1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 55 #include "llvm/Transforms/ObjCARC.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/GVN.h" 58 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 59 #include "llvm/Transforms/Utils/SymbolRewriter.h" 60 #include <memory> 61 using namespace clang; 62 using namespace llvm; 63 64 namespace { 65 66 // Default filename used for profile generation. 67 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 68 69 class EmitAssemblyHelper { 70 DiagnosticsEngine &Diags; 71 const HeaderSearchOptions &HSOpts; 72 const CodeGenOptions &CodeGenOpts; 73 const clang::TargetOptions &TargetOpts; 74 const LangOptions &LangOpts; 75 Module *TheModule; 76 77 Timer CodeGenerationTime; 78 79 std::unique_ptr<raw_pwrite_stream> OS; 80 81 TargetIRAnalysis getTargetIRAnalysis() const { 82 if (TM) 83 return TM->getTargetIRAnalysis(); 84 85 return TargetIRAnalysis(); 86 } 87 88 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 89 90 /// Generates the TargetMachine. 91 /// Leaves TM unchanged if it is unable to create the target machine. 92 /// Some of our clang tests specify triples which are not built 93 /// into clang. This is okay because these tests check the generated 94 /// IR, and they require DataLayout which depends on the triple. 95 /// In this case, we allow this method to fail and not report an error. 96 /// When MustCreateTM is used, we print an error if we are unable to load 97 /// the requested target. 98 void CreateTargetMachine(bool MustCreateTM); 99 100 /// Add passes necessary to emit assembly or LLVM IR. 101 /// 102 /// \return True on success. 103 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 104 raw_pwrite_stream &OS); 105 106 public: 107 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 108 const HeaderSearchOptions &HeaderSearchOpts, 109 const CodeGenOptions &CGOpts, 110 const clang::TargetOptions &TOpts, 111 const LangOptions &LOpts, Module *M) 112 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 113 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 114 CodeGenerationTime("codegen", "Code Generation Time") {} 115 116 ~EmitAssemblyHelper() { 117 if (CodeGenOpts.DisableFree) 118 BuryPointer(std::move(TM)); 119 } 120 121 std::unique_ptr<TargetMachine> TM; 122 123 void EmitAssembly(BackendAction Action, 124 std::unique_ptr<raw_pwrite_stream> OS); 125 126 void EmitAssemblyWithNewPassManager(BackendAction Action, 127 std::unique_ptr<raw_pwrite_stream> OS); 128 }; 129 130 // We need this wrapper to access LangOpts and CGOpts from extension functions 131 // that we add to the PassManagerBuilder. 132 class PassManagerBuilderWrapper : public PassManagerBuilder { 133 public: 134 PassManagerBuilderWrapper(const Triple &TargetTriple, 135 const CodeGenOptions &CGOpts, 136 const LangOptions &LangOpts) 137 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 138 LangOpts(LangOpts) {} 139 const Triple &getTargetTriple() const { return TargetTriple; } 140 const CodeGenOptions &getCGOpts() const { return CGOpts; } 141 const LangOptions &getLangOpts() const { return LangOpts; } 142 143 private: 144 const Triple &TargetTriple; 145 const CodeGenOptions &CGOpts; 146 const LangOptions &LangOpts; 147 }; 148 } 149 150 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 151 if (Builder.OptLevel > 0) 152 PM.add(createObjCARCAPElimPass()); 153 } 154 155 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 156 if (Builder.OptLevel > 0) 157 PM.add(createObjCARCExpandPass()); 158 } 159 160 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 161 if (Builder.OptLevel > 0) 162 PM.add(createObjCARCOptPass()); 163 } 164 165 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 166 legacy::PassManagerBase &PM) { 167 PM.add(createAddDiscriminatorsPass()); 168 } 169 170 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 171 legacy::PassManagerBase &PM) { 172 PM.add(createBoundsCheckingLegacyPass()); 173 } 174 175 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 176 legacy::PassManagerBase &PM) { 177 const PassManagerBuilderWrapper &BuilderWrapper = 178 static_cast<const PassManagerBuilderWrapper&>(Builder); 179 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 180 SanitizerCoverageOptions Opts; 181 Opts.CoverageType = 182 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 183 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 184 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 185 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 186 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 187 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 188 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 189 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 190 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 191 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 192 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 193 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 194 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 195 PM.add(createSanitizerCoverageModulePass(Opts)); 196 } 197 198 // Check if ASan should use GC-friendly instrumentation for globals. 199 // First of all, there is no point if -fdata-sections is off (expect for MachO, 200 // where this is not a factor). Also, on ELF this feature requires an assembler 201 // extension that only works with -integrated-as at the moment. 