1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 /// TODO: Can we split off and reuse the shuffle mask detection from 250 /// TargetTransformInfo::getInstructionThroughput? 251 static Optional<TargetTransformInfo::ShuffleKind> 252 isShuffle(ArrayRef<Value *> VL) { 253 auto *EI0 = cast<ExtractElementInst>(VL[0]); 254 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 255 Value *Vec1 = nullptr; 256 Value *Vec2 = nullptr; 257 enum ShuffleMode { Unknown, Select, Permute }; 258 ShuffleMode CommonShuffleMode = Unknown; 259 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 260 auto *EI = cast<ExtractElementInst>(VL[I]); 261 auto *Vec = EI->getVectorOperand(); 262 // All vector operands must have the same number of vector elements. 263 if (Vec->getType()->getVectorNumElements() != Size) 264 return None; 265 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 266 if (!Idx) 267 return None; 268 // Undefined behavior if Idx is negative or >= Size. 269 if (Idx->getValue().uge(Size)) 270 continue; 271 unsigned IntIdx = Idx->getValue().getZExtValue(); 272 // We can extractelement from undef vector. 273 if (isa<UndefValue>(Vec)) 274 continue; 275 // For correct shuffling we have to have at most 2 different vector operands 276 // in all extractelement instructions. 277 if (!Vec1 || Vec1 == Vec) 278 Vec1 = Vec; 279 else if (!Vec2 || Vec2 == Vec) 280 Vec2 = Vec; 281 else 282 return None; 283 if (CommonShuffleMode == Permute) 284 continue; 285 // If the extract index is not the same as the operation number, it is a 286 // permutation. 287 if (IntIdx != I) { 288 CommonShuffleMode = Permute; 289 continue; 290 } 291 CommonShuffleMode = Select; 292 } 293 // If we're not crossing lanes in different vectors, consider it as blending. 294 if (CommonShuffleMode == Select && Vec2) 295 return TargetTransformInfo::SK_Select; 296 // If Vec2 was never used, we have a permutation of a single vector, otherwise 297 // we have permutation of 2 vectors. 298 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 299 : TargetTransformInfo::SK_PermuteSingleSrc; 300 } 301 302 namespace { 303 304 /// Main data required for vectorization of instructions. 305 struct InstructionsState { 306 /// The very first instruction in the list with the main opcode. 307 Value *OpValue = nullptr; 308 309 /// The main/alternate instruction. 310 Instruction *MainOp = nullptr; 311 Instruction *AltOp = nullptr; 312 313 /// The main/alternate opcodes for the list of instructions. 314 unsigned getOpcode() const { 315 return MainOp ? MainOp->getOpcode() : 0; 316 } 317 318 unsigned getAltOpcode() const { 319 return AltOp ? AltOp->getOpcode() : 0; 320 } 321 322 /// Some of the instructions in the list have alternate opcodes. 323 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 324 325 bool isOpcodeOrAlt(Instruction *I) const { 326 unsigned CheckedOpcode = I->getOpcode(); 327 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 328 } 329 330 InstructionsState() = delete; 331 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 332 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 333 }; 334 335 } // end anonymous namespace 336 337 /// Chooses the correct key for scheduling data. If \p Op has the same (or 338 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 339 /// OpValue. 340 static Value *isOneOf(const InstructionsState &S, Value *Op) { 341 auto *I = dyn_cast<Instruction>(Op); 342 if (I && S.isOpcodeOrAlt(I)) 343 return Op; 344 return S.OpValue; 345 } 346 347 /// \returns analysis of the Instructions in \p VL described in 348 /// InstructionsState, the Opcode that we suppose the whole list 349 /// could be vectorized even if its structure is diverse. 350 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 351 unsigned BaseIndex = 0) { 352 // Make sure these are all Instructions. 353 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 354 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 355 356 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 357 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 358 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 359 unsigned AltOpcode = Opcode; 360 unsigned AltIndex = BaseIndex; 361 362 // Check for one alternate opcode from another BinaryOperator. 363 // TODO - generalize to support all operators (types, calls etc.). 364 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 365 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 366 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 367 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 368 continue; 369 if (Opcode == AltOpcode) { 370 AltOpcode = InstOpcode; 371 AltIndex = Cnt; 372 continue; 373 } 374 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 375 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 376 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 377 if (Ty0 == Ty1) { 378 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 379 continue; 380 if (Opcode == AltOpcode) { 381 AltOpcode = InstOpcode; 382 AltIndex = Cnt; 383 continue; 384 } 385 } 386 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 387 continue; 388 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 389 } 390 391 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 392 cast<Instruction>(VL[AltIndex])); 393 } 394 395 /// \returns true if all of the values in \p VL have the same type or false 396 /// otherwise. 397 static bool allSameType(ArrayRef<Value *> VL) { 398 Type *Ty = VL[0]->getType(); 399 for (int i = 1, e = VL.size(); i < e; i++) 400 if (VL[i]->getType() != Ty) 401 return false; 402 403 return true; 404 } 405 406 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 407 static Optional<unsigned> getExtractIndex(Instruction *E) { 408 unsigned Opcode = E->getOpcode(); 409 assert((Opcode == Instruction::ExtractElement || 410 Opcode == Instruction::ExtractValue) && 411 "Expected extractelement or extractvalue instruction."); 412 if (Opcode == Instruction::ExtractElement) { 413 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 414 if (!CI) 415 return None; 416 return CI->getZExtValue(); 417 } 418 ExtractValueInst *EI = cast<ExtractValueInst>(E); 419 if (EI->getNumIndices() != 1) 420 return None; 421 return *EI->idx_begin(); 422 } 423 424 /// \returns True if in-tree use also needs extract. This refers to 425 /// possible scalar operand in vectorized instruction. 426 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 427 TargetLibraryInfo *TLI) { 428 unsigned Opcode = UserInst->getOpcode(); 429 switch (Opcode) { 430 case Instruction::Load: { 431 LoadInst *LI = cast<LoadInst>(UserInst); 432 return (LI->getPointerOperand() == Scalar); 433 } 434 case Instruction::Store: { 435 StoreInst *SI = cast<StoreInst>(UserInst); 436 return (SI->getPointerOperand() == Scalar); 437 } 438 case Instruction::Call: { 439 CallInst *CI = cast<CallInst>(UserInst); 440 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 441 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 442 return (CI->getArgOperand(1) == Scalar); 443 } 444 LLVM_FALLTHROUGH; 445 } 446 default: 447 return false; 448 } 449 } 450 451 /// \returns the AA location that is being access by the instruction. 452 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 453 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 454 return MemoryLocation::get(SI); 455 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 456 return MemoryLocation::get(LI); 457 return MemoryLocation(); 458 } 459 460 /// \returns True if the instruction is not a volatile or atomic load/store. 461 static bool isSimple(Instruction *I) { 462 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 463 return LI->isSimple(); 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return SI->isSimple(); 466 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 467 return !MI->isVolatile(); 468 return true; 469 } 470 471 namespace llvm { 472 473 namespace slpvectorizer { 474 475 /// Bottom Up SLP Vectorizer. 476 class BoUpSLP { 477 public: 478 using ValueList = SmallVector<Value *, 8>; 479 using InstrList = SmallVector<Instruction *, 16>; 480 using ValueSet = SmallPtrSet<Value *, 16>; 481 using StoreList = SmallVector<StoreInst *, 8>; 482 using ExtraValueToDebugLocsMap = 483 MapVector<Value *, SmallVector<Instruction *, 2>>; 484 485 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 486 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 487 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 488 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 489 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 490 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 491 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 492 // Use the vector register size specified by the target unless overridden 493 // by a command-line option. 494 // TODO: It would be better to limit the vectorization factor based on 495 // data type rather than just register size. For example, x86 AVX has 496 // 256-bit registers, but it does not support integer operations 497 // at that width (that requires AVX2). 498 if (MaxVectorRegSizeOption.getNumOccurrences()) 499 MaxVecRegSize = MaxVectorRegSizeOption; 500 else 501 MaxVecRegSize = TTI->getRegisterBitWidth(true); 502 503 if (MinVectorRegSizeOption.getNumOccurrences()) 504 MinVecRegSize = MinVectorRegSizeOption; 505 else 506 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 507 } 508 509 /// Vectorize the tree that starts with the elements in \p VL. 510 /// Returns the vectorized root. 511 Value *vectorizeTree(); 512 513 /// Vectorize the tree but with the list of externally used values \p 514 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 515 /// generated extractvalue instructions. 516 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 517 518 /// \returns the cost incurred by unwanted spills and fills, caused by 519 /// holding live values over call sites. 520 int getSpillCost(); 521 522 /// \returns the vectorization cost of the subtree that starts at \p VL. 523 /// A negative number means that this is profitable. 524 int getTreeCost(); 525 526 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 527 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 528 void buildTree(ArrayRef<Value *> Roots, 529 ArrayRef<Value *> UserIgnoreLst = None); 530 531 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 532 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 533 /// into account (anf updating it, if required) list of externally used 534 /// values stored in \p ExternallyUsedValues. 535 void buildTree(ArrayRef<Value *> Roots, 536 ExtraValueToDebugLocsMap &ExternallyUsedValues, 537 ArrayRef<Value *> UserIgnoreLst = None); 538 539 /// Clear the internal data structures that are created by 'buildTree'. 540 void deleteTree() { 541 VectorizableTree.clear(); 542 ScalarToTreeEntry.clear(); 543 MustGather.clear(); 544 ExternalUses.clear(); 545 NumOpsWantToKeepOrder.clear(); 546 NumOpsWantToKeepOriginalOrder = 0; 547 for (auto &Iter : BlocksSchedules) { 548 BlockScheduling *BS = Iter.second.get(); 549 BS->clear(); 550 } 551 MinBWs.clear(); 552 } 553 554 unsigned getTreeSize() const { return VectorizableTree.size(); } 555 556 /// Perform LICM and CSE on the newly generated gather sequences. 557 void optimizeGatherSequence(); 558 559 /// \returns The best order of instructions for vectorization. 560 Optional<ArrayRef<unsigned>> bestOrder() const { 561 auto I = std::max_element( 562 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 563 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 564 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 565 return D1.second < D2.second; 566 }); 567 if (I == NumOpsWantToKeepOrder.end() || 568 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 569 return None; 570 571 return makeArrayRef(I->getFirst()); 572 } 573 574 /// \return The vector element size in bits to use when vectorizing the 575 /// expression tree ending at \p V. If V is a store, the size is the width of 576 /// the stored value. Otherwise, the size is the width of the largest loaded 577 /// value reaching V. This method is used by the vectorizer to calculate 578 /// vectorization factors. 579 unsigned getVectorElementSize(Value *V); 580 581 /// Compute the minimum type sizes required to represent the entries in a 582 /// vectorizable tree. 583 void computeMinimumValueSizes(); 584 585 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 586 unsigned getMaxVecRegSize() const { 587 return MaxVecRegSize; 588 } 589 590 // \returns minimum vector register size as set by cl::opt. 591 unsigned getMinVecRegSize() const { 592 return MinVecRegSize; 593 } 594 595 /// Check if ArrayType or StructType is isomorphic to some VectorType. 596 /// 597 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 598 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 599 600 /// \returns True if the VectorizableTree is both tiny and not fully 601 /// vectorizable. We do not vectorize such trees. 602 bool isTreeTinyAndNotFullyVectorizable(); 603 604 OptimizationRemarkEmitter *getORE() { return ORE; } 605 606 private: 607 struct TreeEntry; 608 609 /// Checks if all users of \p I are the part of the vectorization tree. 610 bool areAllUsersVectorized(Instruction *I) const; 611 612 /// \returns the cost of the vectorizable entry. 613 int getEntryCost(TreeEntry *E); 614 615 /// This is the recursive part of buildTree. 616 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 617 618 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 619 /// be vectorized to use the original vector (or aggregate "bitcast" to a 620 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 621 /// returns false, setting \p CurrentOrder to either an empty vector or a 622 /// non-identity permutation that allows to reuse extract instructions. 623 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 624 SmallVectorImpl<unsigned> &CurrentOrder) const; 625 626 /// Vectorize a single entry in the tree. 627 Value *vectorizeTree(TreeEntry *E); 628 629 /// Vectorize a single entry in the tree, starting in \p VL. 630 Value *vectorizeTree(ArrayRef<Value *> VL); 631 632 /// \returns the scalarization cost for this type. Scalarization in this 633 /// context means the creation of vectors from a group of scalars. 634 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 635 636 /// \returns the scalarization cost for this list of values. Assuming that 637 /// this subtree gets vectorized, we may need to extract the values from the 638 /// roots. This method calculates the cost of extracting the values. 639 int getGatherCost(ArrayRef<Value *> VL); 640 641 /// Set the Builder insert point to one after the last instruction in 642 /// the bundle 643 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 644 const InstructionsState &S); 645 646 /// \returns a vector from a collection of scalars in \p VL. 647 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 648 649 /// \returns whether the VectorizableTree is fully vectorizable and will 650 /// be beneficial even the tree height is tiny. 651 bool isFullyVectorizableTinyTree(); 652 653 /// \reorder commutative operands in alt shuffle if they result in 654 /// vectorized code. 655 void reorderAltShuffleOperands(const InstructionsState &S, 656 ArrayRef<Value *> VL, 657 SmallVectorImpl<Value *> &Left, 658 SmallVectorImpl<Value *> &Right); 659 660 /// \reorder commutative operands to get better probability of 661 /// generating vectorized code. 662 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 663 SmallVectorImpl<Value *> &Left, 664 SmallVectorImpl<Value *> &Right); 665 struct TreeEntry { 666 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 667 668 /// \returns true if the scalars in VL are equal to this entry. 669 bool isSame(ArrayRef<Value *> VL) const { 670 if (VL.size() == Scalars.size()) 671 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 672 return VL.size() == ReuseShuffleIndices.size() && 673 std::equal( 674 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 675 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 676 } 677 678 /// A vector of scalars. 679 ValueList Scalars; 680 681 /// The Scalars are vectorized into this value. It is initialized to Null. 682 Value *VectorizedValue = nullptr; 683 684 /// Do we need to gather this sequence ? 685 bool NeedToGather = false; 686 687 /// Does this sequence require some shuffling? 688 SmallVector<unsigned, 4> ReuseShuffleIndices; 689 690 /// Does this entry require reordering? 691 ArrayRef<unsigned> ReorderIndices; 692 693 /// Points back to the VectorizableTree. 694 /// 695 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 696 /// to be a pointer and needs to be able to initialize the child iterator. 697 /// Thus we need a reference back to the container to translate the indices 698 /// to entries. 699 std::vector<TreeEntry> &Container; 700 701 /// The TreeEntry index containing the user of this entry. We can actually 702 /// have multiple users so the data structure is not truly a tree. 703 SmallVector<int, 1> UserTreeIndices; 704 }; 705 706 /// Create a new VectorizableTree entry. 707 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 708 ArrayRef<unsigned> ReuseShuffleIndices = None, 709 ArrayRef<unsigned> ReorderIndices = None) { 710 VectorizableTree.emplace_back(VectorizableTree); 711 int idx = VectorizableTree.size() - 1; 712 TreeEntry *Last = &VectorizableTree[idx]; 713 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 714 Last->NeedToGather = !Vectorized; 715 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 716 ReuseShuffleIndices.end()); 717 Last->ReorderIndices = ReorderIndices; 718 if (Vectorized) { 719 for (int i = 0, e = VL.size(); i != e; ++i) { 720 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 721 ScalarToTreeEntry[VL[i]] = idx; 722 } 723 } else { 724 MustGather.insert(VL.begin(), VL.end()); 725 } 726 727 if (UserTreeIdx >= 0) 728 Last->UserTreeIndices.push_back(UserTreeIdx); 729 UserTreeIdx = idx; 730 } 731 732 /// -- Vectorization State -- 733 /// Holds all of the tree entries. 734 std::vector<TreeEntry> VectorizableTree; 735 736 TreeEntry *getTreeEntry(Value *V) { 737 auto I = ScalarToTreeEntry.find(V); 738 if (I != ScalarToTreeEntry.end()) 739 return &VectorizableTree[I->second]; 740 return nullptr; 741 } 742 743 /// Maps a specific scalar to its tree entry. 744 SmallDenseMap<Value*, int> ScalarToTreeEntry; 745 746 /// A list of scalars that we found that we need to keep as scalars. 747 ValueSet MustGather; 748 749 /// This POD struct describes one external user in the vectorized tree. 750 struct ExternalUser { 751 ExternalUser(Value *S, llvm::User *U, int L) 752 : Scalar(S), User(U), Lane(L) {} 753 754 // Which scalar in our function. 755 Value *Scalar; 756 757 // Which user that uses the scalar. 758 llvm::User *User; 759 760 // Which lane does the scalar belong to. 761 int Lane; 762 }; 763 using UserList = SmallVector<ExternalUser, 16>; 764 765 /// Checks if two instructions may access the same memory. 766 /// 767 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 768 /// is invariant in the calling loop. 769 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 770 Instruction *Inst2) { 771 // First check if the result is already in the cache. 772 AliasCacheKey key = std::make_pair(Inst1, Inst2); 773 Optional<bool> &result = AliasCache[key]; 774 if (result.hasValue()) { 775 return result.getValue(); 776 } 777 MemoryLocation Loc2 = getLocation(Inst2, AA); 778 bool aliased = true; 779 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 780 // Do the alias check. 781 aliased = AA->alias(Loc1, Loc2); 782 } 783 // Store the result in the cache. 784 result = aliased; 785 return aliased; 786 } 787 788 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 789 790 /// Cache for alias results. 791 /// TODO: consider moving this to the AliasAnalysis itself. 792 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 793 794 /// Removes an instruction from its block and eventually deletes it. 795 /// It's like Instruction::eraseFromParent() except that the actual deletion 796 /// is delayed until BoUpSLP is destructed. 797 /// This is required to ensure that there are no incorrect collisions in the 798 /// AliasCache, which can happen if a new instruction is allocated at the 799 /// same address as a previously deleted instruction. 800 void eraseInstruction(Instruction *I) { 801 I->removeFromParent(); 802 I->dropAllReferences(); 803 DeletedInstructions.emplace_back(I); 804 } 805 806 /// Temporary store for deleted instructions. Instructions will be deleted 807 /// eventually when the BoUpSLP is destructed. 808 SmallVector<unique_value, 8> DeletedInstructions; 809 810 /// A list of values that need to extracted out of the tree. 811 /// This list holds pairs of (Internal Scalar : External User). External User 812 /// can be nullptr, it means that this Internal Scalar will be used later, 813 /// after vectorization. 814 UserList ExternalUses; 815 816 /// Values used only by @llvm.assume calls. 817 SmallPtrSet<const Value *, 32> EphValues; 818 819 /// Holds all of the instructions that we gathered. 820 SetVector<Instruction *> GatherSeq; 821 822 /// A list of blocks that we are going to CSE. 823 SetVector<BasicBlock *> CSEBlocks; 824 825 /// Contains all scheduling relevant data for an instruction. 826 /// A ScheduleData either represents a single instruction or a member of an 827 /// instruction bundle (= a group of instructions which is combined into a 828 /// vector instruction). 829 struct ScheduleData { 830 // The initial value for the dependency counters. It means that the 831 // dependencies are not calculated yet. 832 enum { InvalidDeps = -1 }; 833 834 ScheduleData() = default; 835 836 void init(int BlockSchedulingRegionID, Value *OpVal) { 837 FirstInBundle = this; 838 NextInBundle = nullptr; 839 NextLoadStore = nullptr; 840 IsScheduled = false; 841 SchedulingRegionID = BlockSchedulingRegionID; 842 UnscheduledDepsInBundle = UnscheduledDeps; 843 clearDependencies(); 844 OpValue = OpVal; 845 } 846 847 /// Returns true if the dependency information has been calculated. 848 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 849 850 /// Returns true for single instructions and for bundle representatives 851 /// (= the head of a bundle). 852 bool isSchedulingEntity() const { return FirstInBundle == this; } 853 854 /// Returns true if it represents an instruction bundle and not only a 855 /// single instruction. 856 bool isPartOfBundle() const { 857 return NextInBundle != nullptr || FirstInBundle != this; 858 } 859 860 /// Returns true if it is ready for scheduling, i.e. it has no more 861 /// unscheduled depending instructions/bundles. 862 bool isReady() const { 863 assert(isSchedulingEntity() && 864 "can't consider non-scheduling entity for ready list"); 865 return UnscheduledDepsInBundle == 0 && !IsScheduled; 866 } 867 868 /// Modifies the number of unscheduled dependencies, also updating it for 869 /// the whole bundle. 870 int incrementUnscheduledDeps(int Incr) { 871 UnscheduledDeps += Incr; 872 return FirstInBundle->UnscheduledDepsInBundle += Incr; 873 } 874 875 /// Sets the number of unscheduled dependencies to the number of 876 /// dependencies. 877 void resetUnscheduledDeps() { 878 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 879 } 880 881 /// Clears all dependency information. 882 void clearDependencies() { 883 Dependencies = InvalidDeps; 884 resetUnscheduledDeps(); 885 MemoryDependencies.clear(); 886 } 887 888 void dump(raw_ostream &os) const { 889 if (!isSchedulingEntity()) { 890 os << "/ " << *Inst; 891 } else if (NextInBundle) { 892 os << '[' << *Inst; 893 ScheduleData *SD = NextInBundle; 894 while (SD) { 895 os << ';' << *SD->Inst; 896 SD = SD->NextInBundle; 897 } 898 os << ']'; 899 } else { 900 os << *Inst; 901 } 902 } 903 904 Instruction *Inst = nullptr; 905 906 /// Points to the head in an instruction bundle (and always to this for 907 /// single instructions). 908 ScheduleData *FirstInBundle = nullptr; 909 910 /// Single linked list of all instructions in a bundle. Null if it is a 911 /// single instruction. 912 ScheduleData *NextInBundle = nullptr; 913 914 /// Single linked list of all memory instructions (e.g. load, store, call) 915 /// in the block - until the end of the scheduling region. 916 ScheduleData *NextLoadStore = nullptr; 917 918 /// The dependent memory instructions. 919 /// This list is derived on demand in calculateDependencies(). 920 SmallVector<ScheduleData *, 4> MemoryDependencies; 921 922 /// This ScheduleData is in the current scheduling region if this matches 923 /// the current SchedulingRegionID of BlockScheduling. 924 int SchedulingRegionID = 0; 925 926 /// Used for getting a "good" final ordering of instructions. 927 int SchedulingPriority = 0; 928 929 /// The number of dependencies. Constitutes of the number of users of the 930 /// instruction plus the number of dependent memory instructions (if any). 931 /// This value is calculated on demand. 932 /// If InvalidDeps, the number of dependencies is not calculated yet. 933 int Dependencies = InvalidDeps; 934 935 /// The number of dependencies minus the number of dependencies of scheduled 936 /// instructions. As soon as this is zero, the instruction/bundle gets ready 937 /// for scheduling. 938 /// Note that this is negative as long as Dependencies is not calculated. 939 int UnscheduledDeps = InvalidDeps; 940 941 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 942 /// single instructions. 943 int UnscheduledDepsInBundle = InvalidDeps; 944 945 /// True if this instruction is scheduled (or considered as scheduled in the 946 /// dry-run). 947 bool IsScheduled = false; 948 949 /// Opcode of the current instruction in the schedule data. 950 Value *OpValue = nullptr; 951 }; 952 953 #ifndef NDEBUG 954 friend inline raw_ostream &operator<<(raw_ostream &os, 955 const BoUpSLP::ScheduleData &SD) { 956 SD.dump(os); 957 return os; 958 } 959 #endif 960 961 friend struct GraphTraits<BoUpSLP *>; 962 friend struct DOTGraphTraits<BoUpSLP *>; 963 964 /// Contains all scheduling data for a basic block. 965 struct BlockScheduling { 966 BlockScheduling(BasicBlock *BB) 967 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 968 969 void clear() { 970 ReadyInsts.clear(); 971 ScheduleStart = nullptr; 972 ScheduleEnd = nullptr; 973 FirstLoadStoreInRegion = nullptr; 974 LastLoadStoreInRegion = nullptr; 975 976 // Reduce the maximum schedule region size by the size of the 977 // previous scheduling run. 978 ScheduleRegionSizeLimit -= ScheduleRegionSize; 979 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 980 ScheduleRegionSizeLimit = MinScheduleRegionSize; 981 ScheduleRegionSize = 0; 982 983 // Make a new scheduling region, i.e. all existing ScheduleData is not 984 // in the new region yet. 985 ++SchedulingRegionID; 986 } 987 988 ScheduleData *getScheduleData(Value *V) { 989 ScheduleData *SD = ScheduleDataMap[V]; 990 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 991 return SD; 992 return nullptr; 993 } 994 995 ScheduleData *getScheduleData(Value *V, Value *Key) { 996 if (V == Key) 997 return getScheduleData(V); 998 auto I = ExtraScheduleDataMap.find(V); 999 if (I != ExtraScheduleDataMap.end()) { 1000 ScheduleData *SD = I->second[Key]; 1001 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1002 return SD; 1003 } 1004 return nullptr; 1005 } 1006 1007 bool isInSchedulingRegion(ScheduleData *SD) { 1008 return SD->SchedulingRegionID == SchedulingRegionID; 1009 } 1010 1011 /// Marks an instruction as scheduled and puts all dependent ready 1012 /// instructions into the ready-list. 1013 template <typename ReadyListType> 1014 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1015 SD->IsScheduled = true; 1016 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1017 1018 ScheduleData *BundleMember = SD; 1019 while (BundleMember) { 1020 if (BundleMember->Inst != BundleMember->OpValue) { 1021 BundleMember = BundleMember->NextInBundle; 1022 continue; 1023 } 1024 // Handle the def-use chain dependencies. 