1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/KnownBits.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/LoopUtils.h" 46 #include "llvm/Transforms/Vectorize.h" 47 #include <algorithm> 48 #include <memory> 49 50 using namespace llvm; 51 using namespace slpvectorizer; 52 53 #define SV_NAME "slp-vectorizer" 54 #define DEBUG_TYPE "SLP" 55 56 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 57 58 static cl::opt<int> 59 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 60 cl::desc("Only vectorize if you gain more than this " 61 "number ")); 62 63 static cl::opt<bool> 64 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 65 cl::desc("Attempt to vectorize horizontal reductions")); 66 67 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 68 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 69 cl::desc( 70 "Attempt to vectorize horizontal reductions feeding into a store")); 71 72 static cl::opt<int> 73 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 74 cl::desc("Attempt to vectorize for this register size in bits")); 75 76 /// Limits the size of scheduling regions in a block. 77 /// It avoid long compile times for _very_ large blocks where vector 78 /// instructions are spread over a wide range. 79 /// This limit is way higher than needed by real-world functions. 80 static cl::opt<int> 81 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 82 cl::desc("Limit the size of the SLP scheduling region per block")); 83 84 static cl::opt<int> MinVectorRegSizeOption( 85 "slp-min-reg-size", cl::init(128), cl::Hidden, 86 cl::desc("Attempt to vectorize for this register size in bits")); 87 88 static cl::opt<unsigned> RecursionMaxDepth( 89 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 90 cl::desc("Limit the recursion depth when building a vectorizable tree")); 91 92 static cl::opt<unsigned> MinTreeSize( 93 "slp-min-tree-size", cl::init(3), cl::Hidden, 94 cl::desc("Only vectorize small trees if they are fully vectorizable")); 95 96 static cl::opt<bool> 97 ViewSLPTree("view-slp-tree", cl::Hidden, 98 cl::desc("Display the SLP trees with Graphviz")); 99 100 // Limit the number of alias checks. The limit is chosen so that 101 // it has no negative effect on the llvm benchmarks. 102 static const unsigned AliasedCheckLimit = 10; 103 104 // Another limit for the alias checks: The maximum distance between load/store 105 // instructions where alias checks are done. 106 // This limit is useful for very large basic blocks. 107 static const unsigned MaxMemDepDistance = 160; 108 109 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 110 /// regions to be handled. 111 static const int MinScheduleRegionSize = 16; 112 113 /// \brief Predicate for the element types that the SLP vectorizer supports. 114 /// 115 /// The most important thing to filter here are types which are invalid in LLVM 116 /// vectors. We also filter target specific types which have absolutely no 117 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 118 /// avoids spending time checking the cost model and realizing that they will 119 /// be inevitably scalarized. 120 static bool isValidElementType(Type *Ty) { 121 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 122 !Ty->isPPC_FP128Ty(); 123 } 124 125 /// \returns true if all of the instructions in \p VL are in the same block or 126 /// false otherwise. 127 static bool allSameBlock(ArrayRef<Value *> VL) { 128 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 129 if (!I0) 130 return false; 131 BasicBlock *BB = I0->getParent(); 132 for (int i = 1, e = VL.size(); i < e; i++) { 133 Instruction *I = dyn_cast<Instruction>(VL[i]); 134 if (!I) 135 return false; 136 137 if (BB != I->getParent()) 138 return false; 139 } 140 return true; 141 } 142 143 /// \returns True if all of the values in \p VL are constants. 144 static bool allConstant(ArrayRef<Value *> VL) { 145 for (Value *i : VL) 146 if (!isa<Constant>(i)) 147 return false; 148 return true; 149 } 150 151 /// \returns True if all of the values in \p VL are identical. 152 static bool isSplat(ArrayRef<Value *> VL) { 153 for (unsigned i = 1, e = VL.size(); i < e; ++i) 154 if (VL[i] != VL[0]) 155 return false; 156 return true; 157 } 158 159 ///\returns Opcode that can be clubbed with \p Op to create an alternate 160 /// sequence which can later be merged as a ShuffleVector instruction. 161 static unsigned getAltOpcode(unsigned Op) { 162 switch (Op) { 163 case Instruction::FAdd: 164 return Instruction::FSub; 165 case Instruction::FSub: 166 return Instruction::FAdd; 167 case Instruction::Add: 168 return Instruction::Sub; 169 case Instruction::Sub: 170 return Instruction::Add; 171 default: 172 return 0; 173 } 174 } 175 176 ///\returns bool representing if Opcode \p Op can be part 177 /// of an alternate sequence which can later be merged as 178 /// a ShuffleVector instruction. 179 static bool canCombineAsAltInst(unsigned Op) { 180 return Op == Instruction::FAdd || Op == Instruction::FSub || 181 Op == Instruction::Sub || Op == Instruction::Add; 182 } 183 184 /// \returns ShuffleVector instruction if instructions in \p VL have 185 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 186 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 187 static unsigned isAltInst(ArrayRef<Value *> VL) { 188 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 189 unsigned Opcode = I0->getOpcode(); 190 unsigned AltOpcode = getAltOpcode(Opcode); 191 for (int i = 1, e = VL.size(); i < e; i++) { 192 Instruction *I = dyn_cast<Instruction>(VL[i]); 193 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 194 return 0; 195 } 196 return Instruction::ShuffleVector; 197 } 198 199 /// \returns The opcode if all of the Instructions in \p VL have the same 200 /// opcode, or zero. 201 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 202 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 203 if (!I0) 204 return 0; 205 unsigned Opcode = I0->getOpcode(); 206 for (int i = 1, e = VL.size(); i < e; i++) { 207 Instruction *I = dyn_cast<Instruction>(VL[i]); 208 if (!I || Opcode != I->getOpcode()) { 209 if (canCombineAsAltInst(Opcode) && i == 1) 210 return isAltInst(VL); 211 return 0; 212 } 213 } 214 return Opcode; 215 } 216 217 /// \returns true if all of the values in \p VL have the same type or false 218 /// otherwise. 219 static bool allSameType(ArrayRef<Value *> VL) { 220 Type *Ty = VL[0]->getType(); 221 for (int i = 1, e = VL.size(); i < e; i++) 222 if (VL[i]->getType() != Ty) 223 return false; 224 225 return true; 226 } 227 228 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 229 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 230 assert(Opcode == Instruction::ExtractElement || 231 Opcode == Instruction::ExtractValue); 232 if (Opcode == Instruction::ExtractElement) { 233 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 234 return CI && CI->getZExtValue() == Idx; 235 } else { 236 ExtractValueInst *EI = cast<ExtractValueInst>(E); 237 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 238 } 239 } 240 241 /// \returns True if in-tree use also needs extract. This refers to 242 /// possible scalar operand in vectorized instruction. 243 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 244 TargetLibraryInfo *TLI) { 245 246 unsigned Opcode = UserInst->getOpcode(); 247 switch (Opcode) { 248 case Instruction::Load: { 249 LoadInst *LI = cast<LoadInst>(UserInst); 250 return (LI->getPointerOperand() == Scalar); 251 } 252 case Instruction::Store: { 253 StoreInst *SI = cast<StoreInst>(UserInst); 254 return (SI->getPointerOperand() == Scalar); 255 } 256 case Instruction::Call: { 257 CallInst *CI = cast<CallInst>(UserInst); 258 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 259 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 260 return (CI->getArgOperand(1) == Scalar); 261 } 262 LLVM_FALLTHROUGH; 263 } 264 default: 265 return false; 266 } 267 } 268 269 /// \returns the AA location that is being access by the instruction. 270 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 271 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 272 return MemoryLocation::get(SI); 273 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 274 return MemoryLocation::get(LI); 275 return MemoryLocation(); 276 } 277 278 /// \returns True if the instruction is not a volatile or atomic load/store. 279 static bool isSimple(Instruction *I) { 280 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 281 return LI->isSimple(); 282 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 283 return SI->isSimple(); 284 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 285 return !MI->isVolatile(); 286 return true; 287 } 288 289 namespace llvm { 290 namespace slpvectorizer { 291 /// Bottom Up SLP Vectorizer. 292 class BoUpSLP { 293 public: 294 typedef SmallVector<Value *, 8> ValueList; 295 typedef SmallVector<Instruction *, 16> InstrList; 296 typedef SmallPtrSet<Value *, 16> ValueSet; 297 typedef SmallVector<StoreInst *, 8> StoreList; 298 typedef MapVector<Value *, SmallVector<Instruction *, 2>> 299 ExtraValueToDebugLocsMap; 300 301 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 302 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 303 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 304 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 305 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 306 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 307 DL(DL), ORE(ORE), Builder(Se->getContext()) { 308 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 309 // Use the vector register size specified by the target unless overridden 310 // by a command-line option. 311 // TODO: It would be better to limit the vectorization factor based on 312 // data type rather than just register size. For example, x86 AVX has 313 // 256-bit registers, but it does not support integer operations 314 // at that width (that requires AVX2). 315 if (MaxVectorRegSizeOption.getNumOccurrences()) 316 MaxVecRegSize = MaxVectorRegSizeOption; 317 else 318 MaxVecRegSize = TTI->getRegisterBitWidth(true); 319 320 if (MinVectorRegSizeOption.getNumOccurrences()) 321 MinVecRegSize = MinVectorRegSizeOption; 322 else 323 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 324 } 325 326 /// \brief Vectorize the tree that starts with the elements in \p VL. 327 /// Returns the vectorized root. 328 Value *vectorizeTree(); 329 /// Vectorize the tree but with the list of externally used values \p 330 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 331 /// generated extractvalue instructions. 332 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 333 334 /// \returns the cost incurred by unwanted spills and fills, caused by 335 /// holding live values over call sites. 336 int getSpillCost(); 337 338 /// \returns the vectorization cost of the subtree that starts at \p VL. 339 /// A negative number means that this is profitable. 340 int getTreeCost(); 341 342 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 343 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 344 void buildTree(ArrayRef<Value *> Roots, 345 ArrayRef<Value *> UserIgnoreLst = None); 346 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 347 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 348 /// into account (anf updating it, if required) list of externally used 349 /// values stored in \p ExternallyUsedValues. 350 void buildTree(ArrayRef<Value *> Roots, 351 ExtraValueToDebugLocsMap &ExternallyUsedValues, 352 ArrayRef<Value *> UserIgnoreLst = None); 353 354 /// Clear the internal data structures that are created by 'buildTree'. 355 void deleteTree() { 356 VectorizableTree.clear(); 357 ScalarToTreeEntry.clear(); 358 MustGather.clear(); 359 ExternalUses.clear(); 360 NumLoadsWantToKeepOrder = 0; 361 NumLoadsWantToChangeOrder = 0; 362 for (auto &Iter : BlocksSchedules) { 363 BlockScheduling *BS = Iter.second.get(); 364 BS->clear(); 365 } 366 MinBWs.clear(); 367 } 368 369 unsigned getTreeSize() const { return VectorizableTree.size(); } 370 371 /// \brief Perform LICM and CSE on the newly generated gather sequences. 372 void optimizeGatherSequence(); 373 374 /// \returns true if it is beneficial to reverse the vector order. 375 bool shouldReorder() const { 376 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 377 } 378 379 /// \return The vector element size in bits to use when vectorizing the 380 /// expression tree ending at \p V. If V is a store, the size is the width of 381 /// the stored value. Otherwise, the size is the width of the largest loaded 382 /// value reaching V. This method is used by the vectorizer to calculate 383 /// vectorization factors. 384 unsigned getVectorElementSize(Value *V); 385 386 /// Compute the minimum type sizes required to represent the entries in a 387 /// vectorizable tree. 388 void computeMinimumValueSizes(); 389 390 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 391 unsigned getMaxVecRegSize() const { 392 return MaxVecRegSize; 393 } 394 395 // \returns minimum vector register size as set by cl::opt. 396 unsigned getMinVecRegSize() const { 397 return MinVecRegSize; 398 } 399 400 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 401 /// 402 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 403 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 404 405 /// \returns True if the VectorizableTree is both tiny and not fully 406 /// vectorizable. We do not vectorize such trees. 407 bool isTreeTinyAndNotFullyVectorizable(); 408 409 OptimizationRemarkEmitter *getORE() { return ORE; } 410 411 private: 412 struct TreeEntry; 413 414 /// \returns the cost of the vectorizable entry. 415 int getEntryCost(TreeEntry *E); 416 417 /// This is the recursive part of buildTree. 418 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 419 420 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 421 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 422 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 423 424 /// Vectorize a single entry in the tree. 425 Value *vectorizeTree(TreeEntry *E); 426 427 /// Vectorize a single entry in the tree, starting in \p VL. 428 Value *vectorizeTree(ArrayRef<Value *> VL); 429 430 /// \returns the pointer to the vectorized value if \p VL is already 431 /// vectorized, or NULL. They may happen in cycles. 432 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 433 434 /// \returns the scalarization cost for this type. Scalarization in this 435 /// context means the creation of vectors from a group of scalars. 436 int getGatherCost(Type *Ty); 437 438 /// \returns the scalarization cost for this list of values. Assuming that 439 /// this subtree gets vectorized, we may need to extract the values from the 440 /// roots. This method calculates the cost of extracting the values. 441 int getGatherCost(ArrayRef<Value *> VL); 442 443 /// \brief Set the Builder insert point to one after the last instruction in 444 /// the bundle 445 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 446 447 /// \returns a vector from a collection of scalars in \p VL. 448 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 449 450 /// \returns whether the VectorizableTree is fully vectorizable and will 451 /// be beneficial even the tree height is tiny. 452 bool isFullyVectorizableTinyTree(); 453 454 /// \reorder commutative operands in alt shuffle if they result in 455 /// vectorized code. 456 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 457 SmallVectorImpl<Value *> &Left, 458 SmallVectorImpl<Value *> &Right); 459 /// \reorder commutative operands to get better probability of 460 /// generating vectorized code. 461 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 462 SmallVectorImpl<Value *> &Left, 463 SmallVectorImpl<Value *> &Right); 464 struct TreeEntry { 465 TreeEntry(std::vector<TreeEntry> &Container) 466 : Scalars(), VectorizedValue(nullptr), NeedToGather(0), 467 Container(Container) {} 468 469 /// \returns true if the scalars in VL are equal to this entry. 470 bool isSame(ArrayRef<Value *> VL) const { 471 assert(VL.size() == Scalars.size() && "Invalid size"); 472 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 473 } 474 475 /// A vector of scalars. 476 ValueList Scalars; 477 478 /// The Scalars are vectorized into this value. It is initialized to Null. 479 Value *VectorizedValue; 480 481 /// Do we need to gather this sequence ? 482 bool NeedToGather; 483 484 /// Points back to the VectorizableTree. 485 /// 486 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 487 /// to be a pointer and needs to be able to initialize the child iterator. 488 /// Thus we need a reference back to the container to translate the indices 489 /// to entries. 490 std::vector<TreeEntry> &Container; 491 492 /// The TreeEntry index containing the user of this entry. We can actually 493 /// have multiple users so the data structure is not truly a tree. 494 SmallVector<int, 1> UserTreeIndices; 495 }; 496 497 /// Create a new VectorizableTree entry. 498 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 499 int &UserTreeIdx) { 500 VectorizableTree.emplace_back(VectorizableTree); 501 int idx = VectorizableTree.size() - 1; 502 TreeEntry *Last = &VectorizableTree[idx]; 503 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 504 Last->NeedToGather = !Vectorized; 505 if (Vectorized) { 506 for (int i = 0, e = VL.size(); i != e; ++i) { 507 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 508 ScalarToTreeEntry[VL[i]] = idx; 509 } 510 } else { 511 MustGather.insert(VL.begin(), VL.end()); 512 } 513 514 if (UserTreeIdx >= 0) 515 Last->UserTreeIndices.push_back(UserTreeIdx); 516 UserTreeIdx = idx; 517 return Last; 518 } 519 520 /// -- Vectorization State -- 521 /// Holds all of the tree entries. 522 std::vector<TreeEntry> VectorizableTree; 523 524 /// Maps a specific scalar to its tree entry. 525 SmallDenseMap<Value*, int> ScalarToTreeEntry; 526 527 /// A list of scalars that we found that we need to keep as scalars. 528 ValueSet MustGather; 529 530 /// This POD struct describes one external user in the vectorized tree. 531 struct ExternalUser { 532 ExternalUser (Value *S, llvm::User *U, int L) : 533 Scalar(S), User(U), Lane(L){} 534 // Which scalar in our function. 535 Value *Scalar; 536 // Which user that uses the scalar. 537 llvm::User *User; 538 // Which lane does the scalar belong to. 539 int Lane; 540 }; 541 typedef SmallVector<ExternalUser, 16> UserList; 542 543 /// Checks if two instructions may access the same memory. 544 /// 545 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 546 /// is invariant in the calling loop. 547 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 548 Instruction *Inst2) { 549 550 // First check if the result is already in the cache. 551 AliasCacheKey key = std::make_pair(Inst1, Inst2); 552 Optional<bool> &result = AliasCache[key]; 553 if (result.hasValue()) { 554 return result.getValue(); 555 } 556 MemoryLocation Loc2 = getLocation(Inst2, AA); 557 bool aliased = true; 558 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 559 // Do the alias check. 560 aliased = AA->alias(Loc1, Loc2); 561 } 562 // Store the result in the cache. 563 result = aliased; 564 return aliased; 565 } 566 567 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 568 569 /// Cache for alias results. 570 /// TODO: consider moving this to the AliasAnalysis itself. 571 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 572 573 /// Removes an instruction from its block and eventually deletes it. 574 /// It's like Instruction::eraseFromParent() except that the actual deletion 575 /// is delayed until BoUpSLP is destructed. 576 /// This is required to ensure that there are no incorrect collisions in the 577 /// AliasCache, which can happen if a new instruction is allocated at the 578 /// same address as a previously deleted instruction. 579 void eraseInstruction(Instruction *I) { 580 I->removeFromParent(); 581 I->dropAllReferences(); 582 DeletedInstructions.emplace_back(I); 583 } 584 585 /// Temporary store for deleted instructions. Instructions will be deleted 586 /// eventually when the BoUpSLP is destructed. 587 SmallVector<unique_value, 8> DeletedInstructions; 588 589 /// A list of values that need to extracted out of the tree. 590 /// This list holds pairs of (Internal Scalar : External User). External User 591 /// can be nullptr, it means that this Internal Scalar will be used later, 592 /// after vectorization. 593 UserList ExternalUses; 594 595 /// Values used only by @llvm.assume calls. 596 SmallPtrSet<const Value *, 32> EphValues; 597 598 /// Holds all of the instructions that we gathered. 599 SetVector<Instruction *> GatherSeq; 600 /// A list of blocks that we are going to CSE. 601 SetVector<BasicBlock *> CSEBlocks; 602 603 /// Contains all scheduling relevant data for an instruction. 604 /// A ScheduleData either represents a single instruction or a member of an 605 /// instruction bundle (= a group of instructions which is combined into a 606 /// vector instruction). 607 struct ScheduleData { 608 609 // The initial value for the dependency counters. It means that the 610 // dependencies are not calculated yet. 611 enum { InvalidDeps = -1 }; 612 613 ScheduleData() 614 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 615 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 616 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 617 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 618 619 void init(int BlockSchedulingRegionID) { 620 FirstInBundle = this; 621 NextInBundle = nullptr; 622 NextLoadStore = nullptr; 623 IsScheduled = false; 624 SchedulingRegionID = BlockSchedulingRegionID; 625 UnscheduledDepsInBundle = UnscheduledDeps; 626 clearDependencies(); 627 } 628 629 /// Returns true if the dependency information has been calculated. 630 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 631 632 /// Returns true for single instructions and for bundle representatives 633 /// (= the head of a bundle). 634 bool isSchedulingEntity() const { return FirstInBundle == this; } 635 636 /// Returns true if it represents an instruction bundle and not only a 637 /// single instruction. 638 bool isPartOfBundle() const { 639 return NextInBundle != nullptr || FirstInBundle != this; 640 } 641 642 /// Returns true if it is ready for scheduling, i.e. it has no more 643 /// unscheduled depending instructions/bundles. 644 bool isReady() const { 645 assert(isSchedulingEntity() && 646 "can't consider non-scheduling entity for ready list"); 647 return UnscheduledDepsInBundle == 0 && !IsScheduled; 648 } 649 650 /// Modifies the number of unscheduled dependencies, also updating it for 651 /// the whole bundle. 