1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 static cl::opt<unsigned> MinTreeSize( 90 "slp-min-tree-size", cl::init(3), cl::Hidden, 91 cl::desc("Only vectorize small trees if they are fully vectorizable")); 92 93 // Limit the number of alias checks. The limit is chosen so that 94 // it has no negative effect on the llvm benchmarks. 95 static const unsigned AliasedCheckLimit = 10; 96 97 // Another limit for the alias checks: The maximum distance between load/store 98 // instructions where alias checks are done. 99 // This limit is useful for very large basic blocks. 100 static const unsigned MaxMemDepDistance = 160; 101 102 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 103 /// regions to be handled. 104 static const int MinScheduleRegionSize = 16; 105 106 /// \brief Predicate for the element types that the SLP vectorizer supports. 107 /// 108 /// The most important thing to filter here are types which are invalid in LLVM 109 /// vectors. We also filter target specific types which have absolutely no 110 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 111 /// avoids spending time checking the cost model and realizing that they will 112 /// be inevitably scalarized. 113 static bool isValidElementType(Type *Ty) { 114 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 115 !Ty->isPPC_FP128Ty(); 116 } 117 118 /// \returns true if all of the instructions in \p VL are in the same block or 119 /// false otherwise. 120 static bool allSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return false; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return false; 129 130 if (BB != I->getParent()) 131 return false; 132 } 133 return true; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (Value *i : VL) 139 if (!isa<Constant>(i)) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 ///\returns Opcode that can be clubbed with \p Op to create an alternate 153 /// sequence which can later be merged as a ShuffleVector instruction. 154 static unsigned getAltOpcode(unsigned Op) { 155 switch (Op) { 156 case Instruction::FAdd: 157 return Instruction::FSub; 158 case Instruction::FSub: 159 return Instruction::FAdd; 160 case Instruction::Add: 161 return Instruction::Sub; 162 case Instruction::Sub: 163 return Instruction::Add; 164 default: 165 return 0; 166 } 167 } 168 169 ///\returns bool representing if Opcode \p Op can be part 170 /// of an alternate sequence which can later be merged as 171 /// a ShuffleVector instruction. 172 static bool canCombineAsAltInst(unsigned Op) { 173 return Op == Instruction::FAdd || Op == Instruction::FSub || 174 Op == Instruction::Sub || Op == Instruction::Add; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<Instruction>(I)) { 215 if (auto *Intersection = dyn_cast<Instruction>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<Instruction>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns true if all of the values in \p VL have the same type or false 228 /// otherwise. 229 static bool allSameType(ArrayRef<Value *> VL) { 230 Type *Ty = VL[0]->getType(); 231 for (int i = 1, e = VL.size(); i < e; i++) 232 if (VL[i]->getType() != Ty) 233 return false; 234 235 return true; 236 } 237 238 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 239 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 240 assert(Opcode == Instruction::ExtractElement || 241 Opcode == Instruction::ExtractValue); 242 if (Opcode == Instruction::ExtractElement) { 243 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 244 return CI && CI->getZExtValue() == Idx; 245 } else { 246 ExtractValueInst *EI = cast<ExtractValueInst>(E); 247 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 248 } 249 } 250 251 /// \returns True if in-tree use also needs extract. This refers to 252 /// possible scalar operand in vectorized instruction. 253 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 254 TargetLibraryInfo *TLI) { 255 256 unsigned Opcode = UserInst->getOpcode(); 257 switch (Opcode) { 258 case Instruction::Load: { 259 LoadInst *LI = cast<LoadInst>(UserInst); 260 return (LI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Store: { 263 StoreInst *SI = cast<StoreInst>(UserInst); 264 return (SI->getPointerOperand() == Scalar); 265 } 266 case Instruction::Call: { 267 CallInst *CI = cast<CallInst>(UserInst); 268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 269 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 270 return (CI->getArgOperand(1) == Scalar); 271 } 272 } 273 default: 274 return false; 275 } 276 } 277 278 /// \returns the AA location that is being access by the instruction. 279 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return MemoryLocation::get(SI); 282 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 283 return MemoryLocation::get(LI); 284 return MemoryLocation(); 285 } 286 287 /// \returns True if the instruction is not a volatile or atomic load/store. 288 static bool isSimple(Instruction *I) { 289 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 290 return LI->isSimple(); 291 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 292 return SI->isSimple(); 293 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 294 return !MI->isVolatile(); 295 return true; 296 } 297 298 namespace llvm { 299 namespace slpvectorizer { 300 /// Bottom Up SLP Vectorizer. 301 class BoUpSLP { 302 public: 303 typedef SmallVector<Value *, 8> ValueList; 304 typedef SmallVector<Instruction *, 16> InstrList; 305 typedef SmallPtrSet<Value *, 16> ValueSet; 306 typedef SmallVector<StoreInst *, 8> StoreList; 307 308 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 309 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 310 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 311 const DataLayout *DL) 312 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 313 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 314 DL(DL), Builder(Se->getContext()) { 315 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 316 // Use the vector register size specified by the target unless overridden 317 // by a command-line option. 318 // TODO: It would be better to limit the vectorization factor based on 319 // data type rather than just register size. For example, x86 AVX has 320 // 256-bit registers, but it does not support integer operations 321 // at that width (that requires AVX2). 322 if (MaxVectorRegSizeOption.getNumOccurrences()) 323 MaxVecRegSize = MaxVectorRegSizeOption; 324 else 325 MaxVecRegSize = TTI->getRegisterBitWidth(true); 326 327 MinVecRegSize = MinVectorRegSizeOption; 328 } 329 330 /// \brief Vectorize the tree that starts with the elements in \p VL. 331 /// Returns the vectorized root. 332 Value *vectorizeTree(); 333 334 /// \returns the cost incurred by unwanted spills and fills, caused by 335 /// holding live values over call sites. 336 int getSpillCost(); 337 338 /// \returns the vectorization cost of the subtree that starts at \p VL. 339 /// A negative number means that this is profitable. 340 int getTreeCost(); 341 342 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 343 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 344 void buildTree(ArrayRef<Value *> Roots, 345 ArrayRef<Value *> UserIgnoreLst = None); 346 347 /// Clear the internal data structures that are created by 'buildTree'. 348 void deleteTree() { 349 VectorizableTree.clear(); 350 ScalarToTreeEntry.clear(); 351 MustGather.clear(); 352 ExternalUses.clear(); 353 NumLoadsWantToKeepOrder = 0; 354 NumLoadsWantToChangeOrder = 0; 355 for (auto &Iter : BlocksSchedules) { 356 BlockScheduling *BS = Iter.second.get(); 357 BS->clear(); 358 } 359 MinBWs.clear(); 360 } 361 362 /// \brief Perform LICM and CSE on the newly generated gather sequences. 363 void optimizeGatherSequence(); 364 365 /// \returns true if it is beneficial to reverse the vector order. 366 bool shouldReorder() const { 367 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 368 } 369 370 /// \return The vector element size in bits to use when vectorizing the 371 /// expression tree ending at \p V. If V is a store, the size is the width of 372 /// the stored value. Otherwise, the size is the width of the largest loaded 373 /// value reaching V. This method is used by the vectorizer to calculate 374 /// vectorization factors. 375 unsigned getVectorElementSize(Value *V); 376 377 /// Compute the minimum type sizes required to represent the entries in a 378 /// vectorizable tree. 379 void computeMinimumValueSizes(); 380 381 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 382 unsigned getMaxVecRegSize() const { 383 return MaxVecRegSize; 384 } 385 386 // \returns minimum vector register size as set by cl::opt. 387 unsigned getMinVecRegSize() const { 388 return MinVecRegSize; 389 } 390 391 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 392 /// 393 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 394 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 395 396 /// \returns True if the VectorizableTree is both tiny and not fully 397 /// vectorizable. We do not vectorize such trees. 398 bool isTreeTinyAndNotFullyVectorizable(); 399 400 private: 401 struct TreeEntry; 402 403 /// \returns the cost of the vectorizable entry. 404 int getEntryCost(TreeEntry *E); 405 406 /// This is the recursive part of buildTree. 407 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 408 409 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 410 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 411 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 412 413 /// Vectorize a single entry in the tree. 414 Value *vectorizeTree(TreeEntry *E); 415 416 /// Vectorize a single entry in the tree, starting in \p VL. 417 Value *vectorizeTree(ArrayRef<Value *> VL); 418 419 /// \returns the pointer to the vectorized value if \p VL is already 420 /// vectorized, or NULL. They may happen in cycles. 421 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 422 423 /// \returns the scalarization cost for this type. Scalarization in this 424 /// context means the creation of vectors from a group of scalars. 425 int getGatherCost(Type *Ty); 426 427 /// \returns the scalarization cost for this list of values. Assuming that 428 /// this subtree gets vectorized, we may need to extract the values from the 429 /// roots. This method calculates the cost of extracting the values. 430 int getGatherCost(ArrayRef<Value *> VL); 431 432 /// \brief Set the Builder insert point to one after the last instruction in 433 /// the bundle 434 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 435 436 /// \returns a vector from a collection of scalars in \p VL. 437 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 438 439 /// \returns whether the VectorizableTree is fully vectorizable and will 440 /// be beneficial even the tree height is tiny. 441 bool isFullyVectorizableTinyTree(); 442 443 /// \reorder commutative operands in alt shuffle if they result in 444 /// vectorized code. 445 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 446 SmallVectorImpl<Value *> &Left, 447 SmallVectorImpl<Value *> &Right); 448 /// \reorder commutative operands to get better probability of 449 /// generating vectorized code. 450 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 451 SmallVectorImpl<Value *> &Left, 452 SmallVectorImpl<Value *> &Right); 453 struct TreeEntry { 454 TreeEntry() : Scalars(), VectorizedValue(nullptr), 455 NeedToGather(0) {} 456 457 /// \returns true if the scalars in VL are equal to this entry. 458 bool isSame(ArrayRef<Value *> VL) const { 459 assert(VL.size() == Scalars.size() && "Invalid size"); 460 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 461 } 462 463 /// A vector of scalars. 464 ValueList Scalars; 465 466 /// The Scalars are vectorized into this value. It is initialized to Null. 467 Value *VectorizedValue; 468 469 /// Do we need to gather this sequence ? 470 bool NeedToGather; 471 }; 472 473 /// Create a new VectorizableTree entry. 474 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 475 VectorizableTree.emplace_back(); 476 int idx = VectorizableTree.size() - 1; 477 TreeEntry *Last = &VectorizableTree[idx]; 478 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 479 Last->NeedToGather = !Vectorized; 480 if (Vectorized) { 481 for (int i = 0, e = VL.size(); i != e; ++i) { 482 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 483 ScalarToTreeEntry[VL[i]] = idx; 484 } 485 } else { 486 MustGather.insert(VL.begin(), VL.end()); 487 } 488 return Last; 489 } 490 491 /// -- Vectorization State -- 492 /// Holds all of the tree entries. 493 std::vector<TreeEntry> VectorizableTree; 494 495 /// Maps a specific scalar to its tree entry. 496 SmallDenseMap<Value*, int> ScalarToTreeEntry; 497 498 /// A list of scalars that we found that we need to keep as scalars. 499 ValueSet MustGather; 500 501 /// This POD struct describes one external user in the vectorized tree. 502 struct ExternalUser { 503 ExternalUser (Value *S, llvm::User *U, int L) : 504 Scalar(S), User(U), Lane(L){} 505 // Which scalar in our function. 506 Value *Scalar; 507 // Which user that uses the scalar. 508 llvm::User *User; 509 // Which lane does the scalar belong to. 510 int Lane; 511 }; 512 typedef SmallVector<ExternalUser, 16> UserList; 513 514 /// Checks if two instructions may access the same memory. 515 /// 516 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 517 /// is invariant in the calling loop. 518 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 519 Instruction *Inst2) { 520 521 // First check if the result is already in the cache. 522 AliasCacheKey key = std::make_pair(Inst1, Inst2); 523 Optional<bool> &result = AliasCache[key]; 524 if (result.hasValue()) { 525 return result.getValue(); 526 } 527 MemoryLocation Loc2 = getLocation(Inst2, AA); 528 bool aliased = true; 529 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 530 // Do the alias check. 531 aliased = AA->alias(Loc1, Loc2); 532 } 533 // Store the result in the cache. 534 result = aliased; 535 return aliased; 536 } 537 538 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 539 540 /// Cache for alias results. 541 /// TODO: consider moving this to the AliasAnalysis itself. 542 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 543 544 /// Removes an instruction from its block and eventually deletes it. 545 /// It's like Instruction::eraseFromParent() except that the actual deletion 546 /// is delayed until BoUpSLP is destructed. 547 /// This is required to ensure that there are no incorrect collisions in the 548 /// AliasCache, which can happen if a new instruction is allocated at the 549 /// same address as a previously deleted instruction. 550 void eraseInstruction(Instruction *I) { 551 I->removeFromParent(); 552 I->dropAllReferences(); 553 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 554 } 555 556 /// Temporary store for deleted instructions. Instructions will be deleted 557 /// eventually when the BoUpSLP is destructed. 558 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 559 560 /// A list of values that need to extracted out of the tree. 561 /// This list holds pairs of (Internal Scalar : External User). 562 UserList ExternalUses; 563 564 /// Values used only by @llvm.assume calls. 565 SmallPtrSet<const Value *, 32> EphValues; 566 567 /// Holds all of the instructions that we gathered. 568 SetVector<Instruction *> GatherSeq; 569 /// A list of blocks that we are going to CSE. 570 SetVector<BasicBlock *> CSEBlocks; 571 572 /// Contains all scheduling relevant data for an instruction. 573 /// A ScheduleData either represents a single instruction or a member of an 574 /// instruction bundle (= a group of instructions which is combined into a 575 /// vector instruction). 576 struct ScheduleData { 577 578 // The initial value for the dependency counters. It means that the 579 // dependencies are not calculated yet. 580 enum { InvalidDeps = -1 }; 581 582 ScheduleData() 583 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 584 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 585 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 586 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 587 588 void init(int BlockSchedulingRegionID) { 589 FirstInBundle = this; 590 NextInBundle = nullptr; 591 NextLoadStore = nullptr; 592 IsScheduled = false; 593 SchedulingRegionID = BlockSchedulingRegionID; 594 UnscheduledDepsInBundle = UnscheduledDeps; 595 clearDependencies(); 596 } 597 598 /// Returns true if the dependency information has been calculated. 599 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 600 601 /// Returns true for single instructions and for bundle representatives 602 /// (= the head of a bundle). 603 bool isSchedulingEntity() const { return FirstInBundle == this; } 604 605 /// Returns true if it represents an instruction bundle and not only a 606 /// single instruction. 607 bool isPartOfBundle() const { 608 return NextInBundle != nullptr || FirstInBundle != this; 609 } 610 611 /// Returns true if it is ready for scheduling, i.e. it has no more 612 /// unscheduled depending instructions/bundles. 613 bool isReady() const { 614 assert(isSchedulingEntity() && 615 "can't consider non-scheduling entity for ready list"); 616 return UnscheduledDepsInBundle == 0 && !IsScheduled; 617 } 618 619 /// Modifies the number of unscheduled dependencies, also updating it for 620 /// the whole bundle. 621 int incrementUnscheduledDeps(int Incr) { 622 UnscheduledDeps += Incr; 623 return FirstInBundle->UnscheduledDepsInBundle += Incr; 624 } 625 626 /// Sets the number of unscheduled dependencies to the number of 627 /// dependencies. 628 void resetUnscheduledDeps() { 629 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 630 } 631 632 /// Clears all dependency information. 633 void clearDependencies() { 634 Dependencies = InvalidDeps; 635 resetUnscheduledDeps(); 636 MemoryDependencies.clear(); 637 } 638 639 void dump(raw_ostream &os) const { 640 if (!isSchedulingEntity()) { 641 os << "/ " << *Inst; 642 } else if (NextInBundle) { 643 os << '[' << *Inst; 644 ScheduleData *SD = NextInBundle; 645 while (SD) { 646 os << ';' << *SD->Inst; 647 SD = SD->NextInBundle; 648 } 649 os << ']'; 650 } else { 651 os << *Inst; 652 } 653 } 654 655 Instruction *Inst; 656 657 /// Points to the head in an instruction bundle (and always to this for 658 /// single instructions). 659 ScheduleData *FirstInBundle; 660 661 /// Single linked list of all instructions in a bundle. Null if it is a 662 /// single instruction. 663 ScheduleData *NextInBundle; 664 665 /// Single linked list of all memory instructions (e.g. load, store, call) 666 /// in the block - until the end of the scheduling region. 667 ScheduleData *NextLoadStore; 668 669 /// The dependent memory instructions. 670 /// This list is derived on demand in calculateDependencies(). 671 SmallVector<ScheduleData *, 4> MemoryDependencies; 672 673 /// This ScheduleData is in the current scheduling region if this matches 674 /// the current SchedulingRegionID of BlockScheduling. 675 int SchedulingRegionID; 676 677 /// Used for getting a "good" final ordering of instructions. 678 int SchedulingPriority; 679 680 /// The number of dependencies. Constitutes of the number of users of the 681 /// instruction plus the number of dependent memory instructions (if any). 682 /// This value is calculated on demand. 683 /// If InvalidDeps, the number of dependencies is not calculated yet. 684 /// 685 int Dependencies; 686 687 /// The number of dependencies minus the number of dependencies of scheduled 688 /// instructions. As soon as this is zero, the instruction/bundle gets ready 689 /// for scheduling. 690 /// Note that this is negative as long as Dependencies is not calculated. 691 int UnscheduledDeps; 692 693 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 694 /// single instructions. 695 int UnscheduledDepsInBundle; 696 697 /// True if this instruction is scheduled (or considered as scheduled in the 698 /// dry-run). 699 bool IsScheduled; 700 }; 701 702 #ifndef NDEBUG 703 friend inline raw_ostream &operator<<(raw_ostream &os, 704 const BoUpSLP::ScheduleData &SD) { 705 SD.dump(os); 706 return os; 707 } 708 #endif 709 710 /// Contains all scheduling data for a basic block. 711 /// 712 struct BlockScheduling { 713 714 BlockScheduling(BasicBlock *BB) 715 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 716 ScheduleStart(nullptr), ScheduleEnd(nullptr), 717 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 718 ScheduleRegionSize(0), 719 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 720 // Make sure that the initial SchedulingRegionID is greater than the 721 // initial SchedulingRegionID in ScheduleData (which is 0). 