlignVal = Alignment.getQuantity(); 659 if (!Ty->isIncompleteType() && !AlignVal) 660 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 661 662 // The glvalue must be suitably aligned. 663 if (AlignVal > 1 && 664 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 665 llvm::Value *Align = 666 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 667 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 668 llvm::Value *Aligned = 669 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 670 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 671 } 672 } 673 674 if (Checks.size() > 0) { 675 // Make sure we're not losing information. Alignment needs to be a power of 676 // 2 677 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 678 llvm::Constant *StaticData[] = { 679 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 680 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 681 llvm::ConstantInt::get(Int8Ty, TCK)}; 682 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 683 } 684 685 // If possible, check that the vptr indicates that there is a subobject of 686 // type Ty at offset zero within this object. 687 // 688 // C++11 [basic.life]p5,6: 689 // [For storage which does not refer to an object within its lifetime] 690 // The program has undefined behavior if: 691 // -- the [pointer or glvalue] is used to access a non-static data member 692 // or call a non-static member function 693 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 694 if (SanOpts.has(SanitizerKind::Vptr) && 695 !SkippedChecks.has(SanitizerKind::Vptr) && 696 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 697 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 698 TCK == TCK_UpcastToVirtualBase) && 699 RD && RD->hasDefinition() && RD->isDynamicClass()) { 700 // Compute a hash of the mangled name of the type. 701 // 702 // FIXME: This is not guaranteed to be deterministic! Move to a 703 // fingerprinting mechanism once LLVM provides one. For the time 704 // being the implementation happens to be deterministic. 705 SmallString<64> MangledName; 706 llvm::raw_svector_ostream Out(MangledName); 707 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 708 Out); 709 710 // Blacklist based on the mangled type. 711 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 712 Out.str())) { 713 llvm::hash_code TypeHash = hash_value(Out.str()); 714 715 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 716 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 717 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 718 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 719 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 720 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 721 722 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 723 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 724 725 // Look the hash up in our cache. 726 const int CacheSize = 128; 727 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 728 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 729 "__ubsan_vptr_type_cache"); 730 llvm::Value *Slot = Builder.CreateAnd(Hash, 731 llvm::ConstantInt::get(IntPtrTy, 732 CacheSize-1)); 733 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 734 llvm::Value *CacheVal = 735 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 736 getPointerAlign()); 737 738 // If the hash isn't in the cache, call a runtime handler to perform the 739 // hard work of checking whether the vptr is for an object of the right 740 // type. This will either fill in the cache and return, or produce a 741 // diagnostic. 742 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 743 llvm::Constant *StaticData[] = { 744 EmitCheckSourceLocation(Loc), 745 EmitCheckTypeDescriptor(Ty), 746 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 747 llvm::ConstantInt::get(Int8Ty, TCK) 748 }; 749 llvm::Value *DynamicData[] = { Ptr, Hash }; 750 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 751 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 752 DynamicData); 753 } 754 } 755 756 if (Done) { 757 Builder.CreateBr(Done); 758 EmitBlock(Done); 759 } 760 } 761 762 /// Determine whether this expression refers to a flexible array member in a 763 /// struct. We disable array bounds checks for such members. 764 static bool isFlexibleArrayMemberExpr(const Expr *E) { 765 // For compatibility with existing code, we treat arrays of length 0 or 766 // 1 as flexible array members. 767 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 768 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 769 if (CAT->getSize().ugt(1)) 770 return false; 771 } else if (!isa<IncompleteArrayType>(AT)) 772 return false; 773 774 E = E->IgnoreParens(); 775 776 // A flexible array member must be the last member in the class. 777 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 778 // FIXME: If the base type of the member expr is not FD->getParent(), 779 // this should not be treated as a flexible array member access. 780 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 781 RecordDecl::field_iterator FI( 782 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 783 return ++FI == FD->getParent()->field_end(); 784 } 785 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 786 return IRE->getDecl()->getNextIvar() == nullptr; 787 } 788 789 return false; 790 } 791 792 /// If Base is known to point to the start of an array, return the length of 793 /// that array. Return 0 if the length cannot be determined. 794 static llvm::Value *getArrayIndexingBound( 795 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 796 // For the vector indexing extension, the bound is the number of elements. 797 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 798 IndexedType = Base->getType(); 799 return CGF.Builder.getInt32(VT->getNumElements()); 800 } 801 802 Base = Base->IgnoreParens(); 803 804 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 805 if (CE->getCastKind() == CK_ArrayToPointerDecay && 806 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 807 IndexedType = CE->getSubExpr()->getType(); 808 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 809 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 810 return CGF.Builder.getInt(CAT->getSize()); 811 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 812 return CGF.getVLASize(VAT).first; 813 } 814 } 815 816 return nullptr; 817 } 818 819 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 820 llvm::Value *Index, QualType IndexType, 821 bool Accessed) { 822 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 823 "should not be called unless adding bounds checks"); 824 SanitizerScope SanScope(this); 825 826 QualType IndexedType; 827 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 828 if (!Bound) 829 return; 830 831 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 832 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 833 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 834 835 llvm::Constant *StaticData[] = { 836 EmitCheckSourceLocation(E->getExprLoc()), 837 EmitCheckTypeDescriptor(IndexedType), 838 EmitCheckTypeDescriptor(IndexType) 839 }; 840 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 841 : Builder.CreateICmpULE(IndexVal, BoundVal); 842 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 843 SanitizerHandler::OutOfBounds, StaticData, Index); 844 } 845 846 847 CodeGenFunction::ComplexPairTy CodeGenFunction:: 848 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 849 bool isInc, bool isPre) { 850 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 851 852 llvm::Value *NextVal; 853 if (isa<llvm::IntegerType>(InVal.first->getType())) { 854 uint64_t AmountVal = isInc ? 1 : -1; 855 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 856 857 // Add the inc/dec to the real part. 858 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 859 } else { 860 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 861 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 862 if (!isInc) 863 FVal.changeSign(); 864 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 865 866 // Add the inc/dec to the real part. 867 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 868 } 869 870 ComplexPairTy IncVal(NextVal, InVal.second); 871 872 // Store the updated result through the lvalue. 873 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 874 875 // If this is a postinc, return the value read from memory, otherwise use the 876 // updated value. 877 return isPre ? IncVal : InVal; 878 } 879 880 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 881 CodeGenFunction *CGF) { 882 // Bind VLAs in the cast type. 883 if (CGF && E->getType()->isVariablyModifiedType()) 884 CGF->EmitVariablyModifiedType(E->getType()); 885 886 if (CGDebugInfo *DI = getModuleDebugInfo()) 887 DI->EmitExplicitCastType(E->getType()); 888 } 889 890 //===----------------------------------------------------------------------===// 891 // LValue Expression Emission 892 //===----------------------------------------------------------------------===// 893 894 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 895 /// derive a more accurate bound on the alignment of the pointer. 896 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 897 LValueBaseInfo *BaseInfo) { 898 // We allow this with ObjC object pointers because of fragile ABIs. 899 assert(E->getType()->isPointerType() || 900 E->getType()->isObjCObjectPointerType()); 901 E = E->IgnoreParens(); 902 903 // Casts: 904 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 905 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 906 CGM.EmitExplicitCastExprType(ECE, this); 907 908 switch (CE->getCastKind()) { 909 // Non-converting casts (but not C's implicit conversion from void*). 910 case CK_BitCast: 911 case CK_NoOp: 912 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 913 if (PtrTy->getPointeeType()->isVoidType()) 914 break; 915 916 LValueBaseInfo InnerInfo; 917 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo); 918 if (BaseInfo) *BaseInfo = InnerInfo; 919 920 // If this is an explicit bitcast, and the source l-value is 921 // opaque, honor the alignment of the casted-to type. 922 if (isa<ExplicitCastExpr>(CE) && 923 InnerInfo.getAlignmentSource() != AlignmentSource::Decl) { 924 LValueBaseInfo ExpInfo; 925 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 926 &ExpInfo); 927 if (BaseInfo) 928 BaseInfo->mergeForCast(ExpInfo); 929 Addr = Address(Addr.getPointer(), Align); 930 } 931 932 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 933 CE->getCastKind() == CK_BitCast) { 934 if (auto PT = E->getType()->getAs<PointerType>()) 935 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 936 /*MayBeNull=*/true, 937 CodeGenFunction::CFITCK_UnrelatedCast, 938 CE->getLocStart()); 939 } 940 941 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 942 } 943 break; 944 945 // Array-to-pointer decay. 946 case CK_ArrayToPointerDecay: 947 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo); 948 949 // Derived-to-base conversions. 950 case CK_UncheckedDerivedToBase: 951 case CK_DerivedToBase: { 952 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 953 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 954 return GetAddressOfBaseClass(Addr, Derived, 955 CE->path_begin(), CE->path_end(), 956 ShouldNullCheckClassCastValue(CE), 957 CE->getExprLoc()); 958 } 959 960 // TODO: Is there any reason to treat base-to-derived conversions 961 // specially? 962 default: 963 break; 964 } 965 } 966 967 // Unary &. 968 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 969 if (UO->getOpcode() == UO_AddrOf) { 970 LValue LV = EmitLValue(UO->getSubExpr()); 971 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 972 return LV.getAddress(); 973 } 974 } 975 976 // TODO: conditional operators, comma. 977 978 // Otherwise, use the alignment of the type. 979 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo); 980 return Address(EmitScalarExpr(E), Align); 981 } 982 983 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 984 if (Ty->isVoidType()) 985 return RValue::get(nullptr); 986 987 switch (getEvaluationKind(Ty)) { 988 case TEK_Complex: { 989 llvm::Type *EltTy = 990 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 991 llvm::Value *U = llvm::UndefValue::get(EltTy); 992 return RValue::getComplex(std::make_pair(U, U)); 993 } 994 995 // If this is a use of an undefined aggregate type, the aggregate must have an 996 // identifiable address. Just because the contents of the value are undefined 997 // doesn't mean that the address can't be taken and compared. 998 case TEK_Aggregate: { 999 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1000 return RValue::getAggregate(DestPtr); 1001 } 1002 1003 case TEK_Scalar: 1004 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1005 } 1006 llvm_unreachable("bad evaluation kind"); 1007 } 1008 1009 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1010 const char *Name) { 1011 ErrorUnsupported(E, Name); 1012 return GetUndefRValue(E->getType()); 1013 } 1014 1015 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1016 const char *Name) { 1017 ErrorUnsupported(E, Name); 1018 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1019 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1020 E->getType()); 1021 } 1022 1023 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1024 const Expr *Base = Obj; 1025 while (!isa<CXXThisExpr>(Base)) { 1026 // The result of a dynamic_cast can be null. 1027 if (isa<CXXDynamicCastExpr>(Base)) 1028 return false; 1029 1030 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1031 Base = CE->getSubExpr(); 1032 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1033 Base = PE->getSubExpr(); 1034 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1035 if (UO->getOpcode() == UO_Extension) 1036 Base = UO->getSubExpr(); 1037 else 1038 return false; 1039 } else { 1040 return false; 1041 } 1042 } 1043 return true; 1044 } 1045 1046 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1047 LValue LV; 1048 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1049 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1050 else 1051 LV = EmitLValue(E); 1052 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1053 SanitizerSet SkippedChecks; 1054 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1055 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1056 if (IsBaseCXXThis) 1057 SkippedChecks.set(SanitizerKind::Alignment, true); 1058 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1059 SkippedChecks.set(SanitizerKind::Null, true); 1060 } 1061 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1062 E->getType(), LV.getAlignment(), SkippedChecks); 1063 } 1064 return LV; 1065 } 1066 1067 /// EmitLValue - Emit code to compute a designator that specifies the location 1068 /// of the expression. 1069 /// 1070 /// This can return one of two things: a simple address or a bitfield reference. 1071 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1072 /// an LLVM pointer type. 1073 /// 1074 /// If this returns a bitfield reference, nothing about the pointee type of the 1075 /// LLVM value is known: For example, it may not be a pointer to an integer. 1076 /// 1077 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1078 /// this method guarantees that the returned pointer type will point to an LLVM 1079 /// type of the same size of the lvalue's type. If the lvalue has a variable 1080 /// length type, this is not possible. 1081 /// 1082 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1083 ApplyDebugLocation DL(*this, E); 1084 switch (E->getStmtClass()) { 1085 default: return EmitUnsupportedLValue(E, "l-value expression"); 1086 1087 case Expr::ObjCPropertyRefExprClass: 1088 llvm_unreachable("cannot emit a property reference directly"); 1089 1090 case Expr::ObjCSelectorExprClass: 1091 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1092 case Expr::ObjCIsaExprClass: 1093 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1094 case Expr::BinaryOperatorClass: 1095 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1096 case Expr::CompoundAssignOperatorClass: { 1097 QualType Ty = E->getType(); 1098 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1099 Ty = AT->getValueType(); 1100 if (!Ty->isAnyComplexType()) 1101 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1102 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1103 } 1104 case Expr::CallExprClass: 1105 case Expr::CXXMemberCallExprClass: 1106 case Expr::CXXOperatorCallExprClass: 1107 case Expr::UserDefinedLiteralClass: 1108 return EmitCallExprLValue(cast<CallExpr>(E)); 1109 case Expr::VAArgExprClass: 1110 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1111 case Expr::DeclRefExprClass: 1112 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1113 case Expr::ParenExprClass: 1114 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1115 case Expr::GenericSelectionExprClass: 1116 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1117 case Expr::PredefinedExprClass: 1118 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1119 case Expr::StringLiteralClass: 1120 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1121 case Expr::ObjCEncodeExprClass: 1122 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1123 case Expr::PseudoObjectExprClass: 1124 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1125 case Expr::InitListExprClass: 1126 return EmitInitListLValue(cast<InitListExpr>(E)); 1127 case Expr::CXXTemporaryObjectExprClass: 1128 case Expr::CXXConstructExprClass: 1129 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1130 case Expr::CXXBindTemporaryExprClass: 1131 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1132 case Expr::CXXUuidofExprClass: 1133 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1134 case Expr::LambdaExprClass: 1135 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1136 1137 case Expr::ExprWithCleanupsClass: { 1138 const auto *cleanups = cast<ExprWithCleanups>(E); 1139 enterFullExpression(cleanups); 1140 RunCleanupsScope Scope(*this); 1141 LValue LV = EmitLValue(cleanups->getSubExpr()); 1142 if (LV.isSimple()) { 1143 // Defend against branches out of gnu statement expressions surrounded by 1144 // cleanups. 1145 llvm::Value *V = LV.getPointer(); 1146 Scope.ForceCleanup({&V}); 1147 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1148 getContext(), LV.getBaseInfo(), 1149 LV.getTBAAInfo()); 1150 } 1151 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1152 // bitfield lvalue or some other non-simple lvalue? 