652 int incrementUnscheduledDeps(int Incr) { 653 UnscheduledDeps += Incr; 654 return FirstInBundle->UnscheduledDepsInBundle += Incr; 655 } 656 657 /// Sets the number of unscheduled dependencies to the number of 658 /// dependencies. 659 void resetUnscheduledDeps() { 660 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 661 } 662 663 /// Clears all dependency information. 664 void clearDependencies() { 665 Dependencies = InvalidDeps; 666 resetUnscheduledDeps(); 667 MemoryDependencies.clear(); 668 } 669 670 void dump(raw_ostream &os) const { 671 if (!isSchedulingEntity()) { 672 os << "/ " << *Inst; 673 } else if (NextInBundle) { 674 os << '[' << *Inst; 675 ScheduleData *SD = NextInBundle; 676 while (SD) { 677 os << ';' << *SD->Inst; 678 SD = SD->NextInBundle; 679 } 680 os << ']'; 681 } else { 682 os << *Inst; 683 } 684 } 685 686 Instruction *Inst; 687 688 /// Points to the head in an instruction bundle (and always to this for 689 /// single instructions). 690 ScheduleData *FirstInBundle; 691 692 /// Single linked list of all instructions in a bundle. Null if it is a 693 /// single instruction. 694 ScheduleData *NextInBundle; 695 696 /// Single linked list of all memory instructions (e.g. load, store, call) 697 /// in the block - until the end of the scheduling region. 698 ScheduleData *NextLoadStore; 699 700 /// The dependent memory instructions. 701 /// This list is derived on demand in calculateDependencies(). 702 SmallVector<ScheduleData *, 4> MemoryDependencies; 703 704 /// This ScheduleData is in the current scheduling region if this matches 705 /// the current SchedulingRegionID of BlockScheduling. 706 int SchedulingRegionID; 707 708 /// Used for getting a "good" final ordering of instructions. 709 int SchedulingPriority; 710 711 /// The number of dependencies. Constitutes of the number of users of the 712 /// instruction plus the number of dependent memory instructions (if any). 713 /// This value is calculated on demand. 714 /// If InvalidDeps, the number of dependencies is not calculated yet. 715 /// 716 int Dependencies; 717 718 /// The number of dependencies minus the number of dependencies of scheduled 719 /// instructions. As soon as this is zero, the instruction/bundle gets ready 720 /// for scheduling. 721 /// Note that this is negative as long as Dependencies is not calculated. 722 int UnscheduledDeps; 723 724 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 725 /// single instructions. 726 int UnscheduledDepsInBundle; 727 728 /// True if this instruction is scheduled (or considered as scheduled in the 729 /// dry-run). 730 bool IsScheduled; 731 }; 732 733 #ifndef NDEBUG 734 friend inline raw_ostream &operator<<(raw_ostream &os, 735 const BoUpSLP::ScheduleData &SD) { 736 SD.dump(os); 737 return os; 738 } 739 #endif 740 friend struct GraphTraits<BoUpSLP *>; 741 friend struct DOTGraphTraits<BoUpSLP *>; 742 743 /// Contains all scheduling data for a basic block. 744 /// 745 struct BlockScheduling { 746 747 BlockScheduling(BasicBlock *BB) 748 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 749 ScheduleStart(nullptr), ScheduleEnd(nullptr), 750 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 751 ScheduleRegionSize(0), 752 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 753 // Make sure that the initial SchedulingRegionID is greater than the 754 // initial SchedulingRegionID in ScheduleData (which is 0). 755 SchedulingRegionID(1) {} 756 757 void clear() { 758 ReadyInsts.clear(); 759 ScheduleStart = nullptr; 760 ScheduleEnd = nullptr; 761 FirstLoadStoreInRegion = nullptr; 762 LastLoadStoreInRegion = nullptr; 763 764 // Reduce the maximum schedule region size by the size of the 765 // previous scheduling run. 766 ScheduleRegionSizeLimit -= ScheduleRegionSize; 767 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 768 ScheduleRegionSizeLimit = MinScheduleRegionSize; 769 ScheduleRegionSize = 0; 770 771 // Make a new scheduling region, i.e. all existing ScheduleData is not 772 // in the new region yet. 773 ++SchedulingRegionID; 774 } 775 776 ScheduleData *getScheduleData(Value *V) { 777 ScheduleData *SD = ScheduleDataMap[V]; 778 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 779 return SD; 780 return nullptr; 781 } 782 783 bool isInSchedulingRegion(ScheduleData *SD) { 784 return SD->SchedulingRegionID == SchedulingRegionID; 785 } 786 787 /// Marks an instruction as scheduled and puts all dependent ready 788 /// instructions into the ready-list. 789 template <typename ReadyListType> 790 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 791 SD->IsScheduled = true; 792 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 793 794 ScheduleData *BundleMember = SD; 795 while (BundleMember) { 796 // Handle the def-use chain dependencies. 797 for (Use &U : BundleMember->Inst->operands()) { 798 ScheduleData *OpDef = getScheduleData(U.get()); 799 if (OpDef && OpDef->hasValidDependencies() && 800 OpDef->incrementUnscheduledDeps(-1) == 0) { 801 // There are no more unscheduled dependencies after decrementing, 802 // so we can put the dependent instruction into the ready list. 803 ScheduleData *DepBundle = OpDef->FirstInBundle; 804 assert(!DepBundle->IsScheduled && 805 "already scheduled bundle gets ready"); 806 ReadyList.insert(DepBundle); 807 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 808 } 809 } 810 // Handle the memory dependencies. 811 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 812 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 813 // There are no more unscheduled dependencies after decrementing, 814 // so we can put the dependent instruction into the ready list. 815 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 816 assert(!DepBundle->IsScheduled && 817 "already scheduled bundle gets ready"); 818 ReadyList.insert(DepBundle); 819 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 820 } 821 } 822 BundleMember = BundleMember->NextInBundle; 823 } 824 } 825 826 /// Put all instructions into the ReadyList which are ready for scheduling. 827 template <typename ReadyListType> 828 void initialFillReadyList(ReadyListType &ReadyList) { 829 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 830 ScheduleData *SD = getScheduleData(I); 831 if (SD->isSchedulingEntity() && SD->isReady()) { 832 ReadyList.insert(SD); 833 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 834 } 835 } 836 } 837 838 /// Checks if a bundle of instructions can be scheduled, i.e. has no 839 /// cyclic dependencies. This is only a dry-run, no instructions are 840 /// actually moved at this stage. 841 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 842 843 /// Un-bundles a group of instructions. 844 void cancelScheduling(ArrayRef<Value *> VL); 845 846 /// Extends the scheduling region so that V is inside the region. 847 /// \returns true if the region size is within the limit. 848 bool extendSchedulingRegion(Value *V); 849 850 /// Initialize the ScheduleData structures for new instructions in the 851 /// scheduling region. 852 void initScheduleData(Instruction *FromI, Instruction *ToI, 853 ScheduleData *PrevLoadStore, 854 ScheduleData *NextLoadStore); 855 856 /// Updates the dependency information of a bundle and of all instructions/ 857 /// bundles which depend on the original bundle. 858 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 859 BoUpSLP *SLP); 860 861 /// Sets all instruction in the scheduling region to un-scheduled. 862 void resetSchedule(); 863 864 BasicBlock *BB; 865 866 /// Simple memory allocation for ScheduleData. 867 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 868 869 /// The size of a ScheduleData array in ScheduleDataChunks. 870 int ChunkSize; 871 872 /// The allocator position in the current chunk, which is the last entry 873 /// of ScheduleDataChunks. 874 int ChunkPos; 875 876 /// Attaches ScheduleData to Instruction. 877 /// Note that the mapping survives during all vectorization iterations, i.e. 878 /// ScheduleData structures are recycled. 879 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 880 881 struct ReadyList : SmallVector<ScheduleData *, 8> { 882 void insert(ScheduleData *SD) { push_back(SD); } 883 }; 884 885 /// The ready-list for scheduling (only used for the dry-run). 886 ReadyList ReadyInsts; 887 888 /// The first instruction of the scheduling region. 889 Instruction *ScheduleStart; 890 891 /// The first instruction _after_ the scheduling region. 892 Instruction *ScheduleEnd; 893 894 /// The first memory accessing instruction in the scheduling region 895 /// (can be null). 896 ScheduleData *FirstLoadStoreInRegion; 897 898 /// The last memory accessing instruction in the scheduling region 899 /// (can be null). 900 ScheduleData *LastLoadStoreInRegion; 901 902 /// The current size of the scheduling region. 903 int ScheduleRegionSize; 904 905 /// The maximum size allowed for the scheduling region. 906 int ScheduleRegionSizeLimit; 907 908 /// The ID of the scheduling region. For a new vectorization iteration this 909 /// is incremented which "removes" all ScheduleData from the region. 910 int SchedulingRegionID; 911 }; 912 913 /// Attaches the BlockScheduling structures to basic blocks. 914 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 915 916 /// Performs the "real" scheduling. Done before vectorization is actually 917 /// performed in a basic block. 918 void scheduleBlock(BlockScheduling *BS); 919 920 /// List of users to ignore during scheduling and that don't need extracting. 921 ArrayRef<Value *> UserIgnoreList; 922 923 // Number of load bundles that contain consecutive loads. 924 int NumLoadsWantToKeepOrder; 925 926 // Number of load bundles that contain consecutive loads in reversed order. 927 int NumLoadsWantToChangeOrder; 928 929 // Analysis and block reference. 930 Function *F; 931 ScalarEvolution *SE; 932 TargetTransformInfo *TTI; 933 TargetLibraryInfo *TLI; 934 AliasAnalysis *AA; 935 LoopInfo *LI; 936 DominatorTree *DT; 937 AssumptionCache *AC; 938 DemandedBits *DB; 939 const DataLayout *DL; 940 OptimizationRemarkEmitter *ORE; 941 942 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 943 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 944 /// Instruction builder to construct the vectorized tree. 945 IRBuilder<> Builder; 946 947 /// A map of scalar integer values to the smallest bit width with which they 948 /// can legally be represented. The values map to (width, signed) pairs, 949 /// where "width" indicates the minimum bit width and "signed" is True if the 950 /// value must be signed-extended, rather than zero-extended, back to its 951 /// original width. 952 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 953 }; 954 } // end namespace slpvectorizer 955 956 template <> struct GraphTraits<BoUpSLP *> { 957 typedef BoUpSLP::TreeEntry TreeEntry; 958 959 /// NodeRef has to be a pointer per the GraphWriter. 960 typedef TreeEntry *NodeRef; 961 962 /// \brief Add the VectorizableTree to the index iterator to be able to return 963 /// TreeEntry pointers. 964 struct ChildIteratorType 965 : public iterator_adaptor_base<ChildIteratorType, 966 SmallVector<int, 1>::iterator> { 967 968 std::vector<TreeEntry> &VectorizableTree; 969 970 ChildIteratorType(SmallVector<int, 1>::iterator W, 971 std::vector<TreeEntry> &VT) 972 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 973 974 NodeRef operator*() { return &VectorizableTree[*I]; } 975 }; 976 977 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 978 979 static ChildIteratorType child_begin(NodeRef N) { 980 return {N->UserTreeIndices.begin(), N->Container}; 981 } 982 static ChildIteratorType child_end(NodeRef N) { 983 return {N->UserTreeIndices.end(), N->Container}; 984 } 985 986 /// For the node iterator we just need to turn the TreeEntry iterator into a 987 /// TreeEntry* iterator so that it dereferences to NodeRef. 988 typedef pointer_iterator<std::vector<TreeEntry>::iterator> nodes_iterator; 989 990 static nodes_iterator nodes_begin(BoUpSLP *R) { 991 return nodes_iterator(R->VectorizableTree.begin()); 992 } 993 static nodes_iterator nodes_end(BoUpSLP *R) { 994 return nodes_iterator(R->VectorizableTree.end()); 995 } 996 997 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 998 }; 999 1000 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1001 typedef BoUpSLP::TreeEntry TreeEntry; 1002 1003 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1004 1005 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1006 std::string Str; 1007 raw_string_ostream OS(Str); 1008 if (isSplat(Entry->Scalars)) { 1009 OS << "<splat> " << *Entry->Scalars[0]; 1010 return Str; 1011 } 1012 for (auto V : Entry->Scalars) { 1013 OS << *V; 1014 if (std::any_of( 1015 R->ExternalUses.begin(), R->ExternalUses.end(), 1016 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1017 OS << " <extract>"; 1018 OS << "\n"; 1019 } 1020 return Str; 1021 } 1022 1023 static std::string getNodeAttributes(const TreeEntry *Entry, 1024 const BoUpSLP *) { 1025 if (Entry->NeedToGather) 1026 return "color=red"; 1027 return ""; 1028 } 1029 }; 1030 1031 } // end namespace llvm 1032 1033 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1034 ArrayRef<Value *> UserIgnoreLst) { 1035 ExtraValueToDebugLocsMap ExternallyUsedValues; 1036 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1037 } 1038 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1039 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1040 ArrayRef<Value *> UserIgnoreLst) { 1041 deleteTree(); 1042 UserIgnoreList = UserIgnoreLst; 1043 if (!allSameType(Roots)) 1044 return; 1045 buildTree_rec(Roots, 0, -1); 1046 1047 // Collect the values that we need to extract from the tree. 1048 for (TreeEntry &EIdx : VectorizableTree) { 1049 TreeEntry *Entry = &EIdx; 1050 1051 // For each lane: 1052 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1053 Value *Scalar = Entry->Scalars[Lane]; 1054 1055 // No need to handle users of gathered values. 1056 if (Entry->NeedToGather) 1057 continue; 1058 1059 // Check if the scalar is externally used as an extra arg. 1060 auto ExtI = ExternallyUsedValues.find(Scalar); 1061 if (ExtI != ExternallyUsedValues.end()) { 1062 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1063 Lane << " from " << *Scalar << ".\n"); 1064 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1065 continue; 1066 } 1067 for (User *U : Scalar->users()) { 1068 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1069 1070 Instruction *UserInst = dyn_cast<Instruction>(U); 1071 if (!UserInst) 1072 continue; 1073 1074 // Skip in-tree scalars that become vectors 1075 if (ScalarToTreeEntry.count(U)) { 1076 int Idx = ScalarToTreeEntry[U]; 1077 TreeEntry *UseEntry = &VectorizableTree[Idx]; 1078 Value *UseScalar = UseEntry->Scalars[0]; 1079 // Some in-tree scalars will remain as scalar in vectorized 1080 // instructions. If that is the case, the one in Lane 0 will 1081 // be used. 1082 if (UseScalar != U || 1083 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1084 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1085 << ".\n"); 1086 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 1087 continue; 1088 } 1089 } 1090 1091 // Ignore users in the user ignore list. 1092 if (is_contained(UserIgnoreList, UserInst)) 1093 continue; 1094 1095 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1096 Lane << " from " << *Scalar << ".\n"); 1097 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1098 } 1099 } 1100 } 1101 } 1102 1103 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1104 int UserTreeIdx) { 1105 bool isAltShuffle = false; 1106 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1107 1108 if (Depth == RecursionMaxDepth) { 1109 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1110 newTreeEntry(VL, false, UserTreeIdx); 1111 return; 1112 } 1113 1114 // Don't handle vectors. 1115 if (VL[0]->getType()->isVectorTy()) { 1116 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1117 newTreeEntry(VL, false, UserTreeIdx); 1118 return; 1119 } 1120 1121 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1122 if (SI->getValueOperand()->getType()->isVectorTy()) { 1123 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1124 newTreeEntry(VL, false, UserTreeIdx); 1125 return; 1126 } 1127 unsigned Opcode = getSameOpcode(VL); 1128 1129 // Check that this shuffle vector refers to the alternate 1130 // sequence of opcodes. 1131 if (Opcode == Instruction::ShuffleVector) { 1132 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1133 unsigned Op = I0->getOpcode(); 1134 if (Op != Instruction::ShuffleVector) 1135 isAltShuffle = true; 1136 } 1137 1138 // If all of the operands are identical or constant we have a simple solution. 1139 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1140 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1141 newTreeEntry(VL, false, UserTreeIdx); 1142 return; 1143 } 1144 1145 // We now know that this is a vector of instructions of the same type from 1146 // the same block. 1147 1148 // Don't vectorize ephemeral values. 1149 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1150 if (EphValues.count(VL[i])) { 1151 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1152 ") is ephemeral.\n"); 1153 newTreeEntry(VL, false, UserTreeIdx); 1154 return; 1155 } 1156 } 1157 1158 // Check if this is a duplicate of another entry. 1159 if (ScalarToTreeEntry.count(VL[0])) { 1160 int Idx = ScalarToTreeEntry[VL[0]]; 1161 TreeEntry *E = &VectorizableTree[Idx]; 1162 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1163 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1164 if (E->Scalars[i] != VL[i]) { 1165 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1166 newTreeEntry(VL, false, UserTreeIdx); 1167 return; 1168 } 1169 } 1170 // Record the reuse of the tree node. FIXME, currently this is only used to 1171 // properly draw the graph rather than for the actual vectorization. 1172 E->UserTreeIndices.push_back(UserTreeIdx); 1173 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1174 return; 1175 } 1176 1177 // Check that none of the instructions in the bundle are already in the tree. 1178 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1179 if (ScalarToTreeEntry.count(VL[i])) { 1180 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1181 ") is already in tree.\n"); 1182 newTreeEntry(VL, false, UserTreeIdx); 1183 return; 1184 } 1185 } 1186 1187 // If any of the scalars is marked as a value that needs to stay scalar then 1188 // we need to gather the scalars. 1189 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1190 if (MustGather.count(VL[i])) { 1191 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1192 newTreeEntry(VL, false, UserTreeIdx); 1193 return; 1194 } 1195 } 1196 1197 // Check that all of the users of the scalars that we want to vectorize are 1198 // schedulable. 1199 Instruction *VL0 = cast<Instruction>(VL[0]); 1200 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1201 1202 if (!DT->isReachableFromEntry(BB)) { 1203 // Don't go into unreachable blocks. They may contain instructions with 1204 // dependency cycles which confuse the final scheduling. 1205 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1206 newTreeEntry(VL, false, UserTreeIdx); 1207 return; 1208 } 1209 1210 // Check that every instructions appears once in this bundle. 1211 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1212 for (unsigned j = i+1; j < e; ++j) 1213 if (VL[i] == VL[j]) { 1214 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1215 newTreeEntry(VL, false, UserTreeIdx); 1216 return; 1217 } 1218 1219 auto &BSRef = BlocksSchedules[BB]; 1220 if (!BSRef) { 1221 BSRef = llvm::make_unique<BlockScheduling>(BB); 1222 } 1223 BlockScheduling &BS = *BSRef.get(); 1224 1225 if (!BS.tryScheduleBundle(VL, this)) { 1226 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1227 assert((!BS.getScheduleData(VL[0]) || 1228 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1229 "tryScheduleBundle should cancelScheduling on failure"); 1230 newTreeEntry(VL, false, UserTreeIdx); 1231 return; 1232 } 1233 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1234 1235 switch (Opcode) { 1236 case Instruction::PHI: { 1237 PHINode *PH = dyn_cast<PHINode>(VL0); 1238 1239 // Check for terminator values (e.g. invoke). 1240 for (unsigned j = 0; j < VL.size(); ++j) 1241 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1242 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1243 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1244 if (Term) { 1245 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1246 BS.cancelScheduling(VL); 1247 newTreeEntry(VL, false, UserTreeIdx); 1248 return; 1249 } 1250 } 1251 1252 newTreeEntry(VL, true, UserTreeIdx); 1253 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1254 1255 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1256 ValueList Operands; 1257 // Prepare the operand vector. 1258 for (Value *j : VL) 1259 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1260 PH->getIncomingBlock(i))); 1261 1262 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1263 } 1264 return; 1265 } 1266 case Instruction::ExtractValue: 1267 case Instruction::ExtractElement: { 1268 bool Reuse = canReuseExtract(VL, Opcode); 1269 if (Reuse) { 1270 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1271 } else { 1272 BS.cancelScheduling(VL); 1273 } 1274 newTreeEntry(VL, Reuse, UserTreeIdx); 1275 return; 1276 } 1277 case Instruction::Load: { 1278 // Check that a vectorized load would load the same memory as a scalar 1279 // load. 1280 // For example we don't want vectorize loads that are smaller than 8 bit. 1281 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1282 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1283 // such a struct we read/write packed bits disagreeing with the 1284 // unvectorized version. 1285 Type *ScalarTy = VL[0]->getType(); 1286 1287 if (DL->getTypeSizeInBits(ScalarTy) != 1288 DL->getTypeAllocSizeInBits(ScalarTy)) { 1289 BS.cancelScheduling(VL); 1290 newTreeEntry(VL, false, UserTreeIdx); 1291 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1292 return; 1293 } 1294 1295 // Make sure all loads in the bundle are simple - we can't vectorize 1296 // atomic or volatile loads. 1297 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1298 LoadInst *L = cast<LoadInst>(VL[i]); 1299 if (!L->isSimple()) { 1300 BS.cancelScheduling(VL); 1301 newTreeEntry(VL, false, UserTreeIdx); 1302 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1303 return; 1304 } 1305 } 1306 1307 // Check if the loads are consecutive, reversed, or neither. 