722 SchedulingRegionID(1) {} 723 724 void clear() { 725 ReadyInsts.clear(); 726 ScheduleStart = nullptr; 727 ScheduleEnd = nullptr; 728 FirstLoadStoreInRegion = nullptr; 729 LastLoadStoreInRegion = nullptr; 730 731 // Reduce the maximum schedule region size by the size of the 732 // previous scheduling run. 733 ScheduleRegionSizeLimit -= ScheduleRegionSize; 734 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 735 ScheduleRegionSizeLimit = MinScheduleRegionSize; 736 ScheduleRegionSize = 0; 737 738 // Make a new scheduling region, i.e. all existing ScheduleData is not 739 // in the new region yet. 740 ++SchedulingRegionID; 741 } 742 743 ScheduleData *getScheduleData(Value *V) { 744 ScheduleData *SD = ScheduleDataMap[V]; 745 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 746 return SD; 747 return nullptr; 748 } 749 750 bool isInSchedulingRegion(ScheduleData *SD) { 751 return SD->SchedulingRegionID == SchedulingRegionID; 752 } 753 754 /// Marks an instruction as scheduled and puts all dependent ready 755 /// instructions into the ready-list. 756 template <typename ReadyListType> 757 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 758 SD->IsScheduled = true; 759 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 760 761 ScheduleData *BundleMember = SD; 762 while (BundleMember) { 763 // Handle the def-use chain dependencies. 764 for (Use &U : BundleMember->Inst->operands()) { 765 ScheduleData *OpDef = getScheduleData(U.get()); 766 if (OpDef && OpDef->hasValidDependencies() && 767 OpDef->incrementUnscheduledDeps(-1) == 0) { 768 // There are no more unscheduled dependencies after decrementing, 769 // so we can put the dependent instruction into the ready list. 770 ScheduleData *DepBundle = OpDef->FirstInBundle; 771 assert(!DepBundle->IsScheduled && 772 "already scheduled bundle gets ready"); 773 ReadyList.insert(DepBundle); 774 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 775 } 776 } 777 // Handle the memory dependencies. 778 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 779 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 780 // There are no more unscheduled dependencies after decrementing, 781 // so we can put the dependent instruction into the ready list. 782 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 783 assert(!DepBundle->IsScheduled && 784 "already scheduled bundle gets ready"); 785 ReadyList.insert(DepBundle); 786 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 787 } 788 } 789 BundleMember = BundleMember->NextInBundle; 790 } 791 } 792 793 /// Put all instructions into the ReadyList which are ready for scheduling. 794 template <typename ReadyListType> 795 void initialFillReadyList(ReadyListType &ReadyList) { 796 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 797 ScheduleData *SD = getScheduleData(I); 798 if (SD->isSchedulingEntity() && SD->isReady()) { 799 ReadyList.insert(SD); 800 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 801 } 802 } 803 } 804 805 /// Checks if a bundle of instructions can be scheduled, i.e. has no 806 /// cyclic dependencies. This is only a dry-run, no instructions are 807 /// actually moved at this stage. 808 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 809 810 /// Un-bundles a group of instructions. 811 void cancelScheduling(ArrayRef<Value *> VL); 812 813 /// Extends the scheduling region so that V is inside the region. 814 /// \returns true if the region size is within the limit. 815 bool extendSchedulingRegion(Value *V); 816 817 /// Initialize the ScheduleData structures for new instructions in the 818 /// scheduling region. 819 void initScheduleData(Instruction *FromI, Instruction *ToI, 820 ScheduleData *PrevLoadStore, 821 ScheduleData *NextLoadStore); 822 823 /// Updates the dependency information of a bundle and of all instructions/ 824 /// bundles which depend on the original bundle. 825 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 826 BoUpSLP *SLP); 827 828 /// Sets all instruction in the scheduling region to un-scheduled. 829 void resetSchedule(); 830 831 BasicBlock *BB; 832 833 /// Simple memory allocation for ScheduleData. 834 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 835 836 /// The size of a ScheduleData array in ScheduleDataChunks. 837 int ChunkSize; 838 839 /// The allocator position in the current chunk, which is the last entry 840 /// of ScheduleDataChunks. 841 int ChunkPos; 842 843 /// Attaches ScheduleData to Instruction. 844 /// Note that the mapping survives during all vectorization iterations, i.e. 845 /// ScheduleData structures are recycled. 846 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 847 848 struct ReadyList : SmallVector<ScheduleData *, 8> { 849 void insert(ScheduleData *SD) { push_back(SD); } 850 }; 851 852 /// The ready-list for scheduling (only used for the dry-run). 853 ReadyList ReadyInsts; 854 855 /// The first instruction of the scheduling region. 856 Instruction *ScheduleStart; 857 858 /// The first instruction _after_ the scheduling region. 859 Instruction *ScheduleEnd; 860 861 /// The first memory accessing instruction in the scheduling region 862 /// (can be null). 863 ScheduleData *FirstLoadStoreInRegion; 864 865 /// The last memory accessing instruction in the scheduling region 866 /// (can be null). 867 ScheduleData *LastLoadStoreInRegion; 868 869 /// The current size of the scheduling region. 870 int ScheduleRegionSize; 871 872 /// The maximum size allowed for the scheduling region. 873 int ScheduleRegionSizeLimit; 874 875 /// The ID of the scheduling region. For a new vectorization iteration this 876 /// is incremented which "removes" all ScheduleData from the region. 877 int SchedulingRegionID; 878 }; 879 880 /// Attaches the BlockScheduling structures to basic blocks. 881 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 882 883 /// Performs the "real" scheduling. Done before vectorization is actually 884 /// performed in a basic block. 885 void scheduleBlock(BlockScheduling *BS); 886 887 /// List of users to ignore during scheduling and that don't need extracting. 888 ArrayRef<Value *> UserIgnoreList; 889 890 // Number of load bundles that contain consecutive loads. 891 int NumLoadsWantToKeepOrder; 892 893 // Number of load bundles that contain consecutive loads in reversed order. 894 int NumLoadsWantToChangeOrder; 895 896 // Analysis and block reference. 897 Function *F; 898 ScalarEvolution *SE; 899 TargetTransformInfo *TTI; 900 TargetLibraryInfo *TLI; 901 AliasAnalysis *AA; 902 LoopInfo *LI; 903 DominatorTree *DT; 904 AssumptionCache *AC; 905 DemandedBits *DB; 906 const DataLayout *DL; 907 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 908 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 909 /// Instruction builder to construct the vectorized tree. 910 IRBuilder<> Builder; 911 912 /// A map of scalar integer values to the smallest bit width with which they 913 /// can legally be represented. The values map to (width, signed) pairs, 914 /// where "width" indicates the minimum bit width and "signed" is True if the 915 /// value must be signed-extended, rather than zero-extended, back to its 916 /// original width. 917 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 918 }; 919 920 } // end namespace llvm 921 } // end namespace slpvectorizer 922 923 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 924 ArrayRef<Value *> UserIgnoreLst) { 925 deleteTree(); 926 UserIgnoreList = UserIgnoreLst; 927 if (!allSameType(Roots)) 928 return; 929 buildTree_rec(Roots, 0); 930 931 // Collect the values that we need to extract from the tree. 932 for (TreeEntry &EIdx : VectorizableTree) { 933 TreeEntry *Entry = &EIdx; 934 935 // For each lane: 936 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 937 Value *Scalar = Entry->Scalars[Lane]; 938 939 // No need to handle users of gathered values. 940 if (Entry->NeedToGather) 941 continue; 942 943 for (User *U : Scalar->users()) { 944 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 945 946 Instruction *UserInst = dyn_cast<Instruction>(U); 947 if (!UserInst) 948 continue; 949 950 // Skip in-tree scalars that become vectors 951 if (ScalarToTreeEntry.count(U)) { 952 int Idx = ScalarToTreeEntry[U]; 953 TreeEntry *UseEntry = &VectorizableTree[Idx]; 954 Value *UseScalar = UseEntry->Scalars[0]; 955 // Some in-tree scalars will remain as scalar in vectorized 956 // instructions. If that is the case, the one in Lane 0 will 957 // be used. 958 if (UseScalar != U || 959 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 960 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 961 << ".\n"); 962 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 963 continue; 964 } 965 } 966 967 // Ignore users in the user ignore list. 968 if (is_contained(UserIgnoreList, UserInst)) 969 continue; 970 971 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 972 Lane << " from " << *Scalar << ".\n"); 973 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 974 } 975 } 976 } 977 } 978 979 980 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 981 bool isAltShuffle = false; 982 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 983 984 if (Depth == RecursionMaxDepth) { 985 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 986 newTreeEntry(VL, false); 987 return; 988 } 989 990 // Don't handle vectors. 991 if (VL[0]->getType()->isVectorTy()) { 992 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 993 newTreeEntry(VL, false); 994 return; 995 } 996 997 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 998 if (SI->getValueOperand()->getType()->isVectorTy()) { 999 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1000 newTreeEntry(VL, false); 1001 return; 1002 } 1003 unsigned Opcode = getSameOpcode(VL); 1004 1005 // Check that this shuffle vector refers to the alternate 1006 // sequence of opcodes. 1007 if (Opcode == Instruction::ShuffleVector) { 1008 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1009 unsigned Op = I0->getOpcode(); 1010 if (Op != Instruction::ShuffleVector) 1011 isAltShuffle = true; 1012 } 1013 1014 // If all of the operands are identical or constant we have a simple solution. 1015 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1016 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1017 newTreeEntry(VL, false); 1018 return; 1019 } 1020 1021 // We now know that this is a vector of instructions of the same type from 1022 // the same block. 1023 1024 // Don't vectorize ephemeral values. 1025 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1026 if (EphValues.count(VL[i])) { 1027 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1028 ") is ephemeral.\n"); 1029 newTreeEntry(VL, false); 1030 return; 1031 } 1032 } 1033 1034 // Check if this is a duplicate of another entry. 1035 if (ScalarToTreeEntry.count(VL[0])) { 1036 int Idx = ScalarToTreeEntry[VL[0]]; 1037 TreeEntry *E = &VectorizableTree[Idx]; 1038 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1039 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1040 if (E->Scalars[i] != VL[i]) { 1041 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1042 newTreeEntry(VL, false); 1043 return; 1044 } 1045 } 1046 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1047 return; 1048 } 1049 1050 // Check that none of the instructions in the bundle are already in the tree. 1051 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1052 if (ScalarToTreeEntry.count(VL[i])) { 1053 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1054 ") is already in tree.\n"); 1055 newTreeEntry(VL, false); 1056 return; 1057 } 1058 } 1059 1060 // If any of the scalars is marked as a value that needs to stay scalar then 1061 // we need to gather the scalars. 1062 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1063 if (MustGather.count(VL[i])) { 1064 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1065 newTreeEntry(VL, false); 1066 return; 1067 } 1068 } 1069 1070 // Check that all of the users of the scalars that we want to vectorize are 1071 // schedulable. 1072 Instruction *VL0 = cast<Instruction>(VL[0]); 1073 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1074 1075 if (!DT->isReachableFromEntry(BB)) { 1076 // Don't go into unreachable blocks. They may contain instructions with 1077 // dependency cycles which confuse the final scheduling. 1078 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1079 newTreeEntry(VL, false); 1080 return; 1081 } 1082 1083 // Check that every instructions appears once in this bundle. 1084 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1085 for (unsigned j = i+1; j < e; ++j) 1086 if (VL[i] == VL[j]) { 1087 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1088 newTreeEntry(VL, false); 1089 return; 1090 } 1091 1092 auto &BSRef = BlocksSchedules[BB]; 1093 if (!BSRef) { 1094 BSRef = llvm::make_unique<BlockScheduling>(BB); 1095 } 1096 BlockScheduling &BS = *BSRef.get(); 1097 1098 if (!BS.tryScheduleBundle(VL, this)) { 1099 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1100 assert((!BS.getScheduleData(VL[0]) || 1101 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1102 "tryScheduleBundle should cancelScheduling on failure"); 1103 newTreeEntry(VL, false); 1104 return; 1105 } 1106 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1107 1108 switch (Opcode) { 1109 case Instruction::PHI: { 1110 PHINode *PH = dyn_cast<PHINode>(VL0); 1111 1112 // Check for terminator values (e.g. invoke). 1113 for (unsigned j = 0; j < VL.size(); ++j) 1114 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1115 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1116 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1117 if (Term) { 1118 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1119 BS.cancelScheduling(VL); 1120 newTreeEntry(VL, false); 1121 return; 1122 } 1123 } 1124 1125 newTreeEntry(VL, true); 1126 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1127 1128 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1129 ValueList Operands; 1130 // Prepare the operand vector. 1131 for (Value *j : VL) 1132 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1133 PH->getIncomingBlock(i))); 1134 1135 buildTree_rec(Operands, Depth + 1); 1136 } 1137 return; 1138 } 1139 case Instruction::ExtractValue: 1140 case Instruction::ExtractElement: { 1141 bool Reuse = canReuseExtract(VL, Opcode); 1142 if (Reuse) { 1143 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1144 } else { 1145 BS.cancelScheduling(VL); 1146 } 1147 newTreeEntry(VL, Reuse); 1148 return; 1149 } 1150 case Instruction::Load: { 1151 // Check that a vectorized load would load the same memory as a scalar 1152 // load. 1153 // For example we don't want vectorize loads that are smaller than 8 bit. 1154 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1155 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1156 // such a struct we read/write packed bits disagreeing with the 1157 // unvectorized version. 1158 Type *ScalarTy = VL[0]->getType(); 1159 1160 if (DL->getTypeSizeInBits(ScalarTy) != 1161 DL->getTypeAllocSizeInBits(ScalarTy)) { 1162 BS.cancelScheduling(VL); 1163 newTreeEntry(VL, false); 1164 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1165 return; 1166 } 1167 1168 // Make sure all loads in the bundle are simple - we can't vectorize 1169 // atomic or volatile loads. 1170 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1171 LoadInst *L = cast<LoadInst>(VL[i]); 1172 if (!L->isSimple()) { 1173 BS.cancelScheduling(VL); 1174 newTreeEntry(VL, false); 1175 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1176 return; 1177 } 1178 } 1179 1180 // Check if the loads are consecutive, reversed, or neither. 1181 // TODO: What we really want is to sort the loads, but for now, check 1182 // the two likely directions. 1183 bool Consecutive = true; 1184 bool ReverseConsecutive = true; 1185 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1186 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1187 Consecutive = false; 1188 break; 1189 } else { 1190 ReverseConsecutive = false; 1191 } 1192 } 1193 1194 if (Consecutive) { 1195 ++NumLoadsWantToKeepOrder; 1196 newTreeEntry(VL, true); 1197 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1198 return; 1199 } 1200 1201 // If none of the load pairs were consecutive when checked in order, 1202 // check the reverse order. 1203 if (ReverseConsecutive) 1204 for (unsigned i = VL.size() - 1; i > 0; --i) 1205 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1206 ReverseConsecutive = false; 1207 break; 1208 } 1209 1210 BS.cancelScheduling(VL); 1211 newTreeEntry(VL, false); 1212 1213 if (ReverseConsecutive) { 1214 ++NumLoadsWantToChangeOrder; 1215 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1216 } else { 1217 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1218 } 1219 return; 1220 } 1221 case Instruction::ZExt: 1222 case Instruction::SExt: 1223 case Instruction::FPToUI: 1224 case Instruction::FPToSI: 1225 case Instruction::FPExt: 1226 case Instruction::PtrToInt: 1227 case Instruction::IntToPtr: 1228 case Instruction::SIToFP: 1229 case Instruction::UIToFP: 1230 case Instruction::Trunc: 1231 case Instruction::FPTrunc: 1232 case Instruction::BitCast: { 1233 Type *SrcTy = VL0->getOperand(0)->getType(); 1234 for (unsigned i = 0; i < VL.size(); ++i) { 1235 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1236 if (Ty != SrcTy || !isValidElementType(Ty)) { 1237 BS.cancelScheduling(VL); 1238 newTreeEntry(VL, false); 1239 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1240 return; 1241 } 1242 } 1243 newTreeEntry(VL, true); 1244 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1245 1246 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1247 ValueList Operands; 1248 // Prepare the operand vector. 1249 for (Value *j : VL) 1250 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1251 1252 buildTree_rec(Operands, Depth+1); 1253 } 1254 return; 1255 } 1256 case Instruction::ICmp: 1257 case Instruction::FCmp: { 1258 // Check that all of the compares have the same predicate. 1259 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1260 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1261 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1262 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1263 if (Cmp->getPredicate() != P0 || 1264 Cmp->getOperand(0)->getType() != ComparedTy) { 1265 BS.cancelScheduling(VL); 1266 newTreeEntry(VL, false); 1267 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1268 return; 1269 } 1270 } 1271 1272 newTreeEntry(VL, true); 1273 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1274 1275 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1276 ValueList Operands; 1277 // Prepare the operand vector. 1278 for (Value *j : VL) 1279 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1280 1281 buildTree_rec(Operands, Depth+1); 1282 } 1283 return; 1284 } 1285 case Instruction::Select: 1286 case Instruction::Add: 1287 case Instruction::FAdd: 1288 case Instruction::Sub: 1289 case Instruction::FSub: 1290 case Instruction::Mul: 1291 case Instruction::FMul: 1292 case Instruction::UDiv: 1293 case Instruction::SDiv: 1294 case Instruction::FDiv: 1295 case Instruction::URem: 1296 case Instruction::SRem: 1297 case Instruction::FRem: 1298 case Instruction::Shl: 1299 case Instruction::LShr: 1300 case Instruction::AShr: 1301 case Instruction::And: 1302 case Instruction::Or: 1303 case Instruction::Xor: { 1304 newTreeEntry(VL, true); 1305 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1306 1307 // Sort operands of the instructions so that each side is more likely to 1308 // have the same opcode. 1309 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1310 ValueList Left, Right; 1311 reorderInputsAccordingToOpcode(VL, Left, Right); 1312 buildTree_rec(Left, Depth + 1); 1313 buildTree_rec(Right, Depth + 1); 1314 return; 1315 } 1316 1317 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1318 ValueList Operands; 1319 // Prepare the operand vector. 1320 for (Value *j : VL) 1321 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1322 1323 buildTree_rec(Operands, Depth+1); 1324 } 1325 return; 1326 } 1327 case Instruction::GetElementPtr: { 1328 // We don't combine GEPs with complicated (nested) indexing. 