1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CodeMetrics.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/VectorUtils.h" 47 #include <algorithm> 48 #include <map> 49 #include <memory> 50 51 using namespace llvm; 52 53 #define SV_NAME "slp-vectorizer" 54 #define DEBUG_TYPE "SLP" 55 56 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 57 58 static cl::opt<int> 59 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 60 cl::desc("Only vectorize if you gain more than this " 61 "number ")); 62 63 static cl::opt<bool> 64 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 65 cl::desc("Attempt to vectorize horizontal reductions")); 66 67 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 68 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 69 cl::desc( 70 "Attempt to vectorize horizontal reductions feeding into a store")); 71 72 namespace { 73 74 static const unsigned MinVecRegSize = 128; 75 76 static const unsigned RecursionMaxDepth = 12; 77 78 /// \brief Predicate for the element types that the SLP vectorizer supports. 79 /// 80 /// The most important thing to filter here are types which are invalid in LLVM 81 /// vectors. We also filter target specific types which have absolutely no 82 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 83 /// avoids spending time checking the cost model and realizing that they will 84 /// be inevitably scalarized. 85 static bool isValidElementType(Type *Ty) { 86 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 87 !Ty->isPPC_FP128Ty(); 88 } 89 90 /// \returns the parent basic block if all of the instructions in \p VL 91 /// are in the same block or null otherwise. 92 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 93 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 94 if (!I0) 95 return nullptr; 96 BasicBlock *BB = I0->getParent(); 97 for (int i = 1, e = VL.size(); i < e; i++) { 98 Instruction *I = dyn_cast<Instruction>(VL[i]); 99 if (!I) 100 return nullptr; 101 102 if (BB != I->getParent()) 103 return nullptr; 104 } 105 return BB; 106 } 107 108 /// \returns True if all of the values in \p VL are constants. 109 static bool allConstant(ArrayRef<Value *> VL) { 110 for (unsigned i = 0, e = VL.size(); i < e; ++i) 111 if (!isa<Constant>(VL[i])) 112 return false; 113 return true; 114 } 115 116 /// \returns True if all of the values in \p VL are identical. 117 static bool isSplat(ArrayRef<Value *> VL) { 118 for (unsigned i = 1, e = VL.size(); i < e; ++i) 119 if (VL[i] != VL[0]) 120 return false; 121 return true; 122 } 123 124 ///\returns Opcode that can be clubbed with \p Op to create an alternate 125 /// sequence which can later be merged as a ShuffleVector instruction. 126 static unsigned getAltOpcode(unsigned Op) { 127 switch (Op) { 128 case Instruction::FAdd: 129 return Instruction::FSub; 130 case Instruction::FSub: 131 return Instruction::FAdd; 132 case Instruction::Add: 133 return Instruction::Sub; 134 case Instruction::Sub: 135 return Instruction::Add; 136 default: 137 return 0; 138 } 139 } 140 141 ///\returns bool representing if Opcode \p Op can be part 142 /// of an alternate sequence which can later be merged as 143 /// a ShuffleVector instruction. 144 static bool canCombineAsAltInst(unsigned Op) { 145 if (Op == Instruction::FAdd || Op == Instruction::FSub || 146 Op == Instruction::Sub || Op == Instruction::Add) 147 return true; 148 return false; 149 } 150 151 /// \returns ShuffleVector instruction if intructions in \p VL have 152 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 153 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 154 static unsigned isAltInst(ArrayRef<Value *> VL) { 155 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 156 unsigned Opcode = I0->getOpcode(); 157 unsigned AltOpcode = getAltOpcode(Opcode); 158 for (int i = 1, e = VL.size(); i < e; i++) { 159 Instruction *I = dyn_cast<Instruction>(VL[i]); 160 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 161 return 0; 162 } 163 return Instruction::ShuffleVector; 164 } 165 166 /// \returns The opcode if all of the Instructions in \p VL have the same 167 /// opcode, or zero. 168 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 169 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 170 if (!I0) 171 return 0; 172 unsigned Opcode = I0->getOpcode(); 173 for (int i = 1, e = VL.size(); i < e; i++) { 174 Instruction *I = dyn_cast<Instruction>(VL[i]); 175 if (!I || Opcode != I->getOpcode()) { 176 if (canCombineAsAltInst(Opcode) && i == 1) 177 return isAltInst(VL); 178 return 0; 179 } 180 } 181 return Opcode; 182 } 183 184 /// Get the intersection (logical and) of all of the potential IR flags 185 /// of each scalar operation (VL) that will be converted into a vector (I). 186 /// Flag set: NSW, NUW, exact, and all of fast-math. 187 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 188 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 189 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 190 // Intersection is initialized to the 0th scalar, 191 // so start counting from index '1'. 192 for (int i = 1, e = VL.size(); i < e; ++i) { 193 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 194 Intersection->andIRFlags(Scalar); 195 } 196 VecOp->copyIRFlags(Intersection); 197 } 198 } 199 } 200 201 /// \returns \p I after propagating metadata from \p VL. 202 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 203 Instruction *I0 = cast<Instruction>(VL[0]); 204 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 205 I0->getAllMetadataOtherThanDebugLoc(Metadata); 206 207 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 208 unsigned Kind = Metadata[i].first; 209 MDNode *MD = Metadata[i].second; 210 211 for (int i = 1, e = VL.size(); MD && i != e; i++) { 212 Instruction *I = cast<Instruction>(VL[i]); 213 MDNode *IMD = I->getMetadata(Kind); 214 215 switch (Kind) { 216 default: 217 MD = nullptr; // Remove unknown metadata 218 break; 219 case LLVMContext::MD_tbaa: 220 MD = MDNode::getMostGenericTBAA(MD, IMD); 221 break; 222 case LLVMContext::MD_alias_scope: 223 MD = MDNode::getMostGenericAliasScope(MD, IMD); 224 break; 225 case LLVMContext::MD_noalias: 226 MD = MDNode::intersect(MD, IMD); 227 break; 228 case LLVMContext::MD_fpmath: 229 MD = MDNode::getMostGenericFPMath(MD, IMD); 230 break; 231 } 232 } 233 I->setMetadata(Kind, MD); 234 } 235 return I; 236 } 237 238 /// \returns The type that all of the values in \p VL have or null if there 239 /// are different types. 240 static Type* getSameType(ArrayRef<Value *> VL) { 241 Type *Ty = VL[0]->getType(); 242 for (int i = 1, e = VL.size(); i < e; i++) 243 if (VL[i]->getType() != Ty) 244 return nullptr; 245 246 return Ty; 247 } 248 249 /// \returns True if the ExtractElement instructions in VL can be vectorized 250 /// to use the original vector. 251 static bool CanReuseExtract(ArrayRef<Value *> VL) { 252 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 253 // Check if all of the extracts come from the same vector and from the 254 // correct offset. 255 Value *VL0 = VL[0]; 256 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 257 Value *Vec = E0->getOperand(0); 258 259 // We have to extract from the same vector type. 260 unsigned NElts = Vec->getType()->getVectorNumElements(); 261 262 if (NElts != VL.size()) 263 return false; 264 265 // Check that all of the indices extract from the correct offset. 266 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 267 if (!CI || CI->getZExtValue()) 268 return false; 269 270 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 271 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 272 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 273 274 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 275 return false; 276 } 277 278 return true; 279 } 280 281 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 282 SmallVectorImpl<Value *> &Left, 283 SmallVectorImpl<Value *> &Right) { 284 285 SmallVector<Value *, 16> OrigLeft, OrigRight; 286 287 bool AllSameOpcodeLeft = true; 288 bool AllSameOpcodeRight = true; 289 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 290 Instruction *I = cast<Instruction>(VL[i]); 291 Value *V0 = I->getOperand(0); 292 Value *V1 = I->getOperand(1); 293 294 OrigLeft.push_back(V0); 295 OrigRight.push_back(V1); 296 297 Instruction *I0 = dyn_cast<Instruction>(V0); 298 Instruction *I1 = dyn_cast<Instruction>(V1); 299 300 // Check whether all operands on one side have the same opcode. In this case 301 // we want to preserve the original order and not make things worse by 302 // reordering. 303 AllSameOpcodeLeft = I0; 304 AllSameOpcodeRight = I1; 305 306 if (i && AllSameOpcodeLeft) { 307 if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) { 308 if(P0->getOpcode() != I0->getOpcode()) 309 AllSameOpcodeLeft = false; 310 } else 311 AllSameOpcodeLeft = false; 312 } 313 if (i && AllSameOpcodeRight) { 314 if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) { 315 if(P1->getOpcode() != I1->getOpcode()) 316 AllSameOpcodeRight = false; 317 } else 318 AllSameOpcodeRight = false; 319 } 320 321 // Sort two opcodes. In the code below we try to preserve the ability to use 322 // broadcast of values instead of individual inserts. 323 // vl1 = load 324 // vl2 = phi 325 // vr1 = load 326 // vr2 = vr2 327 // = vl1 x vr1 328 // = vl2 x vr2 329 // If we just sorted according to opcode we would leave the first line in 330 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 331 // = vl1 x vr1 332 // = vr2 x vl2 333 // Because vr2 and vr1 are from the same load we loose the opportunity of a 334 // broadcast for the packed right side in the backend: we have [vr1, vl2] 335 // instead of [vr1, vr2=vr1]. 336 if (I0 && I1) { 337 if(!i && I0->getOpcode() > I1->getOpcode()) { 338 Left.push_back(I1); 339 Right.push_back(I0); 340 } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) { 341 // Try not to destroy a broad cast for no apparent benefit. 342 Left.push_back(I1); 343 Right.push_back(I0); 344 } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) { 345 // Try preserve broadcasts. 346 Left.push_back(I1); 347 Right.push_back(I0); 348 } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) { 349 // Try preserve broadcasts. 350 Left.push_back(I1); 351 Right.push_back(I0); 352 } else { 353 Left.push_back(I0); 354 Right.push_back(I1); 355 } 356 continue; 357 } 358 // One opcode, put the instruction on the right. 359 if (I0) { 360 Left.push_back(V1); 361 Right.push_back(I0); 362 continue; 363 } 364 Left.push_back(V0); 365 Right.push_back(V1); 366 } 367 368 bool LeftBroadcast = isSplat(Left); 369 bool RightBroadcast = isSplat(Right); 370 371 // Don't reorder if the operands where good to begin with. 372 if (!(LeftBroadcast || RightBroadcast) && 373 (AllSameOpcodeRight || AllSameOpcodeLeft)) { 374 Left = OrigLeft; 375 Right = OrigRight; 376 } 377 } 378 379 /// \returns True if in-tree use also needs extract. This refers to 380 /// possible scalar operand in vectorized instruction. 381 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 382 TargetLibraryInfo *TLI) { 383 384 unsigned Opcode = UserInst->getOpcode(); 385 switch (Opcode) { 386 case Instruction::Load: { 387 LoadInst *LI = cast<LoadInst>(UserInst); 388 return (LI->getPointerOperand() == Scalar); 389 } 390 case Instruction::Store: { 391 StoreInst *SI = cast<StoreInst>(UserInst); 392 return (SI->getPointerOperand() == Scalar); 393 } 394 case Instruction::Call: { 395 CallInst *CI = cast<CallInst>(UserInst); 396 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 397 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 398 return (CI->getArgOperand(1) == Scalar); 399 } 400 } 401 default: 402 return false; 403 } 404 } 405 406 /// \returns the AA location that is being access by the instruction. 407 static AliasAnalysis::Location getLocation(Instruction *I, AliasAnalysis *AA) { 408 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 409 return AA->getLocation(SI); 410 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 411 return AA->getLocation(LI); 412 return AliasAnalysis::Location(); 413 } 414 415 /// Bottom Up SLP Vectorizer. 416 class BoUpSLP { 417 public: 418 typedef SmallVector<Value *, 8> ValueList; 419 typedef SmallVector<Instruction *, 16> InstrList; 420 typedef SmallPtrSet<Value *, 16> ValueSet; 421 typedef SmallVector<StoreInst *, 8> StoreList; 422 423 BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl, 424 TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, 425 LoopInfo *Li, DominatorTree *Dt, AssumptionCache *AC) 426 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 427 SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 428 Builder(Se->getContext()) { 429 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 430 } 431 432 /// \brief Vectorize the tree that starts with the elements in \p VL. 433 /// Returns the vectorized root. 434 Value *vectorizeTree(); 435 436 /// \returns the cost incurred by unwanted spills and fills, caused by 437 /// holding live values over call sites. 438 int getSpillCost(); 439 440 /// \returns the vectorization cost of the subtree that starts at \p VL. 441 /// A negative number means that this is profitable. 442 int getTreeCost(); 443 444 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 445 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 446 void buildTree(ArrayRef<Value *> Roots, 447 ArrayRef<Value *> UserIgnoreLst = None); 448 449 /// Clear the internal data structures that are created by 'buildTree'. 450 void deleteTree() { 451 VectorizableTree.clear(); 452 ScalarToTreeEntry.clear(); 453 MustGather.clear(); 454 ExternalUses.clear(); 455 NumLoadsWantToKeepOrder = 0; 456 NumLoadsWantToChangeOrder = 0; 457 for (auto &Iter : BlocksSchedules) { 458 BlockScheduling *BS = Iter.second.get(); 459 BS->clear(); 460 } 461 } 462 463 /// \returns true if the memory operations A and B are consecutive. 464 bool isConsecutiveAccess(Value *A, Value *B); 465 466 /// \brief Perform LICM and CSE on the newly generated gather sequences. 467 void optimizeGatherSequence(); 468 469 /// \returns true if it is benefitial to reverse the vector order. 470 bool shouldReorder() const { 471 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 472 } 473 474 private: 475 struct TreeEntry; 476 477 /// \returns the cost of the vectorizable entry. 478 int getEntryCost(TreeEntry *E); 479 480 /// This is the recursive part of buildTree. 481 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 482 483 /// Vectorize a single entry in the tree. 484 Value *vectorizeTree(TreeEntry *E); 485 486 /// Vectorize a single entry in the tree, starting in \p VL. 487 Value *vectorizeTree(ArrayRef<Value *> VL); 488 489 /// \returns the pointer to the vectorized value if \p VL is already 490 /// vectorized, or NULL. They may happen in cycles. 491 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 492 493 /// \brief Take the pointer operand from the Load/Store instruction. 494 /// \returns NULL if this is not a valid Load/Store instruction. 495 static Value *getPointerOperand(Value *I); 496 497 /// \brief Take the address space operand from the Load/Store instruction. 498 /// \returns -1 if this is not a valid Load/Store instruction. 499 static unsigned getAddressSpaceOperand(Value *I); 500 501 /// \returns the scalarization cost for this type. Scalarization in this 502 /// context means the creation of vectors from a group of scalars. 503 int getGatherCost(Type *Ty); 504 505 /// \returns the scalarization cost for this list of values. Assuming that 506 /// this subtree gets vectorized, we may need to extract the values from the 507 /// roots. This method calculates the cost of extracting the values. 