1308 // TODO: What we really want is to sort the loads, but for now, check 1309 // the two likely directions. 1310 bool Consecutive = true; 1311 bool ReverseConsecutive = true; 1312 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1313 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1314 Consecutive = false; 1315 break; 1316 } else { 1317 ReverseConsecutive = false; 1318 } 1319 } 1320 1321 if (Consecutive) { 1322 ++NumLoadsWantToKeepOrder; 1323 newTreeEntry(VL, true, UserTreeIdx); 1324 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1325 return; 1326 } 1327 1328 // If none of the load pairs were consecutive when checked in order, 1329 // check the reverse order. 1330 if (ReverseConsecutive) 1331 for (unsigned i = VL.size() - 1; i > 0; --i) 1332 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1333 ReverseConsecutive = false; 1334 break; 1335 } 1336 1337 BS.cancelScheduling(VL); 1338 newTreeEntry(VL, false, UserTreeIdx); 1339 1340 if (ReverseConsecutive) { 1341 ++NumLoadsWantToChangeOrder; 1342 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1343 } else { 1344 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1345 } 1346 return; 1347 } 1348 case Instruction::ZExt: 1349 case Instruction::SExt: 1350 case Instruction::FPToUI: 1351 case Instruction::FPToSI: 1352 case Instruction::FPExt: 1353 case Instruction::PtrToInt: 1354 case Instruction::IntToPtr: 1355 case Instruction::SIToFP: 1356 case Instruction::UIToFP: 1357 case Instruction::Trunc: 1358 case Instruction::FPTrunc: 1359 case Instruction::BitCast: { 1360 Type *SrcTy = VL0->getOperand(0)->getType(); 1361 for (unsigned i = 0; i < VL.size(); ++i) { 1362 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1363 if (Ty != SrcTy || !isValidElementType(Ty)) { 1364 BS.cancelScheduling(VL); 1365 newTreeEntry(VL, false, UserTreeIdx); 1366 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1367 return; 1368 } 1369 } 1370 newTreeEntry(VL, true, UserTreeIdx); 1371 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1372 1373 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1374 ValueList Operands; 1375 // Prepare the operand vector. 1376 for (Value *j : VL) 1377 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1378 1379 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1380 } 1381 return; 1382 } 1383 case Instruction::ICmp: 1384 case Instruction::FCmp: { 1385 // Check that all of the compares have the same predicate. 1386 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1387 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1388 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1389 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1390 if (Cmp->getPredicate() != P0 || 1391 Cmp->getOperand(0)->getType() != ComparedTy) { 1392 BS.cancelScheduling(VL); 1393 newTreeEntry(VL, false, UserTreeIdx); 1394 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1395 return; 1396 } 1397 } 1398 1399 newTreeEntry(VL, true, UserTreeIdx); 1400 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1401 1402 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1403 ValueList Operands; 1404 // Prepare the operand vector. 1405 for (Value *j : VL) 1406 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1407 1408 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1409 } 1410 return; 1411 } 1412 case Instruction::Select: 1413 case Instruction::Add: 1414 case Instruction::FAdd: 1415 case Instruction::Sub: 1416 case Instruction::FSub: 1417 case Instruction::Mul: 1418 case Instruction::FMul: 1419 case Instruction::UDiv: 1420 case Instruction::SDiv: 1421 case Instruction::FDiv: 1422 case Instruction::URem: 1423 case Instruction::SRem: 1424 case Instruction::FRem: 1425 case Instruction::Shl: 1426 case Instruction::LShr: 1427 case Instruction::AShr: 1428 case Instruction::And: 1429 case Instruction::Or: 1430 case Instruction::Xor: { 1431 newTreeEntry(VL, true, UserTreeIdx); 1432 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1433 1434 // Sort operands of the instructions so that each side is more likely to 1435 // have the same opcode. 1436 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1437 ValueList Left, Right; 1438 reorderInputsAccordingToOpcode(VL, Left, Right); 1439 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1440 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1441 return; 1442 } 1443 1444 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1445 ValueList Operands; 1446 // Prepare the operand vector. 1447 for (Value *j : VL) 1448 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1449 1450 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1451 } 1452 return; 1453 } 1454 case Instruction::GetElementPtr: { 1455 // We don't combine GEPs with complicated (nested) indexing. 1456 for (unsigned j = 0; j < VL.size(); ++j) { 1457 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1458 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1459 BS.cancelScheduling(VL); 1460 newTreeEntry(VL, false, UserTreeIdx); 1461 return; 1462 } 1463 } 1464 1465 // We can't combine several GEPs into one vector if they operate on 1466 // different types. 1467 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1468 for (unsigned j = 0; j < VL.size(); ++j) { 1469 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1470 if (Ty0 != CurTy) { 1471 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1472 BS.cancelScheduling(VL); 1473 newTreeEntry(VL, false, UserTreeIdx); 1474 return; 1475 } 1476 } 1477 1478 // We don't combine GEPs with non-constant indexes. 1479 for (unsigned j = 0; j < VL.size(); ++j) { 1480 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1481 if (!isa<ConstantInt>(Op)) { 1482 DEBUG( 1483 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1484 BS.cancelScheduling(VL); 1485 newTreeEntry(VL, false, UserTreeIdx); 1486 return; 1487 } 1488 } 1489 1490 newTreeEntry(VL, true, UserTreeIdx); 1491 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1492 for (unsigned i = 0, e = 2; i < e; ++i) { 1493 ValueList Operands; 1494 // Prepare the operand vector. 1495 for (Value *j : VL) 1496 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1497 1498 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1499 } 1500 return; 1501 } 1502 case Instruction::Store: { 1503 // Check if the stores are consecutive or of we need to swizzle them. 1504 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1505 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1506 BS.cancelScheduling(VL); 1507 newTreeEntry(VL, false, UserTreeIdx); 1508 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1509 return; 1510 } 1511 1512 newTreeEntry(VL, true, UserTreeIdx); 1513 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1514 1515 ValueList Operands; 1516 for (Value *j : VL) 1517 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1518 1519 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1520 return; 1521 } 1522 case Instruction::Call: { 1523 // Check if the calls are all to the same vectorizable intrinsic. 1524 CallInst *CI = cast<CallInst>(VL[0]); 1525 // Check if this is an Intrinsic call or something that can be 1526 // represented by an intrinsic call 1527 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1528 if (!isTriviallyVectorizable(ID)) { 1529 BS.cancelScheduling(VL); 1530 newTreeEntry(VL, false, UserTreeIdx); 1531 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1532 return; 1533 } 1534 Function *Int = CI->getCalledFunction(); 1535 Value *A1I = nullptr; 1536 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1537 A1I = CI->getArgOperand(1); 1538 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1539 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1540 if (!CI2 || CI2->getCalledFunction() != Int || 1541 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1542 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1543 BS.cancelScheduling(VL); 1544 newTreeEntry(VL, false, UserTreeIdx); 1545 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1546 << "\n"); 1547 return; 1548 } 1549 // ctlz,cttz and powi are special intrinsics whose second argument 1550 // should be same in order for them to be vectorized. 1551 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1552 Value *A1J = CI2->getArgOperand(1); 1553 if (A1I != A1J) { 1554 BS.cancelScheduling(VL); 1555 newTreeEntry(VL, false, UserTreeIdx); 1556 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1557 << " argument "<< A1I<<"!=" << A1J 1558 << "\n"); 1559 return; 1560 } 1561 } 1562 // Verify that the bundle operands are identical between the two calls. 1563 if (CI->hasOperandBundles() && 1564 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1565 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1566 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1567 BS.cancelScheduling(VL); 1568 newTreeEntry(VL, false, UserTreeIdx); 1569 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1570 << *VL[i] << '\n'); 1571 return; 1572 } 1573 } 1574 1575 newTreeEntry(VL, true, UserTreeIdx); 1576 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1577 ValueList Operands; 1578 // Prepare the operand vector. 1579 for (Value *j : VL) { 1580 CallInst *CI2 = dyn_cast<CallInst>(j); 1581 Operands.push_back(CI2->getArgOperand(i)); 1582 } 1583 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1584 } 1585 return; 1586 } 1587 case Instruction::ShuffleVector: { 1588 // If this is not an alternate sequence of opcode like add-sub 1589 // then do not vectorize this instruction. 1590 if (!isAltShuffle) { 1591 BS.cancelScheduling(VL); 1592 newTreeEntry(VL, false, UserTreeIdx); 1593 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1594 return; 1595 } 1596 newTreeEntry(VL, true, UserTreeIdx); 1597 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1598 1599 // Reorder operands if reordering would enable vectorization. 1600 if (isa<BinaryOperator>(VL0)) { 1601 ValueList Left, Right; 1602 reorderAltShuffleOperands(VL, Left, Right); 1603 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1604 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1605 return; 1606 } 1607 1608 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1609 ValueList Operands; 1610 // Prepare the operand vector. 1611 for (Value *j : VL) 1612 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1613 1614 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1615 } 1616 return; 1617 } 1618 default: 1619 BS.cancelScheduling(VL); 1620 newTreeEntry(VL, false, UserTreeIdx); 1621 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1622 return; 1623 } 1624 } 1625 1626 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1627 unsigned N; 1628 Type *EltTy; 1629 auto *ST = dyn_cast<StructType>(T); 1630 if (ST) { 1631 N = ST->getNumElements(); 1632 EltTy = *ST->element_begin(); 1633 } else { 1634 N = cast<ArrayType>(T)->getNumElements(); 1635 EltTy = cast<ArrayType>(T)->getElementType(); 1636 } 1637 if (!isValidElementType(EltTy)) 1638 return 0; 1639 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1640 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1641 return 0; 1642 if (ST) { 1643 // Check that struct is homogeneous. 1644 for (const auto *Ty : ST->elements()) 1645 if (Ty != EltTy) 1646 return 0; 1647 } 1648 return N; 1649 } 1650 1651 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1652 assert(Opcode == Instruction::ExtractElement || 1653 Opcode == Instruction::ExtractValue); 1654 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1655 // Check if all of the extracts come from the same vector and from the 1656 // correct offset. 1657 Value *VL0 = VL[0]; 1658 Instruction *E0 = cast<Instruction>(VL0); 1659 Value *Vec = E0->getOperand(0); 1660 1661 // We have to extract from a vector/aggregate with the same number of elements. 1662 unsigned NElts; 1663 if (Opcode == Instruction::ExtractValue) { 1664 const DataLayout &DL = E0->getModule()->getDataLayout(); 1665 NElts = canMapToVector(Vec->getType(), DL); 1666 if (!NElts) 1667 return false; 1668 // Check if load can be rewritten as load of vector. 1669 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1670 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1671 return false; 1672 } else { 1673 NElts = Vec->getType()->getVectorNumElements(); 1674 } 1675 1676 if (NElts != VL.size()) 1677 return false; 1678 1679 // Check that all of the indices extract from the correct offset. 1680 if (!matchExtractIndex(E0, 0, Opcode)) 1681 return false; 1682 1683 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1684 Instruction *E = cast<Instruction>(VL[i]); 1685 if (!matchExtractIndex(E, i, Opcode)) 1686 return false; 1687 if (E->getOperand(0) != Vec) 1688 return false; 1689 } 1690 1691 return true; 1692 } 1693 1694 int BoUpSLP::getEntryCost(TreeEntry *E) { 1695 ArrayRef<Value*> VL = E->Scalars; 1696 1697 Type *ScalarTy = VL[0]->getType(); 1698 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1699 ScalarTy = SI->getValueOperand()->getType(); 1700 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1701 ScalarTy = CI->getOperand(0)->getType(); 1702 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1703 1704 // If we have computed a smaller type for the expression, update VecTy so 1705 // that the costs will be accurate. 1706 if (MinBWs.count(VL[0])) 1707 VecTy = VectorType::get( 1708 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1709 1710 if (E->NeedToGather) { 1711 if (allConstant(VL)) 1712 return 0; 1713 if (isSplat(VL)) { 1714 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1715 } 1716 return getGatherCost(E->Scalars); 1717 } 1718 unsigned Opcode = getSameOpcode(VL); 1719 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1720 Instruction *VL0 = cast<Instruction>(VL[0]); 1721 switch (Opcode) { 1722 case Instruction::PHI: { 1723 return 0; 1724 } 1725 case Instruction::ExtractValue: 1726 case Instruction::ExtractElement: { 1727 if (canReuseExtract(VL, Opcode)) { 1728 int DeadCost = 0; 1729 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1730 Instruction *E = cast<Instruction>(VL[i]); 1731 // If all users are going to be vectorized, instruction can be 1732 // considered as dead. 1733 // The same, if have only one user, it will be vectorized for sure. 1734 if (E->hasOneUse() || 1735 std::all_of(E->user_begin(), E->user_end(), [this](User *U) { 1736 return ScalarToTreeEntry.count(U) > 0; 1737 })) 1738 // Take credit for instruction that will become dead. 1739 DeadCost += 1740 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1741 } 1742 return -DeadCost; 1743 } 1744 return getGatherCost(VecTy); 1745 } 1746 case Instruction::ZExt: 1747 case Instruction::SExt: 1748 case Instruction::FPToUI: 1749 case Instruction::FPToSI: 1750 case Instruction::FPExt: 1751 case Instruction::PtrToInt: 1752 case Instruction::IntToPtr: 1753 case Instruction::SIToFP: 1754 case Instruction::UIToFP: 1755 case Instruction::Trunc: 1756 case Instruction::FPTrunc: 1757 case Instruction::BitCast: { 1758 Type *SrcTy = VL0->getOperand(0)->getType(); 1759 1760 // Calculate the cost of this instruction. 1761 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1762 VL0->getType(), SrcTy, VL0); 1763 1764 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1765 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 1766 return VecCost - ScalarCost; 1767 } 1768 case Instruction::FCmp: 1769 case Instruction::ICmp: 1770 case Instruction::Select: { 1771 // Calculate the cost of this instruction. 1772 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1773 int ScalarCost = VecTy->getNumElements() * 1774 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 1775 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0); 1776 return VecCost - ScalarCost; 1777 } 1778 case Instruction::Add: 1779 case Instruction::FAdd: 1780 case Instruction::Sub: 1781 case Instruction::FSub: 1782 case Instruction::Mul: 1783 case Instruction::FMul: 1784 case Instruction::UDiv: 1785 case Instruction::SDiv: 1786 case Instruction::FDiv: 1787 case Instruction::URem: 1788 case Instruction::SRem: 1789 case Instruction::FRem: 1790 case Instruction::Shl: 1791 case Instruction::LShr: 1792 case Instruction::AShr: 1793 case Instruction::And: 1794 case Instruction::Or: 1795 case Instruction::Xor: { 1796 // Certain instructions can be cheaper to vectorize if they have a 1797 // constant second vector operand. 1798 TargetTransformInfo::OperandValueKind Op1VK = 1799 TargetTransformInfo::OK_AnyValue; 1800 TargetTransformInfo::OperandValueKind Op2VK = 1801 TargetTransformInfo::OK_UniformConstantValue; 1802 TargetTransformInfo::OperandValueProperties Op1VP = 1803 TargetTransformInfo::OP_None; 1804 TargetTransformInfo::OperandValueProperties Op2VP = 1805 TargetTransformInfo::OP_None; 1806 1807 // If all operands are exactly the same ConstantInt then set the 1808 // operand kind to OK_UniformConstantValue. 1809 // If instead not all operands are constants, then set the operand kind 1810 // to OK_AnyValue. If all operands are constants but not the same, 1811 // then set the operand kind to OK_NonUniformConstantValue. 1812 ConstantInt *CInt = nullptr; 1813 for (unsigned i = 0; i < VL.size(); ++i) { 1814 const Instruction *I = cast<Instruction>(VL[i]); 1815 if (!isa<ConstantInt>(I->getOperand(1))) { 1816 Op2VK = TargetTransformInfo::OK_AnyValue; 1817 break; 1818 } 1819 if (i == 0) { 1820 CInt = cast<ConstantInt>(I->getOperand(1)); 1821 continue; 1822 } 1823 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1824 CInt != cast<ConstantInt>(I->getOperand(1))) 1825 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1826 } 1827 // FIXME: Currently cost of model modification for division by power of 1828 // 2 is handled for X86 and AArch64. Add support for other targets. 1829 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1830 CInt->getValue().isPowerOf2()) 1831 Op2VP = TargetTransformInfo::OP_PowerOf2; 1832 1833 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 1834 int ScalarCost = 1835 VecTy->getNumElements() * 1836 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 1837 Op2VP, Operands); 1838 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1839 Op1VP, Op2VP, Operands); 1840 return VecCost - ScalarCost; 1841 } 1842 case Instruction::GetElementPtr: { 1843 TargetTransformInfo::OperandValueKind Op1VK = 1844 TargetTransformInfo::OK_AnyValue; 1845 TargetTransformInfo::OperandValueKind Op2VK = 1846 TargetTransformInfo::OK_UniformConstantValue; 1847 1848 int ScalarCost = 1849 VecTy->getNumElements() * 1850 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1851 int VecCost = 1852 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1853 1854 return VecCost - ScalarCost; 1855 } 1856 case Instruction::Load: { 1857 // Cost of wide load - cost of scalar loads. 1858 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1859 int ScalarLdCost = VecTy->getNumElements() * 1860 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 1861 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1862 VecTy, alignment, 0, VL0); 1863 return VecLdCost - ScalarLdCost; 1864 } 1865 case Instruction::Store: { 1866 // We know that we can merge the stores. Calculate the cost. 1867 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1868 int ScalarStCost = VecTy->getNumElements() * 1869 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 1870 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1871 VecTy, alignment, 0, VL0); 1872 return VecStCost - ScalarStCost; 1873 } 1874 case Instruction::Call: { 1875 CallInst *CI = cast<CallInst>(VL0); 1876 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1877 1878 // Calculate the cost of the scalar and vector calls. 1879 SmallVector<Type*, 4> ScalarTys; 1880 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 1881 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1882 1883 FastMathFlags FMF; 1884 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1885 FMF = FPMO->getFastMathFlags(); 1886 1887 int ScalarCallCost = VecTy->getNumElements() * 1888 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1889 1890 SmallVector<Value *, 4> Args(CI->arg_operands()); 1891 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 1892 VecTy->getNumElements()); 1893 1894 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1895 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1896 << " for " << *CI << "\n"); 1897 1898 return VecCallCost - ScalarCallCost; 1899 } 1900 case Instruction::ShuffleVector: { 1901 TargetTransformInfo::OperandValueKind Op1VK = 1902 TargetTransformInfo::OK_AnyValue; 1903 TargetTransformInfo::OperandValueKind Op2VK = 1904 TargetTransformInfo::OK_AnyValue; 1905 int ScalarCost = 0; 1906 int VecCost = 0; 1907 for (Value *i : VL) { 1908 Instruction *I = cast<Instruction>(i); 1909 if (!I) 1910 break; 1911 ScalarCost += 1912 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1913 } 1914 // VecCost is equal to sum of the cost of creating 2 vectors 1915 // and the cost of creating shuffle. 1916 Instruction *I0 = cast<Instruction>(VL[0]); 1917 VecCost = 1918 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1919 Instruction *I1 = cast<Instruction>(VL[1]); 1920 VecCost += 1921 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1922 VecCost += 1923 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1924 return VecCost - ScalarCost; 1925 } 1926 default: 1927 llvm_unreachable("Unknown instruction"); 1928 } 1929 } 1930 1931 bool BoUpSLP::isFullyVectorizableTinyTree() { 1932 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1933 VectorizableTree.size() << " is fully vectorizable .\n"); 1934 1935 // We only handle trees of heights 1 and 2. 1936 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1937 return true; 1938 1939 if (VectorizableTree.size() != 2) 1940 return false; 1941 1942 // Handle splat and all-constants stores. 1943 if (!VectorizableTree[0].NeedToGather && 1944 (allConstant(VectorizableTree[1].Scalars) || 1945 isSplat(VectorizableTree[1].Scalars))) 1946 return true; 1947 1948 // Gathering cost would be too much for tiny trees. 1949 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1950 return false; 1951 1952 return true; 1953 } 1954 1955 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1956 1957 // We can vectorize the tree if its size is greater than or equal to the 1958 // minimum size specified by the MinTreeSize command line option. 1959 if (VectorizableTree.size() >= MinTreeSize) 1960 return false; 1961 1962 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1963 // can vectorize it if we can prove it fully vectorizable. 