1153 return LV; 1154 } 1155 1156 case Expr::CXXDefaultArgExprClass: 1157 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1158 case Expr::CXXDefaultInitExprClass: { 1159 CXXDefaultInitExprScope Scope(*this); 1160 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1161 } 1162 case Expr::CXXTypeidExprClass: 1163 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1164 1165 case Expr::ObjCMessageExprClass: 1166 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1167 case Expr::ObjCIvarRefExprClass: 1168 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1169 case Expr::StmtExprClass: 1170 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1171 case Expr::UnaryOperatorClass: 1172 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1173 case Expr::ArraySubscriptExprClass: 1174 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1175 case Expr::OMPArraySectionExprClass: 1176 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1177 case Expr::ExtVectorElementExprClass: 1178 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1179 case Expr::MemberExprClass: 1180 return EmitMemberExpr(cast<MemberExpr>(E)); 1181 case Expr::CompoundLiteralExprClass: 1182 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1183 case Expr::ConditionalOperatorClass: 1184 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1185 case Expr::BinaryConditionalOperatorClass: 1186 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1187 case Expr::ChooseExprClass: 1188 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1189 case Expr::OpaqueValueExprClass: 1190 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1191 case Expr::SubstNonTypeTemplateParmExprClass: 1192 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1193 case Expr::ImplicitCastExprClass: 1194 case Expr::CStyleCastExprClass: 1195 case Expr::CXXFunctionalCastExprClass: 1196 case Expr::CXXStaticCastExprClass: 1197 case Expr::CXXDynamicCastExprClass: 1198 case Expr::CXXReinterpretCastExprClass: 1199 case Expr::CXXConstCastExprClass: 1200 case Expr::ObjCBridgedCastExprClass: 1201 return EmitCastLValue(cast<CastExpr>(E)); 1202 1203 case Expr::MaterializeTemporaryExprClass: 1204 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1205 1206 case Expr::CoawaitExprClass: 1207 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1208 case Expr::CoyieldExprClass: 1209 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1210 } 1211 } 1212 1213 /// Given an object of the given canonical type, can we safely copy a 1214 /// value out of it based on its initializer? 1215 static bool isConstantEmittableObjectType(QualType type) { 1216 assert(type.isCanonical()); 1217 assert(!type->isReferenceType()); 1218 1219 // Must be const-qualified but non-volatile. 1220 Qualifiers qs = type.getLocalQualifiers(); 1221 if (!qs.hasConst() || qs.hasVolatile()) return false; 1222 1223 // Otherwise, all object types satisfy this except C++ classes with 1224 // mutable subobjects or non-trivial copy/destroy behavior. 1225 if (const auto *RT = dyn_cast<RecordType>(type)) 1226 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1227 if (RD->hasMutableFields() || !RD->isTrivial()) 1228 return false; 1229 1230 return true; 1231 } 1232 1233 /// Can we constant-emit a load of a reference to a variable of the 1234 /// given type? This is different from predicates like 1235 /// Decl::isUsableInConstantExpressions because we do want it to apply 1236 /// in situations that don't necessarily satisfy the language's rules 1237 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1238 /// to do this with const float variables even if those variables 1239 /// aren't marked 'constexpr'. 1240 enum ConstantEmissionKind { 1241 CEK_None, 1242 CEK_AsReferenceOnly, 1243 CEK_AsValueOrReference, 1244 CEK_AsValueOnly 1245 }; 1246 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1247 type = type.getCanonicalType(); 1248 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1249 if (isConstantEmittableObjectType(ref->getPointeeType())) 1250 return CEK_AsValueOrReference; 1251 return CEK_AsReferenceOnly; 1252 } 1253 if (isConstantEmittableObjectType(type)) 1254 return CEK_AsValueOnly; 1255 return CEK_None; 1256 } 1257 1258 /// Try to emit a reference to the given value without producing it as 1259 /// an l-value. This is actually more than an optimization: we can't 1260 /// produce an l-value for variables that we never actually captured 1261 /// in a block or lambda, which means const int variables or constexpr 1262 /// literals or similar. 1263 CodeGenFunction::ConstantEmission 1264 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1265 ValueDecl *value = refExpr->getDecl(); 1266 1267 // The value needs to be an enum constant or a constant variable. 1268 ConstantEmissionKind CEK; 1269 if (isa<ParmVarDecl>(value)) { 1270 CEK = CEK_None; 1271 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1272 CEK = checkVarTypeForConstantEmission(var->getType()); 1273 } else if (isa<EnumConstantDecl>(value)) { 1274 CEK = CEK_AsValueOnly; 1275 } else { 1276 CEK = CEK_None; 1277 } 1278 if (CEK == CEK_None) return ConstantEmission(); 1279 1280 Expr::EvalResult result; 1281 bool resultIsReference; 1282 QualType resultType; 1283 1284 // It's best to evaluate all the way as an r-value if that's permitted. 1285 if (CEK != CEK_AsReferenceOnly && 1286 refExpr->EvaluateAsRValue(result, getContext())) { 1287 resultIsReference = false; 1288 resultType = refExpr->getType(); 1289 1290 // Otherwise, try to evaluate as an l-value. 1291 } else if (CEK != CEK_AsValueOnly && 1292 refExpr->EvaluateAsLValue(result, getContext())) { 1293 resultIsReference = true; 1294 resultType = value->getType(); 1295 1296 // Failure. 1297 } else { 1298 return ConstantEmission(); 1299 } 1300 1301 // In any case, if the initializer has side-effects, abandon ship. 1302 if (result.HasSideEffects) 1303 return ConstantEmission(); 1304 1305 // Emit as a constant. 1306 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1307 1308 // Make sure we emit a debug reference to the global variable. 1309 // This should probably fire even for 1310 if (isa<VarDecl>(value)) { 1311 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1312 EmitDeclRefExprDbgValue(refExpr, result.Val); 1313 } else { 1314 assert(isa<EnumConstantDecl>(value)); 1315 EmitDeclRefExprDbgValue(refExpr, result.Val); 1316 } 1317 1318 // If we emitted a reference constant, we need to dereference that. 1319 if (resultIsReference) 1320 return ConstantEmission::forReference(C); 1321 1322 return ConstantEmission::forValue(C); 1323 } 1324 1325 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1326 SourceLocation Loc) { 1327 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1328 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1329 lvalue.getTBAAInfo(), 1330 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1331 lvalue.isNontemporal()); 1332 } 1333 1334 static bool hasBooleanRepresentation(QualType Ty) { 1335 if (Ty->isBooleanType()) 1336 return true; 1337 1338 if (const EnumType *ET = Ty->getAs<EnumType>()) 1339 return ET->getDecl()->getIntegerType()->isBooleanType(); 1340 1341 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1342 return hasBooleanRepresentation(AT->getValueType()); 1343 1344 return false; 1345 } 1346 1347 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1348 llvm::APInt &Min, llvm::APInt &End, 1349 bool StrictEnums, bool IsBool) { 1350 const EnumType *ET = Ty->getAs<EnumType>(); 1351 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1352 ET && !ET->getDecl()->isFixed(); 1353 if (!IsBool && !IsRegularCPlusPlusEnum) 1354 return false; 1355 1356 if (IsBool) { 1357 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1358 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1359 } else { 1360 const EnumDecl *ED = ET->getDecl(); 1361 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1362 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1363 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1364 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1365 1366 if (NumNegativeBits) { 1367 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1368 assert(NumBits <= Bitwidth); 1369 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1370 Min = -End; 1371 } else { 1372 assert(NumPositiveBits <= Bitwidth); 1373 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1374 Min = llvm::APInt(Bitwidth, 0); 1375 } 1376 } 1377 return true; 1378 } 1379 1380 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1381 llvm::APInt Min, End; 1382 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1383 hasBooleanRepresentation(Ty))) 1384 return nullptr; 1385 1386 llvm::MDBuilder MDHelper(getLLVMContext()); 1387 return MDHelper.createRange(Min, End); 1388 } 1389 1390 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1391 SourceLocation Loc) { 1392 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1393 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1394 if (!HasBoolCheck && !HasEnumCheck) 1395 return false; 1396 1397 bool IsBool = hasBooleanRepresentation(Ty) || 1398 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1399 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1400 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1401 if (!NeedsBoolCheck && !NeedsEnumCheck) 1402 return false; 1403 1404 // Single-bit booleans don't need to be checked. Special-case this to avoid 1405 // a bit width mismatch when handling bitfield values. This is handled by 1406 // EmitFromMemory for the non-bitfield case. 1407 if (IsBool && 1408 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1409 return false; 1410 1411 llvm::APInt Min, End; 1412 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1413 return true; 1414 1415 SanitizerScope SanScope(this); 1416 llvm::Value *Check; 1417 --End; 1418 if (!Min) { 1419 Check = Builder.CreateICmpULE( 1420 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1421 } else { 1422 llvm::Value *Upper = Builder.CreateICmpSLE( 1423 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1424 llvm::Value *Lower = Builder.CreateICmpSGE( 1425 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1426 Check = Builder.CreateAnd(Upper, Lower); 1427 } 1428 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1429 EmitCheckTypeDescriptor(Ty)}; 1430 SanitizerMask Kind = 1431 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1432 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1433 StaticArgs, EmitCheckValue(Value)); 1434 return true; 1435 } 1436 1437 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1438 QualType Ty, 1439 SourceLocation Loc, 1440 LValueBaseInfo BaseInfo, 1441 llvm::MDNode *TBAAInfo, 1442 QualType TBAABaseType, 1443 uint64_t TBAAOffset, 1444 bool isNontemporal) { 1445 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1446 // For better performance, handle vector loads differently. 1447 if (Ty->isVectorType()) { 1448 const llvm::Type *EltTy = Addr.getElementType(); 1449 1450 const auto *VTy = cast<llvm::VectorType>(EltTy); 1451 1452 // Handle vectors of size 3 like size 4 for better performance. 1453 if (VTy->getNumElements() == 3) { 1454 1455 // Bitcast to vec4 type. 1456 llvm::VectorType *vec4Ty = 1457 llvm::VectorType::get(VTy->getElementType(), 4); 1458 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1459 // Now load value. 1460 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1461 1462 // Shuffle vector to get vec3. 1463 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1464 {0, 1, 2}, "extractVec"); 1465 return EmitFromMemory(V, Ty); 1466 } 1467 } 1468 } 1469 1470 // Atomic operations have to be done on integral types. 1471 LValue AtomicLValue = 1472 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1473 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1474 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1475 } 1476 1477 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1478 if (isNontemporal) { 1479 llvm::MDNode *Node = llvm::MDNode::get( 1480 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1481 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1482 } 1483 if (TBAAInfo) { 1484 bool MayAlias = BaseInfo.getMayAlias(); 1485 llvm::MDNode *TBAA = MayAlias 1486 ? CGM.getTBAAInfo(getContext().CharTy) 1487 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1488 if (TBAA) 1489 CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias); 1490 } 1491 1492 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1493 // In order to prevent the optimizer from throwing away the check, don't 1494 // attach range metadata to the load. 1495 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1496 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1497 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1498 1499 return EmitFromMemory(Load, Ty); 1500 } 1501 1502 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1503 // Bool has a different representation in memory than in registers. 1504 if (hasBooleanRepresentation(Ty)) { 1505 // This should really always be an i1, but sometimes it's already 1506 // an i8, and it's awkward to track those cases down. 1507 if (Value->getType()->isIntegerTy(1)) 1508 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1509 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1510 "wrong value rep of bool"); 1511 } 1512 1513 return Value; 1514 } 1515 1516 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1517 // Bool has a different representation in memory than in registers. 1518 if (hasBooleanRepresentation(Ty)) { 1519 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1520 "wrong value rep of bool"); 1521 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1522 } 1523 1524 return Value; 1525 } 1526 1527 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1528 bool Volatile, QualType Ty, 1529 LValueBaseInfo BaseInfo, 1530 llvm::MDNode *TBAAInfo, 1531 bool isInit, QualType TBAABaseType, 1532 uint64_t TBAAOffset, 1533 bool isNontemporal) { 1534 1535 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1536 // Handle vectors differently to get better performance. 1537 if (Ty->isVectorType()) { 1538 llvm::Type *SrcTy = Value->getType(); 1539 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1540 // Handle vec3 special. 1541 if (VecTy && VecTy->getNumElements() == 3) { 1542 // Our source is a vec3, do a shuffle vector to make it a vec4. 1543 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1544 Builder.getInt32(2), 1545 llvm::UndefValue::get(Builder.getInt32Ty())}; 1546 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1547 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1548 MaskV, "extractVec"); 1549 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1550 } 1551 if (Addr.getElementType() != SrcTy) { 1552 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1553 } 1554 } 1555 } 1556 1557 Value = EmitToMemory(Value, Ty); 1558 1559 LValue AtomicLValue = 1560 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1561 if (Ty->isAtomicType() || 1562 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1563 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1564 return; 1565 } 1566 1567 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1568 if (isNontemporal) { 1569 llvm::MDNode *Node = 1570 llvm::MDNode::get(Store->getContext(), 1571 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1572 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1573 } 1574 if (TBAAInfo) { 1575 bool MayAlias = BaseInfo.getMayAlias(); 1576 llvm::MDNode *TBAA = MayAlias 1577 ? CGM.getTBAAInfo(getContext().CharTy) 1578 : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); 1579 if (TBAA) 1580 CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias); 1581 } 1582 } 1583 1584 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1585 bool isInit) { 1586 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1587 lvalue.getType(), lvalue.getBaseInfo(), 1588 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1589 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1590 } 1591 1592 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1593 /// method emits the address of the lvalue, then loads the result as an rvalue, 1594 /// returning the rvalue. 1595 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1596 if (LV.isObjCWeak()) { 1597 // load of a __weak object. 1598 Address AddrWeakObj = LV.getAddress(); 1599 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1600 AddrWeakObj)); 1601 } 1602 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1603 // In MRC mode, we do a load+autorelease. 1604 if (!getLangOpts().ObjCAutoRefCount) { 1605 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1606 } 1607 1608 // In ARC mode, we load retained and then consume the value. 1609 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1610 Object = EmitObjCConsumeObject(LV.getType(), Object); 1611 return RValue::get(Object); 1612 } 1613 1614 if (LV.isSimple()) { 1615 assert(!LV.getType()->isFunctionType()); 1616 1617 // Everything needs a load. 1618 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1619 } 1620 1621 if (LV.isVectorElt()) { 1622 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1623 LV.isVolatileQualified()); 1624 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1625 "vecext")); 1626 } 1627 1628 // If this is a reference to a subset of the elements of a vector, either 1629 // shuffle the input or extract/insert them as appropriate. 1630 if (LV.isExtVectorElt()) 1631 return EmitLoadOfExtVectorElementLValue(LV); 1632 1633 // Global Register variables always invoke intrinsics 1634 if (LV.isGlobalReg()) 1635 return EmitLoadOfGlobalRegLValue(LV); 1636 1637 assert(LV.isBitField() && "Unknown LValue type!"); 1638 return EmitLoadOfBitfieldLValue(LV, Loc); 1639 } 1640 1641 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1642 SourceLocation Loc) { 1643 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1644 1645 // Get the output type. 1646 llvm::Type *ResLTy = ConvertType(LV.getType()); 1647 1648 Address Ptr = LV.getBitFieldAddress(); 1649 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1650 1651 if (Info.IsSigned) { 1652 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1653 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1654 if (HighBits) 1655 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1656 if (Info.Offset + HighBits) 1657 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1658 } else { 1659 if (Info.Offset) 1660 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1661 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1662 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1663 Info.Size), 1664 "bf.clear"); 1665 } 1666 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1667 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1668 return RValue::get(Val); 1669 } 1670 1671 // If this is a reference to a subset of the elements of a vector, create an 1672 // appropriate shufflevector. 