508 int getGatherCost(ArrayRef<Value *> VL); 509 510 /// \brief Set the Builder insert point to one after the last instruction in 511 /// the bundle 512 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 513 514 /// \returns a vector from a collection of scalars in \p VL. 515 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 516 517 /// \returns whether the VectorizableTree is fully vectoriable and will 518 /// be beneficial even the tree height is tiny. 519 bool isFullyVectorizableTinyTree(); 520 521 struct TreeEntry { 522 TreeEntry() : Scalars(), VectorizedValue(nullptr), 523 NeedToGather(0) {} 524 525 /// \returns true if the scalars in VL are equal to this entry. 526 bool isSame(ArrayRef<Value *> VL) const { 527 assert(VL.size() == Scalars.size() && "Invalid size"); 528 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 529 } 530 531 /// A vector of scalars. 532 ValueList Scalars; 533 534 /// The Scalars are vectorized into this value. It is initialized to Null. 535 Value *VectorizedValue; 536 537 /// Do we need to gather this sequence ? 538 bool NeedToGather; 539 }; 540 541 /// Create a new VectorizableTree entry. 542 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 543 VectorizableTree.push_back(TreeEntry()); 544 int idx = VectorizableTree.size() - 1; 545 TreeEntry *Last = &VectorizableTree[idx]; 546 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 547 Last->NeedToGather = !Vectorized; 548 if (Vectorized) { 549 for (int i = 0, e = VL.size(); i != e; ++i) { 550 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 551 ScalarToTreeEntry[VL[i]] = idx; 552 } 553 } else { 554 MustGather.insert(VL.begin(), VL.end()); 555 } 556 return Last; 557 } 558 559 /// -- Vectorization State -- 560 /// Holds all of the tree entries. 561 std::vector<TreeEntry> VectorizableTree; 562 563 /// Maps a specific scalar to its tree entry. 564 SmallDenseMap<Value*, int> ScalarToTreeEntry; 565 566 /// A list of scalars that we found that we need to keep as scalars. 567 ValueSet MustGather; 568 569 /// This POD struct describes one external user in the vectorized tree. 570 struct ExternalUser { 571 ExternalUser (Value *S, llvm::User *U, int L) : 572 Scalar(S), User(U), Lane(L){}; 573 // Which scalar in our function. 574 Value *Scalar; 575 // Which user that uses the scalar. 576 llvm::User *User; 577 // Which lane does the scalar belong to. 578 int Lane; 579 }; 580 typedef SmallVector<ExternalUser, 16> UserList; 581 582 /// Checks if two instructions may access the same memory. 583 /// 584 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 585 /// is invariant in the calling loop. 586 bool isAliased(const AliasAnalysis::Location &Loc1, Instruction *Inst1, 587 Instruction *Inst2) { 588 589 // First check if the result is already in the cache. 590 AliasCacheKey key = std::make_pair(Inst1, Inst2); 591 Optional<bool> &result = AliasCache[key]; 592 if (result.hasValue()) { 593 return result.getValue(); 594 } 595 AliasAnalysis::Location Loc2 = getLocation(Inst2, AA); 596 bool aliased = true; 597 if (Loc1.Ptr && Loc2.Ptr) { 598 // Do the alias check. 599 aliased = AA->alias(Loc1, Loc2); 600 } 601 // Store the result in the cache. 602 result = aliased; 603 return aliased; 604 } 605 606 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 607 608 /// Cache for alias results. 609 /// TODO: consider moving this to the AliasAnalysis itself. 610 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 611 612 /// Removes an instruction from its block and eventually deletes it. 613 /// It's like Instruction::eraseFromParent() except that the actual deletion 614 /// is delayed until BoUpSLP is destructed. 615 /// This is required to ensure that there are no incorrect collisions in the 616 /// AliasCache, which can happen if a new instruction is allocated at the 617 /// same address as a previously deleted instruction. 618 void eraseInstruction(Instruction *I) { 619 I->removeFromParent(); 620 I->dropAllReferences(); 621 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 622 } 623 624 /// Temporary store for deleted instructions. Instructions will be deleted 625 /// eventually when the BoUpSLP is destructed. 626 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 627 628 /// A list of values that need to extracted out of the tree. 629 /// This list holds pairs of (Internal Scalar : External User). 630 UserList ExternalUses; 631 632 /// Values used only by @llvm.assume calls. 633 SmallPtrSet<const Value *, 32> EphValues; 634 635 /// Holds all of the instructions that we gathered. 636 SetVector<Instruction *> GatherSeq; 637 /// A list of blocks that we are going to CSE. 638 SetVector<BasicBlock *> CSEBlocks; 639 640 /// Contains all scheduling relevant data for an instruction. 641 /// A ScheduleData either represents a single instruction or a member of an 642 /// instruction bundle (= a group of instructions which is combined into a 643 /// vector instruction). 644 struct ScheduleData { 645 646 // The initial value for the dependency counters. It means that the 647 // dependencies are not calculated yet. 648 enum { InvalidDeps = -1 }; 649 650 ScheduleData() 651 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 652 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 653 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 654 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 655 656 void init(int BlockSchedulingRegionID) { 657 FirstInBundle = this; 658 NextInBundle = nullptr; 659 NextLoadStore = nullptr; 660 IsScheduled = false; 661 SchedulingRegionID = BlockSchedulingRegionID; 662 UnscheduledDepsInBundle = UnscheduledDeps; 663 clearDependencies(); 664 } 665 666 /// Returns true if the dependency information has been calculated. 667 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 668 669 /// Returns true for single instructions and for bundle representatives 670 /// (= the head of a bundle). 671 bool isSchedulingEntity() const { return FirstInBundle == this; } 672 673 /// Returns true if it represents an instruction bundle and not only a 674 /// single instruction. 675 bool isPartOfBundle() const { 676 return NextInBundle != nullptr || FirstInBundle != this; 677 } 678 679 /// Returns true if it is ready for scheduling, i.e. it has no more 680 /// unscheduled depending instructions/bundles. 681 bool isReady() const { 682 assert(isSchedulingEntity() && 683 "can't consider non-scheduling entity for ready list"); 684 return UnscheduledDepsInBundle == 0 && !IsScheduled; 685 } 686 687 /// Modifies the number of unscheduled dependencies, also updating it for 688 /// the whole bundle. 689 int incrementUnscheduledDeps(int Incr) { 690 UnscheduledDeps += Incr; 691 return FirstInBundle->UnscheduledDepsInBundle += Incr; 692 } 693 694 /// Sets the number of unscheduled dependencies to the number of 695 /// dependencies. 696 void resetUnscheduledDeps() { 697 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 698 } 699 700 /// Clears all dependency information. 701 void clearDependencies() { 702 Dependencies = InvalidDeps; 703 resetUnscheduledDeps(); 704 MemoryDependencies.clear(); 705 } 706 707 void dump(raw_ostream &os) const { 708 if (!isSchedulingEntity()) { 709 os << "/ " << *Inst; 710 } else if (NextInBundle) { 711 os << '[' << *Inst; 712 ScheduleData *SD = NextInBundle; 713 while (SD) { 714 os << ';' << *SD->Inst; 715 SD = SD->NextInBundle; 716 } 717 os << ']'; 718 } else { 719 os << *Inst; 720 } 721 } 722 723 Instruction *Inst; 724 725 /// Points to the head in an instruction bundle (and always to this for 726 /// single instructions). 727 ScheduleData *FirstInBundle; 728 729 /// Single linked list of all instructions in a bundle. Null if it is a 730 /// single instruction. 731 ScheduleData *NextInBundle; 732 733 /// Single linked list of all memory instructions (e.g. load, store, call) 734 /// in the block - until the end of the scheduling region. 735 ScheduleData *NextLoadStore; 736 737 /// The dependent memory instructions. 738 /// This list is derived on demand in calculateDependencies(). 739 SmallVector<ScheduleData *, 4> MemoryDependencies; 740 741 /// This ScheduleData is in the current scheduling region if this matches 742 /// the current SchedulingRegionID of BlockScheduling. 743 int SchedulingRegionID; 744 745 /// Used for getting a "good" final ordering of instructions. 746 int SchedulingPriority; 747 748 /// The number of dependencies. Constitutes of the number of users of the 749 /// instruction plus the number of dependent memory instructions (if any). 750 /// This value is calculated on demand. 751 /// If InvalidDeps, the number of dependencies is not calculated yet. 752 /// 753 int Dependencies; 754 755 /// The number of dependencies minus the number of dependencies of scheduled 756 /// instructions. As soon as this is zero, the instruction/bundle gets ready 757 /// for scheduling. 758 /// Note that this is negative as long as Dependencies is not calculated. 759 int UnscheduledDeps; 760 761 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 762 /// single instructions. 763 int UnscheduledDepsInBundle; 764 765 /// True if this instruction is scheduled (or considered as scheduled in the 766 /// dry-run). 767 bool IsScheduled; 768 }; 769 770 #ifndef NDEBUG 771 friend raw_ostream &operator<<(raw_ostream &os, 772 const BoUpSLP::ScheduleData &SD); 773 #endif 774 775 /// Contains all scheduling data for a basic block. 776 /// 777 struct BlockScheduling { 778 779 BlockScheduling(BasicBlock *BB) 780 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 781 ScheduleStart(nullptr), ScheduleEnd(nullptr), 782 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 783 // Make sure that the initial SchedulingRegionID is greater than the 784 // initial SchedulingRegionID in ScheduleData (which is 0). 785 SchedulingRegionID(1) {} 786 787 void clear() { 788 ReadyInsts.clear(); 789 ScheduleStart = nullptr; 790 ScheduleEnd = nullptr; 791 FirstLoadStoreInRegion = nullptr; 792 LastLoadStoreInRegion = nullptr; 793 794 // Make a new scheduling region, i.e. all existing ScheduleData is not 795 // in the new region yet. 796 ++SchedulingRegionID; 797 } 798 799 ScheduleData *getScheduleData(Value *V) { 800 ScheduleData *SD = ScheduleDataMap[V]; 801 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 802 return SD; 803 return nullptr; 804 } 805 806 bool isInSchedulingRegion(ScheduleData *SD) { 807 return SD->SchedulingRegionID == SchedulingRegionID; 808 } 809 810 /// Marks an instruction as scheduled and puts all dependent ready 811 /// instructions into the ready-list. 812 template <typename ReadyListType> 813 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 814 SD->IsScheduled = true; 815 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 816 817 ScheduleData *BundleMember = SD; 818 while (BundleMember) { 819 // Handle the def-use chain dependencies. 820 for (Use &U : BundleMember->Inst->operands()) { 821 ScheduleData *OpDef = getScheduleData(U.get()); 822 if (OpDef && OpDef->hasValidDependencies() && 823 OpDef->incrementUnscheduledDeps(-1) == 0) { 824 // There are no more unscheduled dependencies after decrementing, 825 // so we can put the dependent instruction into the ready list. 826 ScheduleData *DepBundle = OpDef->FirstInBundle; 827 assert(!DepBundle->IsScheduled && 828 "already scheduled bundle gets ready"); 829 ReadyList.insert(DepBundle); 830 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 831 } 832 } 833 // Handle the memory dependencies. 834 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 835 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 836 // There are no more unscheduled dependencies after decrementing, 837 // so we can put the dependent instruction into the ready list. 838 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 839 assert(!DepBundle->IsScheduled && 840 "already scheduled bundle gets ready"); 841 ReadyList.insert(DepBundle); 842 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 843 } 844 } 845 BundleMember = BundleMember->NextInBundle; 846 } 847 } 848 849 /// Put all instructions into the ReadyList which are ready for scheduling. 850 template <typename ReadyListType> 851 void initialFillReadyList(ReadyListType &ReadyList) { 852 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 853 ScheduleData *SD = getScheduleData(I); 854 if (SD->isSchedulingEntity() && SD->isReady()) { 855 ReadyList.insert(SD); 856 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 857 } 858 } 859 } 860 861 /// Checks if a bundle of instructions can be scheduled, i.e. has no 862 /// cyclic dependencies. This is only a dry-run, no instructions are 863 /// actually moved at this stage. 864 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 865 866 /// Un-bundles a group of instructions. 867 void cancelScheduling(ArrayRef<Value *> VL); 868 869 /// Extends the scheduling region so that V is inside the region. 870 void extendSchedulingRegion(Value *V); 871 872 /// Initialize the ScheduleData structures for new instructions in the 873 /// scheduling region. 874 void initScheduleData(Instruction *FromI, Instruction *ToI, 875 ScheduleData *PrevLoadStore, 876 ScheduleData *NextLoadStore); 877 878 /// Updates the dependency information of a bundle and of all instructions/ 879 /// bundles which depend on the original bundle. 880 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 881 BoUpSLP *SLP); 882 883 /// Sets all instruction in the scheduling region to un-scheduled. 884 void resetSchedule(); 885 886 BasicBlock *BB; 887 888 /// Simple memory allocation for ScheduleData. 889 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 890 891 /// The size of a ScheduleData array in ScheduleDataChunks. 892 int ChunkSize; 893 894 /// The allocator position in the current chunk, which is the last entry 895 /// of ScheduleDataChunks. 896 int ChunkPos; 897 898 /// Attaches ScheduleData to Instruction. 899 /// Note that the mapping survives during all vectorization iterations, i.e. 900 /// ScheduleData structures are recycled. 901 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 902 903 struct ReadyList : SmallVector<ScheduleData *, 8> { 904 void insert(ScheduleData *SD) { push_back(SD); } 905 }; 906 907 /// The ready-list for scheduling (only used for the dry-run). 908 ReadyList ReadyInsts; 909 910 /// The first instruction of the scheduling region. 911 Instruction *ScheduleStart; 912 913 /// The first instruction _after_ the scheduling region. 914 Instruction *ScheduleEnd; 915 916 /// The first memory accessing instruction in the scheduling region 917 /// (can be null). 918 ScheduleData *FirstLoadStoreInRegion; 919 920 /// The last memory accessing instruction in the scheduling region 921 /// (can be null). 922 ScheduleData *LastLoadStoreInRegion; 923 924 /// The ID of the scheduling region. For a new vectorization iteration this 925 /// is incremented which "removes" all ScheduleData from the region. 926 int SchedulingRegionID; 927 }; 928 929 /// Attaches the BlockScheduling structures to basic blocks. 930 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 931 932 /// Performs the "real" scheduling. Done before vectorization is actually 933 /// performed in a basic block. 934 void scheduleBlock(BlockScheduling *BS); 935 936 /// List of users to ignore during scheduling and that don't need extracting. 937 ArrayRef<Value *> UserIgnoreList; 938 939 // Number of load-bundles, which contain consecutive loads. 940 int NumLoadsWantToKeepOrder; 941 942 // Number of load-bundles of size 2, which are consecutive loads if reversed. 943 int NumLoadsWantToChangeOrder; 944 945 // Analysis and block reference. 946 Function *F; 947 ScalarEvolution *SE; 948 const DataLayout *DL; 949 TargetTransformInfo *TTI; 950 TargetLibraryInfo *TLI; 951 AliasAnalysis *AA; 952 LoopInfo *LI; 953 DominatorTree *DT; 954 /// Instruction builder to construct the vectorized tree. 955 IRBuilder<> Builder; 956 }; 957 958 #ifndef NDEBUG 959 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 960 SD.dump(os); 961 return os; 962 } 963 #endif 964 965 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 966 ArrayRef<Value *> UserIgnoreLst) { 967 deleteTree(); 968 UserIgnoreList = UserIgnoreLst; 969 if (!getSameType(Roots)) 970 return; 971 buildTree_rec(Roots, 0); 972 973 // Collect the values that we need to extract from the tree. 974 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 975 TreeEntry *Entry = &VectorizableTree[EIdx]; 976 977 // For each lane: 978 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 979 Value *Scalar = Entry->Scalars[Lane]; 980 981 // No need to handle users of gathered values. 