1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInfo and TargetInfoImpl interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/TargetInfo.h" 15 #include "clang/Basic/AddressSpaces.h" 16 #include "clang/Basic/CharInfo.h" 17 #include "clang/Basic/Diagnostic.h" 18 #include "clang/Basic/LangOptions.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetParser.h" 23 #include <cstdlib> 24 using namespace clang; 25 26 static const LangASMap DefaultAddrSpaceMap = {0}; 27 28 // TargetInfo Constructor. 29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 30 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 31 // SPARC. These should be overridden by concrete targets as needed. 32 BigEndian = !T.isLittleEndian(); 33 TLSSupported = true; 34 VLASupported = true; 35 NoAsmVariants = false; 36 HasLegalHalfType = false; 37 HasFloat128 = false; 38 HasFloat16 = false; 39 PointerWidth = PointerAlign = 32; 40 BoolWidth = BoolAlign = 8; 41 IntWidth = IntAlign = 32; 42 LongWidth = LongAlign = 32; 43 LongLongWidth = LongLongAlign = 64; 44 45 // Fixed point default bit widths 46 ShortAccumWidth = ShortAccumAlign = 16; 47 AccumWidth = AccumAlign = 32; 48 LongAccumWidth = LongAccumAlign = 64; 49 ShortFractWidth = ShortFractAlign = 8; 50 FractWidth = FractAlign = 16; 51 LongFractWidth = LongFractAlign = 32; 52 53 // Fixed point default integral and fractional bit sizes 54 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 55 // types by default to have the same number of fractional bits between _Accum 56 // and _Fract types. 57 PaddingOnUnsignedFixedPoint = false; 58 ShortAccumScale = 7; 59 AccumScale = 15; 60 LongAccumScale = 31; 61 62 SuitableAlign = 64; 63 DefaultAlignForAttributeAligned = 128; 64 MinGlobalAlign = 0; 65 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 66 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 67 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 68 // This alignment guarantee also applies to Windows and Android. 69 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 70 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 71 else 72 NewAlign = 0; // Infer from basic type alignment. 73 HalfWidth = 16; 74 HalfAlign = 16; 75 FloatWidth = 32; 76 FloatAlign = 32; 77 DoubleWidth = 64; 78 DoubleAlign = 64; 79 LongDoubleWidth = 64; 80 LongDoubleAlign = 64; 81 Float128Align = 128; 82 LargeArrayMinWidth = 0; 83 LargeArrayAlign = 0; 84 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 85 MaxVectorAlign = 0; 86 MaxTLSAlign = 0; 87 SimdDefaultAlign = 0; 88 SizeType = UnsignedLong; 89 PtrDiffType = SignedLong; 90 IntMaxType = SignedLongLong; 91 IntPtrType = SignedLong; 92 WCharType = SignedInt; 93 WIntType = SignedInt; 94 Char16Type = UnsignedShort; 95 Char32Type = UnsignedInt; 96 Int64Type = SignedLongLong; 97 SigAtomicType = SignedInt; 98 ProcessIDType = SignedInt; 99 UseSignedCharForObjCBool = true; 100 UseBitFieldTypeAlignment = true; 101 UseZeroLengthBitfieldAlignment = false; 102 UseExplicitBitFieldAlignment = true; 103 ZeroLengthBitfieldBoundary = 0; 104 HalfFormat = &llvm::APFloat::IEEEhalf(); 105 FloatFormat = &llvm::APFloat::IEEEsingle(); 106 DoubleFormat = &llvm::APFloat::IEEEdouble(); 107 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 108 Float128Format = &llvm::APFloat::IEEEquad(); 109 MCountName = "mcount"; 110 RegParmMax = 0; 111 SSERegParmMax = 0; 112 HasAlignMac68kSupport = false; 113 HasBuiltinMSVaList = false; 114 IsRenderScriptTarget = false; 115 116 // Default to no types using fpret. 117 RealTypeUsesObjCFPRet = 0; 118 119 // Default to not using fp2ret for __Complex long double 120 ComplexLongDoubleUsesFP2Ret = false; 121 122 // Set the C++ ABI based on the triple. 123 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 124 ? TargetCXXABI::Microsoft 125 : TargetCXXABI::GenericItanium); 126 127 // Default to an empty address space map. 128 AddrSpaceMap = &DefaultAddrSpaceMap; 129 UseAddrSpaceMapMangling = false; 130 131 // Default to an unknown platform name. 132 PlatformName = "unknown"; 133 PlatformMinVersion = VersionTuple(); 134 } 135 136 // Out of line virtual dtor for TargetInfo. 