1025 for (Use &U : BundleMember->Inst->operands()) { 1026 auto *I = dyn_cast<Instruction>(U.get()); 1027 if (!I) 1028 continue; 1029 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1030 if (OpDef && OpDef->hasValidDependencies() && 1031 OpDef->incrementUnscheduledDeps(-1) == 0) { 1032 // There are no more unscheduled dependencies after 1033 // decrementing, so we can put the dependent instruction 1034 // into the ready list. 1035 ScheduleData *DepBundle = OpDef->FirstInBundle; 1036 assert(!DepBundle->IsScheduled && 1037 "already scheduled bundle gets ready"); 1038 ReadyList.insert(DepBundle); 1039 LLVM_DEBUG(dbgs() 1040 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1041 } 1042 }); 1043 } 1044 // Handle the memory dependencies. 1045 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1046 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1047 // There are no more unscheduled dependencies after decrementing, 1048 // so we can put the dependent instruction into the ready list. 1049 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1050 assert(!DepBundle->IsScheduled && 1051 "already scheduled bundle gets ready"); 1052 ReadyList.insert(DepBundle); 1053 LLVM_DEBUG(dbgs() 1054 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1055 } 1056 } 1057 BundleMember = BundleMember->NextInBundle; 1058 } 1059 } 1060 1061 void doForAllOpcodes(Value *V, 1062 function_ref<void(ScheduleData *SD)> Action) { 1063 if (ScheduleData *SD = getScheduleData(V)) 1064 Action(SD); 1065 auto I = ExtraScheduleDataMap.find(V); 1066 if (I != ExtraScheduleDataMap.end()) 1067 for (auto &P : I->second) 1068 if (P.second->SchedulingRegionID == SchedulingRegionID) 1069 Action(P.second); 1070 } 1071 1072 /// Put all instructions into the ReadyList which are ready for scheduling. 1073 template <typename ReadyListType> 1074 void initialFillReadyList(ReadyListType &ReadyList) { 1075 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1076 doForAllOpcodes(I, [&](ScheduleData *SD) { 1077 if (SD->isSchedulingEntity() && SD->isReady()) { 1078 ReadyList.insert(SD); 1079 LLVM_DEBUG(dbgs() 1080 << "SLP: initially in ready list: " << *I << "\n"); 1081 } 1082 }); 1083 } 1084 } 1085 1086 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1087 /// cyclic dependencies. This is only a dry-run, no instructions are 1088 /// actually moved at this stage. 1089 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1090 const InstructionsState &S); 1091 1092 /// Un-bundles a group of instructions. 1093 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1094 1095 /// Allocates schedule data chunk. 1096 ScheduleData *allocateScheduleDataChunks(); 1097 1098 /// Extends the scheduling region so that V is inside the region. 1099 /// \returns true if the region size is within the limit. 1100 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1101 1102 /// Initialize the ScheduleData structures for new instructions in the 1103 /// scheduling region. 1104 void initScheduleData(Instruction *FromI, Instruction *ToI, 1105 ScheduleData *PrevLoadStore, 1106 ScheduleData *NextLoadStore); 1107 1108 /// Updates the dependency information of a bundle and of all instructions/ 1109 /// bundles which depend on the original bundle. 1110 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1111 BoUpSLP *SLP); 1112 1113 /// Sets all instruction in the scheduling region to un-scheduled. 1114 void resetSchedule(); 1115 1116 BasicBlock *BB; 1117 1118 /// Simple memory allocation for ScheduleData. 1119 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1120 1121 /// The size of a ScheduleData array in ScheduleDataChunks. 1122 int ChunkSize; 1123 1124 /// The allocator position in the current chunk, which is the last entry 1125 /// of ScheduleDataChunks. 1126 int ChunkPos; 1127 1128 /// Attaches ScheduleData to Instruction. 1129 /// Note that the mapping survives during all vectorization iterations, i.e. 1130 /// ScheduleData structures are recycled. 1131 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1132 1133 /// Attaches ScheduleData to Instruction with the leading key. 1134 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1135 ExtraScheduleDataMap; 1136 1137 struct ReadyList : SmallVector<ScheduleData *, 8> { 1138 void insert(ScheduleData *SD) { push_back(SD); } 1139 }; 1140 1141 /// The ready-list for scheduling (only used for the dry-run). 1142 ReadyList ReadyInsts; 1143 1144 /// The first instruction of the scheduling region. 1145 Instruction *ScheduleStart = nullptr; 1146 1147 /// The first instruction _after_ the scheduling region. 1148 Instruction *ScheduleEnd = nullptr; 1149 1150 /// The first memory accessing instruction in the scheduling region 1151 /// (can be null). 1152 ScheduleData *FirstLoadStoreInRegion = nullptr; 1153 1154 /// The last memory accessing instruction in the scheduling region 1155 /// (can be null). 1156 ScheduleData *LastLoadStoreInRegion = nullptr; 1157 1158 /// The current size of the scheduling region. 1159 int ScheduleRegionSize = 0; 1160 1161 /// The maximum size allowed for the scheduling region. 1162 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1163 1164 /// The ID of the scheduling region. For a new vectorization iteration this 1165 /// is incremented which "removes" all ScheduleData from the region. 1166 // Make sure that the initial SchedulingRegionID is greater than the 1167 // initial SchedulingRegionID in ScheduleData (which is 0). 1168 int SchedulingRegionID = 1; 1169 }; 1170 1171 /// Attaches the BlockScheduling structures to basic blocks. 1172 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1173 1174 /// Performs the "real" scheduling. Done before vectorization is actually 1175 /// performed in a basic block. 1176 void scheduleBlock(BlockScheduling *BS); 1177 1178 /// List of users to ignore during scheduling and that don't need extracting. 1179 ArrayRef<Value *> UserIgnoreList; 1180 1181 using OrdersType = SmallVector<unsigned, 4>; 1182 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1183 /// sorted SmallVectors of unsigned. 1184 struct OrdersTypeDenseMapInfo { 1185 static OrdersType getEmptyKey() { 1186 OrdersType V; 1187 V.push_back(~1U); 1188 return V; 1189 } 1190 1191 static OrdersType getTombstoneKey() { 1192 OrdersType V; 1193 V.push_back(~2U); 1194 return V; 1195 } 1196 1197 static unsigned getHashValue(const OrdersType &V) { 1198 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1199 } 1200 1201 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1202 return LHS == RHS; 1203 } 1204 }; 1205 1206 /// Contains orders of operations along with the number of bundles that have 1207 /// operations in this order. It stores only those orders that require 1208 /// reordering, if reordering is not required it is counted using \a 1209 /// NumOpsWantToKeepOriginalOrder. 1210 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1211 /// Number of bundles that do not require reordering. 1212 unsigned NumOpsWantToKeepOriginalOrder = 0; 1213 1214 // Analysis and block reference. 1215 Function *F; 1216 ScalarEvolution *SE; 1217 TargetTransformInfo *TTI; 1218 TargetLibraryInfo *TLI; 1219 AliasAnalysis *AA; 1220 LoopInfo *LI; 1221 DominatorTree *DT; 1222 AssumptionCache *AC; 1223 DemandedBits *DB; 1224 const DataLayout *DL; 1225 OptimizationRemarkEmitter *ORE; 1226 1227 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1228 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1229 1230 /// Instruction builder to construct the vectorized tree. 1231 IRBuilder<> Builder; 1232 1233 /// A map of scalar integer values to the smallest bit width with which they 1234 /// can legally be represented. The values map to (width, signed) pairs, 1235 /// where "width" indicates the minimum bit width and "signed" is True if the 1236 /// value must be signed-extended, rather than zero-extended, back to its 1237 /// original width. 1238 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1239 }; 1240 1241 } // end namespace slpvectorizer 1242 1243 template <> struct GraphTraits<BoUpSLP *> { 1244 using TreeEntry = BoUpSLP::TreeEntry; 1245 1246 /// NodeRef has to be a pointer per the GraphWriter. 1247 using NodeRef = TreeEntry *; 1248 1249 /// Add the VectorizableTree to the index iterator to be able to return 1250 /// TreeEntry pointers. 1251 struct ChildIteratorType 1252 : public iterator_adaptor_base<ChildIteratorType, 1253 SmallVector<int, 1>::iterator> { 1254 std::vector<TreeEntry> &VectorizableTree; 1255 1256 ChildIteratorType(SmallVector<int, 1>::iterator W, 1257 std::vector<TreeEntry> &VT) 1258 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1259 1260 NodeRef operator*() { return &VectorizableTree[*I]; } 1261 }; 1262 1263 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1264 1265 static ChildIteratorType child_begin(NodeRef N) { 1266 return {N->UserTreeIndices.begin(), N->Container}; 1267 } 1268 1269 static ChildIteratorType child_end(NodeRef N) { 1270 return {N->UserTreeIndices.end(), N->Container}; 1271 } 1272 1273 /// For the node iterator we just need to turn the TreeEntry iterator into a 1274 /// TreeEntry* iterator so that it dereferences to NodeRef. 1275 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1276 1277 static nodes_iterator nodes_begin(BoUpSLP *R) { 1278 return nodes_iterator(R->VectorizableTree.begin()); 1279 } 1280 1281 static nodes_iterator nodes_end(BoUpSLP *R) { 1282 return nodes_iterator(R->VectorizableTree.end()); 1283 } 1284 1285 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1286 }; 1287 1288 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1289 using TreeEntry = BoUpSLP::TreeEntry; 1290 1291 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1292 1293 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1294 std::string Str; 1295 raw_string_ostream OS(Str); 1296 if (isSplat(Entry->Scalars)) { 1297 OS << "<splat> " << *Entry->Scalars[0]; 1298 return Str; 1299 } 1300 for (auto V : Entry->Scalars) { 1301 OS << *V; 1302 if (std::any_of( 1303 R->ExternalUses.begin(), R->ExternalUses.end(), 1304 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1305 OS << " <extract>"; 1306 OS << "\n"; 1307 } 1308 return Str; 1309 } 1310 1311 static std::string getNodeAttributes(const TreeEntry *Entry, 1312 const BoUpSLP *) { 1313 if (Entry->NeedToGather) 1314 return "color=red"; 1315 return ""; 1316 } 1317 }; 1318 1319 } // end namespace llvm 1320 1321 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1322 ArrayRef<Value *> UserIgnoreLst) { 1323 ExtraValueToDebugLocsMap ExternallyUsedValues; 1324 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1325 } 1326 1327 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1328 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1329 ArrayRef<Value *> UserIgnoreLst) { 1330 deleteTree(); 1331 UserIgnoreList = UserIgnoreLst; 1332 if (!allSameType(Roots)) 1333 return; 1334 buildTree_rec(Roots, 0, -1); 1335 1336 // Collect the values that we need to extract from the tree. 1337 for (TreeEntry &EIdx : VectorizableTree) { 1338 TreeEntry *Entry = &EIdx; 1339 1340 // No need to handle users of gathered values. 1341 if (Entry->NeedToGather) 1342 continue; 1343 1344 // For each lane: 1345 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1346 Value *Scalar = Entry->Scalars[Lane]; 1347 int FoundLane = Lane; 1348 if (!Entry->ReuseShuffleIndices.empty()) { 1349 FoundLane = 1350 std::distance(Entry->ReuseShuffleIndices.begin(), 1351 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1352 } 1353 1354 // Check if the scalar is externally used as an extra arg. 1355 auto ExtI = ExternallyUsedValues.find(Scalar); 1356 if (ExtI != ExternallyUsedValues.end()) { 1357 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1358 << Lane << " from " << *Scalar << ".\n"); 1359 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1360 } 1361 for (User *U : Scalar->users()) { 1362 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1363 1364 Instruction *UserInst = dyn_cast<Instruction>(U); 1365 if (!UserInst) 1366 continue; 1367 1368 // Skip in-tree scalars that become vectors 1369 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1370 Value *UseScalar = UseEntry->Scalars[0]; 1371 // Some in-tree scalars will remain as scalar in vectorized 1372 // instructions. If that is the case, the one in Lane 0 will 1373 // be used. 1374 if (UseScalar != U || 1375 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1376 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1377 << ".\n"); 1378 assert(!UseEntry->NeedToGather && "Bad state"); 1379 continue; 1380 } 1381 } 1382 1383 // Ignore users in the user ignore list. 1384 if (is_contained(UserIgnoreList, UserInst)) 1385 continue; 1386 1387 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1388 << Lane << " from " << *Scalar << ".\n"); 1389 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1390 } 1391 } 1392 } 1393 } 1394 1395 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1396 int UserTreeIdx) { 1397 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1398 1399 InstructionsState S = getSameOpcode(VL); 1400 if (Depth == RecursionMaxDepth) { 1401 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1402 newTreeEntry(VL, false, UserTreeIdx); 1403 return; 1404 } 1405 1406 // Don't handle vectors. 1407 if (S.OpValue->getType()->isVectorTy()) { 1408 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1409 newTreeEntry(VL, false, UserTreeIdx); 1410 return; 1411 } 1412 1413 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1414 if (SI->getValueOperand()->getType()->isVectorTy()) { 1415 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1416 newTreeEntry(VL, false, UserTreeIdx); 1417 return; 1418 } 1419 1420 // If all of the operands are identical or constant we have a simple solution. 1421 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 1422 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1423 newTreeEntry(VL, false, UserTreeIdx); 1424 return; 1425 } 1426 1427 // We now know that this is a vector of instructions of the same type from 1428 // the same block. 1429 1430 // Don't vectorize ephemeral values. 1431 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1432 if (EphValues.count(VL[i])) { 1433 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1434 << ") is ephemeral.\n"); 1435 newTreeEntry(VL, false, UserTreeIdx); 1436 return; 1437 } 1438 } 1439 1440 // Check if this is a duplicate of another entry. 1441 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1442 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1443 if (!E->isSame(VL)) { 1444 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1445 newTreeEntry(VL, false, UserTreeIdx); 1446 return; 1447 } 1448 // Record the reuse of the tree node. FIXME, currently this is only used to 1449 // properly draw the graph rather than for the actual vectorization. 1450 E->UserTreeIndices.push_back(UserTreeIdx); 1451 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1452 << ".\n"); 1453 return; 1454 } 1455 1456 // Check that none of the instructions in the bundle are already in the tree. 1457 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1458 auto *I = dyn_cast<Instruction>(VL[i]); 1459 if (!I) 1460 continue; 1461 if (getTreeEntry(I)) { 1462 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1463 << ") is already in tree.\n"); 1464 newTreeEntry(VL, false, UserTreeIdx); 1465 return; 1466 } 1467 } 1468 1469 // If any of the scalars is marked as a value that needs to stay scalar, then 1470 // we need to gather the scalars. 1471 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 1472 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1473 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 1474 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1475 newTreeEntry(VL, false, UserTreeIdx); 1476 return; 1477 } 1478 } 1479 1480 // Check that all of the users of the scalars that we want to vectorize are 1481 // schedulable. 1482 auto *VL0 = cast<Instruction>(S.OpValue); 1483 BasicBlock *BB = VL0->getParent(); 1484 1485 if (!DT->isReachableFromEntry(BB)) { 1486 // Don't go into unreachable blocks. They may contain instructions with 1487 // dependency cycles which confuse the final scheduling. 1488 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1489 newTreeEntry(VL, false, UserTreeIdx); 1490 return; 1491 } 1492 1493 // Check that every instruction appears once in this bundle. 1494 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1495 SmallVector<Value *, 4> UniqueValues; 1496 DenseMap<Value *, unsigned> UniquePositions; 1497 for (Value *V : VL) { 1498 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1499 ReuseShuffleIndicies.emplace_back(Res.first->second); 1500 if (Res.second) 1501 UniqueValues.emplace_back(V); 1502 } 1503 if (UniqueValues.size() == VL.size()) { 1504 ReuseShuffleIndicies.clear(); 1505 } else { 1506 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1507 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1508 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1509 newTreeEntry(VL, false, UserTreeIdx); 1510 return; 1511 } 1512 VL = UniqueValues; 1513 } 1514 1515 auto &BSRef = BlocksSchedules[BB]; 1516 if (!BSRef) 1517 BSRef = llvm::make_unique<BlockScheduling>(BB); 1518 1519 BlockScheduling &BS = *BSRef.get(); 1520 1521 if (!BS.tryScheduleBundle(VL, this, S)) { 1522 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1523 assert((!BS.getScheduleData(VL0) || 1524 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1525 "tryScheduleBundle should cancelScheduling on failure"); 1526 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1527 return; 1528 } 1529 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1530 1531 unsigned ShuffleOrOp = S.isAltShuffle() ? 1532 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 1533 switch (ShuffleOrOp) { 1534 case Instruction::PHI: { 1535 PHINode *PH = dyn_cast<PHINode>(VL0); 1536 1537 // Check for terminator values (e.g. invoke). 1538 for (unsigned j = 0; j < VL.size(); ++j) 1539 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1540 Instruction *Term = dyn_cast<Instruction>( 1541 cast<PHINode>(VL[j])->getIncomingValueForBlock( 1542 PH->getIncomingBlock(i))); 1543 if (Term && Term->isTerminator()) { 1544 LLVM_DEBUG(dbgs() 1545 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 1546 BS.cancelScheduling(VL, VL0); 1547 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1548 return; 1549 } 1550 } 1551 1552 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1553 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1554 1555 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1556 ValueList Operands; 1557 // Prepare the operand vector. 1558 for (Value *j : VL) 1559 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1560 PH->getIncomingBlock(i))); 1561 1562 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1563 } 1564 return; 1565 } 1566 case Instruction::ExtractValue: 1567 case Instruction::ExtractElement: { 1568 OrdersType CurrentOrder; 1569 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1570 if (Reuse) { 1571 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1572 ++NumOpsWantToKeepOriginalOrder; 1573 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1574 ReuseShuffleIndicies); 1575 return; 1576 } 1577 if (!CurrentOrder.empty()) { 1578 LLVM_DEBUG({ 1579 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1580 "with order"; 1581 for (unsigned Idx : CurrentOrder) 1582 dbgs() << " " << Idx; 1583 dbgs() << "\n"; 1584 }); 1585 // Insert new order with initial value 0, if it does not exist, 1586 // otherwise return the iterator to the existing one. 1587 auto StoredCurrentOrderAndNum = 1588 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1589 ++StoredCurrentOrderAndNum->getSecond(); 1590 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1591 StoredCurrentOrderAndNum->getFirst()); 1592 return; 1593 } 1594 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1595 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1596 BS.cancelScheduling(VL, VL0); 1597 return; 1598 } 1599 case Instruction::Load: { 1600 // Check that a vectorized load would load the same memory as a scalar 1601 // load. For example, we don't want to vectorize loads that are smaller 1602 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1603 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1604 // from such a struct, we read/write packed bits disagreeing with the 1605 // unvectorized version. 1606 Type *ScalarTy = VL0->getType(); 1607 1608 if (DL->getTypeSizeInBits(ScalarTy) != 1609 DL->getTypeAllocSizeInBits(ScalarTy)) { 1610 BS.cancelScheduling(VL, VL0); 1611 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1612 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1613 return; 1614 } 1615 1616 // Make sure all loads in the bundle are simple - we can't vectorize 1617 // atomic or volatile loads. 1618 SmallVector<Value *, 4> PointerOps(VL.size()); 1619 auto POIter = PointerOps.begin(); 1620 for (Value *V : VL) { 1621 auto *L = cast<LoadInst>(V); 1622 if (!L->isSimple()) { 1623 BS.cancelScheduling(VL, VL0); 1624 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1625 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1626 return; 1627 } 1628 *POIter = L->getPointerOperand(); 1629 ++POIter; 1630 } 1631 1632 OrdersType CurrentOrder; 1633 // Check the order of pointer operands. 1634 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1635 Value *Ptr0; 1636 Value *PtrN; 1637 if (CurrentOrder.empty()) { 1638 Ptr0 = PointerOps.front(); 1639 PtrN = PointerOps.back(); 1640 } else { 1641 Ptr0 = PointerOps[CurrentOrder.front()]; 1642 PtrN = PointerOps[CurrentOrder.back()]; 1643 } 1644 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1645 const SCEV *ScevN = SE->getSCEV(PtrN); 1646 const auto *Diff = 1647 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1648 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1649 // Check that the sorted loads are consecutive. 1650 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1651 if (CurrentOrder.empty()) { 1652 // Original loads are consecutive and does not require reordering. 1653 ++NumOpsWantToKeepOriginalOrder; 1654 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1655 ReuseShuffleIndicies); 1656 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1657 } else { 1658 // Need to reorder. 1659 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1660 ++I->getSecond(); 1661 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1662 ReuseShuffleIndicies, I->getFirst()); 1663 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1664 } 1665 return; 1666 } 1667 } 1668 1669 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1670 BS.cancelScheduling(VL, VL0); 1671 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1672 return; 1673 } 1674 case Instruction::ZExt: 1675 case Instruction::SExt: 1676 case Instruction::FPToUI: 1677 case Instruction::FPToSI: 1678 case Instruction::FPExt: 1679 case Instruction::PtrToInt: 1680 case Instruction::IntToPtr: 1681 case Instruction::SIToFP: 1682 case Instruction::UIToFP: 1683 case Instruction::Trunc: 1684 case Instruction::FPTrunc: 1685 case Instruction::BitCast: { 1686 Type *SrcTy = VL0->getOperand(0)->getType(); 1687 for (unsigned i = 0; i < VL.size(); ++i) { 1688 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1689 if (Ty != SrcTy || !isValidElementType(Ty)) { 1690 BS.cancelScheduling(VL, VL0); 1691 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1692 LLVM_DEBUG(dbgs() 1693 << "SLP: Gathering casts with different src types.\n"); 1694 return; 1695 } 1696 } 1697 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1698 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1699 1700 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1701 ValueList Operands; 1702 // Prepare the operand vector. 1703 for (Value *j : VL) 1704 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1705 1706 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1707 } 1708 return; 1709 } 1710 case Instruction::ICmp: 1711 case Instruction::FCmp: { 1712 // Check that all of the compares have the same predicate. 1713 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1714 Type *ComparedTy = VL0->getOperand(0)->getType(); 1715 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1716 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1717 if (Cmp->getPredicate() != P0 || 1718 Cmp->getOperand(0)->getType() != ComparedTy) { 1719 BS.cancelScheduling(VL, VL0); 1720 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1721 LLVM_DEBUG(dbgs() 1722 << "SLP: Gathering cmp with different predicate.\n"); 1723 return; 1724 } 1725 } 1726 1727 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1728 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1729 1730 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1731 ValueList Operands; 1732 // Prepare the operand vector. 1733 for (Value *j : VL) 1734 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1735 1736 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1737 } 1738 return; 1739 } 1740 case Instruction::Select: 1741 case Instruction::Add: 1742 case Instruction::FAdd: 1743 case Instruction::Sub: 1744 case Instruction::FSub: 1745 case Instruction::Mul: 1746 case Instruction::FMul: 1747 case Instruction::UDiv: 1748 case Instruction::SDiv: 1749 case Instruction::FDiv: 1750 case Instruction::URem: 1751 case Instruction::SRem: 1752 case Instruction::FRem: 1753 case Instruction::Shl: 1754 case Instruction::LShr: 1755 case Instruction::AShr: 1756 case Instruction::And: 1757 case Instruction::Or: 1758 case Instruction::Xor: 1759 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1760 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1761 1762 // Sort operands of the instructions so that each side is more likely to 1763 // have the same opcode. 1764 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1765 ValueList Left, Right; 1766 reorderInputsAccordingToOpcode(S.getOpcode(), VL, Left, Right); 1767 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1768 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1769 return; 1770 } 1771 1772 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1773 ValueList Operands; 1774 // Prepare the operand vector. 1775 for (Value *j : VL) 1776 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1777 1778 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1779 } 1780 return; 1781 1782 case Instruction::GetElementPtr: { 1783 // We don't combine GEPs with complicated (nested) indexing. 1784 for (unsigned j = 0; j < VL.size(); ++j) { 1785 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1786 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1787 BS.cancelScheduling(VL, VL0); 1788 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1789 return; 1790 } 1791 } 1792 1793 // We can't combine several GEPs into one vector if they operate on 1794 // different types. 1795 Type *Ty0 = VL0->getOperand(0)->getType(); 1796 for (unsigned j = 0; j < VL.size(); ++j) { 1797 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1798 if (Ty0 != CurTy) { 1799 LLVM_DEBUG(dbgs() 1800 << "SLP: not-vectorizable GEP (different types).