1329 for (unsigned j = 0; j < VL.size(); ++j) { 1330 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1331 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1332 BS.cancelScheduling(VL); 1333 newTreeEntry(VL, false); 1334 return; 1335 } 1336 } 1337 1338 // We can't combine several GEPs into one vector if they operate on 1339 // different types. 1340 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1341 for (unsigned j = 0; j < VL.size(); ++j) { 1342 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1343 if (Ty0 != CurTy) { 1344 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1345 BS.cancelScheduling(VL); 1346 newTreeEntry(VL, false); 1347 return; 1348 } 1349 } 1350 1351 // We don't combine GEPs with non-constant indexes. 1352 for (unsigned j = 0; j < VL.size(); ++j) { 1353 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1354 if (!isa<ConstantInt>(Op)) { 1355 DEBUG( 1356 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1357 BS.cancelScheduling(VL); 1358 newTreeEntry(VL, false); 1359 return; 1360 } 1361 } 1362 1363 newTreeEntry(VL, true); 1364 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1365 for (unsigned i = 0, e = 2; i < e; ++i) { 1366 ValueList Operands; 1367 // Prepare the operand vector. 1368 for (Value *j : VL) 1369 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1370 1371 buildTree_rec(Operands, Depth + 1); 1372 } 1373 return; 1374 } 1375 case Instruction::Store: { 1376 // Check if the stores are consecutive or of we need to swizzle them. 1377 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1378 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1379 BS.cancelScheduling(VL); 1380 newTreeEntry(VL, false); 1381 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1382 return; 1383 } 1384 1385 newTreeEntry(VL, true); 1386 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1387 1388 ValueList Operands; 1389 for (Value *j : VL) 1390 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1391 1392 buildTree_rec(Operands, Depth + 1); 1393 return; 1394 } 1395 case Instruction::Call: { 1396 // Check if the calls are all to the same vectorizable intrinsic. 1397 CallInst *CI = cast<CallInst>(VL[0]); 1398 // Check if this is an Intrinsic call or something that can be 1399 // represented by an intrinsic call 1400 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1401 if (!isTriviallyVectorizable(ID)) { 1402 BS.cancelScheduling(VL); 1403 newTreeEntry(VL, false); 1404 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1405 return; 1406 } 1407 Function *Int = CI->getCalledFunction(); 1408 Value *A1I = nullptr; 1409 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1410 A1I = CI->getArgOperand(1); 1411 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1412 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1413 if (!CI2 || CI2->getCalledFunction() != Int || 1414 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1415 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1416 BS.cancelScheduling(VL); 1417 newTreeEntry(VL, false); 1418 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1419 << "\n"); 1420 return; 1421 } 1422 // ctlz,cttz and powi are special intrinsics whose second argument 1423 // should be same in order for them to be vectorized. 1424 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1425 Value *A1J = CI2->getArgOperand(1); 1426 if (A1I != A1J) { 1427 BS.cancelScheduling(VL); 1428 newTreeEntry(VL, false); 1429 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1430 << " argument "<< A1I<<"!=" << A1J 1431 << "\n"); 1432 return; 1433 } 1434 } 1435 // Verify that the bundle operands are identical between the two calls. 1436 if (CI->hasOperandBundles() && 1437 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1438 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1439 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1440 BS.cancelScheduling(VL); 1441 newTreeEntry(VL, false); 1442 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1443 << *VL[i] << '\n'); 1444 return; 1445 } 1446 } 1447 1448 newTreeEntry(VL, true); 1449 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1450 ValueList Operands; 1451 // Prepare the operand vector. 1452 for (Value *j : VL) { 1453 CallInst *CI2 = dyn_cast<CallInst>(j); 1454 Operands.push_back(CI2->getArgOperand(i)); 1455 } 1456 buildTree_rec(Operands, Depth + 1); 1457 } 1458 return; 1459 } 1460 case Instruction::ShuffleVector: { 1461 // If this is not an alternate sequence of opcode like add-sub 1462 // then do not vectorize this instruction. 1463 if (!isAltShuffle) { 1464 BS.cancelScheduling(VL); 1465 newTreeEntry(VL, false); 1466 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1467 return; 1468 } 1469 newTreeEntry(VL, true); 1470 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1471 1472 // Reorder operands if reordering would enable vectorization. 1473 if (isa<BinaryOperator>(VL0)) { 1474 ValueList Left, Right; 1475 reorderAltShuffleOperands(VL, Left, Right); 1476 buildTree_rec(Left, Depth + 1); 1477 buildTree_rec(Right, Depth + 1); 1478 return; 1479 } 1480 1481 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1482 ValueList Operands; 1483 // Prepare the operand vector. 1484 for (Value *j : VL) 1485 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1486 1487 buildTree_rec(Operands, Depth + 1); 1488 } 1489 return; 1490 } 1491 default: 1492 BS.cancelScheduling(VL); 1493 newTreeEntry(VL, false); 1494 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1495 return; 1496 } 1497 } 1498 1499 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1500 unsigned N; 1501 Type *EltTy; 1502 auto *ST = dyn_cast<StructType>(T); 1503 if (ST) { 1504 N = ST->getNumElements(); 1505 EltTy = *ST->element_begin(); 1506 } else { 1507 N = cast<ArrayType>(T)->getNumElements(); 1508 EltTy = cast<ArrayType>(T)->getElementType(); 1509 } 1510 if (!isValidElementType(EltTy)) 1511 return 0; 1512 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1513 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1514 return 0; 1515 if (ST) { 1516 // Check that struct is homogeneous. 1517 for (const auto *Ty : ST->elements()) 1518 if (Ty != EltTy) 1519 return 0; 1520 } 1521 return N; 1522 } 1523 1524 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1525 assert(Opcode == Instruction::ExtractElement || 1526 Opcode == Instruction::ExtractValue); 1527 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1528 // Check if all of the extracts come from the same vector and from the 1529 // correct offset. 1530 Value *VL0 = VL[0]; 1531 Instruction *E0 = cast<Instruction>(VL0); 1532 Value *Vec = E0->getOperand(0); 1533 1534 // We have to extract from a vector/aggregate with the same number of elements. 1535 unsigned NElts; 1536 if (Opcode == Instruction::ExtractValue) { 1537 const DataLayout &DL = E0->getModule()->getDataLayout(); 1538 NElts = canMapToVector(Vec->getType(), DL); 1539 if (!NElts) 1540 return false; 1541 // Check if load can be rewritten as load of vector. 1542 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1543 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1544 return false; 1545 } else { 1546 NElts = Vec->getType()->getVectorNumElements(); 1547 } 1548 1549 if (NElts != VL.size()) 1550 return false; 1551 1552 // Check that all of the indices extract from the correct offset. 1553 if (!matchExtractIndex(E0, 0, Opcode)) 1554 return false; 1555 1556 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1557 Instruction *E = cast<Instruction>(VL[i]); 1558 if (!matchExtractIndex(E, i, Opcode)) 1559 return false; 1560 if (E->getOperand(0) != Vec) 1561 return false; 1562 } 1563 1564 return true; 1565 } 1566 1567 int BoUpSLP::getEntryCost(TreeEntry *E) { 1568 ArrayRef<Value*> VL = E->Scalars; 1569 1570 Type *ScalarTy = VL[0]->getType(); 1571 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1572 ScalarTy = SI->getValueOperand()->getType(); 1573 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1574 1575 // If we have computed a smaller type for the expression, update VecTy so 1576 // that the costs will be accurate. 1577 if (MinBWs.count(VL[0])) 1578 VecTy = VectorType::get( 1579 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1580 1581 if (E->NeedToGather) { 1582 if (allConstant(VL)) 1583 return 0; 1584 if (isSplat(VL)) { 1585 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1586 } 1587 return getGatherCost(E->Scalars); 1588 } 1589 unsigned Opcode = getSameOpcode(VL); 1590 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1591 Instruction *VL0 = cast<Instruction>(VL[0]); 1592 switch (Opcode) { 1593 case Instruction::PHI: { 1594 return 0; 1595 } 1596 case Instruction::ExtractValue: 1597 case Instruction::ExtractElement: { 1598 if (canReuseExtract(VL, Opcode)) { 1599 int DeadCost = 0; 1600 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1601 Instruction *E = cast<Instruction>(VL[i]); 1602 if (E->hasOneUse()) 1603 // Take credit for instruction that will become dead. 1604 DeadCost += 1605 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1606 } 1607 return -DeadCost; 1608 } 1609 return getGatherCost(VecTy); 1610 } 1611 case Instruction::ZExt: 1612 case Instruction::SExt: 1613 case Instruction::FPToUI: 1614 case Instruction::FPToSI: 1615 case Instruction::FPExt: 1616 case Instruction::PtrToInt: 1617 case Instruction::IntToPtr: 1618 case Instruction::SIToFP: 1619 case Instruction::UIToFP: 1620 case Instruction::Trunc: 1621 case Instruction::FPTrunc: 1622 case Instruction::BitCast: { 1623 Type *SrcTy = VL0->getOperand(0)->getType(); 1624 1625 // Calculate the cost of this instruction. 1626 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1627 VL0->getType(), SrcTy); 1628 1629 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1630 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1631 return VecCost - ScalarCost; 1632 } 1633 case Instruction::FCmp: 1634 case Instruction::ICmp: 1635 case Instruction::Select: { 1636 // Calculate the cost of this instruction. 1637 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1638 int ScalarCost = VecTy->getNumElements() * 1639 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1640 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1641 return VecCost - ScalarCost; 1642 } 1643 case Instruction::Add: 1644 case Instruction::FAdd: 1645 case Instruction::Sub: 1646 case Instruction::FSub: 1647 case Instruction::Mul: 1648 case Instruction::FMul: 1649 case Instruction::UDiv: 1650 case Instruction::SDiv: 1651 case Instruction::FDiv: 1652 case Instruction::URem: 1653 case Instruction::SRem: 1654 case Instruction::FRem: 1655 case Instruction::Shl: 1656 case Instruction::LShr: 1657 case Instruction::AShr: 1658 case Instruction::And: 1659 case Instruction::Or: 1660 case Instruction::Xor: { 1661 // Certain instructions can be cheaper to vectorize if they have a 1662 // constant second vector operand. 1663 TargetTransformInfo::OperandValueKind Op1VK = 1664 TargetTransformInfo::OK_AnyValue; 1665 TargetTransformInfo::OperandValueKind Op2VK = 1666 TargetTransformInfo::OK_UniformConstantValue; 1667 TargetTransformInfo::OperandValueProperties Op1VP = 1668 TargetTransformInfo::OP_None; 1669 TargetTransformInfo::OperandValueProperties Op2VP = 1670 TargetTransformInfo::OP_None; 1671 1672 // If all operands are exactly the same ConstantInt then set the 1673 // operand kind to OK_UniformConstantValue. 1674 // If instead not all operands are constants, then set the operand kind 1675 // to OK_AnyValue. If all operands are constants but not the same, 1676 // then set the operand kind to OK_NonUniformConstantValue. 1677 ConstantInt *CInt = nullptr; 1678 for (unsigned i = 0; i < VL.size(); ++i) { 1679 const Instruction *I = cast<Instruction>(VL[i]); 1680 if (!isa<ConstantInt>(I->getOperand(1))) { 1681 Op2VK = TargetTransformInfo::OK_AnyValue; 1682 break; 1683 } 1684 if (i == 0) { 1685 CInt = cast<ConstantInt>(I->getOperand(1)); 1686 continue; 1687 } 1688 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1689 CInt != cast<ConstantInt>(I->getOperand(1))) 1690 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1691 } 1692 // FIXME: Currently cost of model modification for division by power of 1693 // 2 is handled for X86 and AArch64. Add support for other targets. 1694 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1695 CInt->getValue().isPowerOf2()) 1696 Op2VP = TargetTransformInfo::OP_PowerOf2; 1697 1698 int ScalarCost = VecTy->getNumElements() * 1699 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1700 Op2VK, Op1VP, Op2VP); 1701 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1702 Op1VP, Op2VP); 1703 return VecCost - ScalarCost; 1704 } 1705 case Instruction::GetElementPtr: { 1706 TargetTransformInfo::OperandValueKind Op1VK = 1707 TargetTransformInfo::OK_AnyValue; 1708 TargetTransformInfo::OperandValueKind Op2VK = 1709 TargetTransformInfo::OK_UniformConstantValue; 1710 1711 int ScalarCost = 1712 VecTy->getNumElements() * 1713 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1714 int VecCost = 1715 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1716 1717 return VecCost - ScalarCost; 1718 } 1719 case Instruction::Load: { 1720 // Cost of wide load - cost of scalar loads. 1721 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1722 int ScalarLdCost = VecTy->getNumElements() * 1723 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1724 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1725 VecTy, alignment, 0); 1726 return VecLdCost - ScalarLdCost; 1727 } 1728 case Instruction::Store: { 1729 // We know that we can merge the stores. Calculate the cost. 1730 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1731 int ScalarStCost = VecTy->getNumElements() * 1732 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1733 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1734 VecTy, alignment, 0); 1735 return VecStCost - ScalarStCost; 1736 } 1737 case Instruction::Call: { 1738 CallInst *CI = cast<CallInst>(VL0); 1739 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1740 1741 // Calculate the cost of the scalar and vector calls. 1742 SmallVector<Type*, 4> ScalarTys, VecTys; 1743 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1744 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1745 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1746 VecTy->getNumElements())); 1747 } 1748 1749 FastMathFlags FMF; 1750 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1751 FMF = FPMO->getFastMathFlags(); 1752 1753 int ScalarCallCost = VecTy->getNumElements() * 1754 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1755 1756 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1757 1758 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1759 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1760 << " for " << *CI << "\n"); 1761 1762 return VecCallCost - ScalarCallCost; 1763 } 1764 case Instruction::ShuffleVector: { 1765 TargetTransformInfo::OperandValueKind Op1VK = 1766 TargetTransformInfo::OK_AnyValue; 1767 TargetTransformInfo::OperandValueKind Op2VK = 1768 TargetTransformInfo::OK_AnyValue; 1769 int ScalarCost = 0; 1770 int VecCost = 0; 1771 for (Value *i : VL) { 1772 Instruction *I = cast<Instruction>(i); 1773 if (!I) 1774 break; 1775 ScalarCost += 1776 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1777 } 1778 // VecCost is equal to sum of the cost of creating 2 vectors 1779 // and the cost of creating shuffle. 1780 Instruction *I0 = cast<Instruction>(VL[0]); 1781 VecCost = 1782 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1783 Instruction *I1 = cast<Instruction>(VL[1]); 1784 VecCost += 1785 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1786 VecCost += 1787 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1788 return VecCost - ScalarCost; 1789 } 1790 default: 1791 llvm_unreachable("Unknown instruction"); 1792 } 1793 } 1794 1795 bool BoUpSLP::isFullyVectorizableTinyTree() { 1796 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1797 VectorizableTree.size() << " is fully vectorizable .\n"); 1798 1799 // We only handle trees of heights 1 and 2. 1800 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1801 return true; 1802 1803 if (VectorizableTree.size() != 2) 1804 return false; 1805 1806 // Handle splat and all-constants stores. 1807 if (!VectorizableTree[0].NeedToGather && 1808 (allConstant(VectorizableTree[1].Scalars) || 1809 isSplat(VectorizableTree[1].Scalars))) 1810 return true; 1811 1812 // Gathering cost would be too much for tiny trees. 1813 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1814 return false; 1815 1816 return true; 1817 } 1818 1819 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1820 1821 // We can vectorize the tree if its size is greater than or equal to the 1822 // minimum size specified by the MinTreeSize command line option. 1823 if (VectorizableTree.size() >= MinTreeSize) 1824 return false; 1825 1826 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1827 // can vectorize it if we can prove it fully vectorizable. 1828 if (isFullyVectorizableTinyTree()) 1829 return false; 1830 1831 assert(VectorizableTree.empty() 1832 ? ExternalUses.empty() 1833 : true && "We shouldn't have any external users"); 1834 1835 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1836 // vectorizable. 1837 return true; 1838 } 1839 1840 int BoUpSLP::getSpillCost() { 1841 // Walk from the bottom of the tree to the top, tracking which values are 1842 // live. When we see a call instruction that is not part of our tree, 1843 // query TTI to see if there is a cost to keeping values live over it 1844 // (for example, if spills and fills are required). 1845 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1846 int Cost = 0; 1847 1848 SmallPtrSet<Instruction*, 4> LiveValues; 1849 Instruction *PrevInst = nullptr; 1850 1851 for (const auto &N : VectorizableTree) { 1852 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1853 if (!Inst) 1854 continue; 1855 1856 if (!PrevInst) { 1857 PrevInst = Inst; 1858 continue; 1859 } 1860 1861 // Update LiveValues. 1862 LiveValues.erase(PrevInst); 1863 for (auto &J : PrevInst->operands()) { 1864 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1865 LiveValues.insert(cast<Instruction>(&*J)); 1866 } 1867 1868 DEBUG( 1869 dbgs() << "SLP: #LV: " << LiveValues.size(); 1870 for (auto *X : LiveValues) 1871 dbgs() << " " << X->getName(); 1872 dbgs() << ", Looking at "; 1873 Inst->dump(); 1874 ); 1875 1876 // Now find the sequence of instructions between PrevInst and Inst. 1877 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 1878 PrevInstIt = 1879 PrevInst->getIterator().getReverse(); 1880 while (InstIt != PrevInstIt) { 1881 if (PrevInstIt == PrevInst->getParent()->rend()) { 1882 PrevInstIt = Inst->getParent()->rbegin(); 1883 continue; 1884 } 1885 1886 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1887 SmallVector<Type*, 4> V; 1888 for (auto *II : LiveValues) 1889 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1890 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1891 } 1892 1893 ++PrevInstIt; 1894 } 1895 1896 PrevInst = Inst; 1897 } 1898 1899 return Cost; 1900 } 1901 1902 int BoUpSLP::getTreeCost() { 1903 int Cost = 0; 1904 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1905 VectorizableTree.size() << ".\n"); 1906 1907 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1908 1909 for (TreeEntry &TE : VectorizableTree) { 1910 int C = getEntryCost(&TE); 1911 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1912 << *TE.Scalars[0] << ".\n"); 1913 Cost += C; 1914 } 1915 1916 SmallSet<Value *, 16> ExtractCostCalculated; 1917 int ExtractCost = 0; 1918 for (ExternalUser &EU : ExternalUses) { 1919 // We only add extract cost once for the same scalar. 1920 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1921 continue; 1922 1923 // Uses by ephemeral values are free (because the ephemeral value will be 1924 // removed prior to code generation, and so the extraction will be 1925 // removed as well). 1926 if (EphValues.count(EU.User)) 1927 continue; 1928 1929 // If we plan to rewrite the tree in a smaller type, we will need to sign 1930 // extend the extracted value back to the original type. Here, we account 1931 // for the extract and the added cost of the sign extend if needed. 1932 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1933 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1934 if (MinBWs.count(ScalarRoot)) { 1935 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 1936 auto Extend = 1937 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 1938 VecTy = VectorType::get(MinTy, BundleWidth); 1939 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 1940 VecTy, EU.Lane); 1941 } else { 1942 ExtractCost += 1943 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1944 } 1945 } 1946 1947 int SpillCost = getSpillCost(); 1948 Cost += SpillCost + ExtractCost; 1949 1950 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1951 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1952 << "SLP: Total Cost = " << Cost << ".