982 if (Entry->NeedToGather) 983 continue; 984 985 for (User *U : Scalar->users()) { 986 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 987 988 Instruction *UserInst = dyn_cast<Instruction>(U); 989 if (!UserInst) 990 continue; 991 992 // Skip in-tree scalars that become vectors 993 if (ScalarToTreeEntry.count(U)) { 994 int Idx = ScalarToTreeEntry[U]; 995 TreeEntry *UseEntry = &VectorizableTree[Idx]; 996 Value *UseScalar = UseEntry->Scalars[0]; 997 // Some in-tree scalars will remain as scalar in vectorized 998 // instructions. If that is the case, the one in Lane 0 will 999 // be used. 1000 if (UseScalar != U || 1001 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1002 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1003 << ".\n"); 1004 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 1005 continue; 1006 } 1007 } 1008 1009 // Ignore users in the user ignore list. 1010 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 1011 UserIgnoreList.end()) 1012 continue; 1013 1014 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1015 Lane << " from " << *Scalar << ".\n"); 1016 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1017 } 1018 } 1019 } 1020 } 1021 1022 1023 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 1024 bool SameTy = getSameType(VL); (void)SameTy; 1025 bool isAltShuffle = false; 1026 assert(SameTy && "Invalid types!"); 1027 1028 if (Depth == RecursionMaxDepth) { 1029 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1030 newTreeEntry(VL, false); 1031 return; 1032 } 1033 1034 // Don't handle vectors. 1035 if (VL[0]->getType()->isVectorTy()) { 1036 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1037 newTreeEntry(VL, false); 1038 return; 1039 } 1040 1041 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1042 if (SI->getValueOperand()->getType()->isVectorTy()) { 1043 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1044 newTreeEntry(VL, false); 1045 return; 1046 } 1047 unsigned Opcode = getSameOpcode(VL); 1048 1049 // Check that this shuffle vector refers to the alternate 1050 // sequence of opcodes. 1051 if (Opcode == Instruction::ShuffleVector) { 1052 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1053 unsigned Op = I0->getOpcode(); 1054 if (Op != Instruction::ShuffleVector) 1055 isAltShuffle = true; 1056 } 1057 1058 // If all of the operands are identical or constant we have a simple solution. 1059 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1060 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1061 newTreeEntry(VL, false); 1062 return; 1063 } 1064 1065 // We now know that this is a vector of instructions of the same type from 1066 // the same block. 1067 1068 // Don't vectorize ephemeral values. 1069 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1070 if (EphValues.count(VL[i])) { 1071 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1072 ") is ephemeral.\n"); 1073 newTreeEntry(VL, false); 1074 return; 1075 } 1076 } 1077 1078 // Check if this is a duplicate of another entry. 1079 if (ScalarToTreeEntry.count(VL[0])) { 1080 int Idx = ScalarToTreeEntry[VL[0]]; 1081 TreeEntry *E = &VectorizableTree[Idx]; 1082 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1083 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1084 if (E->Scalars[i] != VL[i]) { 1085 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1086 newTreeEntry(VL, false); 1087 return; 1088 } 1089 } 1090 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1091 return; 1092 } 1093 1094 // Check that none of the instructions in the bundle are already in the tree. 1095 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1096 if (ScalarToTreeEntry.count(VL[i])) { 1097 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1098 ") is already in tree.\n"); 1099 newTreeEntry(VL, false); 1100 return; 1101 } 1102 } 1103 1104 // If any of the scalars is marked as a value that needs to stay scalar then 1105 // we need to gather the scalars. 1106 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1107 if (MustGather.count(VL[i])) { 1108 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1109 newTreeEntry(VL, false); 1110 return; 1111 } 1112 } 1113 1114 // Check that all of the users of the scalars that we want to vectorize are 1115 // schedulable. 1116 Instruction *VL0 = cast<Instruction>(VL[0]); 1117 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1118 1119 if (!DT->isReachableFromEntry(BB)) { 1120 // Don't go into unreachable blocks. They may contain instructions with 1121 // dependency cycles which confuse the final scheduling. 1122 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1123 newTreeEntry(VL, false); 1124 return; 1125 } 1126 1127 // Check that every instructions appears once in this bundle. 1128 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1129 for (unsigned j = i+1; j < e; ++j) 1130 if (VL[i] == VL[j]) { 1131 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1132 newTreeEntry(VL, false); 1133 return; 1134 } 1135 1136 auto &BSRef = BlocksSchedules[BB]; 1137 if (!BSRef) { 1138 BSRef = llvm::make_unique<BlockScheduling>(BB); 1139 } 1140 BlockScheduling &BS = *BSRef.get(); 1141 1142 if (!BS.tryScheduleBundle(VL, this)) { 1143 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1144 BS.cancelScheduling(VL); 1145 newTreeEntry(VL, false); 1146 return; 1147 } 1148 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1149 1150 switch (Opcode) { 1151 case Instruction::PHI: { 1152 PHINode *PH = dyn_cast<PHINode>(VL0); 1153 1154 // Check for terminator values (e.g. invoke). 1155 for (unsigned j = 0; j < VL.size(); ++j) 1156 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1157 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1158 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1159 if (Term) { 1160 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1161 BS.cancelScheduling(VL); 1162 newTreeEntry(VL, false); 1163 return; 1164 } 1165 } 1166 1167 newTreeEntry(VL, true); 1168 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1169 1170 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1171 ValueList Operands; 1172 // Prepare the operand vector. 1173 for (unsigned j = 0; j < VL.size(); ++j) 1174 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1175 PH->getIncomingBlock(i))); 1176 1177 buildTree_rec(Operands, Depth + 1); 1178 } 1179 return; 1180 } 1181 case Instruction::ExtractElement: { 1182 bool Reuse = CanReuseExtract(VL); 1183 if (Reuse) { 1184 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1185 } else { 1186 BS.cancelScheduling(VL); 1187 } 1188 newTreeEntry(VL, Reuse); 1189 return; 1190 } 1191 case Instruction::Load: { 1192 // Check if the loads are consecutive or of we need to swizzle them. 1193 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1194 LoadInst *L = cast<LoadInst>(VL[i]); 1195 if (!L->isSimple()) { 1196 BS.cancelScheduling(VL); 1197 newTreeEntry(VL, false); 1198 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1199 return; 1200 } 1201 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 1202 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) { 1203 ++NumLoadsWantToChangeOrder; 1204 } 1205 BS.cancelScheduling(VL); 1206 newTreeEntry(VL, false); 1207 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1208 return; 1209 } 1210 } 1211 ++NumLoadsWantToKeepOrder; 1212 newTreeEntry(VL, true); 1213 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1214 return; 1215 } 1216 case Instruction::ZExt: 1217 case Instruction::SExt: 1218 case Instruction::FPToUI: 1219 case Instruction::FPToSI: 1220 case Instruction::FPExt: 1221 case Instruction::PtrToInt: 1222 case Instruction::IntToPtr: 1223 case Instruction::SIToFP: 1224 case Instruction::UIToFP: 1225 case Instruction::Trunc: 1226 case Instruction::FPTrunc: 1227 case Instruction::BitCast: { 1228 Type *SrcTy = VL0->getOperand(0)->getType(); 1229 for (unsigned i = 0; i < VL.size(); ++i) { 1230 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1231 if (Ty != SrcTy || !isValidElementType(Ty)) { 1232 BS.cancelScheduling(VL); 1233 newTreeEntry(VL, false); 1234 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1235 return; 1236 } 1237 } 1238 newTreeEntry(VL, true); 1239 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1240 1241 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1242 ValueList Operands; 1243 // Prepare the operand vector. 1244 for (unsigned j = 0; j < VL.size(); ++j) 1245 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1246 1247 buildTree_rec(Operands, Depth+1); 1248 } 1249 return; 1250 } 1251 case Instruction::ICmp: 1252 case Instruction::FCmp: { 1253 // Check that all of the compares have the same predicate. 1254 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1255 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1256 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1257 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1258 if (Cmp->getPredicate() != P0 || 1259 Cmp->getOperand(0)->getType() != ComparedTy) { 1260 BS.cancelScheduling(VL); 1261 newTreeEntry(VL, false); 1262 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1263 return; 1264 } 1265 } 1266 1267 newTreeEntry(VL, true); 1268 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1269 1270 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1271 ValueList Operands; 1272 // Prepare the operand vector. 1273 for (unsigned j = 0; j < VL.size(); ++j) 1274 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1275 1276 buildTree_rec(Operands, Depth+1); 1277 } 1278 return; 1279 } 1280 case Instruction::Select: 1281 case Instruction::Add: 1282 case Instruction::FAdd: 1283 case Instruction::Sub: 1284 case Instruction::FSub: 1285 case Instruction::Mul: 1286 case Instruction::FMul: 1287 case Instruction::UDiv: 1288 case Instruction::SDiv: 1289 case Instruction::FDiv: 1290 case Instruction::URem: 1291 case Instruction::SRem: 1292 case Instruction::FRem: 1293 case Instruction::Shl: 1294 case Instruction::LShr: 1295 case Instruction::AShr: 1296 case Instruction::And: 1297 case Instruction::Or: 1298 case Instruction::Xor: { 1299 newTreeEntry(VL, true); 1300 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1301 1302 // Sort operands of the instructions so that each side is more likely to 1303 // have the same opcode. 1304 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1305 ValueList Left, Right; 1306 reorderInputsAccordingToOpcode(VL, Left, Right); 1307 buildTree_rec(Left, Depth + 1); 1308 buildTree_rec(Right, Depth + 1); 1309 return; 1310 } 1311 1312 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1313 ValueList Operands; 1314 // Prepare the operand vector. 1315 for (unsigned j = 0; j < VL.size(); ++j) 1316 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1317 1318 buildTree_rec(Operands, Depth+1); 1319 } 1320 return; 1321 } 1322 case Instruction::GetElementPtr: { 1323 // We don't combine GEPs with complicated (nested) indexing. 1324 for (unsigned j = 0; j < VL.size(); ++j) { 1325 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1326 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1327 BS.cancelScheduling(VL); 1328 newTreeEntry(VL, false); 1329 return; 1330 } 1331 } 1332 1333 // We can't combine several GEPs into one vector if they operate on 1334 // different types. 1335 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1336 for (unsigned j = 0; j < VL.size(); ++j) { 1337 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1338 if (Ty0 != CurTy) { 1339 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1340 BS.cancelScheduling(VL); 1341 newTreeEntry(VL, false); 1342 return; 1343 } 1344 } 1345 1346 // We don't combine GEPs with non-constant indexes. 1347 for (unsigned j = 0; j < VL.size(); ++j) { 1348 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1349 if (!isa<ConstantInt>(Op)) { 1350 DEBUG( 1351 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1352 BS.cancelScheduling(VL); 1353 newTreeEntry(VL, false); 1354 return; 1355 } 1356 } 1357 1358 newTreeEntry(VL, true); 1359 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1360 for (unsigned i = 0, e = 2; i < e; ++i) { 1361 ValueList Operands; 1362 // Prepare the operand vector. 1363 for (unsigned j = 0; j < VL.size(); ++j) 1364 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1365 1366 buildTree_rec(Operands, Depth + 1); 1367 } 1368 return; 1369 } 1370 case Instruction::Store: { 1371 // Check if the stores are consecutive or of we need to swizzle them. 1372 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1373 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 1374 BS.cancelScheduling(VL); 1375 newTreeEntry(VL, false); 1376 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1377 return; 1378 } 1379 1380 newTreeEntry(VL, true); 1381 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1382 1383 ValueList Operands; 1384 for (unsigned j = 0; j < VL.size(); ++j) 1385 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1386 1387 buildTree_rec(Operands, Depth + 1); 1388 return; 1389 } 1390 case Instruction::Call: { 1391 // Check if the calls are all to the same vectorizable intrinsic. 1392 CallInst *CI = cast<CallInst>(VL[0]); 1393 // Check if this is an Intrinsic call or something that can be 1394 // represented by an intrinsic call 1395 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1396 if (!isTriviallyVectorizable(ID)) { 1397 BS.cancelScheduling(VL); 1398 newTreeEntry(VL, false); 1399 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1400 return; 1401 } 1402 Function *Int = CI->getCalledFunction(); 1403 Value *A1I = nullptr; 1404 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1405 A1I = CI->getArgOperand(1); 1406 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1407 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1408 if (!CI2 || CI2->getCalledFunction() != Int || 1409 getIntrinsicIDForCall(CI2, TLI) != ID) { 1410 BS.cancelScheduling(VL); 1411 newTreeEntry(VL, false); 1412 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1413 << "\n"); 1414 return; 1415 } 1416 // ctlz,cttz and powi are special intrinsics whose second argument 1417 // should be same in order for them to be vectorized. 1418 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1419 Value *A1J = CI2->getArgOperand(1); 1420 if (A1I != A1J) { 1421 BS.cancelScheduling(VL); 1422 newTreeEntry(VL, false); 1423 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1424 << " argument "<< A1I<<"!=" << A1J 1425 << "\n"); 1426 return; 1427 } 1428 } 1429 } 1430 1431 newTreeEntry(VL, true); 1432 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1433 ValueList Operands; 1434 // Prepare the operand vector. 1435 for (unsigned j = 0; j < VL.size(); ++j) { 1436 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1437 Operands.push_back(CI2->getArgOperand(i)); 1438 } 1439 buildTree_rec(Operands, Depth + 1); 1440 } 1441 return; 1442 } 1443 case Instruction::ShuffleVector: { 1444 // If this is not an alternate sequence of opcode like add-sub 1445 // then do not vectorize this instruction. 1446 if (!isAltShuffle) { 1447 BS.cancelScheduling(VL); 1448 newTreeEntry(VL, false); 1449 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1450 return; 1451 } 1452 newTreeEntry(VL, true); 1453 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1454 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1455 ValueList Operands; 1456 // Prepare the operand vector. 