137 TargetInfo::~TargetInfo() {} 138 139 bool 140 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 141 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 142 return false; 143 } 144 145 bool 146 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 147 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 148 return false; 149 } 150 151 /// getTypeName - Return the user string for the specified integer type enum. 152 /// For example, SignedShort -> "short". 153 const char *TargetInfo::getTypeName(IntType T) { 154 switch (T) { 155 default: llvm_unreachable("not an integer!"); 156 case SignedChar: return "signed char"; 157 case UnsignedChar: return "unsigned char"; 158 case SignedShort: return "short"; 159 case UnsignedShort: return "unsigned short"; 160 case SignedInt: return "int"; 161 case UnsignedInt: return "unsigned int"; 162 case SignedLong: return "long int"; 163 case UnsignedLong: return "long unsigned int"; 164 case SignedLongLong: return "long long int"; 165 case UnsignedLongLong: return "long long unsigned int"; 166 } 167 } 168 169 /// getTypeConstantSuffix - Return the constant suffix for the specified 170 /// integer type enum. For example, SignedLong -> "L". 171 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 172 switch (T) { 173 default: llvm_unreachable("not an integer!"); 174 case SignedChar: 175 case SignedShort: 176 case SignedInt: return ""; 177 case SignedLong: return "L"; 178 case SignedLongLong: return "LL"; 179 case UnsignedChar: 180 if (getCharWidth() < getIntWidth()) 181 return ""; 182 LLVM_FALLTHROUGH; 183 case UnsignedShort: 184 if (getShortWidth() < getIntWidth()) 185 return ""; 186 LLVM_FALLTHROUGH; 187 case UnsignedInt: return "U"; 188 case UnsignedLong: return "UL"; 189 case UnsignedLongLong: return "ULL"; 190 } 191 } 192 193 /// getTypeFormatModifier - Return the printf format modifier for the 194 /// specified integer type enum. For example, SignedLong -> "l". 195 196 const char *TargetInfo::getTypeFormatModifier(IntType T) { 197 switch (T) { 198 default: llvm_unreachable("not an integer!"); 199 case SignedChar: 200 case UnsignedChar: return "hh"; 201 case SignedShort: 202 case UnsignedShort: return "h"; 203 case SignedInt: 204 case UnsignedInt: return ""; 205 case SignedLong: 206 case UnsignedLong: return "l"; 207 case SignedLongLong: 208 case UnsignedLongLong: return "ll"; 209 } 210 } 211 212 /// getTypeWidth - Return the width (in bits) of the specified integer type 213 /// enum. For example, SignedInt -> getIntWidth(). 214 unsigned TargetInfo::getTypeWidth(IntType T) const { 215 switch (T) { 216 default: llvm_unreachable("not an integer!"); 217 case SignedChar: 218 case UnsignedChar: return getCharWidth(); 219 case SignedShort: 220 case UnsignedShort: return getShortWidth(); 221 case SignedInt: 222 case UnsignedInt: return getIntWidth(); 223 case SignedLong: 224 case UnsignedLong: return getLongWidth(); 225 case SignedLongLong: 226 case UnsignedLongLong: return getLongLongWidth(); 227 }; 228 } 229 230 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 231 unsigned BitWidth, bool IsSigned) const { 232 if (getCharWidth() == BitWidth) 233 return IsSigned ? SignedChar : UnsignedChar; 234 if (getShortWidth() == BitWidth) 235 return IsSigned ? SignedShort : UnsignedShort; 236 if (getIntWidth() == BitWidth) 237 return IsSigned ? SignedInt : UnsignedInt; 238 if (getLongWidth() == BitWidth) 239 return IsSigned ? SignedLong : UnsignedLong; 240 if (getLongLongWidth() == BitWidth) 241 return IsSigned ? SignedLongLong : UnsignedLongLong; 242 return NoInt; 243 } 244 245 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 246 bool IsSigned) const { 247 if (getCharWidth() >= BitWidth) 248 return IsSigned ? SignedChar : UnsignedChar; 249 if (getShortWidth() >= BitWidth) 250 return IsSigned ? SignedShort : UnsignedShort; 251 if (getIntWidth() >= BitWidth) 252 return IsSigned ? SignedInt : UnsignedInt; 253 if (getLongWidth() >= BitWidth) 254 return IsSigned ? SignedLong : UnsignedLong; 255 if (getLongLongWidth() >= BitWidth) 256 return IsSigned ? SignedLongLong : UnsignedLongLong; 257 return NoInt; 258 } 259 260 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const { 261 if (getFloatWidth() == BitWidth) 262 return Float; 263 if (getDoubleWidth() == BitWidth) 264 return Double; 265 266 switch (BitWidth) { 267 case 96: 268 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 269 return LongDouble; 270 break; 271 case 128: 272 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 273 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 274 return LongDouble; 275 if (hasFloat128Type()) 276 return Float128; 277 break; 278 } 279 280 return NoFloat; 281 } 282 283 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 284 /// enum. For example, SignedInt -> getIntAlign(). 