\n"); 1953 return Cost; 1954 } 1955 1956 int BoUpSLP::getGatherCost(Type *Ty) { 1957 int Cost = 0; 1958 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1959 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1960 return Cost; 1961 } 1962 1963 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1964 // Find the type of the operands in VL. 1965 Type *ScalarTy = VL[0]->getType(); 1966 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1967 ScalarTy = SI->getValueOperand()->getType(); 1968 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1969 // Find the cost of inserting/extracting values from the vector. 1970 return getGatherCost(VecTy); 1971 } 1972 1973 // Reorder commutative operations in alternate shuffle if the resulting vectors 1974 // are consecutive loads. This would allow us to vectorize the tree. 1975 // If we have something like- 1976 // load a[0] - load b[0] 1977 // load b[1] + load a[1] 1978 // load a[2] - load b[2] 1979 // load a[3] + load b[3] 1980 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1981 // code. 1982 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1983 SmallVectorImpl<Value *> &Left, 1984 SmallVectorImpl<Value *> &Right) { 1985 // Push left and right operands of binary operation into Left and Right 1986 for (Value *i : VL) { 1987 Left.push_back(cast<Instruction>(i)->getOperand(0)); 1988 Right.push_back(cast<Instruction>(i)->getOperand(1)); 1989 } 1990 1991 // Reorder if we have a commutative operation and consecutive access 1992 // are on either side of the alternate instructions. 1993 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1994 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1995 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1996 Instruction *VL1 = cast<Instruction>(VL[j]); 1997 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1998 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1999 std::swap(Left[j], Right[j]); 2000 continue; 2001 } else if (VL2->isCommutative() && 2002 isConsecutiveAccess(L, L1, *DL, *SE)) { 2003 std::swap(Left[j + 1], Right[j + 1]); 2004 continue; 2005 } 2006 // else unchanged 2007 } 2008 } 2009 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2010 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2011 Instruction *VL1 = cast<Instruction>(VL[j]); 2012 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2013 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2014 std::swap(Left[j], Right[j]); 2015 continue; 2016 } else if (VL2->isCommutative() && 2017 isConsecutiveAccess(L, L1, *DL, *SE)) { 2018 std::swap(Left[j + 1], Right[j + 1]); 2019 continue; 2020 } 2021 // else unchanged 2022 } 2023 } 2024 } 2025 } 2026 2027 // Return true if I should be commuted before adding it's left and right 2028 // operands to the arrays Left and Right. 2029 // 2030 // The vectorizer is trying to either have all elements one side being 2031 // instruction with the same opcode to enable further vectorization, or having 2032 // a splat to lower the vectorizing cost. 2033 static bool shouldReorderOperands(int i, Instruction &I, 2034 SmallVectorImpl<Value *> &Left, 2035 SmallVectorImpl<Value *> &Right, 2036 bool AllSameOpcodeLeft, 2037 bool AllSameOpcodeRight, bool SplatLeft, 2038 bool SplatRight) { 2039 Value *VLeft = I.getOperand(0); 2040 Value *VRight = I.getOperand(1); 2041 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2042 if (SplatRight) { 2043 if (VRight == Right[i - 1]) 2044 // Preserve SplatRight 2045 return false; 2046 if (VLeft == Right[i - 1]) { 2047 // Commuting would preserve SplatRight, but we don't want to break 2048 // SplatLeft either, i.e. preserve the original order if possible. 2049 // (FIXME: why do we care?) 2050 if (SplatLeft && VLeft == Left[i - 1]) 2051 return false; 2052 return true; 2053 } 2054 } 2055 // Symmetrically handle Right side. 2056 if (SplatLeft) { 2057 if (VLeft == Left[i - 1]) 2058 // Preserve SplatLeft 2059 return false; 2060 if (VRight == Left[i - 1]) 2061 return true; 2062 } 2063 2064 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2065 Instruction *IRight = dyn_cast<Instruction>(VRight); 2066 2067 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2068 // it and not the right, in this case we want to commute. 2069 if (AllSameOpcodeRight) { 2070 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2071 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2072 // Do not commute, a match on the right preserves AllSameOpcodeRight 2073 return false; 2074 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2075 // We have a match and may want to commute, but first check if there is 2076 // not also a match on the existing operands on the Left to preserve 2077 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2078 // (FIXME: why do we care?) 2079 if (AllSameOpcodeLeft && ILeft && 2080 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2081 return false; 2082 return true; 2083 } 2084 } 2085 // Symmetrically handle Left side. 2086 if (AllSameOpcodeLeft) { 2087 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2088 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2089 return false; 2090 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2091 return true; 2092 } 2093 return false; 2094 } 2095 2096 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2097 SmallVectorImpl<Value *> &Left, 2098 SmallVectorImpl<Value *> &Right) { 2099 2100 if (VL.size()) { 2101 // Peel the first iteration out of the loop since there's nothing 2102 // interesting to do anyway and it simplifies the checks in the loop. 2103 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2104 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2105 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2106 // Favor having instruction to the right. FIXME: why? 2107 std::swap(VLeft, VRight); 2108 Left.push_back(VLeft); 2109 Right.push_back(VRight); 2110 } 2111 2112 // Keep track if we have instructions with all the same opcode on one side. 2113 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2114 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2115 // Keep track if we have one side with all the same value (broadcast). 2116 bool SplatLeft = true; 2117 bool SplatRight = true; 2118 2119 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2120 Instruction *I = cast<Instruction>(VL[i]); 2121 assert(I->isCommutative() && "Can only process commutative instruction"); 2122 // Commute to favor either a splat or maximizing having the same opcodes on 2123 // one side. 2124 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2125 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2126 Left.push_back(I->getOperand(1)); 2127 Right.push_back(I->getOperand(0)); 2128 } else { 2129 Left.push_back(I->getOperand(0)); 2130 Right.push_back(I->getOperand(1)); 2131 } 2132 // Update Splat* and AllSameOpcode* after the insertion. 2133 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2134 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2135 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2136 (cast<Instruction>(Left[i - 1])->getOpcode() == 2137 cast<Instruction>(Left[i])->getOpcode()); 2138 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2139 (cast<Instruction>(Right[i - 1])->getOpcode() == 2140 cast<Instruction>(Right[i])->getOpcode()); 2141 } 2142 2143 // If one operand end up being broadcast, return this operand order. 2144 if (SplatRight || SplatLeft) 2145 return; 2146 2147 // Finally check if we can get longer vectorizable chain by reordering 2148 // without breaking the good operand order detected above. 2149 // E.g. If we have something like- 2150 // load a[0] load b[0] 2151 // load b[1] load a[1] 2152 // load a[2] load b[2] 2153 // load a[3] load b[3] 2154 // Reordering the second load b[1] load a[1] would allow us to vectorize 2155 // this code and we still retain AllSameOpcode property. 2156 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2157 // such as- 2158 // add a[0],c[0] load b[0] 2159 // add a[1],c[2] load b[1] 2160 // b[2] load b[2] 2161 // add a[3],c[3] load b[3] 2162 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2163 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2164 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2165 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2166 std::swap(Left[j + 1], Right[j + 1]); 2167 continue; 2168 } 2169 } 2170 } 2171 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2172 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2173 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2174 std::swap(Left[j + 1], Right[j + 1]); 2175 continue; 2176 } 2177 } 2178 } 2179 // else unchanged 2180 } 2181 } 2182 2183 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2184 2185 // Get the basic block this bundle is in. All instructions in the bundle 2186 // should be in this block. 2187 auto *Front = cast<Instruction>(VL.front()); 2188 auto *BB = Front->getParent(); 2189 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2190 return cast<Instruction>(V)->getParent() == BB; 2191 })); 2192 2193 // The last instruction in the bundle in program order. 2194 Instruction *LastInst = nullptr; 2195 2196 // Find the last instruction. The common case should be that BB has been 2197 // scheduled, and the last instruction is VL.back(). So we start with 2198 // VL.back() and iterate over schedule data until we reach the end of the 2199 // bundle. The end of the bundle is marked by null ScheduleData. 2200 if (BlocksSchedules.count(BB)) { 2201 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2202 if (Bundle && Bundle->isPartOfBundle()) 2203 for (; Bundle; Bundle = Bundle->NextInBundle) 2204 LastInst = Bundle->Inst; 2205 } 2206 2207 // LastInst can still be null at this point if there's either not an entry 2208 // for BB in BlocksSchedules or there's no ScheduleData available for 2209 // VL.back(). This can be the case if buildTree_rec aborts for various 2210 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2211 // size is reached, etc.). ScheduleData is initialized in the scheduling 2212 // "dry-run". 2213 // 2214 // If this happens, we can still find the last instruction by brute force. We 2215 // iterate forwards from Front (inclusive) until we either see all 2216 // instructions in the bundle or reach the end of the block. If Front is the 2217 // last instruction in program order, LastInst will be set to Front, and we 2218 // will visit all the remaining instructions in the block. 2219 // 2220 // One of the reasons we exit early from buildTree_rec is to place an upper 2221 // bound on compile-time. Thus, taking an additional compile-time hit here is 2222 // not ideal. However, this should be exceedingly rare since it requires that 2223 // we both exit early from buildTree_rec and that the bundle be out-of-order 2224 // (causing us to iterate all the way to the end of the block). 2225 if (!LastInst) { 2226 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2227 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2228 if (Bundle.erase(&I)) 2229 LastInst = &I; 2230 if (Bundle.empty()) 2231 break; 2232 } 2233 } 2234 2235 // Set the insertion point after the last instruction in the bundle. Set the 2236 // debug location to Front. 2237 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2238 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2239 } 2240 2241 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2242 Value *Vec = UndefValue::get(Ty); 2243 // Generate the 'InsertElement' instruction. 2244 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2245 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2246 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2247 GatherSeq.insert(Insrt); 2248 CSEBlocks.insert(Insrt->getParent()); 2249 2250 // Add to our 'need-to-extract' list. 2251 if (ScalarToTreeEntry.count(VL[i])) { 2252 int Idx = ScalarToTreeEntry[VL[i]]; 2253 TreeEntry *E = &VectorizableTree[Idx]; 2254 // Find which lane we need to extract. 2255 int FoundLane = -1; 2256 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2257 // Is this the lane of the scalar that we are looking for ? 2258 if (E->Scalars[Lane] == VL[i]) { 2259 FoundLane = Lane; 2260 break; 2261 } 2262 } 2263 assert(FoundLane >= 0 && "Could not find the correct lane"); 2264 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2265 } 2266 } 2267 } 2268 2269 return Vec; 2270 } 2271 2272 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2273 SmallDenseMap<Value*, int>::const_iterator Entry 2274 = ScalarToTreeEntry.find(VL[0]); 2275 if (Entry != ScalarToTreeEntry.end()) { 2276 int Idx = Entry->second; 2277 const TreeEntry *En = &VectorizableTree[Idx]; 2278 if (En->isSame(VL) && En->VectorizedValue) 2279 return En->VectorizedValue; 2280 } 2281 return nullptr; 2282 } 2283 2284 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2285 if (ScalarToTreeEntry.count(VL[0])) { 2286 int Idx = ScalarToTreeEntry[VL[0]]; 2287 TreeEntry *E = &VectorizableTree[Idx]; 2288 if (E->isSame(VL)) 2289 return vectorizeTree(E); 2290 } 2291 2292 Type *ScalarTy = VL[0]->getType(); 2293 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2294 ScalarTy = SI->getValueOperand()->getType(); 2295 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2296 2297 return Gather(VL, VecTy); 2298 } 2299 2300 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2301 IRBuilder<>::InsertPointGuard Guard(Builder); 2302 2303 if (E->VectorizedValue) { 2304 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2305 return E->VectorizedValue; 2306 } 2307 2308 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2309 Type *ScalarTy = VL0->getType(); 2310 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2311 ScalarTy = SI->getValueOperand()->getType(); 2312 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2313 2314 if (E->NeedToGather) { 2315 setInsertPointAfterBundle(E->Scalars); 2316 auto *V = Gather(E->Scalars, VecTy); 2317 E->VectorizedValue = V; 2318 return V; 2319 } 2320 2321 unsigned Opcode = getSameOpcode(E->Scalars); 2322 2323 switch (Opcode) { 2324 case Instruction::PHI: { 2325 PHINode *PH = dyn_cast<PHINode>(VL0); 2326 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2327 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2328 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2329 E->VectorizedValue = NewPhi; 2330 2331 // PHINodes may have multiple entries from the same block. We want to 2332 // visit every block once. 2333 SmallSet<BasicBlock*, 4> VisitedBBs; 2334 2335 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2336 ValueList Operands; 2337 BasicBlock *IBB = PH->getIncomingBlock(i); 2338 2339 if (!VisitedBBs.insert(IBB).second) { 2340 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2341 continue; 2342 } 2343 2344 // Prepare the operand vector. 2345 for (Value *V : E->Scalars) 2346 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2347 2348 Builder.SetInsertPoint(IBB->getTerminator()); 2349 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2350 Value *Vec = vectorizeTree(Operands); 2351 NewPhi->addIncoming(Vec, IBB); 2352 } 2353 2354 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2355 "Invalid number of incoming values"); 2356 return NewPhi; 2357 } 2358 2359 case Instruction::ExtractElement: { 2360 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2361 Value *V = VL0->getOperand(0); 2362 E->VectorizedValue = V; 2363 return V; 2364 } 2365 setInsertPointAfterBundle(E->Scalars); 2366 auto *V = Gather(E->Scalars, VecTy); 2367 E->VectorizedValue = V; 2368 return V; 2369 } 2370 case Instruction::ExtractValue: { 2371 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2372 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2373 Builder.SetInsertPoint(LI); 2374 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2375 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2376 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2377 E->VectorizedValue = V; 2378 return propagateMetadata(V, E->Scalars); 2379 } 2380 setInsertPointAfterBundle(E->Scalars); 2381 auto *V = Gather(E->Scalars, VecTy); 2382 E->VectorizedValue = V; 2383 return V; 2384 } 2385 case Instruction::ZExt: 2386 case Instruction::SExt: 2387 case Instruction::FPToUI: 2388 case Instruction::FPToSI: 2389 case Instruction::FPExt: 2390 case Instruction::PtrToInt: 2391 case Instruction::IntToPtr: 2392 case Instruction::SIToFP: 2393 case Instruction::UIToFP: 2394 case Instruction::Trunc: 2395 case Instruction::FPTrunc: 2396 case Instruction::BitCast: { 2397 ValueList INVL; 2398 for (Value *V : E->Scalars) 2399 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2400 2401 setInsertPointAfterBundle(E->Scalars); 2402 2403 Value *InVec = vectorizeTree(INVL); 2404 2405 if (Value *V = alreadyVectorized(E->Scalars)) 2406 return V; 2407 2408 CastInst *CI = dyn_cast<CastInst>(VL0); 2409 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2410 E->VectorizedValue = V; 2411 ++NumVectorInstructions; 2412 return V; 2413 } 2414 case Instruction::FCmp: 2415 case Instruction::ICmp: { 2416 ValueList LHSV, RHSV; 2417 for (Value *V : E->Scalars) { 2418 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2419 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2420 } 2421 2422 setInsertPointAfterBundle(E->Scalars); 2423 2424 Value *L = vectorizeTree(LHSV); 2425 Value *R = vectorizeTree(RHSV); 2426 2427 if (Value *V = alreadyVectorized(E->Scalars)) 2428 return V; 2429 2430 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2431 Value *V; 2432 if (Opcode == Instruction::FCmp) 2433 V = Builder.CreateFCmp(P0, L, R); 2434 else 2435 V = Builder.CreateICmp(P0, L, R); 2436 2437 E->VectorizedValue = V; 2438 propagateIRFlags(E->VectorizedValue, E->Scalars); 2439 ++NumVectorInstructions; 2440 return V; 2441 } 2442 case Instruction::Select: { 2443 ValueList TrueVec, FalseVec, CondVec; 2444 for (Value *V : E->Scalars) { 2445 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2446 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2447 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2448 } 2449 2450 setInsertPointAfterBundle(E->Scalars); 2451 2452 Value *Cond = vectorizeTree(CondVec); 2453 Value *True = vectorizeTree(TrueVec); 2454 Value *False = vectorizeTree(FalseVec); 2455 2456 if (Value *V = alreadyVectorized(E->Scalars)) 2457 return V; 2458 2459 Value *V = Builder.CreateSelect(Cond, True, False); 2460 E->VectorizedValue = V; 2461 ++NumVectorInstructions; 2462 return V; 2463 } 2464 case Instruction::Add: 2465 case Instruction::FAdd: 2466 case Instruction::Sub: 2467 case Instruction::FSub: 2468 case Instruction::Mul: 2469 case Instruction::FMul: 2470 case Instruction::UDiv: 2471 case Instruction::SDiv: 2472 case Instruction::FDiv: 2473 case Instruction::URem: 2474 case Instruction::SRem: 2475 case Instruction::FRem: 2476 case Instruction::Shl: 2477 case Instruction::LShr: 2478 case Instruction::AShr: 2479 case Instruction::And: 2480 case Instruction::Or: 2481 case Instruction::Xor: { 2482 ValueList LHSVL, RHSVL; 2483 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2484 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2485 else 2486 for (Value *V : E->Scalars) { 2487 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2488 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2489 } 2490 2491 setInsertPointAfterBundle(E->Scalars); 2492 2493 Value *LHS = vectorizeTree(LHSVL); 2494 Value *RHS = vectorizeTree(RHSVL); 2495 2496 if (Value *V = alreadyVectorized(E->Scalars)) 2497 return V; 2498 2499 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2500 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2501 E->VectorizedValue = V; 2502 propagateIRFlags(E->VectorizedValue, E->Scalars); 2503 ++NumVectorInstructions; 2504 2505 if (Instruction *I = dyn_cast<Instruction>(V)) 2506 return propagateMetadata(I, E->Scalars); 2507 2508 return V; 2509 } 2510 case Instruction::Load: { 2511 // Loads are inserted at the head of the tree because we don't want to 2512 // sink them all the way down past store instructions. 