\n"); 1801 BS.cancelScheduling(VL, VL0); 1802 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1803 return; 1804 } 1805 } 1806 1807 // We don't combine GEPs with non-constant indexes. 1808 for (unsigned j = 0; j < VL.size(); ++j) { 1809 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1810 if (!isa<ConstantInt>(Op)) { 1811 LLVM_DEBUG(dbgs() 1812 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1813 BS.cancelScheduling(VL, VL0); 1814 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1815 return; 1816 } 1817 } 1818 1819 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1820 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1821 for (unsigned i = 0, e = 2; i < e; ++i) { 1822 ValueList Operands; 1823 // Prepare the operand vector. 1824 for (Value *j : VL) 1825 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1826 1827 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1828 } 1829 return; 1830 } 1831 case Instruction::Store: { 1832 // Check if the stores are consecutive or of we need to swizzle them. 1833 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1834 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1835 BS.cancelScheduling(VL, VL0); 1836 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1837 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1838 return; 1839 } 1840 1841 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1842 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1843 1844 ValueList Operands; 1845 for (Value *j : VL) 1846 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1847 1848 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1849 return; 1850 } 1851 case Instruction::Call: { 1852 // Check if the calls are all to the same vectorizable intrinsic. 1853 CallInst *CI = cast<CallInst>(VL0); 1854 // Check if this is an Intrinsic call or something that can be 1855 // represented by an intrinsic call 1856 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1857 if (!isTriviallyVectorizable(ID)) { 1858 BS.cancelScheduling(VL, VL0); 1859 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1860 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1861 return; 1862 } 1863 Function *Int = CI->getCalledFunction(); 1864 Value *A1I = nullptr; 1865 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1866 A1I = CI->getArgOperand(1); 1867 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1868 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1869 if (!CI2 || CI2->getCalledFunction() != Int || 1870 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1871 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1872 BS.cancelScheduling(VL, VL0); 1873 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1874 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1875 << "\n"); 1876 return; 1877 } 1878 // ctlz,cttz and powi are special intrinsics whose second argument 1879 // should be same in order for them to be vectorized. 1880 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1881 Value *A1J = CI2->getArgOperand(1); 1882 if (A1I != A1J) { 1883 BS.cancelScheduling(VL, VL0); 1884 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1885 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1886 << " argument " << A1I << "!=" << A1J << "\n"); 1887 return; 1888 } 1889 } 1890 // Verify that the bundle operands are identical between the two calls. 1891 if (CI->hasOperandBundles() && 1892 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1893 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1894 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1895 BS.cancelScheduling(VL, VL0); 1896 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1897 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 1898 << *CI << "!=" << *VL[i] << '\n'); 1899 return; 1900 } 1901 } 1902 1903 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1904 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1905 ValueList Operands; 1906 // Prepare the operand vector. 1907 for (Value *j : VL) { 1908 CallInst *CI2 = dyn_cast<CallInst>(j); 1909 Operands.push_back(CI2->getArgOperand(i)); 1910 } 1911 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1912 } 1913 return; 1914 } 1915 case Instruction::ShuffleVector: 1916 // If this is not an alternate sequence of opcode like add-sub 1917 // then do not vectorize this instruction. 1918 if (!S.isAltShuffle()) { 1919 BS.cancelScheduling(VL, VL0); 1920 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1921 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1922 return; 1923 } 1924 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1925 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1926 1927 // Reorder operands if reordering would enable vectorization. 1928 if (isa<BinaryOperator>(VL0)) { 1929 ValueList Left, Right; 1930 reorderAltShuffleOperands(S, VL, Left, Right); 1931 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1932 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1933 return; 1934 } 1935 1936 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1937 ValueList Operands; 1938 // Prepare the operand vector. 1939 for (Value *j : VL) 1940 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1941 1942 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1943 } 1944 return; 1945 1946 default: 1947 BS.cancelScheduling(VL, VL0); 1948 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1949 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1950 return; 1951 } 1952 } 1953 1954 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1955 unsigned N; 1956 Type *EltTy; 1957 auto *ST = dyn_cast<StructType>(T); 1958 if (ST) { 1959 N = ST->getNumElements(); 1960 EltTy = *ST->element_begin(); 1961 } else { 1962 N = cast<ArrayType>(T)->getNumElements(); 1963 EltTy = cast<ArrayType>(T)->getElementType(); 1964 } 1965 if (!isValidElementType(EltTy)) 1966 return 0; 1967 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1968 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1969 return 0; 1970 if (ST) { 1971 // Check that struct is homogeneous. 1972 for (const auto *Ty : ST->elements()) 1973 if (Ty != EltTy) 1974 return 0; 1975 } 1976 return N; 1977 } 1978 1979 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1980 SmallVectorImpl<unsigned> &CurrentOrder) const { 1981 Instruction *E0 = cast<Instruction>(OpValue); 1982 assert(E0->getOpcode() == Instruction::ExtractElement || 1983 E0->getOpcode() == Instruction::ExtractValue); 1984 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 1985 // Check if all of the extracts come from the same vector and from the 1986 // correct offset. 1987 Value *Vec = E0->getOperand(0); 1988 1989 CurrentOrder.clear(); 1990 1991 // We have to extract from a vector/aggregate with the same number of elements. 1992 unsigned NElts; 1993 if (E0->getOpcode() == Instruction::ExtractValue) { 1994 const DataLayout &DL = E0->getModule()->getDataLayout(); 1995 NElts = canMapToVector(Vec->getType(), DL); 1996 if (!NElts) 1997 return false; 1998 // Check if load can be rewritten as load of vector. 1999 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2000 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2001 return false; 2002 } else { 2003 NElts = Vec->getType()->getVectorNumElements(); 2004 } 2005 2006 if (NElts != VL.size()) 2007 return false; 2008 2009 // Check that all of the indices extract from the correct offset. 2010 bool ShouldKeepOrder = true; 2011 unsigned E = VL.size(); 2012 // Assign to all items the initial value E + 1 so we can check if the extract 2013 // instruction index was used already. 2014 // Also, later we can check that all the indices are used and we have a 2015 // consecutive access in the extract instructions, by checking that no 2016 // element of CurrentOrder still has value E + 1. 2017 CurrentOrder.assign(E, E + 1); 2018 unsigned I = 0; 2019 for (; I < E; ++I) { 2020 auto *Inst = cast<Instruction>(VL[I]); 2021 if (Inst->getOperand(0) != Vec) 2022 break; 2023 Optional<unsigned> Idx = getExtractIndex(Inst); 2024 if (!Idx) 2025 break; 2026 const unsigned ExtIdx = *Idx; 2027 if (ExtIdx != I) { 2028 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2029 break; 2030 ShouldKeepOrder = false; 2031 CurrentOrder[ExtIdx] = I; 2032 } else { 2033 if (CurrentOrder[I] != E + 1) 2034 break; 2035 CurrentOrder[I] = I; 2036 } 2037 } 2038 if (I < E) { 2039 CurrentOrder.clear(); 2040 return false; 2041 } 2042 2043 return ShouldKeepOrder; 2044 } 2045 2046 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2047 return I->hasOneUse() || 2048 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2049 return ScalarToTreeEntry.count(U) > 0; 2050 }); 2051 } 2052 2053 int BoUpSLP::getEntryCost(TreeEntry *E) { 2054 ArrayRef<Value*> VL = E->Scalars; 2055 2056 Type *ScalarTy = VL[0]->getType(); 2057 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2058 ScalarTy = SI->getValueOperand()->getType(); 2059 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2060 ScalarTy = CI->getOperand(0)->getType(); 2061 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2062 2063 // If we have computed a smaller type for the expression, update VecTy so 2064 // that the costs will be accurate. 2065 if (MinBWs.count(VL[0])) 2066 VecTy = VectorType::get( 2067 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2068 2069 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2070 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2071 int ReuseShuffleCost = 0; 2072 if (NeedToShuffleReuses) { 2073 ReuseShuffleCost = 2074 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2075 } 2076 if (E->NeedToGather) { 2077 if (allConstant(VL)) 2078 return 0; 2079 if (isSplat(VL)) { 2080 return ReuseShuffleCost + 2081 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2082 } 2083 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2084 allSameType(VL) && allSameBlock(VL)) { 2085 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2086 if (ShuffleKind.hasValue()) { 2087 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2088 for (auto *V : VL) { 2089 // If all users of instruction are going to be vectorized and this 2090 // instruction itself is not going to be vectorized, consider this 2091 // instruction as dead and remove its cost from the final cost of the 2092 // vectorized tree. 2093 if (areAllUsersVectorized(cast<Instruction>(V)) && 2094 !ScalarToTreeEntry.count(V)) { 2095 auto *IO = cast<ConstantInt>( 2096 cast<ExtractElementInst>(V)->getIndexOperand()); 2097 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2098 IO->getZExtValue()); 2099 } 2100 } 2101 return ReuseShuffleCost + Cost; 2102 } 2103 } 2104 return ReuseShuffleCost + getGatherCost(VL); 2105 } 2106 InstructionsState S = getSameOpcode(VL); 2107 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2108 Instruction *VL0 = cast<Instruction>(S.OpValue); 2109 unsigned ShuffleOrOp = S.isAltShuffle() ? 2110 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2111 switch (ShuffleOrOp) { 2112 case Instruction::PHI: 2113 return 0; 2114 2115 case Instruction::ExtractValue: 2116 case Instruction::ExtractElement: 2117 if (NeedToShuffleReuses) { 2118 unsigned Idx = 0; 2119 for (unsigned I : E->ReuseShuffleIndices) { 2120 if (ShuffleOrOp == Instruction::ExtractElement) { 2121 auto *IO = cast<ConstantInt>( 2122 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2123 Idx = IO->getZExtValue(); 2124 ReuseShuffleCost -= TTI->getVectorInstrCost( 2125 Instruction::ExtractElement, VecTy, Idx); 2126 } else { 2127 ReuseShuffleCost -= TTI->getVectorInstrCost( 2128 Instruction::ExtractElement, VecTy, Idx); 2129 ++Idx; 2130 } 2131 } 2132 Idx = ReuseShuffleNumbers; 2133 for (Value *V : VL) { 2134 if (ShuffleOrOp == Instruction::ExtractElement) { 2135 auto *IO = cast<ConstantInt>( 2136 cast<ExtractElementInst>(V)->getIndexOperand()); 2137 Idx = IO->getZExtValue(); 2138 } else { 2139 --Idx; 2140 } 2141 ReuseShuffleCost += 2142 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2143 } 2144 } 2145 if (!E->NeedToGather) { 2146 int DeadCost = ReuseShuffleCost; 2147 if (!E->ReorderIndices.empty()) { 2148 // TODO: Merge this shuffle with the ReuseShuffleCost. 2149 DeadCost += TTI->getShuffleCost( 2150 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2151 } 2152 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2153 Instruction *E = cast<Instruction>(VL[i]); 2154 // If all users are going to be vectorized, instruction can be 2155 // considered as dead. 2156 // The same, if have only one user, it will be vectorized for sure. 2157 if (areAllUsersVectorized(E)) { 2158 // Take credit for instruction that will become dead. 2159 if (E->hasOneUse()) { 2160 Instruction *Ext = E->user_back(); 2161 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2162 all_of(Ext->users(), 2163 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2164 // Use getExtractWithExtendCost() to calculate the cost of 2165 // extractelement/ext pair. 2166 DeadCost -= TTI->getExtractWithExtendCost( 2167 Ext->getOpcode(), Ext->getType(), VecTy, i); 2168 // Add back the cost of s|zext which is subtracted separately. 2169 DeadCost += TTI->getCastInstrCost( 2170 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2171 continue; 2172 } 2173 } 2174 DeadCost -= 2175 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2176 } 2177 } 2178 return DeadCost; 2179 } 2180 return ReuseShuffleCost + getGatherCost(VL); 2181 2182 case Instruction::ZExt: 2183 case Instruction::SExt: 2184 case Instruction::FPToUI: 2185 case Instruction::FPToSI: 2186 case Instruction::FPExt: 2187 case Instruction::PtrToInt: 2188 case Instruction::IntToPtr: 2189 case Instruction::SIToFP: 2190 case Instruction::UIToFP: 2191 case Instruction::Trunc: 2192 case Instruction::FPTrunc: 2193 case Instruction::BitCast: { 2194 Type *SrcTy = VL0->getOperand(0)->getType(); 2195 int ScalarEltCost = 2196 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2197 if (NeedToShuffleReuses) { 2198 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2199 } 2200 2201 // Calculate the cost of this instruction. 2202 int ScalarCost = VL.size() * ScalarEltCost; 2203 2204 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2205 int VecCost = 0; 2206 // Check if the values are candidates to demote. 2207 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2208 VecCost = ReuseShuffleCost + 2209 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2210 } 2211 return VecCost - ScalarCost; 2212 } 2213 case Instruction::FCmp: 2214 case Instruction::ICmp: 2215 case Instruction::Select: { 2216 // Calculate the cost of this instruction. 2217 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2218 Builder.getInt1Ty(), VL0); 2219 if (NeedToShuffleReuses) { 2220 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2221 } 2222 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2223 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2224 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2225 return ReuseShuffleCost + VecCost - ScalarCost; 2226 } 2227 case Instruction::Add: 2228 case Instruction::FAdd: 2229 case Instruction::Sub: 2230 case Instruction::FSub: 2231 case Instruction::Mul: 2232 case Instruction::FMul: 2233 case Instruction::UDiv: 2234 case Instruction::SDiv: 2235 case Instruction::FDiv: 2236 case Instruction::URem: 2237 case Instruction::SRem: 2238 case Instruction::FRem: 2239 case Instruction::Shl: 2240 case Instruction::LShr: 2241 case Instruction::AShr: 2242 case Instruction::And: 2243 case Instruction::Or: 2244 case Instruction::Xor: { 2245 // Certain instructions can be cheaper to vectorize if they have a 2246 // constant second vector operand. 2247 TargetTransformInfo::OperandValueKind Op1VK = 2248 TargetTransformInfo::OK_AnyValue; 2249 TargetTransformInfo::OperandValueKind Op2VK = 2250 TargetTransformInfo::OK_UniformConstantValue; 2251 TargetTransformInfo::OperandValueProperties Op1VP = 2252 TargetTransformInfo::OP_None; 2253 TargetTransformInfo::OperandValueProperties Op2VP = 2254 TargetTransformInfo::OP_PowerOf2; 2255 2256 // If all operands are exactly the same ConstantInt then set the 2257 // operand kind to OK_UniformConstantValue. 2258 // If instead not all operands are constants, then set the operand kind 2259 // to OK_AnyValue. If all operands are constants but not the same, 2260 // then set the operand kind to OK_NonUniformConstantValue. 2261 ConstantInt *CInt0 = nullptr; 2262 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2263 const Instruction *I = cast<Instruction>(VL[i]); 2264 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2265 if (!CInt) { 2266 Op2VK = TargetTransformInfo::OK_AnyValue; 2267 Op2VP = TargetTransformInfo::OP_None; 2268 break; 2269 } 2270 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2271 !CInt->getValue().isPowerOf2()) 2272 Op2VP = TargetTransformInfo::OP_None; 2273 if (i == 0) { 2274 CInt0 = CInt; 2275 continue; 2276 } 2277 if (CInt0 != CInt) 2278 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2279 } 2280 2281 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2282 int ScalarEltCost = TTI->getArithmeticInstrCost( 2283 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2284 if (NeedToShuffleReuses) { 2285 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2286 } 2287 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2288 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2289 Op2VK, Op1VP, Op2VP, Operands); 2290 return ReuseShuffleCost + VecCost - ScalarCost; 2291 } 2292 case Instruction::GetElementPtr: { 2293 TargetTransformInfo::OperandValueKind Op1VK = 2294 TargetTransformInfo::OK_AnyValue; 2295 TargetTransformInfo::OperandValueKind Op2VK = 2296 TargetTransformInfo::OK_UniformConstantValue; 2297 2298 int ScalarEltCost = 2299 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2300 if (NeedToShuffleReuses) { 2301 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2302 } 2303 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2304 int VecCost = 2305 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2306 return ReuseShuffleCost + VecCost - ScalarCost; 2307 } 2308 case Instruction::Load: { 2309 // Cost of wide load - cost of scalar loads. 2310 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2311 int ScalarEltCost = 2312 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2313 if (NeedToShuffleReuses) { 2314 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2315 } 2316 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2317 int VecLdCost = 2318 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2319 if (!E->ReorderIndices.empty()) { 2320 // TODO: Merge this shuffle with the ReuseShuffleCost. 2321 VecLdCost += TTI->getShuffleCost( 2322 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2323 } 2324 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2325 } 2326 case Instruction::Store: { 2327 // We know that we can merge the stores. Calculate the cost. 2328 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2329 int ScalarEltCost = 2330 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2331 if (NeedToShuffleReuses) { 2332 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2333 } 2334 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2335 int VecStCost = 2336 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2337 return ReuseShuffleCost + VecStCost - ScalarStCost; 2338 } 2339 case Instruction::Call: { 2340 CallInst *CI = cast<CallInst>(VL0); 2341 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2342 2343 // Calculate the cost of the scalar and vector calls. 2344 SmallVector<Type *, 4> ScalarTys; 2345 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2346 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2347 2348 FastMathFlags FMF; 2349 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2350 FMF = FPMO->getFastMathFlags(); 2351 2352 int ScalarEltCost = 2353 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2354 if (NeedToShuffleReuses) { 2355 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2356 } 2357 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2358 2359 SmallVector<Value *, 4> Args(CI->arg_operands()); 2360 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2361 VecTy->getNumElements()); 2362 2363 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2364 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2365 << " for " << *CI << "\n"); 2366 2367 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2368 } 2369 case Instruction::ShuffleVector: { 2370 assert(S.isAltShuffle() && 2371 ((Instruction::isBinaryOp(S.getOpcode()) && 2372 Instruction::isBinaryOp(S.getAltOpcode())) || 2373 (Instruction::isCast(S.getOpcode()) && 2374 Instruction::isCast(S.getAltOpcode()))) && 2375 "Invalid Shuffle Vector Operand"); 2376 int ScalarCost = 0; 2377 if (NeedToShuffleReuses) { 2378 for (unsigned Idx : E->ReuseShuffleIndices) { 2379 Instruction *I = cast<Instruction>(VL[Idx]); 2380 ReuseShuffleCost -= TTI->getInstructionCost( 2381 I, TargetTransformInfo::TCK_RecipThroughput); 2382 } 2383 for (Value *V : VL) { 2384 Instruction *I = cast<Instruction>(V); 2385 ReuseShuffleCost += TTI->getInstructionCost( 2386 I, TargetTransformInfo::TCK_RecipThroughput); 2387 } 2388 } 2389 for (Value *i : VL) { 2390 Instruction *I = cast<Instruction>(i); 2391 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 2392 ScalarCost += TTI->getInstructionCost( 2393 I, TargetTransformInfo::TCK_RecipThroughput); 2394 } 2395 // VecCost is equal to sum of the cost of creating 2 vectors 2396 // and the cost of creating shuffle. 2397 int VecCost = 0; 2398 if (Instruction::isBinaryOp(S.getOpcode())) { 2399 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 2400 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 2401 } else { 2402 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 2403 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 2404 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 2405 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 2406 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 2407 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 2408 } 2409 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 2410 return ReuseShuffleCost + VecCost - ScalarCost; 2411 } 2412 default: 2413 llvm_unreachable("Unknown instruction"); 2414 } 2415 } 2416 2417 bool BoUpSLP::isFullyVectorizableTinyTree() { 2418 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2419 << VectorizableTree.size() << " is fully vectorizable .\n"); 2420 2421 // We only handle trees of heights 1 and 2. 2422 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2423 return true; 2424 2425 if (VectorizableTree.size() != 2) 2426 return false; 2427 2428 // Handle splat and all-constants stores. 2429 if (!VectorizableTree[0].NeedToGather && 2430 (allConstant(VectorizableTree[1].Scalars) || 2431 isSplat(VectorizableTree[1].Scalars))) 2432 return true; 2433 2434 // Gathering cost would be too much for tiny trees. 2435 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2436 return false; 2437 2438 return true; 2439 } 2440 2441 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2442 // We can vectorize the tree if its size is greater than or equal to the 2443 // minimum size specified by the MinTreeSize command line option. 2444 if (VectorizableTree.size() >= MinTreeSize) 2445 return false; 2446 2447 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2448 // can vectorize it if we can prove it fully vectorizable. 2449 if (isFullyVectorizableTinyTree()) 2450 return false; 2451 2452 assert(VectorizableTree.empty() 2453 ? ExternalUses.empty() 2454 : true && "We shouldn't have any external users"); 2455 2456 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2457 // vectorizable. 2458 return true; 2459 } 2460 2461 int BoUpSLP::getSpillCost() { 2462 // Walk from the bottom of the tree to the top, tracking which values are 2463 // live. When we see a call instruction that is not part of our tree, 2464 // query TTI to see if there is a cost to keeping values live over it 2465 // (for example, if spills and fills are required). 2466 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2467 int Cost = 0; 2468 2469 SmallPtrSet<Instruction*, 4> LiveValues; 2470 Instruction *PrevInst = nullptr; 2471 2472 for (const auto &N : VectorizableTree) { 2473 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2474 if (!Inst) 2475 continue; 2476 2477 if (!PrevInst) { 2478 PrevInst = Inst; 2479 continue; 2480 } 2481 2482 // Update LiveValues. 2483 LiveValues.erase(PrevInst); 2484 for (auto &J : PrevInst->operands()) { 2485 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2486 LiveValues.insert(cast<Instruction>(&*J)); 2487 } 2488 2489 LLVM_DEBUG({ 2490 dbgs() << "SLP: #LV: " << LiveValues.size(); 2491 for (auto *X : LiveValues) 2492 dbgs() << " " << X->getName(); 2493 dbgs() << ", Looking at "; 2494 Inst->dump(); 2495 }); 2496 2497 // Now find the sequence of instructions between PrevInst and Inst. 2498 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2499 PrevInstIt = 2500 PrevInst->getIterator().getReverse(); 2501 while (InstIt != PrevInstIt) { 2502 if (PrevInstIt == PrevInst->getParent()->rend()) { 2503 PrevInstIt = Inst->getParent()->rbegin(); 2504 continue; 2505 } 2506 2507 // Debug informations don't impact spill cost. 2508 if ((isa<CallInst>(&*PrevInstIt) && 2509 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2510 &*PrevInstIt != PrevInst) { 2511 SmallVector<Type*, 4> V; 2512 for (auto *II : LiveValues) 2513 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2514 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2515 } 2516 2517 ++PrevInstIt; 2518 } 2519 2520 PrevInst = Inst; 2521 } 2522 2523 return Cost; 2524 } 2525 2526 int BoUpSLP::getTreeCost() { 2527 int Cost = 0; 2528 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2529 << VectorizableTree.size() << ".\n"); 2530 2531 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2532 2533 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2534 TreeEntry &TE = VectorizableTree[I]; 2535 2536 // We create duplicate tree entries for gather sequences that have multiple 2537 // uses. However, we should not compute the cost of duplicate sequences. 2538 // For example, if we have a build vector (i.e., insertelement sequence) 2539 // that is used by more than one vector instruction, we only need to 2540 // compute the cost of the insertelement instructions once. The redundant 2541 // instructions will be eliminated by CSE. 2542 // 2543 // We should consider not creating duplicate tree entries for gather 2544 // sequences, and instead add additional edges to the tree representing 2545 // their uses. Since such an approach results in fewer total entries, 2546 // existing heuristics based on tree size may yield different results. 2547 // 2548 if (TE.NeedToGather && 2549 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2550 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2551 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2552 })) 2553 continue; 2554 2555 int C = getEntryCost(&TE); 2556 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2557 << " for bundle that starts with " << *TE.Scalars[0] 2558 << ".\n"); 2559 Cost += C; 2560 } 2561 2562 SmallPtrSet<Value *, 16> ExtractCostCalculated; 2563 int ExtractCost = 0; 2564 for (ExternalUser &EU : ExternalUses) { 2565 // We only add extract cost once for the same scalar. 2566 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2567 continue; 2568 2569 // Uses by ephemeral values are free (because the ephemeral value will be 2570 // removed prior to code generation, and so the extraction will be 2571 // removed as well). 