285 unsigned TargetInfo::getTypeAlign(IntType T) const { 286 switch (T) { 287 default: llvm_unreachable("not an integer!"); 288 case SignedChar: 289 case UnsignedChar: return getCharAlign(); 290 case SignedShort: 291 case UnsignedShort: return getShortAlign(); 292 case SignedInt: 293 case UnsignedInt: return getIntAlign(); 294 case SignedLong: 295 case UnsignedLong: return getLongAlign(); 296 case SignedLongLong: 297 case UnsignedLongLong: return getLongLongAlign(); 298 }; 299 } 300 301 /// isTypeSigned - Return whether an integer types is signed. Returns true if 302 /// the type is signed; false otherwise. 303 bool TargetInfo::isTypeSigned(IntType T) { 304 switch (T) { 305 default: llvm_unreachable("not an integer!"); 306 case SignedChar: 307 case SignedShort: 308 case SignedInt: 309 case SignedLong: 310 case SignedLongLong: 311 return true; 312 case UnsignedChar: 313 case UnsignedShort: 314 case UnsignedInt: 315 case UnsignedLong: 316 case UnsignedLongLong: 317 return false; 318 }; 319 } 320 321 /// adjust - Set forced language options. 322 /// Apply changes to the target information with respect to certain 323 /// language options which change the target configuration and adjust 324 /// the language based on the target options where applicable. 325 void TargetInfo::adjust(LangOptions &Opts) { 326 if (Opts.NoBitFieldTypeAlign) 327 UseBitFieldTypeAlignment = false; 328 329 switch (Opts.WCharSize) { 330 default: llvm_unreachable("invalid wchar_t width"); 331 case 0: break; 332 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 333 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 334 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 335 } 336 337 if (Opts.AlignDouble) { 338 DoubleAlign = LongLongAlign = 64; 339 LongDoubleAlign = 64; 340 } 341 342 if (Opts.OpenCL) { 343 // OpenCL C requires specific widths for types, irrespective of 344 // what these normally are for the target. 345 // We also define long long and long double here, although the 346 // OpenCL standard only mentions these as "reserved". 347 IntWidth = IntAlign = 32; 348 LongWidth = LongAlign = 64; 349 LongLongWidth = LongLongAlign = 128; 350 HalfWidth = HalfAlign = 16; 351 FloatWidth = FloatAlign = 32; 352 353 // Embedded 32-bit targets (OpenCL EP) might have double C type 354 // defined as float. Let's not override this as it might lead 355 // to generating illegal code that uses 64bit doubles. 356 if (DoubleWidth != FloatWidth) { 357 DoubleWidth = DoubleAlign = 64; 358 DoubleFormat = &llvm::APFloat::IEEEdouble(); 359 } 360 LongDoubleWidth = LongDoubleAlign = 128; 361 362 unsigned MaxPointerWidth = getMaxPointerWidth(); 363 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 364 bool Is32BitArch = MaxPointerWidth == 32; 365 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 366 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 367 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 368 369 IntMaxType = SignedLongLong; 370 Int64Type = SignedLong; 371 372 HalfFormat = &llvm::APFloat::IEEEhalf(); 373 FloatFormat = &llvm::APFloat::IEEEsingle(); 374 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 375 } 376 377 if (Opts.NewAlignOverride) 378 NewAlign = Opts.NewAlignOverride * getCharWidth(); 379 380 // Each unsigned fixed point type has the same number of fractional bits as 381 // its corresponding signed type. 382 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 383 CheckFixedPointBits(); 384 } 385 386 bool TargetInfo::initFeatureMap( 387 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 388 const std::vector<std::string> &FeatureVec) const { 389 for (const auto &F : FeatureVec) { 390 StringRef Name = F; 391 // Apply the feature via the target. 