2513 setInsertPointAfterBundle(E->Scalars); 2514 2515 LoadInst *LI = cast<LoadInst>(VL0); 2516 Type *ScalarLoadTy = LI->getType(); 2517 unsigned AS = LI->getPointerAddressSpace(); 2518 2519 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2520 VecTy->getPointerTo(AS)); 2521 2522 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2523 // ExternalUses list to make sure that an extract will be generated in the 2524 // future. 2525 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2526 ExternalUses.push_back( 2527 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2528 2529 unsigned Alignment = LI->getAlignment(); 2530 LI = Builder.CreateLoad(VecPtr); 2531 if (!Alignment) { 2532 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2533 } 2534 LI->setAlignment(Alignment); 2535 E->VectorizedValue = LI; 2536 ++NumVectorInstructions; 2537 return propagateMetadata(LI, E->Scalars); 2538 } 2539 case Instruction::Store: { 2540 StoreInst *SI = cast<StoreInst>(VL0); 2541 unsigned Alignment = SI->getAlignment(); 2542 unsigned AS = SI->getPointerAddressSpace(); 2543 2544 ValueList ValueOp; 2545 for (Value *V : E->Scalars) 2546 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2547 2548 setInsertPointAfterBundle(E->Scalars); 2549 2550 Value *VecValue = vectorizeTree(ValueOp); 2551 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2552 VecTy->getPointerTo(AS)); 2553 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2554 2555 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2556 // ExternalUses list to make sure that an extract will be generated in the 2557 // future. 2558 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2559 ExternalUses.push_back( 2560 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2561 2562 if (!Alignment) { 2563 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2564 } 2565 S->setAlignment(Alignment); 2566 E->VectorizedValue = S; 2567 ++NumVectorInstructions; 2568 return propagateMetadata(S, E->Scalars); 2569 } 2570 case Instruction::GetElementPtr: { 2571 setInsertPointAfterBundle(E->Scalars); 2572 2573 ValueList Op0VL; 2574 for (Value *V : E->Scalars) 2575 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2576 2577 Value *Op0 = vectorizeTree(Op0VL); 2578 2579 std::vector<Value *> OpVecs; 2580 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2581 ++j) { 2582 ValueList OpVL; 2583 for (Value *V : E->Scalars) 2584 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2585 2586 Value *OpVec = vectorizeTree(OpVL); 2587 OpVecs.push_back(OpVec); 2588 } 2589 2590 Value *V = Builder.CreateGEP( 2591 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2592 E->VectorizedValue = V; 2593 ++NumVectorInstructions; 2594 2595 if (Instruction *I = dyn_cast<Instruction>(V)) 2596 return propagateMetadata(I, E->Scalars); 2597 2598 return V; 2599 } 2600 case Instruction::Call: { 2601 CallInst *CI = cast<CallInst>(VL0); 2602 setInsertPointAfterBundle(E->Scalars); 2603 Function *FI; 2604 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2605 Value *ScalarArg = nullptr; 2606 if (CI && (FI = CI->getCalledFunction())) { 2607 IID = FI->getIntrinsicID(); 2608 } 2609 std::vector<Value *> OpVecs; 2610 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2611 ValueList OpVL; 2612 // ctlz,cttz and powi are special intrinsics whose second argument is 2613 // a scalar. This argument should not be vectorized. 2614 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2615 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2616 ScalarArg = CEI->getArgOperand(j); 2617 OpVecs.push_back(CEI->getArgOperand(j)); 2618 continue; 2619 } 2620 for (Value *V : E->Scalars) { 2621 CallInst *CEI = cast<CallInst>(V); 2622 OpVL.push_back(CEI->getArgOperand(j)); 2623 } 2624 2625 Value *OpVec = vectorizeTree(OpVL); 2626 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2627 OpVecs.push_back(OpVec); 2628 } 2629 2630 Module *M = F->getParent(); 2631 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2632 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2633 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2634 SmallVector<OperandBundleDef, 1> OpBundles; 2635 CI->getOperandBundlesAsDefs(OpBundles); 2636 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2637 2638 // The scalar argument uses an in-tree scalar so we add the new vectorized 2639 // call to ExternalUses list to make sure that an extract will be 2640 // generated in the future. 2641 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2642 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2643 2644 E->VectorizedValue = V; 2645 propagateIRFlags(E->VectorizedValue, E->Scalars); 2646 ++NumVectorInstructions; 2647 return V; 2648 } 2649 case Instruction::ShuffleVector: { 2650 ValueList LHSVL, RHSVL; 2651 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2652 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2653 setInsertPointAfterBundle(E->Scalars); 2654 2655 Value *LHS = vectorizeTree(LHSVL); 2656 Value *RHS = vectorizeTree(RHSVL); 2657 2658 if (Value *V = alreadyVectorized(E->Scalars)) 2659 return V; 2660 2661 // Create a vector of LHS op1 RHS 2662 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2663 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2664 2665 // Create a vector of LHS op2 RHS 2666 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2667 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2668 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2669 2670 // Create shuffle to take alternate operations from the vector. 2671 // Also, gather up odd and even scalar ops to propagate IR flags to 2672 // each vector operation. 2673 ValueList OddScalars, EvenScalars; 2674 unsigned e = E->Scalars.size(); 2675 SmallVector<Constant *, 8> Mask(e); 2676 for (unsigned i = 0; i < e; ++i) { 2677 if (i & 1) { 2678 Mask[i] = Builder.getInt32(e + i); 2679 OddScalars.push_back(E->Scalars[i]); 2680 } else { 2681 Mask[i] = Builder.getInt32(i); 2682 EvenScalars.push_back(E->Scalars[i]); 2683 } 2684 } 2685 2686 Value *ShuffleMask = ConstantVector::get(Mask); 2687 propagateIRFlags(V0, EvenScalars); 2688 propagateIRFlags(V1, OddScalars); 2689 2690 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2691 E->VectorizedValue = V; 2692 ++NumVectorInstructions; 2693 if (Instruction *I = dyn_cast<Instruction>(V)) 2694 return propagateMetadata(I, E->Scalars); 2695 2696 return V; 2697 } 2698 default: 2699 llvm_unreachable("unknown inst"); 2700 } 2701 return nullptr; 2702 } 2703 2704 Value *BoUpSLP::vectorizeTree() { 2705 2706 // All blocks must be scheduled before any instructions are inserted. 2707 for (auto &BSIter : BlocksSchedules) { 2708 scheduleBlock(BSIter.second.get()); 2709 } 2710 2711 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2712 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2713 2714 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2715 // vectorized root. InstCombine will then rewrite the entire expression. We 2716 // sign extend the extracted values below. 2717 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2718 if (MinBWs.count(ScalarRoot)) { 2719 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2720 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2721 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2722 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2723 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2724 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2725 VectorizableTree[0].VectorizedValue = Trunc; 2726 } 2727 2728 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2729 2730 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2731 // specified by ScalarType. 2732 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2733 if (!MinBWs.count(ScalarRoot)) 2734 return Ex; 2735 if (MinBWs[ScalarRoot].second) 2736 return Builder.CreateSExt(Ex, ScalarType); 2737 return Builder.CreateZExt(Ex, ScalarType); 2738 }; 2739 2740 // Extract all of the elements with the external uses. 2741 for (const auto &ExternalUse : ExternalUses) { 2742 Value *Scalar = ExternalUse.Scalar; 2743 llvm::User *User = ExternalUse.User; 2744 2745 // Skip users that we already RAUW. This happens when one instruction 2746 // has multiple uses of the same value. 2747 if (!is_contained(Scalar->users(), User)) 2748 continue; 2749 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2750 2751 int Idx = ScalarToTreeEntry[Scalar]; 2752 TreeEntry *E = &VectorizableTree[Idx]; 2753 assert(!E->NeedToGather && "Extracting from a gather list"); 2754 2755 Value *Vec = E->VectorizedValue; 2756 assert(Vec && "Can't find vectorizable value"); 2757 2758 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2759 // Generate extracts for out-of-tree users. 2760 // Find the insertion point for the extractelement lane. 2761 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2762 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2763 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2764 if (PH->getIncomingValue(i) == Scalar) { 2765 TerminatorInst *IncomingTerminator = 2766 PH->getIncomingBlock(i)->getTerminator(); 2767 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2768 Builder.SetInsertPoint(VecI->getParent(), 2769 std::next(VecI->getIterator())); 2770 } else { 2771 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2772 } 2773 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2774 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2775 CSEBlocks.insert(PH->getIncomingBlock(i)); 2776 PH->setOperand(i, Ex); 2777 } 2778 } 2779 } else { 2780 Builder.SetInsertPoint(cast<Instruction>(User)); 2781 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2782 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2783 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2784 User->replaceUsesOfWith(Scalar, Ex); 2785 } 2786 } else { 2787 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2788 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2789 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2790 CSEBlocks.insert(&F->getEntryBlock()); 2791 User->replaceUsesOfWith(Scalar, Ex); 2792 } 2793 2794 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2795 } 2796 2797 // For each vectorized value: 2798 for (TreeEntry &EIdx : VectorizableTree) { 2799 TreeEntry *Entry = &EIdx; 2800 2801 // For each lane: 2802 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2803 Value *Scalar = Entry->Scalars[Lane]; 2804 // No need to handle users of gathered values. 2805 if (Entry->NeedToGather) 2806 continue; 2807 2808 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2809 2810 Type *Ty = Scalar->getType(); 2811 if (!Ty->isVoidTy()) { 2812 #ifndef NDEBUG 2813 for (User *U : Scalar->users()) { 2814 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2815 2816 assert((ScalarToTreeEntry.count(U) || 2817 // It is legal to replace users in the ignorelist by undef. 2818 is_contained(UserIgnoreList, U)) && 2819 "Replacing out-of-tree value with undef"); 2820 } 2821 #endif 2822 Value *Undef = UndefValue::get(Ty); 2823 Scalar->replaceAllUsesWith(Undef); 2824 } 2825 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2826 eraseInstruction(cast<Instruction>(Scalar)); 2827 } 2828 } 2829 2830 Builder.ClearInsertionPoint(); 2831 2832 return VectorizableTree[0].VectorizedValue; 2833 } 2834 2835 void BoUpSLP::optimizeGatherSequence() { 2836 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2837 << " gather sequences instructions.\n"); 2838 // LICM InsertElementInst sequences. 2839 for (Instruction *it : GatherSeq) { 2840 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2841 2842 if (!Insert) 2843 continue; 2844 2845 // Check if this block is inside a loop. 2846 Loop *L = LI->getLoopFor(Insert->getParent()); 2847 if (!L) 2848 continue; 2849 2850 // Check if it has a preheader. 2851 BasicBlock *PreHeader = L->getLoopPreheader(); 2852 if (!PreHeader) 2853 continue; 2854 2855 // If the vector or the element that we insert into it are 2856 // instructions that are defined in this basic block then we can't 2857 // hoist this instruction. 2858 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2859 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2860 if (CurrVec && L->contains(CurrVec)) 2861 continue; 2862 if (NewElem && L->contains(NewElem)) 2863 continue; 2864 2865 // We can hoist this instruction. Move it to the pre-header. 2866 Insert->moveBefore(PreHeader->getTerminator()); 2867 } 2868 2869 // Make a list of all reachable blocks in our CSE queue. 2870 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2871 CSEWorkList.reserve(CSEBlocks.size()); 2872 for (BasicBlock *BB : CSEBlocks) 2873 if (DomTreeNode *N = DT->getNode(BB)) { 2874 assert(DT->isReachableFromEntry(N)); 2875 CSEWorkList.push_back(N); 2876 } 2877 2878 // Sort blocks by domination. This ensures we visit a block after all blocks 2879 // dominating it are visited. 2880 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2881 [this](const DomTreeNode *A, const DomTreeNode *B) { 2882 return DT->properlyDominates(A, B); 2883 }); 2884 2885 // Perform O(N^2) search over the gather sequences and merge identical 2886 // instructions. TODO: We can further optimize this scan if we split the 2887 // instructions into different buckets based on the insert lane. 2888 SmallVector<Instruction *, 16> Visited; 2889 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2890 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2891 "Worklist not sorted properly!"); 2892 BasicBlock *BB = (*I)->getBlock(); 2893 // For all instructions in blocks containing gather sequences: 2894 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2895 Instruction *In = &*it++; 2896 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2897 continue; 2898 2899 // Check if we can replace this instruction with any of the 2900 // visited instructions. 2901 for (Instruction *v : Visited) { 2902 if (In->isIdenticalTo(v) && 2903 DT->dominates(v->getParent(), In->getParent())) { 2904 In->replaceAllUsesWith(v); 2905 eraseInstruction(In); 2906 In = nullptr; 2907 break; 2908 } 2909 } 2910 if (In) { 2911 assert(!is_contained(Visited, In)); 2912 Visited.push_back(In); 2913 } 2914 } 2915 } 2916 CSEBlocks.clear(); 2917 GatherSeq.clear(); 2918 } 2919 2920 // Groups the instructions to a bundle (which is then a single scheduling entity) 2921 // and schedules instructions until the bundle gets ready. 2922 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2923 BoUpSLP *SLP) { 2924 if (isa<PHINode>(VL[0])) 2925 return true; 2926 2927 // Initialize the instruction bundle. 2928 Instruction *OldScheduleEnd = ScheduleEnd; 2929 ScheduleData *PrevInBundle = nullptr; 2930 ScheduleData *Bundle = nullptr; 2931 bool ReSchedule = false; 2932 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2933 2934 // Make sure that the scheduling region contains all 2935 // instructions of the bundle. 2936 for (Value *V : VL) { 2937 if (!extendSchedulingRegion(V)) 2938 return false; 2939 } 2940 2941 for (Value *V : VL) { 2942 ScheduleData *BundleMember = getScheduleData(V); 2943 assert(BundleMember && 2944 "no ScheduleData for bundle member (maybe not in same basic block)"); 2945 if (BundleMember->IsScheduled) { 2946 // A bundle member was scheduled as single instruction before and now 2947 // needs to be scheduled as part of the bundle. We just get rid of the 2948 // existing schedule. 2949 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2950 << " was already scheduled\n"); 2951 ReSchedule = true; 2952 } 2953 assert(BundleMember->isSchedulingEntity() && 2954 "bundle member already part of other bundle"); 2955 if (PrevInBundle) { 2956 PrevInBundle->NextInBundle = BundleMember; 2957 } else { 2958 Bundle = BundleMember; 2959 } 2960 BundleMember->UnscheduledDepsInBundle = 0; 2961 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2962 2963 // Group the instructions to a bundle. 2964 BundleMember->FirstInBundle = Bundle; 2965 PrevInBundle = BundleMember; 2966 } 2967 if (ScheduleEnd != OldScheduleEnd) { 2968 // The scheduling region got new instructions at the lower end (or it is a 2969 // new region for the first bundle). This makes it necessary to 2970 // recalculate all dependencies. 2971 // It is seldom that this needs to be done a second time after adding the 2972 // initial bundle to the region. 2973 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2974 ScheduleData *SD = getScheduleData(I); 2975 SD->clearDependencies(); 2976 } 2977 ReSchedule = true; 2978 } 2979 if (ReSchedule) { 2980 resetSchedule(); 2981 initialFillReadyList(ReadyInsts); 2982 } 2983 2984 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2985 << BB->getName() << "\n"); 2986 2987 calculateDependencies(Bundle, true, SLP); 2988 2989 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2990 // means that there are no cyclic dependencies and we can schedule it. 2991 // Note that's important that we don't "schedule" the bundle yet (see 2992 // cancelScheduling). 2993 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2994 2995 ScheduleData *pickedSD = ReadyInsts.back(); 2996 ReadyInsts.pop_back(); 2997 2998 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2999 schedule(pickedSD, ReadyInsts); 3000 } 3001 } 3002 if (!Bundle->isReady()) { 3003 cancelScheduling(VL); 3004 return false; 3005 } 3006 return true; 3007 } 3008 3009 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3010 if (isa<PHINode>(VL[0])) 3011 return; 3012 3013 ScheduleData *Bundle = getScheduleData(VL[0]); 3014 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3015 assert(!Bundle->IsScheduled && 3016 "Can't cancel bundle which is already scheduled"); 3017 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3018 "tried to unbundle something which is not a bundle"); 3019 3020 // Un-bundle: make single instructions out of the bundle. 3021 ScheduleData *BundleMember = Bundle; 3022 while (BundleMember) { 3023 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3024 BundleMember->FirstInBundle = BundleMember; 3025 ScheduleData *Next = BundleMember->NextInBundle; 3026 BundleMember->NextInBundle = nullptr; 3027 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3028 if (BundleMember->UnscheduledDepsInBundle == 0) { 3029 ReadyInsts.insert(BundleMember); 3030 } 3031 BundleMember = Next; 3032 } 3033 } 3034 3035 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3036 if (getScheduleData(V)) 3037 return true; 3038 Instruction *I = dyn_cast<Instruction>(V); 3039 assert(I && "bundle member must be an instruction"); 3040 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3041 if (!ScheduleStart) { 3042 // It's the first instruction in the new region. 3043 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3044 ScheduleStart = I; 3045 ScheduleEnd = I->getNextNode(); 3046 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3047 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3048 return true; 3049 } 3050 // Search up and down at the same time, because we don't know if the new 3051 // instruction is above or below the existing scheduling region. 3052 BasicBlock::reverse_iterator UpIter = 3053 ++ScheduleStart->getIterator().getReverse(); 3054 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3055 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3056 BasicBlock::iterator LowerEnd = BB->end(); 3057 for (;;) { 3058 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3059 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3060 return false; 3061 } 3062 3063 if (UpIter != UpperEnd) { 3064 if (&*UpIter == I) { 3065 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3066 ScheduleStart = I; 3067 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3068 return true; 3069 } 3070 UpIter++; 3071 } 3072 if (DownIter != LowerEnd) { 3073 if (&*DownIter == I) { 3074 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3075 nullptr); 3076 ScheduleEnd = I->getNextNode(); 3077 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3078 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3079 return true; 3080 } 3081 DownIter++; 3082 } 3083 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3084 "instruction not found in block"); 3085 } 3086 return true; 3087 } 3088 3089 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3090 Instruction *ToI, 3091 ScheduleData *PrevLoadStore, 3092 ScheduleData *NextLoadStore) { 3093 ScheduleData *CurrentLoadStore = PrevLoadStore; 3094 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3095 ScheduleData *SD = ScheduleDataMap[I]; 3096 if (!SD) { 3097 // Allocate a new ScheduleData for the instruction. 