1673 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1674 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1675 LV.isVolatileQualified()); 1676 1677 const llvm::Constant *Elts = LV.getExtVectorElts(); 1678 1679 // If the result of the expression is a non-vector type, we must be extracting 1680 // a single element. Just codegen as an extractelement. 1681 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1682 if (!ExprVT) { 1683 unsigned InIdx = getAccessedFieldNo(0, Elts); 1684 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1685 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1686 } 1687 1688 // Always use shuffle vector to try to retain the original program structure 1689 unsigned NumResultElts = ExprVT->getNumElements(); 1690 1691 SmallVector<llvm::Constant*, 4> Mask; 1692 for (unsigned i = 0; i != NumResultElts; ++i) 1693 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1694 1695 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1696 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1697 MaskV); 1698 return RValue::get(Vec); 1699 } 1700 1701 /// @brief Generates lvalue for partial ext_vector access. 1702 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1703 Address VectorAddress = LV.getExtVectorAddress(); 1704 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1705 QualType EQT = ExprVT->getElementType(); 1706 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1707 1708 Address CastToPointerElement = 1709 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1710 "conv.ptr.element"); 1711 1712 const llvm::Constant *Elts = LV.getExtVectorElts(); 1713 unsigned ix = getAccessedFieldNo(0, Elts); 1714 1715 Address VectorBasePtrPlusIx = 1716 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1717 getContext().getTypeSizeInChars(EQT), 1718 "vector.elt"); 1719 1720 return VectorBasePtrPlusIx; 1721 } 1722 1723 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1724 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1725 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1726 "Bad type for register variable"); 1727 llvm::MDNode *RegName = cast<llvm::MDNode>( 1728 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1729 1730 // We accept integer and pointer types only 1731 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1732 llvm::Type *Ty = OrigTy; 1733 if (OrigTy->isPointerTy()) 1734 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1735 llvm::Type *Types[] = { Ty }; 1736 1737 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1738 llvm::Value *Call = Builder.CreateCall( 1739 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1740 if (OrigTy->isPointerTy()) 1741 Call = Builder.CreateIntToPtr(Call, OrigTy); 1742 return RValue::get(Call); 1743 } 1744 1745 1746 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1747 /// lvalue, where both are guaranteed to the have the same type, and that type 1748 /// is 'Ty'. 1749 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1750 bool isInit) { 1751 if (!Dst.isSimple()) { 1752 if (Dst.isVectorElt()) { 1753 // Read/modify/write the vector, inserting the new element. 1754 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1755 Dst.isVolatileQualified()); 1756 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1757 Dst.getVectorIdx(), "vecins"); 1758 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1759 Dst.isVolatileQualified()); 1760 return; 1761 } 1762 1763 // If this is an update of extended vector elements, insert them as 1764 // appropriate. 1765 if (Dst.isExtVectorElt()) 1766 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1767 1768 if (Dst.isGlobalReg()) 1769 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1770 1771 assert(Dst.isBitField() && "Unknown LValue type"); 1772 return EmitStoreThroughBitfieldLValue(Src, Dst); 1773 } 1774 1775 // There's special magic for assigning into an ARC-qualified l-value. 1776 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1777 switch (Lifetime) { 1778 case Qualifiers::OCL_None: 1779 llvm_unreachable("present but none"); 1780 1781 case Qualifiers::OCL_ExplicitNone: 1782 // nothing special 1783 break; 1784 1785 case Qualifiers::OCL_Strong: 1786 if (isInit) { 1787 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1788 break; 1789 } 1790 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1791 return; 1792 1793 case Qualifiers::OCL_Weak: 1794 if (isInit) 1795 // Initialize and then skip the primitive store. 1796 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1797 else 1798 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1799 return; 1800 1801 case Qualifiers::OCL_Autoreleasing: 1802 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1803 Src.getScalarVal())); 1804 // fall into the normal path 1805 break; 1806 } 1807 } 1808 1809 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1810 // load of a __weak object. 1811 Address LvalueDst = Dst.getAddress(); 1812 llvm::Value *src = Src.getScalarVal(); 1813 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1814 return; 1815 } 1816 1817 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1818 // load of a __strong object. 1819 Address LvalueDst = Dst.getAddress(); 1820 llvm::Value *src = Src.getScalarVal(); 1821 if (Dst.isObjCIvar()) { 1822 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1823 llvm::Type *ResultType = IntPtrTy; 1824 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1825 llvm::Value *RHS = dst.getPointer(); 1826 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1827 llvm::Value *LHS = 1828 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1829 "sub.ptr.lhs.cast"); 1830 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1831 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1832 BytesBetween); 1833 } else if (Dst.isGlobalObjCRef()) { 1834 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1835 Dst.isThreadLocalRef()); 1836 } 1837 else 1838 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1839 return; 1840 } 1841 1842 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1843 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1844 } 1845 1846 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1847 llvm::Value **Result) { 1848 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1849 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1850 Address Ptr = Dst.getBitFieldAddress(); 1851 1852 // Get the source value, truncated to the width of the bit-field. 1853 llvm::Value *SrcVal = Src.getScalarVal(); 1854 1855 // Cast the source to the storage type and shift it into place. 1856 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1857 /*IsSigned=*/false); 1858 llvm::Value *MaskedVal = SrcVal; 1859 1860 // See if there are other bits in the bitfield's storage we'll need to load 1861 // and mask together with source before storing. 1862 if (Info.StorageSize != Info.Size) { 1863 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1864 llvm::Value *Val = 1865 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1866 1867 // Mask the source value as needed. 1868 if (!hasBooleanRepresentation(Dst.getType())) 1869 SrcVal = Builder.CreateAnd(SrcVal, 1870 llvm::APInt::getLowBitsSet(Info.StorageSize, 1871 Info.Size), 1872 "bf.value"); 1873 MaskedVal = SrcVal; 1874 if (Info.Offset) 1875 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1876 1877 // Mask out the original value. 1878 Val = Builder.CreateAnd(Val, 1879 ~llvm::APInt::getBitsSet(Info.StorageSize, 1880 Info.Offset, 1881 Info.Offset + Info.Size), 1882 "bf.clear"); 1883 1884 // Or together the unchanged values and the source value. 1885 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1886 } else { 1887 assert(Info.Offset == 0); 1888 } 1889 1890 // Write the new value back out. 1891 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1892 1893 // Return the new value of the bit-field, if requested. 1894 if (Result) { 1895 llvm::Value *ResultVal = MaskedVal; 1896 1897 // Sign extend the value if needed. 1898 if (Info.IsSigned) { 1899 assert(Info.Size <= Info.StorageSize); 1900 unsigned HighBits = Info.StorageSize - Info.Size; 1901 if (HighBits) { 1902 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1903 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1904 } 1905 } 1906 1907 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1908 "bf.result.cast"); 1909 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1910 } 1911 } 1912 1913 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1914 LValue Dst) { 1915 // This access turns into a read/modify/write of the vector. Load the input 1916 // value now. 1917 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1918 Dst.isVolatileQualified()); 1919 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1920 1921 llvm::Value *SrcVal = Src.getScalarVal(); 1922 1923 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1924 unsigned NumSrcElts = VTy->getNumElements(); 1925 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1926 if (NumDstElts == NumSrcElts) { 1927 // Use shuffle vector is the src and destination are the same number of 1928 // elements and restore the vector mask since it is on the side it will be 1929 // stored. 1930 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1931 for (unsigned i = 0; i != NumSrcElts; ++i) 1932 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1933 1934 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1935 Vec = Builder.CreateShuffleVector(SrcVal, 1936 llvm::UndefValue::get(Vec->getType()), 1937 MaskV); 1938 } else if (NumDstElts > NumSrcElts) { 1939 // Extended the source vector to the same length and then shuffle it 1940 // into the destination. 1941 // FIXME: since we're shuffling with undef, can we just use the indices 1942 // into that? This could be simpler. 1943 SmallVector<llvm::Constant*, 4> ExtMask; 1944 for (unsigned i = 0; i != NumSrcElts; ++i) 1945 ExtMask.push_back(Builder.getInt32(i)); 1946 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1947 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1948 llvm::Value *ExtSrcVal = 1949 Builder.CreateShuffleVector(SrcVal, 1950 llvm::UndefValue::get(SrcVal->getType()), 1951 ExtMaskV); 1952 // build identity 1953 SmallVector<llvm::Constant*, 4> Mask; 1954 for (unsigned i = 0; i != NumDstElts; ++i) 1955 Mask.push_back(Builder.getInt32(i)); 1956 1957 // When the vector size is odd and .odd or .hi is used, the last element 1958 // of the Elts constant array will be one past the size of the vector. 1959 // Ignore the last element here, if it is greater than the mask size. 1960 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1961 NumSrcElts--; 1962 1963 // modify when what gets shuffled in 1964 for (unsigned i = 0; i != NumSrcElts; ++i) 1965 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1966 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1967 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1968 } else { 1969 // We should never shorten the vector 1970 llvm_unreachable("unexpected shorten vector length"); 1971 } 1972 } else { 1973 // If the Src is a scalar (not a vector) it must be updating one element. 1974 unsigned InIdx = getAccessedFieldNo(0, Elts); 1975 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1976 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1977 } 1978 1979 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1980 Dst.isVolatileQualified()); 1981 } 1982 1983 /// @brief Store of global named registers are always calls to intrinsics. 1984 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1985 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1986 "Bad type for register variable"); 1987 llvm::MDNode *RegName = cast<llvm::MDNode>( 1988 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1989 assert(RegName && "Register LValue is not metadata"); 1990 1991 // We accept integer and pointer types only 1992 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1993 llvm::Type *Ty = OrigTy; 1994 if (OrigTy->isPointerTy()) 1995 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1996 llvm::Type *Types[] = { Ty }; 1997 1998 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1999 llvm::Value *Value = Src.getScalarVal(); 2000 if (OrigTy->isPointerTy()) 2001 Value = Builder.CreatePtrToInt(Value, Ty); 2002 Builder.CreateCall( 2003 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2004 } 2005 2006 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2007 // generating write-barries API. It is currently a global, ivar, 2008 // or neither. 2009 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2010 LValue &LV, 2011 bool IsMemberAccess=false) { 2012 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2013 return; 2014 2015 if (isa<ObjCIvarRefExpr>(E)) { 2016 QualType ExpTy = E->getType(); 2017 if (IsMemberAccess && ExpTy->isPointerType()) { 2018 // If ivar is a structure pointer, assigning to field of 2019 // this struct follows gcc's behavior and makes it a non-ivar 2020 // writer-barrier conservatively. 2021 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2022 if (ExpTy->isRecordType()) { 2023 LV.setObjCIvar(false); 2024 return; 2025 } 2026 } 2027 LV.setObjCIvar(true); 2028 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2029 LV.setBaseIvarExp(Exp->getBase()); 2030 LV.setObjCArray(E->getType()->isArrayType()); 2031 return; 2032 } 2033 2034 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2035 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2036 if (VD->hasGlobalStorage()) { 2037 LV.setGlobalObjCRef(true); 2038 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2039 } 2040 } 2041 LV.setObjCArray(E->getType()->isArrayType()); 2042 return; 2043 } 2044 2045 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2046 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2047 return; 2048 } 2049 2050 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2051 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2052 if (LV.isObjCIvar()) { 2053 // If cast is to a structure pointer, follow gcc's behavior and make it 2054 // a non-ivar write-barrier. 2055 QualType ExpTy = E->getType(); 2056 if (ExpTy->isPointerType()) 2057 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2058 if (ExpTy->isRecordType()) 2059 LV.setObjCIvar(false); 2060 } 2061 return; 2062 } 2063 2064 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2065 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2066 return; 2067 } 2068 2069 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2070 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2071 return; 2072 } 2073 2074 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2075 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2076 return; 2077 } 2078 2079 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2080 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2081 return; 2082 } 2083 2084 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2085 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2086 if (LV.isObjCIvar() && !LV.isObjCArray()) 2087 // Using array syntax to assigning to what an ivar points to is not 2088 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2089 LV.setObjCIvar(false); 2090 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2091 // Using array syntax to assigning to what global points to is not 2092 // same as assigning to the global itself. {id *G;} G[i] = 0; 2093 LV.setGlobalObjCRef(false); 2094 return; 2095 } 2096 2097 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2098 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2099 // We don't know if member is an 'ivar', but this flag is looked at 2100 // only in the context of LV.isObjCIvar(). 2101 LV.setObjCArray(E->getType()->isArrayType()); 2102 return; 2103 } 2104 } 2105 2106 static llvm::Value * 2107 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2108 llvm::Value *V, llvm::Type *IRType, 2109 StringRef Name = StringRef()) { 2110 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2111 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2112 } 2113 2114 static LValue EmitThreadPrivateVarDeclLValue( 2115 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2116 llvm::Type *RealVarTy, SourceLocation Loc) { 2117 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2118 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2119 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2120 return CGF.MakeAddrLValue(Addr, T, BaseInfo); 2121 } 2122 2123 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2124 const ReferenceType *RefTy, 2125 LValueBaseInfo *BaseInfo) { 2126 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2127 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2128 BaseInfo, /*forPointee*/ true)); 2129 } 2130 2131 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2132 const ReferenceType *RefTy) { 2133 LValueBaseInfo BaseInfo; 2134 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo); 2135 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo); 2136 } 2137 2138 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2139 const PointerType *PtrTy, 2140 LValueBaseInfo *BaseInfo) { 2141 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2142 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2143 BaseInfo, 2144 /*forPointeeType=*/true)); 2145 } 2146 2147 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2148 const PointerType *PtrTy) { 2149 LValueBaseInfo BaseInfo; 2150 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo); 2151 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo); 2152 } 2153 2154 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2155 const Expr *E, const VarDecl *VD) { 2156 QualType T = E->getType(); 2157 2158 // If it's thread_local, emit a call to its wrapper function instead. 