392 bool Enabled = Name[0] == '+'; 393 setFeatureEnabled(Features, Name.substr(1), Enabled); 394 } 395 return true; 396 } 397 398 TargetInfo::CallingConvKind 399 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 400 if (getCXXABI() != TargetCXXABI::Microsoft && 401 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 402 return CCK_ClangABI4OrPS4; 403 return CCK_Default; 404 } 405 406 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 407 switch (TK) { 408 case OCLTK_Image: 409 case OCLTK_Pipe: 410 return LangAS::opencl_global; 411 412 case OCLTK_Sampler: 413 return LangAS::opencl_constant; 414 415 default: 416 return LangAS::Default; 417 } 418 } 419 420 //===----------------------------------------------------------------------===// 421 422 423 static StringRef removeGCCRegisterPrefix(StringRef Name) { 424 if (Name[0] == '%' || Name[0] == '#') 425 Name = Name.substr(1); 426 427 return Name; 428 } 429 430 /// isValidClobber - Returns whether the passed in string is 431 /// a valid clobber in an inline asm statement. This is used by 432 /// Sema. 433 bool TargetInfo::isValidClobber(StringRef Name) const { 434 return (isValidGCCRegisterName(Name) || 435 Name == "memory" || Name == "cc"); 436 } 437 438 /// isValidGCCRegisterName - Returns whether the passed in string 439 /// is a valid register name according to GCC. This is used by Sema for 440 /// inline asm statements. 441 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 442 if (Name.empty()) 443 return false; 444 445 // Get rid of any register prefix. 446 Name = removeGCCRegisterPrefix(Name); 447 if (Name.empty()) 448 return false; 449 450 ArrayRef<const char *> Names = getGCCRegNames(); 451 452 // If we have a number it maps to an entry in the register name array. 453 if (isDigit(Name[0])) { 454 unsigned n; 455 if (!Name.getAsInteger(0, n)) 456 return n < Names.size(); 457 } 458 459 // Check register names. 460 if (std::find(Names.begin(), Names.end(), Name) != Names.end()) 461 return true; 462 463 // Check any additional names that we have. 464 for (const AddlRegName &ARN : getGCCAddlRegNames()) 465 for (const char *AN : ARN.Names) { 466 if (!AN) 467 break; 468 // Make sure the register that the additional name is for is within 469 // the bounds of the register names from above. 470 if (AN == Name && ARN.RegNum < Names.size()) 471 return true; 472 } 473 474 // Now check aliases. 475 for (const GCCRegAlias &GRA : getGCCRegAliases()) 476 for (const char *A : GRA.Aliases) { 477 if (!A) 478 break; 479 if (A == Name) 480 return true; 481 } 482 483 return false; 484 } 485 486 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 487 bool ReturnCanonical) const { 488 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 489 490 // Get rid of any register prefix. 491 Name = removeGCCRegisterPrefix(Name); 492 493 ArrayRef<const char *> Names = getGCCRegNames(); 494 495 // First, check if we have a number. 496 if (isDigit(Name[0])) { 497 unsigned n; 498 if (!Name.getAsInteger(0, n)) { 499 assert(n < Names.size() && "Out of bounds register number!"); 500 return Names[n]; 501 } 502 } 503 504 // Check any additional names that we have. 505 for (const AddlRegName &ARN : getGCCAddlRegNames()) 506 for (const char *AN : ARN.Names) { 507 if (!AN) 508 break; 509 // Make sure the register that the additional name is for is within 510 // the bounds of the register names from above. 511 if (AN == Name && ARN.RegNum < Names.size()) 512 return ReturnCanonical ? Names[ARN.RegNum] : Name; 513 } 514 515 // Now check aliases. 516 for (const GCCRegAlias &RA : getGCCRegAliases()) 517 for (const char *A : RA.Aliases) { 518 if (!A) 519 break; 520 if (A == Name) 521 return RA.Register; 522 } 523 524 return Name; 525 } 526 527 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 528 const char *Name = Info.getConstraintStr().c_str(); 529 // An output constraint must start with '=' or '+' 530 if (*Name != '=' && *Name != '+') 531 return false; 532 533 if (*Name == '+') 534 Info.setIsReadWrite(); 535 536 Name++; 537 while (*Name) { 538 switch (*Name) { 539 default: 540 if (!validateAsmConstraint(Name, Info)) { 541 // FIXME: We temporarily return false 542 // so we can add more constraints as we hit it. 543 // Eventually, an unknown constraint should just be treated as 'g'. 544 return false; 545 } 546 break; 547 case '&': // early clobber. 548 Info.setEarlyClobber(); 549 break; 550 case '%': // commutative. 