2572 if (EphValues.count(EU.User)) 2573 continue; 2574 2575 // If we plan to rewrite the tree in a smaller type, we will need to sign 2576 // extend the extracted value back to the original type. Here, we account 2577 // for the extract and the added cost of the sign extend if needed. 2578 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2579 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2580 if (MinBWs.count(ScalarRoot)) { 2581 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2582 auto Extend = 2583 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2584 VecTy = VectorType::get(MinTy, BundleWidth); 2585 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2586 VecTy, EU.Lane); 2587 } else { 2588 ExtractCost += 2589 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2590 } 2591 } 2592 2593 int SpillCost = getSpillCost(); 2594 Cost += SpillCost + ExtractCost; 2595 2596 std::string Str; 2597 { 2598 raw_string_ostream OS(Str); 2599 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2600 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2601 << "SLP: Total Cost = " << Cost << ".\n"; 2602 } 2603 LLVM_DEBUG(dbgs() << Str); 2604 2605 if (ViewSLPTree) 2606 ViewGraph(this, "SLP" + F->getName(), false, Str); 2607 2608 return Cost; 2609 } 2610 2611 int BoUpSLP::getGatherCost(Type *Ty, 2612 const DenseSet<unsigned> &ShuffledIndices) { 2613 int Cost = 0; 2614 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2615 if (!ShuffledIndices.count(i)) 2616 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2617 if (!ShuffledIndices.empty()) 2618 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2619 return Cost; 2620 } 2621 2622 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2623 // Find the type of the operands in VL. 2624 Type *ScalarTy = VL[0]->getType(); 2625 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2626 ScalarTy = SI->getValueOperand()->getType(); 2627 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2628 // Find the cost of inserting/extracting values from the vector. 2629 // Check if the same elements are inserted several times and count them as 2630 // shuffle candidates. 2631 DenseSet<unsigned> ShuffledElements; 2632 DenseSet<Value *> UniqueElements; 2633 // Iterate in reverse order to consider insert elements with the high cost. 2634 for (unsigned I = VL.size(); I > 0; --I) { 2635 unsigned Idx = I - 1; 2636 if (!UniqueElements.insert(VL[Idx]).second) 2637 ShuffledElements.insert(Idx); 2638 } 2639 return getGatherCost(VecTy, ShuffledElements); 2640 } 2641 2642 // Reorder commutative operations in alternate shuffle if the resulting vectors 2643 // are consecutive loads. This would allow us to vectorize the tree. 2644 // If we have something like- 2645 // load a[0] - load b[0] 2646 // load b[1] + load a[1] 2647 // load a[2] - load b[2] 2648 // load a[3] + load b[3] 2649 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2650 // code. 2651 void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S, 2652 ArrayRef<Value *> VL, 2653 SmallVectorImpl<Value *> &Left, 2654 SmallVectorImpl<Value *> &Right) { 2655 // Push left and right operands of binary operation into Left and Right 2656 for (Value *V : VL) { 2657 auto *I = cast<Instruction>(V); 2658 assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector"); 2659 Left.push_back(I->getOperand(0)); 2660 Right.push_back(I->getOperand(1)); 2661 } 2662 2663 // Reorder if we have a commutative operation and consecutive access 2664 // are on either side of the alternate instructions. 2665 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2666 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2667 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2668 Instruction *VL1 = cast<Instruction>(VL[j]); 2669 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2670 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2671 std::swap(Left[j], Right[j]); 2672 continue; 2673 } else if (VL2->isCommutative() && 2674 isConsecutiveAccess(L, L1, *DL, *SE)) { 2675 std::swap(Left[j + 1], Right[j + 1]); 2676 continue; 2677 } 2678 // else unchanged 2679 } 2680 } 2681 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2682 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2683 Instruction *VL1 = cast<Instruction>(VL[j]); 2684 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2685 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2686 std::swap(Left[j], Right[j]); 2687 continue; 2688 } else if (VL2->isCommutative() && 2689 isConsecutiveAccess(L, L1, *DL, *SE)) { 2690 std::swap(Left[j + 1], Right[j + 1]); 2691 continue; 2692 } 2693 // else unchanged 2694 } 2695 } 2696 } 2697 } 2698 2699 // Return true if I should be commuted before adding it's left and right 2700 // operands to the arrays Left and Right. 2701 // 2702 // The vectorizer is trying to either have all elements one side being 2703 // instruction with the same opcode to enable further vectorization, or having 2704 // a splat to lower the vectorizing cost. 2705 static bool shouldReorderOperands( 2706 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2707 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2708 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2709 VLeft = I.getOperand(0); 2710 VRight = I.getOperand(1); 2711 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2712 if (SplatRight) { 2713 if (VRight == Right[i - 1]) 2714 // Preserve SplatRight 2715 return false; 2716 if (VLeft == Right[i - 1]) { 2717 // Commuting would preserve SplatRight, but we don't want to break 2718 // SplatLeft either, i.e. preserve the original order if possible. 2719 // (FIXME: why do we care?) 2720 if (SplatLeft && VLeft == Left[i - 1]) 2721 return false; 2722 return true; 2723 } 2724 } 2725 // Symmetrically handle Right side. 2726 if (SplatLeft) { 2727 if (VLeft == Left[i - 1]) 2728 // Preserve SplatLeft 2729 return false; 2730 if (VRight == Left[i - 1]) 2731 return true; 2732 } 2733 2734 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2735 Instruction *IRight = dyn_cast<Instruction>(VRight); 2736 2737 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2738 // it and not the right, in this case we want to commute. 2739 if (AllSameOpcodeRight) { 2740 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2741 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2742 // Do not commute, a match on the right preserves AllSameOpcodeRight 2743 return false; 2744 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2745 // We have a match and may want to commute, but first check if there is 2746 // not also a match on the existing operands on the Left to preserve 2747 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2748 // (FIXME: why do we care?) 2749 if (AllSameOpcodeLeft && ILeft && 2750 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2751 return false; 2752 return true; 2753 } 2754 } 2755 // Symmetrically handle Left side. 2756 if (AllSameOpcodeLeft) { 2757 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2758 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2759 return false; 2760 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2761 return true; 2762 } 2763 return false; 2764 } 2765 2766 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2767 ArrayRef<Value *> VL, 2768 SmallVectorImpl<Value *> &Left, 2769 SmallVectorImpl<Value *> &Right) { 2770 if (!VL.empty()) { 2771 // Peel the first iteration out of the loop since there's nothing 2772 // interesting to do anyway and it simplifies the checks in the loop. 2773 auto *I = cast<Instruction>(VL[0]); 2774 Value *VLeft = I->getOperand(0); 2775 Value *VRight = I->getOperand(1); 2776 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2777 // Favor having instruction to the right. FIXME: why? 2778 std::swap(VLeft, VRight); 2779 Left.push_back(VLeft); 2780 Right.push_back(VRight); 2781 } 2782 2783 // Keep track if we have instructions with all the same opcode on one side. 2784 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2785 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2786 // Keep track if we have one side with all the same value (broadcast). 2787 bool SplatLeft = true; 2788 bool SplatRight = true; 2789 2790 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2791 Instruction *I = cast<Instruction>(VL[i]); 2792 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2793 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2794 "Can only process commutative instruction"); 2795 // Commute to favor either a splat or maximizing having the same opcodes on 2796 // one side. 2797 Value *VLeft; 2798 Value *VRight; 2799 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2800 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2801 VRight)) { 2802 Left.push_back(VRight); 2803 Right.push_back(VLeft); 2804 } else { 2805 Left.push_back(VLeft); 2806 Right.push_back(VRight); 2807 } 2808 // Update Splat* and AllSameOpcode* after the insertion. 2809 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2810 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2811 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2812 (cast<Instruction>(Left[i - 1])->getOpcode() == 2813 cast<Instruction>(Left[i])->getOpcode()); 2814 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2815 (cast<Instruction>(Right[i - 1])->getOpcode() == 2816 cast<Instruction>(Right[i])->getOpcode()); 2817 } 2818 2819 // If one operand end up being broadcast, return this operand order. 2820 if (SplatRight || SplatLeft) 2821 return; 2822 2823 // Finally check if we can get longer vectorizable chain by reordering 2824 // without breaking the good operand order detected above. 2825 // E.g. If we have something like- 2826 // load a[0] load b[0] 2827 // load b[1] load a[1] 2828 // load a[2] load b[2] 2829 // load a[3] load b[3] 2830 // Reordering the second load b[1] load a[1] would allow us to vectorize 2831 // this code and we still retain AllSameOpcode property. 2832 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2833 // such as- 2834 // add a[0],c[0] load b[0] 2835 // add a[1],c[2] load b[1] 2836 // b[2] load b[2] 2837 // add a[3],c[3] load b[3] 2838 for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { 2839 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2840 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2841 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2842 std::swap(Left[j + 1], Right[j + 1]); 2843 continue; 2844 } 2845 } 2846 } 2847 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2848 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2849 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2850 std::swap(Left[j + 1], Right[j + 1]); 2851 continue; 2852 } 2853 } 2854 } 2855 // else unchanged 2856 } 2857 } 2858 2859 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 2860 const InstructionsState &S) { 2861 // Get the basic block this bundle is in. All instructions in the bundle 2862 // should be in this block. 2863 auto *Front = cast<Instruction>(S.OpValue); 2864 auto *BB = Front->getParent(); 2865 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2866 auto *I = cast<Instruction>(V); 2867 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 2868 })); 2869 2870 // The last instruction in the bundle in program order. 2871 Instruction *LastInst = nullptr; 2872 2873 // Find the last instruction. The common case should be that BB has been 2874 // scheduled, and the last instruction is VL.back(). So we start with 2875 // VL.back() and iterate over schedule data until we reach the end of the 2876 // bundle. The end of the bundle is marked by null ScheduleData. 2877 if (BlocksSchedules.count(BB)) { 2878 auto *Bundle = 2879 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 2880 if (Bundle && Bundle->isPartOfBundle()) 2881 for (; Bundle; Bundle = Bundle->NextInBundle) 2882 if (Bundle->OpValue == Bundle->Inst) 2883 LastInst = Bundle->Inst; 2884 } 2885 2886 // LastInst can still be null at this point if there's either not an entry 2887 // for BB in BlocksSchedules or there's no ScheduleData available for 2888 // VL.back(). This can be the case if buildTree_rec aborts for various 2889 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2890 // size is reached, etc.). ScheduleData is initialized in the scheduling 2891 // "dry-run". 2892 // 2893 // If this happens, we can still find the last instruction by brute force. We 2894 // iterate forwards from Front (inclusive) until we either see all 2895 // instructions in the bundle or reach the end of the block. If Front is the 2896 // last instruction in program order, LastInst will be set to Front, and we 2897 // will visit all the remaining instructions in the block. 2898 // 2899 // One of the reasons we exit early from buildTree_rec is to place an upper 2900 // bound on compile-time. Thus, taking an additional compile-time hit here is 2901 // not ideal. However, this should be exceedingly rare since it requires that 2902 // we both exit early from buildTree_rec and that the bundle be out-of-order 2903 // (causing us to iterate all the way to the end of the block). 2904 if (!LastInst) { 2905 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2906 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2907 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 2908 LastInst = &I; 2909 if (Bundle.empty()) 2910 break; 2911 } 2912 } 2913 2914 // Set the insertion point after the last instruction in the bundle. Set the 2915 // debug location to Front. 2916 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2917 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2918 } 2919 2920 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2921 Value *Vec = UndefValue::get(Ty); 2922 // Generate the 'InsertElement' instruction. 2923 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2924 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2925 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2926 GatherSeq.insert(Insrt); 2927 CSEBlocks.insert(Insrt->getParent()); 2928 2929 // Add to our 'need-to-extract' list. 2930 if (TreeEntry *E = getTreeEntry(VL[i])) { 2931 // Find which lane we need to extract. 2932 int FoundLane = -1; 2933 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2934 // Is this the lane of the scalar that we are looking for ? 2935 if (E->Scalars[Lane] == VL[i]) { 2936 FoundLane = Lane; 2937 break; 2938 } 2939 } 2940 assert(FoundLane >= 0 && "Could not find the correct lane"); 2941 if (!E->ReuseShuffleIndices.empty()) { 2942 FoundLane = 2943 std::distance(E->ReuseShuffleIndices.begin(), 2944 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2945 } 2946 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2947 } 2948 } 2949 } 2950 2951 return Vec; 2952 } 2953 2954 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2955 InstructionsState S = getSameOpcode(VL); 2956 if (S.getOpcode()) { 2957 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2958 if (E->isSame(VL)) { 2959 Value *V = vectorizeTree(E); 2960 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2961 // We need to get the vectorized value but without shuffle. 2962 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2963 V = SV->getOperand(0); 2964 } else { 2965 // Reshuffle to get only unique values. 2966 SmallVector<unsigned, 4> UniqueIdxs; 2967 SmallSet<unsigned, 4> UsedIdxs; 2968 for(unsigned Idx : E->ReuseShuffleIndices) 2969 if (UsedIdxs.insert(Idx).second) 2970 UniqueIdxs.emplace_back(Idx); 2971 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2972 UniqueIdxs); 2973 } 2974 } 2975 return V; 2976 } 2977 } 2978 } 2979 2980 Type *ScalarTy = S.OpValue->getType(); 2981 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2982 ScalarTy = SI->getValueOperand()->getType(); 2983 2984 // Check that every instruction appears once in this bundle. 2985 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2986 SmallVector<Value *, 4> UniqueValues; 2987 if (VL.size() > 2) { 2988 DenseMap<Value *, unsigned> UniquePositions; 2989 for (Value *V : VL) { 2990 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2991 ReuseShuffleIndicies.emplace_back(Res.first->second); 2992 if (Res.second || isa<Constant>(V)) 2993 UniqueValues.emplace_back(V); 2994 } 2995 // Do not shuffle single element or if number of unique values is not power 2996 // of 2. 2997 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 2998 !llvm::isPowerOf2_32(UniqueValues.size())) 2999 ReuseShuffleIndicies.clear(); 3000 else 3001 VL = UniqueValues; 3002 } 3003 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3004 3005 Value *V = Gather(VL, VecTy); 3006 if (!ReuseShuffleIndicies.empty()) { 3007 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3008 ReuseShuffleIndicies, "shuffle"); 3009 if (auto *I = dyn_cast<Instruction>(V)) { 3010 GatherSeq.insert(I); 3011 CSEBlocks.insert(I->getParent()); 3012 } 3013 } 3014 return V; 3015 } 3016 3017 static void inversePermutation(ArrayRef<unsigned> Indices, 3018 SmallVectorImpl<unsigned> &Mask) { 3019 Mask.clear(); 3020 const unsigned E = Indices.size(); 3021 Mask.resize(E); 3022 for (unsigned I = 0; I < E; ++I) 3023 Mask[Indices[I]] = I; 3024 } 3025 3026 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3027 IRBuilder<>::InsertPointGuard Guard(Builder); 3028 3029 if (E->VectorizedValue) { 3030 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3031 return E->VectorizedValue; 3032 } 3033 3034 InstructionsState S = getSameOpcode(E->Scalars); 3035 Instruction *VL0 = cast<Instruction>(S.OpValue); 3036 Type *ScalarTy = VL0->getType(); 3037 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3038 ScalarTy = SI->getValueOperand()->getType(); 3039 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3040 3041 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3042 3043 if (E->NeedToGather) { 3044 setInsertPointAfterBundle(E->Scalars, S); 3045 auto *V = Gather(E->Scalars, VecTy); 3046 if (NeedToShuffleReuses) { 3047 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3048 E->ReuseShuffleIndices, "shuffle"); 3049 if (auto *I = dyn_cast<Instruction>(V)) { 3050 GatherSeq.insert(I); 3051 CSEBlocks.insert(I->getParent()); 3052 } 3053 } 3054 E->VectorizedValue = V; 3055 return V; 3056 } 3057 3058 unsigned ShuffleOrOp = S.isAltShuffle() ? 3059 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3060 switch (ShuffleOrOp) { 3061 case Instruction::PHI: { 3062 PHINode *PH = dyn_cast<PHINode>(VL0); 3063 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3064 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3065 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3066 Value *V = NewPhi; 3067 if (NeedToShuffleReuses) { 3068 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3069 E->ReuseShuffleIndices, "shuffle"); 3070 } 3071 E->VectorizedValue = V; 3072 3073 // PHINodes may have multiple entries from the same block. We want to 3074 // visit every block once. 3075 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3076 3077 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3078 ValueList Operands; 3079 BasicBlock *IBB = PH->getIncomingBlock(i); 3080 3081 if (!VisitedBBs.insert(IBB).second) { 3082 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3083 continue; 3084 } 3085 3086 // Prepare the operand vector. 3087 for (Value *V : E->Scalars) 3088 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3089 3090 Builder.SetInsertPoint(IBB->getTerminator()); 3091 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3092 Value *Vec = vectorizeTree(Operands); 3093 NewPhi->addIncoming(Vec, IBB); 3094 } 3095 3096 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3097 "Invalid number of incoming values"); 3098 return V; 3099 } 3100 3101 case Instruction::ExtractElement: { 3102 if (!E->NeedToGather) { 3103 Value *V = VL0->getOperand(0); 3104 if (!E->ReorderIndices.empty()) { 3105 OrdersType Mask; 3106 inversePermutation(E->ReorderIndices, Mask); 3107 Builder.SetInsertPoint(VL0); 3108 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3109 "reorder_shuffle"); 3110 } 3111 if (NeedToShuffleReuses) { 3112 // TODO: Merge this shuffle with the ReorderShuffleMask. 3113 if (E->ReorderIndices.empty()) 3114 Builder.SetInsertPoint(VL0); 3115 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3116 E->ReuseShuffleIndices, "shuffle"); 3117 } 3118 E->VectorizedValue = V; 3119 return V; 3120 } 3121 setInsertPointAfterBundle(E->Scalars, S); 3122 auto *V = Gather(E->Scalars, VecTy); 3123 if (NeedToShuffleReuses) { 3124 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3125 E->ReuseShuffleIndices, "shuffle"); 3126 if (auto *I = dyn_cast<Instruction>(V)) { 3127 GatherSeq.insert(I); 3128 CSEBlocks.insert(I->getParent()); 3129 } 3130 } 3131 E->VectorizedValue = V; 3132 return V; 3133 } 3134 case Instruction::ExtractValue: { 3135 if (!E->NeedToGather) { 3136 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3137 Builder.SetInsertPoint(LI); 3138 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3139 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3140 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3141 Value *NewV = propagateMetadata(V, E->Scalars); 3142 if (!E->ReorderIndices.empty()) { 3143 OrdersType Mask; 3144 inversePermutation(E->ReorderIndices, Mask); 3145 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3146 "reorder_shuffle"); 3147 } 3148 if (NeedToShuffleReuses) { 3149 // TODO: Merge this shuffle with the ReorderShuffleMask. 3150 NewV = Builder.CreateShuffleVector( 3151 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3152 } 3153 E->VectorizedValue = NewV; 3154 return NewV; 3155 } 3156 setInsertPointAfterBundle(E->Scalars, S); 3157 auto *V = Gather(E->Scalars, VecTy); 3158 if (NeedToShuffleReuses) { 3159 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3160 E->ReuseShuffleIndices, "shuffle"); 3161 if (auto *I = dyn_cast<Instruction>(V)) { 3162 GatherSeq.insert(I); 3163 CSEBlocks.insert(I->getParent()); 3164 } 3165 } 3166 E->VectorizedValue = V; 3167 return V; 3168 } 3169 case Instruction::ZExt: 3170 case Instruction::SExt: 3171 case Instruction::FPToUI: 3172 case Instruction::FPToSI: 3173 case Instruction::FPExt: 3174 case Instruction::PtrToInt: 3175 case Instruction::IntToPtr: 3176 case Instruction::SIToFP: 3177 case Instruction::UIToFP: 3178 case Instruction::Trunc: 3179 case Instruction::FPTrunc: 3180 case Instruction::BitCast: { 3181 ValueList INVL; 3182 for (Value *V : E->Scalars) 3183 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3184 3185 setInsertPointAfterBundle(E->Scalars, S); 3186 3187 Value *InVec = vectorizeTree(INVL); 3188 3189 if (E->VectorizedValue) { 3190 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3191 return E->VectorizedValue; 3192 } 3193 3194 CastInst *CI = dyn_cast<CastInst>(VL0); 3195 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3196 if (NeedToShuffleReuses) { 3197 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3198 E->ReuseShuffleIndices, "shuffle"); 3199 } 3200 E->VectorizedValue = V; 3201 ++NumVectorInstructions; 3202 return V; 3203 } 3204 case Instruction::FCmp: 3205 case Instruction::ICmp: { 3206 ValueList LHSV, RHSV; 3207 for (Value *V : E->Scalars) { 3208 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3209 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3210 } 3211 3212 setInsertPointAfterBundle(E->Scalars, S); 3213 3214 Value *L = vectorizeTree(LHSV); 3215 Value *R = vectorizeTree(RHSV); 3216 3217 if (E->VectorizedValue) { 3218 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3219 return E->VectorizedValue; 3220 } 3221 3222 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3223 Value *V; 3224 if (S.getOpcode() == Instruction::FCmp) 3225 V = Builder.CreateFCmp(P0, L, R); 3226 else 3227 V = Builder.CreateICmp(P0, L, R); 3228 3229 propagateIRFlags(V, E->Scalars, VL0); 3230 if (NeedToShuffleReuses) { 3231 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3232 E->ReuseShuffleIndices, "shuffle"); 3233 } 3234 E->VectorizedValue = V; 3235 ++NumVectorInstructions; 3236 return V; 3237 } 3238 case Instruction::Select: { 3239 ValueList TrueVec, FalseVec, CondVec; 3240 for (Value *V : E->Scalars) { 3241 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3242 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3243 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3244 } 3245 3246 setInsertPointAfterBundle(E->Scalars, S); 3247 3248 Value *Cond = vectorizeTree(CondVec); 3249 Value *True = vectorizeTree(TrueVec); 3250 Value *False = vectorizeTree(FalseVec); 3251 3252 if (E->VectorizedValue) { 3253 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3254 return E->VectorizedValue; 3255 } 3256 3257 Value *V = Builder.CreateSelect(Cond, True, False); 3258 if (NeedToShuffleReuses) { 3259 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3260 E->ReuseShuffleIndices, "shuffle"); 3261 } 3262 E->VectorizedValue = V; 3263 ++NumVectorInstructions; 3264 return V; 3265 } 3266 case Instruction::Add: 3267 case Instruction::FAdd: 3268 case Instruction::Sub: 3269 case Instruction::FSub: 3270 case Instruction::Mul: 3271 case Instruction::FMul: 3272 case Instruction::UDiv: 3273 case Instruction::SDiv: 3274 case Instruction::FDiv: 3275 case Instruction::URem: 3276 case Instruction::SRem: 3277 case Instruction::FRem: 3278 case Instruction::Shl: 3279 case Instruction::LShr: 3280 case Instruction::AShr: 3281 case Instruction::And: 3282 case Instruction::Or: 3283 case Instruction::Xor: { 3284 ValueList LHSVL, RHSVL; 3285 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3286 reorderInputsAccordingToOpcode(S.getOpcode(), E->Scalars, LHSVL, 3287 RHSVL); 3288 else 3289 for (Value *V : E->Scalars) { 3290 auto *I = cast<Instruction>(V); 3291 LHSVL.push_back(I->getOperand(0)); 3292 RHSVL.push_back(I->getOperand(1)); 3293 } 3294 3295 setInsertPointAfterBundle(E->Scalars, S); 3296 3297 Value *LHS = vectorizeTree(LHSVL); 3298 Value *RHS = vectorizeTree(RHSVL); 3299 3300 if (E->VectorizedValue) { 3301 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3302 return E->VectorizedValue; 3303 } 3304 3305 Value *V = Builder.CreateBinOp( 3306 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3307 propagateIRFlags(V, E->Scalars, VL0); 3308 if (auto *I = dyn_cast<Instruction>(V)) 3309 V = propagateMetadata(I, E->Scalars); 3310 3311 if (NeedToShuffleReuses) { 3312 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3313 E->ReuseShuffleIndices, "shuffle"); 3314 } 3315 E->VectorizedValue = V; 3316 ++NumVectorInstructions; 3317 3318 return V; 3319 } 3320 case Instruction::Load: { 3321 // Loads are inserted at the head of the tree because we don't want to 3322 // sink them all the way down past store instructions. 3323 bool IsReorder = !E->ReorderIndices.empty(); 3324 if (IsReorder) { 3325 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3326 VL0 = cast<Instruction>(S.OpValue); 3327 } 3328 setInsertPointAfterBundle(E->Scalars, S); 3329 3330 LoadInst *LI = cast<LoadInst>(VL0); 3331 Type *ScalarLoadTy = LI->getType(); 3332 unsigned AS = LI->getPointerAddressSpace(); 3333 3334 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3335 VecTy->getPointerTo(AS)); 3336 3337 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3338 // ExternalUses list to make sure that an extract will be generated in the 3339 // future. 3340 Value *PO = LI->getPointerOperand(); 3341 if (getTreeEntry(PO)) 3342 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3343 3344 unsigned Alignment = LI->getAlignment(); 3345 LI = Builder.CreateLoad(VecPtr); 3346 if (!Alignment) { 3347 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3348 } 3349 LI->setAlignment(Alignment); 3350 Value *V = propagateMetadata(LI, E->Scalars); 3351 if (IsReorder) { 3352 OrdersType Mask; 3353 inversePermutation(E->ReorderIndices, Mask); 3354 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3355 Mask, "reorder_shuffle"); 3356 } 3357 if (NeedToShuffleReuses) { 3358 // TODO: Merge this shuffle with the ReorderShuffleMask. 