1457 for (unsigned j = 0; j < VL.size(); ++j) 1458 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1459 1460 buildTree_rec(Operands, Depth + 1); 1461 } 1462 return; 1463 } 1464 default: 1465 BS.cancelScheduling(VL); 1466 newTreeEntry(VL, false); 1467 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1468 return; 1469 } 1470 } 1471 1472 int BoUpSLP::getEntryCost(TreeEntry *E) { 1473 ArrayRef<Value*> VL = E->Scalars; 1474 1475 Type *ScalarTy = VL[0]->getType(); 1476 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1477 ScalarTy = SI->getValueOperand()->getType(); 1478 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1479 1480 if (E->NeedToGather) { 1481 if (allConstant(VL)) 1482 return 0; 1483 if (isSplat(VL)) { 1484 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1485 } 1486 return getGatherCost(E->Scalars); 1487 } 1488 unsigned Opcode = getSameOpcode(VL); 1489 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1490 Instruction *VL0 = cast<Instruction>(VL[0]); 1491 switch (Opcode) { 1492 case Instruction::PHI: { 1493 return 0; 1494 } 1495 case Instruction::ExtractElement: { 1496 if (CanReuseExtract(VL)) { 1497 int DeadCost = 0; 1498 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1499 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1500 if (E->hasOneUse()) 1501 // Take credit for instruction that will become dead. 1502 DeadCost += 1503 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1504 } 1505 return -DeadCost; 1506 } 1507 return getGatherCost(VecTy); 1508 } 1509 case Instruction::ZExt: 1510 case Instruction::SExt: 1511 case Instruction::FPToUI: 1512 case Instruction::FPToSI: 1513 case Instruction::FPExt: 1514 case Instruction::PtrToInt: 1515 case Instruction::IntToPtr: 1516 case Instruction::SIToFP: 1517 case Instruction::UIToFP: 1518 case Instruction::Trunc: 1519 case Instruction::FPTrunc: 1520 case Instruction::BitCast: { 1521 Type *SrcTy = VL0->getOperand(0)->getType(); 1522 1523 // Calculate the cost of this instruction. 1524 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1525 VL0->getType(), SrcTy); 1526 1527 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1528 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1529 return VecCost - ScalarCost; 1530 } 1531 case Instruction::FCmp: 1532 case Instruction::ICmp: 1533 case Instruction::Select: 1534 case Instruction::Add: 1535 case Instruction::FAdd: 1536 case Instruction::Sub: 1537 case Instruction::FSub: 1538 case Instruction::Mul: 1539 case Instruction::FMul: 1540 case Instruction::UDiv: 1541 case Instruction::SDiv: 1542 case Instruction::FDiv: 1543 case Instruction::URem: 1544 case Instruction::SRem: 1545 case Instruction::FRem: 1546 case Instruction::Shl: 1547 case Instruction::LShr: 1548 case Instruction::AShr: 1549 case Instruction::And: 1550 case Instruction::Or: 1551 case Instruction::Xor: { 1552 // Calculate the cost of this instruction. 1553 int ScalarCost = 0; 1554 int VecCost = 0; 1555 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1556 Opcode == Instruction::Select) { 1557 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1558 ScalarCost = VecTy->getNumElements() * 1559 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1560 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1561 } else { 1562 // Certain instructions can be cheaper to vectorize if they have a 1563 // constant second vector operand. 1564 TargetTransformInfo::OperandValueKind Op1VK = 1565 TargetTransformInfo::OK_AnyValue; 1566 TargetTransformInfo::OperandValueKind Op2VK = 1567 TargetTransformInfo::OK_UniformConstantValue; 1568 TargetTransformInfo::OperandValueProperties Op1VP = 1569 TargetTransformInfo::OP_None; 1570 TargetTransformInfo::OperandValueProperties Op2VP = 1571 TargetTransformInfo::OP_None; 1572 1573 // If all operands are exactly the same ConstantInt then set the 1574 // operand kind to OK_UniformConstantValue. 1575 // If instead not all operands are constants, then set the operand kind 1576 // to OK_AnyValue. If all operands are constants but not the same, 1577 // then set the operand kind to OK_NonUniformConstantValue. 1578 ConstantInt *CInt = nullptr; 1579 for (unsigned i = 0; i < VL.size(); ++i) { 1580 const Instruction *I = cast<Instruction>(VL[i]); 1581 if (!isa<ConstantInt>(I->getOperand(1))) { 1582 Op2VK = TargetTransformInfo::OK_AnyValue; 1583 break; 1584 } 1585 if (i == 0) { 1586 CInt = cast<ConstantInt>(I->getOperand(1)); 1587 continue; 1588 } 1589 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1590 CInt != cast<ConstantInt>(I->getOperand(1))) 1591 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1592 } 1593 // FIXME: Currently cost of model modification for division by 1594 // power of 2 is handled only for X86. Add support for other targets. 1595 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1596 CInt->getValue().isPowerOf2()) 1597 Op2VP = TargetTransformInfo::OP_PowerOf2; 1598 1599 ScalarCost = VecTy->getNumElements() * 1600 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, 1601 Op1VP, Op2VP); 1602 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1603 Op1VP, Op2VP); 1604 } 1605 return VecCost - ScalarCost; 1606 } 1607 case Instruction::GetElementPtr: { 1608 TargetTransformInfo::OperandValueKind Op1VK = 1609 TargetTransformInfo::OK_AnyValue; 1610 TargetTransformInfo::OperandValueKind Op2VK = 1611 TargetTransformInfo::OK_UniformConstantValue; 1612 1613 int ScalarCost = 1614 VecTy->getNumElements() * 1615 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1616 int VecCost = 1617 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1618 1619 return VecCost - ScalarCost; 1620 } 1621 case Instruction::Load: { 1622 // Cost of wide load - cost of scalar loads. 1623 int ScalarLdCost = VecTy->getNumElements() * 1624 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1625 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1626 return VecLdCost - ScalarLdCost; 1627 } 1628 case Instruction::Store: { 1629 // We know that we can merge the stores. Calculate the cost. 1630 int ScalarStCost = VecTy->getNumElements() * 1631 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1632 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1633 return VecStCost - ScalarStCost; 1634 } 1635 case Instruction::Call: { 1636 CallInst *CI = cast<CallInst>(VL0); 1637 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1638 1639 // Calculate the cost of the scalar and vector calls. 1640 SmallVector<Type*, 4> ScalarTys, VecTys; 1641 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1642 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1643 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1644 VecTy->getNumElements())); 1645 } 1646 1647 int ScalarCallCost = VecTy->getNumElements() * 1648 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1649 1650 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1651 1652 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1653 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1654 << " for " << *CI << "\n"); 1655 1656 return VecCallCost - ScalarCallCost; 1657 } 1658 case Instruction::ShuffleVector: { 1659 TargetTransformInfo::OperandValueKind Op1VK = 1660 TargetTransformInfo::OK_AnyValue; 1661 TargetTransformInfo::OperandValueKind Op2VK = 1662 TargetTransformInfo::OK_AnyValue; 1663 int ScalarCost = 0; 1664 int VecCost = 0; 1665 for (unsigned i = 0; i < VL.size(); ++i) { 1666 Instruction *I = cast<Instruction>(VL[i]); 1667 if (!I) 1668 break; 1669 ScalarCost += 1670 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1671 } 1672 // VecCost is equal to sum of the cost of creating 2 vectors 1673 // and the cost of creating shuffle. 1674 Instruction *I0 = cast<Instruction>(VL[0]); 1675 VecCost = 1676 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1677 Instruction *I1 = cast<Instruction>(VL[1]); 1678 VecCost += 1679 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1680 VecCost += 1681 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1682 return VecCost - ScalarCost; 1683 } 1684 default: 1685 llvm_unreachable("Unknown instruction"); 1686 } 1687 } 1688 1689 bool BoUpSLP::isFullyVectorizableTinyTree() { 1690 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1691 VectorizableTree.size() << " is fully vectorizable .\n"); 1692 1693 // We only handle trees of height 2. 1694 if (VectorizableTree.size() != 2) 1695 return false; 1696 1697 // Handle splat stores. 1698 if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars)) 1699 return true; 1700 1701 // Gathering cost would be too much for tiny trees. 1702 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1703 return false; 1704 1705 return true; 1706 } 1707 1708 int BoUpSLP::getSpillCost() { 1709 // Walk from the bottom of the tree to the top, tracking which values are 1710 // live. When we see a call instruction that is not part of our tree, 1711 // query TTI to see if there is a cost to keeping values live over it 1712 // (for example, if spills and fills are required). 1713 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1714 int Cost = 0; 1715 1716 SmallPtrSet<Instruction*, 4> LiveValues; 1717 Instruction *PrevInst = nullptr; 1718 1719 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1720 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1721 if (!Inst) 1722 continue; 1723 1724 if (!PrevInst) { 1725 PrevInst = Inst; 1726 continue; 1727 } 1728 1729 DEBUG( 1730 dbgs() << "SLP: #LV: " << LiveValues.size(); 1731 for (auto *X : LiveValues) 1732 dbgs() << " " << X->getName(); 1733 dbgs() << ", Looking at "; 1734 Inst->dump(); 1735 ); 1736 1737 // Update LiveValues. 1738 LiveValues.erase(PrevInst); 1739 for (auto &J : PrevInst->operands()) { 1740 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1741 LiveValues.insert(cast<Instruction>(&*J)); 1742 } 1743 1744 // Now find the sequence of instructions between PrevInst and Inst. 1745 BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst); 1746 --PrevInstIt; 1747 while (InstIt != PrevInstIt) { 1748 if (PrevInstIt == PrevInst->getParent()->rend()) { 1749 PrevInstIt = Inst->getParent()->rbegin(); 1750 continue; 1751 } 1752 1753 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1754 SmallVector<Type*, 4> V; 1755 for (auto *II : LiveValues) 1756 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1757 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1758 } 1759 1760 ++PrevInstIt; 1761 } 1762 1763 PrevInst = Inst; 1764 } 1765 1766 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); 1767 return Cost; 1768 } 1769 1770 int BoUpSLP::getTreeCost() { 1771 int Cost = 0; 1772 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1773 VectorizableTree.size() << ".\n"); 1774 1775 // We only vectorize tiny trees if it is fully vectorizable. 1776 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1777 if (!VectorizableTree.size()) { 1778 assert(!ExternalUses.size() && "We should not have any external users"); 1779 } 1780 return INT_MAX; 1781 } 1782 1783 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1784 1785 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1786 int C = getEntryCost(&VectorizableTree[i]); 1787 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1788 << *VectorizableTree[i].Scalars[0] << " .\n"); 1789 Cost += C; 1790 } 1791 1792 SmallSet<Value *, 16> ExtractCostCalculated; 1793 int ExtractCost = 0; 1794 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1795 I != E; ++I) { 1796 // We only add extract cost once for the same scalar. 1797 if (!ExtractCostCalculated.insert(I->Scalar).second) 1798 continue; 1799 1800 // Uses by ephemeral values are free (because the ephemeral value will be 1801 // removed prior to code generation, and so the extraction will be 1802 // removed as well). 1803 if (EphValues.count(I->User)) 1804 continue; 1805 1806 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1807 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1808 I->Lane); 1809 } 1810 1811 Cost += getSpillCost(); 1812 1813 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1814 return Cost + ExtractCost; 1815 } 1816 1817 int BoUpSLP::getGatherCost(Type *Ty) { 1818 int Cost = 0; 1819 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1820 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1821 return Cost; 1822 } 1823 1824 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1825 // Find the type of the operands in VL. 1826 Type *ScalarTy = VL[0]->getType(); 1827 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1828 ScalarTy = SI->getValueOperand()->getType(); 1829 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1830 // Find the cost of inserting/extracting values from the vector. 1831 return getGatherCost(VecTy); 1832 } 1833 1834 Value *BoUpSLP::getPointerOperand(Value *I) { 1835 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1836 return LI->getPointerOperand(); 1837 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1838 return SI->getPointerOperand(); 1839 return nullptr; 1840 } 1841 1842 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1843 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1844 return L->getPointerAddressSpace(); 1845 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1846 return S->getPointerAddressSpace(); 1847 return -1; 1848 } 1849 1850 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { 1851 Value *PtrA = getPointerOperand(A); 1852 Value *PtrB = getPointerOperand(B); 1853 unsigned ASA = getAddressSpaceOperand(A); 1854 unsigned ASB = getAddressSpaceOperand(B); 1855 1856 // Check that the address spaces match and that the pointers are valid. 1857 if (!PtrA || !PtrB || (ASA != ASB)) 1858 return false; 1859 1860 // Make sure that A and B are different pointers of the same type. 1861 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1862 return false; 1863 1864 unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA); 1865 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1866 APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty)); 1867 1868 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1869 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA); 1870 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB); 1871 1872 APInt OffsetDelta = OffsetB - OffsetA; 1873 1874 // Check if they are based on the same pointer. That makes the offsets 1875 // sufficient. 1876 if (PtrA == PtrB) 1877 return OffsetDelta == Size; 1878 1879 // Compute the necessary base pointer delta to have the necessary final delta 1880 // equal to the size. 1881 APInt BaseDelta = Size - OffsetDelta; 1882 1883 // Otherwise compute the distance with SCEV between the base pointers. 1884 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1885 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1886 const SCEV *C = SE->getConstant(BaseDelta); 1887 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1888 return X == PtrSCEVB; 1889 } 1890 1891 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 1892 Instruction *VL0 = cast<Instruction>(VL[0]); 1893 BasicBlock::iterator NextInst = VL0; 1894 ++NextInst; 1895 Builder.SetInsertPoint(VL0->getParent(), NextInst); 1896 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 1897 } 1898 1899 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 1900 Value *Vec = UndefValue::get(Ty); 1901 // Generate the 'InsertElement' instruction. 1902 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 1903 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 1904 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 1905 GatherSeq.insert(Insrt); 1906 CSEBlocks.insert(Insrt->getParent()); 1907 1908 // Add to our 'need-to-extract' list. 1909 if (ScalarToTreeEntry.count(VL[i])) { 1910 int Idx = ScalarToTreeEntry[VL[i]]; 1911 TreeEntry *E = &VectorizableTree[Idx]; 1912 // Find which lane we need to extract. 1913 int FoundLane = -1; 1914 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 1915 // Is this the lane of the scalar that we are looking for ? 