202 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 203 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 204 return false; 205 switch (T.getObjectFormat()) { 206 case Triple::MachO: 207 case Triple::COFF: 208 return true; 209 case Triple::ELF: 210 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 211 default: 212 return false; 213 } 214 } 215 216 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 217 legacy::PassManagerBase &PM) { 218 const PassManagerBuilderWrapper &BuilderWrapper = 219 static_cast<const PassManagerBuilderWrapper&>(Builder); 220 const Triple &T = BuilderWrapper.getTargetTriple(); 221 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 222 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 223 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 224 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 225 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 226 UseAfterScope)); 227 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 228 UseGlobalsGC)); 229 } 230 231 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 PM.add(createAddressSanitizerFunctionPass( 234 /*CompileKernel*/ true, 235 /*Recover*/ true, /*UseAfterScope*/ false)); 236 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 237 /*Recover*/true)); 238 } 239 240 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 const PassManagerBuilderWrapper &BuilderWrapper = 243 static_cast<const PassManagerBuilderWrapper &>(Builder); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 246 PM.add(createHWAddressSanitizerPass(Recover)); 247 } 248 249 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 250 legacy::PassManagerBase &PM) { 251 const PassManagerBuilderWrapper &BuilderWrapper = 252 static_cast<const PassManagerBuilderWrapper&>(Builder); 253 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 254 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 255 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 256 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 257 258 // MemorySanitizer inserts complex instrumentation that mostly follows 259 // the logic of the original code, but operates on "shadow" values. 260 // It can benefit from re-running some general purpose optimization passes. 261 if (Builder.OptLevel > 0) { 262 PM.add(createEarlyCSEPass()); 263 PM.add(createReassociatePass()); 264 PM.add(createLICMPass()); 265 PM.add(createGVNPass()); 266 PM.add(createInstructionCombiningPass()); 267 PM.add(createDeadStoreEliminationPass()); 268 } 269 } 270 271 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 272 legacy::PassManagerBase &PM) { 273 PM.add(createThreadSanitizerPass()); 274 } 275 276 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 277 legacy::PassManagerBase &PM) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper&>(Builder); 280 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 281 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 282 } 283 284 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 285 legacy::PassManagerBase &PM) { 286 const PassManagerBuilderWrapper &BuilderWrapper = 287 static_cast<const PassManagerBuilderWrapper&>(Builder); 288 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 289 EfficiencySanitizerOptions Opts; 290 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 291 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 292 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 293 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 294 PM.add(createEfficiencySanitizerPass(Opts)); 295 } 296 297 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 298 const CodeGenOptions &CodeGenOpts) { 299 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 300 if (!CodeGenOpts.SimplifyLibCalls) 301 TLII->disableAllFunctions(); 302 else { 303 // Disable individual libc/libm calls in TargetLibraryInfo. 304 LibFunc F; 305 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 306 if (TLII->getLibFunc(FuncName, F)) 307 TLII->setUnavailable(F); 308 } 309 310 switch (CodeGenOpts.getVecLib()) { 311 case CodeGenOptions::Accelerate: 312 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 313 break; 314 case CodeGenOptions::SVML: 315 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 316 break; 317 default: 318 break; 319 } 320 return TLII; 321 } 322 323 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 324 legacy::PassManager *MPM) { 325 llvm::SymbolRewriter::RewriteDescriptorList DL; 326 327 llvm::SymbolRewriter::RewriteMapParser MapParser; 328 for (const auto &MapFile : Opts.RewriteMapFiles) 329 MapParser.parse(MapFile, &DL); 330 331 MPM->add(createRewriteSymbolsPass(DL)); 332 } 333 334 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 335 switch (CodeGenOpts.OptimizationLevel) { 336 default: 337 llvm_unreachable("Invalid optimization level!"); 338 case 0: 339 return CodeGenOpt::None; 340 case 1: 341 return CodeGenOpt::Less; 342 case 2: 343 return CodeGenOpt::Default; // O2/Os/Oz 344 case 3: 345 return CodeGenOpt::Aggressive; 346 } 347 } 348 349 static Optional<llvm::CodeModel::Model> 350 getCodeModel(const CodeGenOptions &CodeGenOpts) { 351 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 352 .Case("small", llvm::CodeModel::Small) 353 .Case("kernel", llvm::CodeModel::Kernel) 354 .Case("medium", llvm::CodeModel::Medium) 355 .Case("large", llvm::CodeModel::Large) 356 .Case("default", ~1u) 357 .Default(~0u); 358 assert(CodeModel != ~0u && "invalid code model!"); 359 if (CodeModel == ~1u) 360 return None; 361 return static_cast<llvm::CodeModel::Model>(CodeModel); 362 } 363 364 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 365 // Keep this synced with the equivalent code in 366 // lib/Frontend/CompilerInvocation.cpp 367 llvm::Optional<llvm::Reloc::Model> RM; 368 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 369 .Case("static", llvm::Reloc::Static) 370 .Case("pic", llvm::Reloc::PIC_) 371 .Case("ropi", llvm::Reloc::ROPI) 372 .Case("rwpi", llvm::Reloc::RWPI) 