2159 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2160 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2161 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2162 2163 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2164 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2165 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2166 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2167 Address Addr(V, Alignment); 2168 LValue LV; 2169 // Emit reference to the private copy of the variable if it is an OpenMP 2170 // threadprivate variable. 2171 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2172 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2173 E->getExprLoc()); 2174 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2175 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2176 } else { 2177 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2178 LV = CGF.MakeAddrLValue(Addr, T, BaseInfo); 2179 } 2180 setObjCGCLValueClass(CGF.getContext(), E, LV); 2181 return LV; 2182 } 2183 2184 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2185 const FunctionDecl *FD) { 2186 if (FD->hasAttr<WeakRefAttr>()) { 2187 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2188 return aliasee.getPointer(); 2189 } 2190 2191 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2192 if (!FD->hasPrototype()) { 2193 if (const FunctionProtoType *Proto = 2194 FD->getType()->getAs<FunctionProtoType>()) { 2195 // Ugly case: for a K&R-style definition, the type of the definition 2196 // isn't the same as the type of a use. Correct for this with a 2197 // bitcast. 2198 QualType NoProtoType = 2199 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2200 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2201 V = llvm::ConstantExpr::getBitCast(V, 2202 CGM.getTypes().ConvertType(NoProtoType)); 2203 } 2204 } 2205 return V; 2206 } 2207 2208 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2209 const Expr *E, const FunctionDecl *FD) { 2210 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2211 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2212 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2213 return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo); 2214 } 2215 2216 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2217 llvm::Value *ThisValue) { 2218 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2219 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2220 return CGF.EmitLValueForField(LV, FD); 2221 } 2222 2223 /// Named Registers are named metadata pointing to the register name 2224 /// which will be read from/written to as an argument to the intrinsic 2225 /// @llvm.read/write_register. 2226 /// So far, only the name is being passed down, but other options such as 2227 /// register type, allocation type or even optimization options could be 2228 /// passed down via the metadata node. 2229 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2230 SmallString<64> Name("llvm.named.register."); 2231 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2232 assert(Asm->getLabel().size() < 64-Name.size() && 2233 "Register name too big"); 2234 Name.append(Asm->getLabel()); 2235 llvm::NamedMDNode *M = 2236 CGM.getModule().getOrInsertNamedMetadata(Name); 2237 if (M->getNumOperands() == 0) { 2238 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2239 Asm->getLabel()); 2240 llvm::Metadata *Ops[] = {Str}; 2241 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2242 } 2243 2244 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2245 2246 llvm::Value *Ptr = 2247 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2248 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2249 } 2250 2251 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2252 const NamedDecl *ND = E->getDecl(); 2253 QualType T = E->getType(); 2254 2255 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2256 // Global Named registers access via intrinsics only 2257 if (VD->getStorageClass() == SC_Register && 2258 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2259 return EmitGlobalNamedRegister(VD, CGM); 2260 2261 // A DeclRefExpr for a reference initialized by a constant expression can 2262 // appear without being odr-used. Directly emit the constant initializer. 2263 const Expr *Init = VD->getAnyInitializer(VD); 2264 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2265 VD->isUsableInConstantExpressions(getContext()) && 2266 VD->checkInitIsICE() && 2267 // Do not emit if it is private OpenMP variable. 2268 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2269 LocalDeclMap.count(VD))) { 2270 llvm::Constant *Val = 2271 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2272 assert(Val && "failed to emit reference constant expression"); 2273 // FIXME: Eventually we will want to emit vector element references. 2274 2275 // Should we be using the alignment of the constant pointer we emitted? 2276 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2277 /*pointee*/ true); 2278 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2279 return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo); 2280 } 2281 2282 // Check for captured variables. 2283 if (E->refersToEnclosingVariableOrCapture()) { 2284 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2285 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2286 else if (CapturedStmtInfo) { 2287 auto I = LocalDeclMap.find(VD); 2288 if (I != LocalDeclMap.end()) { 2289 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2290 return EmitLoadOfReferenceLValue(I->second, RefTy); 2291 return MakeAddrLValue(I->second, T); 2292 } 2293 LValue CapLVal = 2294 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2295 CapturedStmtInfo->getContextValue()); 2296 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2297 return MakeAddrLValue( 2298 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2299 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias)); 2300 } 2301 2302 assert(isa<BlockDecl>(CurCodeDecl)); 2303 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2304 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2305 return MakeAddrLValue(addr, T, BaseInfo); 2306 } 2307 } 2308 2309 // FIXME: We should be able to assert this for FunctionDecls as well! 2310 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2311 // those with a valid source location. 2312 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2313 !E->getLocation().isValid()) && 2314 "Should not use decl without marking it used!"); 2315 2316 if (ND->hasAttr<WeakRefAttr>()) { 2317 const auto *VD = cast<ValueDecl>(ND); 2318 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2319 return MakeAddrLValue(Aliasee, T, 2320 LValueBaseInfo(AlignmentSource::Decl, false)); 2321 } 2322 2323 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2324 // Check if this is a global variable. 2325 if (VD->hasLinkage() || VD->isStaticDataMember()) 2326 return EmitGlobalVarDeclLValue(*this, E, VD); 2327 2328 Address addr = Address::invalid(); 2329 2330 // The variable should generally be present in the local decl map. 2331 auto iter = LocalDeclMap.find(VD); 2332 if (iter != LocalDeclMap.end()) { 2333 addr = iter->second; 2334 2335 // Otherwise, it might be static local we haven't emitted yet for 2336 // some reason; most likely, because it's in an outer function. 2337 } else if (VD->isStaticLocal()) { 2338 addr = Address(CGM.getOrCreateStaticVarDecl( 2339 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2340 getContext().getDeclAlign(VD)); 2341 2342 // No other cases for now. 2343 } else { 2344 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2345 } 2346 2347 2348 // Check for OpenMP threadprivate variables. 2349 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2350 return EmitThreadPrivateVarDeclLValue( 2351 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2352 E->getExprLoc()); 2353 } 2354 2355 // Drill into block byref variables. 2356 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2357 if (isBlockByref) { 2358 addr = emitBlockByrefAddress(addr, VD); 2359 } 2360 2361 // Drill into reference types. 2362 LValue LV; 2363 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2364 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2365 } else { 2366 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2367 LV = MakeAddrLValue(addr, T, BaseInfo); 2368 } 2369 2370 bool isLocalStorage = VD->hasLocalStorage(); 2371 2372 bool NonGCable = isLocalStorage && 2373 !VD->getType()->isReferenceType() && 2374 !isBlockByref; 2375 if (NonGCable) { 2376 LV.getQuals().removeObjCGCAttr(); 2377 LV.setNonGC(true); 2378 } 2379 2380 bool isImpreciseLifetime = 2381 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2382 if (isImpreciseLifetime) 2383 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2384 setObjCGCLValueClass(getContext(), E, LV); 2385 return LV; 2386 } 2387 2388 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2389 return EmitFunctionDeclLValue(*this, E, FD); 2390 2391 // FIXME: While we're emitting a binding from an enclosing scope, all other 2392 // DeclRefExprs we see should be implicitly treated as if they also refer to 2393 // an enclosing scope. 2394 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2395 return EmitLValue(BD->getBinding()); 2396 2397 llvm_unreachable("Unhandled DeclRefExpr"); 2398 } 2399 2400 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2401 // __extension__ doesn't affect lvalue-ness. 2402 if (E->getOpcode() == UO_Extension) 2403 return EmitLValue(E->getSubExpr()); 2404 2405 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2406 switch (E->getOpcode()) { 2407 default: llvm_unreachable("Unknown unary operator lvalue!"); 2408 case UO_Deref: { 2409 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2410 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2411 2412 LValueBaseInfo BaseInfo; 2413 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo); 2414 LValue LV = MakeAddrLValue(Addr, T, BaseInfo); 2415 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2416 2417 // We should not generate __weak write barrier on indirect reference 2418 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2419 // But, we continue to generate __strong write barrier on indirect write 2420 // into a pointer to object. 2421 if (getLangOpts().ObjC1 && 2422 getLangOpts().getGC() != LangOptions::NonGC && 2423 LV.isObjCWeak()) 2424 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2425 return LV; 2426 } 2427 case UO_Real: 2428 case UO_Imag: { 2429 LValue LV = EmitLValue(E->getSubExpr()); 2430 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2431 2432 // __real is valid on scalars. This is a faster way of testing that. 2433 // __imag can only produce an rvalue on scalars. 2434 if (E->getOpcode() == UO_Real && 2435 !LV.getAddress().getElementType()->isStructTy()) { 2436 assert(E->getSubExpr()->getType()->isArithmeticType()); 2437 return LV; 2438 } 2439 2440 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2441 2442 Address Component = 2443 (E->getOpcode() == UO_Real 2444 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2445 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2446 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo()); 2447 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2448 return ElemLV; 2449 } 2450 case UO_PreInc: 2451 case UO_PreDec: { 2452 LValue LV = EmitLValue(E->getSubExpr()); 2453 bool isInc = E->getOpcode() == UO_PreInc; 2454 2455 if (E->getType()->isAnyComplexType()) 2456 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2457 else 2458 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2459 return LV; 2460 } 2461 } 2462 } 2463 2464 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2465 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2466 E->getType(), 2467 LValueBaseInfo(AlignmentSource::Decl, false)); 2468 } 2469 2470 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2471 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2472 E->getType(), 2473 LValueBaseInfo(AlignmentSource::Decl, false)); 2474 } 2475 2476 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2477 auto SL = E->getFunctionName(); 2478 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2479 StringRef FnName = CurFn->getName(); 2480 if (FnName.startswith("\01")) 2481 FnName = FnName.substr(1); 2482 StringRef NameItems[] = { 2483 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2484 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2485 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2486 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2487 std::string Name = SL->getString(); 2488 if (!Name.empty()) { 2489 unsigned Discriminator = 2490 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2491 if (Discriminator) 2492 Name += "_" + Twine(Discriminator + 1).str(); 2493 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2494 return MakeAddrLValue(C, E->getType(), BaseInfo); 2495 } else { 2496 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2497 return MakeAddrLValue(C, E->getType(), BaseInfo); 2498 } 2499 } 2500 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2501 return MakeAddrLValue(C, E->getType(), BaseInfo); 2502 } 2503 2504 /// Emit a type description suitable for use by a runtime sanitizer library. The 2505 /// format of a type descriptor is 2506 /// 2507 /// \code 2508 /// { i16 TypeKind, i16 TypeInfo } 2509 /// \endcode 2510 /// 2511 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2512 /// integer, 1 for a floating point value, and -1 for anything else. 2513 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2514 // Only emit each type's descriptor once. 2515 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2516 return C; 2517 2518 uint16_t TypeKind = -1; 2519 uint16_t TypeInfo = 0; 2520 2521 if (T->isIntegerType()) { 2522 TypeKind = 0; 2523 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2524 (T->isSignedIntegerType() ? 1 : 0); 2525 } else if (T->isFloatingType()) { 2526 TypeKind = 1; 2527 TypeInfo = getContext().getTypeSize(T); 2528 } 2529 2530 // Format the type name as if for a diagnostic, including quotes and 2531 // optionally an 'aka'. 2532 SmallString<32> Buffer; 2533 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2534 (intptr_t)T.getAsOpaquePtr(), 2535 StringRef(), StringRef(), None, Buffer, 2536 None); 2537 2538 llvm::Constant *Components[] = { 2539 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2540 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2541 }; 2542 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2543 2544 auto *GV = new llvm::GlobalVariable( 2545 CGM.getModule(), Descriptor->getType(), 2546 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2547 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2548 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2549 2550 // Remember the descriptor for this type. 2551 CGM.setTypeDescriptorInMap(T, GV); 2552 2553 return GV; 2554 } 2555 2556 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2557 llvm::Type *TargetTy = IntPtrTy; 2558 2559 // Floating-point types which fit into intptr_t are bitcast to integers 2560 // and then passed directly (after zero-extension, if necessary). 2561 if (V->getType()->isFloatingPointTy()) { 2562 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2563 if (Bits <= TargetTy->getIntegerBitWidth()) 2564 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2565 Bits)); 2566 } 2567 2568 // Integers which fit in intptr_t are zero-extended and passed directly. 2569 if (V->getType()->isIntegerTy() && 2570 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2571 return Builder.CreateZExt(V, TargetTy); 2572 2573 // Pointers are passed directly, everything else is passed by address. 2574 if (!V->getType()->isPointerTy()) { 2575 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2576 Builder.CreateStore(V, Ptr); 2577 V = Ptr.getPointer(); 2578 } 2579 return Builder.CreatePtrToInt(V, TargetTy); 2580 } 2581 2582 /// \brief Emit a representation of a SourceLocation for passing to a handler 2583 /// in a sanitizer runtime library. The format for this data is: 2584 /// \code 2585 /// struct SourceLocation { 2586 /// const char *Filename; 2587 /// int32_t Line, Column; 2588 /// }; 2589 /// \endcode 2590 /// For an invalid SourceLocation, the Filename pointer is null. 2591 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2592 llvm::Constant *Filename; 2593 int Line, Column; 2594 2595 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2596 if (PLoc.isValid()) { 2597 StringRef FilenameString = PLoc.getFilename(); 2598 2599 int PathComponentsToStrip = 2600 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2601 if (PathComponentsToStrip < 0) { 2602 assert(PathComponentsToStrip != INT_MIN); 2603 int PathComponentsToKeep = -PathComponentsToStrip; 2604 auto I = llvm::sys::path::rbegin(FilenameString); 2605 auto E = llvm::sys::path::rend(FilenameString); 2606 while (I != E && --PathComponentsToKeep) 2607 ++I; 2608 2609 FilenameString = FilenameString.substr(I - E); 2610 } else if (PathComponentsToStrip > 0) { 2611 auto I = llvm::sys::path::begin(FilenameString); 2612 auto E = llvm::sys::path::end(FilenameString); 2613 while (I != E && PathComponentsToStrip--) 2614 ++I; 2615 2616 if (I != E) 2617 FilenameString = 2618 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2619 else 2620 FilenameString = llvm::sys::path::filename(FilenameString); 2621 } 2622 2623 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2624 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2625 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2626 Filename = FilenameGV.getPointer(); 2627 Line = PLoc.getLine(); 2628 Column = PLoc.getColumn(); 2629 } else { 2630 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2631 Line = Column = 0; 2632 } 2633 2634 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2635 Builder.getInt32(Column)}; 2636 2637 return llvm::ConstantStruct::getAnon(Data); 2638 } 2639 2640 namespace { 2641 /// \brief Specify under what conditions this check can be recovered 2642 enum class CheckRecoverableKind { 2643 /// Always terminate program execution if this check fails. 2644 Unrecoverable, 2645 /// Check supports recovering, runtime has both fatal (noreturn) and 2646 /// non-fatal handlers for this check. 2647 Recoverable, 2648 /// Runtime conditionally aborts, always need to support recovery. 