1964 if (isFullyVectorizableTinyTree()) 1965 return false; 1966 1967 assert(VectorizableTree.empty() 1968 ? ExternalUses.empty() 1969 : true && "We shouldn't have any external users"); 1970 1971 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1972 // vectorizable. 1973 return true; 1974 } 1975 1976 int BoUpSLP::getSpillCost() { 1977 // Walk from the bottom of the tree to the top, tracking which values are 1978 // live. When we see a call instruction that is not part of our tree, 1979 // query TTI to see if there is a cost to keeping values live over it 1980 // (for example, if spills and fills are required). 1981 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1982 int Cost = 0; 1983 1984 SmallPtrSet<Instruction*, 4> LiveValues; 1985 Instruction *PrevInst = nullptr; 1986 1987 for (const auto &N : VectorizableTree) { 1988 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1989 if (!Inst) 1990 continue; 1991 1992 if (!PrevInst) { 1993 PrevInst = Inst; 1994 continue; 1995 } 1996 1997 // Update LiveValues. 1998 LiveValues.erase(PrevInst); 1999 for (auto &J : PrevInst->operands()) { 2000 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 2001 LiveValues.insert(cast<Instruction>(&*J)); 2002 } 2003 2004 DEBUG( 2005 dbgs() << "SLP: #LV: " << LiveValues.size(); 2006 for (auto *X : LiveValues) 2007 dbgs() << " " << X->getName(); 2008 dbgs() << ", Looking at "; 2009 Inst->dump(); 2010 ); 2011 2012 // Now find the sequence of instructions between PrevInst and Inst. 2013 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2014 PrevInstIt = 2015 PrevInst->getIterator().getReverse(); 2016 while (InstIt != PrevInstIt) { 2017 if (PrevInstIt == PrevInst->getParent()->rend()) { 2018 PrevInstIt = Inst->getParent()->rbegin(); 2019 continue; 2020 } 2021 2022 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2023 SmallVector<Type*, 4> V; 2024 for (auto *II : LiveValues) 2025 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2026 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2027 } 2028 2029 ++PrevInstIt; 2030 } 2031 2032 PrevInst = Inst; 2033 } 2034 2035 return Cost; 2036 } 2037 2038 int BoUpSLP::getTreeCost() { 2039 int Cost = 0; 2040 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2041 VectorizableTree.size() << ".\n"); 2042 2043 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2044 2045 for (TreeEntry &TE : VectorizableTree) { 2046 int C = getEntryCost(&TE); 2047 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2048 << *TE.Scalars[0] << ".\n"); 2049 Cost += C; 2050 } 2051 2052 SmallSet<Value *, 16> ExtractCostCalculated; 2053 int ExtractCost = 0; 2054 for (ExternalUser &EU : ExternalUses) { 2055 // We only add extract cost once for the same scalar. 2056 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2057 continue; 2058 2059 // Uses by ephemeral values are free (because the ephemeral value will be 2060 // removed prior to code generation, and so the extraction will be 2061 // removed as well). 2062 if (EphValues.count(EU.User)) 2063 continue; 2064 2065 // If we plan to rewrite the tree in a smaller type, we will need to sign 2066 // extend the extracted value back to the original type. Here, we account 2067 // for the extract and the added cost of the sign extend if needed. 2068 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2069 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2070 if (MinBWs.count(ScalarRoot)) { 2071 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2072 auto Extend = 2073 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2074 VecTy = VectorType::get(MinTy, BundleWidth); 2075 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2076 VecTy, EU.Lane); 2077 } else { 2078 ExtractCost += 2079 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2080 } 2081 } 2082 2083 int SpillCost = getSpillCost(); 2084 Cost += SpillCost + ExtractCost; 2085 2086 std::string Str; 2087 { 2088 raw_string_ostream OS(Str); 2089 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2090 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2091 << "SLP: Total Cost = " << Cost << ".\n"; 2092 } 2093 DEBUG(dbgs() << Str); 2094 2095 if (ViewSLPTree) 2096 ViewGraph(this, "SLP" + F->getName(), false, Str); 2097 2098 return Cost; 2099 } 2100 2101 int BoUpSLP::getGatherCost(Type *Ty) { 2102 int Cost = 0; 2103 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2104 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2105 return Cost; 2106 } 2107 2108 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2109 // Find the type of the operands in VL. 2110 Type *ScalarTy = VL[0]->getType(); 2111 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2112 ScalarTy = SI->getValueOperand()->getType(); 2113 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2114 // Find the cost of inserting/extracting values from the vector. 2115 return getGatherCost(VecTy); 2116 } 2117 2118 // Reorder commutative operations in alternate shuffle if the resulting vectors 2119 // are consecutive loads. This would allow us to vectorize the tree. 2120 // If we have something like- 2121 // load a[0] - load b[0] 2122 // load b[1] + load a[1] 2123 // load a[2] - load b[2] 2124 // load a[3] + load b[3] 2125 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2126 // code. 2127 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 2128 SmallVectorImpl<Value *> &Left, 2129 SmallVectorImpl<Value *> &Right) { 2130 // Push left and right operands of binary operation into Left and Right 2131 for (Value *i : VL) { 2132 Left.push_back(cast<Instruction>(i)->getOperand(0)); 2133 Right.push_back(cast<Instruction>(i)->getOperand(1)); 2134 } 2135 2136 // Reorder if we have a commutative operation and consecutive access 2137 // are on either side of the alternate instructions. 2138 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2139 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2140 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2141 Instruction *VL1 = cast<Instruction>(VL[j]); 2142 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2143 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2144 std::swap(Left[j], Right[j]); 2145 continue; 2146 } else if (VL2->isCommutative() && 2147 isConsecutiveAccess(L, L1, *DL, *SE)) { 2148 std::swap(Left[j + 1], Right[j + 1]); 2149 continue; 2150 } 2151 // else unchanged 2152 } 2153 } 2154 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2155 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2156 Instruction *VL1 = cast<Instruction>(VL[j]); 2157 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2158 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2159 std::swap(Left[j], Right[j]); 2160 continue; 2161 } else if (VL2->isCommutative() && 2162 isConsecutiveAccess(L, L1, *DL, *SE)) { 2163 std::swap(Left[j + 1], Right[j + 1]); 2164 continue; 2165 } 2166 // else unchanged 2167 } 2168 } 2169 } 2170 } 2171 2172 // Return true if I should be commuted before adding it's left and right 2173 // operands to the arrays Left and Right. 2174 // 2175 // The vectorizer is trying to either have all elements one side being 2176 // instruction with the same opcode to enable further vectorization, or having 2177 // a splat to lower the vectorizing cost. 2178 static bool shouldReorderOperands(int i, Instruction &I, 2179 SmallVectorImpl<Value *> &Left, 2180 SmallVectorImpl<Value *> &Right, 2181 bool AllSameOpcodeLeft, 2182 bool AllSameOpcodeRight, bool SplatLeft, 2183 bool SplatRight) { 2184 Value *VLeft = I.getOperand(0); 2185 Value *VRight = I.getOperand(1); 2186 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2187 if (SplatRight) { 2188 if (VRight == Right[i - 1]) 2189 // Preserve SplatRight 2190 return false; 2191 if (VLeft == Right[i - 1]) { 2192 // Commuting would preserve SplatRight, but we don't want to break 2193 // SplatLeft either, i.e. preserve the original order if possible. 2194 // (FIXME: why do we care?) 2195 if (SplatLeft && VLeft == Left[i - 1]) 2196 return false; 2197 return true; 2198 } 2199 } 2200 // Symmetrically handle Right side. 2201 if (SplatLeft) { 2202 if (VLeft == Left[i - 1]) 2203 // Preserve SplatLeft 2204 return false; 2205 if (VRight == Left[i - 1]) 2206 return true; 2207 } 2208 2209 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2210 Instruction *IRight = dyn_cast<Instruction>(VRight); 2211 2212 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2213 // it and not the right, in this case we want to commute. 2214 if (AllSameOpcodeRight) { 2215 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2216 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2217 // Do not commute, a match on the right preserves AllSameOpcodeRight 2218 return false; 2219 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2220 // We have a match and may want to commute, but first check if there is 2221 // not also a match on the existing operands on the Left to preserve 2222 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2223 // (FIXME: why do we care?) 2224 if (AllSameOpcodeLeft && ILeft && 2225 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2226 return false; 2227 return true; 2228 } 2229 } 2230 // Symmetrically handle Left side. 2231 if (AllSameOpcodeLeft) { 2232 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2233 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2234 return false; 2235 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2236 return true; 2237 } 2238 return false; 2239 } 2240 2241 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2242 SmallVectorImpl<Value *> &Left, 2243 SmallVectorImpl<Value *> &Right) { 2244 2245 if (VL.size()) { 2246 // Peel the first iteration out of the loop since there's nothing 2247 // interesting to do anyway and it simplifies the checks in the loop. 2248 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2249 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2250 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2251 // Favor having instruction to the right. FIXME: why? 2252 std::swap(VLeft, VRight); 2253 Left.push_back(VLeft); 2254 Right.push_back(VRight); 2255 } 2256 2257 // Keep track if we have instructions with all the same opcode on one side. 2258 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2259 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2260 // Keep track if we have one side with all the same value (broadcast). 2261 bool SplatLeft = true; 2262 bool SplatRight = true; 2263 2264 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2265 Instruction *I = cast<Instruction>(VL[i]); 2266 assert(I->isCommutative() && "Can only process commutative instruction"); 2267 // Commute to favor either a splat or maximizing having the same opcodes on 2268 // one side. 2269 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2270 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2271 Left.push_back(I->getOperand(1)); 2272 Right.push_back(I->getOperand(0)); 2273 } else { 2274 Left.push_back(I->getOperand(0)); 2275 Right.push_back(I->getOperand(1)); 2276 } 2277 // Update Splat* and AllSameOpcode* after the insertion. 2278 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2279 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2280 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2281 (cast<Instruction>(Left[i - 1])->getOpcode() == 2282 cast<Instruction>(Left[i])->getOpcode()); 2283 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2284 (cast<Instruction>(Right[i - 1])->getOpcode() == 2285 cast<Instruction>(Right[i])->getOpcode()); 2286 } 2287 2288 // If one operand end up being broadcast, return this operand order. 2289 if (SplatRight || SplatLeft) 2290 return; 2291 2292 // Finally check if we can get longer vectorizable chain by reordering 2293 // without breaking the good operand order detected above. 2294 // E.g. If we have something like- 2295 // load a[0] load b[0] 2296 // load b[1] load a[1] 2297 // load a[2] load b[2] 2298 // load a[3] load b[3] 2299 // Reordering the second load b[1] load a[1] would allow us to vectorize 2300 // this code and we still retain AllSameOpcode property. 2301 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2302 // such as- 2303 // add a[0],c[0] load b[0] 2304 // add a[1],c[2] load b[1] 2305 // b[2] load b[2] 2306 // add a[3],c[3] load b[3] 2307 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2308 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2309 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2310 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2311 std::swap(Left[j + 1], Right[j + 1]); 2312 continue; 2313 } 2314 } 2315 } 2316 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2317 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2318 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2319 std::swap(Left[j + 1], Right[j + 1]); 2320 continue; 2321 } 2322 } 2323 } 2324 // else unchanged 2325 } 2326 } 2327 2328 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2329 2330 // Get the basic block this bundle is in. All instructions in the bundle 2331 // should be in this block. 2332 auto *Front = cast<Instruction>(VL.front()); 2333 auto *BB = Front->getParent(); 2334 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2335 return cast<Instruction>(V)->getParent() == BB; 2336 })); 2337 2338 // The last instruction in the bundle in program order. 2339 Instruction *LastInst = nullptr; 2340 2341 // Find the last instruction. The common case should be that BB has been 2342 // scheduled, and the last instruction is VL.back(). So we start with 2343 // VL.back() and iterate over schedule data until we reach the end of the 2344 // bundle. The end of the bundle is marked by null ScheduleData. 2345 if (BlocksSchedules.count(BB)) { 2346 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2347 if (Bundle && Bundle->isPartOfBundle()) 2348 for (; Bundle; Bundle = Bundle->NextInBundle) 2349 LastInst = Bundle->Inst; 2350 } 2351 2352 // LastInst can still be null at this point if there's either not an entry 2353 // for BB in BlocksSchedules or there's no ScheduleData available for 2354 // VL.back(). This can be the case if buildTree_rec aborts for various 2355 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2356 // size is reached, etc.). ScheduleData is initialized in the scheduling 2357 // "dry-run". 2358 // 2359 // If this happens, we can still find the last instruction by brute force. We 2360 // iterate forwards from Front (inclusive) until we either see all 2361 // instructions in the bundle or reach the end of the block. If Front is the 2362 // last instruction in program order, LastInst will be set to Front, and we 2363 // will visit all the remaining instructions in the block. 2364 // 2365 // One of the reasons we exit early from buildTree_rec is to place an upper 2366 // bound on compile-time. Thus, taking an additional compile-time hit here is 2367 // not ideal. However, this should be exceedingly rare since it requires that 2368 // we both exit early from buildTree_rec and that the bundle be out-of-order 2369 // (causing us to iterate all the way to the end of the block). 2370 if (!LastInst) { 2371 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2372 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2373 if (Bundle.erase(&I)) 2374 LastInst = &I; 2375 if (Bundle.empty()) 2376 break; 2377 } 2378 } 2379 2380 // Set the insertion point after the last instruction in the bundle. Set the 2381 // debug location to Front. 2382 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2383 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2384 } 2385 2386 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2387 Value *Vec = UndefValue::get(Ty); 2388 // Generate the 'InsertElement' instruction. 2389 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2390 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2391 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2392 GatherSeq.insert(Insrt); 2393 CSEBlocks.insert(Insrt->getParent()); 2394 2395 // Add to our 'need-to-extract' list. 2396 if (ScalarToTreeEntry.count(VL[i])) { 2397 int Idx = ScalarToTreeEntry[VL[i]]; 2398 TreeEntry *E = &VectorizableTree[Idx]; 2399 // Find which lane we need to extract. 2400 int FoundLane = -1; 2401 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2402 // Is this the lane of the scalar that we are looking for ? 2403 if (E->Scalars[Lane] == VL[i]) { 2404 FoundLane = Lane; 2405 break; 2406 } 2407 } 2408 assert(FoundLane >= 0 && "Could not find the correct lane"); 2409 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2410 } 2411 } 2412 } 2413 2414 return Vec; 2415 } 2416 2417 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2418 SmallDenseMap<Value*, int>::const_iterator Entry 2419 = ScalarToTreeEntry.find(VL[0]); 2420 if (Entry != ScalarToTreeEntry.end()) { 2421 int Idx = Entry->second; 2422 const TreeEntry *En = &VectorizableTree[Idx]; 2423 if (En->isSame(VL) && En->VectorizedValue) 2424 return En->VectorizedValue; 2425 } 2426 return nullptr; 2427 } 2428 2429 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2430 if (ScalarToTreeEntry.count(VL[0])) { 2431 int Idx = ScalarToTreeEntry[VL[0]]; 2432 TreeEntry *E = &VectorizableTree[Idx]; 2433 if (E->isSame(VL)) 2434 return vectorizeTree(E); 2435 } 2436 2437 Type *ScalarTy = VL[0]->getType(); 2438 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2439 ScalarTy = SI->getValueOperand()->getType(); 2440 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2441 2442 return Gather(VL, VecTy); 2443 } 2444 2445 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2446 IRBuilder<>::InsertPointGuard Guard(Builder); 2447 2448 if (E->VectorizedValue) { 2449 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2450 return E->VectorizedValue; 2451 } 2452 2453 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2454 Type *ScalarTy = VL0->getType(); 2455 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2456 ScalarTy = SI->getValueOperand()->getType(); 2457 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2458 2459 if (E->NeedToGather) { 2460 setInsertPointAfterBundle(E->Scalars); 2461 auto *V = Gather(E->Scalars, VecTy); 2462 E->VectorizedValue = V; 2463 return V; 2464 } 2465 2466 unsigned Opcode = getSameOpcode(E->Scalars); 2467 2468 switch (Opcode) { 2469 case Instruction::PHI: { 2470 PHINode *PH = dyn_cast<PHINode>(VL0); 2471 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2472 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2473 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2474 E->VectorizedValue = NewPhi; 2475 2476 // PHINodes may have multiple entries from the same block. We want to 2477 // visit every block once. 2478 SmallSet<BasicBlock*, 4> VisitedBBs; 2479 2480 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2481 ValueList Operands; 2482 BasicBlock *IBB = PH->getIncomingBlock(i); 2483 2484 if (!VisitedBBs.insert(IBB).second) { 2485 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2486 continue; 2487 } 2488 2489 // Prepare the operand vector. 2490 for (Value *V : E->Scalars) 2491 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2492 2493 Builder.SetInsertPoint(IBB->getTerminator()); 2494 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2495 Value *Vec = vectorizeTree(Operands); 2496 NewPhi->addIncoming(Vec, IBB); 2497 } 2498 2499 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2500 "Invalid number of incoming values"); 2501 return NewPhi; 2502 } 2503 2504 case Instruction::ExtractElement: { 2505 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2506 Value *V = VL0->getOperand(0); 2507 E->VectorizedValue = V; 2508 return V; 2509 } 2510 setInsertPointAfterBundle(E->Scalars); 2511 auto *V = Gather(E->Scalars, VecTy); 2512 E->VectorizedValue = V; 2513 return V; 2514 } 2515 case Instruction::ExtractValue: { 2516 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2517 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2518 Builder.SetInsertPoint(LI); 2519 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2520 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2521 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2522 E->VectorizedValue = V; 2523 return propagateMetadata(V, E->Scalars); 2524 } 2525 setInsertPointAfterBundle(E->Scalars); 2526 auto *V = Gather(E->Scalars, VecTy); 2527 E->VectorizedValue = V; 2528 return V; 2529 } 2530 case Instruction::ZExt: 2531 case Instruction::SExt: 2532 case Instruction::FPToUI: 2533 case Instruction::FPToSI: 2534 case Instruction::FPExt: 2535 case Instruction::PtrToInt: 2536 case Instruction::IntToPtr: 2537 case Instruction::SIToFP: 2538 case Instruction::UIToFP: 2539 case Instruction::Trunc: 2540 case Instruction::FPTrunc: 2541 case Instruction::BitCast: { 2542 ValueList INVL; 2543 for (Value *V : E->Scalars) 2544 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2545 2546 setInsertPointAfterBundle(E->Scalars); 2547 2548 Value *InVec = vectorizeTree(INVL); 2549 2550 if (Value *V = alreadyVectorized(E->Scalars)) 2551 return V; 2552 2553 CastInst *CI = dyn_cast<CastInst>(VL0); 2554 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2555 E->VectorizedValue = V; 2556 ++NumVectorInstructions; 2557 return V; 2558 } 2559 case Instruction::FCmp: 2560 case Instruction::ICmp: { 2561 ValueList LHSV, RHSV; 2562 for (Value *V : E->Scalars) { 2563 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2564 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2565 } 2566 2567 setInsertPointAfterBundle(E->Scalars); 2568 2569 Value *L = vectorizeTree(LHSV); 2570 Value *R = vectorizeTree(RHSV); 2571 2572 if (Value *V = alreadyVectorized(E->Scalars)) 2573 return V; 2574 2575 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2576 Value *V; 2577 if (Opcode == Instruction::FCmp) 2578 V = Builder.CreateFCmp(P0, L, R); 2579 else 2580 V = Builder.CreateICmp(P0, L, R); 2581 2582 E->VectorizedValue = V; 2583 propagateIRFlags(E->VectorizedValue, E->Scalars); 2584 ++NumVectorInstructions; 2585 return V; 2586 } 2587 case Instruction::Select: { 2588 ValueList TrueVec, FalseVec, CondVec; 2589 for (Value *V : E->Scalars) { 2590 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2591 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2592 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2593 } 2594 2595 setInsertPointAfterBundle(E->Scalars); 2596 2597 Value *Cond = vectorizeTree(CondVec); 2598 Value *True = vectorizeTree(TrueVec); 2599 Value *False = vectorizeTree(FalseVec); 2600 2601 if (Value *V = alreadyVectorized(E->Scalars)) 2602 return V; 2603 2604 Value *V = Builder.CreateSelect(Cond, True, False); 2605 E->VectorizedValue = V; 2606 ++NumVectorInstructions; 2607 return V; 2608 } 2609 case Instruction::Add: 2610 case Instruction::FAdd: 2611 case Instruction::Sub: 2612 case Instruction::FSub: 2613 case Instruction::Mul: 2614 case Instruction::FMul: 2615 case Instruction::UDiv: 2616 case Instruction::SDiv: 2617 case Instruction::FDiv: 2618 case Instruction::URem: 2619 case Instruction::SRem: 2620 case Instruction::FRem: 2621 case Instruction::Shl: 2622 case Instruction::LShr: 2623 case Instruction::AShr: 2624 case Instruction::And: 2625 case Instruction::Or: 2626 case Instruction::Xor: { 2627 ValueList LHSVL, RHSVL; 2628 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2629 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2630 else 2631 for (Value *V : E->Scalars) { 2632 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2633 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2634 } 2635 2636 setInsertPointAfterBundle(E->Scalars); 2637 2638 Value *LHS = vectorizeTree(LHSVL); 2639 Value *RHS = vectorizeTree(RHSVL); 2640 2641 if (Value *V = alreadyVectorized(E->Scalars)) 2642 return V; 2643 2644 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2645 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2646 E->VectorizedValue = V; 2647 propagateIRFlags(E->VectorizedValue, E->Scalars); 2648 ++NumVectorInstructions; 2649 2650 if (Instruction *I = dyn_cast<Instruction>(V)) 2651 return propagateMetadata(I, E->Scalars); 2652 2653 return V; 2654 } 2655 case Instruction::Load: { 2656 // Loads are inserted at the head of the tree because we don't want to 2657 // sink them all the way down past store instructions. 