3359 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3360 E->ReuseShuffleIndices, "shuffle"); 3361 } 3362 E->VectorizedValue = V; 3363 ++NumVectorInstructions; 3364 return V; 3365 } 3366 case Instruction::Store: { 3367 StoreInst *SI = cast<StoreInst>(VL0); 3368 unsigned Alignment = SI->getAlignment(); 3369 unsigned AS = SI->getPointerAddressSpace(); 3370 3371 ValueList ScalarStoreValues; 3372 for (Value *V : E->Scalars) 3373 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3374 3375 setInsertPointAfterBundle(E->Scalars, S); 3376 3377 Value *VecValue = vectorizeTree(ScalarStoreValues); 3378 Value *ScalarPtr = SI->getPointerOperand(); 3379 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3380 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3381 3382 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3383 // ExternalUses to make sure that an extract will be generated in the 3384 // future. 3385 if (getTreeEntry(ScalarPtr)) 3386 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3387 3388 if (!Alignment) 3389 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3390 3391 ST->setAlignment(Alignment); 3392 Value *V = propagateMetadata(ST, E->Scalars); 3393 if (NeedToShuffleReuses) { 3394 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3395 E->ReuseShuffleIndices, "shuffle"); 3396 } 3397 E->VectorizedValue = V; 3398 ++NumVectorInstructions; 3399 return V; 3400 } 3401 case Instruction::GetElementPtr: { 3402 setInsertPointAfterBundle(E->Scalars, S); 3403 3404 ValueList Op0VL; 3405 for (Value *V : E->Scalars) 3406 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3407 3408 Value *Op0 = vectorizeTree(Op0VL); 3409 3410 std::vector<Value *> OpVecs; 3411 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3412 ++j) { 3413 ValueList OpVL; 3414 for (Value *V : E->Scalars) 3415 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3416 3417 Value *OpVec = vectorizeTree(OpVL); 3418 OpVecs.push_back(OpVec); 3419 } 3420 3421 Value *V = Builder.CreateGEP( 3422 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3423 if (Instruction *I = dyn_cast<Instruction>(V)) 3424 V = propagateMetadata(I, E->Scalars); 3425 3426 if (NeedToShuffleReuses) { 3427 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3428 E->ReuseShuffleIndices, "shuffle"); 3429 } 3430 E->VectorizedValue = V; 3431 ++NumVectorInstructions; 3432 3433 return V; 3434 } 3435 case Instruction::Call: { 3436 CallInst *CI = cast<CallInst>(VL0); 3437 setInsertPointAfterBundle(E->Scalars, S); 3438 Function *FI; 3439 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3440 Value *ScalarArg = nullptr; 3441 if (CI && (FI = CI->getCalledFunction())) { 3442 IID = FI->getIntrinsicID(); 3443 } 3444 std::vector<Value *> OpVecs; 3445 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3446 ValueList OpVL; 3447 // ctlz,cttz and powi are special intrinsics whose second argument is 3448 // a scalar. This argument should not be vectorized. 3449 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3450 CallInst *CEI = cast<CallInst>(VL0); 3451 ScalarArg = CEI->getArgOperand(j); 3452 OpVecs.push_back(CEI->getArgOperand(j)); 3453 continue; 3454 } 3455 for (Value *V : E->Scalars) { 3456 CallInst *CEI = cast<CallInst>(V); 3457 OpVL.push_back(CEI->getArgOperand(j)); 3458 } 3459 3460 Value *OpVec = vectorizeTree(OpVL); 3461 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3462 OpVecs.push_back(OpVec); 3463 } 3464 3465 Module *M = F->getParent(); 3466 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3467 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3468 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3469 SmallVector<OperandBundleDef, 1> OpBundles; 3470 CI->getOperandBundlesAsDefs(OpBundles); 3471 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3472 3473 // The scalar argument uses an in-tree scalar so we add the new vectorized 3474 // call to ExternalUses list to make sure that an extract will be 3475 // generated in the future. 3476 if (ScalarArg && getTreeEntry(ScalarArg)) 3477 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3478 3479 propagateIRFlags(V, E->Scalars, VL0); 3480 if (NeedToShuffleReuses) { 3481 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3482 E->ReuseShuffleIndices, "shuffle"); 3483 } 3484 E->VectorizedValue = V; 3485 ++NumVectorInstructions; 3486 return V; 3487 } 3488 case Instruction::ShuffleVector: { 3489 ValueList LHSVL, RHSVL; 3490 assert(S.isAltShuffle() && 3491 ((Instruction::isBinaryOp(S.getOpcode()) && 3492 Instruction::isBinaryOp(S.getAltOpcode())) || 3493 (Instruction::isCast(S.getOpcode()) && 3494 Instruction::isCast(S.getAltOpcode()))) && 3495 "Invalid Shuffle Vector Operand"); 3496 3497 Value *LHS, *RHS; 3498 if (Instruction::isBinaryOp(S.getOpcode())) { 3499 reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL); 3500 setInsertPointAfterBundle(E->Scalars, S); 3501 LHS = vectorizeTree(LHSVL); 3502 RHS = vectorizeTree(RHSVL); 3503 } else { 3504 ValueList INVL; 3505 for (Value *V : E->Scalars) 3506 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3507 setInsertPointAfterBundle(E->Scalars, S); 3508 LHS = vectorizeTree(INVL); 3509 } 3510 3511 if (E->VectorizedValue) { 3512 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3513 return E->VectorizedValue; 3514 } 3515 3516 Value *V0, *V1; 3517 if (Instruction::isBinaryOp(S.getOpcode())) { 3518 V0 = Builder.CreateBinOp( 3519 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3520 V1 = Builder.CreateBinOp( 3521 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3522 } else { 3523 V0 = Builder.CreateCast( 3524 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3525 V1 = Builder.CreateCast( 3526 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3527 } 3528 3529 // Create shuffle to take alternate operations from the vector. 3530 // Also, gather up main and alt scalar ops to propagate IR flags to 3531 // each vector operation. 3532 ValueList OpScalars, AltScalars; 3533 unsigned e = E->Scalars.size(); 3534 SmallVector<Constant *, 8> Mask(e); 3535 for (unsigned i = 0; i < e; ++i) { 3536 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3537 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3538 if (OpInst->getOpcode() == S.getAltOpcode()) { 3539 Mask[i] = Builder.getInt32(e + i); 3540 AltScalars.push_back(E->Scalars[i]); 3541 } else { 3542 Mask[i] = Builder.getInt32(i); 3543 OpScalars.push_back(E->Scalars[i]); 3544 } 3545 } 3546 3547 Value *ShuffleMask = ConstantVector::get(Mask); 3548 propagateIRFlags(V0, OpScalars); 3549 propagateIRFlags(V1, AltScalars); 3550 3551 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3552 if (Instruction *I = dyn_cast<Instruction>(V)) 3553 V = propagateMetadata(I, E->Scalars); 3554 if (NeedToShuffleReuses) { 3555 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3556 E->ReuseShuffleIndices, "shuffle"); 3557 } 3558 E->VectorizedValue = V; 3559 ++NumVectorInstructions; 3560 3561 return V; 3562 } 3563 default: 3564 llvm_unreachable("unknown inst"); 3565 } 3566 return nullptr; 3567 } 3568 3569 Value *BoUpSLP::vectorizeTree() { 3570 ExtraValueToDebugLocsMap ExternallyUsedValues; 3571 return vectorizeTree(ExternallyUsedValues); 3572 } 3573 3574 Value * 3575 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3576 // All blocks must be scheduled before any instructions are inserted. 3577 for (auto &BSIter : BlocksSchedules) { 3578 scheduleBlock(BSIter.second.get()); 3579 } 3580 3581 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3582 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3583 3584 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3585 // vectorized root. InstCombine will then rewrite the entire expression. We 3586 // sign extend the extracted values below. 3587 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3588 if (MinBWs.count(ScalarRoot)) { 3589 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3590 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3591 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3592 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3593 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3594 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3595 VectorizableTree[0].VectorizedValue = Trunc; 3596 } 3597 3598 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3599 << " values .\n"); 3600 3601 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3602 // specified by ScalarType. 3603 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3604 if (!MinBWs.count(ScalarRoot)) 3605 return Ex; 3606 if (MinBWs[ScalarRoot].second) 3607 return Builder.CreateSExt(Ex, ScalarType); 3608 return Builder.CreateZExt(Ex, ScalarType); 3609 }; 3610 3611 // Extract all of the elements with the external uses. 3612 for (const auto &ExternalUse : ExternalUses) { 3613 Value *Scalar = ExternalUse.Scalar; 3614 llvm::User *User = ExternalUse.User; 3615 3616 // Skip users that we already RAUW. This happens when one instruction 3617 // has multiple uses of the same value. 3618 if (User && !is_contained(Scalar->users(), User)) 3619 continue; 3620 TreeEntry *E = getTreeEntry(Scalar); 3621 assert(E && "Invalid scalar"); 3622 assert(!E->NeedToGather && "Extracting from a gather list"); 3623 3624 Value *Vec = E->VectorizedValue; 3625 assert(Vec && "Can't find vectorizable value"); 3626 3627 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3628 // If User == nullptr, the Scalar is used as extra arg. Generate 3629 // ExtractElement instruction and update the record for this scalar in 3630 // ExternallyUsedValues. 3631 if (!User) { 3632 assert(ExternallyUsedValues.count(Scalar) && 3633 "Scalar with nullptr as an external user must be registered in " 3634 "ExternallyUsedValues map"); 3635 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3636 Builder.SetInsertPoint(VecI->getParent(), 3637 std::next(VecI->getIterator())); 3638 } else { 3639 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3640 } 3641 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3642 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3643 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3644 auto &Locs = ExternallyUsedValues[Scalar]; 3645 ExternallyUsedValues.insert({Ex, Locs}); 3646 ExternallyUsedValues.erase(Scalar); 3647 // Required to update internally referenced instructions. 3648 Scalar->replaceAllUsesWith(Ex); 3649 continue; 3650 } 3651 3652 // Generate extracts for out-of-tree users. 3653 // Find the insertion point for the extractelement lane. 3654 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3655 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3656 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3657 if (PH->getIncomingValue(i) == Scalar) { 3658 Instruction *IncomingTerminator = 3659 PH->getIncomingBlock(i)->getTerminator(); 3660 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3661 Builder.SetInsertPoint(VecI->getParent(), 3662 std::next(VecI->getIterator())); 3663 } else { 3664 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3665 } 3666 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3667 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3668 CSEBlocks.insert(PH->getIncomingBlock(i)); 3669 PH->setOperand(i, Ex); 3670 } 3671 } 3672 } else { 3673 Builder.SetInsertPoint(cast<Instruction>(User)); 3674 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3675 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3676 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3677 User->replaceUsesOfWith(Scalar, Ex); 3678 } 3679 } else { 3680 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3681 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3682 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3683 CSEBlocks.insert(&F->getEntryBlock()); 3684 User->replaceUsesOfWith(Scalar, Ex); 3685 } 3686 3687 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3688 } 3689 3690 // For each vectorized value: 3691 for (TreeEntry &EIdx : VectorizableTree) { 3692 TreeEntry *Entry = &EIdx; 3693 3694 // No need to handle users of gathered values. 3695 if (Entry->NeedToGather) 3696 continue; 3697 3698 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3699 3700 // For each lane: 3701 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3702 Value *Scalar = Entry->Scalars[Lane]; 3703 3704 Type *Ty = Scalar->getType(); 3705 if (!Ty->isVoidTy()) { 3706 #ifndef NDEBUG 3707 for (User *U : Scalar->users()) { 3708 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3709 3710 // It is legal to replace users in the ignorelist by undef. 3711 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3712 "Replacing out-of-tree value with undef"); 3713 } 3714 #endif 3715 Value *Undef = UndefValue::get(Ty); 3716 Scalar->replaceAllUsesWith(Undef); 3717 } 3718 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3719 eraseInstruction(cast<Instruction>(Scalar)); 3720 } 3721 } 3722 3723 Builder.ClearInsertionPoint(); 3724 3725 return VectorizableTree[0].VectorizedValue; 3726 } 3727 3728 void BoUpSLP::optimizeGatherSequence() { 3729 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3730 << " gather sequences instructions.\n"); 3731 // LICM InsertElementInst sequences. 3732 for (Instruction *I : GatherSeq) { 3733 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3734 continue; 3735 3736 // Check if this block is inside a loop. 3737 Loop *L = LI->getLoopFor(I->getParent()); 3738 if (!L) 3739 continue; 3740 3741 // Check if it has a preheader. 3742 BasicBlock *PreHeader = L->getLoopPreheader(); 3743 if (!PreHeader) 3744 continue; 3745 3746 // If the vector or the element that we insert into it are 3747 // instructions that are defined in this basic block then we can't 3748 // hoist this instruction. 3749 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3750 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3751 if (Op0 && L->contains(Op0)) 3752 continue; 3753 if (Op1 && L->contains(Op1)) 3754 continue; 3755 3756 // We can hoist this instruction. Move it to the pre-header. 3757 I->moveBefore(PreHeader->getTerminator()); 3758 } 3759 3760 // Make a list of all reachable blocks in our CSE queue. 3761 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3762 CSEWorkList.reserve(CSEBlocks.size()); 3763 for (BasicBlock *BB : CSEBlocks) 3764 if (DomTreeNode *N = DT->getNode(BB)) { 3765 assert(DT->isReachableFromEntry(N)); 3766 CSEWorkList.push_back(N); 3767 } 3768 3769 // Sort blocks by domination. This ensures we visit a block after all blocks 3770 // dominating it are visited. 3771 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3772 [this](const DomTreeNode *A, const DomTreeNode *B) { 3773 return DT->properlyDominates(A, B); 3774 }); 3775 3776 // Perform O(N^2) search over the gather sequences and merge identical 3777 // instructions. TODO: We can further optimize this scan if we split the 3778 // instructions into different buckets based on the insert lane. 3779 SmallVector<Instruction *, 16> Visited; 3780 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3781 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3782 "Worklist not sorted properly!"); 3783 BasicBlock *BB = (*I)->getBlock(); 3784 // For all instructions in blocks containing gather sequences: 3785 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3786 Instruction *In = &*it++; 3787 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3788 continue; 3789 3790 // Check if we can replace this instruction with any of the 3791 // visited instructions. 3792 for (Instruction *v : Visited) { 3793 if (In->isIdenticalTo(v) && 3794 DT->dominates(v->getParent(), In->getParent())) { 3795 In->replaceAllUsesWith(v); 3796 eraseInstruction(In); 3797 In = nullptr; 3798 break; 3799 } 3800 } 3801 if (In) { 3802 assert(!is_contained(Visited, In)); 3803 Visited.push_back(In); 3804 } 3805 } 3806 } 3807 CSEBlocks.clear(); 3808 GatherSeq.clear(); 3809 } 3810 3811 // Groups the instructions to a bundle (which is then a single scheduling entity) 3812 // and schedules instructions until the bundle gets ready. 3813 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3814 BoUpSLP *SLP, 3815 const InstructionsState &S) { 3816 if (isa<PHINode>(S.OpValue)) 3817 return true; 3818 3819 // Initialize the instruction bundle. 3820 Instruction *OldScheduleEnd = ScheduleEnd; 3821 ScheduleData *PrevInBundle = nullptr; 3822 ScheduleData *Bundle = nullptr; 3823 bool ReSchedule = false; 3824 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 3825 3826 // Make sure that the scheduling region contains all 3827 // instructions of the bundle. 3828 for (Value *V : VL) { 3829 if (!extendSchedulingRegion(V, S)) 3830 return false; 3831 } 3832 3833 for (Value *V : VL) { 3834 ScheduleData *BundleMember = getScheduleData(V); 3835 assert(BundleMember && 3836 "no ScheduleData for bundle member (maybe not in same basic block)"); 3837 if (BundleMember->IsScheduled) { 3838 // A bundle member was scheduled as single instruction before and now 3839 // needs to be scheduled as part of the bundle. We just get rid of the 3840 // existing schedule. 3841 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3842 << " was already scheduled\n"); 3843 ReSchedule = true; 3844 } 3845 assert(BundleMember->isSchedulingEntity() && 3846 "bundle member already part of other bundle"); 3847 if (PrevInBundle) { 3848 PrevInBundle->NextInBundle = BundleMember; 3849 } else { 3850 Bundle = BundleMember; 3851 } 3852 BundleMember->UnscheduledDepsInBundle = 0; 3853 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3854 3855 // Group the instructions to a bundle. 3856 BundleMember->FirstInBundle = Bundle; 3857 PrevInBundle = BundleMember; 3858 } 3859 if (ScheduleEnd != OldScheduleEnd) { 3860 // The scheduling region got new instructions at the lower end (or it is a 3861 // new region for the first bundle). This makes it necessary to 3862 // recalculate all dependencies. 3863 // It is seldom that this needs to be done a second time after adding the 3864 // initial bundle to the region. 3865 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3866 doForAllOpcodes(I, [](ScheduleData *SD) { 3867 SD->clearDependencies(); 3868 }); 3869 } 3870 ReSchedule = true; 3871 } 3872 if (ReSchedule) { 3873 resetSchedule(); 3874 initialFillReadyList(ReadyInsts); 3875 } 3876 3877 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3878 << BB->getName() << "\n"); 3879 3880 calculateDependencies(Bundle, true, SLP); 3881 3882 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3883 // means that there are no cyclic dependencies and we can schedule it. 3884 // Note that's important that we don't "schedule" the bundle yet (see 3885 // cancelScheduling). 3886 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3887 3888 ScheduleData *pickedSD = ReadyInsts.back(); 3889 ReadyInsts.pop_back(); 3890 3891 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3892 schedule(pickedSD, ReadyInsts); 3893 } 3894 } 3895 if (!Bundle->isReady()) { 3896 cancelScheduling(VL, S.OpValue); 3897 return false; 3898 } 3899 return true; 3900 } 3901 3902 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3903 Value *OpValue) { 3904 if (isa<PHINode>(OpValue)) 3905 return; 3906 3907 ScheduleData *Bundle = getScheduleData(OpValue); 3908 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3909 assert(!Bundle->IsScheduled && 3910 "Can't cancel bundle which is already scheduled"); 3911 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3912 "tried to unbundle something which is not a bundle"); 3913 3914 // Un-bundle: make single instructions out of the bundle. 3915 ScheduleData *BundleMember = Bundle; 3916 while (BundleMember) { 3917 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3918 BundleMember->FirstInBundle = BundleMember; 3919 ScheduleData *Next = BundleMember->NextInBundle; 3920 BundleMember->NextInBundle = nullptr; 3921 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3922 if (BundleMember->UnscheduledDepsInBundle == 0) { 3923 ReadyInsts.insert(BundleMember); 3924 } 3925 BundleMember = Next; 3926 } 3927 } 3928 3929 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3930 // Allocate a new ScheduleData for the instruction. 3931 if (ChunkPos >= ChunkSize) { 3932 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3933 ChunkPos = 0; 3934 } 3935 return &(ScheduleDataChunks.back()[ChunkPos++]); 3936 } 3937 3938 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3939 const InstructionsState &S) { 3940 if (getScheduleData(V, isOneOf(S, V))) 3941 return true; 3942 Instruction *I = dyn_cast<Instruction>(V); 3943 assert(I && "bundle member must be an instruction"); 3944 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3945 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 3946 ScheduleData *ISD = getScheduleData(I); 3947 if (!ISD) 3948 return false; 3949 assert(isInSchedulingRegion(ISD) && 3950 "ScheduleData not in scheduling region"); 3951 ScheduleData *SD = allocateScheduleDataChunks(); 3952 SD->Inst = I; 3953 SD->init(SchedulingRegionID, S.OpValue); 3954 ExtraScheduleDataMap[I][S.OpValue] = SD; 3955 return true; 3956 }; 3957 if (CheckSheduleForI(I)) 3958 return true; 3959 if (!ScheduleStart) { 3960 // It's the first instruction in the new region. 3961 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3962 ScheduleStart = I; 3963 ScheduleEnd = I->getNextNode(); 3964 if (isOneOf(S, I) != I) 3965 CheckSheduleForI(I); 3966 assert(ScheduleEnd && "tried to vectorize a terminator?"); 3967 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3968 return true; 3969 } 3970 // Search up and down at the same time, because we don't know if the new 3971 // instruction is above or below the existing scheduling region. 3972 BasicBlock::reverse_iterator UpIter = 3973 ++ScheduleStart->getIterator().getReverse(); 3974 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3975 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3976 BasicBlock::iterator LowerEnd = BB->end(); 3977 while (true) { 3978 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3979 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3980 return false; 3981 } 3982 3983 if (UpIter != UpperEnd) { 3984 if (&*UpIter == I) { 3985 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3986 ScheduleStart = I; 3987 if (isOneOf(S, I) != I) 3988 CheckSheduleForI(I); 3989 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 3990 << "\n"); 3991 return true; 3992 } 3993 UpIter++; 3994 } 3995 if (DownIter != LowerEnd) { 3996 if (&*DownIter == I) { 3997 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3998 nullptr); 3999 ScheduleEnd = I->getNextNode(); 4000 if (isOneOf(S, I) != I) 4001 CheckSheduleForI(I); 4002 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4003 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4004 << "\n"); 4005 return true; 4006 } 4007 DownIter++; 4008 } 4009 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4010 "instruction not found in block"); 4011 } 4012 return true; 4013 } 4014 4015 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4016 Instruction *ToI, 4017 ScheduleData *PrevLoadStore, 4018 ScheduleData *NextLoadStore) { 4019 ScheduleData *CurrentLoadStore = PrevLoadStore; 4020 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4021 ScheduleData *SD = ScheduleDataMap[I]; 4022 if (!SD) { 4023 SD = allocateScheduleDataChunks(); 4024 ScheduleDataMap[I] = SD; 4025 SD->Inst = I; 4026 } 4027 assert(!isInSchedulingRegion(SD) && 4028 "new ScheduleData already in scheduling region"); 4029 SD->init(SchedulingRegionID, I); 4030 4031 if (I->mayReadOrWriteMemory() && 4032 (!isa<IntrinsicInst>(I) || 4033 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4034 // Update the linked list of memory accessing instructions. 4035 if (CurrentLoadStore) { 4036 CurrentLoadStore->NextLoadStore = SD; 4037 } else { 4038 FirstLoadStoreInRegion = SD; 4039 } 4040 CurrentLoadStore = SD; 4041 } 4042 } 4043 if (NextLoadStore) { 4044 if (CurrentLoadStore) 4045 CurrentLoadStore->NextLoadStore = NextLoadStore; 4046 } else { 4047 LastLoadStoreInRegion = CurrentLoadStore; 4048 } 4049 } 4050 4051 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4052 bool InsertInReadyList, 4053 BoUpSLP *SLP) { 4054 assert(SD->isSchedulingEntity()); 4055 4056 SmallVector<ScheduleData *, 10> WorkList; 4057 WorkList.push_back(SD); 4058 4059 while (!WorkList.empty()) { 4060 ScheduleData *SD = WorkList.back(); 4061 WorkList.pop_back(); 4062 4063 ScheduleData *BundleMember = SD; 4064 while (BundleMember) { 4065 assert(isInSchedulingRegion(BundleMember)); 4066 if (!BundleMember->hasValidDependencies()) { 4067 4068 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4069 << "\n"); 4070 BundleMember->Dependencies = 0; 4071 BundleMember->resetUnscheduledDeps(); 4072 4073 // Handle def-use chain dependencies. 4074 if (BundleMember->OpValue != BundleMember->Inst) { 4075 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4076 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4077 BundleMember->Dependencies++; 4078 ScheduleData *DestBundle = UseSD->FirstInBundle; 4079 if (!DestBundle->IsScheduled) 4080 BundleMember->incrementUnscheduledDeps(1); 4081 if (!DestBundle->hasValidDependencies()) 4082 WorkList.push_back(DestBundle); 4083 } 4084 } else { 4085 for (User *U : BundleMember->Inst->users()) { 4086 if (isa<Instruction>(U)) { 4087 ScheduleData *UseSD = getScheduleData(U); 4088 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4089 BundleMember->Dependencies++; 4090 ScheduleData *DestBundle = UseSD->FirstInBundle; 4091 if (!DestBundle->IsScheduled) 4092 BundleMember->incrementUnscheduledDeps(1); 4093 if (!DestBundle->hasValidDependencies()) 4094 WorkList.push_back(DestBundle); 4095 } 4096 } else { 4097 // I'm not sure if this can ever happen. But we need to be safe. 4098 // This lets the instruction/bundle never be scheduled and 4099 // eventually disable vectorization. 4100 BundleMember->Dependencies++; 4101 BundleMember->incrementUnscheduledDeps(1); 4102 } 4103 } 4104 } 4105 4106 // Handle the memory dependencies. 4107 ScheduleData *DepDest = BundleMember->NextLoadStore; 4108 if (DepDest) { 4109 Instruction *SrcInst = BundleMember->Inst; 4110 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4111 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4112 unsigned numAliased = 0; 4113 unsigned DistToSrc = 1; 4114 4115 while (DepDest) { 4116 assert(isInSchedulingRegion(DepDest)); 4117 4118 // We have two limits to reduce the complexity: 4119 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4120 // SLP->isAliased (which is the expensive part in this loop). 4121 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4122 // the whole loop (even if the loop is fast, it's quadratic). 4123 // It's important for the loop break condition (see below) to 4124 // check this limit even between two read-only instructions. 4125 if (DistToSrc >= MaxMemDepDistance || 4126 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4127 (numAliased >= AliasedCheckLimit || 4128 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4129 4130 // We increment the counter only if the locations are aliased 4131 // (instead of counting all alias checks). This gives a better 4132 // balance between reduced runtime and accurate dependencies. 