3098 if (ChunkPos >= ChunkSize) { 3099 ScheduleDataChunks.push_back( 3100 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3101 ChunkPos = 0; 3102 } 3103 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3104 ScheduleDataMap[I] = SD; 3105 SD->Inst = I; 3106 } 3107 assert(!isInSchedulingRegion(SD) && 3108 "new ScheduleData already in scheduling region"); 3109 SD->init(SchedulingRegionID); 3110 3111 if (I->mayReadOrWriteMemory()) { 3112 // Update the linked list of memory accessing instructions. 3113 if (CurrentLoadStore) { 3114 CurrentLoadStore->NextLoadStore = SD; 3115 } else { 3116 FirstLoadStoreInRegion = SD; 3117 } 3118 CurrentLoadStore = SD; 3119 } 3120 } 3121 if (NextLoadStore) { 3122 if (CurrentLoadStore) 3123 CurrentLoadStore->NextLoadStore = NextLoadStore; 3124 } else { 3125 LastLoadStoreInRegion = CurrentLoadStore; 3126 } 3127 } 3128 3129 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3130 bool InsertInReadyList, 3131 BoUpSLP *SLP) { 3132 assert(SD->isSchedulingEntity()); 3133 3134 SmallVector<ScheduleData *, 10> WorkList; 3135 WorkList.push_back(SD); 3136 3137 while (!WorkList.empty()) { 3138 ScheduleData *SD = WorkList.back(); 3139 WorkList.pop_back(); 3140 3141 ScheduleData *BundleMember = SD; 3142 while (BundleMember) { 3143 assert(isInSchedulingRegion(BundleMember)); 3144 if (!BundleMember->hasValidDependencies()) { 3145 3146 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3147 BundleMember->Dependencies = 0; 3148 BundleMember->resetUnscheduledDeps(); 3149 3150 // Handle def-use chain dependencies. 3151 for (User *U : BundleMember->Inst->users()) { 3152 if (isa<Instruction>(U)) { 3153 ScheduleData *UseSD = getScheduleData(U); 3154 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3155 BundleMember->Dependencies++; 3156 ScheduleData *DestBundle = UseSD->FirstInBundle; 3157 if (!DestBundle->IsScheduled) { 3158 BundleMember->incrementUnscheduledDeps(1); 3159 } 3160 if (!DestBundle->hasValidDependencies()) { 3161 WorkList.push_back(DestBundle); 3162 } 3163 } 3164 } else { 3165 // I'm not sure if this can ever happen. But we need to be safe. 3166 // This lets the instruction/bundle never be scheduled and 3167 // eventually disable vectorization. 3168 BundleMember->Dependencies++; 3169 BundleMember->incrementUnscheduledDeps(1); 3170 } 3171 } 3172 3173 // Handle the memory dependencies. 3174 ScheduleData *DepDest = BundleMember->NextLoadStore; 3175 if (DepDest) { 3176 Instruction *SrcInst = BundleMember->Inst; 3177 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3178 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3179 unsigned numAliased = 0; 3180 unsigned DistToSrc = 1; 3181 3182 while (DepDest) { 3183 assert(isInSchedulingRegion(DepDest)); 3184 3185 // We have two limits to reduce the complexity: 3186 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3187 // SLP->isAliased (which is the expensive part in this loop). 3188 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3189 // the whole loop (even if the loop is fast, it's quadratic). 3190 // It's important for the loop break condition (see below) to 3191 // check this limit even between two read-only instructions. 3192 if (DistToSrc >= MaxMemDepDistance || 3193 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3194 (numAliased >= AliasedCheckLimit || 3195 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3196 3197 // We increment the counter only if the locations are aliased 3198 // (instead of counting all alias checks). This gives a better 3199 // balance between reduced runtime and accurate dependencies. 3200 numAliased++; 3201 3202 DepDest->MemoryDependencies.push_back(BundleMember); 3203 BundleMember->Dependencies++; 3204 ScheduleData *DestBundle = DepDest->FirstInBundle; 3205 if (!DestBundle->IsScheduled) { 3206 BundleMember->incrementUnscheduledDeps(1); 3207 } 3208 if (!DestBundle->hasValidDependencies()) { 3209 WorkList.push_back(DestBundle); 3210 } 3211 } 3212 DepDest = DepDest->NextLoadStore; 3213 3214 // Example, explaining the loop break condition: Let's assume our 3215 // starting instruction is i0 and MaxMemDepDistance = 3. 3216 // 3217 // +--------v--v--v 3218 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3219 // +--------^--^--^ 3220 // 3221 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3222 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3223 // Previously we already added dependencies from i3 to i6,i7,i8 3224 // (because of MaxMemDepDistance). As we added a dependency from 3225 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3226 // and we can abort this loop at i6. 3227 if (DistToSrc >= 2 * MaxMemDepDistance) 3228 break; 3229 DistToSrc++; 3230 } 3231 } 3232 } 3233 BundleMember = BundleMember->NextInBundle; 3234 } 3235 if (InsertInReadyList && SD->isReady()) { 3236 ReadyInsts.push_back(SD); 3237 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3238 } 3239 } 3240 } 3241 3242 void BoUpSLP::BlockScheduling::resetSchedule() { 3243 assert(ScheduleStart && 3244 "tried to reset schedule on block which has not been scheduled"); 3245 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3246 ScheduleData *SD = getScheduleData(I); 3247 assert(isInSchedulingRegion(SD)); 3248 SD->IsScheduled = false; 3249 SD->resetUnscheduledDeps(); 3250 } 3251 ReadyInsts.clear(); 3252 } 3253 3254 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3255 3256 if (!BS->ScheduleStart) 3257 return; 3258 3259 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3260 3261 BS->resetSchedule(); 3262 3263 // For the real scheduling we use a more sophisticated ready-list: it is 3264 // sorted by the original instruction location. This lets the final schedule 3265 // be as close as possible to the original instruction order. 3266 struct ScheduleDataCompare { 3267 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3268 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3269 } 3270 }; 3271 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3272 3273 // Ensure that all dependency data is updated and fill the ready-list with 3274 // initial instructions. 3275 int Idx = 0; 3276 int NumToSchedule = 0; 3277 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3278 I = I->getNextNode()) { 3279 ScheduleData *SD = BS->getScheduleData(I); 3280 assert( 3281 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3282 "scheduler and vectorizer have different opinion on what is a bundle"); 3283 SD->FirstInBundle->SchedulingPriority = Idx++; 3284 if (SD->isSchedulingEntity()) { 3285 BS->calculateDependencies(SD, false, this); 3286 NumToSchedule++; 3287 } 3288 } 3289 BS->initialFillReadyList(ReadyInsts); 3290 3291 Instruction *LastScheduledInst = BS->ScheduleEnd; 3292 3293 // Do the "real" scheduling. 3294 while (!ReadyInsts.empty()) { 3295 ScheduleData *picked = *ReadyInsts.begin(); 3296 ReadyInsts.erase(ReadyInsts.begin()); 3297 3298 // Move the scheduled instruction(s) to their dedicated places, if not 3299 // there yet. 3300 ScheduleData *BundleMember = picked; 3301 while (BundleMember) { 3302 Instruction *pickedInst = BundleMember->Inst; 3303 if (LastScheduledInst->getNextNode() != pickedInst) { 3304 BS->BB->getInstList().remove(pickedInst); 3305 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3306 pickedInst); 3307 } 3308 LastScheduledInst = pickedInst; 3309 BundleMember = BundleMember->NextInBundle; 3310 } 3311 3312 BS->schedule(picked, ReadyInsts); 3313 NumToSchedule--; 3314 } 3315 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3316 3317 // Avoid duplicate scheduling of the block. 3318 BS->ScheduleStart = nullptr; 3319 } 3320 3321 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3322 // If V is a store, just return the width of the stored value without 3323 // traversing the expression tree. This is the common case. 3324 if (auto *Store = dyn_cast<StoreInst>(V)) 3325 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3326 3327 // If V is not a store, we can traverse the expression tree to find loads 3328 // that feed it. The type of the loaded value may indicate a more suitable 3329 // width than V's type. We want to base the vector element size on the width 3330 // of memory operations where possible. 3331 SmallVector<Instruction *, 16> Worklist; 3332 SmallPtrSet<Instruction *, 16> Visited; 3333 if (auto *I = dyn_cast<Instruction>(V)) 3334 Worklist.push_back(I); 3335 3336 // Traverse the expression tree in bottom-up order looking for loads. If we 3337 // encounter an instruciton we don't yet handle, we give up. 3338 auto MaxWidth = 0u; 3339 auto FoundUnknownInst = false; 3340 while (!Worklist.empty() && !FoundUnknownInst) { 3341 auto *I = Worklist.pop_back_val(); 3342 Visited.insert(I); 3343 3344 // We should only be looking at scalar instructions here. If the current 3345 // instruction has a vector type, give up. 3346 auto *Ty = I->getType(); 3347 if (isa<VectorType>(Ty)) 3348 FoundUnknownInst = true; 3349 3350 // If the current instruction is a load, update MaxWidth to reflect the 3351 // width of the loaded value. 3352 else if (isa<LoadInst>(I)) 3353 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3354 3355 // Otherwise, we need to visit the operands of the instruction. We only 3356 // handle the interesting cases from buildTree here. If an operand is an 3357 // instruction we haven't yet visited, we add it to the worklist. 3358 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3359 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3360 for (Use &U : I->operands()) 3361 if (auto *J = dyn_cast<Instruction>(U.get())) 3362 if (!Visited.count(J)) 3363 Worklist.push_back(J); 3364 } 3365 3366 // If we don't yet handle the instruction, give up. 3367 else 3368 FoundUnknownInst = true; 3369 } 3370 3371 // If we didn't encounter a memory access in the expression tree, or if we 3372 // gave up for some reason, just return the width of V. 3373 if (!MaxWidth || FoundUnknownInst) 3374 return DL->getTypeSizeInBits(V->getType()); 3375 3376 // Otherwise, return the maximum width we found. 3377 return MaxWidth; 3378 } 3379 3380 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3381 // smaller type with a truncation. We collect the values that will be demoted 3382 // in ToDemote and additional roots that require investigating in Roots. 3383 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3384 SmallVectorImpl<Value *> &ToDemote, 3385 SmallVectorImpl<Value *> &Roots) { 3386 3387 // We can always demote constants. 3388 if (isa<Constant>(V)) { 3389 ToDemote.push_back(V); 3390 return true; 3391 } 3392 3393 // If the value is not an instruction in the expression with only one use, it 3394 // cannot be demoted. 3395 auto *I = dyn_cast<Instruction>(V); 3396 if (!I || !I->hasOneUse() || !Expr.count(I)) 3397 return false; 3398 3399 switch (I->getOpcode()) { 3400 3401 // We can always demote truncations and extensions. Since truncations can 3402 // seed additional demotion, we save the truncated value. 3403 case Instruction::Trunc: 3404 Roots.push_back(I->getOperand(0)); 3405 case Instruction::ZExt: 3406 case Instruction::SExt: 3407 break; 3408 3409 // We can demote certain binary operations if we can demote both of their 3410 // operands. 3411 case Instruction::Add: 3412 case Instruction::Sub: 3413 case Instruction::Mul: 3414 case Instruction::And: 3415 case Instruction::Or: 3416 case Instruction::Xor: 3417 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3418 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3419 return false; 3420 break; 3421 3422 // We can demote selects if we can demote their true and false values. 3423 case Instruction::Select: { 3424 SelectInst *SI = cast<SelectInst>(I); 3425 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3426 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3427 return false; 3428 break; 3429 } 3430 3431 // We can demote phis if we can demote all their incoming operands. Note that 3432 // we don't need to worry about cycles since we ensure single use above. 3433 case Instruction::PHI: { 3434 PHINode *PN = cast<PHINode>(I); 3435 for (Value *IncValue : PN->incoming_values()) 3436 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3437 return false; 3438 break; 3439 } 3440 3441 // Otherwise, conservatively give up. 3442 default: 3443 return false; 3444 } 3445 3446 // Record the value that we can demote. 3447 ToDemote.push_back(V); 3448 return true; 3449 } 3450 3451 void BoUpSLP::computeMinimumValueSizes() { 3452 // If there are no external uses, the expression tree must be rooted by a 3453 // store. We can't demote in-memory values, so there is nothing to do here. 3454 if (ExternalUses.empty()) 3455 return; 3456 3457 // We only attempt to truncate integer expressions. 3458 auto &TreeRoot = VectorizableTree[0].Scalars; 3459 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3460 if (!TreeRootIT) 3461 return; 3462 3463 // If the expression is not rooted by a store, these roots should have 3464 // external uses. We will rely on InstCombine to rewrite the expression in 3465 // the narrower type. However, InstCombine only rewrites single-use values. 3466 // This means that if a tree entry other than a root is used externally, it 3467 // must have multiple uses and InstCombine will not rewrite it. The code 3468 // below ensures that only the roots are used externally. 3469 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3470 for (auto &EU : ExternalUses) 3471 if (!Expr.erase(EU.Scalar)) 3472 return; 3473 if (!Expr.empty()) 3474 return; 3475 3476 // Collect the scalar values of the vectorizable expression. We will use this 3477 // context to determine which values can be demoted. If we see a truncation, 3478 // we mark it as seeding another demotion. 3479 for (auto &Entry : VectorizableTree) 3480 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3481 3482 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3483 // have a single external user that is not in the vectorizable tree. 3484 for (auto *Root : TreeRoot) 3485 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3486 return; 3487 3488 // Conservatively determine if we can actually truncate the roots of the 3489 // expression. Collect the values that can be demoted in ToDemote and 3490 // additional roots that require investigating in Roots. 3491 SmallVector<Value *, 32> ToDemote; 3492 SmallVector<Value *, 4> Roots; 3493 for (auto *Root : TreeRoot) 3494 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3495 return; 3496 3497 // The maximum bit width required to represent all the values that can be 3498 // demoted without loss of precision. It would be safe to truncate the roots 3499 // of the expression to this width. 3500 auto MaxBitWidth = 8u; 3501 3502 // We first check if all the bits of the roots are demanded. If they're not, 3503 // we can truncate the roots to this narrower type. 3504 for (auto *Root : TreeRoot) { 3505 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3506 MaxBitWidth = std::max<unsigned>( 3507 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3508 } 3509 3510 // True if the roots can be zero-extended back to their original type, rather 3511 // than sign-extended. We know that if the leading bits are not demanded, we 3512 // can safely zero-extend. So we initialize IsKnownPositive to True. 3513 bool IsKnownPositive = true; 3514 3515 // If all the bits of the roots are demanded, we can try a little harder to 3516 // compute a narrower type. This can happen, for example, if the roots are 3517 // getelementptr indices. InstCombine promotes these indices to the pointer 3518 // width. Thus, all their bits are technically demanded even though the 3519 // address computation might be vectorized in a smaller type. 3520 // 3521 // We start by looking at each entry that can be demoted. We compute the 3522 // maximum bit width required to store the scalar by using ValueTracking to 3523 // compute the number of high-order bits we can truncate. 3524 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3525 MaxBitWidth = 8u; 3526 3527 // Determine if the sign bit of all the roots is known to be zero. If not, 3528 // IsKnownPositive is set to False. 3529 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3530 bool KnownZero = false; 3531 bool KnownOne = false; 3532 ComputeSignBit(R, KnownZero, KnownOne, *DL); 3533 return KnownZero; 3534 }); 3535 3536 // Determine the maximum number of bits required to store the scalar 3537 // values. 3538 for (auto *Scalar : ToDemote) { 3539 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3540 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3541 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3542 } 3543 3544 // If we can't prove that the sign bit is zero, we must add one to the 3545 // maximum bit width to account for the unknown sign bit. This preserves 3546 // the existing sign bit so we can safely sign-extend the root back to the 3547 // original type. Otherwise, if we know the sign bit is zero, we will 3548 // zero-extend the root instead. 3549 // 3550 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3551 // one to the maximum bit width will yield a larger-than-necessary 3552 // type. In general, we need to add an extra bit only if we can't 3553 // prove that the upper bit of the original type is equal to the 3554 // upper bit of the proposed smaller type. If these two bits are the 3555 // same (either zero or one) we know that sign-extending from the 3556 // smaller type will result in the same value. Here, since we can't 3557 // yet prove this, we are just making the proposed smaller type 3558 // larger to ensure correctness. 3559 if (!IsKnownPositive) 3560 ++MaxBitWidth; 3561 } 3562 3563 // Round MaxBitWidth up to the next power-of-two. 3564 if (!isPowerOf2_64(MaxBitWidth)) 3565 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3566 3567 // If the maximum bit width we compute is less than the with of the roots' 3568 // type, we can proceed with the narrowing. Otherwise, do nothing. 3569 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3570 return; 3571 3572 // If we can truncate the root, we must collect additional values that might 3573 // be demoted as a result. That is, those seeded by truncations we will 3574 // modify. 3575 while (!Roots.empty()) 3576 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3577 3578 // Finally, map the values we can demote to the maximum bit with we computed. 3579 for (auto *Scalar : ToDemote) 3580 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3581 } 3582 3583 namespace { 3584 /// The SLPVectorizer Pass. 3585 struct SLPVectorizer : public FunctionPass { 3586 SLPVectorizerPass Impl; 3587 3588 /// Pass identification, replacement for typeid 3589 static char ID; 3590 3591 explicit SLPVectorizer() : FunctionPass(ID) { 3592 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3593 } 3594 3595 3596 bool doInitialization(Module &M) override { 3597 return false; 3598 } 3599 3600 bool runOnFunction(Function &F) override { 3601 if (skipFunction(F)) 3602 return false; 3603 3604 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3605 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3606 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3607 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3608 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3609 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3610 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3611 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3612 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3613 3614 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3615 } 3616 3617 void getAnalysisUsage(AnalysisUsage &AU) const override { 3618 FunctionPass::getAnalysisUsage(AU); 3619 AU.addRequired<AssumptionCacheTracker>(); 3620 AU.addRequired<ScalarEvolutionWrapperPass>(); 3621 AU.addRequired<AAResultsWrapperPass>(); 3622 AU.addRequired<TargetTransformInfoWrapperPass>(); 3623 AU.addRequired<LoopInfoWrapperPass>(); 3624 AU.addRequired<DominatorTreeWrapperPass>(); 3625 AU.addRequired<DemandedBitsWrapperPass>(); 3626 AU.addPreserved<LoopInfoWrapperPass>(); 3627 AU.addPreserved<DominatorTreeWrapperPass>(); 3628 AU.addPreserved<AAResultsWrapperPass>(); 3629 AU.addPreserved<GlobalsAAWrapperPass>(); 3630 AU.setPreservesCFG(); 3631 } 3632 }; 3633 } // end anonymous namespace 3634 3635 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3636 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3637 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3638 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3639 auto *AA = &AM.getResult<AAManager>(F); 3640 auto *LI = &AM.getResult<LoopAnalysis>(F); 3641 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3642 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3643 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3644 3645 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3646 if (!Changed) 3647 return PreservedAnalyses::all(); 3648 PreservedAnalyses PA; 3649 PA.preserve<LoopAnalysis>(); 3650 PA.preserve<DominatorTreeAnalysis>(); 3651 PA.preserve<AAManager>(); 3652 PA.preserve<GlobalsAA>(); 3653 return PA; 3654 } 3655 3656 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3657 TargetTransformInfo *TTI_, 3658 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3659 LoopInfo *LI_, DominatorTree *DT_, 3660 AssumptionCache *AC_, DemandedBits *DB_) { 3661 SE = SE_; 3662 TTI = TTI_; 3663 TLI = TLI_; 3664 AA = AA_; 3665 LI = LI_; 3666 DT = DT_; 3667 AC = AC_; 3668 DB = DB_; 3669 DL = &F.getParent()->getDataLayout(); 3670 3671 Stores.clear(); 3672 GEPs.clear(); 3673 bool Changed = false; 3674 3675 // If the target claims to have no vector registers don't attempt 3676 // vectorization. 