1916 if (E->Scalars[Lane] == VL[i]) { 1917 FoundLane = Lane; 1918 break; 1919 } 1920 } 1921 assert(FoundLane >= 0 && "Could not find the correct lane"); 1922 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 1923 } 1924 } 1925 } 1926 1927 return Vec; 1928 } 1929 1930 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 1931 SmallDenseMap<Value*, int>::const_iterator Entry 1932 = ScalarToTreeEntry.find(VL[0]); 1933 if (Entry != ScalarToTreeEntry.end()) { 1934 int Idx = Entry->second; 1935 const TreeEntry *En = &VectorizableTree[Idx]; 1936 if (En->isSame(VL) && En->VectorizedValue) 1937 return En->VectorizedValue; 1938 } 1939 return nullptr; 1940 } 1941 1942 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 1943 if (ScalarToTreeEntry.count(VL[0])) { 1944 int Idx = ScalarToTreeEntry[VL[0]]; 1945 TreeEntry *E = &VectorizableTree[Idx]; 1946 if (E->isSame(VL)) 1947 return vectorizeTree(E); 1948 } 1949 1950 Type *ScalarTy = VL[0]->getType(); 1951 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1952 ScalarTy = SI->getValueOperand()->getType(); 1953 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1954 1955 return Gather(VL, VecTy); 1956 } 1957 1958 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 1959 IRBuilder<>::InsertPointGuard Guard(Builder); 1960 1961 if (E->VectorizedValue) { 1962 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 1963 return E->VectorizedValue; 1964 } 1965 1966 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 1967 Type *ScalarTy = VL0->getType(); 1968 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 1969 ScalarTy = SI->getValueOperand()->getType(); 1970 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 1971 1972 if (E->NeedToGather) { 1973 setInsertPointAfterBundle(E->Scalars); 1974 return Gather(E->Scalars, VecTy); 1975 } 1976 1977 unsigned Opcode = getSameOpcode(E->Scalars); 1978 1979 switch (Opcode) { 1980 case Instruction::PHI: { 1981 PHINode *PH = dyn_cast<PHINode>(VL0); 1982 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 1983 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1984 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 1985 E->VectorizedValue = NewPhi; 1986 1987 // PHINodes may have multiple entries from the same block. We want to 1988 // visit every block once. 1989 SmallSet<BasicBlock*, 4> VisitedBBs; 1990 1991 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1992 ValueList Operands; 1993 BasicBlock *IBB = PH->getIncomingBlock(i); 1994 1995 if (!VisitedBBs.insert(IBB).second) { 1996 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 1997 continue; 1998 } 1999 2000 // Prepare the operand vector. 2001 for (unsigned j = 0; j < E->Scalars.size(); ++j) 2002 Operands.push_back(cast<PHINode>(E->Scalars[j])-> 2003 getIncomingValueForBlock(IBB)); 2004 2005 Builder.SetInsertPoint(IBB->getTerminator()); 2006 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2007 Value *Vec = vectorizeTree(Operands); 2008 NewPhi->addIncoming(Vec, IBB); 2009 } 2010 2011 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2012 "Invalid number of incoming values"); 2013 return NewPhi; 2014 } 2015 2016 case Instruction::ExtractElement: { 2017 if (CanReuseExtract(E->Scalars)) { 2018 Value *V = VL0->getOperand(0); 2019 E->VectorizedValue = V; 2020 return V; 2021 } 2022 return Gather(E->Scalars, VecTy); 2023 } 2024 case Instruction::ZExt: 2025 case Instruction::SExt: 2026 case Instruction::FPToUI: 2027 case Instruction::FPToSI: 2028 case Instruction::FPExt: 2029 case Instruction::PtrToInt: 2030 case Instruction::IntToPtr: 2031 case Instruction::SIToFP: 2032 case Instruction::UIToFP: 2033 case Instruction::Trunc: 2034 case Instruction::FPTrunc: 2035 case Instruction::BitCast: { 2036 ValueList INVL; 2037 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2038 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2039 2040 setInsertPointAfterBundle(E->Scalars); 2041 2042 Value *InVec = vectorizeTree(INVL); 2043 2044 if (Value *V = alreadyVectorized(E->Scalars)) 2045 return V; 2046 2047 CastInst *CI = dyn_cast<CastInst>(VL0); 2048 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2049 E->VectorizedValue = V; 2050 ++NumVectorInstructions; 2051 return V; 2052 } 2053 case Instruction::FCmp: 2054 case Instruction::ICmp: { 2055 ValueList LHSV, RHSV; 2056 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2057 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2058 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2059 } 2060 2061 setInsertPointAfterBundle(E->Scalars); 2062 2063 Value *L = vectorizeTree(LHSV); 2064 Value *R = vectorizeTree(RHSV); 2065 2066 if (Value *V = alreadyVectorized(E->Scalars)) 2067 return V; 2068 2069 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 2070 Value *V; 2071 if (Opcode == Instruction::FCmp) 2072 V = Builder.CreateFCmp(P0, L, R); 2073 else 2074 V = Builder.CreateICmp(P0, L, R); 2075 2076 E->VectorizedValue = V; 2077 ++NumVectorInstructions; 2078 return V; 2079 } 2080 case Instruction::Select: { 2081 ValueList TrueVec, FalseVec, CondVec; 2082 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2083 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2084 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2085 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2)); 2086 } 2087 2088 setInsertPointAfterBundle(E->Scalars); 2089 2090 Value *Cond = vectorizeTree(CondVec); 2091 Value *True = vectorizeTree(TrueVec); 2092 Value *False = vectorizeTree(FalseVec); 2093 2094 if (Value *V = alreadyVectorized(E->Scalars)) 2095 return V; 2096 2097 Value *V = Builder.CreateSelect(Cond, True, False); 2098 E->VectorizedValue = V; 2099 ++NumVectorInstructions; 2100 return V; 2101 } 2102 case Instruction::Add: 2103 case Instruction::FAdd: 2104 case Instruction::Sub: 2105 case Instruction::FSub: 2106 case Instruction::Mul: 2107 case Instruction::FMul: 2108 case Instruction::UDiv: 2109 case Instruction::SDiv: 2110 case Instruction::FDiv: 2111 case Instruction::URem: 2112 case Instruction::SRem: 2113 case Instruction::FRem: 2114 case Instruction::Shl: 2115 case Instruction::LShr: 2116 case Instruction::AShr: 2117 case Instruction::And: 2118 case Instruction::Or: 2119 case Instruction::Xor: { 2120 ValueList LHSVL, RHSVL; 2121 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2122 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2123 else 2124 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2125 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2126 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2127 } 2128 2129 setInsertPointAfterBundle(E->Scalars); 2130 2131 Value *LHS = vectorizeTree(LHSVL); 2132 Value *RHS = vectorizeTree(RHSVL); 2133 2134 if (LHS == RHS && isa<Instruction>(LHS)) { 2135 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2136 } 2137 2138 if (Value *V = alreadyVectorized(E->Scalars)) 2139 return V; 2140 2141 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2142 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2143 E->VectorizedValue = V; 2144 propagateIRFlags(E->VectorizedValue, E->Scalars); 2145 ++NumVectorInstructions; 2146 2147 if (Instruction *I = dyn_cast<Instruction>(V)) 2148 return propagateMetadata(I, E->Scalars); 2149 2150 return V; 2151 } 2152 case Instruction::Load: { 2153 // Loads are inserted at the head of the tree because we don't want to 2154 // sink them all the way down past store instructions. 2155 setInsertPointAfterBundle(E->Scalars); 2156 2157 LoadInst *LI = cast<LoadInst>(VL0); 2158 Type *ScalarLoadTy = LI->getType(); 2159 unsigned AS = LI->getPointerAddressSpace(); 2160 2161 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2162 VecTy->getPointerTo(AS)); 2163 2164 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2165 // ExternalUses list to make sure that an extract will be generated in the 2166 // future. 2167 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2168 ExternalUses.push_back( 2169 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2170 2171 unsigned Alignment = LI->getAlignment(); 2172 LI = Builder.CreateLoad(VecPtr); 2173 if (!Alignment) 2174 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2175 LI->setAlignment(Alignment); 2176 E->VectorizedValue = LI; 2177 ++NumVectorInstructions; 2178 return propagateMetadata(LI, E->Scalars); 2179 } 2180 case Instruction::Store: { 2181 StoreInst *SI = cast<StoreInst>(VL0); 2182 unsigned Alignment = SI->getAlignment(); 2183 unsigned AS = SI->getPointerAddressSpace(); 2184 2185 ValueList ValueOp; 2186 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2187 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand()); 2188 2189 setInsertPointAfterBundle(E->Scalars); 2190 2191 Value *VecValue = vectorizeTree(ValueOp); 2192 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2193 VecTy->getPointerTo(AS)); 2194 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2195 2196 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2197 // ExternalUses list to make sure that an extract will be generated in the 2198 // future. 2199 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2200 ExternalUses.push_back( 2201 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2202 2203 if (!Alignment) 2204 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2205 S->setAlignment(Alignment); 2206 E->VectorizedValue = S; 2207 ++NumVectorInstructions; 2208 return propagateMetadata(S, E->Scalars); 2209 } 2210 case Instruction::GetElementPtr: { 2211 setInsertPointAfterBundle(E->Scalars); 2212 2213 ValueList Op0VL; 2214 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2215 Op0VL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(0)); 2216 2217 Value *Op0 = vectorizeTree(Op0VL); 2218 2219 std::vector<Value *> OpVecs; 2220 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2221 ++j) { 2222 ValueList OpVL; 2223 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2224 OpVL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(j)); 2225 2226 Value *OpVec = vectorizeTree(OpVL); 2227 OpVecs.push_back(OpVec); 2228 } 2229 2230 Value *V = Builder.CreateGEP(Op0, OpVecs); 2231 E->VectorizedValue = V; 2232 ++NumVectorInstructions; 2233 2234 if (Instruction *I = dyn_cast<Instruction>(V)) 2235 return propagateMetadata(I, E->Scalars); 2236 2237 return V; 2238 } 2239 case Instruction::Call: { 2240 CallInst *CI = cast<CallInst>(VL0); 2241 setInsertPointAfterBundle(E->Scalars); 2242 Function *FI; 2243 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2244 Value *ScalarArg = nullptr; 2245 if (CI && (FI = CI->getCalledFunction())) { 2246 IID = (Intrinsic::ID) FI->getIntrinsicID(); 2247 } 2248 std::vector<Value *> OpVecs; 2249 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2250 ValueList OpVL; 2251 // ctlz,cttz and powi are special intrinsics whose second argument is 2252 // a scalar. This argument should not be vectorized. 2253 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2254 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2255 ScalarArg = CEI->getArgOperand(j); 2256 OpVecs.push_back(CEI->getArgOperand(j)); 2257 continue; 2258 } 2259 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2260 CallInst *CEI = cast<CallInst>(E->Scalars[i]); 2261 OpVL.push_back(CEI->getArgOperand(j)); 2262 } 2263 2264 Value *OpVec = vectorizeTree(OpVL); 2265 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2266 OpVecs.push_back(OpVec); 2267 } 2268 2269 Module *M = F->getParent(); 2270 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2271 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2272 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2273 Value *V = Builder.CreateCall(CF, OpVecs); 2274 2275 // The scalar argument uses an in-tree scalar so we add the new vectorized 2276 // call to ExternalUses list to make sure that an extract will be 2277 // generated in the future. 2278 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2279 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2280 2281 E->VectorizedValue = V; 2282 ++NumVectorInstructions; 2283 return V; 2284 } 2285 case Instruction::ShuffleVector: { 2286 ValueList LHSVL, RHSVL; 2287 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2288 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2289 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2290 } 2291 setInsertPointAfterBundle(E->Scalars); 2292 2293 Value *LHS = vectorizeTree(LHSVL); 2294 Value *RHS = vectorizeTree(RHSVL); 2295 2296 if (Value *V = alreadyVectorized(E->Scalars)) 2297 return V; 2298 2299 // Create a vector of LHS op1 RHS 2300 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2301 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2302 2303 // Create a vector of LHS op2 RHS 2304 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2305 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2306 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2307 2308 // Create shuffle to take alternate operations from the vector. 2309 // Also, gather up odd and even scalar ops to propagate IR flags to 2310 // each vector operation. 2311 ValueList OddScalars, EvenScalars; 2312 unsigned e = E->Scalars.size(); 2313 SmallVector<Constant *, 8> Mask(e); 2314 for (unsigned i = 0; i < e; ++i) { 2315 if (i & 1) { 2316 Mask[i] = Builder.getInt32(e + i); 2317 OddScalars.push_back(E->Scalars[i]); 2318 } else { 2319 Mask[i] = Builder.getInt32(i); 2320 EvenScalars.push_back(E->Scalars[i]); 2321 } 2322 } 2323 2324 Value *ShuffleMask = ConstantVector::get(Mask); 2325 propagateIRFlags(V0, EvenScalars); 2326 propagateIRFlags(V1, OddScalars); 2327 2328 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2329 E->VectorizedValue = V; 2330 ++NumVectorInstructions; 2331 if (Instruction *I = dyn_cast<Instruction>(V)) 2332 return propagateMetadata(I, E->Scalars); 2333 2334 return V; 2335 } 2336 default: 2337 llvm_unreachable("unknown inst"); 2338 } 2339 return nullptr; 2340 } 2341 2342 Value *BoUpSLP::vectorizeTree() { 2343 2344 // All blocks must be scheduled before any instructions are inserted. 2345 for (auto &BSIter : BlocksSchedules) { 2346 scheduleBlock(BSIter.second.get()); 2347 } 2348 2349 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2350 vectorizeTree(&VectorizableTree[0]); 2351 2352 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2353 2354 // Extract all of the elements with the external uses. 2355 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2356 it != e; ++it) { 2357 Value *Scalar = it->Scalar; 2358 llvm::User *User = it->User; 2359 2360 // Skip users that we already RAUW. This happens when one instruction 2361 // has multiple uses of the same value. 2362 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2363 Scalar->user_end()) 2364 continue; 2365 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2366 2367 int Idx = ScalarToTreeEntry[Scalar]; 2368 TreeEntry *E = &VectorizableTree[Idx]; 2369 assert(!E->NeedToGather && "Extracting from a gather list"); 2370 2371 Value *Vec = E->VectorizedValue; 2372 assert(Vec && "Can't find vectorizable value"); 2373 2374 Value *Lane = Builder.getInt32(it->Lane); 2375 // Generate extracts for out-of-tree users. 2376 // Find the insertion point for the extractelement lane. 2377 if (isa<Instruction>(Vec)){ 2378 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2379 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2380 if (PH->getIncomingValue(i) == Scalar) { 2381 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2382 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2383 CSEBlocks.insert(PH->getIncomingBlock(i)); 2384 PH->setOperand(i, Ex); 2385 } 2386 } 2387 } else { 2388 Builder.SetInsertPoint(cast<Instruction>(User)); 2389 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2390 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2391 User->replaceUsesOfWith(Scalar, Ex); 2392 } 2393 } else { 2394 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2395 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2396 CSEBlocks.insert(&F->getEntryBlock()); 2397 User->replaceUsesOfWith(Scalar, Ex); 2398 } 2399 2400 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2401 } 2402 2403 // For each vectorized value: 2404 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2405 TreeEntry *Entry = &VectorizableTree[EIdx]; 2406 2407 // For each lane: 2408 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2409 Value *Scalar = Entry->Scalars[Lane]; 2410 // No need to handle users of gathered values. 