4133 numAliased++; 4134 4135 DepDest->MemoryDependencies.push_back(BundleMember); 4136 BundleMember->Dependencies++; 4137 ScheduleData *DestBundle = DepDest->FirstInBundle; 4138 if (!DestBundle->IsScheduled) { 4139 BundleMember->incrementUnscheduledDeps(1); 4140 } 4141 if (!DestBundle->hasValidDependencies()) { 4142 WorkList.push_back(DestBundle); 4143 } 4144 } 4145 DepDest = DepDest->NextLoadStore; 4146 4147 // Example, explaining the loop break condition: Let's assume our 4148 // starting instruction is i0 and MaxMemDepDistance = 3. 4149 // 4150 // +--------v--v--v 4151 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4152 // +--------^--^--^ 4153 // 4154 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4155 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4156 // Previously we already added dependencies from i3 to i6,i7,i8 4157 // (because of MaxMemDepDistance). As we added a dependency from 4158 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4159 // and we can abort this loop at i6. 4160 if (DistToSrc >= 2 * MaxMemDepDistance) 4161 break; 4162 DistToSrc++; 4163 } 4164 } 4165 } 4166 BundleMember = BundleMember->NextInBundle; 4167 } 4168 if (InsertInReadyList && SD->isReady()) { 4169 ReadyInsts.push_back(SD); 4170 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4171 << "\n"); 4172 } 4173 } 4174 } 4175 4176 void BoUpSLP::BlockScheduling::resetSchedule() { 4177 assert(ScheduleStart && 4178 "tried to reset schedule on block which has not been scheduled"); 4179 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4180 doForAllOpcodes(I, [&](ScheduleData *SD) { 4181 assert(isInSchedulingRegion(SD) && 4182 "ScheduleData not in scheduling region"); 4183 SD->IsScheduled = false; 4184 SD->resetUnscheduledDeps(); 4185 }); 4186 } 4187 ReadyInsts.clear(); 4188 } 4189 4190 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4191 if (!BS->ScheduleStart) 4192 return; 4193 4194 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4195 4196 BS->resetSchedule(); 4197 4198 // For the real scheduling we use a more sophisticated ready-list: it is 4199 // sorted by the original instruction location. This lets the final schedule 4200 // be as close as possible to the original instruction order. 4201 struct ScheduleDataCompare { 4202 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4203 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4204 } 4205 }; 4206 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4207 4208 // Ensure that all dependency data is updated and fill the ready-list with 4209 // initial instructions. 4210 int Idx = 0; 4211 int NumToSchedule = 0; 4212 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4213 I = I->getNextNode()) { 4214 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4215 assert(SD->isPartOfBundle() == 4216 (getTreeEntry(SD->Inst) != nullptr) && 4217 "scheduler and vectorizer bundle mismatch"); 4218 SD->FirstInBundle->SchedulingPriority = Idx++; 4219 if (SD->isSchedulingEntity()) { 4220 BS->calculateDependencies(SD, false, this); 4221 NumToSchedule++; 4222 } 4223 }); 4224 } 4225 BS->initialFillReadyList(ReadyInsts); 4226 4227 Instruction *LastScheduledInst = BS->ScheduleEnd; 4228 4229 // Do the "real" scheduling. 4230 while (!ReadyInsts.empty()) { 4231 ScheduleData *picked = *ReadyInsts.begin(); 4232 ReadyInsts.erase(ReadyInsts.begin()); 4233 4234 // Move the scheduled instruction(s) to their dedicated places, if not 4235 // there yet. 4236 ScheduleData *BundleMember = picked; 4237 while (BundleMember) { 4238 Instruction *pickedInst = BundleMember->Inst; 4239 if (LastScheduledInst->getNextNode() != pickedInst) { 4240 BS->BB->getInstList().remove(pickedInst); 4241 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4242 pickedInst); 4243 } 4244 LastScheduledInst = pickedInst; 4245 BundleMember = BundleMember->NextInBundle; 4246 } 4247 4248 BS->schedule(picked, ReadyInsts); 4249 NumToSchedule--; 4250 } 4251 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4252 4253 // Avoid duplicate scheduling of the block. 4254 BS->ScheduleStart = nullptr; 4255 } 4256 4257 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4258 // If V is a store, just return the width of the stored value without 4259 // traversing the expression tree. This is the common case. 4260 if (auto *Store = dyn_cast<StoreInst>(V)) 4261 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4262 4263 // If V is not a store, we can traverse the expression tree to find loads 4264 // that feed it. The type of the loaded value may indicate a more suitable 4265 // width than V's type. We want to base the vector element size on the width 4266 // of memory operations where possible. 4267 SmallVector<Instruction *, 16> Worklist; 4268 SmallPtrSet<Instruction *, 16> Visited; 4269 if (auto *I = dyn_cast<Instruction>(V)) 4270 Worklist.push_back(I); 4271 4272 // Traverse the expression tree in bottom-up order looking for loads. If we 4273 // encounter an instruction we don't yet handle, we give up. 4274 auto MaxWidth = 0u; 4275 auto FoundUnknownInst = false; 4276 while (!Worklist.empty() && !FoundUnknownInst) { 4277 auto *I = Worklist.pop_back_val(); 4278 Visited.insert(I); 4279 4280 // We should only be looking at scalar instructions here. If the current 4281 // instruction has a vector type, give up. 4282 auto *Ty = I->getType(); 4283 if (isa<VectorType>(Ty)) 4284 FoundUnknownInst = true; 4285 4286 // If the current instruction is a load, update MaxWidth to reflect the 4287 // width of the loaded value. 4288 else if (isa<LoadInst>(I)) 4289 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4290 4291 // Otherwise, we need to visit the operands of the instruction. We only 4292 // handle the interesting cases from buildTree here. If an operand is an 4293 // instruction we haven't yet visited, we add it to the worklist. 4294 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4295 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4296 for (Use &U : I->operands()) 4297 if (auto *J = dyn_cast<Instruction>(U.get())) 4298 if (!Visited.count(J)) 4299 Worklist.push_back(J); 4300 } 4301 4302 // If we don't yet handle the instruction, give up. 4303 else 4304 FoundUnknownInst = true; 4305 } 4306 4307 // If we didn't encounter a memory access in the expression tree, or if we 4308 // gave up for some reason, just return the width of V. 4309 if (!MaxWidth || FoundUnknownInst) 4310 return DL->getTypeSizeInBits(V->getType()); 4311 4312 // Otherwise, return the maximum width we found. 4313 return MaxWidth; 4314 } 4315 4316 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4317 // smaller type with a truncation. We collect the values that will be demoted 4318 // in ToDemote and additional roots that require investigating in Roots. 4319 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4320 SmallVectorImpl<Value *> &ToDemote, 4321 SmallVectorImpl<Value *> &Roots) { 4322 // We can always demote constants. 4323 if (isa<Constant>(V)) { 4324 ToDemote.push_back(V); 4325 return true; 4326 } 4327 4328 // If the value is not an instruction in the expression with only one use, it 4329 // cannot be demoted. 4330 auto *I = dyn_cast<Instruction>(V); 4331 if (!I || !I->hasOneUse() || !Expr.count(I)) 4332 return false; 4333 4334 switch (I->getOpcode()) { 4335 4336 // We can always demote truncations and extensions. Since truncations can 4337 // seed additional demotion, we save the truncated value. 4338 case Instruction::Trunc: 4339 Roots.push_back(I->getOperand(0)); 4340 break; 4341 case Instruction::ZExt: 4342 case Instruction::SExt: 4343 break; 4344 4345 // We can demote certain binary operations if we can demote both of their 4346 // operands. 4347 case Instruction::Add: 4348 case Instruction::Sub: 4349 case Instruction::Mul: 4350 case Instruction::And: 4351 case Instruction::Or: 4352 case Instruction::Xor: 4353 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4354 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4355 return false; 4356 break; 4357 4358 // We can demote selects if we can demote their true and false values. 4359 case Instruction::Select: { 4360 SelectInst *SI = cast<SelectInst>(I); 4361 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4362 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4363 return false; 4364 break; 4365 } 4366 4367 // We can demote phis if we can demote all their incoming operands. Note that 4368 // we don't need to worry about cycles since we ensure single use above. 4369 case Instruction::PHI: { 4370 PHINode *PN = cast<PHINode>(I); 4371 for (Value *IncValue : PN->incoming_values()) 4372 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4373 return false; 4374 break; 4375 } 4376 4377 // Otherwise, conservatively give up. 4378 default: 4379 return false; 4380 } 4381 4382 // Record the value that we can demote. 4383 ToDemote.push_back(V); 4384 return true; 4385 } 4386 4387 void BoUpSLP::computeMinimumValueSizes() { 4388 // If there are no external uses, the expression tree must be rooted by a 4389 // store. We can't demote in-memory values, so there is nothing to do here. 4390 if (ExternalUses.empty()) 4391 return; 4392 4393 // We only attempt to truncate integer expressions. 4394 auto &TreeRoot = VectorizableTree[0].Scalars; 4395 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4396 if (!TreeRootIT) 4397 return; 4398 4399 // If the expression is not rooted by a store, these roots should have 4400 // external uses. We will rely on InstCombine to rewrite the expression in 4401 // the narrower type. However, InstCombine only rewrites single-use values. 4402 // This means that if a tree entry other than a root is used externally, it 4403 // must have multiple uses and InstCombine will not rewrite it. The code 4404 // below ensures that only the roots are used externally. 4405 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4406 for (auto &EU : ExternalUses) 4407 if (!Expr.erase(EU.Scalar)) 4408 return; 4409 if (!Expr.empty()) 4410 return; 4411 4412 // Collect the scalar values of the vectorizable expression. We will use this 4413 // context to determine which values can be demoted. If we see a truncation, 4414 // we mark it as seeding another demotion. 4415 for (auto &Entry : VectorizableTree) 4416 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4417 4418 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4419 // have a single external user that is not in the vectorizable tree. 4420 for (auto *Root : TreeRoot) 4421 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4422 return; 4423 4424 // Conservatively determine if we can actually truncate the roots of the 4425 // expression. Collect the values that can be demoted in ToDemote and 4426 // additional roots that require investigating in Roots. 4427 SmallVector<Value *, 32> ToDemote; 4428 SmallVector<Value *, 4> Roots; 4429 for (auto *Root : TreeRoot) 4430 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4431 return; 4432 4433 // The maximum bit width required to represent all the values that can be 4434 // demoted without loss of precision. It would be safe to truncate the roots 4435 // of the expression to this width. 4436 auto MaxBitWidth = 8u; 4437 4438 // We first check if all the bits of the roots are demanded. If they're not, 4439 // we can truncate the roots to this narrower type. 4440 for (auto *Root : TreeRoot) { 4441 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4442 MaxBitWidth = std::max<unsigned>( 4443 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4444 } 4445 4446 // True if the roots can be zero-extended back to their original type, rather 4447 // than sign-extended. We know that if the leading bits are not demanded, we 4448 // can safely zero-extend. So we initialize IsKnownPositive to True. 4449 bool IsKnownPositive = true; 4450 4451 // If all the bits of the roots are demanded, we can try a little harder to 4452 // compute a narrower type. This can happen, for example, if the roots are 4453 // getelementptr indices. InstCombine promotes these indices to the pointer 4454 // width. Thus, all their bits are technically demanded even though the 4455 // address computation might be vectorized in a smaller type. 4456 // 4457 // We start by looking at each entry that can be demoted. We compute the 4458 // maximum bit width required to store the scalar by using ValueTracking to 4459 // compute the number of high-order bits we can truncate. 4460 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4461 llvm::all_of(TreeRoot, [](Value *R) { 4462 assert(R->hasOneUse() && "Root should have only one use!"); 4463 return isa<GetElementPtrInst>(R->user_back()); 4464 })) { 4465 MaxBitWidth = 8u; 4466 4467 // Determine if the sign bit of all the roots is known to be zero. If not, 4468 // IsKnownPositive is set to False. 4469 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4470 KnownBits Known = computeKnownBits(R, *DL); 4471 return Known.isNonNegative(); 4472 }); 4473 4474 // Determine the maximum number of bits required to store the scalar 4475 // values. 4476 for (auto *Scalar : ToDemote) { 4477 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4478 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4479 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4480 } 4481 4482 // If we can't prove that the sign bit is zero, we must add one to the 4483 // maximum bit width to account for the unknown sign bit. This preserves 4484 // the existing sign bit so we can safely sign-extend the root back to the 4485 // original type. Otherwise, if we know the sign bit is zero, we will 4486 // zero-extend the root instead. 4487 // 4488 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4489 // one to the maximum bit width will yield a larger-than-necessary 4490 // type. In general, we need to add an extra bit only if we can't 4491 // prove that the upper bit of the original type is equal to the 4492 // upper bit of the proposed smaller type. If these two bits are the 4493 // same (either zero or one) we know that sign-extending from the 4494 // smaller type will result in the same value. Here, since we can't 4495 // yet prove this, we are just making the proposed smaller type 4496 // larger to ensure correctness. 4497 if (!IsKnownPositive) 4498 ++MaxBitWidth; 4499 } 4500 4501 // Round MaxBitWidth up to the next power-of-two. 4502 if (!isPowerOf2_64(MaxBitWidth)) 4503 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4504 4505 // If the maximum bit width we compute is less than the with of the roots' 4506 // type, we can proceed with the narrowing. Otherwise, do nothing. 4507 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4508 return; 4509 4510 // If we can truncate the root, we must collect additional values that might 4511 // be demoted as a result. That is, those seeded by truncations we will 4512 // modify. 4513 while (!Roots.empty()) 4514 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4515 4516 // Finally, map the values we can demote to the maximum bit with we computed. 4517 for (auto *Scalar : ToDemote) 4518 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4519 } 4520 4521 namespace { 4522 4523 /// The SLPVectorizer Pass. 4524 struct SLPVectorizer : public FunctionPass { 4525 SLPVectorizerPass Impl; 4526 4527 /// Pass identification, replacement for typeid 4528 static char ID; 4529 4530 explicit SLPVectorizer() : FunctionPass(ID) { 4531 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4532 } 4533 4534 bool doInitialization(Module &M) override { 4535 return false; 4536 } 4537 4538 bool runOnFunction(Function &F) override { 4539 if (skipFunction(F)) 4540 return false; 4541 4542 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4543 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4544 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4545 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4546 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4547 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4548 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4549 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4550 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4551 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4552 4553 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4554 } 4555 4556 void getAnalysisUsage(AnalysisUsage &AU) const override { 4557 FunctionPass::getAnalysisUsage(AU); 4558 AU.addRequired<AssumptionCacheTracker>(); 4559 AU.addRequired<ScalarEvolutionWrapperPass>(); 4560 AU.addRequired<AAResultsWrapperPass>(); 4561 AU.addRequired<TargetTransformInfoWrapperPass>(); 4562 AU.addRequired<LoopInfoWrapperPass>(); 4563 AU.addRequired<DominatorTreeWrapperPass>(); 4564 AU.addRequired<DemandedBitsWrapperPass>(); 4565 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4566 AU.addPreserved<LoopInfoWrapperPass>(); 4567 AU.addPreserved<DominatorTreeWrapperPass>(); 4568 AU.addPreserved<AAResultsWrapperPass>(); 4569 AU.addPreserved<GlobalsAAWrapperPass>(); 4570 AU.setPreservesCFG(); 4571 } 4572 }; 4573 4574 } // end anonymous namespace 4575 4576 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4577 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4578 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4579 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4580 auto *AA = &AM.getResult<AAManager>(F); 4581 auto *LI = &AM.getResult<LoopAnalysis>(F); 4582 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4583 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4584 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4585 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4586 4587 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4588 if (!Changed) 4589 return PreservedAnalyses::all(); 4590 4591 PreservedAnalyses PA; 4592 PA.preserveSet<CFGAnalyses>(); 4593 PA.preserve<AAManager>(); 4594 PA.preserve<GlobalsAA>(); 4595 return PA; 4596 } 4597 4598 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4599 TargetTransformInfo *TTI_, 4600 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4601 LoopInfo *LI_, DominatorTree *DT_, 4602 AssumptionCache *AC_, DemandedBits *DB_, 4603 OptimizationRemarkEmitter *ORE_) { 4604 SE = SE_; 4605 TTI = TTI_; 4606 TLI = TLI_; 4607 AA = AA_; 4608 LI = LI_; 4609 DT = DT_; 4610 AC = AC_; 4611 DB = DB_; 4612 DL = &F.getParent()->getDataLayout(); 4613 4614 Stores.clear(); 4615 GEPs.clear(); 4616 bool Changed = false; 4617 4618 // If the target claims to have no vector registers don't attempt 4619 // vectorization. 4620 if (!TTI->getNumberOfRegisters(true)) 4621 return false; 4622 4623 // Don't vectorize when the attribute NoImplicitFloat is used. 4624 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4625 return false; 4626 4627 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4628 4629 // Use the bottom up slp vectorizer to construct chains that start with 4630 // store instructions. 4631 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4632 4633 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4634 // delete instructions. 4635 4636 // Scan the blocks in the function in post order. 4637 for (auto BB : post_order(&F.getEntryBlock())) { 4638 collectSeedInstructions(BB); 4639 4640 // Vectorize trees that end at stores. 4641 if (!Stores.empty()) { 4642 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4643 << " underlying objects.\n"); 4644 Changed |= vectorizeStoreChains(R); 4645 } 4646 4647 // Vectorize trees that end at reductions. 4648 Changed |= vectorizeChainsInBlock(BB, R); 4649 4650 // Vectorize the index computations of getelementptr instructions. This 4651 // is primarily intended to catch gather-like idioms ending at 4652 // non-consecutive loads. 4653 if (!GEPs.empty()) { 4654 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4655 << " underlying objects.\n"); 4656 Changed |= vectorizeGEPIndices(BB, R); 4657 } 4658 } 4659 4660 if (Changed) { 4661 R.optimizeGatherSequence(); 4662 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4663 LLVM_DEBUG(verifyFunction(F)); 4664 } 4665 return Changed; 4666 } 4667 4668 /// Check that the Values in the slice in VL array are still existent in 4669 /// the WeakTrackingVH array. 4670 /// Vectorization of part of the VL array may cause later values in the VL array 4671 /// to become invalid. We track when this has happened in the WeakTrackingVH 4672 /// array. 4673 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4674 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4675 unsigned SliceSize) { 4676 VL = VL.slice(SliceBegin, SliceSize); 4677 VH = VH.slice(SliceBegin, SliceSize); 4678 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4679 } 4680 4681 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4682 unsigned VecRegSize) { 4683 const unsigned ChainLen = Chain.size(); 4684 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4685 << "\n"); 4686 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4687 const unsigned VF = VecRegSize / Sz; 4688 4689 if (!isPowerOf2_32(Sz) || VF < 2) 4690 return false; 4691 4692 // Keep track of values that were deleted by vectorizing in the loop below. 4693 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4694 4695 bool Changed = false; 4696 // Look for profitable vectorizable trees at all offsets, starting at zero. 4697 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4698 4699 // Check that a previous iteration of this loop did not delete the Value. 4700 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4701 continue; 4702 4703 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4704 << "\n"); 4705 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4706 4707 R.buildTree(Operands); 4708 if (R.isTreeTinyAndNotFullyVectorizable()) 4709 continue; 4710 4711 R.computeMinimumValueSizes(); 4712 4713 int Cost = R.getTreeCost(); 4714 4715 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4716 << "\n"); 4717 if (Cost < -SLPCostThreshold) { 4718 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4719 4720 using namespace ore; 4721 4722 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4723 cast<StoreInst>(Chain[i])) 4724 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4725 << " and with tree size " 4726 << NV("TreeSize", R.getTreeSize())); 4727 4728 R.vectorizeTree(); 4729 4730 // Move to the next bundle. 4731 i += VF - 1; 4732 Changed = true; 4733 } 4734 } 4735 4736 return Changed; 4737 } 4738 4739 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4740 BoUpSLP &R) { 4741 SetVector<StoreInst *> Heads; 4742 SmallDenseSet<StoreInst *> Tails; 4743 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4744 4745 // We may run into multiple chains that merge into a single chain. We mark the 4746 // stores that we vectorized so that we don't visit the same store twice. 4747 BoUpSLP::ValueSet VectorizedStores; 4748 bool Changed = false; 4749 4750 // Do a quadratic search on all of the given stores in reverse order and find 4751 // all of the pairs of stores that follow each other. 4752 SmallVector<unsigned, 16> IndexQueue; 4753 unsigned E = Stores.size(); 4754 IndexQueue.resize(E - 1); 4755 for (unsigned I = E; I > 0; --I) { 4756 unsigned Idx = I - 1; 4757 // If a store has multiple consecutive store candidates, search Stores 4758 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4759 // This is because usually pairing with immediate succeeding or preceding 4760 // candidate create the best chance to find slp vectorization opportunity. 4761 unsigned Offset = 1; 4762 unsigned Cnt = 0; 4763 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4764 if (Idx >= Offset) { 4765 IndexQueue[Cnt] = Idx - Offset; 4766 ++Cnt; 4767 } 4768 if (Idx + Offset < E) { 4769 IndexQueue[Cnt] = Idx + Offset; 4770 ++Cnt; 4771 } 4772 } 4773 4774 for (auto K : IndexQueue) { 4775 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4776 Tails.insert(Stores[Idx]); 4777 Heads.insert(Stores[K]); 4778 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4779 break; 4780 } 4781 } 4782 } 4783 4784 // For stores that start but don't end a link in the chain: 4785 for (auto *SI : llvm::reverse(Heads)) { 4786 if (Tails.count(SI)) 4787 continue; 4788 4789 // We found a store instr that starts a chain. Now follow the chain and try 4790 // to vectorize it. 4791 BoUpSLP::ValueList Operands; 4792 StoreInst *I = SI; 4793 // Collect the chain into a list. 4794 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4795 Operands.push_back(I); 4796 // Move to the next value in the chain. 4797 I = ConsecutiveChain[I]; 4798 } 4799 4800 // FIXME: Is division-by-2 the correct step? Should we assert that the 4801 // register size is a power-of-2? 4802 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4803 Size /= 2) { 4804 if (vectorizeStoreChain(Operands, R, Size)) { 4805 // Mark the vectorized stores so that we don't vectorize them again. 4806 VectorizedStores.insert(Operands.begin(), Operands.end()); 4807 Changed = true; 4808 break; 4809 } 4810 } 4811 } 4812 4813 return Changed; 4814 } 4815 4816 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4817 // Initialize the collections. We will make a single pass over the block. 4818 Stores.clear(); 4819 GEPs.clear(); 4820 4821 // Visit the store and getelementptr instructions in BB and organize them in 4822 // Stores and GEPs according to the underlying objects of their pointer 4823 // operands. 4824 for (Instruction &I : *BB) { 4825 // Ignore store instructions that are volatile or have a pointer operand 4826 // that doesn't point to a scalar type. 4827 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4828 if (!SI->isSimple()) 4829 continue; 4830 if (!isValidElementType(SI->getValueOperand()->getType())) 4831 continue; 4832 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4833 } 4834 4835 // Ignore getelementptr instructions that have more than one index, a 4836 // constant index, or a pointer operand that doesn't point to a scalar 4837 // type. 4838 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4839 auto Idx = GEP->idx_begin()->get(); 4840 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4841 continue; 4842 if (!isValidElementType(Idx->getType())) 4843 continue; 4844 if (GEP->getType()->isVectorTy()) 4845 continue; 4846 GEPs[GEP->getPointerOperand()].push_back(GEP); 4847 } 4848 } 4849 } 4850 4851 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4852 if (!A || !B) 4853 return false; 4854 Value *VL[] = { A, B }; 4855 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4856 } 4857 4858 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4859 int UserCost, bool AllowReorder) { 4860 if (VL.size() < 2) 4861 return false; 4862 4863 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4864 << VL.size() << ".\n"); 4865 4866 // Check that all of the parts are scalar instructions of the same type, 4867 // we permit an alternate opcode via InstructionsState. 4868 InstructionsState S = getSameOpcode(VL); 4869 if (!S.getOpcode()) 4870 return false; 4871 4872 Instruction *I0 = cast<Instruction>(S.OpValue); 4873 unsigned Sz = R.getVectorElementSize(I0); 4874 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4875 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4876 if (MaxVF < 2) { 4877 R.getORE()->emit([&]() { 4878 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 4879 << "Cannot SLP vectorize list: vectorization factor " 4880 << "less than 2 is not supported"; 4881 }); 4882 return false; 4883 } 4884 4885 for (Value *V : VL) { 4886 Type *Ty = V->getType(); 4887 if (!isValidElementType(Ty)) { 4888 // NOTE: the following will give user internal llvm type name, which may 4889 // not be useful. 