373 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 374 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 375 assert(RM.hasValue() && "invalid PIC model!"); 376 return *RM; 377 } 378 379 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 380 if (Action == Backend_EmitObj) 381 return TargetMachine::CGFT_ObjectFile; 382 else if (Action == Backend_EmitMCNull) 383 return TargetMachine::CGFT_Null; 384 else { 385 assert(Action == Backend_EmitAssembly && "Invalid action!"); 386 return TargetMachine::CGFT_AssemblyFile; 387 } 388 } 389 390 static void initTargetOptions(llvm::TargetOptions &Options, 391 const CodeGenOptions &CodeGenOpts, 392 const clang::TargetOptions &TargetOpts, 393 const LangOptions &LangOpts, 394 const HeaderSearchOptions &HSOpts) { 395 Options.ThreadModel = 396 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 397 .Case("posix", llvm::ThreadModel::POSIX) 398 .Case("single", llvm::ThreadModel::Single); 399 400 // Set float ABI type. 401 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 402 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 403 "Invalid Floating Point ABI!"); 404 Options.FloatABIType = 405 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 406 .Case("soft", llvm::FloatABI::Soft) 407 .Case("softfp", llvm::FloatABI::Soft) 408 .Case("hard", llvm::FloatABI::Hard) 409 .Default(llvm::FloatABI::Default); 410 411 // Set FP fusion mode. 412 switch (LangOpts.getDefaultFPContractMode()) { 413 case LangOptions::FPC_Off: 414 // Preserve any contraction performed by the front-end. (Strict performs 415 // splitting of the muladd instrinsic in the backend.) 416 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 417 break; 418 case LangOptions::FPC_On: 419 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 420 break; 421 case LangOptions::FPC_Fast: 422 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 423 break; 424 } 425 426 Options.UseInitArray = CodeGenOpts.UseInitArray; 427 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 428 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 429 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 430 431 // Set EABI version. 432 Options.EABIVersion = TargetOpts.EABIVersion; 433 434 if (LangOpts.SjLjExceptions) 435 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 436 if (LangOpts.SEHExceptions) 437 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 438 if (LangOpts.DWARFExceptions) 439 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 440 441 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 442 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 443 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 444 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 445 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 446 Options.FunctionSections = CodeGenOpts.FunctionSections; 447 Options.DataSections = CodeGenOpts.DataSections; 448 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 449 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 450 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 451 452 if (CodeGenOpts.EnableSplitDwarf) 453 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 454 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 455 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 456 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 457 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 458 Options.MCOptions.MCIncrementalLinkerCompatible = 459 CodeGenOpts.IncrementalLinkerCompatible; 460 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 461 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 462 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 463 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 464 Options.MCOptions.ABIName = TargetOpts.ABI; 465 for (const auto &Entry : HSOpts.UserEntries) 466 if (!Entry.IsFramework && 467 (Entry.Group == frontend::IncludeDirGroup::Quoted || 468 Entry.Group == frontend::IncludeDirGroup::Angled || 469 Entry.Group == frontend::IncludeDirGroup::System)) 470 Options.MCOptions.IASSearchPaths.push_back( 471 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 472 } 473 474 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 475 legacy::FunctionPassManager &FPM) { 476 // Handle disabling of all LLVM passes, where we want to preserve the 477 // internal module before any optimization. 478 if (CodeGenOpts.DisableLLVMPasses) 479 return; 480 481 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 482 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 483 // are inserted before PMBuilder ones - they'd get the default-constructed 484 // TLI with an unknown target otherwise. 485 Triple TargetTriple(TheModule->getTargetTriple()); 486 std::unique_ptr<TargetLibraryInfoImpl> TLII( 487 createTLII(TargetTriple, CodeGenOpts)); 488 489 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 490 491 // At O0 and O1 we only run the always inliner which is more efficient. At 492 // higher optimization levels we run the normal inliner. 493 if (CodeGenOpts.OptimizationLevel <= 1) { 494 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 495 !CodeGenOpts.DisableLifetimeMarkers); 496 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 497 } else { 498 // We do not want to inline hot callsites for SamplePGO module-summary build 499 // because profile annotation will happen again in ThinLTO backend, and we 500 // want the IR of the hot path to match the profile. 