2411 if (Entry->NeedToGather) 2412 continue; 2413 2414 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2415 2416 Type *Ty = Scalar->getType(); 2417 if (!Ty->isVoidTy()) { 2418 #ifndef NDEBUG 2419 for (User *U : Scalar->users()) { 2420 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2421 2422 assert((ScalarToTreeEntry.count(U) || 2423 // It is legal to replace users in the ignorelist by undef. 2424 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2425 UserIgnoreList.end())) && 2426 "Replacing out-of-tree value with undef"); 2427 } 2428 #endif 2429 Value *Undef = UndefValue::get(Ty); 2430 Scalar->replaceAllUsesWith(Undef); 2431 } 2432 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2433 eraseInstruction(cast<Instruction>(Scalar)); 2434 } 2435 } 2436 2437 Builder.ClearInsertionPoint(); 2438 2439 return VectorizableTree[0].VectorizedValue; 2440 } 2441 2442 void BoUpSLP::optimizeGatherSequence() { 2443 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2444 << " gather sequences instructions.\n"); 2445 // LICM InsertElementInst sequences. 2446 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2447 e = GatherSeq.end(); it != e; ++it) { 2448 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2449 2450 if (!Insert) 2451 continue; 2452 2453 // Check if this block is inside a loop. 2454 Loop *L = LI->getLoopFor(Insert->getParent()); 2455 if (!L) 2456 continue; 2457 2458 // Check if it has a preheader. 2459 BasicBlock *PreHeader = L->getLoopPreheader(); 2460 if (!PreHeader) 2461 continue; 2462 2463 // If the vector or the element that we insert into it are 2464 // instructions that are defined in this basic block then we can't 2465 // hoist this instruction. 2466 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2467 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2468 if (CurrVec && L->contains(CurrVec)) 2469 continue; 2470 if (NewElem && L->contains(NewElem)) 2471 continue; 2472 2473 // We can hoist this instruction. Move it to the pre-header. 2474 Insert->moveBefore(PreHeader->getTerminator()); 2475 } 2476 2477 // Make a list of all reachable blocks in our CSE queue. 2478 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2479 CSEWorkList.reserve(CSEBlocks.size()); 2480 for (BasicBlock *BB : CSEBlocks) 2481 if (DomTreeNode *N = DT->getNode(BB)) { 2482 assert(DT->isReachableFromEntry(N)); 2483 CSEWorkList.push_back(N); 2484 } 2485 2486 // Sort blocks by domination. This ensures we visit a block after all blocks 2487 // dominating it are visited. 2488 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2489 [this](const DomTreeNode *A, const DomTreeNode *B) { 2490 return DT->properlyDominates(A, B); 2491 }); 2492 2493 // Perform O(N^2) search over the gather sequences and merge identical 2494 // instructions. TODO: We can further optimize this scan if we split the 2495 // instructions into different buckets based on the insert lane. 2496 SmallVector<Instruction *, 16> Visited; 2497 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2498 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2499 "Worklist not sorted properly!"); 2500 BasicBlock *BB = (*I)->getBlock(); 2501 // For all instructions in blocks containing gather sequences: 2502 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2503 Instruction *In = it++; 2504 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2505 continue; 2506 2507 // Check if we can replace this instruction with any of the 2508 // visited instructions. 2509 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2510 ve = Visited.end(); 2511 v != ve; ++v) { 2512 if (In->isIdenticalTo(*v) && 2513 DT->dominates((*v)->getParent(), In->getParent())) { 2514 In->replaceAllUsesWith(*v); 2515 eraseInstruction(In); 2516 In = nullptr; 2517 break; 2518 } 2519 } 2520 if (In) { 2521 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2522 Visited.push_back(In); 2523 } 2524 } 2525 } 2526 CSEBlocks.clear(); 2527 GatherSeq.clear(); 2528 } 2529 2530 // Groups the instructions to a bundle (which is then a single scheduling entity) 2531 // and schedules instructions until the bundle gets ready. 2532 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2533 BoUpSLP *SLP) { 2534 if (isa<PHINode>(VL[0])) 2535 return true; 2536 2537 // Initialize the instruction bundle. 2538 Instruction *OldScheduleEnd = ScheduleEnd; 2539 ScheduleData *PrevInBundle = nullptr; 2540 ScheduleData *Bundle = nullptr; 2541 bool ReSchedule = false; 2542 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2543 for (Value *V : VL) { 2544 extendSchedulingRegion(V); 2545 ScheduleData *BundleMember = getScheduleData(V); 2546 assert(BundleMember && 2547 "no ScheduleData for bundle member (maybe not in same basic block)"); 2548 if (BundleMember->IsScheduled) { 2549 // A bundle member was scheduled as single instruction before and now 2550 // needs to be scheduled as part of the bundle. We just get rid of the 2551 // existing schedule. 2552 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2553 << " was already scheduled\n"); 2554 ReSchedule = true; 2555 } 2556 assert(BundleMember->isSchedulingEntity() && 2557 "bundle member already part of other bundle"); 2558 if (PrevInBundle) { 2559 PrevInBundle->NextInBundle = BundleMember; 2560 } else { 2561 Bundle = BundleMember; 2562 } 2563 BundleMember->UnscheduledDepsInBundle = 0; 2564 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2565 2566 // Group the instructions to a bundle. 2567 BundleMember->FirstInBundle = Bundle; 2568 PrevInBundle = BundleMember; 2569 } 2570 if (ScheduleEnd != OldScheduleEnd) { 2571 // The scheduling region got new instructions at the lower end (or it is a 2572 // new region for the first bundle). This makes it necessary to 2573 // recalculate all dependencies. 2574 // It is seldom that this needs to be done a second time after adding the 2575 // initial bundle to the region. 2576 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2577 ScheduleData *SD = getScheduleData(I); 2578 SD->clearDependencies(); 2579 } 2580 ReSchedule = true; 2581 } 2582 if (ReSchedule) { 2583 resetSchedule(); 2584 initialFillReadyList(ReadyInsts); 2585 } 2586 2587 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2588 << BB->getName() << "\n"); 2589 2590 calculateDependencies(Bundle, true, SLP); 2591 2592 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2593 // means that there are no cyclic dependencies and we can schedule it. 2594 // Note that's important that we don't "schedule" the bundle yet (see 2595 // cancelScheduling). 2596 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2597 2598 ScheduleData *pickedSD = ReadyInsts.back(); 2599 ReadyInsts.pop_back(); 2600 2601 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2602 schedule(pickedSD, ReadyInsts); 2603 } 2604 } 2605 return Bundle->isReady(); 2606 } 2607 2608 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2609 if (isa<PHINode>(VL[0])) 2610 return; 2611 2612 ScheduleData *Bundle = getScheduleData(VL[0]); 2613 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2614 assert(!Bundle->IsScheduled && 2615 "Can't cancel bundle which is already scheduled"); 2616 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2617 "tried to unbundle something which is not a bundle"); 2618 2619 // Un-bundle: make single instructions out of the bundle. 2620 ScheduleData *BundleMember = Bundle; 2621 while (BundleMember) { 2622 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2623 BundleMember->FirstInBundle = BundleMember; 2624 ScheduleData *Next = BundleMember->NextInBundle; 2625 BundleMember->NextInBundle = nullptr; 2626 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2627 if (BundleMember->UnscheduledDepsInBundle == 0) { 2628 ReadyInsts.insert(BundleMember); 2629 } 2630 BundleMember = Next; 2631 } 2632 } 2633 2634 void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2635 if (getScheduleData(V)) 2636 return; 2637 Instruction *I = dyn_cast<Instruction>(V); 2638 assert(I && "bundle member must be an instruction"); 2639 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2640 if (!ScheduleStart) { 2641 // It's the first instruction in the new region. 2642 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2643 ScheduleStart = I; 2644 ScheduleEnd = I->getNextNode(); 2645 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2646 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2647 return; 2648 } 2649 // Search up and down at the same time, because we don't know if the new 2650 // instruction is above or below the existing scheduling region. 2651 BasicBlock::reverse_iterator UpIter(ScheduleStart); 2652 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2653 BasicBlock::iterator DownIter(ScheduleEnd); 2654 BasicBlock::iterator LowerEnd = BB->end(); 2655 for (;;) { 2656 if (UpIter != UpperEnd) { 2657 if (&*UpIter == I) { 2658 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2659 ScheduleStart = I; 2660 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2661 return; 2662 } 2663 UpIter++; 2664 } 2665 if (DownIter != LowerEnd) { 2666 if (&*DownIter == I) { 2667 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2668 nullptr); 2669 ScheduleEnd = I->getNextNode(); 2670 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2671 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2672 return; 2673 } 2674 DownIter++; 2675 } 2676 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2677 "instruction not found in block"); 2678 } 2679 } 2680 2681 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 2682 Instruction *ToI, 2683 ScheduleData *PrevLoadStore, 2684 ScheduleData *NextLoadStore) { 2685 ScheduleData *CurrentLoadStore = PrevLoadStore; 2686 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 2687 ScheduleData *SD = ScheduleDataMap[I]; 2688 if (!SD) { 2689 // Allocate a new ScheduleData for the instruction. 2690 if (ChunkPos >= ChunkSize) { 2691 ScheduleDataChunks.push_back( 2692 llvm::make_unique<ScheduleData[]>(ChunkSize)); 2693 ChunkPos = 0; 2694 } 2695 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 2696 ScheduleDataMap[I] = SD; 2697 SD->Inst = I; 2698 } 2699 assert(!isInSchedulingRegion(SD) && 2700 "new ScheduleData already in scheduling region"); 2701 SD->init(SchedulingRegionID); 2702 2703 if (I->mayReadOrWriteMemory()) { 2704 // Update the linked list of memory accessing instructions. 2705 if (CurrentLoadStore) { 2706 CurrentLoadStore->NextLoadStore = SD; 2707 } else { 2708 FirstLoadStoreInRegion = SD; 2709 } 2710 CurrentLoadStore = SD; 2711 } 2712 } 2713 if (NextLoadStore) { 2714 if (CurrentLoadStore) 2715 CurrentLoadStore->NextLoadStore = NextLoadStore; 2716 } else { 2717 LastLoadStoreInRegion = CurrentLoadStore; 2718 } 2719 } 2720 2721 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 2722 bool InsertInReadyList, 2723 BoUpSLP *SLP) { 2724 assert(SD->isSchedulingEntity()); 2725 2726 SmallVector<ScheduleData *, 10> WorkList; 2727 WorkList.push_back(SD); 2728 2729 while (!WorkList.empty()) { 2730 ScheduleData *SD = WorkList.back(); 2731 WorkList.pop_back(); 2732 2733 ScheduleData *BundleMember = SD; 2734 while (BundleMember) { 2735 assert(isInSchedulingRegion(BundleMember)); 2736 if (!BundleMember->hasValidDependencies()) { 2737 2738 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 2739 BundleMember->Dependencies = 0; 2740 BundleMember->resetUnscheduledDeps(); 2741 2742 // Handle def-use chain dependencies. 2743 for (User *U : BundleMember->Inst->users()) { 2744 if (isa<Instruction>(U)) { 2745 ScheduleData *UseSD = getScheduleData(U); 2746 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 2747 BundleMember->Dependencies++; 2748 ScheduleData *DestBundle = UseSD->FirstInBundle; 2749 if (!DestBundle->IsScheduled) { 2750 BundleMember->incrementUnscheduledDeps(1); 2751 } 2752 if (!DestBundle->hasValidDependencies()) { 2753 WorkList.push_back(DestBundle); 2754 } 2755 } 2756 } else { 2757 // I'm not sure if this can ever happen. But we need to be safe. 2758 // This lets the instruction/bundle never be scheduled and eventally 2759 // disable vectorization. 2760 BundleMember->Dependencies++; 2761 BundleMember->incrementUnscheduledDeps(1); 2762 } 2763 } 2764 2765 // Handle the memory dependencies. 2766 ScheduleData *DepDest = BundleMember->NextLoadStore; 2767 if (DepDest) { 2768 Instruction *SrcInst = BundleMember->Inst; 2769 AliasAnalysis::Location SrcLoc = getLocation(SrcInst, SLP->AA); 2770 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 2771 2772 while (DepDest) { 2773 assert(isInSchedulingRegion(DepDest)); 2774 if (SrcMayWrite || DepDest->Inst->mayWriteToMemory()) { 2775 if (SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)) { 2776 DepDest->MemoryDependencies.push_back(BundleMember); 2777 BundleMember->Dependencies++; 2778 ScheduleData *DestBundle = DepDest->FirstInBundle; 2779 if (!DestBundle->IsScheduled) { 2780 BundleMember->incrementUnscheduledDeps(1); 2781 } 2782 if (!DestBundle->hasValidDependencies()) { 2783 WorkList.push_back(DestBundle); 2784 } 2785 } 2786 } 2787 DepDest = DepDest->NextLoadStore; 2788 } 2789 } 2790 } 2791 BundleMember = BundleMember->NextInBundle; 2792 } 2793 if (InsertInReadyList && SD->isReady()) { 2794 ReadyInsts.push_back(SD); 2795 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 2796 } 2797 } 2798 } 2799 2800 void BoUpSLP::BlockScheduling::resetSchedule() { 2801 assert(ScheduleStart && 2802 "tried to reset schedule on block which has not been scheduled"); 2803 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2804 ScheduleData *SD = getScheduleData(I); 2805 assert(isInSchedulingRegion(SD)); 2806 SD->IsScheduled = false; 2807 SD->resetUnscheduledDeps(); 2808 } 2809 ReadyInsts.clear(); 2810 } 2811 2812 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 2813 2814 if (!BS->ScheduleStart) 2815 return; 2816 2817 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 2818 2819 BS->resetSchedule(); 2820 2821 // For the real scheduling we use a more sophisticated ready-list: it is 2822 // sorted by the original instruction location. This lets the final schedule 2823 // be as close as possible to the original instruction order. 2824 struct ScheduleDataCompare { 2825 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 2826 return SD2->SchedulingPriority < SD1->SchedulingPriority; 2827 } 2828 }; 2829 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 2830 2831 // Ensure that all depencency data is updated and fill the ready-list with 2832 // initial instructions. 2833 int Idx = 0; 2834 int NumToSchedule = 0; 2835 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 2836 I = I->getNextNode()) { 2837 ScheduleData *SD = BS->getScheduleData(I); 2838 assert( 2839 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 2840 "scheduler and vectorizer have different opinion on what is a bundle"); 2841 SD->FirstInBundle->SchedulingPriority = Idx++; 2842 if (SD->isSchedulingEntity()) { 2843 BS->calculateDependencies(SD, false, this); 2844 NumToSchedule++; 2845 } 2846 } 2847 BS->initialFillReadyList(ReadyInsts); 2848 2849 Instruction *LastScheduledInst = BS->ScheduleEnd; 2850 2851 // Do the "real" scheduling. 2852 while (!ReadyInsts.empty()) { 2853 ScheduleData *picked = *ReadyInsts.begin(); 2854 ReadyInsts.erase(ReadyInsts.begin()); 2855 2856 // Move the scheduled instruction(s) to their dedicated places, if not 2857 // there yet. 2858 ScheduleData *BundleMember = picked; 2859 while (BundleMember) { 2860 Instruction *pickedInst = BundleMember->Inst; 2861 if (LastScheduledInst->getNextNode() != pickedInst) { 2862 BS->BB->getInstList().remove(pickedInst); 2863 BS->BB->getInstList().insert(LastScheduledInst, pickedInst); 2864 } 2865 LastScheduledInst = pickedInst; 2866 BundleMember = BundleMember->NextInBundle; 2867 } 2868 2869 BS->schedule(picked, ReadyInsts); 2870 NumToSchedule--; 2871 } 2872 assert(NumToSchedule == 0 && "could not schedule all instructions"); 2873 2874 // Avoid duplicate scheduling of the block. 