4890 R.getORE()->emit([&]() { 4891 std::string type_str; 4892 llvm::raw_string_ostream rso(type_str); 4893 Ty->print(rso); 4894 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 4895 << "Cannot SLP vectorize list: type " 4896 << rso.str() + " is unsupported by vectorizer"; 4897 }); 4898 return false; 4899 } 4900 } 4901 4902 bool Changed = false; 4903 bool CandidateFound = false; 4904 int MinCost = SLPCostThreshold; 4905 4906 // Keep track of values that were deleted by vectorizing in the loop below. 4907 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4908 4909 unsigned NextInst = 0, MaxInst = VL.size(); 4910 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4911 VF /= 2) { 4912 // No actual vectorization should happen, if number of parts is the same as 4913 // provided vectorization factor (i.e. the scalar type is used for vector 4914 // code during codegen). 4915 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4916 if (TTI->getNumberOfParts(VecTy) == VF) 4917 continue; 4918 for (unsigned I = NextInst; I < MaxInst; ++I) { 4919 unsigned OpsWidth = 0; 4920 4921 if (I + VF > MaxInst) 4922 OpsWidth = MaxInst - I; 4923 else 4924 OpsWidth = VF; 4925 4926 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4927 break; 4928 4929 // Check that a previous iteration of this loop did not delete the Value. 4930 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4931 continue; 4932 4933 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4934 << "\n"); 4935 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4936 4937 R.buildTree(Ops); 4938 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4939 // TODO: check if we can allow reordering for more cases. 4940 if (AllowReorder && Order) { 4941 // TODO: reorder tree nodes without tree rebuilding. 4942 // Conceptually, there is nothing actually preventing us from trying to 4943 // reorder a larger list. In fact, we do exactly this when vectorizing 4944 // reductions. However, at this point, we only expect to get here when 4945 // there are exactly two operations. 4946 assert(Ops.size() == 2); 4947 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4948 R.buildTree(ReorderedOps, None); 4949 } 4950 if (R.isTreeTinyAndNotFullyVectorizable()) 4951 continue; 4952 4953 R.computeMinimumValueSizes(); 4954 int Cost = R.getTreeCost() - UserCost; 4955 CandidateFound = true; 4956 MinCost = std::min(MinCost, Cost); 4957 4958 if (Cost < -SLPCostThreshold) { 4959 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4960 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4961 cast<Instruction>(Ops[0])) 4962 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4963 << " and with tree size " 4964 << ore::NV("TreeSize", R.getTreeSize())); 4965 4966 R.vectorizeTree(); 4967 // Move to the next bundle. 4968 I += VF - 1; 4969 NextInst = I + 1; 4970 Changed = true; 4971 } 4972 } 4973 } 4974 4975 if (!Changed && CandidateFound) { 4976 R.getORE()->emit([&]() { 4977 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 4978 << "List vectorization was possible but not beneficial with cost " 4979 << ore::NV("Cost", MinCost) << " >= " 4980 << ore::NV("Treshold", -SLPCostThreshold); 4981 }); 4982 } else if (!Changed) { 4983 R.getORE()->emit([&]() { 4984 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 4985 << "Cannot SLP vectorize list: vectorization was impossible" 4986 << " with available vectorization factors"; 4987 }); 4988 } 4989 return Changed; 4990 } 4991 4992 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4993 if (!I) 4994 return false; 4995 4996 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4997 return false; 4998 4999 Value *P = I->getParent(); 5000 5001 // Vectorize in current basic block only. 5002 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5003 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5004 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5005 return false; 5006 5007 // Try to vectorize V. 5008 if (tryToVectorizePair(Op0, Op1, R)) 5009 return true; 5010 5011 auto *A = dyn_cast<BinaryOperator>(Op0); 5012 auto *B = dyn_cast<BinaryOperator>(Op1); 5013 // Try to skip B. 5014 if (B && B->hasOneUse()) { 5015 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5016 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5017 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5018 return true; 5019 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5020 return true; 5021 } 5022 5023 // Try to skip A. 5024 if (A && A->hasOneUse()) { 5025 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5026 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5027 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5028 return true; 5029 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5030 return true; 5031 } 5032 return false; 5033 } 5034 5035 /// Generate a shuffle mask to be used in a reduction tree. 5036 /// 5037 /// \param VecLen The length of the vector to be reduced. 5038 /// \param NumEltsToRdx The number of elements that should be reduced in the 5039 /// vector. 5040 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5041 /// reduction. A pairwise reduction will generate a mask of 5042 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5043 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5044 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5045 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5046 bool IsPairwise, bool IsLeft, 5047 IRBuilder<> &Builder) { 5048 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5049 5050 SmallVector<Constant *, 32> ShuffleMask( 5051 VecLen, UndefValue::get(Builder.getInt32Ty())); 5052 5053 if (IsPairwise) 5054 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5055 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5056 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5057 else 5058 // Move the upper half of the vector to the lower half. 5059 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5060 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5061 5062 return ConstantVector::get(ShuffleMask); 5063 } 5064 5065 namespace { 5066 5067 /// Model horizontal reductions. 5068 /// 5069 /// A horizontal reduction is a tree of reduction operations (currently add and 5070 /// fadd) that has operations that can be put into a vector as its leaf. 5071 /// For example, this tree: 5072 /// 5073 /// mul mul mul mul 5074 /// \ / \ / 5075 /// + + 5076 /// \ / 5077 /// + 5078 /// This tree has "mul" as its reduced values and "+" as its reduction 5079 /// operations. A reduction might be feeding into a store or a binary operation 5080 /// feeding a phi. 5081 /// ... 5082 /// \ / 5083 /// + 5084 /// | 5085 /// phi += 5086 /// 5087 /// Or: 5088 /// ... 5089 /// \ / 5090 /// + 5091 /// | 5092 /// *p = 5093 /// 5094 class HorizontalReduction { 5095 using ReductionOpsType = SmallVector<Value *, 16>; 5096 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5097 ReductionOpsListType ReductionOps; 5098 SmallVector<Value *, 32> ReducedVals; 5099 // Use map vector to make stable output. 5100 MapVector<Instruction *, Value *> ExtraArgs; 5101 5102 /// Kind of the reduction data. 5103 enum ReductionKind { 5104 RK_None, /// Not a reduction. 5105 RK_Arithmetic, /// Binary reduction data. 5106 RK_Min, /// Minimum reduction data. 5107 RK_UMin, /// Unsigned minimum reduction data. 5108 RK_Max, /// Maximum reduction data. 5109 RK_UMax, /// Unsigned maximum reduction data. 5110 }; 5111 5112 /// Contains info about operation, like its opcode, left and right operands. 5113 class OperationData { 5114 /// Opcode of the instruction. 5115 unsigned Opcode = 0; 5116 5117 /// Left operand of the reduction operation. 5118 Value *LHS = nullptr; 5119 5120 /// Right operand of the reduction operation. 5121 Value *RHS = nullptr; 5122 5123 /// Kind of the reduction operation. 5124 ReductionKind Kind = RK_None; 5125 5126 /// True if float point min/max reduction has no NaNs. 5127 bool NoNaN = false; 5128 5129 /// Checks if the reduction operation can be vectorized. 5130 bool isVectorizable() const { 5131 return LHS && RHS && 5132 // We currently only support add/mul/logical && min/max reductions. 5133 ((Kind == RK_Arithmetic && 5134 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5135 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5136 Opcode == Instruction::And || Opcode == Instruction::Or || 5137 Opcode == Instruction::Xor)) || 5138 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5139 (Kind == RK_Min || Kind == RK_Max)) || 5140 (Opcode == Instruction::ICmp && 5141 (Kind == RK_UMin || Kind == RK_UMax))); 5142 } 5143 5144 /// Creates reduction operation with the current opcode. 5145 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5146 assert(isVectorizable() && 5147 "Expected add|fadd or min/max reduction operation."); 5148 Value *Cmp; 5149 switch (Kind) { 5150 case RK_Arithmetic: 5151 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5152 Name); 5153 case RK_Min: 5154 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5155 : Builder.CreateFCmpOLT(LHS, RHS); 5156 break; 5157 case RK_Max: 5158 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5159 : Builder.CreateFCmpOGT(LHS, RHS); 5160 break; 5161 case RK_UMin: 5162 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5163 Cmp = Builder.CreateICmpULT(LHS, RHS); 5164 break; 5165 case RK_UMax: 5166 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5167 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5168 break; 5169 case RK_None: 5170 llvm_unreachable("Unknown reduction operation."); 5171 } 5172 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5173 } 5174 5175 public: 5176 explicit OperationData() = default; 5177 5178 /// Construction for reduced values. They are identified by opcode only and 5179 /// don't have associated LHS/RHS values. 5180 explicit OperationData(Value *V) { 5181 if (auto *I = dyn_cast<Instruction>(V)) 5182 Opcode = I->getOpcode(); 5183 } 5184 5185 /// Constructor for reduction operations with opcode and its left and 5186 /// right operands. 5187 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5188 bool NoNaN = false) 5189 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5190 assert(Kind != RK_None && "One of the reduction operations is expected."); 5191 } 5192 5193 explicit operator bool() const { return Opcode; } 5194 5195 /// Get the index of the first operand. 5196 unsigned getFirstOperandIndex() const { 5197 assert(!!*this && "The opcode is not set."); 5198 switch (Kind) { 5199 case RK_Min: 5200 case RK_UMin: 5201 case RK_Max: 5202 case RK_UMax: 5203 return 1; 5204 case RK_Arithmetic: 5205 case RK_None: 5206 break; 5207 } 5208 return 0; 5209 } 5210 5211 /// Total number of operands in the reduction operation. 5212 unsigned getNumberOfOperands() const { 5213 assert(Kind != RK_None && !!*this && LHS && RHS && 5214 "Expected reduction operation."); 5215 switch (Kind) { 5216 case RK_Arithmetic: 5217 return 2; 5218 case RK_Min: 5219 case RK_UMin: 5220 case RK_Max: 5221 case RK_UMax: 5222 return 3; 5223 case RK_None: 5224 break; 5225 } 5226 llvm_unreachable("Reduction kind is not set"); 5227 } 5228 5229 /// Checks if the operation has the same parent as \p P. 5230 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5231 assert(Kind != RK_None && !!*this && LHS && RHS && 5232 "Expected reduction operation."); 5233 if (!IsRedOp) 5234 return I->getParent() == P; 5235 switch (Kind) { 5236 case RK_Arithmetic: 5237 // Arithmetic reduction operation must be used once only. 5238 return I->getParent() == P; 5239 case RK_Min: 5240 case RK_UMin: 5241 case RK_Max: 5242 case RK_UMax: { 5243 // SelectInst must be used twice while the condition op must have single 5244 // use only. 5245 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5246 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5247 } 5248 case RK_None: 5249 break; 5250 } 5251 llvm_unreachable("Reduction kind is not set"); 5252 } 5253 /// Expected number of uses for reduction operations/reduced values. 5254 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5255 assert(Kind != RK_None && !!*this && LHS && RHS && 5256 "Expected reduction operation."); 5257 switch (Kind) { 5258 case RK_Arithmetic: 5259 return I->hasOneUse(); 5260 case RK_Min: 5261 case RK_UMin: 5262 case RK_Max: 5263 case RK_UMax: 5264 return I->hasNUses(2) && 5265 (!IsReductionOp || 5266 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5267 case RK_None: 5268 break; 5269 } 5270 llvm_unreachable("Reduction kind is not set"); 5271 } 5272 5273 /// Initializes the list of reduction operations. 5274 void initReductionOps(ReductionOpsListType &ReductionOps) { 5275 assert(Kind != RK_None && !!*this && LHS && RHS && 5276 "Expected reduction operation."); 5277 switch (Kind) { 5278 case RK_Arithmetic: 5279 ReductionOps.assign(1, ReductionOpsType()); 5280 break; 5281 case RK_Min: 5282 case RK_UMin: 5283 case RK_Max: 5284 case RK_UMax: 5285 ReductionOps.assign(2, ReductionOpsType()); 5286 break; 5287 case RK_None: 5288 llvm_unreachable("Reduction kind is not set"); 5289 } 5290 } 5291 /// Add all reduction operations for the reduction instruction \p I. 5292 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5293 assert(Kind != RK_None && !!*this && LHS && RHS && 5294 "Expected reduction operation."); 5295 switch (Kind) { 5296 case RK_Arithmetic: 5297 ReductionOps[0].emplace_back(I); 5298 break; 5299 case RK_Min: 5300 case RK_UMin: 5301 case RK_Max: 5302 case RK_UMax: 5303 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5304 ReductionOps[1].emplace_back(I); 5305 break; 5306 case RK_None: 5307 llvm_unreachable("Reduction kind is not set"); 5308 } 5309 } 5310 5311 /// Checks if instruction is associative and can be vectorized. 5312 bool isAssociative(Instruction *I) const { 5313 assert(Kind != RK_None && *this && LHS && RHS && 5314 "Expected reduction operation."); 5315 switch (Kind) { 5316 case RK_Arithmetic: 5317 return I->isAssociative(); 5318 case RK_Min: 5319 case RK_Max: 5320 return Opcode == Instruction::ICmp || 5321 cast<Instruction>(I->getOperand(0))->isFast(); 5322 case RK_UMin: 5323 case RK_UMax: 5324 assert(Opcode == Instruction::ICmp && 5325 "Only integer compare operation is expected."); 5326 return true; 5327 case RK_None: 5328 break; 5329 } 5330 llvm_unreachable("Reduction kind is not set"); 5331 } 5332 5333 /// Checks if the reduction operation can be vectorized. 5334 bool isVectorizable(Instruction *I) const { 5335 return isVectorizable() && isAssociative(I); 5336 } 5337 5338 /// Checks if two operation data are both a reduction op or both a reduced 5339 /// value. 5340 bool operator==(const OperationData &OD) { 5341 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5342 "One of the comparing operations is incorrect."); 5343 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5344 } 5345 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5346 void clear() { 5347 Opcode = 0; 5348 LHS = nullptr; 5349 RHS = nullptr; 5350 Kind = RK_None; 5351 NoNaN = false; 5352 } 5353 5354 /// Get the opcode of the reduction operation. 5355 unsigned getOpcode() const { 5356 assert(isVectorizable() && "Expected vectorizable operation."); 5357 return Opcode; 5358 } 5359 5360 /// Get kind of reduction data. 5361 ReductionKind getKind() const { return Kind; } 5362 Value *getLHS() const { return LHS; } 5363 Value *getRHS() const { return RHS; } 5364 Type *getConditionType() const { 5365 switch (Kind) { 5366 case RK_Arithmetic: 5367 return nullptr; 5368 case RK_Min: 5369 case RK_Max: 5370 case RK_UMin: 5371 case RK_UMax: 5372 return CmpInst::makeCmpResultType(LHS->getType()); 5373 case RK_None: 5374 break; 5375 } 5376 llvm_unreachable("Reduction kind is not set"); 5377 } 5378 5379 /// Creates reduction operation with the current opcode with the IR flags 5380 /// from \p ReductionOps. 5381 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5382 const ReductionOpsListType &ReductionOps) const { 5383 assert(isVectorizable() && 5384 "Expected add|fadd or min/max reduction operation."); 5385 auto *Op = createOp(Builder, Name); 5386 switch (Kind) { 5387 case RK_Arithmetic: 5388 propagateIRFlags(Op, ReductionOps[0]); 5389 return Op; 5390 case RK_Min: 5391 case RK_Max: 5392 case RK_UMin: 5393 case RK_UMax: 5394 if (auto *SI = dyn_cast<SelectInst>(Op)) 5395 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5396 propagateIRFlags(Op, ReductionOps[1]); 5397 return Op; 5398 case RK_None: 5399 break; 5400 } 5401 llvm_unreachable("Unknown reduction operation."); 5402 } 5403 /// Creates reduction operation with the current opcode with the IR flags 5404 /// from \p I. 5405 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5406 Instruction *I) const { 5407 assert(isVectorizable() && 5408 "Expected add|fadd or min/max reduction operation."); 5409 auto *Op = createOp(Builder, Name); 5410 switch (Kind) { 5411 case RK_Arithmetic: 5412 propagateIRFlags(Op, I); 5413 return Op; 5414 case RK_Min: 5415 case RK_Max: 5416 case RK_UMin: 5417 case RK_UMax: 5418 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5419 propagateIRFlags(SI->getCondition(), 5420 cast<SelectInst>(I)->getCondition()); 5421 } 5422 propagateIRFlags(Op, I); 5423 return Op; 5424 case RK_None: 5425 break; 5426 } 5427 llvm_unreachable("Unknown reduction operation."); 5428 } 5429 5430 TargetTransformInfo::ReductionFlags getFlags() const { 5431 TargetTransformInfo::ReductionFlags Flags; 5432 Flags.NoNaN = NoNaN; 5433 switch (Kind) { 5434 case RK_Arithmetic: 5435 break; 5436 case RK_Min: 5437 Flags.IsSigned = Opcode == Instruction::ICmp; 5438 Flags.IsMaxOp = false; 5439 break; 5440 case RK_Max: 5441 Flags.IsSigned = Opcode == Instruction::ICmp; 5442 Flags.IsMaxOp = true; 5443 break; 5444 case RK_UMin: 5445 Flags.IsSigned = false; 5446 Flags.IsMaxOp = false; 5447 break; 5448 case RK_UMax: 5449 Flags.IsSigned = false; 5450 Flags.IsMaxOp = true; 5451 break; 5452 case RK_None: 5453 llvm_unreachable("Reduction kind is not set"); 5454 } 5455 return Flags; 5456 } 5457 }; 5458 5459 WeakTrackingVH ReductionRoot; 5460 5461 /// The operation data of the reduction operation. 5462 OperationData ReductionData; 5463 5464 /// The operation data of the values we perform a reduction on. 5465 OperationData ReducedValueData; 5466 5467 /// Should we model this reduction as a pairwise reduction tree or a tree that 5468 /// splits the vector in halves and adds those halves. 5469 bool IsPairwiseReduction = false; 5470 5471 /// Checks if the ParentStackElem.first should be marked as a reduction 5472 /// operation with an extra argument or as extra argument itself. 5473 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5474 Value *ExtraArg) { 5475 if (ExtraArgs.count(ParentStackElem.first)) { 5476 ExtraArgs[ParentStackElem.first] = nullptr; 5477 // We ran into something like: 5478 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5479 // The whole ParentStackElem.first should be considered as an extra value 5480 // in this case. 5481 // Do not perform analysis of remaining operands of ParentStackElem.first 5482 // instruction, this whole instruction is an extra argument. 5483 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5484 } else { 5485 // We ran into something like: 5486 // ParentStackElem.first += ... + ExtraArg + ... 5487 ExtraArgs[ParentStackElem.first] = ExtraArg; 5488 } 5489 } 5490 5491 static OperationData getOperationData(Value *V) { 5492 if (!V) 5493 return OperationData(); 5494 5495 Value *LHS; 5496 Value *RHS; 5497 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5498 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5499 RK_Arithmetic); 5500 } 5501 if (auto *Select = dyn_cast<SelectInst>(V)) { 5502 // Look for a min/max pattern. 5503 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5504 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5505 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5506 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5507 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5508 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5509 return OperationData( 5510 Instruction::FCmp, LHS, RHS, RK_Min, 5511 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5512 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5513 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5514 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5515 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5516 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5517 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5518 return OperationData( 5519 Instruction::FCmp, LHS, RHS, RK_Max, 5520 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5521 } else { 5522 // Try harder: look for min/max pattern based on instructions producing 5523 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5524 // During the intermediate stages of SLP, it's very common to have 5525 // pattern like this (since optimizeGatherSequence is run only once 5526 // at the end): 5527 // %1 = extractelement <2 x i32> %a, i32 0 5528 // %2 = extractelement <2 x i32> %a, i32 1 5529 // %cond = icmp sgt i32 %1, %2 5530 // %3 = extractelement <2 x i32> %a, i32 0 5531 // %4 = extractelement <2 x i32> %a, i32 1 5532 // %select = select i1 %cond, i32 %3, i32 %4 5533 CmpInst::Predicate Pred; 5534 Instruction *L1; 5535 Instruction *L2; 5536 5537 LHS = Select->getTrueValue(); 5538 RHS = Select->getFalseValue(); 5539 Value *Cond = Select->getCondition(); 5540 5541 // TODO: Support inverse predicates. 5542 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5543 if (!isa<ExtractElementInst>(RHS) || 5544 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5545 return OperationData(V); 5546 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5547 if (!isa<ExtractElementInst>(LHS) || 5548 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5549 return OperationData(V); 5550 } else { 5551 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5552 return OperationData(V); 5553 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5554 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5555 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5556 return OperationData(V); 5557 } 5558 switch (Pred) { 5559 default: 5560 return OperationData(V); 5561 5562 case CmpInst::ICMP_ULT: 5563 case CmpInst::ICMP_ULE: 5564 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5565 5566 case CmpInst::ICMP_SLT: 5567 case CmpInst::ICMP_SLE: 5568 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5569 5570 case CmpInst::FCMP_OLT: 5571 case CmpInst::FCMP_OLE: 5572 case CmpInst::FCMP_ULT: 5573 case CmpInst::FCMP_ULE: 5574 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5575 cast<Instruction>(Cond)->hasNoNaNs()); 5576 5577 case CmpInst::ICMP_UGT: 5578 case CmpInst::ICMP_UGE: 5579 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5580 5581 case CmpInst::ICMP_SGT: 5582 case CmpInst::ICMP_SGE: 5583 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5584 5585 case CmpInst::FCMP_OGT: 5586 case CmpInst::FCMP_OGE: 5587 case CmpInst::FCMP_UGT: 5588 case CmpInst::FCMP_UGE: 5589 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5590 cast<Instruction>(Cond)->hasNoNaNs()); 5591 } 5592 } 5593 } 5594 return OperationData(V); 5595 } 5596 5597 public: 5598 HorizontalReduction() = default; 5599 5600 /// Try to find a reduction tree. 5601 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5602 assert((!Phi || is_contained(Phi->operands(), B)) && 5603 "Thi phi needs to use the binary operator"); 5604 5605 ReductionData = getOperationData(B); 5606 5607 // We could have a initial reductions that is not an add. 5608 // r *= v1 + v2 + v3 + v4 5609 // In such a case start looking for a tree rooted in the first '+'. 5610 if (Phi) { 5611 if (ReductionData.getLHS() == Phi) { 5612 Phi = nullptr; 5613 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5614 ReductionData = getOperationData(B); 5615 } else if (ReductionData.getRHS() == Phi) { 5616 Phi = nullptr; 5617 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5618 ReductionData = getOperationData(B); 5619 } 5620 } 5621 5622 if (!ReductionData.isVectorizable(B)) 5623 return false; 5624 5625 Type *Ty = B->getType(); 5626 if (!isValidElementType(Ty)) 5627 return false; 5628 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5629 return false; 5630 5631 ReducedValueData.clear(); 5632 ReductionRoot = B; 5633 5634 // Post order traverse the reduction tree starting at B. We only handle true 5635 // trees containing only binary operators. 5636 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5637 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5638 ReductionData.initReductionOps(ReductionOps); 5639 while (!Stack.empty()) { 5640 Instruction *TreeN = Stack.back().first; 5641 unsigned EdgeToVist = Stack.back().second++; 5642 OperationData OpData = getOperationData(TreeN); 5643 bool IsReducedValue = OpData != ReductionData; 5644 5645 // Postorder vist. 5646 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5647 if (IsReducedValue) 5648 ReducedVals.push_back(TreeN); 5649 else { 5650 auto I = ExtraArgs.find(TreeN); 5651 if (I != ExtraArgs.end() && !I->second) { 5652 // Check if TreeN is an extra argument of its parent operation. 5653 if (Stack.size() <= 1) { 5654 // TreeN can't be an extra argument as it is a root reduction 5655 // operation. 5656 return false; 5657 } 5658 // Yes, TreeN is an extra argument, do not add it to a list of 5659 // reduction operations. 5660 // Stack[Stack.size() - 2] always points to the parent operation. 5661 markExtraArg(Stack[Stack.size() - 2], TreeN); 5662 ExtraArgs.erase(TreeN); 5663 } else 5664 ReductionData.addReductionOps(TreeN, ReductionOps); 5665 } 5666 // Retract. 5667 Stack.pop_back(); 5668 continue; 5669 } 5670 5671 // Visit left or right. 5672 Value *NextV = TreeN->getOperand(EdgeToVist); 5673 if (NextV != Phi) { 5674 auto *I = dyn_cast<Instruction>(NextV); 5675 OpData = getOperationData(I); 5676 // Continue analysis if the next operand is a reduction operation or 5677 // (possibly) a reduced value. If the reduced value opcode is not set, 5678 // the first met operation != reduction operation is considered as the 5679 // reduced value class. 5680 if (I && (!ReducedValueData || OpData == ReducedValueData || 5681 OpData == ReductionData)) { 5682 const bool IsReductionOperation = OpData == ReductionData; 5683 // Only handle trees in the current basic block. 5684 if (!ReductionData.hasSameParent(I, B->getParent(), 5685 IsReductionOperation)) { 5686 // I is an extra argument for TreeN (its parent operation). 5687 markExtraArg(Stack.back(), I); 5688 continue; 5689 } 5690 5691 // Each tree node needs to have minimal number of users except for the 5692 // ultimate reduction. 5693 if (!ReductionData.hasRequiredNumberOfUses(I, 5694 OpData == ReductionData) && 5695 I != B) { 5696 // I is an extra argument for TreeN (its parent operation). 5697 markExtraArg(Stack.back(), I); 5698 continue; 5699 } 5700 5701 if (IsReductionOperation) { 5702 // We need to be able to reassociate the reduction operations. 5703 if (!OpData.isAssociative(I)) { 5704 // I is an extra argument for TreeN (its parent operation). 5705 markExtraArg(Stack.back(), I); 5706 continue; 5707 } 5708 } else if (ReducedValueData && 5709 ReducedValueData != OpData) { 5710 // Make sure that the opcodes of the operations that we are going to 5711 // reduce match. 5712 // I is an extra argument for TreeN (its parent operation). 5713 markExtraArg(Stack.back(), I); 5714 continue; 5715 } else if (!ReducedValueData) 5716 ReducedValueData = OpData; 5717 5718 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5719 continue; 5720 } 5721 } 5722 // NextV is an extra argument for TreeN (its parent operation). 5723 markExtraArg(Stack.back(), NextV); 5724 } 5725 return true; 5726 } 5727 5728 /// Attempt to vectorize the tree found by 5729 /// matchAssociativeReduction. 