501 PMBuilder.Inliner = createFunctionInliningPass( 502 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 503 (!CodeGenOpts.SampleProfileFile.empty() && 504 CodeGenOpts.EmitSummaryIndex)); 505 } 506 507 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 508 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 509 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 510 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 511 512 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 513 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 514 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 515 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 516 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 517 518 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 519 520 if (TM) 521 TM->adjustPassManager(PMBuilder); 522 523 if (CodeGenOpts.DebugInfoForProfiling || 524 !CodeGenOpts.SampleProfileFile.empty()) 525 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 526 addAddDiscriminatorsPass); 527 528 // In ObjC ARC mode, add the main ARC optimization passes. 529 if (LangOpts.ObjCAutoRefCount) { 530 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 531 addObjCARCExpandPass); 532 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 533 addObjCARCAPElimPass); 534 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 535 addObjCARCOptPass); 536 } 537 538 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 539 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 540 addBoundsCheckingPass); 541 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 542 addBoundsCheckingPass); 543 } 544 545 if (CodeGenOpts.SanitizeCoverageType || 546 CodeGenOpts.SanitizeCoverageIndirectCalls || 547 CodeGenOpts.SanitizeCoverageTraceCmp) { 548 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 549 addSanitizerCoveragePass); 550 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 551 addSanitizerCoveragePass); 552 } 553 554 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 555 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 556 addAddressSanitizerPasses); 557 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 558 addAddressSanitizerPasses); 559 } 560 561 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 562 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 563 addKernelAddressSanitizerPasses); 564 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 565 addKernelAddressSanitizerPasses); 566 } 567 568 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 569 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 570 addHWAddressSanitizerPasses); 571 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 572 addHWAddressSanitizerPasses); 573 } 574 575 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 576 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 577 addMemorySanitizerPass); 578 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 579 addMemorySanitizerPass); 580 } 581 582 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 583 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 584 addThreadSanitizerPass); 585 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 586 addThreadSanitizerPass); 587 } 588 589 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 590 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 591 addDataFlowSanitizerPass); 592 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 593 addDataFlowSanitizerPass); 594 } 595 596 if (LangOpts.CoroutinesTS) 597 addCoroutinePassesToExtensionPoints(PMBuilder); 598 599 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 600 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 601 addEfficiencySanitizerPass); 602 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 603 addEfficiencySanitizerPass); 604 } 605 606 // Set up the per-function pass manager. 607 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 608 if (CodeGenOpts.VerifyModule) 609 FPM.add(createVerifierPass()); 610 611 // Set up the per-module pass manager. 612 if (!CodeGenOpts.RewriteMapFiles.empty()) 613 addSymbolRewriterPass(CodeGenOpts, &MPM); 614 615 if (!CodeGenOpts.DisableGCov && 616 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 617 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 618 // LLVM's -default-gcov-version flag is set to something invalid. 619 GCOVOptions Options; 620 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 621 Options.EmitData = CodeGenOpts.EmitGcovArcs; 622 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 623 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 624 Options.NoRedZone = CodeGenOpts.DisableRedZone; 625 Options.FunctionNamesInData = 626 !CodeGenOpts.CoverageNoFunctionNamesInData; 627 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 628 MPM.add(createGCOVProfilerPass(Options)); 629 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 630 MPM.add(createStripSymbolsPass(true)); 631 } 632 633 if (CodeGenOpts.hasProfileClangInstr()) { 634 InstrProfOptions Options; 635 Options.NoRedZone = CodeGenOpts.DisableRedZone; 636 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 637 MPM.add(createInstrProfilingLegacyPass(Options)); 638 } 639 if (CodeGenOpts.hasProfileIRInstr()) { 640 PMBuilder.EnablePGOInstrGen = true; 641 if (!CodeGenOpts.InstrProfileOutput.empty()) 642 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 643 else 644 PMBuilder.PGOInstrGen = DefaultProfileGenName; 645 } 646 if (CodeGenOpts.hasProfileIRUse()) 647 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 648 649 if (!CodeGenOpts.SampleProfileFile.empty()) 650 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 651 652 PMBuilder.populateFunctionPassManager(FPM); 653 PMBuilder.populateModulePassManager(MPM); 654 } 655 656 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 657 SmallVector<const char *, 16> BackendArgs; 658 BackendArgs.push_back("clang"); // Fake