2875 BS->ScheduleStart = nullptr; 2876 } 2877 2878 /// The SLPVectorizer Pass. 2879 struct SLPVectorizer : public FunctionPass { 2880 typedef SmallVector<StoreInst *, 8> StoreList; 2881 typedef MapVector<Value *, StoreList> StoreListMap; 2882 2883 /// Pass identification, replacement for typeid 2884 static char ID; 2885 2886 explicit SLPVectorizer() : FunctionPass(ID) { 2887 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 2888 } 2889 2890 ScalarEvolution *SE; 2891 const DataLayout *DL; 2892 TargetTransformInfo *TTI; 2893 TargetLibraryInfo *TLI; 2894 AliasAnalysis *AA; 2895 LoopInfo *LI; 2896 DominatorTree *DT; 2897 AssumptionCache *AC; 2898 2899 bool runOnFunction(Function &F) override { 2900 if (skipOptnoneFunction(F)) 2901 return false; 2902 2903 SE = &getAnalysis<ScalarEvolution>(); 2904 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 2905 DL = DLP ? &DLP->getDataLayout() : nullptr; 2906 TTI = &getAnalysis<TargetTransformInfo>(); 2907 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 2908 AA = &getAnalysis<AliasAnalysis>(); 2909 LI = &getAnalysis<LoopInfo>(); 2910 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2911 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2912 2913 StoreRefs.clear(); 2914 bool Changed = false; 2915 2916 // If the target claims to have no vector registers don't attempt 2917 // vectorization. 2918 if (!TTI->getNumberOfRegisters(true)) 2919 return false; 2920 2921 // Must have DataLayout. We can't require it because some tests run w/o 2922 // triple. 2923 if (!DL) 2924 return false; 2925 2926 // Don't vectorize when the attribute NoImplicitFloat is used. 2927 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 2928 return false; 2929 2930 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 2931 2932 // Use the bottom up slp vectorizer to construct chains that start with 2933 // store instructions. 2934 BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT, AC); 2935 2936 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 2937 // delete instructions. 2938 2939 // Scan the blocks in the function in post order. 2940 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()), 2941 e = po_end(&F.getEntryBlock()); it != e; ++it) { 2942 BasicBlock *BB = *it; 2943 // Vectorize trees that end at stores. 2944 if (unsigned count = collectStores(BB, R)) { 2945 (void)count; 2946 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 2947 Changed |= vectorizeStoreChains(R); 2948 } 2949 2950 // Vectorize trees that end at reductions. 2951 Changed |= vectorizeChainsInBlock(BB, R); 2952 } 2953 2954 if (Changed) { 2955 R.optimizeGatherSequence(); 2956 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 2957 DEBUG(verifyFunction(F)); 2958 } 2959 return Changed; 2960 } 2961 2962 void getAnalysisUsage(AnalysisUsage &AU) const override { 2963 FunctionPass::getAnalysisUsage(AU); 2964 AU.addRequired<AssumptionCacheTracker>(); 2965 AU.addRequired<ScalarEvolution>(); 2966 AU.addRequired<AliasAnalysis>(); 2967 AU.addRequired<TargetTransformInfo>(); 2968 AU.addRequired<LoopInfo>(); 2969 AU.addRequired<DominatorTreeWrapperPass>(); 2970 AU.addPreserved<LoopInfo>(); 2971 AU.addPreserved<DominatorTreeWrapperPass>(); 2972 AU.setPreservesCFG(); 2973 } 2974 2975 private: 2976 2977 /// \brief Collect memory references and sort them according to their base 2978 /// object. We sort the stores to their base objects to reduce the cost of the 2979 /// quadratic search on the stores. TODO: We can further reduce this cost 2980 /// if we flush the chain creation every time we run into a memory barrier. 2981 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 2982 2983 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 2984 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 2985 2986 /// \brief Try to vectorize a list of operands. 2987 /// \@param BuildVector A list of users to ignore for the purpose of 2988 /// scheduling and that don't need extracting. 2989 /// \returns true if a value was vectorized. 2990 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2991 ArrayRef<Value *> BuildVector = None, 2992 bool allowReorder = false); 2993 2994 /// \brief Try to vectorize a chain that may start at the operands of \V; 2995 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 2996 2997 /// \brief Vectorize the stores that were collected in StoreRefs. 2998 bool vectorizeStoreChains(BoUpSLP &R); 2999 3000 /// \brief Scan the basic block and look for patterns that are likely to start 3001 /// a vectorization chain. 3002 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 3003 3004 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 3005 BoUpSLP &R); 3006 3007 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 3008 BoUpSLP &R); 3009 private: 3010 StoreListMap StoreRefs; 3011 }; 3012 3013 /// \brief Check that the Values in the slice in VL array are still existent in 3014 /// the WeakVH array. 3015 /// Vectorization of part of the VL array may cause later values in the VL array 3016 /// to become invalid. We track when this has happened in the WeakVH array. 3017 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL, 3018 SmallVectorImpl<WeakVH> &VH, 3019 unsigned SliceBegin, 3020 unsigned SliceSize) { 3021 for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i) 3022 if (VH[i] != VL[i]) 3023 return true; 3024 3025 return false; 3026 } 3027 3028 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 3029 int CostThreshold, BoUpSLP &R) { 3030 unsigned ChainLen = Chain.size(); 3031 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3032 << "\n"); 3033 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 3034 unsigned Sz = DL->getTypeSizeInBits(StoreTy); 3035 unsigned VF = MinVecRegSize / Sz; 3036 3037 if (!isPowerOf2_32(Sz) || VF < 2) 3038 return false; 3039 3040 // Keep track of values that were deleted by vectorizing in the loop below. 3041 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3042 3043 bool Changed = false; 3044 // Look for profitable vectorizable trees at all offsets, starting at zero. 3045 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3046 if (i + VF > e) 3047 break; 3048 3049 // Check that a previous iteration of this loop did not delete the Value. 3050 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3051 continue; 3052 3053 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3054 << "\n"); 3055 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3056 3057 R.buildTree(Operands); 3058 3059 int Cost = R.getTreeCost(); 3060 3061 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3062 if (Cost < CostThreshold) { 3063 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3064 R.vectorizeTree(); 3065 3066 // Move to the next bundle. 3067 i += VF - 1; 3068 Changed = true; 3069 } 3070 } 3071 3072 return Changed; 3073 } 3074 3075 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 3076 int costThreshold, BoUpSLP &R) { 3077 SetVector<Value *> Heads, Tails; 3078 SmallDenseMap<Value *, Value *> ConsecutiveChain; 3079 3080 // We may run into multiple chains that merge into a single chain. We mark the 3081 // stores that we vectorized so that we don't visit the same store twice. 3082 BoUpSLP::ValueSet VectorizedStores; 3083 bool Changed = false; 3084 3085 // Do a quadratic search on all of the given stores and find 3086 // all of the pairs of stores that follow each other. 3087 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3088 for (unsigned j = 0; j < e; ++j) { 3089 if (i == j) 3090 continue; 3091 3092 if (R.isConsecutiveAccess(Stores[i], Stores[j])) { 3093 Tails.insert(Stores[j]); 3094 Heads.insert(Stores[i]); 3095 ConsecutiveChain[Stores[i]] = Stores[j]; 3096 } 3097 } 3098 } 3099 3100 // For stores that start but don't end a link in the chain: 3101 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end(); 3102 it != e; ++it) { 3103 if (Tails.count(*it)) 3104 continue; 3105 3106 // We found a store instr that starts a chain. Now follow the chain and try 3107 // to vectorize it. 3108 BoUpSLP::ValueList Operands; 3109 Value *I = *it; 3110 // Collect the chain into a list. 3111 while (Tails.count(I) || Heads.count(I)) { 3112 if (VectorizedStores.count(I)) 3113 break; 3114 Operands.push_back(I); 3115 // Move to the next value in the chain. 3116 I = ConsecutiveChain[I]; 3117 } 3118 3119 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); 3120 3121 // Mark the vectorized stores so that we don't vectorize them again. 3122 if (Vectorized) 3123 VectorizedStores.insert(Operands.begin(), Operands.end()); 3124 Changed |= Vectorized; 3125 } 3126 3127 return Changed; 3128 } 3129 3130 3131 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 3132 unsigned count = 0; 3133 StoreRefs.clear(); 3134 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3135 StoreInst *SI = dyn_cast<StoreInst>(it); 3136 if (!SI) 3137 continue; 3138 3139 // Don't touch volatile stores. 3140 if (!SI->isSimple()) 3141 continue; 3142 3143 // Check that the pointer points to scalars. 3144 Type *Ty = SI->getValueOperand()->getType(); 3145 if (!isValidElementType(Ty)) 3146 continue; 3147 3148 // Find the base pointer. 3149 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 3150 3151 // Save the store locations. 3152 StoreRefs[Ptr].push_back(SI); 3153 count++; 3154 } 3155 return count; 3156 } 3157 3158 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3159 if (!A || !B) 3160 return false; 3161 Value *VL[] = { A, B }; 3162 return tryToVectorizeList(VL, R, None, true); 3163 } 3164 3165 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3166 ArrayRef<Value *> BuildVector, 3167 bool allowReorder) { 3168 if (VL.size() < 2) 3169 return false; 3170 3171 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3172 3173 // Check that all of the parts are scalar instructions of the same type. 3174 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3175 if (!I0) 3176 return false; 3177 3178 unsigned Opcode0 = I0->getOpcode(); 3179 3180 Type *Ty0 = I0->getType(); 3181 unsigned Sz = DL->getTypeSizeInBits(Ty0); 3182 unsigned VF = MinVecRegSize / Sz; 3183 3184 for (int i = 0, e = VL.size(); i < e; ++i) { 3185 Type *Ty = VL[i]->getType(); 3186 if (!isValidElementType(Ty)) 3187 return false; 3188 Instruction *Inst = dyn_cast<Instruction>(VL[i]); 3189 if (!Inst || Inst->getOpcode() != Opcode0) 3190 return false; 3191 } 3192 3193 bool Changed = false; 3194 3195 // Keep track of values that were deleted by vectorizing in the loop below. 3196 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3197 3198 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3199 unsigned OpsWidth = 0; 3200 3201 if (i + VF > e) 3202 OpsWidth = e - i; 3203 else 3204 OpsWidth = VF; 3205 3206 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3207 break; 3208 3209 // Check that a previous iteration of this loop did not delete the Value. 3210 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3211 continue; 3212 3213 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3214 << "\n"); 3215 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3216 3217 ArrayRef<Value *> BuildVectorSlice; 3218 if (!BuildVector.empty()) 3219 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3220 3221 R.buildTree(Ops, BuildVectorSlice); 3222 // TODO: check if we can allow reordering also for other cases than 3223 // tryToVectorizePair() 3224 if (allowReorder && R.shouldReorder()) { 3225 assert(Ops.size() == 2); 3226 assert(BuildVectorSlice.empty()); 3227 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3228 R.buildTree(ReorderedOps, None); 3229 } 3230 int Cost = R.getTreeCost(); 3231 3232 if (Cost < -SLPCostThreshold) { 3233 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3234 Value *VectorizedRoot = R.vectorizeTree(); 3235 3236 // Reconstruct the build vector by extracting the vectorized root. This 3237 // way we handle the case where some elements of the vector are undefined. 3238 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3239 if (!BuildVectorSlice.empty()) { 3240 // The insert point is the last build vector instruction. The vectorized 3241 // root will precede it. This guarantees that we get an instruction. The 3242 // vectorized tree could have been constant folded. 3243 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3244 unsigned VecIdx = 0; 3245 for (auto &V : BuildVectorSlice) { 3246 IRBuilder<true, NoFolder> Builder( 3247 ++BasicBlock::iterator(InsertAfter)); 3248 InsertElementInst *IE = cast<InsertElementInst>(V); 3249 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3250 VectorizedRoot, Builder.getInt32(VecIdx++))); 3251 IE->setOperand(1, Extract); 3252 IE->removeFromParent(); 3253 IE->insertAfter(Extract); 3254 InsertAfter = IE; 3255 } 3256 } 3257 // Move to the next bundle. 3258 i += VF - 1; 3259 Changed = true; 3260 } 3261 } 3262 3263 return Changed; 3264 } 3265 3266 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3267 if (!V) 3268 return false; 3269 3270 // Try to vectorize V. 3271 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3272 return true; 3273 3274 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3275 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3276 // Try to skip B. 3277 if (B && B->hasOneUse()) { 3278 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3279 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3280 if (tryToVectorizePair(A, B0, R)) { 3281 return true; 3282 } 3283 if (tryToVectorizePair(A, B1, R)) { 3284 return true; 3285 } 3286 } 3287 3288 // Try to skip A. 3289 if (A && A->hasOneUse()) { 3290 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3291 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3292 if (tryToVectorizePair(A0, B, R)) { 3293 return true; 3294 } 3295 if (tryToVectorizePair(A1, B, R)) { 3296 return true; 3297 } 3298 } 3299 return 0; 3300 } 3301 3302 /// \brief Generate a shuffle mask to be used in a reduction tree. 3303 /// 3304 /// \param VecLen The length of the vector to be reduced. 3305 /// \param NumEltsToRdx The number of elements that should be reduced in the 3306 /// vector. 3307 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3308 /// reduction. A pairwise reduction will generate a mask of 3309 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3310 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3311 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3312 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3313 bool IsPairwise, bool IsLeft, 3314 IRBuilder<> &Builder) { 3315 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3316 3317 SmallVector<Constant *, 32> ShuffleMask( 3318 VecLen, UndefValue::get(Builder.getInt32Ty())); 3319 3320 if (IsPairwise) 3321 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3322 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3323 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3324 else 3325 // Move the upper half of the vector to the lower half. 3326 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3327 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3328 3329 return ConstantVector::get(ShuffleMask); 3330 } 3331 3332 3333 /// Model horizontal reductions. 3334 /// 3335 /// A horizontal reduction is a tree of reduction operations (currently add and 3336 /// fadd) that has operations that can be put into a vector as its leaf. 3337 /// For example, this tree: 3338 /// 3339 /// mul mul mul mul 3340 /// \ / \ / 3341 /// + + 3342 /// \ / 3343 /// + 3344 /// This tree has "mul" as its reduced values and "+" as its reduction 3345 /// operations. A reduction might be feeding into a store or a binary operation 3346 /// feeding a phi. 3347 /// ... 3348 /// \ / 3349 /// + 3350 /// | 3351 /// phi += 3352 /// 3353 /// Or: 3354 /// ... 3355 /// \ / 3356 /// + 3357 /// | 3358 /// *p = 3359 /// 3360 class HorizontalReduction { 3361 SmallVector<Value *, 16> ReductionOps; 3362 SmallVector<Value *, 32> ReducedVals; 3363 3364 BinaryOperator *ReductionRoot; 3365 PHINode *ReductionPHI; 3366 3367 /// The opcode of the reduction. 