2649 AlwaysRecoverable 2650 }; 2651 } 2652 2653 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2654 assert(llvm::countPopulation(Kind) == 1); 2655 switch (Kind) { 2656 case SanitizerKind::Vptr: 2657 return CheckRecoverableKind::AlwaysRecoverable; 2658 case SanitizerKind::Return: 2659 case SanitizerKind::Unreachable: 2660 return CheckRecoverableKind::Unrecoverable; 2661 default: 2662 return CheckRecoverableKind::Recoverable; 2663 } 2664 } 2665 2666 namespace { 2667 struct SanitizerHandlerInfo { 2668 char const *const Name; 2669 unsigned Version; 2670 }; 2671 } 2672 2673 const SanitizerHandlerInfo SanitizerHandlers[] = { 2674 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2675 LIST_SANITIZER_CHECKS 2676 #undef SANITIZER_CHECK 2677 }; 2678 2679 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2680 llvm::FunctionType *FnType, 2681 ArrayRef<llvm::Value *> FnArgs, 2682 SanitizerHandler CheckHandler, 2683 CheckRecoverableKind RecoverKind, bool IsFatal, 2684 llvm::BasicBlock *ContBB) { 2685 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2686 bool NeedsAbortSuffix = 2687 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2688 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2689 const StringRef CheckName = CheckInfo.Name; 2690 std::string FnName = 2691 ("__ubsan_handle_" + CheckName + 2692 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2693 (NeedsAbortSuffix ? "_abort" : "")) 2694 .str(); 2695 bool MayReturn = 2696 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2697 2698 llvm::AttrBuilder B; 2699 if (!MayReturn) { 2700 B.addAttribute(llvm::Attribute::NoReturn) 2701 .addAttribute(llvm::Attribute::NoUnwind); 2702 } 2703 B.addAttribute(llvm::Attribute::UWTable); 2704 2705 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2706 FnType, FnName, 2707 llvm::AttributeList::get(CGF.getLLVMContext(), 2708 llvm::AttributeList::FunctionIndex, B), 2709 /*Local=*/true); 2710 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2711 if (!MayReturn) { 2712 HandlerCall->setDoesNotReturn(); 2713 CGF.Builder.CreateUnreachable(); 2714 } else { 2715 CGF.Builder.CreateBr(ContBB); 2716 } 2717 } 2718 2719 void CodeGenFunction::EmitCheck( 2720 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2721 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2722 ArrayRef<llvm::Value *> DynamicArgs) { 2723 assert(IsSanitizerScope); 2724 assert(Checked.size() > 0); 2725 assert(CheckHandler >= 0 && 2726 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2727 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2728 2729 llvm::Value *FatalCond = nullptr; 2730 llvm::Value *RecoverableCond = nullptr; 2731 llvm::Value *TrapCond = nullptr; 2732 for (int i = 0, n = Checked.size(); i < n; ++i) { 2733 llvm::Value *Check = Checked[i].first; 2734 // -fsanitize-trap= overrides -fsanitize-recover=. 2735 llvm::Value *&Cond = 2736 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2737 ? TrapCond 2738 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2739 ? RecoverableCond 2740 : FatalCond; 2741 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2742 } 2743 2744 if (TrapCond) 2745 EmitTrapCheck(TrapCond); 2746 if (!FatalCond && !RecoverableCond) 2747 return; 2748 2749 llvm::Value *JointCond; 2750 if (FatalCond && RecoverableCond) 2751 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2752 else 2753 JointCond = FatalCond ? FatalCond : RecoverableCond; 2754 assert(JointCond); 2755 2756 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2757 assert(SanOpts.has(Checked[0].second)); 2758 #ifndef NDEBUG 2759 for (int i = 1, n = Checked.size(); i < n; ++i) { 2760 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2761 "All recoverable kinds in a single check must be same!"); 2762 assert(SanOpts.has(Checked[i].second)); 2763 } 2764 #endif 2765 2766 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2767 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2768 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2769 // Give hint that we very much don't expect to execute the handler 2770 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2771 llvm::MDBuilder MDHelper(getLLVMContext()); 2772 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2773 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2774 EmitBlock(Handlers); 2775 2776 // Handler functions take an i8* pointing to the (handler-specific) static 2777 // information block, followed by a sequence of intptr_t arguments 2778 // representing operand values. 2779 SmallVector<llvm::Value *, 4> Args; 2780 SmallVector<llvm::Type *, 4> ArgTypes; 2781 Args.reserve(DynamicArgs.size() + 1); 2782 ArgTypes.reserve(DynamicArgs.size() + 1); 2783 2784 // Emit handler arguments and create handler function type. 2785 if (!StaticArgs.empty()) { 2786 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2787 auto *InfoPtr = 2788 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2789 llvm::GlobalVariable::PrivateLinkage, Info); 2790 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2791 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2792 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2793 ArgTypes.push_back(Int8PtrTy); 2794 } 2795 2796 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2797 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2798 ArgTypes.push_back(IntPtrTy); 2799 } 2800 2801 llvm::FunctionType *FnType = 2802 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2803 2804 if (!FatalCond || !RecoverableCond) { 2805 // Simple case: we need to generate a single handler call, either 2806 // fatal, or non-fatal. 2807 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2808 (FatalCond != nullptr), Cont); 2809 } else { 2810 // Emit two handler calls: first one for set of unrecoverable checks, 2811 // another one for recoverable. 2812 llvm::BasicBlock *NonFatalHandlerBB = 2813 createBasicBlock("non_fatal." + CheckName); 2814 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2815 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2816 EmitBlock(FatalHandlerBB); 2817 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2818 NonFatalHandlerBB); 2819 EmitBlock(NonFatalHandlerBB); 2820 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2821 Cont); 2822 } 2823 2824 EmitBlock(Cont); 2825 } 2826 2827 void CodeGenFunction::EmitCfiSlowPathCheck( 2828 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2829 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2830 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2831 2832 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2833 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2834 2835 llvm::MDBuilder MDHelper(getLLVMContext()); 2836 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2837 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2838 2839 EmitBlock(CheckBB); 2840 2841 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2842 2843 llvm::CallInst *CheckCall; 2844 if (WithDiag) { 2845 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2846 auto *InfoPtr = 2847 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2848 llvm::GlobalVariable::PrivateLinkage, Info); 2849 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2850 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2851 2852 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2853 "__cfi_slowpath_diag", 2854 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2855 false)); 2856 CheckCall = Builder.CreateCall( 2857 SlowPathDiagFn, 2858 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2859 } else { 2860 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2861 "__cfi_slowpath", 2862 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2863 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2864 } 2865 2866 CheckCall->setDoesNotThrow(); 2867 2868 EmitBlock(Cont); 2869 } 2870 2871 // Emit a stub for __cfi_check function so that the linker knows about this 2872 // symbol in LTO mode. 2873 void CodeGenFunction::EmitCfiCheckStub() { 2874 llvm::Module *M = &CGM.getModule(); 2875 auto &Ctx = M->getContext(); 2876 llvm::Function *F = llvm::Function::Create( 2877 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2878 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2879 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2880 // FIXME: consider emitting an intrinsic call like 2881 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2882 // which can be lowered in CrossDSOCFI pass to the actual contents of 2883 // __cfi_check. This would allow inlining of __cfi_check calls. 2884 llvm::CallInst::Create( 2885 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2886 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2887 } 2888 2889 // This function is basically a switch over the CFI failure kind, which is 2890 // extracted from CFICheckFailData (1st function argument). Each case is either 2891 // llvm.trap or a call to one of the two runtime handlers, based on 2892 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2893 // failure kind) traps, but this should really never happen. CFICheckFailData 2894 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2895 // check kind; in this case __cfi_check_fail traps as well. 2896 void CodeGenFunction::EmitCfiCheckFail() { 2897 SanitizerScope SanScope(this); 2898 FunctionArgList Args; 2899 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2900 ImplicitParamDecl::Other); 2901 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2902 ImplicitParamDecl::Other); 2903 Args.push_back(&ArgData); 2904 Args.push_back(&ArgAddr); 2905 2906 const CGFunctionInfo &FI = 2907 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2908 2909 llvm::Function *F = llvm::Function::Create( 2910 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2911 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2912 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2913 2914 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2915 SourceLocation()); 2916 2917 llvm::Value *Data = 2918 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2919 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2920 llvm::Value *Addr = 2921 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2922 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2923 2924 // Data == nullptr means the calling module has trap behaviour for this check. 2925 llvm::Value *DataIsNotNullPtr = 2926 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2927 EmitTrapCheck(DataIsNotNullPtr); 2928 2929 llvm::StructType *SourceLocationTy = 2930 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2931 llvm::StructType *CfiCheckFailDataTy = 2932 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2933 2934 llvm::Value *V = Builder.CreateConstGEP2_32( 2935 CfiCheckFailDataTy, 2936 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2937 0); 2938 Address CheckKindAddr(V, getIntAlign()); 2939 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2940 2941 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2942 CGM.getLLVMContext(), 2943 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2944 llvm::Value *ValidVtable = Builder.CreateZExt( 2945 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2946 {Addr, AllVtables}), 2947 IntPtrTy); 2948 2949 const std::pair<int, SanitizerMask> CheckKinds[] = { 2950 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2951 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2952 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2953 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2954 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2955 2956 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2957 for (auto CheckKindMaskPair : CheckKinds) { 2958 int Kind = CheckKindMaskPair.first; 2959 SanitizerMask Mask = CheckKindMaskPair.second; 2960 llvm::Value *Cond = 2961 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2962 if (CGM.getLangOpts().Sanitize.has(Mask)) 2963 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2964 {Data, Addr, ValidVtable}); 2965 else 2966 EmitTrapCheck(Cond); 2967 } 2968 2969 FinishFunction(); 2970 // The only reference to this function will be created during LTO link. 2971 // Make sure it survives until then. 2972 CGM.addUsedGlobal(F); 2973 } 2974 2975 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2976 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2977 2978 // If we're optimizing, collapse all calls to trap down to just one per 2979 // function to save on code size. 2980 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2981 TrapBB = createBasicBlock("trap"); 2982 Builder.CreateCondBr(Checked, Cont, TrapBB); 2983 EmitBlock(TrapBB); 2984 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2985 TrapCall->setDoesNotReturn(); 2986 TrapCall->setDoesNotThrow(); 2987 Builder.CreateUnreachable(); 2988 } else { 2989 Builder.CreateCondBr(Checked, Cont, TrapBB); 2990 } 2991 2992 EmitBlock(Cont); 2993 } 2994 2995 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2996 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2997 2998 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2999 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3000 CGM.getCodeGenOpts().TrapFuncName); 3001 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3002 } 3003 3004 return TrapCall; 3005 } 3006 3007 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3008 LValueBaseInfo *BaseInfo) { 3009 assert(E->getType()->isArrayType() && 3010 "Array to pointer decay must have array source type!"); 3011 3012 // Expressions of array type can't be bitfields or vector elements. 3013 LValue LV = EmitLValue(E); 3014 Address Addr = LV.getAddress(); 3015 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3016 3017 // If the array type was an incomplete type, we need to make sure 3018 // the decay ends up being the right type. 3019 llvm::Type *NewTy = ConvertType(E->getType()); 3020 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3021 3022 // Note that VLA pointers are always decayed, so we don't need to do 3023 // anything here. 3024 if (!E->getType()->isVariableArrayType()) { 3025 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3026 "Expected pointer to array"); 3027 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3028 } 3029 3030 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3031 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3032 } 3033 3034 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3035 /// array to pointer, return the array subexpression. 3036 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3037 // If this isn't just an array->pointer decay, bail out. 3038 const auto *CE = dyn_cast<CastExpr>(E); 3039 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3040 return nullptr; 3041 3042 // If this is a decay from variable width array, bail out. 3043 const Expr *SubExpr = CE->getSubExpr(); 3044 if (SubExpr->getType()->isVariableArrayType()) 3045 return nullptr; 3046 3047 return SubExpr; 3048 } 3049 3050 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3051 llvm::Value *ptr, 3052 ArrayRef<llvm::Value*> indices, 3053 bool inbounds, 3054 bool signedIndices, 3055 SourceLocation loc, 3056 const llvm::Twine &name = "arrayidx") { 3057 if (inbounds) { 3058 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3059 CodeGenFunction::NotSubtraction, loc, 3060 name); 3061 } else { 3062 return CGF.Builder.CreateGEP(ptr, indices, name); 3063 } 3064 } 3065 3066 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3067 llvm::Value *idx, 3068 CharUnits eltSize) { 3069 // If we have a constant index, we can use the exact offset of the 3070 // element we're accessing. 3071 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3072 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3073 return arrayAlign.alignmentAtOffset(offset); 3074 3075 // Otherwise, use the worst-case alignment for any element. 3076 } else { 3077 return arrayAlign.alignmentOfArrayElement(eltSize); 3078 } 3079 } 3080 3081 static QualType getFixedSizeElementType(const ASTContext &ctx, 3082 const VariableArrayType *vla) { 3083 QualType eltType; 3084 do { 3085 eltType = vla->getElementType(); 3086 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3087 return eltType; 3088 } 3089 3090 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3091 ArrayRef<llvm::Value *> indices, 3092 QualType eltType, bool inbounds, 3093 bool signedIndices, SourceLocation loc, 3094 const llvm::Twine &name = "arrayidx") { 3095 // All the indices except that last must be zero. 3096 #ifndef NDEBUG 3097 for (auto idx : indices.drop_back()) 3098 assert(isa<llvm::ConstantInt>(idx) && 3099 cast<llvm::ConstantInt>(idx)->isZero()); 3100 #endif 3101 3102 // Determine the element size of the statically-sized base. This is 3103 // the thing that the indices are expressed in terms of. 3104 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3105 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3106 } 3107 3108 // We can use that to compute the best alignment of the element. 3109 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3110 CharUnits eltAlign = 3111 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3112 3113 llvm::Value *eltPtr = emitArraySubscriptGEP( 3114 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3115 return Address(eltPtr, eltAlign); 3116 } 3117 3118 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3119 bool Accessed) { 3120 // The index must always be an integer, which is not an aggregate. Emit it 3121 // in lexical order (this complexity is, sadly, required by C++17). 3122 llvm::Value *IdxPre = 3123 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3124 bool SignedIndices = false; 3125 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3126 auto *Idx = IdxPre; 3127 if (E->getLHS() != E->getIdx()) { 3128 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3129 Idx = EmitScalarExpr(E->getIdx()); 3130 } 3131 3132 QualType IdxTy = E->getIdx()->getType(); 3133 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3134 SignedIndices |= IdxSigned; 3135 3136 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3137 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3138 3139 // Extend or truncate the index type to 32 or 64-bits. 3140 if (Promote && Idx->getType() != IntPtrTy) 3141 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3142 3143 return Idx; 3144 }; 3145 IdxPre = nullptr; 3146 3147 // If the base is a vector type, then we are forming a vector element lvalue 3148 // with this subscript. 