2658 setInsertPointAfterBundle(E->Scalars); 2659 2660 LoadInst *LI = cast<LoadInst>(VL0); 2661 Type *ScalarLoadTy = LI->getType(); 2662 unsigned AS = LI->getPointerAddressSpace(); 2663 2664 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2665 VecTy->getPointerTo(AS)); 2666 2667 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2668 // ExternalUses list to make sure that an extract will be generated in the 2669 // future. 2670 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2671 ExternalUses.push_back( 2672 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2673 2674 unsigned Alignment = LI->getAlignment(); 2675 LI = Builder.CreateLoad(VecPtr); 2676 if (!Alignment) { 2677 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2678 } 2679 LI->setAlignment(Alignment); 2680 E->VectorizedValue = LI; 2681 ++NumVectorInstructions; 2682 return propagateMetadata(LI, E->Scalars); 2683 } 2684 case Instruction::Store: { 2685 StoreInst *SI = cast<StoreInst>(VL0); 2686 unsigned Alignment = SI->getAlignment(); 2687 unsigned AS = SI->getPointerAddressSpace(); 2688 2689 ValueList ValueOp; 2690 for (Value *V : E->Scalars) 2691 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2692 2693 setInsertPointAfterBundle(E->Scalars); 2694 2695 Value *VecValue = vectorizeTree(ValueOp); 2696 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2697 VecTy->getPointerTo(AS)); 2698 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2699 2700 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2701 // ExternalUses list to make sure that an extract will be generated in the 2702 // future. 2703 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2704 ExternalUses.push_back( 2705 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2706 2707 if (!Alignment) { 2708 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2709 } 2710 S->setAlignment(Alignment); 2711 E->VectorizedValue = S; 2712 ++NumVectorInstructions; 2713 return propagateMetadata(S, E->Scalars); 2714 } 2715 case Instruction::GetElementPtr: { 2716 setInsertPointAfterBundle(E->Scalars); 2717 2718 ValueList Op0VL; 2719 for (Value *V : E->Scalars) 2720 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2721 2722 Value *Op0 = vectorizeTree(Op0VL); 2723 2724 std::vector<Value *> OpVecs; 2725 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2726 ++j) { 2727 ValueList OpVL; 2728 for (Value *V : E->Scalars) 2729 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2730 2731 Value *OpVec = vectorizeTree(OpVL); 2732 OpVecs.push_back(OpVec); 2733 } 2734 2735 Value *V = Builder.CreateGEP( 2736 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2737 E->VectorizedValue = V; 2738 ++NumVectorInstructions; 2739 2740 if (Instruction *I = dyn_cast<Instruction>(V)) 2741 return propagateMetadata(I, E->Scalars); 2742 2743 return V; 2744 } 2745 case Instruction::Call: { 2746 CallInst *CI = cast<CallInst>(VL0); 2747 setInsertPointAfterBundle(E->Scalars); 2748 Function *FI; 2749 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2750 Value *ScalarArg = nullptr; 2751 if (CI && (FI = CI->getCalledFunction())) { 2752 IID = FI->getIntrinsicID(); 2753 } 2754 std::vector<Value *> OpVecs; 2755 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2756 ValueList OpVL; 2757 // ctlz,cttz and powi are special intrinsics whose second argument is 2758 // a scalar. This argument should not be vectorized. 2759 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2760 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2761 ScalarArg = CEI->getArgOperand(j); 2762 OpVecs.push_back(CEI->getArgOperand(j)); 2763 continue; 2764 } 2765 for (Value *V : E->Scalars) { 2766 CallInst *CEI = cast<CallInst>(V); 2767 OpVL.push_back(CEI->getArgOperand(j)); 2768 } 2769 2770 Value *OpVec = vectorizeTree(OpVL); 2771 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2772 OpVecs.push_back(OpVec); 2773 } 2774 2775 Module *M = F->getParent(); 2776 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2777 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2778 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2779 SmallVector<OperandBundleDef, 1> OpBundles; 2780 CI->getOperandBundlesAsDefs(OpBundles); 2781 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2782 2783 // The scalar argument uses an in-tree scalar so we add the new vectorized 2784 // call to ExternalUses list to make sure that an extract will be 2785 // generated in the future. 2786 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2787 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2788 2789 E->VectorizedValue = V; 2790 propagateIRFlags(E->VectorizedValue, E->Scalars); 2791 ++NumVectorInstructions; 2792 return V; 2793 } 2794 case Instruction::ShuffleVector: { 2795 ValueList LHSVL, RHSVL; 2796 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2797 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2798 setInsertPointAfterBundle(E->Scalars); 2799 2800 Value *LHS = vectorizeTree(LHSVL); 2801 Value *RHS = vectorizeTree(RHSVL); 2802 2803 if (Value *V = alreadyVectorized(E->Scalars)) 2804 return V; 2805 2806 // Create a vector of LHS op1 RHS 2807 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2808 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2809 2810 // Create a vector of LHS op2 RHS 2811 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2812 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2813 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2814 2815 // Create shuffle to take alternate operations from the vector. 2816 // Also, gather up odd and even scalar ops to propagate IR flags to 2817 // each vector operation. 2818 ValueList OddScalars, EvenScalars; 2819 unsigned e = E->Scalars.size(); 2820 SmallVector<Constant *, 8> Mask(e); 2821 for (unsigned i = 0; i < e; ++i) { 2822 if (i & 1) { 2823 Mask[i] = Builder.getInt32(e + i); 2824 OddScalars.push_back(E->Scalars[i]); 2825 } else { 2826 Mask[i] = Builder.getInt32(i); 2827 EvenScalars.push_back(E->Scalars[i]); 2828 } 2829 } 2830 2831 Value *ShuffleMask = ConstantVector::get(Mask); 2832 propagateIRFlags(V0, EvenScalars); 2833 propagateIRFlags(V1, OddScalars); 2834 2835 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2836 E->VectorizedValue = V; 2837 ++NumVectorInstructions; 2838 if (Instruction *I = dyn_cast<Instruction>(V)) 2839 return propagateMetadata(I, E->Scalars); 2840 2841 return V; 2842 } 2843 default: 2844 llvm_unreachable("unknown inst"); 2845 } 2846 return nullptr; 2847 } 2848 2849 Value *BoUpSLP::vectorizeTree() { 2850 ExtraValueToDebugLocsMap ExternallyUsedValues; 2851 return vectorizeTree(ExternallyUsedValues); 2852 } 2853 2854 Value * 2855 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 2856 2857 // All blocks must be scheduled before any instructions are inserted. 2858 for (auto &BSIter : BlocksSchedules) { 2859 scheduleBlock(BSIter.second.get()); 2860 } 2861 2862 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2863 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2864 2865 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2866 // vectorized root. InstCombine will then rewrite the entire expression. We 2867 // sign extend the extracted values below. 2868 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2869 if (MinBWs.count(ScalarRoot)) { 2870 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2871 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2872 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2873 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2874 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2875 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2876 VectorizableTree[0].VectorizedValue = Trunc; 2877 } 2878 2879 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2880 2881 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2882 // specified by ScalarType. 2883 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2884 if (!MinBWs.count(ScalarRoot)) 2885 return Ex; 2886 if (MinBWs[ScalarRoot].second) 2887 return Builder.CreateSExt(Ex, ScalarType); 2888 return Builder.CreateZExt(Ex, ScalarType); 2889 }; 2890 2891 // Extract all of the elements with the external uses. 2892 for (const auto &ExternalUse : ExternalUses) { 2893 Value *Scalar = ExternalUse.Scalar; 2894 llvm::User *User = ExternalUse.User; 2895 2896 // Skip users that we already RAUW. This happens when one instruction 2897 // has multiple uses of the same value. 2898 if (User && !is_contained(Scalar->users(), User)) 2899 continue; 2900 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2901 2902 int Idx = ScalarToTreeEntry[Scalar]; 2903 TreeEntry *E = &VectorizableTree[Idx]; 2904 assert(!E->NeedToGather && "Extracting from a gather list"); 2905 2906 Value *Vec = E->VectorizedValue; 2907 assert(Vec && "Can't find vectorizable value"); 2908 2909 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2910 // If User == nullptr, the Scalar is used as extra arg. Generate 2911 // ExtractElement instruction and update the record for this scalar in 2912 // ExternallyUsedValues. 2913 if (!User) { 2914 assert(ExternallyUsedValues.count(Scalar) && 2915 "Scalar with nullptr as an external user must be registered in " 2916 "ExternallyUsedValues map"); 2917 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2918 Builder.SetInsertPoint(VecI->getParent(), 2919 std::next(VecI->getIterator())); 2920 } else { 2921 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2922 } 2923 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2924 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2925 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 2926 auto &Locs = ExternallyUsedValues[Scalar]; 2927 ExternallyUsedValues.insert({Ex, Locs}); 2928 ExternallyUsedValues.erase(Scalar); 2929 continue; 2930 } 2931 2932 // Generate extracts for out-of-tree users. 2933 // Find the insertion point for the extractelement lane. 2934 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2935 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2936 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2937 if (PH->getIncomingValue(i) == Scalar) { 2938 TerminatorInst *IncomingTerminator = 2939 PH->getIncomingBlock(i)->getTerminator(); 2940 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2941 Builder.SetInsertPoint(VecI->getParent(), 2942 std::next(VecI->getIterator())); 2943 } else { 2944 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2945 } 2946 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2947 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2948 CSEBlocks.insert(PH->getIncomingBlock(i)); 2949 PH->setOperand(i, Ex); 2950 } 2951 } 2952 } else { 2953 Builder.SetInsertPoint(cast<Instruction>(User)); 2954 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2955 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2956 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2957 User->replaceUsesOfWith(Scalar, Ex); 2958 } 2959 } else { 2960 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2961 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2962 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2963 CSEBlocks.insert(&F->getEntryBlock()); 2964 User->replaceUsesOfWith(Scalar, Ex); 2965 } 2966 2967 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2968 } 2969 2970 // For each vectorized value: 2971 for (TreeEntry &EIdx : VectorizableTree) { 2972 TreeEntry *Entry = &EIdx; 2973 2974 // For each lane: 2975 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2976 Value *Scalar = Entry->Scalars[Lane]; 2977 // No need to handle users of gathered values. 2978 if (Entry->NeedToGather) 2979 continue; 2980 2981 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2982 2983 Type *Ty = Scalar->getType(); 2984 if (!Ty->isVoidTy()) { 2985 #ifndef NDEBUG 2986 for (User *U : Scalar->users()) { 2987 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2988 2989 assert((ScalarToTreeEntry.count(U) || 2990 // It is legal to replace users in the ignorelist by undef. 2991 is_contained(UserIgnoreList, U)) && 2992 "Replacing out-of-tree value with undef"); 2993 } 2994 #endif 2995 Value *Undef = UndefValue::get(Ty); 2996 Scalar->replaceAllUsesWith(Undef); 2997 } 2998 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2999 eraseInstruction(cast<Instruction>(Scalar)); 3000 } 3001 } 3002 3003 Builder.ClearInsertionPoint(); 3004 3005 return VectorizableTree[0].VectorizedValue; 3006 } 3007 3008 void BoUpSLP::optimizeGatherSequence() { 3009 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3010 << " gather sequences instructions.\n"); 3011 // LICM InsertElementInst sequences. 3012 for (Instruction *it : GatherSeq) { 3013 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3014 3015 if (!Insert) 3016 continue; 3017 3018 // Check if this block is inside a loop. 3019 Loop *L = LI->getLoopFor(Insert->getParent()); 3020 if (!L) 3021 continue; 3022 3023 // Check if it has a preheader. 3024 BasicBlock *PreHeader = L->getLoopPreheader(); 3025 if (!PreHeader) 3026 continue; 3027 3028 // If the vector or the element that we insert into it are 3029 // instructions that are defined in this basic block then we can't 3030 // hoist this instruction. 3031 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3032 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3033 if (CurrVec && L->contains(CurrVec)) 3034 continue; 3035 if (NewElem && L->contains(NewElem)) 3036 continue; 3037 3038 // We can hoist this instruction. Move it to the pre-header. 3039 Insert->moveBefore(PreHeader->getTerminator()); 3040 } 3041 3042 // Make a list of all reachable blocks in our CSE queue. 3043 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3044 CSEWorkList.reserve(CSEBlocks.size()); 3045 for (BasicBlock *BB : CSEBlocks) 3046 if (DomTreeNode *N = DT->getNode(BB)) { 3047 assert(DT->isReachableFromEntry(N)); 3048 CSEWorkList.push_back(N); 3049 } 3050 3051 // Sort blocks by domination. This ensures we visit a block after all blocks 3052 // dominating it are visited. 3053 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3054 [this](const DomTreeNode *A, const DomTreeNode *B) { 3055 return DT->properlyDominates(A, B); 3056 }); 3057 3058 // Perform O(N^2) search over the gather sequences and merge identical 3059 // instructions. TODO: We can further optimize this scan if we split the 3060 // instructions into different buckets based on the insert lane. 3061 SmallVector<Instruction *, 16> Visited; 3062 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3063 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3064 "Worklist not sorted properly!"); 3065 BasicBlock *BB = (*I)->getBlock(); 3066 // For all instructions in blocks containing gather sequences: 3067 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3068 Instruction *In = &*it++; 3069 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3070 continue; 3071 3072 // Check if we can replace this instruction with any of the 3073 // visited instructions. 3074 for (Instruction *v : Visited) { 3075 if (In->isIdenticalTo(v) && 3076 DT->dominates(v->getParent(), In->getParent())) { 3077 In->replaceAllUsesWith(v); 3078 eraseInstruction(In); 3079 In = nullptr; 3080 break; 3081 } 3082 } 3083 if (In) { 3084 assert(!is_contained(Visited, In)); 3085 Visited.push_back(In); 3086 } 3087 } 3088 } 3089 CSEBlocks.clear(); 3090 GatherSeq.clear(); 3091 } 3092 3093 // Groups the instructions to a bundle (which is then a single scheduling entity) 3094 // and schedules instructions until the bundle gets ready. 3095 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3096 BoUpSLP *SLP) { 3097 if (isa<PHINode>(VL[0])) 3098 return true; 3099 3100 // Initialize the instruction bundle. 3101 Instruction *OldScheduleEnd = ScheduleEnd; 3102 ScheduleData *PrevInBundle = nullptr; 3103 ScheduleData *Bundle = nullptr; 3104 bool ReSchedule = false; 3105 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 3106 3107 // Make sure that the scheduling region contains all 3108 // instructions of the bundle. 3109 for (Value *V : VL) { 3110 if (!extendSchedulingRegion(V)) 3111 return false; 3112 } 3113 3114 for (Value *V : VL) { 3115 ScheduleData *BundleMember = getScheduleData(V); 3116 assert(BundleMember && 3117 "no ScheduleData for bundle member (maybe not in same basic block)"); 3118 if (BundleMember->IsScheduled) { 3119 // A bundle member was scheduled as single instruction before and now 3120 // needs to be scheduled as part of the bundle. We just get rid of the 3121 // existing schedule. 3122 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3123 << " was already scheduled\n"); 3124 ReSchedule = true; 3125 } 3126 assert(BundleMember->isSchedulingEntity() && 3127 "bundle member already part of other bundle"); 3128 if (PrevInBundle) { 3129 PrevInBundle->NextInBundle = BundleMember; 3130 } else { 3131 Bundle = BundleMember; 3132 } 3133 BundleMember->UnscheduledDepsInBundle = 0; 3134 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3135 3136 // Group the instructions to a bundle. 3137 BundleMember->FirstInBundle = Bundle; 3138 PrevInBundle = BundleMember; 3139 } 3140 if (ScheduleEnd != OldScheduleEnd) { 3141 // The scheduling region got new instructions at the lower end (or it is a 3142 // new region for the first bundle). This makes it necessary to 3143 // recalculate all dependencies. 3144 // It is seldom that this needs to be done a second time after adding the 3145 // initial bundle to the region. 3146 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3147 ScheduleData *SD = getScheduleData(I); 3148 SD->clearDependencies(); 3149 } 3150 ReSchedule = true; 3151 } 3152 if (ReSchedule) { 3153 resetSchedule(); 3154 initialFillReadyList(ReadyInsts); 3155 } 3156 3157 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3158 << BB->getName() << "\n"); 3159 3160 calculateDependencies(Bundle, true, SLP); 3161 3162 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3163 // means that there are no cyclic dependencies and we can schedule it. 3164 // Note that's important that we don't "schedule" the bundle yet (see 3165 // cancelScheduling). 3166 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3167 3168 ScheduleData *pickedSD = ReadyInsts.back(); 3169 ReadyInsts.pop_back(); 3170 3171 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3172 schedule(pickedSD, ReadyInsts); 3173 } 3174 } 3175 if (!Bundle->isReady()) { 3176 cancelScheduling(VL); 3177 return false; 3178 } 3179 return true; 3180 } 3181 3182 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3183 if (isa<PHINode>(VL[0])) 3184 return; 3185 3186 ScheduleData *Bundle = getScheduleData(VL[0]); 3187 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3188 assert(!Bundle->IsScheduled && 3189 "Can't cancel bundle which is already scheduled"); 3190 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3191 "tried to unbundle something which is not a bundle"); 3192 3193 // Un-bundle: make single instructions out of the bundle. 3194 ScheduleData *BundleMember = Bundle; 3195 while (BundleMember) { 3196 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3197 BundleMember->FirstInBundle = BundleMember; 3198 ScheduleData *Next = BundleMember->NextInBundle; 3199 BundleMember->NextInBundle = nullptr; 3200 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3201 if (BundleMember->UnscheduledDepsInBundle == 0) { 3202 ReadyInsts.insert(BundleMember); 3203 } 3204 BundleMember = Next; 3205 } 3206 } 3207 3208 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3209 if (getScheduleData(V)) 3210 return true; 3211 Instruction *I = dyn_cast<Instruction>(V); 3212 assert(I && "bundle member must be an instruction"); 3213 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3214 if (!ScheduleStart) { 3215 // It's the first instruction in the new region. 3216 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3217 ScheduleStart = I; 3218 ScheduleEnd = I->getNextNode(); 3219 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3220 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3221 return true; 3222 } 3223 // Search up and down at the same time, because we don't know if the new 3224 // instruction is above or below the existing scheduling region. 3225 BasicBlock::reverse_iterator UpIter = 3226 ++ScheduleStart->getIterator().getReverse(); 3227 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3228 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3229 BasicBlock::iterator LowerEnd = BB->end(); 3230 for (;;) { 3231 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3232 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3233 return false; 3234 } 3235 3236 if (UpIter != UpperEnd) { 3237 if (&*UpIter == I) { 3238 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3239 ScheduleStart = I; 3240 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3241 return true; 3242 } 3243 UpIter++; 3244 } 3245 if (DownIter != LowerEnd) { 3246 if (&*DownIter == I) { 3247 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3248 nullptr); 3249 ScheduleEnd = I->getNextNode(); 3250 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3251 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3252 return true; 3253 } 3254 DownIter++; 3255 } 3256 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3257 "instruction not found in block"); 3258 } 3259 return true; 3260 } 3261 3262 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3263 Instruction *ToI, 3264 ScheduleData *PrevLoadStore, 3265 ScheduleData *NextLoadStore) { 3266 ScheduleData *CurrentLoadStore = PrevLoadStore; 3267 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3268 ScheduleData *SD = ScheduleDataMap[I]; 3269 if (!SD) { 3270 // Allocate a new ScheduleData for the instruction. 