3368 unsigned ReductionOpcode; 3369 /// The opcode of the values we perform a reduction on. 3370 unsigned ReducedValueOpcode; 3371 /// The width of one full horizontal reduction operation. 3372 unsigned ReduxWidth; 3373 /// Should we model this reduction as a pairwise reduction tree or a tree that 3374 /// splits the vector in halves and adds those halves. 3375 bool IsPairwiseReduction; 3376 3377 public: 3378 HorizontalReduction() 3379 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3380 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 3381 3382 /// \brief Try to find a reduction tree. 3383 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B, 3384 const DataLayout *DL) { 3385 assert((!Phi || 3386 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 3387 "Thi phi needs to use the binary operator"); 3388 3389 // We could have a initial reductions that is not an add. 3390 // r *= v1 + v2 + v3 + v4 3391 // In such a case start looking for a tree rooted in the first '+'. 3392 if (Phi) { 3393 if (B->getOperand(0) == Phi) { 3394 Phi = nullptr; 3395 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 3396 } else if (B->getOperand(1) == Phi) { 3397 Phi = nullptr; 3398 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 3399 } 3400 } 3401 3402 if (!B) 3403 return false; 3404 3405 Type *Ty = B->getType(); 3406 if (!isValidElementType(Ty)) 3407 return false; 3408 3409 ReductionOpcode = B->getOpcode(); 3410 ReducedValueOpcode = 0; 3411 ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty); 3412 ReductionRoot = B; 3413 ReductionPHI = Phi; 3414 3415 if (ReduxWidth < 4) 3416 return false; 3417 3418 // We currently only support adds. 3419 if (ReductionOpcode != Instruction::Add && 3420 ReductionOpcode != Instruction::FAdd) 3421 return false; 3422 3423 // Post order traverse the reduction tree starting at B. We only handle true 3424 // trees containing only binary operators. 3425 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 3426 Stack.push_back(std::make_pair(B, 0)); 3427 while (!Stack.empty()) { 3428 BinaryOperator *TreeN = Stack.back().first; 3429 unsigned EdgeToVist = Stack.back().second++; 3430 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 3431 3432 // Only handle trees in the current basic block. 3433 if (TreeN->getParent() != B->getParent()) 3434 return false; 3435 3436 // Each tree node needs to have one user except for the ultimate 3437 // reduction. 3438 if (!TreeN->hasOneUse() && TreeN != B) 3439 return false; 3440 3441 // Postorder vist. 3442 if (EdgeToVist == 2 || IsReducedValue) { 3443 if (IsReducedValue) { 3444 // Make sure that the opcodes of the operations that we are going to 3445 // reduce match. 3446 if (!ReducedValueOpcode) 3447 ReducedValueOpcode = TreeN->getOpcode(); 3448 else if (ReducedValueOpcode != TreeN->getOpcode()) 3449 return false; 3450 ReducedVals.push_back(TreeN); 3451 } else { 3452 // We need to be able to reassociate the adds. 3453 if (!TreeN->isAssociative()) 3454 return false; 3455 ReductionOps.push_back(TreeN); 3456 } 3457 // Retract. 3458 Stack.pop_back(); 3459 continue; 3460 } 3461 3462 // Visit left or right. 3463 Value *NextV = TreeN->getOperand(EdgeToVist); 3464 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 3465 if (Next) 3466 Stack.push_back(std::make_pair(Next, 0)); 3467 else if (NextV != Phi) 3468 return false; 3469 } 3470 return true; 3471 } 3472 3473 /// \brief Attempt to vectorize the tree found by 3474 /// matchAssociativeReduction. 3475 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 3476 if (ReducedVals.empty()) 3477 return false; 3478 3479 unsigned NumReducedVals = ReducedVals.size(); 3480 if (NumReducedVals < ReduxWidth) 3481 return false; 3482 3483 Value *VectorizedTree = nullptr; 3484 IRBuilder<> Builder(ReductionRoot); 3485 FastMathFlags Unsafe; 3486 Unsafe.setUnsafeAlgebra(); 3487 Builder.SetFastMathFlags(Unsafe); 3488 unsigned i = 0; 3489 3490 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 3491 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 3492 3493 // Estimate cost. 3494 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 3495 if (Cost >= -SLPCostThreshold) 3496 break; 3497 3498 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 3499 << ". (HorRdx)\n"); 3500 3501 // Vectorize a tree. 3502 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 3503 Value *VectorizedRoot = V.vectorizeTree(); 3504 3505 // Emit a reduction. 3506 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 3507 if (VectorizedTree) { 3508 Builder.SetCurrentDebugLocation(Loc); 3509 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3510 ReducedSubTree, "bin.rdx"); 3511 } else 3512 VectorizedTree = ReducedSubTree; 3513 } 3514 3515 if (VectorizedTree) { 3516 // Finish the reduction. 3517 for (; i < NumReducedVals; ++i) { 3518 Builder.SetCurrentDebugLocation( 3519 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 3520 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3521 ReducedVals[i]); 3522 } 3523 // Update users. 3524 if (ReductionPHI) { 3525 assert(ReductionRoot && "Need a reduction operation"); 3526 ReductionRoot->setOperand(0, VectorizedTree); 3527 ReductionRoot->setOperand(1, ReductionPHI); 3528 } else 3529 ReductionRoot->replaceAllUsesWith(VectorizedTree); 3530 } 3531 return VectorizedTree != nullptr; 3532 } 3533 3534 private: 3535 3536 /// \brief Calcuate the cost of a reduction. 3537 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 3538 Type *ScalarTy = FirstReducedVal->getType(); 3539 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 3540 3541 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 3542 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 3543 3544 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 3545 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 3546 3547 int ScalarReduxCost = 3548 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 3549 3550 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 3551 << " for reduction that starts with " << *FirstReducedVal 3552 << " (It is a " 3553 << (IsPairwiseReduction ? "pairwise" : "splitting") 3554 << " reduction)\n"); 3555 3556 return VecReduxCost - ScalarReduxCost; 3557 } 3558 3559 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 3560 Value *R, const Twine &Name = "") { 3561 if (Opcode == Instruction::FAdd) 3562 return Builder.CreateFAdd(L, R, Name); 3563 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 3564 } 3565 3566 /// \brief Emit a horizontal reduction of the vectorized value. 3567 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 3568 assert(VectorizedValue && "Need to have a vectorized tree node"); 3569 assert(isPowerOf2_32(ReduxWidth) && 3570 "We only handle power-of-two reductions for now"); 3571 3572 Value *TmpVec = VectorizedValue; 3573 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 3574 if (IsPairwiseReduction) { 3575 Value *LeftMask = 3576 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 3577 Value *RightMask = 3578 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 3579 3580 Value *LeftShuf = Builder.CreateShuffleVector( 3581 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 3582 Value *RightShuf = Builder.CreateShuffleVector( 3583 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 3584 "rdx.shuf.r"); 3585 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 3586 "bin.rdx"); 3587 } else { 3588 Value *UpperHalf = 3589 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 3590 Value *Shuf = Builder.CreateShuffleVector( 3591 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 3592 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 3593 } 3594 } 3595 3596 // The result is in the first element of the vector. 3597 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3598 } 3599 }; 3600 3601 /// \brief Recognize construction of vectors like 3602 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 3603 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 3604 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 3605 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 3606 /// 3607 /// Returns true if it matches 3608 /// 3609 static bool findBuildVector(InsertElementInst *FirstInsertElem, 3610 SmallVectorImpl<Value *> &BuildVector, 3611 SmallVectorImpl<Value *> &BuildVectorOpds) { 3612 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 3613 return false; 3614 3615 InsertElementInst *IE = FirstInsertElem; 3616 while (true) { 3617 BuildVector.push_back(IE); 3618 BuildVectorOpds.push_back(IE->getOperand(1)); 3619 3620 if (IE->use_empty()) 3621 return false; 3622 3623 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 3624 if (!NextUse) 3625 return true; 3626 3627 // If this isn't the final use, make sure the next insertelement is the only 3628 // use. It's OK if the final constructed vector is used multiple times 3629 if (!IE->hasOneUse()) 3630 return false; 3631 3632 IE = NextUse; 3633 } 3634 3635 return false; 3636 } 3637 3638 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 3639 return V->getType() < V2->getType(); 3640 } 3641 3642 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 3643 bool Changed = false; 3644 SmallVector<Value *, 4> Incoming; 3645 SmallSet<Value *, 16> VisitedInstrs; 3646 3647 bool HaveVectorizedPhiNodes = true; 3648 while (HaveVectorizedPhiNodes) { 3649 HaveVectorizedPhiNodes = false; 3650 3651 // Collect the incoming values from the PHIs. 3652 Incoming.clear(); 3653 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 3654 ++instr) { 3655 PHINode *P = dyn_cast<PHINode>(instr); 3656 if (!P) 3657 break; 3658 3659 if (!VisitedInstrs.count(P)) 3660 Incoming.push_back(P); 3661 } 3662 3663 // Sort by type. 3664 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 3665 3666 // Try to vectorize elements base on their type. 3667 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 3668 E = Incoming.end(); 3669 IncIt != E;) { 3670 3671 // Look for the next elements with the same type. 3672 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 3673 while (SameTypeIt != E && 3674 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 3675 VisitedInstrs.insert(*SameTypeIt); 3676 ++SameTypeIt; 3677 } 3678 3679 // Try to vectorize them. 3680 unsigned NumElts = (SameTypeIt - IncIt); 3681 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 3682 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 3683 // Success start over because instructions might have been changed. 3684 HaveVectorizedPhiNodes = true; 3685 Changed = true; 3686 break; 3687 } 3688 3689 // Start over at the next instruction of a different type (or the end). 3690 IncIt = SameTypeIt; 3691 } 3692 } 3693 3694 VisitedInstrs.clear(); 3695 3696 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 3697 // We may go through BB multiple times so skip the one we have checked. 3698 if (!VisitedInstrs.insert(it).second) 3699 continue; 3700 3701 if (isa<DbgInfoIntrinsic>(it)) 3702 continue; 3703 3704 // Try to vectorize reductions that use PHINodes. 3705 if (PHINode *P = dyn_cast<PHINode>(it)) { 3706 // Check that the PHI is a reduction PHI. 3707 if (P->getNumIncomingValues() != 2) 3708 return Changed; 3709 Value *Rdx = 3710 (P->getIncomingBlock(0) == BB 3711 ? (P->getIncomingValue(0)) 3712 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) 3713 : nullptr)); 3714 // Check if this is a Binary Operator. 3715 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 3716 if (!BI) 3717 continue; 3718 3719 // Try to match and vectorize a horizontal reduction. 3720 HorizontalReduction HorRdx; 3721 if (ShouldVectorizeHor && 3722 HorRdx.matchAssociativeReduction(P, BI, DL) && 3723 HorRdx.tryToReduce(R, TTI)) { 3724 Changed = true; 3725 it = BB->begin(); 3726 e = BB->end(); 3727 continue; 3728 } 3729 3730 Value *Inst = BI->getOperand(0); 3731 if (Inst == P) 3732 Inst = BI->getOperand(1); 3733 3734 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 3735 // We would like to start over since some instructions are deleted 3736 // and the iterator may become invalid value. 3737 Changed = true; 3738 it = BB->begin(); 3739 e = BB->end(); 3740 continue; 3741 } 3742 3743 continue; 3744 } 3745 3746 // Try to vectorize horizontal reductions feeding into a store. 3747 if (ShouldStartVectorizeHorAtStore) 3748 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 3749 if (BinaryOperator *BinOp = 3750 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 3751 HorizontalReduction HorRdx; 3752 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) && 3753 HorRdx.tryToReduce(R, TTI)) || 3754 tryToVectorize(BinOp, R))) { 3755 Changed = true; 3756 it = BB->begin(); 3757 e = BB->end(); 3758 continue; 3759 } 3760 } 3761 3762 // Try to vectorize horizontal reductions feeding into a return. 3763 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 3764 if (RI->getNumOperands() != 0) 3765 if (BinaryOperator *BinOp = 3766 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 3767 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 3768 if (tryToVectorizePair(BinOp->getOperand(0), 3769 BinOp->getOperand(1), R)) { 3770 Changed = true; 3771 it = BB->begin(); 3772 e = BB->end(); 3773 continue; 3774 } 3775 } 3776 3777 // Try to vectorize trees that start at compare instructions. 3778 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 3779 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 3780 Changed = true; 3781 // We would like to start over since some instructions are deleted 3782 // and the iterator may become invalid value. 3783 it = BB->begin(); 3784 e = BB->end(); 3785 continue; 3786 } 3787 3788 for (int i = 0; i < 2; ++i) { 3789 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 3790 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 3791 Changed = true; 3792 // We would like to start over since some instructions are deleted 3793 // and the iterator may become invalid value. 3794 it = BB->begin(); 3795 e = BB->end(); 3796 } 3797 } 3798 } 3799 continue; 3800 } 3801 3802 // Try to vectorize trees that start at insertelement instructions. 3803 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 3804 SmallVector<Value *, 16> BuildVector; 3805 SmallVector<Value *, 16> BuildVectorOpds; 3806 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 3807 continue; 3808 3809 // Vectorize starting with the build vector operands ignoring the 3810 // BuildVector instructions for the purpose of scheduling and user 3811 // extraction. 3812 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 3813 Changed = true; 3814 it = BB->begin(); 3815 e = BB->end(); 3816 } 3817 3818 continue; 3819 } 3820 } 3821 3822 return Changed; 3823 } 3824 3825 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 3826 bool Changed = false; 3827 // Attempt to sort and vectorize each of the store-groups. 3828 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 3829 it != e; ++it) { 3830 if (it->second.size() < 2) 3831 continue; 3832 3833 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 3834 << it->second.size() << ".\n"); 3835 3836 // Process the stores in chunks of 16. 3837 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 3838 unsigned Len = std::min<unsigned>(CE - CI, 16); 3839 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 3840 -SLPCostThreshold, R); 3841 } 3842 } 3843 return Changed; 3844 } 3845 3846 } // end anonymous namespace 3847 3848 char SLPVectorizer::ID = 0; 3849 static const char lv_name[] = "SLP Vectorizer"; 3850 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 3851 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 3852 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 3853 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3854 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3855 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3856 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 3857 3858 namespace llvm { 3859 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 3860 } 3861