3149 if (E->getBase()->getType()->isVectorType() && 3150 !isa<ExtVectorElementExpr>(E->getBase())) { 3151 // Emit the vector as an lvalue to get its address. 3152 LValue LHS = EmitLValue(E->getBase()); 3153 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3154 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3155 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3156 E->getBase()->getType(), 3157 LHS.getBaseInfo()); 3158 } 3159 3160 // All the other cases basically behave like simple offsetting. 3161 3162 // Handle the extvector case we ignored above. 3163 if (isa<ExtVectorElementExpr>(E->getBase())) { 3164 LValue LV = EmitLValue(E->getBase()); 3165 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3166 Address Addr = EmitExtVectorElementLValue(LV); 3167 3168 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3169 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3170 SignedIndices, E->getExprLoc()); 3171 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo()); 3172 } 3173 3174 LValueBaseInfo BaseInfo; 3175 Address Addr = Address::invalid(); 3176 if (const VariableArrayType *vla = 3177 getContext().getAsVariableArrayType(E->getType())) { 3178 // The base must be a pointer, which is not an aggregate. Emit 3179 // it. It needs to be emitted first in case it's what captures 3180 // the VLA bounds. 3181 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3182 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3183 3184 // The element count here is the total number of non-VLA elements. 3185 llvm::Value *numElements = getVLASize(vla).first; 3186 3187 // Effectively, the multiply by the VLA size is part of the GEP. 3188 // GEP indexes are signed, and scaling an index isn't permitted to 3189 // signed-overflow, so we use the same semantics for our explicit 3190 // multiply. We suppress this if overflow is not undefined behavior. 3191 if (getLangOpts().isSignedOverflowDefined()) { 3192 Idx = Builder.CreateMul(Idx, numElements); 3193 } else { 3194 Idx = Builder.CreateNSWMul(Idx, numElements); 3195 } 3196 3197 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3198 !getLangOpts().isSignedOverflowDefined(), 3199 SignedIndices, E->getExprLoc()); 3200 3201 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3202 // Indexing over an interface, as in "NSString *P; P[4];" 3203 3204 // Emit the base pointer. 3205 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3206 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3207 3208 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3209 llvm::Value *InterfaceSizeVal = 3210 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3211 3212 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3213 3214 // We don't necessarily build correct LLVM struct types for ObjC 3215 // interfaces, so we can't rely on GEP to do this scaling 3216 // correctly, so we need to cast to i8*. FIXME: is this actually 3217 // true? A lot of other things in the fragile ABI would break... 3218 llvm::Type *OrigBaseTy = Addr.getType(); 3219 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3220 3221 // Do the GEP. 3222 CharUnits EltAlign = 3223 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3224 llvm::Value *EltPtr = 3225 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3226 SignedIndices, E->getExprLoc()); 3227 Addr = Address(EltPtr, EltAlign); 3228 3229 // Cast back. 3230 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3231 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3232 // If this is A[i] where A is an array, the frontend will have decayed the 3233 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3234 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3235 // "gep x, i" here. Emit one "gep A, 0, i". 3236 assert(Array->getType()->isArrayType() && 3237 "Array to pointer decay must have array source type!"); 3238 LValue ArrayLV; 3239 // For simple multidimensional array indexing, set the 'accessed' flag for 3240 // better bounds-checking of the base expression. 3241 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3242 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3243 else 3244 ArrayLV = EmitLValue(Array); 3245 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3246 3247 // Propagate the alignment from the array itself to the result. 3248 Addr = emitArraySubscriptGEP( 3249 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3250 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3251 E->getExprLoc()); 3252 BaseInfo = ArrayLV.getBaseInfo(); 3253 } else { 3254 // The base must be a pointer; emit it with an estimate of its alignment. 3255 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3256 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3257 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3258 !getLangOpts().isSignedOverflowDefined(), 3259 SignedIndices, E->getExprLoc()); 3260 } 3261 3262 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo); 3263 3264 // TODO: Preserve/extend path TBAA metadata? 3265 3266 if (getLangOpts().ObjC1 && 3267 getLangOpts().getGC() != LangOptions::NonGC) { 3268 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3269 setObjCGCLValueClass(getContext(), E, LV); 3270 } 3271 return LV; 3272 } 3273 3274 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3275 LValueBaseInfo &BaseInfo, 3276 QualType BaseTy, QualType ElTy, 3277 bool IsLowerBound) { 3278 LValue BaseLVal; 3279 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3280 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3281 if (BaseTy->isArrayType()) { 3282 Address Addr = BaseLVal.getAddress(); 3283 BaseInfo = BaseLVal.getBaseInfo(); 3284 3285 // If the array type was an incomplete type, we need to make sure 3286 // the decay ends up being the right type. 3287 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3288 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3289 3290 // Note that VLA pointers are always decayed, so we don't need to do 3291 // anything here. 3292 if (!BaseTy->isVariableArrayType()) { 3293 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3294 "Expected pointer to array"); 3295 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3296 "arraydecay"); 3297 } 3298 3299 return CGF.Builder.CreateElementBitCast(Addr, 3300 CGF.ConvertTypeForMem(ElTy)); 3301 } 3302 LValueBaseInfo TypeInfo; 3303 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3304 BaseInfo.mergeForCast(TypeInfo); 3305 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3306 } 3307 return CGF.EmitPointerWithAlignment(Base, &BaseInfo); 3308 } 3309 3310 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3311 bool IsLowerBound) { 3312 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3313 QualType ResultExprTy; 3314 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3315 ResultExprTy = AT->getElementType(); 3316 else 3317 ResultExprTy = BaseTy->getPointeeType(); 3318 llvm::Value *Idx = nullptr; 3319 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3320 // Requesting lower bound or upper bound, but without provided length and 3321 // without ':' symbol for the default length -> length = 1. 3322 // Idx = LowerBound ?: 0; 3323 if (auto *LowerBound = E->getLowerBound()) { 3324 Idx = Builder.CreateIntCast( 3325 EmitScalarExpr(LowerBound), IntPtrTy, 3326 LowerBound->getType()->hasSignedIntegerRepresentation()); 3327 } else 3328 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3329 } else { 3330 // Try to emit length or lower bound as constant. If this is possible, 1 3331 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3332 // IR (LB + Len) - 1. 3333 auto &C = CGM.getContext(); 3334 auto *Length = E->getLength(); 3335 llvm::APSInt ConstLength; 3336 if (Length) { 3337 // Idx = LowerBound + Length - 1; 3338 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3339 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3340 Length = nullptr; 3341 } 3342 auto *LowerBound = E->getLowerBound(); 3343 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3344 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3345 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3346 LowerBound = nullptr; 3347 } 3348 if (!Length) 3349 --ConstLength; 3350 else if (!LowerBound) 3351 --ConstLowerBound; 3352 3353 if (Length || LowerBound) { 3354 auto *LowerBoundVal = 3355 LowerBound 3356 ? Builder.CreateIntCast( 3357 EmitScalarExpr(LowerBound), IntPtrTy, 3358 LowerBound->getType()->hasSignedIntegerRepresentation()) 3359 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3360 auto *LengthVal = 3361 Length 3362 ? Builder.CreateIntCast( 3363 EmitScalarExpr(Length), IntPtrTy, 3364 Length->getType()->hasSignedIntegerRepresentation()) 3365 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3366 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3367 /*HasNUW=*/false, 3368 !getLangOpts().isSignedOverflowDefined()); 3369 if (Length && LowerBound) { 3370 Idx = Builder.CreateSub( 3371 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3372 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3373 } 3374 } else 3375 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3376 } else { 3377 // Idx = ArraySize - 1; 3378 QualType ArrayTy = BaseTy->isPointerType() 3379 ? E->getBase()->IgnoreParenImpCasts()->getType() 3380 : BaseTy; 3381 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3382 Length = VAT->getSizeExpr(); 3383 if (Length->isIntegerConstantExpr(ConstLength, C)) 3384 Length = nullptr; 3385 } else { 3386 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3387 ConstLength = CAT->getSize(); 3388 } 3389 if (Length) { 3390 auto *LengthVal = Builder.CreateIntCast( 3391 EmitScalarExpr(Length), IntPtrTy, 3392 Length->getType()->hasSignedIntegerRepresentation()); 3393 Idx = Builder.CreateSub( 3394 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3395 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3396 } else { 3397 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3398 --ConstLength; 3399 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3400 } 3401 } 3402 } 3403 assert(Idx); 3404 3405 Address EltPtr = Address::invalid(); 3406 LValueBaseInfo BaseInfo; 3407 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3408 // The base must be a pointer, which is not an aggregate. Emit 3409 // it. It needs to be emitted first in case it's what captures 3410 // the VLA bounds. 3411 Address Base = 3412 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy, 3413 VLA->getElementType(), IsLowerBound); 3414 // The element count here is the total number of non-VLA elements. 3415 llvm::Value *NumElements = getVLASize(VLA).first; 3416 3417 // Effectively, the multiply by the VLA size is part of the GEP. 3418 // GEP indexes are signed, and scaling an index isn't permitted to 3419 // signed-overflow, so we use the same semantics for our explicit 3420 // multiply. We suppress this if overflow is not undefined behavior. 3421 if (getLangOpts().isSignedOverflowDefined()) 3422 Idx = Builder.CreateMul(Idx, NumElements); 3423 else 3424 Idx = Builder.CreateNSWMul(Idx, NumElements); 3425 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3426 !getLangOpts().isSignedOverflowDefined(), 3427 /*SignedIndices=*/false, E->getExprLoc()); 3428 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3429 // If this is A[i] where A is an array, the frontend will have decayed the 3430 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3431 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3432 // "gep x, i" here. Emit one "gep A, 0, i". 3433 assert(Array->getType()->isArrayType() && 3434 "Array to pointer decay must have array source type!"); 3435 LValue ArrayLV; 3436 // For simple multidimensional array indexing, set the 'accessed' flag for 3437 // better bounds-checking of the base expression. 3438 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3439 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3440 else 3441 ArrayLV = EmitLValue(Array); 3442 3443 // Propagate the alignment from the array itself to the result. 3444 EltPtr = emitArraySubscriptGEP( 3445 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3446 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3447 /*SignedIndices=*/false, E->getExprLoc()); 3448 BaseInfo = ArrayLV.getBaseInfo(); 3449 } else { 3450 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3451 BaseTy, ResultExprTy, IsLowerBound); 3452 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3453 !getLangOpts().isSignedOverflowDefined(), 3454 /*SignedIndices=*/false, E->getExprLoc()); 3455 } 3456 3457 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo); 3458 } 3459 3460 LValue CodeGenFunction:: 3461 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3462 // Emit the base vector as an l-value. 3463 LValue Base; 3464 3465 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3466 if (E->isArrow()) { 3467 // If it is a pointer to a vector, emit the address and form an lvalue with 3468 // it. 3469 LValueBaseInfo BaseInfo; 3470 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3471 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3472 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo); 3473 Base.getQuals().removeObjCGCAttr(); 3474 } else if (E->getBase()->isGLValue()) { 3475 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3476 // emit the base as an lvalue. 3477 assert(E->getBase()->getType()->isVectorType()); 3478 Base = EmitLValue(E->getBase()); 3479 } else { 3480 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3481 assert(E->getBase()->getType()->isVectorType() && 3482 "Result must be a vector"); 3483 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3484 3485 // Store the vector to memory (because LValue wants an address). 3486 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3487 Builder.CreateStore(Vec, VecMem); 3488 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3489 LValueBaseInfo(AlignmentSource::Decl, false)); 3490 } 3491 3492 QualType type = 3493 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3494 3495 // Encode the element access list into a vector of unsigned indices. 3496 SmallVector<uint32_t, 4> Indices; 3497 E->getEncodedElementAccess(Indices); 3498 3499 if (Base.isSimple()) { 3500 llvm::Constant *CV = 3501 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3502 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3503 Base.getBaseInfo()); 3504 } 3505 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3506 3507 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3508 SmallVector<llvm::Constant *, 4> CElts; 3509 3510 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3511 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3512 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3513 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3514 Base.getBaseInfo()); 3515 } 3516 3517 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3518 Expr *BaseExpr = E->getBase(); 3519 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3520 LValue BaseLV; 3521 if (E->isArrow()) { 3522 LValueBaseInfo BaseInfo; 3523 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo); 3524 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3525 SanitizerSet SkippedChecks; 3526 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3527 if (IsBaseCXXThis) 3528 SkippedChecks.set(SanitizerKind::Alignment, true); 3529 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3530 SkippedChecks.set(SanitizerKind::Null, true); 3531 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3532 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3533 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo); 3534 } else 3535 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3536 3537 NamedDecl *ND = E->getMemberDecl(); 3538 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3539 LValue LV = EmitLValueForField(BaseLV, Field); 3540 setObjCGCLValueClass(getContext(), E, LV); 3541 return LV; 3542 } 3543 3544 if (auto *VD = dyn_cast<VarDecl>(ND)) 3545 return EmitGlobalVarDeclLValue(*this, E, VD); 3546 3547 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3548 return EmitFunctionDeclLValue(*this, E, FD); 3549 3550 llvm_unreachable("Unhandled member declaration!"); 3551 } 3552 3553 /// Given that we are currently emitting a lambda, emit an l-value for 3554 /// one of its members. 3555 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3556 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3557 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3558 QualType LambdaTagType = 3559 getContext().getTagDeclType(Field->getParent()); 3560 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3561 return EmitLValueForField(LambdaLV, Field); 3562 } 3563 3564 /// Drill down to the storage of a field without walking into 3565 /// reference types. 3566 /// 3567 /// The resulting address doesn't necessarily have the right type. 3568 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3569 const FieldDecl *field) { 3570 const RecordDecl *rec = field->getParent(); 3571 3572 unsigned idx = 3573 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3574 3575 CharUnits offset; 3576 // Adjust the alignment down to the given offset. 3577 // As a special case, if the LLVM field index is 0, we know that this 3578 // is zero. 3579 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3580 .getFieldOffset(field->getFieldIndex()) == 0) && 3581 "LLVM field at index zero had non-zero offset?"); 3582 if (idx != 0) { 3583 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3584 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3585 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3586 } 3587 3588 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3589 } 3590 3591 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3592 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3593 if (!RD) 3594 return false; 3595 3596 if (RD->isDynamicClass()) 3597 return true; 3598 3599 for (const auto &Base : RD->bases()) 3600 if (hasAnyVptr(Base.getType(), Context)) 3601 return true; 3602 3603 for (const FieldDecl *Field : RD->fields()) 3604 if (hasAnyVptr(Field->getType(), Context)) 3605 return true; 3606 3607 return false; 3608 } 3609 3610 LValue CodeGenFunction::EmitLValueForField(LValue base, 3611 const FieldDecl *field) { 3612 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3613 AlignmentSource fieldAlignSource = 3614 getFieldAlignmentSource(BaseInfo.getAlignmentSource()); 3615 LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias()); 3616 3617 QualType type = field->getType(); 3618 const RecordDecl *rec = field->getParent(); 3619 if (rec->isUnion() || rec->hasAttr<MayAliasAttr>() || type->isVectorType()) 3620 FieldBaseInfo.setMayAlias(true); 3621 bool mayAlias = FieldBaseInfo.getMayAlias(); 3622 3623 if (field->isBitField()) { 3624 const CGRecordLayout &RL = 3625 CGM.getTypes().getCGRecordLayout(field->getParent()); 3626 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3627 Address Addr = base.getAddress(); 3628 unsigned Idx = RL.getLLVMFieldNo(field); 3629 if (Idx != 0) 3630 // For structs, we GEP to the field that the record layout suggests. 