551 // FIXME: Check that there is a another register after this one. 552 break; 553 case 'r': // general register. 554 Info.setAllowsRegister(); 555 break; 556 case 'm': // memory operand. 557 case 'o': // offsetable memory operand. 558 case 'V': // non-offsetable memory operand. 559 case '<': // autodecrement memory operand. 560 case '>': // autoincrement memory operand. 561 Info.setAllowsMemory(); 562 break; 563 case 'g': // general register, memory operand or immediate integer. 564 case 'X': // any operand. 565 Info.setAllowsRegister(); 566 Info.setAllowsMemory(); 567 break; 568 case ',': // multiple alternative constraint. Pass it. 569 // Handle additional optional '=' or '+' modifiers. 570 if (Name[1] == '=' || Name[1] == '+') 571 Name++; 572 break; 573 case '#': // Ignore as constraint. 574 while (Name[1] && Name[1] != ',') 575 Name++; 576 break; 577 case '?': // Disparage slightly code. 578 case '!': // Disparage severely. 579 case '*': // Ignore for choosing register preferences. 580 case 'i': // Ignore i,n,E,F as output constraints (match from the other 581 // chars) 582 case 'n': 583 case 'E': 584 case 'F': 585 break; // Pass them. 586 } 587 588 Name++; 589 } 590 591 // Early clobber with a read-write constraint which doesn't permit registers 592 // is invalid. 593 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 594 return false; 595 596 // If a constraint allows neither memory nor register operands it contains 597 // only modifiers. Reject it. 598 return Info.allowsMemory() || Info.allowsRegister(); 599 } 600 601 bool TargetInfo::resolveSymbolicName(const char *&Name, 602 ArrayRef<ConstraintInfo> OutputConstraints, 603 unsigned &Index) const { 604 assert(*Name == '[' && "Symbolic name did not start with '['"); 605 Name++; 606 const char *Start = Name; 607 while (*Name && *Name != ']') 608 Name++; 609 610 if (!*Name) { 611 // Missing ']' 612 return false; 613 } 614 615 std::string SymbolicName(Start, Name - Start); 616 617 for (Index = 0; Index != OutputConstraints.size(); ++Index) 618 if (SymbolicName == OutputConstraints[Index].getName()) 619 return true; 620 621 return false; 622 } 623 624 bool TargetInfo::validateInputConstraint( 625 MutableArrayRef<ConstraintInfo> OutputConstraints, 626 ConstraintInfo &Info) const { 627 const char *Name = Info.ConstraintStr.c_str(); 628 629 if (!*Name) 630 return false; 631 632 while (*Name) { 633 switch (*Name) { 634 default: 635 // Check if we have a matching constraint 636 if (*Name >= '0' && *Name <= '9') { 637 const char *DigitStart = Name; 638 while (Name[1] >= '0' && Name[1] <= '9') 639 Name++; 640 const char *DigitEnd = Name; 641 unsigned i; 642 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 643 .getAsInteger(10, i)) 644 return false; 645 646 // Check if matching constraint is out of bounds. 647 if (i >= OutputConstraints.size()) return false; 648 649 // A number must refer to an output only operand. 650 if (OutputConstraints[i].isReadWrite()) 651 return false; 652 653 // If the constraint is already tied, it must be tied to the 654 // same operand referenced to by the number. 655 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 656 return false; 657 658 // The constraint should have the same info as the respective 659 // output constraint. 660 Info.setTiedOperand(i, OutputConstraints[i]); 661 } else if (!validateAsmConstraint(Name, Info)) { 662 // FIXME: This error return is in place temporarily so we can 663 // add more constraints as we hit it. Eventually, an unknown 664 // constraint should just be treated as 'g'. 665 return false; 666 } 667 break; 668 case '[': { 669 unsigned Index = 0; 670 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 671 return false; 672 673 // If the constraint is already tied, it must be tied to the 674 // same operand referenced to by the number. 675 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 676 return false; 677 678 // A number must refer to an output only operand. 679 if (OutputConstraints[Index].isReadWrite()) 680 return false; 681 682 Info.setTiedOperand(Index, OutputConstraints[Index]); 683 break; 684 } 685 case '%': // commutative 686 // FIXME: Fail if % is used with the last operand. 687 break; 688 case 'i': // immediate integer. 