3677 if (!TTI->getNumberOfRegisters(true)) 3678 return false; 3679 3680 // Don't vectorize when the attribute NoImplicitFloat is used. 3681 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3682 return false; 3683 3684 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3685 3686 // Use the bottom up slp vectorizer to construct chains that start with 3687 // store instructions. 3688 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3689 3690 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3691 // delete instructions. 3692 3693 // Scan the blocks in the function in post order. 3694 for (auto BB : post_order(&F.getEntryBlock())) { 3695 collectSeedInstructions(BB); 3696 3697 // Vectorize trees that end at stores. 3698 if (!Stores.empty()) { 3699 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3700 << " underlying objects.\n"); 3701 Changed |= vectorizeStoreChains(R); 3702 } 3703 3704 // Vectorize trees that end at reductions. 3705 Changed |= vectorizeChainsInBlock(BB, R); 3706 3707 // Vectorize the index computations of getelementptr instructions. This 3708 // is primarily intended to catch gather-like idioms ending at 3709 // non-consecutive loads. 3710 if (!GEPs.empty()) { 3711 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3712 << " underlying objects.\n"); 3713 Changed |= vectorizeGEPIndices(BB, R); 3714 } 3715 } 3716 3717 if (Changed) { 3718 R.optimizeGatherSequence(); 3719 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3720 DEBUG(verifyFunction(F)); 3721 } 3722 return Changed; 3723 } 3724 3725 /// \brief Check that the Values in the slice in VL array are still existent in 3726 /// the WeakVH array. 3727 /// Vectorization of part of the VL array may cause later values in the VL array 3728 /// to become invalid. We track when this has happened in the WeakVH array. 3729 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3730 unsigned SliceBegin, unsigned SliceSize) { 3731 VL = VL.slice(SliceBegin, SliceSize); 3732 VH = VH.slice(SliceBegin, SliceSize); 3733 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3734 } 3735 3736 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3737 unsigned VecRegSize) { 3738 unsigned ChainLen = Chain.size(); 3739 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3740 << "\n"); 3741 unsigned Sz = R.getVectorElementSize(Chain[0]); 3742 unsigned VF = VecRegSize / Sz; 3743 3744 if (!isPowerOf2_32(Sz) || VF < 2) 3745 return false; 3746 3747 // Keep track of values that were deleted by vectorizing in the loop below. 3748 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3749 3750 bool Changed = false; 3751 // Look for profitable vectorizable trees at all offsets, starting at zero. 3752 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3753 if (i + VF > e) 3754 break; 3755 3756 // Check that a previous iteration of this loop did not delete the Value. 3757 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3758 continue; 3759 3760 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3761 << "\n"); 3762 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3763 3764 R.buildTree(Operands); 3765 if (R.isTreeTinyAndNotFullyVectorizable()) 3766 continue; 3767 3768 R.computeMinimumValueSizes(); 3769 3770 int Cost = R.getTreeCost(); 3771 3772 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3773 if (Cost < -SLPCostThreshold) { 3774 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3775 R.vectorizeTree(); 3776 3777 // Move to the next bundle. 3778 i += VF - 1; 3779 Changed = true; 3780 } 3781 } 3782 3783 return Changed; 3784 } 3785 3786 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3787 BoUpSLP &R) { 3788 SetVector<StoreInst *> Heads, Tails; 3789 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3790 3791 // We may run into multiple chains that merge into a single chain. We mark the 3792 // stores that we vectorized so that we don't visit the same store twice. 3793 BoUpSLP::ValueSet VectorizedStores; 3794 bool Changed = false; 3795 3796 // Do a quadratic search on all of the given stores and find 3797 // all of the pairs of stores that follow each other. 3798 SmallVector<unsigned, 16> IndexQueue; 3799 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3800 IndexQueue.clear(); 3801 // If a store has multiple consecutive store candidates, search Stores 3802 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3803 // This is because usually pairing with immediate succeeding or preceding 3804 // candidate create the best chance to find slp vectorization opportunity. 3805 unsigned j = 0; 3806 for (j = i + 1; j < e; ++j) 3807 IndexQueue.push_back(j); 3808 for (j = i; j > 0; --j) 3809 IndexQueue.push_back(j - 1); 3810 3811 for (auto &k : IndexQueue) { 3812 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3813 Tails.insert(Stores[k]); 3814 Heads.insert(Stores[i]); 3815 ConsecutiveChain[Stores[i]] = Stores[k]; 3816 break; 3817 } 3818 } 3819 } 3820 3821 // For stores that start but don't end a link in the chain: 3822 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3823 it != e; ++it) { 3824 if (Tails.count(*it)) 3825 continue; 3826 3827 // We found a store instr that starts a chain. Now follow the chain and try 3828 // to vectorize it. 3829 BoUpSLP::ValueList Operands; 3830 StoreInst *I = *it; 3831 // Collect the chain into a list. 3832 while (Tails.count(I) || Heads.count(I)) { 3833 if (VectorizedStores.count(I)) 3834 break; 3835 Operands.push_back(I); 3836 // Move to the next value in the chain. 3837 I = ConsecutiveChain[I]; 3838 } 3839 3840 // FIXME: Is division-by-2 the correct step? Should we assert that the 3841 // register size is a power-of-2? 3842 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 3843 Size /= 2) { 3844 if (vectorizeStoreChain(Operands, R, Size)) { 3845 // Mark the vectorized stores so that we don't vectorize them again. 3846 VectorizedStores.insert(Operands.begin(), Operands.end()); 3847 Changed = true; 3848 break; 3849 } 3850 } 3851 } 3852 3853 return Changed; 3854 } 3855 3856 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3857 3858 // Initialize the collections. We will make a single pass over the block. 3859 Stores.clear(); 3860 GEPs.clear(); 3861 3862 // Visit the store and getelementptr instructions in BB and organize them in 3863 // Stores and GEPs according to the underlying objects of their pointer 3864 // operands. 3865 for (Instruction &I : *BB) { 3866 3867 // Ignore store instructions that are volatile or have a pointer operand 3868 // that doesn't point to a scalar type. 3869 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3870 if (!SI->isSimple()) 3871 continue; 3872 if (!isValidElementType(SI->getValueOperand()->getType())) 3873 continue; 3874 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3875 } 3876 3877 // Ignore getelementptr instructions that have more than one index, a 3878 // constant index, or a pointer operand that doesn't point to a scalar 3879 // type. 3880 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3881 auto Idx = GEP->idx_begin()->get(); 3882 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3883 continue; 3884 if (!isValidElementType(Idx->getType())) 3885 continue; 3886 if (GEP->getType()->isVectorTy()) 3887 continue; 3888 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3889 } 3890 } 3891 } 3892 3893 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3894 if (!A || !B) 3895 return false; 3896 Value *VL[] = { A, B }; 3897 return tryToVectorizeList(VL, R, None, true); 3898 } 3899 3900 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3901 ArrayRef<Value *> BuildVector, 3902 bool AllowReorder) { 3903 if (VL.size() < 2) 3904 return false; 3905 3906 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 3907 << ".\n"); 3908 3909 // Check that all of the parts are scalar instructions of the same type. 3910 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3911 if (!I0) 3912 return false; 3913 3914 unsigned Opcode0 = I0->getOpcode(); 3915 3916 unsigned Sz = R.getVectorElementSize(I0); 3917 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 3918 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 3919 if (MaxVF < 2) 3920 return false; 3921 3922 for (Value *V : VL) { 3923 Type *Ty = V->getType(); 3924 if (!isValidElementType(Ty)) 3925 return false; 3926 Instruction *Inst = dyn_cast<Instruction>(V); 3927 if (!Inst || Inst->getOpcode() != Opcode0) 3928 return false; 3929 } 3930 3931 bool Changed = false; 3932 3933 // Keep track of values that were deleted by vectorizing in the loop below. 3934 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3935 3936 unsigned NextInst = 0, MaxInst = VL.size(); 3937 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 3938 VF /= 2) { 3939 // No actual vectorization should happen, if number of parts is the same as 3940 // provided vectorization factor (i.e. the scalar type is used for vector 3941 // code during codegen). 3942 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 3943 if (TTI->getNumberOfParts(VecTy) == VF) 3944 continue; 3945 for (unsigned I = NextInst; I < MaxInst; ++I) { 3946 unsigned OpsWidth = 0; 3947 3948 if (I + VF > MaxInst) 3949 OpsWidth = MaxInst - I; 3950 else 3951 OpsWidth = VF; 3952 3953 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3954 break; 3955 3956 // Check that a previous iteration of this loop did not delete the Value. 3957 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 3958 continue; 3959 3960 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3961 << "\n"); 3962 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 3963 3964 ArrayRef<Value *> BuildVectorSlice; 3965 if (!BuildVector.empty()) 3966 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 3967 3968 R.buildTree(Ops, BuildVectorSlice); 3969 // TODO: check if we can allow reordering for more cases. 3970 if (AllowReorder && R.shouldReorder()) { 3971 // Conceptually, there is nothing actually preventing us from trying to 3972 // reorder a larger list. In fact, we do exactly this when vectorizing 3973 // reductions. However, at this point, we only expect to get here from 3974 // tryToVectorizePair(). 3975 assert(Ops.size() == 2); 3976 assert(BuildVectorSlice.empty()); 3977 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 3978 R.buildTree(ReorderedOps, None); 3979 } 3980 if (R.isTreeTinyAndNotFullyVectorizable()) 3981 continue; 3982 3983 R.computeMinimumValueSizes(); 3984 int Cost = R.getTreeCost(); 3985 3986 if (Cost < -SLPCostThreshold) { 3987 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3988 Value *VectorizedRoot = R.vectorizeTree(); 3989 3990 // Reconstruct the build vector by extracting the vectorized root. This 3991 // way we handle the case where some elements of the vector are 3992 // undefined. 3993 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3994 if (!BuildVectorSlice.empty()) { 3995 // The insert point is the last build vector instruction. The 3996 // vectorized root will precede it. This guarantees that we get an 3997 // instruction. The vectorized tree could have been constant folded. 3998 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3999 unsigned VecIdx = 0; 4000 for (auto &V : BuildVectorSlice) { 4001 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4002 ++BasicBlock::iterator(InsertAfter)); 4003 Instruction *I = cast<Instruction>(V); 4004 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4005 Instruction *Extract = 4006 cast<Instruction>(Builder.CreateExtractElement( 4007 VectorizedRoot, Builder.getInt32(VecIdx++))); 4008 I->setOperand(1, Extract); 4009 I->removeFromParent(); 4010 I->insertAfter(Extract); 4011 InsertAfter = I; 4012 } 4013 } 4014 // Move to the next bundle. 4015 I += VF - 1; 4016 NextInst = I + 1; 4017 Changed = true; 4018 } 4019 } 4020 } 4021 4022 return Changed; 4023 } 4024 4025 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4026 if (!V) 4027 return false; 4028 4029 // Try to vectorize V. 4030 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 4031 return true; 4032 4033 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 4034 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 4035 // Try to skip B. 4036 if (B && B->hasOneUse()) { 4037 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4038 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4039 if (tryToVectorizePair(A, B0, R)) { 4040 return true; 4041 } 4042 if (tryToVectorizePair(A, B1, R)) { 4043 return true; 4044 } 4045 } 4046 4047 // Try to skip A. 4048 if (A && A->hasOneUse()) { 4049 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4050 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4051 if (tryToVectorizePair(A0, B, R)) { 4052 return true; 4053 } 4054 if (tryToVectorizePair(A1, B, R)) { 4055 return true; 4056 } 4057 } 4058 return 0; 4059 } 4060 4061 /// \brief Generate a shuffle mask to be used in a reduction tree. 4062 /// 4063 /// \param VecLen The length of the vector to be reduced. 4064 /// \param NumEltsToRdx The number of elements that should be reduced in the 4065 /// vector. 4066 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4067 /// reduction. A pairwise reduction will generate a mask of 4068 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4069 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4070 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4071 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4072 bool IsPairwise, bool IsLeft, 4073 IRBuilder<> &Builder) { 4074 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4075 4076 SmallVector<Constant *, 32> ShuffleMask( 4077 VecLen, UndefValue::get(Builder.getInt32Ty())); 4078 4079 if (IsPairwise) 4080 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4081 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4082 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4083 else 4084 // Move the upper half of the vector to the lower half. 4085 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4086 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4087 4088 return ConstantVector::get(ShuffleMask); 4089 } 4090 4091 namespace { 4092 /// Model horizontal reductions. 4093 /// 4094 /// A horizontal reduction is a tree of reduction operations (currently add and 4095 /// fadd) that has operations that can be put into a vector as its leaf. 4096 /// For example, this tree: 4097 /// 4098 /// mul mul mul mul 4099 /// \ / \ / 4100 /// + + 4101 /// \ / 4102 /// + 4103 /// This tree has "mul" as its reduced values and "+" as its reduction 4104 /// operations. A reduction might be feeding into a store or a binary operation 4105 /// feeding a phi. 4106 /// ... 4107 /// \ / 4108 /// + 4109 /// | 4110 /// phi += 4111 /// 4112 /// Or: 4113 /// ... 4114 /// \ / 4115 /// + 4116 /// | 4117 /// *p = 4118 /// 4119 class HorizontalReduction { 4120 SmallVector<Value *, 16> ReductionOps; 4121 SmallVector<Value *, 32> ReducedVals; 4122 4123 BinaryOperator *ReductionRoot; 4124 // After successfull horizontal reduction vectorization attempt for PHI node 4125 // vectorizer tries to update root binary op by combining vectorized tree and 4126 // the ReductionPHI node. But during vectorization this ReductionPHI can be 4127 // vectorized itself and replaced by the undef value, while the instruction 4128 // itself is marked for deletion. This 'marked for deletion' PHI node then can 4129 // be used in new binary operation, causing "Use still stuck around after Def 4130 // is destroyed" crash upon PHI node deletion. 4131 WeakVH ReductionPHI; 4132 4133 /// The opcode of the reduction. 4134 unsigned ReductionOpcode; 4135 /// The opcode of the values we perform a reduction on. 4136 unsigned ReducedValueOpcode; 4137 /// Should we model this reduction as a pairwise reduction tree or a tree that 4138 /// splits the vector in halves and adds those halves. 4139 bool IsPairwiseReduction; 4140 4141 public: 4142 /// The width of one full horizontal reduction operation. 4143 unsigned ReduxWidth; 4144 4145 /// Minimal width of available vector registers. It's used to determine 4146 /// ReduxWidth. 4147 unsigned MinVecRegSize; 4148 4149 HorizontalReduction(unsigned MinVecRegSize) 4150 : ReductionRoot(nullptr), ReductionOpcode(0), ReducedValueOpcode(0), 4151 IsPairwiseReduction(false), ReduxWidth(0), 4152 MinVecRegSize(MinVecRegSize) {} 4153 4154 /// \brief Try to find a reduction tree. 4155 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4156 assert((!Phi || is_contained(Phi->operands(), B)) && 4157 "Thi phi needs to use the binary operator"); 4158 4159 // We could have a initial reductions that is not an add. 4160 // r *= v1 + v2 + v3 + v4 4161 // In such a case start looking for a tree rooted in the first '+'. 4162 if (Phi) { 4163 if (B->getOperand(0) == Phi) { 4164 Phi = nullptr; 4165 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4166 } else if (B->getOperand(1) == Phi) { 4167 Phi = nullptr; 4168 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4169 } 4170 } 4171 4172 if (!B) 4173 return false; 4174 4175 Type *Ty = B->getType(); 4176 if (!isValidElementType(Ty)) 4177 return false; 4178 4179 const DataLayout &DL = B->getModule()->getDataLayout(); 4180 ReductionOpcode = B->getOpcode(); 4181 ReducedValueOpcode = 0; 4182 // FIXME: Register size should be a parameter to this function, so we can 4183 // try different vectorization factors. 4184 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 4185 ReductionRoot = B; 4186 ReductionPHI = Phi; 4187 4188 if (ReduxWidth < 4) 4189 return false; 4190 4191 // We currently only support adds. 4192 if (ReductionOpcode != Instruction::Add && 4193 ReductionOpcode != Instruction::FAdd) 4194 return false; 4195 4196 // Post order traverse the reduction tree starting at B. We only handle true 4197 // trees containing only binary operators or selects. 4198 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4199 Stack.push_back(std::make_pair(B, 0)); 4200 while (!Stack.empty()) { 4201 Instruction *TreeN = Stack.back().first; 4202 unsigned EdgeToVist = Stack.back().second++; 4203 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4204 4205 // Only handle trees in the current basic block. 4206 if (TreeN->getParent() != B->getParent()) 4207 return false; 4208 4209 // Each tree node needs to have one user except for the ultimate 4210 // reduction. 4211 if (!TreeN->hasOneUse() && TreeN != B) 4212 return false; 4213 4214 // Postorder vist. 4215 if (EdgeToVist == 2 || IsReducedValue) { 4216 if (IsReducedValue) { 4217 // Make sure that the opcodes of the operations that we are going to 4218 // reduce match. 4219 if (!ReducedValueOpcode) 4220 ReducedValueOpcode = TreeN->getOpcode(); 4221 else if (ReducedValueOpcode != TreeN->getOpcode()) 4222 return false; 4223 ReducedVals.push_back(TreeN); 4224 } else { 4225 // We need to be able to reassociate the adds. 4226 if (!TreeN->isAssociative()) 4227 return false; 4228 ReductionOps.push_back(TreeN); 4229 } 4230 // Retract. 4231 Stack.pop_back(); 4232 continue; 4233 } 4234 4235 // Visit left or right. 4236 Value *NextV = TreeN->getOperand(EdgeToVist); 4237 if (NextV != Phi) { 4238 auto *I = dyn_cast<Instruction>(NextV); 4239 // Continue analysis if the next operand is a reduction operation or 4240 // (possibly) a reduced value. If the reduced value opcode is not set, 4241 // the first met operation != reduction operation is considered as the 4242 // reduced value class. 