3631 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3632 field->getName()); 3633 // Get the access type. 3634 llvm::Type *FieldIntTy = 3635 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3636 if (Addr.getElementType() != FieldIntTy) 3637 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3638 3639 QualType fieldType = 3640 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3641 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo); 3642 } 3643 3644 Address addr = base.getAddress(); 3645 unsigned cvr = base.getVRQualifiers(); 3646 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3647 if (rec->isUnion()) { 3648 // For unions, there is no pointer adjustment. 3649 assert(!type->isReferenceType() && "union has reference member"); 3650 // TODO: handle path-aware TBAA for union. 3651 TBAAPath = false; 3652 3653 const auto FieldType = field->getType(); 3654 if (CGM.getCodeGenOpts().StrictVTablePointers && 3655 hasAnyVptr(FieldType, getContext())) 3656 // Because unions can easily skip invariant.barriers, we need to add 3657 // a barrier every time CXXRecord field with vptr is referenced. 3658 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3659 addr.getAlignment()); 3660 } else { 3661 // For structs, we GEP to the field that the record layout suggests. 3662 addr = emitAddrOfFieldStorage(*this, addr, field); 3663 3664 // If this is a reference field, load the reference right now. 3665 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3666 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3667 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3668 3669 // Loading the reference will disable path-aware TBAA. 3670 TBAAPath = false; 3671 if (CGM.shouldUseTBAA()) { 3672 llvm::MDNode *tbaa; 3673 if (mayAlias) 3674 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3675 else 3676 tbaa = CGM.getTBAAInfo(type); 3677 if (tbaa) 3678 CGM.DecorateInstructionWithTBAA(load, tbaa); 3679 } 3680 3681 mayAlias = false; 3682 type = refType->getPointeeType(); 3683 3684 CharUnits alignment = 3685 getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true); 3686 FieldBaseInfo.setMayAlias(false); 3687 addr = Address(load, alignment); 3688 3689 // Qualifiers on the struct don't apply to the referencee, and 3690 // we'll pick up CVR from the actual type later, so reset these 3691 // additional qualifiers now. 3692 cvr = 0; 3693 } 3694 } 3695 3696 // Make sure that the address is pointing to the right type. This is critical 3697 // for both unions and structs. A union needs a bitcast, a struct element 3698 // will need a bitcast if the LLVM type laid out doesn't match the desired 3699 // type. 3700 addr = Builder.CreateElementBitCast(addr, 3701 CGM.getTypes().ConvertTypeForMem(type), 3702 field->getName()); 3703 3704 if (field->hasAttr<AnnotateAttr>()) 3705 addr = EmitFieldAnnotations(field, addr); 3706 3707 LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo); 3708 LV.getQuals().addCVRQualifiers(cvr); 3709 if (TBAAPath) { 3710 const ASTRecordLayout &Layout = 3711 getContext().getASTRecordLayout(field->getParent()); 3712 // Set the base type to be the base type of the base LValue and 3713 // update offset to be relative to the base type. 3714 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3715 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3716 Layout.getFieldOffset(field->getFieldIndex()) / 3717 getContext().getCharWidth()); 3718 } 3719 3720 // __weak attribute on a field is ignored. 3721 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3722 LV.getQuals().removeObjCGCAttr(); 3723 3724 // Fields of may_alias structs act like 'char' for TBAA purposes. 3725 // FIXME: this should get propagated down through anonymous structs 3726 // and unions. 3727 if (mayAlias && LV.getTBAAInfo()) 3728 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3729 3730 return LV; 3731 } 3732 3733 LValue 3734 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3735 const FieldDecl *Field) { 3736 QualType FieldType = Field->getType(); 3737 3738 if (!FieldType->isReferenceType()) 3739 return EmitLValueForField(Base, Field); 3740 3741 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3742 3743 // Make sure that the address is pointing to the right type. 3744 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3745 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3746 3747 // TODO: access-path TBAA? 3748 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3749 LValueBaseInfo FieldBaseInfo( 3750 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3751 BaseInfo.getMayAlias()); 3752 return MakeAddrLValue(V, FieldType, FieldBaseInfo); 3753 } 3754 3755 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3756 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 3757 if (E->isFileScope()) { 3758 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3759 return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo); 3760 } 3761 if (E->getType()->isVariablyModifiedType()) 3762 // make sure to emit the VLA size. 3763 EmitVariablyModifiedType(E->getType()); 3764 3765 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3766 const Expr *InitExpr = E->getInitializer(); 3767 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo); 3768 3769 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3770 /*Init*/ true); 3771 3772 return Result; 3773 } 3774 3775 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3776 if (!E->isGLValue()) 3777 // Initializing an aggregate temporary in C++11: T{...}. 3778 return EmitAggExprToLValue(E); 3779 3780 // An lvalue initializer list must be initializing a reference. 3781 assert(E->isTransparent() && "non-transparent glvalue init list"); 3782 return EmitLValue(E->getInit(0)); 3783 } 3784 3785 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3786 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3787 /// LValue is returned and the current block has been terminated. 3788 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3789 const Expr *Operand) { 3790 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3791 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3792 return None; 3793 } 3794 3795 return CGF.EmitLValue(Operand); 3796 } 3797 3798 LValue CodeGenFunction:: 3799 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3800 if (!expr->isGLValue()) { 3801 // ?: here should be an aggregate. 3802 assert(hasAggregateEvaluationKind(expr->getType()) && 3803 "Unexpected conditional operator!"); 3804 return EmitAggExprToLValue(expr); 3805 } 3806 3807 OpaqueValueMapping binding(*this, expr); 3808 3809 const Expr *condExpr = expr->getCond(); 3810 bool CondExprBool; 3811 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3812 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3813 if (!CondExprBool) std::swap(live, dead); 3814 3815 if (!ContainsLabel(dead)) { 3816 // If the true case is live, we need to track its region. 3817 if (CondExprBool) 3818 incrementProfileCounter(expr); 3819 return EmitLValue(live); 3820 } 3821 } 3822 3823 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3824 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3825 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3826 3827 ConditionalEvaluation eval(*this); 3828 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3829 3830 // Any temporaries created here are conditional. 3831 EmitBlock(lhsBlock); 3832 incrementProfileCounter(expr); 3833 eval.begin(*this); 3834 Optional<LValue> lhs = 3835 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3836 eval.end(*this); 3837 3838 if (lhs && !lhs->isSimple()) 3839 return EmitUnsupportedLValue(expr, "conditional operator"); 3840 3841 lhsBlock = Builder.GetInsertBlock(); 3842 if (lhs) 3843 Builder.CreateBr(contBlock); 3844 3845 // Any temporaries created here are conditional. 3846 EmitBlock(rhsBlock); 3847 eval.begin(*this); 3848 Optional<LValue> rhs = 3849 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3850 eval.end(*this); 3851 if (rhs && !rhs->isSimple()) 3852 return EmitUnsupportedLValue(expr, "conditional operator"); 3853 rhsBlock = Builder.GetInsertBlock(); 3854 3855 EmitBlock(contBlock); 3856 3857 if (lhs && rhs) { 3858 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3859 2, "cond-lvalue"); 3860 phi->addIncoming(lhs->getPointer(), lhsBlock); 3861 phi->addIncoming(rhs->getPointer(), rhsBlock); 3862 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3863 AlignmentSource alignSource = 3864 std::max(lhs->getBaseInfo().getAlignmentSource(), 3865 rhs->getBaseInfo().getAlignmentSource()); 3866 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3867 rhs->getBaseInfo().getMayAlias(); 3868 return MakeAddrLValue(result, expr->getType(), 3869 LValueBaseInfo(alignSource, MayAlias)); 3870 } else { 3871 assert((lhs || rhs) && 3872 "both operands of glvalue conditional are throw-expressions?"); 3873 return lhs ? *lhs : *rhs; 3874 } 3875 } 3876 3877 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3878 /// type. If the cast is to a reference, we can have the usual lvalue result, 3879 /// otherwise if a cast is needed by the code generator in an lvalue context, 3880 /// then it must mean that we need the address of an aggregate in order to 3881 /// access one of its members. This can happen for all the reasons that casts 3882 /// are permitted with aggregate result, including noop aggregate casts, and 3883 /// cast from scalar to union. 3884 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3885 switch (E->getCastKind()) { 3886 case CK_ToVoid: 3887 case CK_BitCast: 3888 case CK_ArrayToPointerDecay: 3889 case CK_FunctionToPointerDecay: 3890 case CK_NullToMemberPointer: 3891 case CK_NullToPointer: 3892 case CK_IntegralToPointer: 3893 case CK_PointerToIntegral: 3894 case CK_PointerToBoolean: 3895 case CK_VectorSplat: 3896 case CK_IntegralCast: 3897 case CK_BooleanToSignedIntegral: 3898 case CK_IntegralToBoolean: 3899 case CK_IntegralToFloating: 3900 case CK_FloatingToIntegral: 3901 case CK_FloatingToBoolean: 3902 case CK_FloatingCast: 3903 case CK_FloatingRealToComplex: 3904 case CK_FloatingComplexToReal: 3905 case CK_FloatingComplexToBoolean: 3906 case CK_FloatingComplexCast: 3907 case CK_FloatingComplexToIntegralComplex: 3908 case CK_IntegralRealToComplex: 3909 case CK_IntegralComplexToReal: 3910 case CK_IntegralComplexToBoolean: 3911 case CK_IntegralComplexCast: 3912 case CK_IntegralComplexToFloatingComplex: 3913 case CK_DerivedToBaseMemberPointer: 3914 case CK_BaseToDerivedMemberPointer: 3915 case CK_MemberPointerToBoolean: 3916 case CK_ReinterpretMemberPointer: 3917 case CK_AnyPointerToBlockPointerCast: 3918 case CK_ARCProduceObject: 3919 case CK_ARCConsumeObject: 3920 case CK_ARCReclaimReturnedObject: 3921 case CK_ARCExtendBlockObject: 3922 case CK_CopyAndAutoreleaseBlockObject: 3923 case CK_AddressSpaceConversion: 3924 case CK_IntToOCLSampler: 3925 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3926 3927 case CK_Dependent: 3928 llvm_unreachable("dependent cast kind in IR gen!"); 3929 3930 case CK_BuiltinFnToFnPtr: 3931 llvm_unreachable("builtin functions are handled elsewhere"); 3932 3933 // These are never l-values; just use the aggregate emission code. 3934 case CK_NonAtomicToAtomic: 3935 case CK_AtomicToNonAtomic: 3936 return EmitAggExprToLValue(E); 3937 3938 case CK_Dynamic: { 3939 LValue LV = EmitLValue(E->getSubExpr()); 3940 Address V = LV.getAddress(); 3941 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3942 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3943 } 3944 3945 case CK_ConstructorConversion: 3946 case CK_UserDefinedConversion: 3947 case CK_CPointerToObjCPointerCast: 3948 case CK_BlockPointerToObjCPointerCast: 3949 case CK_NoOp: 3950 case CK_LValueToRValue: 3951 return EmitLValue(E->getSubExpr()); 3952 3953 case CK_UncheckedDerivedToBase: 3954 case CK_DerivedToBase: { 3955 const RecordType *DerivedClassTy = 3956 E->getSubExpr()->getType()->getAs<RecordType>(); 3957 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3958 3959 LValue LV = EmitLValue(E->getSubExpr()); 3960 Address This = LV.getAddress(); 3961 3962 // Perform the derived-to-base conversion 3963 Address Base = GetAddressOfBaseClass( 3964 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3965 /*NullCheckValue=*/false, E->getExprLoc()); 3966 3967 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo()); 3968 } 3969 case CK_ToUnion: 3970 return EmitAggExprToLValue(E); 3971 case CK_BaseToDerived: { 3972 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3973 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3974 3975 LValue LV = EmitLValue(E->getSubExpr()); 3976 3977 // Perform the base-to-derived conversion 3978 Address Derived = 3979 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3980 E->path_begin(), E->path_end(), 3981 /*NullCheckValue=*/false); 3982 3983 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3984 // performed and the object is not of the derived type. 3985 if (sanitizePerformTypeCheck()) 3986 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3987 Derived.getPointer(), E->getType()); 3988 3989 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3990 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3991 /*MayBeNull=*/false, 3992 CFITCK_DerivedCast, E->getLocStart()); 3993 3994 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo()); 3995 } 3996 case CK_LValueBitCast: { 3997 // This must be a reinterpret_cast (or c-style equivalent). 3998 const auto *CE = cast<ExplicitCastExpr>(E); 3999 4000 CGM.EmitExplicitCastExprType(CE, this); 4001 LValue LV = EmitLValue(E->getSubExpr()); 4002 Address V = Builder.CreateBitCast(LV.getAddress(), 4003 ConvertType(CE->getTypeAsWritten())); 4004 4005 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4006 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4007 /*MayBeNull=*/false, 4008 CFITCK_UnrelatedCast, E->getLocStart()); 4009 4010 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4011 } 4012 case CK_ObjCObjectLValueCast: { 4013 LValue LV = EmitLValue(E->getSubExpr()); 4014 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4015 ConvertType(E->getType())); 4016 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4017 } 4018 case CK_ZeroToOCLQueue: 4019 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4020 case CK_ZeroToOCLEvent: 4021 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4022 } 4023 4024 llvm_unreachable("Unhandled lvalue cast kind?"); 4025 } 4026 4027 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4028 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4029 return getOpaqueLValueMapping(e); 4030 } 4031 4032 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4033 const FieldDecl *FD, 4034 SourceLocation Loc) { 4035 QualType FT = FD->getType(); 4036 LValue FieldLV = EmitLValueForField(LV, FD); 4037 switch (getEvaluationKind(FT)) { 4038 case TEK_Complex: 4039 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4040 case TEK_Aggregate: 4041 return FieldLV.asAggregateRValue(); 4042 case TEK_Scalar: 4043 // This routine is used to load fields one-by-one to perform a copy, so 4044 // don't load reference fields. 4045 if (FD->getType()->isReferenceType()) 4046 return RValue::get(FieldLV.getPointer()); 4047 return EmitLoadOfLValue(FieldLV, Loc); 4048 } 4049 llvm_unreachable("bad evaluation kind"); 4050 } 4051 4052 //===--------------------------------------------------------------------===// 4053 // Expression Emission 4054 //===--------------------------------------------------------------------===// 4055 4056 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4057 ReturnValueSlot ReturnValue) { 4058 // Builtins never have block type. 4059 if (E->getCallee()->getType()->isBlockPointerType()) 4060 return EmitBlockCallExpr(E, ReturnValue); 4061 4062 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4063 return EmitCXXMemberCallExpr(CE, ReturnValue); 4064 4065 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4066 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4067 4068 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4069 if (const CXXMethodDecl *MD = 4070 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4071 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4072 4073 CGCallee callee = EmitCallee(E->getCallee()); 4074 4075 if (callee.isBuiltin()) { 4076 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4077 E, ReturnValue); 4078 } 4079 4080 if (callee.isPseudoDestructor()) { 4081 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4082 } 4083 4084 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4085 } 4086 4087 /// Emit a CallExpr without considering whether it might be a subclass. 4088 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4089 ReturnValueSlot ReturnValue) { 4090 CGCallee Callee = EmitCallee(E->getCallee()); 4091 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4092 } 4093 4094 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4095 if (auto builtinID = FD->getBuiltinID()) { 4096 return CGCallee::forBuiltin(builtinID, FD); 4097 } 4098 4099 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4100 return CGCallee::forDirect(calleePtr, FD); 4101 } 4102 4103 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4104 E = E->IgnoreParens(); 4105 4106 // Look through function-to-pointer decay. 4107 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4108 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4109 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4110 return EmitCallee(ICE->getSubExpr()); 4111 } 4112 4113 // Resolve direct calls. 4114 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4115 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4116 return EmitDirectCallee(*this, FD); 4117 } 4118 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4119 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4120 EmitIgnoredExpr(ME->getBase()); 4121 return EmitDirectCallee(*this, FD); 4122 } 4123 4124 // Look through template substitutions. 