program name. 659 if (!CodeGenOpts.DebugPass.empty()) { 660 BackendArgs.push_back("-debug-pass"); 661 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 662 } 663 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 664 BackendArgs.push_back("-limit-float-precision"); 665 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 666 } 667 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 668 BackendArgs.push_back(BackendOption.c_str()); 669 BackendArgs.push_back(nullptr); 670 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 671 BackendArgs.data()); 672 } 673 674 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 675 // Create the TargetMachine for generating code. 676 std::string Error; 677 std::string Triple = TheModule->getTargetTriple(); 678 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 679 if (!TheTarget) { 680 if (MustCreateTM) 681 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 682 return; 683 } 684 685 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 686 std::string FeaturesStr = 687 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 688 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 689 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 690 691 llvm::TargetOptions Options; 692 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 693 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 694 Options, RM, CM, OptLevel)); 695 } 696 697 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 698 BackendAction Action, 699 raw_pwrite_stream &OS) { 700 // Add LibraryInfo. 701 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 702 std::unique_ptr<TargetLibraryInfoImpl> TLII( 703 createTLII(TargetTriple, CodeGenOpts)); 704 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 705 706 // Normal mode, emit a .s or .o file by running the code generator. Note, 707 // this also adds codegenerator level optimization passes. 708 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 709 710 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 711 // "codegen" passes so that it isn't run multiple times when there is 712 // inlining happening. 713 if (CodeGenOpts.OptimizationLevel > 0) 714 CodeGenPasses.add(createObjCARCContractPass()); 715 716 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 717 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 718 Diags.Report(diag::err_fe_unable_to_interface_with_target); 719 return false; 720 } 721 722 return true; 723 } 724 725 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 726 std::unique_ptr<raw_pwrite_stream> OS) { 727 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 728 729 setCommandLineOpts(CodeGenOpts); 730 731 bool UsesCodeGen = (Action != Backend_EmitNothing && 732 Action != Backend_EmitBC && 733 Action != Backend_EmitLL); 734 CreateTargetMachine(UsesCodeGen); 735 736 if (UsesCodeGen && !TM) 737 return; 738 if (TM) 739 TheModule->setDataLayout(TM->createDataLayout()); 740 741 legacy::PassManager PerModulePasses; 742 PerModulePasses.add( 743 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 744 745 legacy::FunctionPassManager PerFunctionPasses(TheModule); 746 PerFunctionPasses.add( 747 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 748 749 CreatePasses(PerModulePasses, PerFunctionPasses); 750 751 legacy::PassManager CodeGenPasses; 752 CodeGenPasses.add( 753 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 754 755 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 756 757 switch (Action) { 758 case Backend_EmitNothing: 759 break; 760 761 case Backend_EmitBC: 762 if (CodeGenOpts.EmitSummaryIndex) { 763 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 764 std::error_code EC; 765 ThinLinkOS.reset(new llvm::raw_fd_ostream( 766 CodeGenOpts.ThinLinkBitcodeFile, EC, 767 llvm::sys::fs::F_None)); 768 if (EC) { 769 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 770 << EC.message(); 771 return; 772 } 773 } 774 PerModulePasses.add( 775 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 776 } 777 else 778 PerModulePasses.add( 779 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 780 break; 781 782 case Backend_EmitLL: 783 PerModulePasses.add( 784 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 785 break; 786 787 default: 788 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 789 return; 790 } 791 792 // Before executing passes, print the final values of the LLVM options. 793 cl::PrintOptionValues(); 794 795 // Run passes. For now we do all passes at once, but eventually we 796 // would like to have the option of streaming code generation. 797 798 { 799 PrettyStackTraceString CrashInfo("Per-function optimization"); 800 801 PerFunctionPasses.doInitialization(); 802 for (Function &F : *TheModule) 803 if (!F.isDeclaration()) 804 PerFunctionPasses.run(F); 805 PerFunctionPasses.doFinalization(); 806 } 807 808 { 809 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 810 PerModulePasses.run(*TheModule); 811 } 812 813 { 814 PrettyStackTraceString CrashInfo("Code generation"); 815 CodeGenPasses.run(*TheModule); 816 } 817 } 818 819 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 820 switch (Opts.OptimizationLevel) { 821 default: 822 llvm_unreachable("Invalid optimization level!"); 823 824 case 1: 825 return PassBuilder::O1; 826 827 case 2: 828 switch (Opts.OptimizeSize) { 829 default: 830 llvm_unreachable("Invalide optimization level for size!"); 831 832 case 0: 833 return PassBuilder::O2; 834 835 case 1: 836 return PassBuilder::Os; 837 838 case 2: 839 return PassBuilder::Oz; 840 } 841 842 case 3: 843 return PassBuilder::O3; 844 } 845 } 846 847 /// A clean version of `EmitAssembly` that uses the new pass manager. 