689 break; 690 case 'n': // immediate integer with a known value. 691 Info.setRequiresImmediate(); 692 break; 693 case 'I': // Various constant constraints with target-specific meanings. 694 case 'J': 695 case 'K': 696 case 'L': 697 case 'M': 698 case 'N': 699 case 'O': 700 case 'P': 701 if (!validateAsmConstraint(Name, Info)) 702 return false; 703 break; 704 case 'r': // general register. 705 Info.setAllowsRegister(); 706 break; 707 case 'm': // memory operand. 708 case 'o': // offsettable memory operand. 709 case 'V': // non-offsettable memory operand. 710 case '<': // autodecrement memory operand. 711 case '>': // autoincrement memory operand. 712 Info.setAllowsMemory(); 713 break; 714 case 'g': // general register, memory operand or immediate integer. 715 case 'X': // any operand. 716 Info.setAllowsRegister(); 717 Info.setAllowsMemory(); 718 break; 719 case 'E': // immediate floating point. 720 case 'F': // immediate floating point. 721 case 'p': // address operand. 722 break; 723 case ',': // multiple alternative constraint. Ignore comma. 724 break; 725 case '#': // Ignore as constraint. 726 while (Name[1] && Name[1] != ',') 727 Name++; 728 break; 729 case '?': // Disparage slightly code. 730 case '!': // Disparage severely. 731 case '*': // Ignore for choosing register preferences. 732 break; // Pass them. 733 } 734 735 Name++; 736 } 737 738 return true; 739 } 740 741 void TargetInfo::CheckFixedPointBits() const { 742 // Check that the number of fractional and integral bits (and maybe sign) can 743 // fit into the bits given for a fixed point type. 744 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 745 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 746 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 747 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 748 ShortAccumWidth); 749 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 750 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 751 LongAccumWidth); 752 753 assert(getShortFractScale() + 1 <= ShortFractWidth); 754 assert(getFractScale() + 1 <= FractWidth); 755 assert(getLongFractScale() + 1 <= LongFractWidth); 756 assert(getUnsignedShortFractScale() <= ShortFractWidth); 757 assert(getUnsignedFractScale() <= FractWidth); 758 assert(getUnsignedLongFractScale() <= LongFractWidth); 759 760 // Each unsigned fract type has either the same number of fractional bits 761 // as, or one more fractional bit than, its corresponding signed fract type. 762 assert(getShortFractScale() == getUnsignedShortFractScale() || 763 getShortFractScale() == getUnsignedShortFractScale() - 1); 764 assert(getFractScale() == getUnsignedFractScale() || 765 getFractScale() == getUnsignedFractScale() - 1); 766 assert(getLongFractScale() == getUnsignedLongFractScale() || 767 getLongFractScale() == getUnsignedLongFractScale() - 1); 768 769 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 770 // fractional bits is nondecreasing for each of the following sets of 771 // fixed-point types: 772 // - signed fract types 773 // - unsigned fract types 774 // - signed accum types 775 // - unsigned accum types. 776 assert(getLongFractScale() >= getFractScale() && 777 getFractScale() >= getShortFractScale()); 778 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 779 getUnsignedFractScale() >= getUnsignedShortFractScale()); 780 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 781 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 782 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 783 784 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 785 // integral bits is nondecreasing for each of the following sets of 786 // fixed-point types: 787 // - signed accum types 788 // - unsigned accum types 789 assert(getLongAccumIBits() >= getAccumIBits() && 790 getAccumIBits() >= getShortAccumIBits()); 791 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 792 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 793 794 // Each signed accum type has at least as many integral bits as its 795 // corresponding unsigned accum type. 796 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 797 assert(getAccumIBits() >= getUnsignedAccumIBits()); 798 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 799 } 800