3271 if (ChunkPos >= ChunkSize) { 3272 ScheduleDataChunks.push_back( 3273 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3274 ChunkPos = 0; 3275 } 3276 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3277 ScheduleDataMap[I] = SD; 3278 SD->Inst = I; 3279 } 3280 assert(!isInSchedulingRegion(SD) && 3281 "new ScheduleData already in scheduling region"); 3282 SD->init(SchedulingRegionID); 3283 3284 if (I->mayReadOrWriteMemory()) { 3285 // Update the linked list of memory accessing instructions. 3286 if (CurrentLoadStore) { 3287 CurrentLoadStore->NextLoadStore = SD; 3288 } else { 3289 FirstLoadStoreInRegion = SD; 3290 } 3291 CurrentLoadStore = SD; 3292 } 3293 } 3294 if (NextLoadStore) { 3295 if (CurrentLoadStore) 3296 CurrentLoadStore->NextLoadStore = NextLoadStore; 3297 } else { 3298 LastLoadStoreInRegion = CurrentLoadStore; 3299 } 3300 } 3301 3302 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3303 bool InsertInReadyList, 3304 BoUpSLP *SLP) { 3305 assert(SD->isSchedulingEntity()); 3306 3307 SmallVector<ScheduleData *, 10> WorkList; 3308 WorkList.push_back(SD); 3309 3310 while (!WorkList.empty()) { 3311 ScheduleData *SD = WorkList.back(); 3312 WorkList.pop_back(); 3313 3314 ScheduleData *BundleMember = SD; 3315 while (BundleMember) { 3316 assert(isInSchedulingRegion(BundleMember)); 3317 if (!BundleMember->hasValidDependencies()) { 3318 3319 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3320 BundleMember->Dependencies = 0; 3321 BundleMember->resetUnscheduledDeps(); 3322 3323 // Handle def-use chain dependencies. 3324 for (User *U : BundleMember->Inst->users()) { 3325 if (isa<Instruction>(U)) { 3326 ScheduleData *UseSD = getScheduleData(U); 3327 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3328 BundleMember->Dependencies++; 3329 ScheduleData *DestBundle = UseSD->FirstInBundle; 3330 if (!DestBundle->IsScheduled) { 3331 BundleMember->incrementUnscheduledDeps(1); 3332 } 3333 if (!DestBundle->hasValidDependencies()) { 3334 WorkList.push_back(DestBundle); 3335 } 3336 } 3337 } else { 3338 // I'm not sure if this can ever happen. But we need to be safe. 3339 // This lets the instruction/bundle never be scheduled and 3340 // eventually disable vectorization. 3341 BundleMember->Dependencies++; 3342 BundleMember->incrementUnscheduledDeps(1); 3343 } 3344 } 3345 3346 // Handle the memory dependencies. 3347 ScheduleData *DepDest = BundleMember->NextLoadStore; 3348 if (DepDest) { 3349 Instruction *SrcInst = BundleMember->Inst; 3350 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3351 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3352 unsigned numAliased = 0; 3353 unsigned DistToSrc = 1; 3354 3355 while (DepDest) { 3356 assert(isInSchedulingRegion(DepDest)); 3357 3358 // We have two limits to reduce the complexity: 3359 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3360 // SLP->isAliased (which is the expensive part in this loop). 3361 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3362 // the whole loop (even if the loop is fast, it's quadratic). 3363 // It's important for the loop break condition (see below) to 3364 // check this limit even between two read-only instructions. 3365 if (DistToSrc >= MaxMemDepDistance || 3366 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3367 (numAliased >= AliasedCheckLimit || 3368 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3369 3370 // We increment the counter only if the locations are aliased 3371 // (instead of counting all alias checks). This gives a better 3372 // balance between reduced runtime and accurate dependencies. 3373 numAliased++; 3374 3375 DepDest->MemoryDependencies.push_back(BundleMember); 3376 BundleMember->Dependencies++; 3377 ScheduleData *DestBundle = DepDest->FirstInBundle; 3378 if (!DestBundle->IsScheduled) { 3379 BundleMember->incrementUnscheduledDeps(1); 3380 } 3381 if (!DestBundle->hasValidDependencies()) { 3382 WorkList.push_back(DestBundle); 3383 } 3384 } 3385 DepDest = DepDest->NextLoadStore; 3386 3387 // Example, explaining the loop break condition: Let's assume our 3388 // starting instruction is i0 and MaxMemDepDistance = 3. 3389 // 3390 // +--------v--v--v 3391 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3392 // +--------^--^--^ 3393 // 3394 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3395 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3396 // Previously we already added dependencies from i3 to i6,i7,i8 3397 // (because of MaxMemDepDistance). As we added a dependency from 3398 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3399 // and we can abort this loop at i6. 3400 if (DistToSrc >= 2 * MaxMemDepDistance) 3401 break; 3402 DistToSrc++; 3403 } 3404 } 3405 } 3406 BundleMember = BundleMember->NextInBundle; 3407 } 3408 if (InsertInReadyList && SD->isReady()) { 3409 ReadyInsts.push_back(SD); 3410 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3411 } 3412 } 3413 } 3414 3415 void BoUpSLP::BlockScheduling::resetSchedule() { 3416 assert(ScheduleStart && 3417 "tried to reset schedule on block which has not been scheduled"); 3418 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3419 ScheduleData *SD = getScheduleData(I); 3420 assert(isInSchedulingRegion(SD)); 3421 SD->IsScheduled = false; 3422 SD->resetUnscheduledDeps(); 3423 } 3424 ReadyInsts.clear(); 3425 } 3426 3427 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3428 3429 if (!BS->ScheduleStart) 3430 return; 3431 3432 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3433 3434 BS->resetSchedule(); 3435 3436 // For the real scheduling we use a more sophisticated ready-list: it is 3437 // sorted by the original instruction location. This lets the final schedule 3438 // be as close as possible to the original instruction order. 3439 struct ScheduleDataCompare { 3440 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3441 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3442 } 3443 }; 3444 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3445 3446 // Ensure that all dependency data is updated and fill the ready-list with 3447 // initial instructions. 3448 int Idx = 0; 3449 int NumToSchedule = 0; 3450 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3451 I = I->getNextNode()) { 3452 ScheduleData *SD = BS->getScheduleData(I); 3453 assert( 3454 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3455 "scheduler and vectorizer have different opinion on what is a bundle"); 3456 SD->FirstInBundle->SchedulingPriority = Idx++; 3457 if (SD->isSchedulingEntity()) { 3458 BS->calculateDependencies(SD, false, this); 3459 NumToSchedule++; 3460 } 3461 } 3462 BS->initialFillReadyList(ReadyInsts); 3463 3464 Instruction *LastScheduledInst = BS->ScheduleEnd; 3465 3466 // Do the "real" scheduling. 3467 while (!ReadyInsts.empty()) { 3468 ScheduleData *picked = *ReadyInsts.begin(); 3469 ReadyInsts.erase(ReadyInsts.begin()); 3470 3471 // Move the scheduled instruction(s) to their dedicated places, if not 3472 // there yet. 3473 ScheduleData *BundleMember = picked; 3474 while (BundleMember) { 3475 Instruction *pickedInst = BundleMember->Inst; 3476 if (LastScheduledInst->getNextNode() != pickedInst) { 3477 BS->BB->getInstList().remove(pickedInst); 3478 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3479 pickedInst); 3480 } 3481 LastScheduledInst = pickedInst; 3482 BundleMember = BundleMember->NextInBundle; 3483 } 3484 3485 BS->schedule(picked, ReadyInsts); 3486 NumToSchedule--; 3487 } 3488 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3489 3490 // Avoid duplicate scheduling of the block. 3491 BS->ScheduleStart = nullptr; 3492 } 3493 3494 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3495 // If V is a store, just return the width of the stored value without 3496 // traversing the expression tree. This is the common case. 3497 if (auto *Store = dyn_cast<StoreInst>(V)) 3498 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3499 3500 // If V is not a store, we can traverse the expression tree to find loads 3501 // that feed it. The type of the loaded value may indicate a more suitable 3502 // width than V's type. We want to base the vector element size on the width 3503 // of memory operations where possible. 3504 SmallVector<Instruction *, 16> Worklist; 3505 SmallPtrSet<Instruction *, 16> Visited; 3506 if (auto *I = dyn_cast<Instruction>(V)) 3507 Worklist.push_back(I); 3508 3509 // Traverse the expression tree in bottom-up order looking for loads. If we 3510 // encounter an instruciton we don't yet handle, we give up. 3511 auto MaxWidth = 0u; 3512 auto FoundUnknownInst = false; 3513 while (!Worklist.empty() && !FoundUnknownInst) { 3514 auto *I = Worklist.pop_back_val(); 3515 Visited.insert(I); 3516 3517 // We should only be looking at scalar instructions here. If the current 3518 // instruction has a vector type, give up. 3519 auto *Ty = I->getType(); 3520 if (isa<VectorType>(Ty)) 3521 FoundUnknownInst = true; 3522 3523 // If the current instruction is a load, update MaxWidth to reflect the 3524 // width of the loaded value. 3525 else if (isa<LoadInst>(I)) 3526 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3527 3528 // Otherwise, we need to visit the operands of the instruction. We only 3529 // handle the interesting cases from buildTree here. If an operand is an 3530 // instruction we haven't yet visited, we add it to the worklist. 3531 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3532 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3533 for (Use &U : I->operands()) 3534 if (auto *J = dyn_cast<Instruction>(U.get())) 3535 if (!Visited.count(J)) 3536 Worklist.push_back(J); 3537 } 3538 3539 // If we don't yet handle the instruction, give up. 3540 else 3541 FoundUnknownInst = true; 3542 } 3543 3544 // If we didn't encounter a memory access in the expression tree, or if we 3545 // gave up for some reason, just return the width of V. 3546 if (!MaxWidth || FoundUnknownInst) 3547 return DL->getTypeSizeInBits(V->getType()); 3548 3549 // Otherwise, return the maximum width we found. 3550 return MaxWidth; 3551 } 3552 3553 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3554 // smaller type with a truncation. We collect the values that will be demoted 3555 // in ToDemote and additional roots that require investigating in Roots. 3556 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3557 SmallVectorImpl<Value *> &ToDemote, 3558 SmallVectorImpl<Value *> &Roots) { 3559 3560 // We can always demote constants. 3561 if (isa<Constant>(V)) { 3562 ToDemote.push_back(V); 3563 return true; 3564 } 3565 3566 // If the value is not an instruction in the expression with only one use, it 3567 // cannot be demoted. 3568 auto *I = dyn_cast<Instruction>(V); 3569 if (!I || !I->hasOneUse() || !Expr.count(I)) 3570 return false; 3571 3572 switch (I->getOpcode()) { 3573 3574 // We can always demote truncations and extensions. Since truncations can 3575 // seed additional demotion, we save the truncated value. 3576 case Instruction::Trunc: 3577 Roots.push_back(I->getOperand(0)); 3578 case Instruction::ZExt: 3579 case Instruction::SExt: 3580 break; 3581 3582 // We can demote certain binary operations if we can demote both of their 3583 // operands. 3584 case Instruction::Add: 3585 case Instruction::Sub: 3586 case Instruction::Mul: 3587 case Instruction::And: 3588 case Instruction::Or: 3589 case Instruction::Xor: 3590 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3591 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3592 return false; 3593 break; 3594 3595 // We can demote selects if we can demote their true and false values. 3596 case Instruction::Select: { 3597 SelectInst *SI = cast<SelectInst>(I); 3598 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3599 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3600 return false; 3601 break; 3602 } 3603 3604 // We can demote phis if we can demote all their incoming operands. Note that 3605 // we don't need to worry about cycles since we ensure single use above. 3606 case Instruction::PHI: { 3607 PHINode *PN = cast<PHINode>(I); 3608 for (Value *IncValue : PN->incoming_values()) 3609 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3610 return false; 3611 break; 3612 } 3613 3614 // Otherwise, conservatively give up. 3615 default: 3616 return false; 3617 } 3618 3619 // Record the value that we can demote. 3620 ToDemote.push_back(V); 3621 return true; 3622 } 3623 3624 void BoUpSLP::computeMinimumValueSizes() { 3625 // If there are no external uses, the expression tree must be rooted by a 3626 // store. We can't demote in-memory values, so there is nothing to do here. 3627 if (ExternalUses.empty()) 3628 return; 3629 3630 // We only attempt to truncate integer expressions. 3631 auto &TreeRoot = VectorizableTree[0].Scalars; 3632 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3633 if (!TreeRootIT) 3634 return; 3635 3636 // If the expression is not rooted by a store, these roots should have 3637 // external uses. We will rely on InstCombine to rewrite the expression in 3638 // the narrower type. However, InstCombine only rewrites single-use values. 3639 // This means that if a tree entry other than a root is used externally, it 3640 // must have multiple uses and InstCombine will not rewrite it. The code 3641 // below ensures that only the roots are used externally. 3642 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3643 for (auto &EU : ExternalUses) 3644 if (!Expr.erase(EU.Scalar)) 3645 return; 3646 if (!Expr.empty()) 3647 return; 3648 3649 // Collect the scalar values of the vectorizable expression. We will use this 3650 // context to determine which values can be demoted. If we see a truncation, 3651 // we mark it as seeding another demotion. 3652 for (auto &Entry : VectorizableTree) 3653 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3654 3655 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3656 // have a single external user that is not in the vectorizable tree. 3657 for (auto *Root : TreeRoot) 3658 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3659 return; 3660 3661 // Conservatively determine if we can actually truncate the roots of the 3662 // expression. Collect the values that can be demoted in ToDemote and 3663 // additional roots that require investigating in Roots. 3664 SmallVector<Value *, 32> ToDemote; 3665 SmallVector<Value *, 4> Roots; 3666 for (auto *Root : TreeRoot) 3667 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3668 return; 3669 3670 // The maximum bit width required to represent all the values that can be 3671 // demoted without loss of precision. It would be safe to truncate the roots 3672 // of the expression to this width. 3673 auto MaxBitWidth = 8u; 3674 3675 // We first check if all the bits of the roots are demanded. If they're not, 3676 // we can truncate the roots to this narrower type. 3677 for (auto *Root : TreeRoot) { 3678 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3679 MaxBitWidth = std::max<unsigned>( 3680 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3681 } 3682 3683 // True if the roots can be zero-extended back to their original type, rather 3684 // than sign-extended. We know that if the leading bits are not demanded, we 3685 // can safely zero-extend. So we initialize IsKnownPositive to True. 3686 bool IsKnownPositive = true; 3687 3688 // If all the bits of the roots are demanded, we can try a little harder to 3689 // compute a narrower type. This can happen, for example, if the roots are 3690 // getelementptr indices. InstCombine promotes these indices to the pointer 3691 // width. Thus, all their bits are technically demanded even though the 3692 // address computation might be vectorized in a smaller type. 3693 // 3694 // We start by looking at each entry that can be demoted. We compute the 3695 // maximum bit width required to store the scalar by using ValueTracking to 3696 // compute the number of high-order bits we can truncate. 3697 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3698 MaxBitWidth = 8u; 3699 3700 // Determine if the sign bit of all the roots is known to be zero. If not, 3701 // IsKnownPositive is set to False. 3702 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3703 KnownBits Known = computeKnownBits(R, *DL); 3704 return Known.isNonNegative(); 3705 }); 3706 3707 // Determine the maximum number of bits required to store the scalar 3708 // values. 3709 for (auto *Scalar : ToDemote) { 3710 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3711 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3712 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3713 } 3714 3715 // If we can't prove that the sign bit is zero, we must add one to the 3716 // maximum bit width to account for the unknown sign bit. This preserves 3717 // the existing sign bit so we can safely sign-extend the root back to the 3718 // original type. Otherwise, if we know the sign bit is zero, we will 3719 // zero-extend the root instead. 3720 // 3721 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3722 // one to the maximum bit width will yield a larger-than-necessary 3723 // type. In general, we need to add an extra bit only if we can't 3724 // prove that the upper bit of the original type is equal to the 3725 // upper bit of the proposed smaller type. If these two bits are the 3726 // same (either zero or one) we know that sign-extending from the 3727 // smaller type will result in the same value. Here, since we can't 3728 // yet prove this, we are just making the proposed smaller type 3729 // larger to ensure correctness. 3730 if (!IsKnownPositive) 3731 ++MaxBitWidth; 3732 } 3733 3734 // Round MaxBitWidth up to the next power-of-two. 3735 if (!isPowerOf2_64(MaxBitWidth)) 3736 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3737 3738 // If the maximum bit width we compute is less than the with of the roots' 3739 // type, we can proceed with the narrowing. Otherwise, do nothing. 3740 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3741 return; 3742 3743 // If we can truncate the root, we must collect additional values that might 3744 // be demoted as a result. That is, those seeded by truncations we will 3745 // modify. 3746 while (!Roots.empty()) 3747 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3748 3749 // Finally, map the values we can demote to the maximum bit with we computed. 3750 for (auto *Scalar : ToDemote) 3751 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3752 } 3753 3754 namespace { 3755 /// The SLPVectorizer Pass. 3756 struct SLPVectorizer : public FunctionPass { 3757 SLPVectorizerPass Impl; 3758 3759 /// Pass identification, replacement for typeid 3760 static char ID; 3761 3762 explicit SLPVectorizer() : FunctionPass(ID) { 3763 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3764 } 3765 3766 3767 bool doInitialization(Module &M) override { 3768 return false; 3769 } 3770 3771 bool runOnFunction(Function &F) override { 3772 if (skipFunction(F)) 3773 return false; 3774 3775 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3776 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3777 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3778 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3779 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3780 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3781 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3782 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3783 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3784 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3785 3786 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 3787 } 3788 3789 void getAnalysisUsage(AnalysisUsage &AU) const override { 3790 FunctionPass::getAnalysisUsage(AU); 3791 AU.addRequired<AssumptionCacheTracker>(); 3792 AU.addRequired<ScalarEvolutionWrapperPass>(); 3793 AU.addRequired<AAResultsWrapperPass>(); 3794 AU.addRequired<TargetTransformInfoWrapperPass>(); 3795 AU.addRequired<LoopInfoWrapperPass>(); 3796 AU.addRequired<DominatorTreeWrapperPass>(); 3797 AU.addRequired<DemandedBitsWrapperPass>(); 3798 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3799 AU.addPreserved<LoopInfoWrapperPass>(); 3800 AU.addPreserved<DominatorTreeWrapperPass>(); 3801 AU.addPreserved<AAResultsWrapperPass>(); 3802 AU.addPreserved<GlobalsAAWrapperPass>(); 3803 AU.setPreservesCFG(); 3804 } 3805 }; 3806 } // end anonymous namespace 3807 3808 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3809 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3810 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3811 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3812 auto *AA = &AM.getResult<AAManager>(F); 3813 auto *LI = &AM.getResult<LoopAnalysis>(F); 3814 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3815 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3816 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3817 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3818 3819 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 3820 if (!Changed) 3821 return PreservedAnalyses::all(); 3822 3823 PreservedAnalyses PA; 3824 PA.preserveSet<CFGAnalyses>(); 3825 PA.preserve<AAManager>(); 3826 PA.preserve<GlobalsAA>(); 3827 return PA; 3828 } 3829 3830 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3831 TargetTransformInfo *TTI_, 3832 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3833 LoopInfo *LI_, DominatorTree *DT_, 3834 AssumptionCache *AC_, DemandedBits *DB_, 3835 OptimizationRemarkEmitter *ORE_) { 3836 SE = SE_; 3837 TTI = TTI_; 3838 TLI = TLI_; 3839 AA = AA_; 3840 LI = LI_; 3841 DT = DT_; 3842 AC = AC_; 3843 DB = DB_; 3844 DL = &F.getParent()->getDataLayout(); 3845 3846 Stores.clear(); 3847 GEPs.clear(); 3848 bool Changed = false; 3849 3850 // If the target claims to have no vector registers don't attempt 3851 // vectorization. 