848 /// 849 /// Not all features are currently supported in this system, but where 850 /// necessary it falls back to the legacy pass manager to at least provide 851 /// basic functionality. 852 /// 853 /// This API is planned to have its functionality finished and then to replace 854 /// `EmitAssembly` at some point in the future when the default switches. 855 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 856 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 857 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 858 setCommandLineOpts(CodeGenOpts); 859 860 // The new pass manager always makes a target machine available to passes 861 // during construction. 862 CreateTargetMachine(/*MustCreateTM*/ true); 863 if (!TM) 864 // This will already be diagnosed, just bail. 865 return; 866 TheModule->setDataLayout(TM->createDataLayout()); 867 868 Optional<PGOOptions> PGOOpt; 869 870 if (CodeGenOpts.hasProfileIRInstr()) 871 // -fprofile-generate. 872 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 873 ? DefaultProfileGenName 874 : CodeGenOpts.InstrProfileOutput, 875 "", "", true, CodeGenOpts.DebugInfoForProfiling); 876 else if (CodeGenOpts.hasProfileIRUse()) 877 // -fprofile-use. 878 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 879 CodeGenOpts.DebugInfoForProfiling); 880 else if (!CodeGenOpts.SampleProfileFile.empty()) 881 // -fprofile-sample-use 882 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 883 CodeGenOpts.DebugInfoForProfiling); 884 else if (CodeGenOpts.DebugInfoForProfiling) 885 // -fdebug-info-for-profiling 886 PGOOpt = PGOOptions("", "", "", false, true); 887 888 PassBuilder PB(TM.get(), PGOOpt); 889 890 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 891 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 892 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 893 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 894 895 // Register the AA manager first so that our version is the one used. 896 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 897 898 // Register the target library analysis directly and give it a customized 899 // preset TLI. 900 Triple TargetTriple(TheModule->getTargetTriple()); 901 std::unique_ptr<TargetLibraryInfoImpl> TLII( 902 createTLII(TargetTriple, CodeGenOpts)); 903 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 904 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 905 906 // Register all the basic analyses with the managers. 907 PB.registerModuleAnalyses(MAM); 908 PB.registerCGSCCAnalyses(CGAM); 909 PB.registerFunctionAnalyses(FAM); 910 PB.registerLoopAnalyses(LAM); 911 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 912 913 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 914 915 if (!CodeGenOpts.DisableLLVMPasses) { 916 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 917 bool IsLTO = CodeGenOpts.PrepareForLTO; 918 919 if (CodeGenOpts.OptimizationLevel == 0) { 920 // Build a minimal pipeline based on the semantics required by Clang, 921 // which is just that always inlining occurs. 922 MPM.addPass(AlwaysInlinerPass()); 923 924 // At -O0 we directly run necessary sanitizer passes. 925 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 926 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 927 928 // Lastly, add a semantically necessary pass for ThinLTO. 929 if (IsThinLTO) 930 MPM.addPass(NameAnonGlobalPass()); 931 } else { 932 // Map our optimization levels into one of the distinct levels used to 933 // configure the pipeline. 934 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 935 936 // Register callbacks to schedule sanitizer passes at the appropriate part of 937 // the pipeline. 938 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 939 PB.registerScalarOptimizerLateEPCallback( 940 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 941 FPM.addPass(BoundsCheckingPass()); 942 }); 943 944 if (IsThinLTO) { 945 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 946 Level, CodeGenOpts.DebugPassManager); 947 MPM.addPass(NameAnonGlobalPass()); 948 } else if (IsLTO) { 949 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 950 CodeGenOpts.DebugPassManager); 951 } else { 952 MPM = PB.buildPerModuleDefaultPipeline(Level, 953 CodeGenOpts.DebugPassManager); 954 } 955 } 956 } 957 958 // FIXME: We still use the legacy pass manager to do code generation. We 959 // create that pass manager here and use it as needed below. 960 legacy::PassManager CodeGenPasses; 961 bool NeedCodeGen = false; 962 Optional<raw_fd_ostream> ThinLinkOS; 963 964 // Append any output we need to the pass manager. 965 switch (Action) { 966 case Backend_EmitNothing: 967 break; 968 969 case Backend_EmitBC: 970 if (CodeGenOpts.EmitSummaryIndex) { 971 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 972 std::error_code EC; 973 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 974 llvm::sys::fs::F_None); 975 if (EC) { 976 Diags.Report(diag::err_fe_unable_to_open_output) 977 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 978 return; 979 } 980 } 981 MPM.addPass( 982 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 983 } else { 984 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 985 CodeGenOpts.EmitSummaryIndex, 986 CodeGenOpts.EmitSummaryIndex)); 987 } 988 break; 989 990 case Backend_EmitLL: 991 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 992 break; 993 994 case Backend_EmitAssembly: 995 case Backend_EmitMCNull: 996 case Backend_EmitObj: 997 NeedCodeGen = true; 998 CodeGenPasses.add( 999 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1000 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 1001 // FIXME: Should we handle this error differently? 