5730 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5731 if (ReducedVals.empty()) 5732 return false; 5733 5734 // If there is a sufficient number of reduction values, reduce 5735 // to a nearby power-of-2. Can safely generate oversized 5736 // vectors and rely on the backend to split them to legal sizes. 5737 unsigned NumReducedVals = ReducedVals.size(); 5738 if (NumReducedVals < 4) 5739 return false; 5740 5741 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5742 5743 Value *VectorizedTree = nullptr; 5744 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 5745 FastMathFlags Unsafe; 5746 Unsafe.setFast(); 5747 Builder.setFastMathFlags(Unsafe); 5748 unsigned i = 0; 5749 5750 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5751 // The same extra argument may be used several time, so log each attempt 5752 // to use it. 5753 for (auto &Pair : ExtraArgs) { 5754 assert(Pair.first && "DebugLoc must be set."); 5755 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5756 } 5757 // The reduction root is used as the insertion point for new instructions, 5758 // so set it as externally used to prevent it from being deleted. 5759 ExternallyUsedValues[ReductionRoot]; 5760 SmallVector<Value *, 16> IgnoreList; 5761 for (auto &V : ReductionOps) 5762 IgnoreList.append(V.begin(), V.end()); 5763 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5764 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5765 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5766 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5767 // TODO: Handle orders of size less than number of elements in the vector. 5768 if (Order && Order->size() == VL.size()) { 5769 // TODO: reorder tree nodes without tree rebuilding. 5770 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5771 llvm::transform(*Order, ReorderedOps.begin(), 5772 [VL](const unsigned Idx) { return VL[Idx]; }); 5773 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5774 } 5775 if (V.isTreeTinyAndNotFullyVectorizable()) 5776 break; 5777 5778 V.computeMinimumValueSizes(); 5779 5780 // Estimate cost. 5781 int TreeCost = V.getTreeCost(); 5782 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5783 int Cost = TreeCost + ReductionCost; 5784 if (Cost >= -SLPCostThreshold) { 5785 V.getORE()->emit([&]() { 5786 return OptimizationRemarkMissed( 5787 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5788 << "Vectorizing horizontal reduction is possible" 5789 << "but not beneficial with cost " 5790 << ore::NV("Cost", Cost) << " and threshold " 5791 << ore::NV("Threshold", -SLPCostThreshold); 5792 }); 5793 break; 5794 } 5795 5796 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5797 << Cost << ". (HorRdx)\n"); 5798 V.getORE()->emit([&]() { 5799 return OptimizationRemark( 5800 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5801 << "Vectorized horizontal reduction with cost " 5802 << ore::NV("Cost", Cost) << " and with tree size " 5803 << ore::NV("TreeSize", V.getTreeSize()); 5804 }); 5805 5806 // Vectorize a tree. 5807 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5808 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5809 5810 // Emit a reduction. 5811 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 5812 Value *ReducedSubTree = 5813 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5814 if (VectorizedTree) { 5815 Builder.SetCurrentDebugLocation(Loc); 5816 OperationData VectReductionData(ReductionData.getOpcode(), 5817 VectorizedTree, ReducedSubTree, 5818 ReductionData.getKind()); 5819 VectorizedTree = 5820 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5821 } else 5822 VectorizedTree = ReducedSubTree; 5823 i += ReduxWidth; 5824 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5825 } 5826 5827 if (VectorizedTree) { 5828 // Finish the reduction. 5829 for (; i < NumReducedVals; ++i) { 5830 auto *I = cast<Instruction>(ReducedVals[i]); 5831 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5832 OperationData VectReductionData(ReductionData.getOpcode(), 5833 VectorizedTree, I, 5834 ReductionData.getKind()); 5835 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5836 } 5837 for (auto &Pair : ExternallyUsedValues) { 5838 // Add each externally used value to the final reduction. 5839 for (auto *I : Pair.second) { 5840 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5841 OperationData VectReductionData(ReductionData.getOpcode(), 5842 VectorizedTree, Pair.first, 5843 ReductionData.getKind()); 5844 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5845 } 5846 } 5847 // Update users. 5848 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5849 } 5850 return VectorizedTree != nullptr; 5851 } 5852 5853 unsigned numReductionValues() const { 5854 return ReducedVals.size(); 5855 } 5856 5857 private: 5858 /// Calculate the cost of a reduction. 5859 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5860 unsigned ReduxWidth) { 5861 Type *ScalarTy = FirstReducedVal->getType(); 5862 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5863 5864 int PairwiseRdxCost; 5865 int SplittingRdxCost; 5866 switch (ReductionData.getKind()) { 5867 case RK_Arithmetic: 5868 PairwiseRdxCost = 5869 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5870 /*IsPairwiseForm=*/true); 5871 SplittingRdxCost = 5872 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5873 /*IsPairwiseForm=*/false); 5874 break; 5875 case RK_Min: 5876 case RK_Max: 5877 case RK_UMin: 5878 case RK_UMax: { 5879 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5880 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5881 ReductionData.getKind() == RK_UMax; 5882 PairwiseRdxCost = 5883 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5884 /*IsPairwiseForm=*/true, IsUnsigned); 5885 SplittingRdxCost = 5886 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5887 /*IsPairwiseForm=*/false, IsUnsigned); 5888 break; 5889 } 5890 case RK_None: 5891 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5892 } 5893 5894 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5895 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5896 5897 int ScalarReduxCost; 5898 switch (ReductionData.getKind()) { 5899 case RK_Arithmetic: 5900 ScalarReduxCost = 5901 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5902 break; 5903 case RK_Min: 5904 case RK_Max: 5905 case RK_UMin: 5906 case RK_UMax: 5907 ScalarReduxCost = 5908 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5909 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5910 CmpInst::makeCmpResultType(ScalarTy)); 5911 break; 5912 case RK_None: 5913 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5914 } 5915 ScalarReduxCost *= (ReduxWidth - 1); 5916 5917 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5918 << " for reduction that starts with " << *FirstReducedVal 5919 << " (It is a " 5920 << (IsPairwiseReduction ? "pairwise" : "splitting") 5921 << " reduction)\n"); 5922 5923 return VecReduxCost - ScalarReduxCost; 5924 } 5925 5926 /// Emit a horizontal reduction of the vectorized value. 5927 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5928 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5929 assert(VectorizedValue && "Need to have a vectorized tree node"); 5930 assert(isPowerOf2_32(ReduxWidth) && 5931 "We only handle power-of-two reductions for now"); 5932 5933 if (!IsPairwiseReduction) 5934 return createSimpleTargetReduction( 5935 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5936 ReductionData.getFlags(), ReductionOps.back()); 5937 5938 Value *TmpVec = VectorizedValue; 5939 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5940 Value *LeftMask = 5941 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5942 Value *RightMask = 5943 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5944 5945 Value *LeftShuf = Builder.CreateShuffleVector( 5946 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5947 Value *RightShuf = Builder.CreateShuffleVector( 5948 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5949 "rdx.shuf.r"); 5950 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5951 RightShuf, ReductionData.getKind()); 5952 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5953 } 5954 5955 // The result is in the first element of the vector. 5956 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5957 } 5958 }; 5959 5960 } // end anonymous namespace 5961 5962 /// Recognize construction of vectors like 5963 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5964 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5965 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5966 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5967 /// starting from the last insertelement instruction. 5968 /// 5969 /// Returns true if it matches 5970 static bool findBuildVector(InsertElementInst *LastInsertElem, 5971 TargetTransformInfo *TTI, 5972 SmallVectorImpl<Value *> &BuildVectorOpds, 5973 int &UserCost) { 5974 UserCost = 0; 5975 Value *V = nullptr; 5976 do { 5977 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5978 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5979 LastInsertElem->getType(), 5980 CI->getZExtValue()); 5981 } 5982 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5983 V = LastInsertElem->getOperand(0); 5984 if (isa<UndefValue>(V)) 5985 break; 5986 LastInsertElem = dyn_cast<InsertElementInst>(V); 5987 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5988 return false; 5989 } while (true); 5990 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5991 return true; 5992 } 5993 5994 /// Like findBuildVector, but looks for construction of aggregate. 5995 /// 5996 /// \return true if it matches. 5997 static bool findBuildAggregate(InsertValueInst *IV, 5998 SmallVectorImpl<Value *> &BuildVectorOpds) { 5999 Value *V; 6000 do { 6001 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6002 V = IV->getAggregateOperand(); 6003 if (isa<UndefValue>(V)) 6004 break; 6005 IV = dyn_cast<InsertValueInst>(V); 6006 if (!IV || !IV->hasOneUse()) 6007 return false; 6008 } while (true); 6009 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6010 return true; 6011 } 6012 6013 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6014 return V->getType() < V2->getType(); 6015 } 6016 6017 /// Try and get a reduction value from a phi node. 6018 /// 6019 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6020 /// if they come from either \p ParentBB or a containing loop latch. 6021 /// 6022 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6023 /// if not possible. 6024 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6025 BasicBlock *ParentBB, LoopInfo *LI) { 6026 // There are situations where the reduction value is not dominated by the 6027 // reduction phi. Vectorizing such cases has been reported to cause 6028 // miscompiles. See PR25787. 6029 auto DominatedReduxValue = [&](Value *R) { 6030 return isa<Instruction>(R) && 6031 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6032 }; 6033 6034 Value *Rdx = nullptr; 6035 6036 // Return the incoming value if it comes from the same BB as the phi node. 6037 if (P->getIncomingBlock(0) == ParentBB) { 6038 Rdx = P->getIncomingValue(0); 6039 } else if (P->getIncomingBlock(1) == ParentBB) { 6040 Rdx = P->getIncomingValue(1); 6041 } 6042 6043 if (Rdx && DominatedReduxValue(Rdx)) 6044 return Rdx; 6045 6046 // Otherwise, check whether we have a loop latch to look at. 6047 Loop *BBL = LI->getLoopFor(ParentBB); 6048 if (!BBL) 6049 return nullptr; 6050 BasicBlock *BBLatch = BBL->getLoopLatch(); 6051 if (!BBLatch) 6052 return nullptr; 6053 6054 // There is a loop latch, return the incoming value if it comes from 6055 // that. This reduction pattern occasionally turns up. 6056 if (P->getIncomingBlock(0) == BBLatch) { 6057 Rdx = P->getIncomingValue(0); 6058 } else if (P->getIncomingBlock(1) == BBLatch) { 6059 Rdx = P->getIncomingValue(1); 6060 } 6061 6062 if (Rdx && DominatedReduxValue(Rdx)) 6063 return Rdx; 6064 6065 return nullptr; 6066 } 6067 6068 /// Attempt to reduce a horizontal reduction. 6069 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6070 /// with reduction operators \a Root (or one of its operands) in a basic block 6071 /// \a BB, then check if it can be done. If horizontal reduction is not found 6072 /// and root instruction is a binary operation, vectorization of the operands is 6073 /// attempted. 6074 /// \returns true if a horizontal reduction was matched and reduced or operands 6075 /// of one of the binary instruction were vectorized. 6076 /// \returns false if a horizontal reduction was not matched (or not possible) 6077 /// or no vectorization of any binary operation feeding \a Root instruction was 6078 /// performed. 6079 static bool tryToVectorizeHorReductionOrInstOperands( 6080 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6081 TargetTransformInfo *TTI, 6082 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6083 if (!ShouldVectorizeHor) 6084 return false; 6085 6086 if (!Root) 6087 return false; 6088 6089 if (Root->getParent() != BB || isa<PHINode>(Root)) 6090 return false; 6091 // Start analysis starting from Root instruction. If horizontal reduction is 6092 // found, try to vectorize it. If it is not a horizontal reduction or 6093 // vectorization is not possible or not effective, and currently analyzed 6094 // instruction is a binary operation, try to vectorize the operands, using 6095 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6096 // the same procedure considering each operand as a possible root of the 6097 // horizontal reduction. 6098 // Interrupt the process if the Root instruction itself was vectorized or all 6099 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6100 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6101 SmallPtrSet<Value *, 8> VisitedInstrs; 6102 bool Res = false; 6103 while (!Stack.empty()) { 6104 Value *V; 6105 unsigned Level; 6106 std::tie(V, Level) = Stack.pop_back_val(); 6107 if (!V) 6108 continue; 6109 auto *Inst = dyn_cast<Instruction>(V); 6110 if (!Inst) 6111 continue; 6112 auto *BI = dyn_cast<BinaryOperator>(Inst); 6113 auto *SI = dyn_cast<SelectInst>(Inst); 6114 if (BI || SI) { 6115 HorizontalReduction HorRdx; 6116 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6117 if (HorRdx.tryToReduce(R, TTI)) { 6118 Res = true; 6119 // Set P to nullptr to avoid re-analysis of phi node in 6120 // matchAssociativeReduction function unless this is the root node. 6121 P = nullptr; 6122 continue; 6123 } 6124 } 6125 if (P && BI) { 6126 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6127 if (Inst == P) 6128 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6129 if (!Inst) { 6130 // Set P to nullptr to avoid re-analysis of phi node in 6131 // matchAssociativeReduction function unless this is the root node. 6132 P = nullptr; 6133 continue; 6134 } 6135 } 6136 } 6137 // Set P to nullptr to avoid re-analysis of phi node in 6138 // matchAssociativeReduction function unless this is the root node. 6139 P = nullptr; 6140 if (Vectorize(Inst, R)) { 6141 Res = true; 6142 continue; 6143 } 6144 6145 // Try to vectorize operands. 6146 // Continue analysis for the instruction from the same basic block only to 6147 // save compile time. 6148 if (++Level < RecursionMaxDepth) 6149 for (auto *Op : Inst->operand_values()) 6150 if (VisitedInstrs.insert(Op).second) 6151 if (auto *I = dyn_cast<Instruction>(Op)) 6152 if (!isa<PHINode>(I) && I->getParent() == BB) 6153 Stack.emplace_back(Op, Level); 6154 } 6155 return Res; 6156 } 6157 6158 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6159 BasicBlock *BB, BoUpSLP &R, 6160 TargetTransformInfo *TTI) { 6161 if (!V) 6162 return false; 6163 auto *I = dyn_cast<Instruction>(V); 6164 if (!I) 6165 return false; 6166 6167 if (!isa<BinaryOperator>(I)) 6168 P = nullptr; 6169 // Try to match and vectorize a horizontal reduction. 6170 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6171 return tryToVectorize(I, R); 6172 }; 6173 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6174 ExtraVectorization); 6175 } 6176 6177 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6178 BasicBlock *BB, BoUpSLP &R) { 6179 const DataLayout &DL = BB->getModule()->getDataLayout(); 6180 if (!R.canMapToVector(IVI->getType(), DL)) 6181 return false; 6182 6183 SmallVector<Value *, 16> BuildVectorOpds; 6184 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6185 return false; 6186 6187 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6188 // Aggregate value is unlikely to be processed in vector register, we need to 6189 // extract scalars into scalar registers, so NeedExtraction is set true. 6190 return tryToVectorizeList(BuildVectorOpds, R); 6191 } 6192 6193 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6194 BasicBlock *BB, BoUpSLP &R) { 6195 int UserCost; 6196 SmallVector<Value *, 16> BuildVectorOpds; 6197 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6198 (llvm::all_of(BuildVectorOpds, 6199 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6200 isShuffle(BuildVectorOpds))) 6201 return false; 6202 6203 // Vectorize starting with the build vector operands ignoring the BuildVector 6204 // instructions for the purpose of scheduling and user extraction. 6205 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6206 } 6207 6208 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6209 BoUpSLP &R) { 6210 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6211 return true; 6212 6213 bool OpsChanged = false; 6214 for (int Idx = 0; Idx < 2; ++Idx) { 6215 OpsChanged |= 6216 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6217 } 6218 return OpsChanged; 6219 } 6220 6221 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6222 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6223 bool OpsChanged = false; 6224 for (auto &VH : reverse(Instructions)) { 6225 auto *I = dyn_cast_or_null<Instruction>(VH); 6226 if (!I) 6227 continue; 6228 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6229 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6230 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6231 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6232 else if (auto *CI = dyn_cast<CmpInst>(I)) 6233 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6234 } 6235 Instructions.clear(); 6236 return OpsChanged; 6237 } 6238 6239 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6240 bool Changed = false; 6241 SmallVector<Value *, 4> Incoming; 6242 SmallPtrSet<Value *, 16> VisitedInstrs; 6243 6244 bool HaveVectorizedPhiNodes = true; 6245 while (HaveVectorizedPhiNodes) { 6246 HaveVectorizedPhiNodes = false; 6247 6248 // Collect the incoming values from the PHIs. 6249 Incoming.clear(); 6250 for (Instruction &I : *BB) { 6251 PHINode *P = dyn_cast<PHINode>(&I); 6252 if (!P) 6253 break; 6254 6255 if (!VisitedInstrs.count(P)) 6256 Incoming.push_back(P); 6257 } 6258 6259 // Sort by type. 6260 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6261 6262 // Try to vectorize elements base on their type. 6263 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6264 E = Incoming.end(); 6265 IncIt != E;) { 6266 6267 // Look for the next elements with the same type. 6268 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6269 while (SameTypeIt != E && 6270 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6271 VisitedInstrs.insert(*SameTypeIt); 6272 ++SameTypeIt; 6273 } 6274 6275 // Try to vectorize them. 6276 unsigned NumElts = (SameTypeIt - IncIt); 6277 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6278 << NumElts << ")\n"); 6279 // The order in which the phi nodes appear in the program does not matter. 6280 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6281 // is done when there are exactly two elements since tryToVectorizeList 6282 // asserts that there are only two values when AllowReorder is true. 6283 bool AllowReorder = NumElts == 2; 6284 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6285 /*UserCost=*/0, AllowReorder)) { 6286 // Success start over because instructions might have been changed. 6287 HaveVectorizedPhiNodes = true; 6288 Changed = true; 6289 break; 6290 } 6291 6292 // Start over at the next instruction of a different type (or the end). 6293 IncIt = SameTypeIt; 6294 } 6295 } 6296 6297 VisitedInstrs.clear(); 6298 6299 SmallVector<WeakVH, 8> PostProcessInstructions; 6300 SmallDenseSet<Instruction *, 4> KeyNodes; 6301 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6302 // We may go through BB multiple times so skip the one we have checked. 6303 if (!VisitedInstrs.insert(&*it).second) { 6304 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6305 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6306 // We would like to start over since some instructions are deleted 6307 // and the iterator may become invalid value. 6308 Changed = true; 6309 it = BB->begin(); 6310 e = BB->end(); 6311 } 6312 continue; 6313 } 6314 6315 if (isa<DbgInfoIntrinsic>(it)) 6316 continue; 6317 6318 // Try to vectorize reductions that use PHINodes. 6319 if (PHINode *P = dyn_cast<PHINode>(it)) { 6320 // Check that the PHI is a reduction PHI. 6321 if (P->getNumIncomingValues() != 2) 6322 return Changed; 6323 6324 // Try to match and vectorize a horizontal reduction. 6325 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6326 TTI)) { 6327 Changed = true; 6328 it = BB->begin(); 6329 e = BB->end(); 6330 continue; 6331 } 6332 continue; 6333 } 6334 6335 // Ran into an instruction without users, like terminator, or function call 6336 // with ignored return value, store. Ignore unused instructions (basing on 6337 // instruction type, except for CallInst and InvokeInst). 6338 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6339 isa<InvokeInst>(it))) { 6340 KeyNodes.insert(&*it); 6341 bool OpsChanged = false; 6342 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6343 for (auto *V : it->operand_values()) { 6344 // Try to match and vectorize a horizontal reduction. 6345 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6346 } 6347 } 6348 // Start vectorization of post-process list of instructions from the 6349 // top-tree instructions to try to vectorize as many instructions as 6350 // possible. 6351 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6352 if (OpsChanged) { 6353 // We would like to start over since some instructions are deleted 6354 // and the iterator may become invalid value. 6355 Changed = true; 6356 it = BB->begin(); 6357 e = BB->end(); 6358 continue; 6359 } 6360 } 6361 6362 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6363 isa<InsertValueInst>(it)) 6364 PostProcessInstructions.push_back(&*it); 6365 } 6366 6367 return Changed; 6368 } 6369 6370 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6371 auto Changed = false; 6372 for (auto &Entry : GEPs) { 6373 // If the getelementptr list has fewer than two elements, there's nothing 6374 // to do. 6375 if (Entry.second.size() < 2) 6376 continue; 6377 6378 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6379 << Entry.second.size() << ".\n"); 6380 6381 // We process the getelementptr list in chunks of 16 (like we do for 6382 // stores) to minimize compile-time. 6383 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6384 auto Len = std::min<unsigned>(BE - BI, 16); 6385 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6386 6387 // Initialize a set a candidate getelementptrs. Note that we use a 6388 // SetVector here to preserve program order. If the index computations 6389 // are vectorizable and begin with loads, we want to minimize the chance 6390 // of having to reorder them later. 6391 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6392 6393 // Some of the candidates may have already been vectorized after we 6394 // initially collected them. If so, the WeakTrackingVHs will have 6395 // nullified the 6396 // values, so remove them from the set of candidates. 6397 Candidates.remove(nullptr); 6398 6399 // Remove from the set of candidates all pairs of getelementptrs with 6400 // constant differences. Such getelementptrs are likely not good 6401 // candidates for vectorization in a bottom-up phase since one can be 6402 // computed from the other. We also ensure all candidate getelementptr 6403 // indices are unique. 6404 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6405 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6406 if (!Candidates.count(GEPI)) 6407 continue; 6408 auto *SCEVI = SE->getSCEV(GEPList[I]); 6409 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6410 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6411 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6412 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6413 Candidates.remove(GEPList[I]); 6414 Candidates.remove(GEPList[J]); 6415 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6416 Candidates.remove(GEPList[J]); 6417 } 6418 } 6419 } 6420 6421 // We break out of the above computation as soon as we know there are 6422 // fewer than two candidates remaining. 6423 if (Candidates.size() < 2) 6424 continue; 6425 6426 // Add the single, non-constant index of each candidate to the bundle. We 6427 // ensured the indices met these constraints when we originally collected 6428 // the getelementptrs. 6429 SmallVector<Value *, 16> Bundle(Candidates.size()); 6430 auto BundleIndex = 0u; 6431 for (auto *V : Candidates) { 6432 auto *GEP = cast<GetElementPtrInst>(V); 6433 auto *GEPIdx = GEP->idx_begin()->get(); 6434 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6435 Bundle[BundleIndex++] = GEPIdx; 6436 } 6437 6438 // Try and vectorize the indices. We are currently only interested in 6439 // gather-like cases of the form: 6440 // 6441 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6442 // 6443 // where the loads of "a", the loads of "b", and the subtractions can be 6444 // performed in parallel. It's likely that detecting this pattern in a 6445 // bottom-up phase will be simpler and less costly than building a 6446 // full-blown top-down phase beginning at the consecutive loads. 6447 Changed |= tryToVectorizeList(Bundle, R); 6448 } 6449 } 6450 return Changed; 6451 } 6452 6453 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6454 bool Changed = false; 6455 // Attempt to sort and vectorize each of the store-groups. 6456 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6457 ++it) { 6458 if (it->second.size() < 2) 6459 continue; 6460 6461 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6462 << it->second.size() << ".\n"); 6463 6464 // Process the stores in chunks of 16. 6465 // TODO: The limit of 16 inhibits greater vectorization factors. 6466 // For example, AVX2 supports v32i8. Increasing this limit, however, 6467 // may cause a significant compile-time increase. 6468 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6469 unsigned Len = std::min<unsigned>(CE - CI, 16); 6470 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6471 } 6472 } 6473 return Changed; 6474 } 6475 6476 char SLPVectorizer::ID = 0; 6477 6478 static const char lv_name[] = "SLP Vectorizer"; 6479 6480 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6481 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6482 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6483 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6484 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6485 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6486 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6487 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6488 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6489 6490 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6491