4125 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4126 return EmitCallee(NTTP->getReplacement()); 4127 4128 // Treat pseudo-destructor calls differently. 4129 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4130 return CGCallee::forPseudoDestructor(PDE); 4131 } 4132 4133 // Otherwise, we have an indirect reference. 4134 llvm::Value *calleePtr; 4135 QualType functionType; 4136 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4137 calleePtr = EmitScalarExpr(E); 4138 functionType = ptrType->getPointeeType(); 4139 } else { 4140 functionType = E->getType(); 4141 calleePtr = EmitLValue(E).getPointer(); 4142 } 4143 assert(functionType->isFunctionType()); 4144 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4145 E->getReferencedDeclOfCallee()); 4146 CGCallee callee(calleeInfo, calleePtr); 4147 return callee; 4148 } 4149 4150 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4151 // Comma expressions just emit their LHS then their RHS as an l-value. 4152 if (E->getOpcode() == BO_Comma) { 4153 EmitIgnoredExpr(E->getLHS()); 4154 EnsureInsertPoint(); 4155 return EmitLValue(E->getRHS()); 4156 } 4157 4158 if (E->getOpcode() == BO_PtrMemD || 4159 E->getOpcode() == BO_PtrMemI) 4160 return EmitPointerToDataMemberBinaryExpr(E); 4161 4162 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4163 4164 // Note that in all of these cases, __block variables need the RHS 4165 // evaluated first just in case the variable gets moved by the RHS. 4166 4167 switch (getEvaluationKind(E->getType())) { 4168 case TEK_Scalar: { 4169 switch (E->getLHS()->getType().getObjCLifetime()) { 4170 case Qualifiers::OCL_Strong: 4171 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4172 4173 case Qualifiers::OCL_Autoreleasing: 4174 return EmitARCStoreAutoreleasing(E).first; 4175 4176 // No reason to do any of these differently. 4177 case Qualifiers::OCL_None: 4178 case Qualifiers::OCL_ExplicitNone: 4179 case Qualifiers::OCL_Weak: 4180 break; 4181 } 4182 4183 RValue RV = EmitAnyExpr(E->getRHS()); 4184 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4185 if (RV.isScalar()) 4186 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4187 EmitStoreThroughLValue(RV, LV); 4188 return LV; 4189 } 4190 4191 case TEK_Complex: 4192 return EmitComplexAssignmentLValue(E); 4193 4194 case TEK_Aggregate: 4195 return EmitAggExprToLValue(E); 4196 } 4197 llvm_unreachable("bad evaluation kind"); 4198 } 4199 4200 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4201 RValue RV = EmitCallExpr(E); 4202 4203 if (!RV.isScalar()) 4204 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4205 LValueBaseInfo(AlignmentSource::Decl, false)); 4206 4207 assert(E->getCallReturnType(getContext())->isReferenceType() && 4208 "Can't have a scalar return unless the return type is a " 4209 "reference type!"); 4210 4211 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4212 } 4213 4214 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4215 // FIXME: This shouldn't require another copy. 4216 return EmitAggExprToLValue(E); 4217 } 4218 4219 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4220 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4221 && "binding l-value to type which needs a temporary"); 4222 AggValueSlot Slot = CreateAggTemp(E->getType()); 4223 EmitCXXConstructExpr(E, Slot); 4224 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4225 LValueBaseInfo(AlignmentSource::Decl, false)); 4226 } 4227 4228 LValue 4229 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4230 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4231 } 4232 4233 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4234 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4235 ConvertType(E->getType())); 4236 } 4237 4238 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4239 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4240 LValueBaseInfo(AlignmentSource::Decl, false)); 4241 } 4242 4243 LValue 4244 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4245 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4246 Slot.setExternallyDestructed(); 4247 EmitAggExpr(E->getSubExpr(), Slot); 4248 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4249 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4250 LValueBaseInfo(AlignmentSource::Decl, false)); 4251 } 4252 4253 LValue 4254 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4255 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4256 EmitLambdaExpr(E, Slot); 4257 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4258 LValueBaseInfo(AlignmentSource::Decl, false)); 4259 } 4260 4261 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4262 RValue RV = EmitObjCMessageExpr(E); 4263 4264 if (!RV.isScalar()) 4265 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4266 LValueBaseInfo(AlignmentSource::Decl, false)); 4267 4268 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4269 "Can't have a scalar return unless the return type is a " 4270 "reference type!"); 4271 4272 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4273 } 4274 4275 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4276 Address V = 4277 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4278 return MakeAddrLValue(V, E->getType(), 4279 LValueBaseInfo(AlignmentSource::Decl, false)); 4280 } 4281 4282 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4283 const ObjCIvarDecl *Ivar) { 4284 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4285 } 4286 4287 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4288 llvm::Value *BaseValue, 4289 const ObjCIvarDecl *Ivar, 4290 unsigned CVRQualifiers) { 4291 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4292 Ivar, CVRQualifiers); 4293 } 4294 4295 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4296 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4297 llvm::Value *BaseValue = nullptr; 4298 const Expr *BaseExpr = E->getBase(); 4299 Qualifiers BaseQuals; 4300 QualType ObjectTy; 4301 if (E->isArrow()) { 4302 BaseValue = EmitScalarExpr(BaseExpr); 4303 ObjectTy = BaseExpr->getType()->getPointeeType(); 4304 BaseQuals = ObjectTy.getQualifiers(); 4305 } else { 4306 LValue BaseLV = EmitLValue(BaseExpr); 4307 BaseValue = BaseLV.getPointer(); 4308 ObjectTy = BaseExpr->getType(); 4309 BaseQuals = ObjectTy.getQualifiers(); 4310 } 4311 4312 LValue LV = 4313 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4314 BaseQuals.getCVRQualifiers()); 4315 setObjCGCLValueClass(getContext(), E, LV); 4316 return LV; 4317 } 4318 4319 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4320 // Can only get l-value for message expression returning aggregate type 4321 RValue RV = EmitAnyExprToTemp(E); 4322 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4323 LValueBaseInfo(AlignmentSource::Decl, false)); 4324 } 4325 4326 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4327 const CallExpr *E, ReturnValueSlot ReturnValue, 4328 llvm::Value *Chain) { 4329 // Get the actual function type. The callee type will always be a pointer to 4330 // function type or a block pointer type. 4331 assert(CalleeType->isFunctionPointerType() && 4332 "Call must have function pointer type!"); 4333 4334 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4335 4336 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4337 // We can only guarantee that a function is called from the correct 4338 // context/function based on the appropriate target attributes, 4339 // so only check in the case where we have both always_inline and target 4340 // since otherwise we could be making a conditional call after a check for 4341 // the proper cpu features (and it won't cause code generation issues due to 4342 // function based code generation). 4343 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4344 TargetDecl->hasAttr<TargetAttr>()) 4345 checkTargetFeatures(E, FD); 4346 4347 CalleeType = getContext().getCanonicalType(CalleeType); 4348 4349 const auto *FnType = 4350 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4351 4352 CGCallee Callee = OrigCallee; 4353 4354 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4355 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4356 if (llvm::Constant *PrefixSig = 4357 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4358 SanitizerScope SanScope(this); 4359 llvm::Constant *FTRTTIConst = 4360 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4361 llvm::Type *PrefixStructTyElems[] = { 4362 PrefixSig->getType(), 4363 FTRTTIConst->getType() 4364 }; 4365 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4366 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4367 4368 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4369 4370 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4371 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4372 llvm::Value *CalleeSigPtr = 4373 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4374 llvm::Value *CalleeSig = 4375 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4376 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4377 4378 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4379 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4380 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4381 4382 EmitBlock(TypeCheck); 4383 llvm::Value *CalleeRTTIPtr = 4384 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4385 llvm::Value *CalleeRTTI = 4386 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4387 llvm::Value *CalleeRTTIMatch = 4388 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4389 llvm::Constant *StaticData[] = { 4390 EmitCheckSourceLocation(E->getLocStart()), 4391 EmitCheckTypeDescriptor(CalleeType) 4392 }; 4393 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4394 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4395 4396 Builder.CreateBr(Cont); 4397 EmitBlock(Cont); 4398 } 4399 } 4400 4401 // If we are checking indirect calls and this call is indirect, check that the 4402 // function pointer is a member of the bit set for the function type. 4403 if (SanOpts.has(SanitizerKind::CFIICall) && 4404 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4405 SanitizerScope SanScope(this); 4406 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4407 4408 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4409 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4410 4411 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4412 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4413 llvm::Value *TypeTest = Builder.CreateCall( 4414 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4415 4416 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4417 llvm::Constant *StaticData[] = { 4418 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4419 EmitCheckSourceLocation(E->getLocStart()), 4420 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4421 }; 4422 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4423 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4424 CastedCallee, StaticData); 4425 } else { 4426 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4427 SanitizerHandler::CFICheckFail, StaticData, 4428 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4429 } 4430 } 4431 4432 CallArgList Args; 4433 if (Chain) 4434 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4435 CGM.getContext().VoidPtrTy); 4436 4437 // C++17 requires that we evaluate arguments to a call using assignment syntax 4438 // right-to-left, and that we evaluate arguments to certain other operators 4439 // left-to-right. Note that we allow this to override the order dictated by 4440 // the calling convention on the MS ABI, which means that parameter 4441 // destruction order is not necessarily reverse construction order. 4442 // FIXME: Revisit this based on C++ committee response to unimplementability. 4443 EvaluationOrder Order = EvaluationOrder::Default; 4444 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4445 if (OCE->isAssignmentOp()) 4446 Order = EvaluationOrder::ForceRightToLeft; 4447 else { 4448 switch (OCE->getOperator()) { 4449 case OO_LessLess: 4450 case OO_GreaterGreater: 4451 case OO_AmpAmp: 4452 case OO_PipePipe: 4453 case OO_Comma: 4454 case OO_ArrowStar: 4455 Order = EvaluationOrder::ForceLeftToRight; 4456 break; 4457 default: 4458 break; 4459 } 4460 } 4461 } 4462 4463 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4464 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4465 4466 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4467 Args, FnType, /*isChainCall=*/Chain); 4468 4469 // C99 6.5.2.2p6: 4470 // If the expression that denotes the called function has a type 4471 // that does not include a prototype, [the default argument 4472 // promotions are performed]. If the number of arguments does not 4473 // equal the number of parameters, the behavior is undefined. If 4474 // the function is defined with a type that includes a prototype, 4475 // and either the prototype ends with an ellipsis (, ...) or the 4476 // types of the arguments after promotion are not compatible with 4477 // the types of the parameters, the behavior is undefined. If the 4478 // function is defined with a type that does not include a 4479 // prototype, and the types of the arguments after promotion are 4480 // not compatible with those of the parameters after promotion, 4481 // the behavior is undefined [except in some trivial cases]. 4482 // That is, in the general case, we should assume that a call 4483 // through an unprototyped function type works like a *non-variadic* 4484 // call. The way we make this work is to cast to the exact type 4485 // of the promoted arguments. 4486 // 4487 // Chain calls use this same code path to add the invisible chain parameter 4488 // to the function type. 4489 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4490 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4491 CalleeTy = CalleeTy->getPointerTo(); 4492 4493 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4494 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4495 Callee.setFunctionPointer(CalleePtr); 4496 } 4497 4498 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4499 } 4500 4501 LValue CodeGenFunction:: 4502 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4503 Address BaseAddr = Address::invalid(); 4504 if (E->getOpcode() == BO_PtrMemI) { 4505 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4506 } else { 4507 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4508 } 4509 4510 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4511 4512 const MemberPointerType *MPT 4513 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4514 4515 LValueBaseInfo BaseInfo; 4516 Address MemberAddr = 4517 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo); 4518 4519 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo); 4520 } 4521 4522 /// Given the address of a temporary variable, produce an r-value of 4523 /// its type. 4524 RValue CodeGenFunction::convertTempToRValue(Address addr, 4525 QualType type, 4526 SourceLocation loc) { 4527 LValue lvalue = MakeAddrLValue(addr, type, 4528 LValueBaseInfo(AlignmentSource::Decl, false)); 4529 switch (getEvaluationKind(type)) { 4530 case TEK_Complex: 4531 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4532 case TEK_Aggregate: 4533 return lvalue.asAggregateRValue(); 4534 case TEK_Scalar: 4535 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4536 } 4537 llvm_unreachable("bad evaluation kind"); 4538 } 4539 4540 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4541 assert(Val->getType()->isFPOrFPVectorTy()); 4542 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4543 return; 4544 4545 llvm::MDBuilder MDHelper(getLLVMContext()); 4546 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4547 4548 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4549 } 4550 4551 namespace { 4552 struct LValueOrRValue { 4553 LValue LV; 4554 RValue RV; 4555 }; 4556 } 4557 4558 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4559 const PseudoObjectExpr *E, 4560 bool forLValue, 4561 AggValueSlot slot) { 4562 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4563 4564 // Find the result expression, if any. 4565 const Expr *resultExpr = E->getResultExpr(); 4566 LValueOrRValue result; 4567 4568 for (PseudoObjectExpr::const_semantics_iterator 4569 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4570 const Expr *semantic = *i; 4571 4572 // If this semantic expression is an opaque value, bind it 4573 // to the result of its source expression. 4574 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4575 4576 // If this is the result expression, we may need to evaluate 4577 // directly into the slot. 4578 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4579 OVMA opaqueData; 4580 if (ov == resultExpr && ov->isRValue() && !forLValue && 4581 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4582 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4583 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 4584 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4585 BaseInfo); 4586 opaqueData = OVMA::bind(CGF, ov, LV); 4587 result.RV = slot.asRValue(); 4588 4589 // Otherwise, emit as normal. 4590 } else { 4591 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4592 4593 // If this is the result, also evaluate the result now. 4594 if (ov == resultExpr) { 4595 if (forLValue) 4596 result.LV = CGF.EmitLValue(ov); 4597 else 4598 result.RV = CGF.EmitAnyExpr(ov, slot); 4599 } 4600 } 4601 4602 opaques.push_back(opaqueData); 4603 4604 // Otherwise, if the expression is the result, evaluate it 4605 // and remember the result. 4606 } else if (semantic == resultExpr) { 4607 if (forLValue) 4608 result.LV = CGF.EmitLValue(semantic); 4609 else 4610 result.RV = CGF.EmitAnyExpr(semantic, slot); 4611 4612 // Otherwise, evaluate the expression in an ignored context. 4613 } else { 4614 CGF.EmitIgnoredExpr(semantic); 4615 } 4616 } 4617 4618 // Unbind all the opaques now. 4619 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4620 opaques[i].unbind(CGF); 4621 4622 return result; 4623 } 4624 4625 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4626 AggValueSlot slot) { 4627 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4628 } 4629 4630 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4631 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4632 } 4633