3852 if (!TTI->getNumberOfRegisters(true)) 3853 return false; 3854 3855 // Don't vectorize when the attribute NoImplicitFloat is used. 3856 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3857 return false; 3858 3859 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3860 3861 // Use the bottom up slp vectorizer to construct chains that start with 3862 // store instructions. 3863 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 3864 3865 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3866 // delete instructions. 3867 3868 // Scan the blocks in the function in post order. 3869 for (auto BB : post_order(&F.getEntryBlock())) { 3870 collectSeedInstructions(BB); 3871 3872 // Vectorize trees that end at stores. 3873 if (!Stores.empty()) { 3874 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3875 << " underlying objects.\n"); 3876 Changed |= vectorizeStoreChains(R); 3877 } 3878 3879 // Vectorize trees that end at reductions. 3880 Changed |= vectorizeChainsInBlock(BB, R); 3881 3882 // Vectorize the index computations of getelementptr instructions. This 3883 // is primarily intended to catch gather-like idioms ending at 3884 // non-consecutive loads. 3885 if (!GEPs.empty()) { 3886 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3887 << " underlying objects.\n"); 3888 Changed |= vectorizeGEPIndices(BB, R); 3889 } 3890 } 3891 3892 if (Changed) { 3893 R.optimizeGatherSequence(); 3894 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3895 DEBUG(verifyFunction(F)); 3896 } 3897 return Changed; 3898 } 3899 3900 /// \brief Check that the Values in the slice in VL array are still existent in 3901 /// the WeakTrackingVH array. 3902 /// Vectorization of part of the VL array may cause later values in the VL array 3903 /// to become invalid. We track when this has happened in the WeakTrackingVH 3904 /// array. 3905 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 3906 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 3907 unsigned SliceSize) { 3908 VL = VL.slice(SliceBegin, SliceSize); 3909 VH = VH.slice(SliceBegin, SliceSize); 3910 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3911 } 3912 3913 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3914 unsigned VecRegSize) { 3915 unsigned ChainLen = Chain.size(); 3916 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3917 << "\n"); 3918 unsigned Sz = R.getVectorElementSize(Chain[0]); 3919 unsigned VF = VecRegSize / Sz; 3920 3921 if (!isPowerOf2_32(Sz) || VF < 2) 3922 return false; 3923 3924 // Keep track of values that were deleted by vectorizing in the loop below. 3925 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 3926 3927 bool Changed = false; 3928 // Look for profitable vectorizable trees at all offsets, starting at zero. 3929 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3930 if (i + VF > e) 3931 break; 3932 3933 // Check that a previous iteration of this loop did not delete the Value. 3934 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3935 continue; 3936 3937 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3938 << "\n"); 3939 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3940 3941 R.buildTree(Operands); 3942 if (R.isTreeTinyAndNotFullyVectorizable()) 3943 continue; 3944 3945 R.computeMinimumValueSizes(); 3946 3947 int Cost = R.getTreeCost(); 3948 3949 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3950 if (Cost < -SLPCostThreshold) { 3951 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3952 using namespace ore; 3953 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 3954 cast<StoreInst>(Chain[i])) 3955 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 3956 << " and with tree size " 3957 << NV("TreeSize", R.getTreeSize())); 3958 3959 R.vectorizeTree(); 3960 3961 // Move to the next bundle. 3962 i += VF - 1; 3963 Changed = true; 3964 } 3965 } 3966 3967 return Changed; 3968 } 3969 3970 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3971 BoUpSLP &R) { 3972 SetVector<StoreInst *> Heads, Tails; 3973 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3974 3975 // We may run into multiple chains that merge into a single chain. We mark the 3976 // stores that we vectorized so that we don't visit the same store twice. 3977 BoUpSLP::ValueSet VectorizedStores; 3978 bool Changed = false; 3979 3980 // Do a quadratic search on all of the given stores and find 3981 // all of the pairs of stores that follow each other. 3982 SmallVector<unsigned, 16> IndexQueue; 3983 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3984 IndexQueue.clear(); 3985 // If a store has multiple consecutive store candidates, search Stores 3986 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3987 // This is because usually pairing with immediate succeeding or preceding 3988 // candidate create the best chance to find slp vectorization opportunity. 3989 unsigned j = 0; 3990 for (j = i + 1; j < e; ++j) 3991 IndexQueue.push_back(j); 3992 for (j = i; j > 0; --j) 3993 IndexQueue.push_back(j - 1); 3994 3995 for (auto &k : IndexQueue) { 3996 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3997 Tails.insert(Stores[k]); 3998 Heads.insert(Stores[i]); 3999 ConsecutiveChain[Stores[i]] = Stores[k]; 4000 break; 4001 } 4002 } 4003 } 4004 4005 // For stores that start but don't end a link in the chain: 4006 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 4007 it != e; ++it) { 4008 if (Tails.count(*it)) 4009 continue; 4010 4011 // We found a store instr that starts a chain. Now follow the chain and try 4012 // to vectorize it. 4013 BoUpSLP::ValueList Operands; 4014 StoreInst *I = *it; 4015 // Collect the chain into a list. 4016 while (Tails.count(I) || Heads.count(I)) { 4017 if (VectorizedStores.count(I)) 4018 break; 4019 Operands.push_back(I); 4020 // Move to the next value in the chain. 4021 I = ConsecutiveChain[I]; 4022 } 4023 4024 // FIXME: Is division-by-2 the correct step? Should we assert that the 4025 // register size is a power-of-2? 4026 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4027 Size /= 2) { 4028 if (vectorizeStoreChain(Operands, R, Size)) { 4029 // Mark the vectorized stores so that we don't vectorize them again. 4030 VectorizedStores.insert(Operands.begin(), Operands.end()); 4031 Changed = true; 4032 break; 4033 } 4034 } 4035 } 4036 4037 return Changed; 4038 } 4039 4040 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4041 4042 // Initialize the collections. We will make a single pass over the block. 4043 Stores.clear(); 4044 GEPs.clear(); 4045 4046 // Visit the store and getelementptr instructions in BB and organize them in 4047 // Stores and GEPs according to the underlying objects of their pointer 4048 // operands. 4049 for (Instruction &I : *BB) { 4050 4051 // Ignore store instructions that are volatile or have a pointer operand 4052 // that doesn't point to a scalar type. 4053 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4054 if (!SI->isSimple()) 4055 continue; 4056 if (!isValidElementType(SI->getValueOperand()->getType())) 4057 continue; 4058 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4059 } 4060 4061 // Ignore getelementptr instructions that have more than one index, a 4062 // constant index, or a pointer operand that doesn't point to a scalar 4063 // type. 4064 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4065 auto Idx = GEP->idx_begin()->get(); 4066 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4067 continue; 4068 if (!isValidElementType(Idx->getType())) 4069 continue; 4070 if (GEP->getType()->isVectorTy()) 4071 continue; 4072 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4073 } 4074 } 4075 } 4076 4077 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4078 if (!A || !B) 4079 return false; 4080 Value *VL[] = { A, B }; 4081 return tryToVectorizeList(VL, R, None, true); 4082 } 4083 4084 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4085 ArrayRef<Value *> BuildVector, 4086 bool AllowReorder) { 4087 if (VL.size() < 2) 4088 return false; 4089 4090 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4091 << ".\n"); 4092 4093 // Check that all of the parts are scalar instructions of the same type. 4094 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4095 if (!I0) 4096 return false; 4097 4098 unsigned Opcode0 = I0->getOpcode(); 4099 4100 unsigned Sz = R.getVectorElementSize(I0); 4101 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4102 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4103 if (MaxVF < 2) 4104 return false; 4105 4106 for (Value *V : VL) { 4107 Type *Ty = V->getType(); 4108 if (!isValidElementType(Ty)) 4109 return false; 4110 Instruction *Inst = dyn_cast<Instruction>(V); 4111 if (!Inst || Inst->getOpcode() != Opcode0) 4112 return false; 4113 } 4114 4115 bool Changed = false; 4116 4117 // Keep track of values that were deleted by vectorizing in the loop below. 4118 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4119 4120 unsigned NextInst = 0, MaxInst = VL.size(); 4121 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4122 VF /= 2) { 4123 // No actual vectorization should happen, if number of parts is the same as 4124 // provided vectorization factor (i.e. the scalar type is used for vector 4125 // code during codegen). 4126 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4127 if (TTI->getNumberOfParts(VecTy) == VF) 4128 continue; 4129 for (unsigned I = NextInst; I < MaxInst; ++I) { 4130 unsigned OpsWidth = 0; 4131 4132 if (I + VF > MaxInst) 4133 OpsWidth = MaxInst - I; 4134 else 4135 OpsWidth = VF; 4136 4137 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4138 break; 4139 4140 // Check that a previous iteration of this loop did not delete the Value. 4141 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4142 continue; 4143 4144 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4145 << "\n"); 4146 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4147 4148 ArrayRef<Value *> BuildVectorSlice; 4149 if (!BuildVector.empty()) 4150 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4151 4152 R.buildTree(Ops, BuildVectorSlice); 4153 // TODO: check if we can allow reordering for more cases. 4154 if (AllowReorder && R.shouldReorder()) { 4155 // Conceptually, there is nothing actually preventing us from trying to 4156 // reorder a larger list. In fact, we do exactly this when vectorizing 4157 // reductions. However, at this point, we only expect to get here when 4158 // there are exactly two operations. 4159 assert(Ops.size() == 2); 4160 assert(BuildVectorSlice.empty()); 4161 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4162 R.buildTree(ReorderedOps, None); 4163 } 4164 if (R.isTreeTinyAndNotFullyVectorizable()) 4165 continue; 4166 4167 R.computeMinimumValueSizes(); 4168 int Cost = R.getTreeCost(); 4169 4170 if (Cost < -SLPCostThreshold) { 4171 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4172 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4173 cast<Instruction>(Ops[0])) 4174 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4175 << " and with tree size " 4176 << ore::NV("TreeSize", R.getTreeSize())); 4177 4178 Value *VectorizedRoot = R.vectorizeTree(); 4179 4180 // Reconstruct the build vector by extracting the vectorized root. This 4181 // way we handle the case where some elements of the vector are 4182 // undefined. 4183 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4184 if (!BuildVectorSlice.empty()) { 4185 // The insert point is the last build vector instruction. The 4186 // vectorized root will precede it. This guarantees that we get an 4187 // instruction. The vectorized tree could have been constant folded. 4188 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4189 unsigned VecIdx = 0; 4190 for (auto &V : BuildVectorSlice) { 4191 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4192 ++BasicBlock::iterator(InsertAfter)); 4193 Instruction *I = cast<Instruction>(V); 4194 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4195 Instruction *Extract = 4196 cast<Instruction>(Builder.CreateExtractElement( 4197 VectorizedRoot, Builder.getInt32(VecIdx++))); 4198 I->setOperand(1, Extract); 4199 I->removeFromParent(); 4200 I->insertAfter(Extract); 4201 InsertAfter = I; 4202 } 4203 } 4204 // Move to the next bundle. 4205 I += VF - 1; 4206 NextInst = I + 1; 4207 Changed = true; 4208 } 4209 } 4210 } 4211 4212 return Changed; 4213 } 4214 4215 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4216 if (!V) 4217 return false; 4218 4219 Value *P = V->getParent(); 4220 4221 // Vectorize in current basic block only. 4222 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0)); 4223 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1)); 4224 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4225 return false; 4226 4227 // Try to vectorize V. 4228 if (tryToVectorizePair(Op0, Op1, R)) 4229 return true; 4230 4231 auto *A = dyn_cast<BinaryOperator>(Op0); 4232 auto *B = dyn_cast<BinaryOperator>(Op1); 4233 // Try to skip B. 4234 if (B && B->hasOneUse()) { 4235 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4236 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4237 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4238 return true; 4239 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4240 return true; 4241 } 4242 4243 // Try to skip A. 4244 if (A && A->hasOneUse()) { 4245 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4246 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4247 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4248 return true; 4249 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4250 return true; 4251 } 4252 return false; 4253 } 4254 4255 /// \brief Generate a shuffle mask to be used in a reduction tree. 4256 /// 4257 /// \param VecLen The length of the vector to be reduced. 4258 /// \param NumEltsToRdx The number of elements that should be reduced in the 4259 /// vector. 4260 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4261 /// reduction. A pairwise reduction will generate a mask of 4262 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4263 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4264 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4265 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4266 bool IsPairwise, bool IsLeft, 4267 IRBuilder<> &Builder) { 4268 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4269 4270 SmallVector<Constant *, 32> ShuffleMask( 4271 VecLen, UndefValue::get(Builder.getInt32Ty())); 4272 4273 if (IsPairwise) 4274 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4275 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4276 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4277 else 4278 // Move the upper half of the vector to the lower half. 4279 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4280 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4281 4282 return ConstantVector::get(ShuffleMask); 4283 } 4284 4285 namespace { 4286 /// Model horizontal reductions. 4287 /// 4288 /// A horizontal reduction is a tree of reduction operations (currently add and 4289 /// fadd) that has operations that can be put into a vector as its leaf. 4290 /// For example, this tree: 4291 /// 4292 /// mul mul mul mul 4293 /// \ / \ / 4294 /// + + 4295 /// \ / 4296 /// + 4297 /// This tree has "mul" as its reduced values and "+" as its reduction 4298 /// operations. A reduction might be feeding into a store or a binary operation 4299 /// feeding a phi. 4300 /// ... 4301 /// \ / 4302 /// + 4303 /// | 4304 /// phi += 4305 /// 4306 /// Or: 4307 /// ... 4308 /// \ / 4309 /// + 4310 /// | 4311 /// *p = 4312 /// 4313 class HorizontalReduction { 4314 SmallVector<Value *, 16> ReductionOps; 4315 SmallVector<Value *, 32> ReducedVals; 4316 // Use map vector to make stable output. 4317 MapVector<Instruction *, Value *> ExtraArgs; 4318 4319 BinaryOperator *ReductionRoot = nullptr; 4320 4321 /// The opcode of the reduction. 4322 Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd; 4323 /// The opcode of the values we perform a reduction on. 4324 unsigned ReducedValueOpcode = 0; 4325 /// Should we model this reduction as a pairwise reduction tree or a tree that 4326 /// splits the vector in halves and adds those halves. 4327 bool IsPairwiseReduction = false; 4328 4329 /// Checks if the ParentStackElem.first should be marked as a reduction 4330 /// operation with an extra argument or as extra argument itself. 4331 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 4332 Value *ExtraArg) { 4333 if (ExtraArgs.count(ParentStackElem.first)) { 4334 ExtraArgs[ParentStackElem.first] = nullptr; 4335 // We ran into something like: 4336 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 4337 // The whole ParentStackElem.first should be considered as an extra value 4338 // in this case. 4339 // Do not perform analysis of remaining operands of ParentStackElem.first 4340 // instruction, this whole instruction is an extra argument. 4341 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 4342 } else { 4343 // We ran into something like: 4344 // ParentStackElem.first += ... + ExtraArg + ... 4345 ExtraArgs[ParentStackElem.first] = ExtraArg; 4346 } 4347 } 4348 4349 public: 4350 HorizontalReduction() = default; 4351 4352 /// \brief Try to find a reduction tree. 4353 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4354 assert((!Phi || is_contained(Phi->operands(), B)) && 4355 "Thi phi needs to use the binary operator"); 4356 4357 // We could have a initial reductions that is not an add. 4358 // r *= v1 + v2 + v3 + v4 4359 // In such a case start looking for a tree rooted in the first '+'. 4360 if (Phi) { 4361 if (B->getOperand(0) == Phi) { 4362 Phi = nullptr; 4363 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4364 } else if (B->getOperand(1) == Phi) { 4365 Phi = nullptr; 4366 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4367 } 4368 } 4369 4370 if (!B) 4371 return false; 4372 4373 Type *Ty = B->getType(); 4374 if (!isValidElementType(Ty)) 4375 return false; 4376 4377 ReductionOpcode = B->getOpcode(); 4378 ReducedValueOpcode = 0; 4379 ReductionRoot = B; 4380 4381 // We currently only support adds. 4382 if ((ReductionOpcode != Instruction::Add && 4383 ReductionOpcode != Instruction::FAdd) || 4384 !B->isAssociative()) 4385 return false; 4386 4387 // Post order traverse the reduction tree starting at B. We only handle true 4388 // trees containing only binary operators or selects. 4389 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4390 Stack.push_back(std::make_pair(B, 0)); 4391 while (!Stack.empty()) { 4392 Instruction *TreeN = Stack.back().first; 4393 unsigned EdgeToVist = Stack.back().second++; 4394 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4395 4396 // Postorder vist. 4397 if (EdgeToVist == 2 || IsReducedValue) { 4398 if (IsReducedValue) 4399 ReducedVals.push_back(TreeN); 4400 else { 4401 auto I = ExtraArgs.find(TreeN); 4402 if (I != ExtraArgs.end() && !I->second) { 4403 // Check if TreeN is an extra argument of its parent operation. 4404 if (Stack.size() <= 1) { 4405 // TreeN can't be an extra argument as it is a root reduction 4406 // operation. 4407 return false; 4408 } 4409 // Yes, TreeN is an extra argument, do not add it to a list of 4410 // reduction operations. 4411 // Stack[Stack.size() - 2] always points to the parent operation. 4412 markExtraArg(Stack[Stack.size() - 2], TreeN); 4413 ExtraArgs.erase(TreeN); 4414 } else 4415 ReductionOps.push_back(TreeN); 4416 } 4417 // Retract. 4418 Stack.pop_back(); 4419 continue; 4420 } 4421 4422 // Visit left or right. 4423 Value *NextV = TreeN->getOperand(EdgeToVist); 4424 if (NextV != Phi) { 4425 auto *I = dyn_cast<Instruction>(NextV); 4426 // Continue analysis if the next operand is a reduction operation or 4427 // (possibly) a reduced value. If the reduced value opcode is not set, 4428 // the first met operation != reduction operation is considered as the 4429 // reduced value class. 4430 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4431 I->getOpcode() == ReductionOpcode)) { 4432 // Only handle trees in the current basic block. 4433 if (I->getParent() != B->getParent()) { 4434 // I is an extra argument for TreeN (its parent operation). 4435 markExtraArg(Stack.back(), I); 4436 continue; 4437 } 4438 4439 // Each tree node needs to have one user except for the ultimate 4440 // reduction. 4441 if (!I->hasOneUse() && I != B) { 4442 // I is an extra argument for TreeN (its parent operation). 4443 markExtraArg(Stack.back(), I); 4444 continue; 4445 } 4446 4447 if (I->getOpcode() == ReductionOpcode) { 4448 // We need to be able to reassociate the reduction operations. 4449 if (!I->isAssociative()) { 4450 // I is an extra argument for TreeN (its parent operation). 4451 markExtraArg(Stack.back(), I); 4452 continue; 4453 } 4454 } else if (ReducedValueOpcode && 4455 ReducedValueOpcode != I->getOpcode()) { 4456 // Make sure that the opcodes of the operations that we are going to 4457 // reduce match. 4458 // I is an extra argument for TreeN (its parent operation). 4459 markExtraArg(Stack.back(), I); 4460 continue; 4461 } else if (!ReducedValueOpcode) 4462 ReducedValueOpcode = I->getOpcode(); 4463 4464 Stack.push_back(std::make_pair(I, 0)); 4465 continue; 4466 } 4467 } 4468 // NextV is an extra argument for TreeN (its parent operation). 4469 markExtraArg(Stack.back(), NextV); 4470 } 4471 return true; 4472 } 4473 4474 /// \brief Attempt to vectorize the tree found by 4475 /// matchAssociativeReduction. 4476 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4477 if (ReducedVals.empty()) 4478 return false; 4479 4480 // If there is a sufficient number of reduction values, reduce 4481 // to a nearby power-of-2. Can safely generate oversized 4482 // vectors and rely on the backend to split them to legal sizes. 4483 unsigned NumReducedVals = ReducedVals.size(); 4484 if (NumReducedVals < 4) 4485 return false; 4486 4487 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4488 4489 Value *VectorizedTree = nullptr; 4490 IRBuilder<> Builder(ReductionRoot); 4491 FastMathFlags Unsafe; 4492 Unsafe.setUnsafeAlgebra(); 4493 Builder.setFastMathFlags(Unsafe); 4494 unsigned i = 0; 4495 4496 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 4497 // The same extra argument may be used several time, so log each attempt 4498 // to use it. 4499 for (auto &Pair : ExtraArgs) 4500 ExternallyUsedValues[Pair.second].push_back(Pair.first); 4501 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4502 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4503 V.buildTree(VL, ExternallyUsedValues, ReductionOps); 4504 if (V.shouldReorder()) { 4505 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4506 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps); 4507 } 4508 if (V.isTreeTinyAndNotFullyVectorizable()) 4509 break; 4510 4511 V.computeMinimumValueSizes(); 4512 4513 // Estimate cost. 4514 int Cost = 4515 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4516 if (Cost >= -SLPCostThreshold) 4517 break; 4518 4519 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4520 << ". (HorRdx)\n"); 4521 auto *I0 = cast<Instruction>(VL[0]); 4522 V.getORE()->emit( 4523 OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0) 4524 << "Vectorized horizontal reduction with cost " 4525 << ore::NV("Cost", Cost) << " and with tree size " 4526 << ore::NV("TreeSize", V.getTreeSize())); 4527 4528 // Vectorize a tree. 4529 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4530 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 4531 4532 // Emit a reduction. 