1002 return; 1003 break; 1004 } 1005 1006 // Before executing passes, print the final values of the LLVM options. 1007 cl::PrintOptionValues(); 1008 1009 // Now that we have all of the passes ready, run them. 1010 { 1011 PrettyStackTraceString CrashInfo("Optimizer"); 1012 MPM.run(*TheModule, MAM); 1013 } 1014 1015 // Now if needed, run the legacy PM for codegen. 1016 if (NeedCodeGen) { 1017 PrettyStackTraceString CrashInfo("Code generation"); 1018 CodeGenPasses.run(*TheModule); 1019 } 1020 } 1021 1022 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1023 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1024 if (!BMsOrErr) 1025 return BMsOrErr.takeError(); 1026 1027 // The bitcode file may contain multiple modules, we want the one that is 1028 // marked as being the ThinLTO module. 1029 for (BitcodeModule &BM : *BMsOrErr) { 1030 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1031 if (LTOInfo && LTOInfo->IsThinLTO) 1032 return BM; 1033 } 1034 1035 return make_error<StringError>("Could not find module summary", 1036 inconvertibleErrorCode()); 1037 } 1038 1039 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1040 const HeaderSearchOptions &HeaderOpts, 1041 const CodeGenOptions &CGOpts, 1042 const clang::TargetOptions &TOpts, 1043 const LangOptions &LOpts, 1044 std::unique_ptr<raw_pwrite_stream> OS, 1045 std::string SampleProfile, 1046 BackendAction Action) { 1047 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1048 ModuleToDefinedGVSummaries; 1049 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1050 1051 setCommandLineOpts(CGOpts); 1052 1053 // We can simply import the values mentioned in the combined index, since 1054 // we should only invoke this using the individual indexes written out 1055 // via a WriteIndexesThinBackend. 1056 FunctionImporter::ImportMapTy ImportList; 1057 for (auto &GlobalList : *CombinedIndex) { 1058 // Ignore entries for undefined references. 1059 if (GlobalList.second.SummaryList.empty()) 1060 continue; 1061 1062 auto GUID = GlobalList.first; 1063 assert(GlobalList.second.SummaryList.size() == 1 && 1064 "Expected individual combined index to have one summary per GUID"); 1065 auto &Summary = GlobalList.second.SummaryList[0]; 1066 // Skip the summaries for the importing module. These are included to 1067 // e.g. record required linkage changes. 1068 if (Summary->modulePath() == M->getModuleIdentifier()) 1069 continue; 1070 // Doesn't matter what value we plug in to the map, just needs an entry 1071 // to provoke importing by thinBackend. 1072 ImportList[Summary->modulePath()][GUID] = 1; 1073 } 1074 1075 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1076 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1077 1078 for (auto &I : ImportList) { 1079 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1080 llvm::MemoryBuffer::getFile(I.first()); 1081 if (!MBOrErr) { 1082 errs() << "Error loading imported file '" << I.first() 1083 << "': " << MBOrErr.getError().message() << "\n"; 1084 return; 1085 } 1086 1087 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1088 if (!BMOrErr) { 1089 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1090 errs() << "Error loading imported file '" << I.first() 1091 << "': " << EIB.message() << '\n'; 1092 }); 1093 return; 1094 } 1095 ModuleMap.insert({I.first(), *BMOrErr}); 1096 1097 OwnedImports.push_back(std::move(*MBOrErr)); 1098 } 1099 auto AddStream = [&](size_t Task) { 1100 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1101 }; 1102 lto::Config Conf; 1103 Conf.CPU = TOpts.CPU; 1104 Conf.CodeModel = getCodeModel(CGOpts); 1105 Conf.MAttrs = TOpts.Features; 1106 Conf.RelocModel = getRelocModel(CGOpts); 1107 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1108 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1109 Conf.SampleProfile = std::move(SampleProfile); 1110 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1111 Conf.DebugPassManager = CGOpts.DebugPassManager; 1112 switch (Action) { 1113 case Backend_EmitNothing: 1114 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1115 return false; 1116 }; 1117 break; 1118 case Backend_EmitLL: 1119 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1120 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1121 return false; 1122 }; 1123 break; 1124 case Backend_EmitBC: 1125 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1126 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1127 return false; 1128 }; 1129 break; 1130 default: 1131 Conf.CGFileType = getCodeGenFileType(Action); 1132 break; 1133 } 1134 if (Error E = thinBackend( 1135 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1136 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1137 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1138 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1139 }); 1140 } 1141 } 1142 1143 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1144 const HeaderSearchOptions &HeaderOpts, 1145 const CodeGenOptions &CGOpts, 1146 const clang::TargetOptions &TOpts, 1147 const LangOptions &LOpts, 1148 const llvm::DataLayout &TDesc, Module *M, 1149 BackendAction Action, 1150 std::unique_ptr<raw_pwrite_stream> OS) { 1151 if (!CGOpts.ThinLTOIndexFile.empty()) { 1152 // If we are performing a ThinLTO importing compile, load the function index 1153 // into memory and pass it into runThinLTOBackend, which will run the 1154 // function importer and invoke LTO passes. 