4243 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4244 I->getOpcode() == ReductionOpcode)) { 4245 if (!ReducedValueOpcode && I->getOpcode() != ReductionOpcode) 4246 ReducedValueOpcode = I->getOpcode(); 4247 Stack.push_back(std::make_pair(I, 0)); 4248 continue; 4249 } 4250 return false; 4251 } 4252 } 4253 return true; 4254 } 4255 4256 /// \brief Attempt to vectorize the tree found by 4257 /// matchAssociativeReduction. 4258 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4259 if (ReducedVals.empty()) 4260 return false; 4261 4262 unsigned NumReducedVals = ReducedVals.size(); 4263 if (NumReducedVals < ReduxWidth) 4264 return false; 4265 4266 Value *VectorizedTree = nullptr; 4267 IRBuilder<> Builder(ReductionRoot); 4268 FastMathFlags Unsafe; 4269 Unsafe.setUnsafeAlgebra(); 4270 Builder.setFastMathFlags(Unsafe); 4271 unsigned i = 0; 4272 4273 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4274 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4275 V.buildTree(VL, ReductionOps); 4276 if (V.shouldReorder()) { 4277 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4278 V.buildTree(Reversed, ReductionOps); 4279 } 4280 if (V.isTreeTinyAndNotFullyVectorizable()) 4281 continue; 4282 4283 V.computeMinimumValueSizes(); 4284 4285 // Estimate cost. 4286 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4287 if (Cost >= -SLPCostThreshold) 4288 break; 4289 4290 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4291 << ". (HorRdx)\n"); 4292 4293 // Vectorize a tree. 4294 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4295 Value *VectorizedRoot = V.vectorizeTree(); 4296 4297 // Emit a reduction. 4298 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4299 if (VectorizedTree) { 4300 Builder.SetCurrentDebugLocation(Loc); 4301 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4302 ReducedSubTree, "bin.rdx"); 4303 } else 4304 VectorizedTree = ReducedSubTree; 4305 } 4306 4307 if (VectorizedTree) { 4308 // Finish the reduction. 4309 for (; i < NumReducedVals; ++i) { 4310 Builder.SetCurrentDebugLocation( 4311 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4312 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4313 ReducedVals[i]); 4314 } 4315 // Update users. 4316 if (ReductionPHI && !isa<UndefValue>(ReductionPHI)) { 4317 assert(ReductionRoot && "Need a reduction operation"); 4318 ReductionRoot->setOperand(0, VectorizedTree); 4319 ReductionRoot->setOperand(1, ReductionPHI); 4320 } else 4321 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4322 } 4323 return VectorizedTree != nullptr; 4324 } 4325 4326 unsigned numReductionValues() const { 4327 return ReducedVals.size(); 4328 } 4329 4330 private: 4331 /// \brief Calculate the cost of a reduction. 4332 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4333 Type *ScalarTy = FirstReducedVal->getType(); 4334 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4335 4336 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4337 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4338 4339 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4340 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4341 4342 int ScalarReduxCost = 4343 (ReduxWidth - 1) * 4344 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4345 4346 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4347 << " for reduction that starts with " << *FirstReducedVal 4348 << " (It is a " 4349 << (IsPairwiseReduction ? "pairwise" : "splitting") 4350 << " reduction)\n"); 4351 4352 return VecReduxCost - ScalarReduxCost; 4353 } 4354 4355 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4356 Value *R, const Twine &Name = "") { 4357 if (Opcode == Instruction::FAdd) 4358 return Builder.CreateFAdd(L, R, Name); 4359 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4360 } 4361 4362 /// \brief Emit a horizontal reduction of the vectorized value. 4363 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4364 assert(VectorizedValue && "Need to have a vectorized tree node"); 4365 assert(isPowerOf2_32(ReduxWidth) && 4366 "We only handle power-of-two reductions for now"); 4367 4368 Value *TmpVec = VectorizedValue; 4369 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4370 if (IsPairwiseReduction) { 4371 Value *LeftMask = 4372 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4373 Value *RightMask = 4374 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4375 4376 Value *LeftShuf = Builder.CreateShuffleVector( 4377 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4378 Value *RightShuf = Builder.CreateShuffleVector( 4379 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4380 "rdx.shuf.r"); 4381 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4382 "bin.rdx"); 4383 } else { 4384 Value *UpperHalf = 4385 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4386 Value *Shuf = Builder.CreateShuffleVector( 4387 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4388 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4389 } 4390 } 4391 4392 // The result is in the first element of the vector. 4393 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4394 } 4395 }; 4396 } // end anonymous namespace 4397 4398 /// \brief Recognize construction of vectors like 4399 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4400 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4401 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4402 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4403 /// 4404 /// Returns true if it matches 4405 /// 4406 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4407 SmallVectorImpl<Value *> &BuildVector, 4408 SmallVectorImpl<Value *> &BuildVectorOpds) { 4409 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4410 return false; 4411 4412 InsertElementInst *IE = FirstInsertElem; 4413 while (true) { 4414 BuildVector.push_back(IE); 4415 BuildVectorOpds.push_back(IE->getOperand(1)); 4416 4417 if (IE->use_empty()) 4418 return false; 4419 4420 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4421 if (!NextUse) 4422 return true; 4423 4424 // If this isn't the final use, make sure the next insertelement is the only 4425 // use. It's OK if the final constructed vector is used multiple times 4426 if (!IE->hasOneUse()) 4427 return false; 4428 4429 IE = NextUse; 4430 } 4431 4432 return false; 4433 } 4434 4435 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4436 /// 4437 /// \return true if it matches. 4438 static bool findBuildAggregate(InsertValueInst *IV, 4439 SmallVectorImpl<Value *> &BuildVector, 4440 SmallVectorImpl<Value *> &BuildVectorOpds) { 4441 if (!IV->hasOneUse()) 4442 return false; 4443 Value *V = IV->getAggregateOperand(); 4444 if (!isa<UndefValue>(V)) { 4445 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4446 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4447 return false; 4448 } 4449 BuildVector.push_back(IV); 4450 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4451 return true; 4452 } 4453 4454 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4455 return V->getType() < V2->getType(); 4456 } 4457 4458 /// \brief Try and get a reduction value from a phi node. 4459 /// 4460 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4461 /// if they come from either \p ParentBB or a containing loop latch. 4462 /// 4463 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4464 /// if not possible. 4465 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4466 BasicBlock *ParentBB, LoopInfo *LI) { 4467 // There are situations where the reduction value is not dominated by the 4468 // reduction phi. Vectorizing such cases has been reported to cause 4469 // miscompiles. See PR25787. 4470 auto DominatedReduxValue = [&](Value *R) { 4471 return ( 4472 dyn_cast<Instruction>(R) && 4473 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4474 }; 4475 4476 Value *Rdx = nullptr; 4477 4478 // Return the incoming value if it comes from the same BB as the phi node. 4479 if (P->getIncomingBlock(0) == ParentBB) { 4480 Rdx = P->getIncomingValue(0); 4481 } else if (P->getIncomingBlock(1) == ParentBB) { 4482 Rdx = P->getIncomingValue(1); 4483 } 4484 4485 if (Rdx && DominatedReduxValue(Rdx)) 4486 return Rdx; 4487 4488 // Otherwise, check whether we have a loop latch to look at. 4489 Loop *BBL = LI->getLoopFor(ParentBB); 4490 if (!BBL) 4491 return nullptr; 4492 BasicBlock *BBLatch = BBL->getLoopLatch(); 4493 if (!BBLatch) 4494 return nullptr; 4495 4496 // There is a loop latch, return the incoming value if it comes from 4497 // that. This reduction pattern occasionally turns up. 4498 if (P->getIncomingBlock(0) == BBLatch) { 4499 Rdx = P->getIncomingValue(0); 4500 } else if (P->getIncomingBlock(1) == BBLatch) { 4501 Rdx = P->getIncomingValue(1); 4502 } 4503 4504 if (Rdx && DominatedReduxValue(Rdx)) 4505 return Rdx; 4506 4507 return nullptr; 4508 } 4509 4510 /// \brief Attempt to reduce a horizontal reduction. 4511 /// If it is legal to match a horizontal reduction feeding 4512 /// the phi node P with reduction operators BI, then check if it 4513 /// can be done. 4514 /// \returns true if a horizontal reduction was matched and reduced. 4515 /// \returns false if a horizontal reduction was not matched. 4516 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 4517 BoUpSLP &R, TargetTransformInfo *TTI, 4518 unsigned MinRegSize) { 4519 if (!ShouldVectorizeHor) 4520 return false; 4521 4522 HorizontalReduction HorRdx(MinRegSize); 4523 if (!HorRdx.matchAssociativeReduction(P, BI)) 4524 return false; 4525 4526 // If there is a sufficient number of reduction values, reduce 4527 // to a nearby power-of-2. Can safely generate oversized 4528 // vectors and rely on the backend to split them to legal sizes. 4529 HorRdx.ReduxWidth = 4530 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4531 4532 return HorRdx.tryToReduce(R, TTI); 4533 } 4534 4535 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4536 bool Changed = false; 4537 SmallVector<Value *, 4> Incoming; 4538 SmallSet<Value *, 16> VisitedInstrs; 4539 4540 bool HaveVectorizedPhiNodes = true; 4541 while (HaveVectorizedPhiNodes) { 4542 HaveVectorizedPhiNodes = false; 4543 4544 // Collect the incoming values from the PHIs. 4545 Incoming.clear(); 4546 for (Instruction &I : *BB) { 4547 PHINode *P = dyn_cast<PHINode>(&I); 4548 if (!P) 4549 break; 4550 4551 if (!VisitedInstrs.count(P)) 4552 Incoming.push_back(P); 4553 } 4554 4555 // Sort by type. 4556 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4557 4558 // Try to vectorize elements base on their type. 4559 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4560 E = Incoming.end(); 4561 IncIt != E;) { 4562 4563 // Look for the next elements with the same type. 4564 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4565 while (SameTypeIt != E && 4566 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4567 VisitedInstrs.insert(*SameTypeIt); 4568 ++SameTypeIt; 4569 } 4570 4571 // Try to vectorize them. 4572 unsigned NumElts = (SameTypeIt - IncIt); 4573 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4574 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4575 // Success start over because instructions might have been changed. 4576 HaveVectorizedPhiNodes = true; 4577 Changed = true; 4578 break; 4579 } 4580 4581 // Start over at the next instruction of a different type (or the end). 4582 IncIt = SameTypeIt; 4583 } 4584 } 4585 4586 VisitedInstrs.clear(); 4587 4588 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4589 // We may go through BB multiple times so skip the one we have checked. 4590 if (!VisitedInstrs.insert(&*it).second) 4591 continue; 4592 4593 if (isa<DbgInfoIntrinsic>(it)) 4594 continue; 4595 4596 // Try to vectorize reductions that use PHINodes. 4597 if (PHINode *P = dyn_cast<PHINode>(it)) { 4598 // Check that the PHI is a reduction PHI. 4599 if (P->getNumIncomingValues() != 2) 4600 return Changed; 4601 4602 Value *Rdx = getReductionValue(DT, P, BB, LI); 4603 4604 // Check if this is a Binary Operator. 4605 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4606 if (!BI) 4607 continue; 4608 4609 // Try to match and vectorize a horizontal reduction. 4610 if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { 4611 Changed = true; 4612 it = BB->begin(); 4613 e = BB->end(); 4614 continue; 4615 } 4616 4617 Value *Inst = BI->getOperand(0); 4618 if (Inst == P) 4619 Inst = BI->getOperand(1); 4620 4621 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4622 // We would like to start over since some instructions are deleted 4623 // and the iterator may become invalid value. 4624 Changed = true; 4625 it = BB->begin(); 4626 e = BB->end(); 4627 continue; 4628 } 4629 4630 continue; 4631 } 4632 4633 if (ShouldStartVectorizeHorAtStore) 4634 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4635 if (BinaryOperator *BinOp = 4636 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4637 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4638 R.getMinVecRegSize()) || 4639 tryToVectorize(BinOp, R)) { 4640 Changed = true; 4641 it = BB->begin(); 4642 e = BB->end(); 4643 continue; 4644 } 4645 } 4646 4647 // Try to vectorize horizontal reductions feeding into a return. 4648 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4649 if (RI->getNumOperands() != 0) 4650 if (BinaryOperator *BinOp = 4651 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4652 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4653 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4654 R.getMinVecRegSize()) || 4655 tryToVectorizePair(BinOp->getOperand(0), BinOp->getOperand(1), 4656 R)) { 4657 Changed = true; 4658 it = BB->begin(); 4659 e = BB->end(); 4660 continue; 4661 } 4662 } 4663 4664 // Try to vectorize trees that start at compare instructions. 4665 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4666 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4667 Changed = true; 4668 // We would like to start over since some instructions are deleted 4669 // and the iterator may become invalid value. 4670 it = BB->begin(); 4671 e = BB->end(); 4672 continue; 4673 } 4674 4675 for (int i = 0; i < 2; ++i) { 4676 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4677 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4678 Changed = true; 4679 // We would like to start over since some instructions are deleted 4680 // and the iterator may become invalid value. 4681 it = BB->begin(); 4682 e = BB->end(); 4683 break; 4684 } 4685 } 4686 } 4687 continue; 4688 } 4689 4690 // Try to vectorize trees that start at insertelement instructions. 4691 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4692 SmallVector<Value *, 16> BuildVector; 4693 SmallVector<Value *, 16> BuildVectorOpds; 4694 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4695 continue; 4696 4697 // Vectorize starting with the build vector operands ignoring the 4698 // BuildVector instructions for the purpose of scheduling and user 4699 // extraction. 4700 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4701 Changed = true; 4702 it = BB->begin(); 4703 e = BB->end(); 4704 } 4705 4706 continue; 4707 } 4708 4709 // Try to vectorize trees that start at insertvalue instructions feeding into 4710 // a store. 4711 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4712 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4713 const DataLayout &DL = BB->getModule()->getDataLayout(); 4714 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4715 SmallVector<Value *, 16> BuildVector; 4716 SmallVector<Value *, 16> BuildVectorOpds; 4717 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4718 continue; 4719 4720 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4721 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4722 Changed = true; 4723 it = BB->begin(); 4724 e = BB->end(); 4725 } 4726 continue; 4727 } 4728 } 4729 } 4730 } 4731 4732 return Changed; 4733 } 4734 4735 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4736 auto Changed = false; 4737 for (auto &Entry : GEPs) { 4738 4739 // If the getelementptr list has fewer than two elements, there's nothing 4740 // to do. 4741 if (Entry.second.size() < 2) 4742 continue; 4743 4744 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4745 << Entry.second.size() << ".\n"); 4746 4747 // We process the getelementptr list in chunks of 16 (like we do for 4748 // stores) to minimize compile-time. 4749 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4750 auto Len = std::min<unsigned>(BE - BI, 16); 4751 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4752 4753 // Initialize a set a candidate getelementptrs. Note that we use a 4754 // SetVector here to preserve program order. If the index computations 4755 // are vectorizable and begin with loads, we want to minimize the chance 4756 // of having to reorder them later. 4757 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4758 4759 // Some of the candidates may have already been vectorized after we 4760 // initially collected them. If so, the WeakVHs will have nullified the 4761 // values, so remove them from the set of candidates. 4762 Candidates.remove(nullptr); 4763 4764 // Remove from the set of candidates all pairs of getelementptrs with 4765 // constant differences. Such getelementptrs are likely not good 4766 // candidates for vectorization in a bottom-up phase since one can be 4767 // computed from the other. We also ensure all candidate getelementptr 4768 // indices are unique. 4769 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4770 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4771 if (!Candidates.count(GEPI)) 4772 continue; 4773 auto *SCEVI = SE->getSCEV(GEPList[I]); 4774 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4775 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4776 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4777 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4778 Candidates.remove(GEPList[I]); 4779 Candidates.remove(GEPList[J]); 4780 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4781 Candidates.remove(GEPList[J]); 4782 } 4783 } 4784 } 4785 4786 // We break out of the above computation as soon as we know there are 4787 // fewer than two candidates remaining. 4788 if (Candidates.size() < 2) 4789 continue; 4790 4791 // Add the single, non-constant index of each candidate to the bundle. We 4792 // ensured the indices met these constraints when we originally collected 4793 // the getelementptrs. 4794 SmallVector<Value *, 16> Bundle(Candidates.size()); 4795 auto BundleIndex = 0u; 4796 for (auto *V : Candidates) { 4797 auto *GEP = cast<GetElementPtrInst>(V); 4798 auto *GEPIdx = GEP->idx_begin()->get(); 4799 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4800 Bundle[BundleIndex++] = GEPIdx; 4801 } 4802 4803 // Try and vectorize the indices. We are currently only interested in 4804 // gather-like cases of the form: 4805 // 4806 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4807 // 4808 // where the loads of "a", the loads of "b", and the subtractions can be 4809 // performed in parallel. It's likely that detecting this pattern in a 4810 // bottom-up phase will be simpler and less costly than building a 4811 // full-blown top-down phase beginning at the consecutive loads. 4812 Changed |= tryToVectorizeList(Bundle, R); 4813 } 4814 } 4815 return Changed; 4816 } 4817 4818 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4819 bool Changed = false; 4820 // Attempt to sort and vectorize each of the store-groups. 4821 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4822 ++it) { 4823 if (it->second.size() < 2) 4824 continue; 4825 4826 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4827 << it->second.size() << ".\n"); 4828 4829 // Process the stores in chunks of 16. 4830 // TODO: The limit of 16 inhibits greater vectorization factors. 4831 // For example, AVX2 supports v32i8. Increasing this limit, however, 4832 // may cause a significant compile-time increase. 4833 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4834 unsigned Len = std::min<unsigned>(CE - CI, 16); 4835 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 4836 } 4837 } 4838 return Changed; 4839 } 4840 4841 char SLPVectorizer::ID = 0; 4842 static const char lv_name[] = "SLP Vectorizer"; 4843 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4844 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4845 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4846 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4847 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4848 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4849 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4850 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4851 4852 namespace llvm { 4853 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4854 } 4855