4533 Value *ReducedSubTree = 4534 emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI); 4535 if (VectorizedTree) { 4536 Builder.SetCurrentDebugLocation(Loc); 4537 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4538 ReducedSubTree, "bin.rdx"); 4539 propagateIRFlags(VectorizedTree, ReductionOps); 4540 } else 4541 VectorizedTree = ReducedSubTree; 4542 i += ReduxWidth; 4543 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4544 } 4545 4546 if (VectorizedTree) { 4547 // Finish the reduction. 4548 for (; i < NumReducedVals; ++i) { 4549 auto *I = cast<Instruction>(ReducedVals[i]); 4550 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4551 VectorizedTree = 4552 Builder.CreateBinOp(ReductionOpcode, VectorizedTree, I); 4553 propagateIRFlags(VectorizedTree, ReductionOps); 4554 } 4555 for (auto &Pair : ExternallyUsedValues) { 4556 assert(!Pair.second.empty() && 4557 "At least one DebugLoc must be inserted"); 4558 // Add each externally used value to the final reduction. 4559 for (auto *I : Pair.second) { 4560 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4561 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4562 Pair.first, "bin.extra"); 4563 propagateIRFlags(VectorizedTree, I); 4564 } 4565 } 4566 // Update users. 4567 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4568 } 4569 return VectorizedTree != nullptr; 4570 } 4571 4572 unsigned numReductionValues() const { 4573 return ReducedVals.size(); 4574 } 4575 4576 private: 4577 /// \brief Calculate the cost of a reduction. 4578 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 4579 unsigned ReduxWidth) { 4580 Type *ScalarTy = FirstReducedVal->getType(); 4581 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4582 4583 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4584 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4585 4586 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4587 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4588 4589 int ScalarReduxCost = 4590 (ReduxWidth - 1) * 4591 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4592 4593 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4594 << " for reduction that starts with " << *FirstReducedVal 4595 << " (It is a " 4596 << (IsPairwiseReduction ? "pairwise" : "splitting") 4597 << " reduction)\n"); 4598 4599 return VecReduxCost - ScalarReduxCost; 4600 } 4601 4602 /// \brief Emit a horizontal reduction of the vectorized value. 4603 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 4604 unsigned ReduxWidth, ArrayRef<Value *> RedOps, 4605 const TargetTransformInfo *TTI) { 4606 assert(VectorizedValue && "Need to have a vectorized tree node"); 4607 assert(isPowerOf2_32(ReduxWidth) && 4608 "We only handle power-of-two reductions for now"); 4609 4610 if (!IsPairwiseReduction) 4611 return createSimpleTargetReduction( 4612 Builder, TTI, ReductionOpcode, VectorizedValue, 4613 TargetTransformInfo::ReductionFlags(), RedOps); 4614 4615 Value *TmpVec = VectorizedValue; 4616 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4617 Value *LeftMask = 4618 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4619 Value *RightMask = 4620 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4621 4622 Value *LeftShuf = Builder.CreateShuffleVector( 4623 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4624 Value *RightShuf = Builder.CreateShuffleVector( 4625 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4626 "rdx.shuf.r"); 4627 TmpVec = 4628 Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, "bin.rdx"); 4629 propagateIRFlags(TmpVec, RedOps); 4630 } 4631 4632 // The result is in the first element of the vector. 4633 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4634 } 4635 }; 4636 } // end anonymous namespace 4637 4638 /// \brief Recognize construction of vectors like 4639 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4640 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4641 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4642 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4643 /// 4644 /// Returns true if it matches 4645 /// 4646 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4647 SmallVectorImpl<Value *> &BuildVector, 4648 SmallVectorImpl<Value *> &BuildVectorOpds) { 4649 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4650 return false; 4651 4652 InsertElementInst *IE = FirstInsertElem; 4653 while (true) { 4654 BuildVector.push_back(IE); 4655 BuildVectorOpds.push_back(IE->getOperand(1)); 4656 4657 if (IE->use_empty()) 4658 return false; 4659 4660 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4661 if (!NextUse) 4662 return true; 4663 4664 // If this isn't the final use, make sure the next insertelement is the only 4665 // use. It's OK if the final constructed vector is used multiple times 4666 if (!IE->hasOneUse()) 4667 return false; 4668 4669 IE = NextUse; 4670 } 4671 4672 return false; 4673 } 4674 4675 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4676 /// 4677 /// \return true if it matches. 4678 static bool findBuildAggregate(InsertValueInst *IV, 4679 SmallVectorImpl<Value *> &BuildVector, 4680 SmallVectorImpl<Value *> &BuildVectorOpds) { 4681 Value *V; 4682 do { 4683 BuildVector.push_back(IV); 4684 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4685 V = IV->getAggregateOperand(); 4686 if (isa<UndefValue>(V)) 4687 break; 4688 IV = dyn_cast<InsertValueInst>(V); 4689 if (!IV || !IV->hasOneUse()) 4690 return false; 4691 } while (true); 4692 std::reverse(BuildVector.begin(), BuildVector.end()); 4693 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 4694 return true; 4695 } 4696 4697 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4698 return V->getType() < V2->getType(); 4699 } 4700 4701 /// \brief Try and get a reduction value from a phi node. 4702 /// 4703 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4704 /// if they come from either \p ParentBB or a containing loop latch. 4705 /// 4706 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4707 /// if not possible. 4708 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4709 BasicBlock *ParentBB, LoopInfo *LI) { 4710 // There are situations where the reduction value is not dominated by the 4711 // reduction phi. Vectorizing such cases has been reported to cause 4712 // miscompiles. See PR25787. 4713 auto DominatedReduxValue = [&](Value *R) { 4714 return ( 4715 dyn_cast<Instruction>(R) && 4716 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4717 }; 4718 4719 Value *Rdx = nullptr; 4720 4721 // Return the incoming value if it comes from the same BB as the phi node. 4722 if (P->getIncomingBlock(0) == ParentBB) { 4723 Rdx = P->getIncomingValue(0); 4724 } else if (P->getIncomingBlock(1) == ParentBB) { 4725 Rdx = P->getIncomingValue(1); 4726 } 4727 4728 if (Rdx && DominatedReduxValue(Rdx)) 4729 return Rdx; 4730 4731 // Otherwise, check whether we have a loop latch to look at. 4732 Loop *BBL = LI->getLoopFor(ParentBB); 4733 if (!BBL) 4734 return nullptr; 4735 BasicBlock *BBLatch = BBL->getLoopLatch(); 4736 if (!BBLatch) 4737 return nullptr; 4738 4739 // There is a loop latch, return the incoming value if it comes from 4740 // that. This reduction pattern occasionally turns up. 4741 if (P->getIncomingBlock(0) == BBLatch) { 4742 Rdx = P->getIncomingValue(0); 4743 } else if (P->getIncomingBlock(1) == BBLatch) { 4744 Rdx = P->getIncomingValue(1); 4745 } 4746 4747 if (Rdx && DominatedReduxValue(Rdx)) 4748 return Rdx; 4749 4750 return nullptr; 4751 } 4752 4753 /// Attempt to reduce a horizontal reduction. 4754 /// If it is legal to match a horizontal reduction feeding the phi node \a P 4755 /// with reduction operators \a Root (or one of its operands) in a basic block 4756 /// \a BB, then check if it can be done. If horizontal reduction is not found 4757 /// and root instruction is a binary operation, vectorization of the operands is 4758 /// attempted. 4759 /// \returns true if a horizontal reduction was matched and reduced or operands 4760 /// of one of the binary instruction were vectorized. 4761 /// \returns false if a horizontal reduction was not matched (or not possible) 4762 /// or no vectorization of any binary operation feeding \a Root instruction was 4763 /// performed. 4764 static bool tryToVectorizeHorReductionOrInstOperands( 4765 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 4766 TargetTransformInfo *TTI, 4767 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) { 4768 if (!ShouldVectorizeHor) 4769 return false; 4770 4771 if (!Root) 4772 return false; 4773 4774 if (Root->getParent() != BB) 4775 return false; 4776 // Start analysis starting from Root instruction. If horizontal reduction is 4777 // found, try to vectorize it. If it is not a horizontal reduction or 4778 // vectorization is not possible or not effective, and currently analyzed 4779 // instruction is a binary operation, try to vectorize the operands, using 4780 // pre-order DFS traversal order. If the operands were not vectorized, repeat 4781 // the same procedure considering each operand as a possible root of the 4782 // horizontal reduction. 4783 // Interrupt the process if the Root instruction itself was vectorized or all 4784 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 4785 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 4786 SmallSet<Value *, 8> VisitedInstrs; 4787 bool Res = false; 4788 while (!Stack.empty()) { 4789 Value *V; 4790 unsigned Level; 4791 std::tie(V, Level) = Stack.pop_back_val(); 4792 if (!V) 4793 continue; 4794 auto *Inst = dyn_cast<Instruction>(V); 4795 if (!Inst || isa<PHINode>(Inst)) 4796 continue; 4797 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 4798 HorizontalReduction HorRdx; 4799 if (HorRdx.matchAssociativeReduction(P, BI)) { 4800 if (HorRdx.tryToReduce(R, TTI)) { 4801 Res = true; 4802 // Set P to nullptr to avoid re-analysis of phi node in 4803 // matchAssociativeReduction function unless this is the root node. 4804 P = nullptr; 4805 continue; 4806 } 4807 } 4808 if (P) { 4809 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 4810 if (Inst == P) 4811 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 4812 if (!Inst) { 4813 // Set P to nullptr to avoid re-analysis of phi node in 4814 // matchAssociativeReduction function unless this is the root node. 4815 P = nullptr; 4816 continue; 4817 } 4818 } 4819 } 4820 // Set P to nullptr to avoid re-analysis of phi node in 4821 // matchAssociativeReduction function unless this is the root node. 4822 P = nullptr; 4823 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4824 Res = true; 4825 continue; 4826 } 4827 4828 // Try to vectorize operands. 4829 if (++Level < RecursionMaxDepth) 4830 for (auto *Op : Inst->operand_values()) 4831 Stack.emplace_back(Op, Level); 4832 } 4833 return Res; 4834 } 4835 4836 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 4837 BasicBlock *BB, BoUpSLP &R, 4838 TargetTransformInfo *TTI) { 4839 if (!V) 4840 return false; 4841 auto *I = dyn_cast<Instruction>(V); 4842 if (!I) 4843 return false; 4844 4845 if (!isa<BinaryOperator>(I)) 4846 P = nullptr; 4847 // Try to match and vectorize a horizontal reduction. 4848 return tryToVectorizeHorReductionOrInstOperands( 4849 P, I, BB, R, TTI, [this](BinaryOperator *BI, BoUpSLP &R) -> bool { 4850 return tryToVectorize(BI, R); 4851 }); 4852 } 4853 4854 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4855 bool Changed = false; 4856 SmallVector<Value *, 4> Incoming; 4857 SmallSet<Value *, 16> VisitedInstrs; 4858 4859 bool HaveVectorizedPhiNodes = true; 4860 while (HaveVectorizedPhiNodes) { 4861 HaveVectorizedPhiNodes = false; 4862 4863 // Collect the incoming values from the PHIs. 4864 Incoming.clear(); 4865 for (Instruction &I : *BB) { 4866 PHINode *P = dyn_cast<PHINode>(&I); 4867 if (!P) 4868 break; 4869 4870 if (!VisitedInstrs.count(P)) 4871 Incoming.push_back(P); 4872 } 4873 4874 // Sort by type. 4875 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4876 4877 // Try to vectorize elements base on their type. 4878 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4879 E = Incoming.end(); 4880 IncIt != E;) { 4881 4882 // Look for the next elements with the same type. 4883 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4884 while (SameTypeIt != E && 4885 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4886 VisitedInstrs.insert(*SameTypeIt); 4887 ++SameTypeIt; 4888 } 4889 4890 // Try to vectorize them. 4891 unsigned NumElts = (SameTypeIt - IncIt); 4892 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4893 // The order in which the phi nodes appear in the program does not matter. 4894 // So allow tryToVectorizeList to reorder them if it is beneficial. This 4895 // is done when there are exactly two elements since tryToVectorizeList 4896 // asserts that there are only two values when AllowReorder is true. 4897 bool AllowReorder = NumElts == 2; 4898 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 4899 None, AllowReorder)) { 4900 // Success start over because instructions might have been changed. 4901 HaveVectorizedPhiNodes = true; 4902 Changed = true; 4903 break; 4904 } 4905 4906 // Start over at the next instruction of a different type (or the end). 4907 IncIt = SameTypeIt; 4908 } 4909 } 4910 4911 VisitedInstrs.clear(); 4912 4913 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4914 // We may go through BB multiple times so skip the one we have checked. 4915 if (!VisitedInstrs.insert(&*it).second) 4916 continue; 4917 4918 if (isa<DbgInfoIntrinsic>(it)) 4919 continue; 4920 4921 // Try to vectorize reductions that use PHINodes. 4922 if (PHINode *P = dyn_cast<PHINode>(it)) { 4923 // Check that the PHI is a reduction PHI. 4924 if (P->getNumIncomingValues() != 2) 4925 return Changed; 4926 4927 // Try to match and vectorize a horizontal reduction. 4928 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 4929 TTI)) { 4930 Changed = true; 4931 it = BB->begin(); 4932 e = BB->end(); 4933 continue; 4934 } 4935 continue; 4936 } 4937 4938 if (ShouldStartVectorizeHorAtStore) { 4939 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4940 // Try to match and vectorize a horizontal reduction. 4941 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R, 4942 TTI)) { 4943 Changed = true; 4944 it = BB->begin(); 4945 e = BB->end(); 4946 continue; 4947 } 4948 } 4949 } 4950 4951 // Try to vectorize horizontal reductions feeding into a return. 4952 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) { 4953 if (RI->getNumOperands() != 0) { 4954 // Try to match and vectorize a horizontal reduction. 4955 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) { 4956 Changed = true; 4957 it = BB->begin(); 4958 e = BB->end(); 4959 continue; 4960 } 4961 } 4962 } 4963 4964 // Try to vectorize trees that start at compare instructions. 4965 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4966 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4967 Changed = true; 4968 // We would like to start over since some instructions are deleted 4969 // and the iterator may become invalid value. 4970 it = BB->begin(); 4971 e = BB->end(); 4972 continue; 4973 } 4974 4975 for (int I = 0; I < 2; ++I) { 4976 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) { 4977 Changed = true; 4978 // We would like to start over since some instructions are deleted 4979 // and the iterator may become invalid value. 4980 it = BB->begin(); 4981 e = BB->end(); 4982 break; 4983 } 4984 } 4985 continue; 4986 } 4987 4988 // Try to vectorize trees that start at insertelement instructions. 4989 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4990 SmallVector<Value *, 16> BuildVector; 4991 SmallVector<Value *, 16> BuildVectorOpds; 4992 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4993 continue; 4994 4995 // Vectorize starting with the build vector operands ignoring the 4996 // BuildVector instructions for the purpose of scheduling and user 4997 // extraction. 4998 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4999 Changed = true; 5000 it = BB->begin(); 5001 e = BB->end(); 5002 } 5003 5004 continue; 5005 } 5006 5007 // Try to vectorize trees that start at insertvalue instructions feeding into 5008 // a store. 5009 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 5010 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 5011 const DataLayout &DL = BB->getModule()->getDataLayout(); 5012 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 5013 SmallVector<Value *, 16> BuildVector; 5014 SmallVector<Value *, 16> BuildVectorOpds; 5015 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 5016 continue; 5017 5018 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 5019 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 5020 Changed = true; 5021 it = BB->begin(); 5022 e = BB->end(); 5023 } 5024 continue; 5025 } 5026 } 5027 } 5028 } 5029 5030 return Changed; 5031 } 5032 5033 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5034 auto Changed = false; 5035 for (auto &Entry : GEPs) { 5036 5037 // If the getelementptr list has fewer than two elements, there's nothing 5038 // to do. 5039 if (Entry.second.size() < 2) 5040 continue; 5041 5042 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5043 << Entry.second.size() << ".\n"); 5044 5045 // We process the getelementptr list in chunks of 16 (like we do for 5046 // stores) to minimize compile-time. 5047 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5048 auto Len = std::min<unsigned>(BE - BI, 16); 5049 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5050 5051 // Initialize a set a candidate getelementptrs. Note that we use a 5052 // SetVector here to preserve program order. If the index computations 5053 // are vectorizable and begin with loads, we want to minimize the chance 5054 // of having to reorder them later. 5055 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5056 5057 // Some of the candidates may have already been vectorized after we 5058 // initially collected them. If so, the WeakTrackingVHs will have 5059 // nullified the 5060 // values, so remove them from the set of candidates. 5061 Candidates.remove(nullptr); 5062 5063 // Remove from the set of candidates all pairs of getelementptrs with 5064 // constant differences. Such getelementptrs are likely not good 5065 // candidates for vectorization in a bottom-up phase since one can be 5066 // computed from the other. We also ensure all candidate getelementptr 5067 // indices are unique. 5068 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5069 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5070 if (!Candidates.count(GEPI)) 5071 continue; 5072 auto *SCEVI = SE->getSCEV(GEPList[I]); 5073 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5074 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5075 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5076 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5077 Candidates.remove(GEPList[I]); 5078 Candidates.remove(GEPList[J]); 5079 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5080 Candidates.remove(GEPList[J]); 5081 } 5082 } 5083 } 5084 5085 // We break out of the above computation as soon as we know there are 5086 // fewer than two candidates remaining. 5087 if (Candidates.size() < 2) 5088 continue; 5089 5090 // Add the single, non-constant index of each candidate to the bundle. We 5091 // ensured the indices met these constraints when we originally collected 5092 // the getelementptrs. 5093 SmallVector<Value *, 16> Bundle(Candidates.size()); 5094 auto BundleIndex = 0u; 5095 for (auto *V : Candidates) { 5096 auto *GEP = cast<GetElementPtrInst>(V); 5097 auto *GEPIdx = GEP->idx_begin()->get(); 5098 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5099 Bundle[BundleIndex++] = GEPIdx; 5100 } 5101 5102 // Try and vectorize the indices. We are currently only interested in 5103 // gather-like cases of the form: 5104 // 5105 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5106 // 5107 // where the loads of "a", the loads of "b", and the subtractions can be 5108 // performed in parallel. It's likely that detecting this pattern in a 5109 // bottom-up phase will be simpler and less costly than building a 5110 // full-blown top-down phase beginning at the consecutive loads. 5111 Changed |= tryToVectorizeList(Bundle, R); 5112 } 5113 } 5114 return Changed; 5115 } 5116 5117 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5118 bool Changed = false; 5119 // Attempt to sort and vectorize each of the store-groups. 5120 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5121 ++it) { 5122 if (it->second.size() < 2) 5123 continue; 5124 5125 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5126 << it->second.size() << ".\n"); 5127 5128 // Process the stores in chunks of 16. 5129 // TODO: The limit of 16 inhibits greater vectorization factors. 5130 // For example, AVX2 supports v32i8. Increasing this limit, however, 5131 // may cause a significant compile-time increase. 5132 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5133 unsigned Len = std::min<unsigned>(CE - CI, 16); 5134 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5135 } 5136 } 5137 return Changed; 5138 } 5139 5140 char SLPVectorizer::ID = 0; 5141 static const char lv_name[] = "SLP Vectorizer"; 5142 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5143 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5144 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5145 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5146 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5147 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5148 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5149 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5150 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5151 5152 namespace llvm { 5153 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 5154 } 5155