1155 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1156 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1157 /*IgnoreEmptyThinLTOIndexFile*/true); 1158 if (!IndexOrErr) { 1159 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1160 "Error loading index file '" + 1161 CGOpts.ThinLTOIndexFile + "': "); 1162 return; 1163 } 1164 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1165 // A null CombinedIndex means we should skip ThinLTO compilation 1166 // (LLVM will optionally ignore empty index files, returning null instead 1167 // of an error). 1168 bool DoThinLTOBackend = CombinedIndex != nullptr; 1169 if (DoThinLTOBackend) { 1170 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1171 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1172 return; 1173 } 1174 } 1175 1176 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1177 1178 if (CGOpts.ExperimentalNewPassManager) 1179 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1180 else 1181 AsmHelper.EmitAssembly(Action, std::move(OS)); 1182 1183 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1184 // DataLayout. 1185 if (AsmHelper.TM) { 1186 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1187 if (DLDesc != TDesc.getStringRepresentation()) { 1188 unsigned DiagID = Diags.getCustomDiagID( 1189 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1190 "expected target description '%1'"); 1191 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1192 } 1193 } 1194 } 1195 1196 static const char* getSectionNameForBitcode(const Triple &T) { 1197 switch (T.getObjectFormat()) { 1198 case Triple::MachO: 1199 return "__LLVM,__bitcode"; 1200 case Triple::COFF: 1201 case Triple::ELF: 1202 case Triple::Wasm: 1203 case Triple::UnknownObjectFormat: 1204 return ".llvmbc"; 1205 } 1206 llvm_unreachable("Unimplemented ObjectFormatType"); 1207 } 1208 1209 static const char* getSectionNameForCommandline(const Triple &T) { 1210 switch (T.getObjectFormat()) { 1211 case Triple::MachO: 1212 return "__LLVM,__cmdline"; 1213 case Triple::COFF: 1214 case Triple::ELF: 1215 case Triple::Wasm: 1216 case Triple::UnknownObjectFormat: 1217 return ".llvmcmd"; 1218 } 1219 llvm_unreachable("Unimplemented ObjectFormatType"); 1220 } 1221 1222 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1223 // __LLVM,__bitcode section. 1224 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1225 llvm::MemoryBufferRef Buf) { 1226 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1227 return; 1228 1229 // Save llvm.compiler.used and remote it. 1230 SmallVector<Constant*, 2> UsedArray; 1231 SmallSet<GlobalValue*, 4> UsedGlobals; 1232 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1233 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1234 for (auto *GV : UsedGlobals) { 1235 if (GV->getName() != "llvm.embedded.module" && 1236 GV->getName() != "llvm.cmdline") 1237 UsedArray.push_back( 1238 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1239 } 1240 if (Used) 1241 Used->eraseFromParent(); 1242 1243 // Embed the bitcode for the llvm module. 1244 std::string Data; 1245 ArrayRef<uint8_t> ModuleData; 1246 Triple T(M->getTargetTriple()); 1247 // Create a constant that contains the bitcode. 1248 // In case of embedding a marker, ignore the input Buf and use the empty 1249 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1250 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1251 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1252 (const unsigned char *)Buf.getBufferEnd())) { 1253 // If the input is LLVM Assembly, bitcode is produced by serializing 1254 // the module. Use-lists order need to be perserved in this case. 1255 llvm::raw_string_ostream OS(Data); 1256 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1257 ModuleData = 1258 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1259 } else 1260 // If the input is LLVM bitcode, write the input byte stream directly. 1261 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1262 Buf.getBufferSize()); 1263 } 1264 llvm::Constant *ModuleConstant = 1265 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1266 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1267 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1268 ModuleConstant); 1269 GV->setSection(getSectionNameForBitcode(T)); 1270 UsedArray.push_back( 1271 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1272 if (llvm::GlobalVariable *Old = 1273 M->getGlobalVariable("llvm.embedded.module", true)) { 1274 assert(Old->hasOneUse() && 1275 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1276 GV->takeName(Old); 1277 Old->eraseFromParent(); 1278 } else { 1279 GV->setName("llvm.embedded.module"); 1280 } 1281 1282 // Skip if only bitcode needs to be embedded. 1283 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1284 // Embed command-line options. 1285 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1286 CGOpts.CmdArgs.size()); 1287 llvm::Constant *CmdConstant = 1288 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1289 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1290 llvm::GlobalValue::PrivateLinkage, 1291 CmdConstant); 1292 GV->setSection(getSectionNameForCommandline(T)); 1293 UsedArray.push_back( 1294 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1295 if (llvm::GlobalVariable *Old = 1296 M->getGlobalVariable("llvm.cmdline", true)) { 1297 assert(Old->hasOneUse() && 1298 "llvm.cmdline can only be used once in llvm.compiler.used"); 1299 GV->takeName(Old); 1300 Old->eraseFromParent(); 1301 } else { 1302 GV->setName("llvm.cmdline"); 1303 } 1304 } 1305 1306 if (UsedArray.empty()) 1307 return; 1308 1309 // Recreate llvm.compiler.used. 1310 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1311 auto *NewUsed = new GlobalVariable( 1312 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1313 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1314 NewUsed->setSection("llvm.metadata"); 1315 } 1316