1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/GlobalsModRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include <algorithm> 49 #include <map> 50 #include <memory> 51 52 using namespace llvm; 53 54 #define SV_NAME "slp-vectorizer" 55 #define DEBUG_TYPE "SLP" 56 57 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 58 59 static cl::opt<int> 60 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Only vectorize if you gain more than this " 62 "number ")); 63 64 static cl::opt<bool> 65 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 66 cl::desc("Attempt to vectorize horizontal reductions")); 67 68 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 69 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 70 cl::desc( 71 "Attempt to vectorize horizontal reductions feeding into a store")); 72 73 static cl::opt<int> 74 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 75 cl::desc("Attempt to vectorize for this register size in bits")); 76 77 /// Limits the size of scheduling regions in a block. 78 /// It avoid long compile times for _very_ large blocks where vector 79 /// instructions are spread over a wide range. 80 /// This limit is way higher than needed by real-world functions. 81 static cl::opt<int> 82 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 83 cl::desc("Limit the size of the SLP scheduling region per block")); 84 85 namespace { 86 87 // FIXME: Set this via cl::opt to allow overriding. 88 static const unsigned MinVecRegSize = 128; 89 90 static const unsigned RecursionMaxDepth = 12; 91 92 // Limit the number of alias checks. The limit is chosen so that 93 // it has no negative effect on the llvm benchmarks. 94 static const unsigned AliasedCheckLimit = 10; 95 96 // Another limit for the alias checks: The maximum distance between load/store 97 // instructions where alias checks are done. 98 // This limit is useful for very large basic blocks. 99 static const unsigned MaxMemDepDistance = 160; 100 101 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 102 /// regions to be handled. 103 static const int MinScheduleRegionSize = 16; 104 105 /// \brief Predicate for the element types that the SLP vectorizer supports. 106 /// 107 /// The most important thing to filter here are types which are invalid in LLVM 108 /// vectors. We also filter target specific types which have absolutely no 109 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 110 /// avoids spending time checking the cost model and realizing that they will 111 /// be inevitably scalarized. 112 static bool isValidElementType(Type *Ty) { 113 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 114 !Ty->isPPC_FP128Ty(); 115 } 116 117 /// \returns the parent basic block if all of the instructions in \p VL 118 /// are in the same block or null otherwise. 119 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 120 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 121 if (!I0) 122 return nullptr; 123 BasicBlock *BB = I0->getParent(); 124 for (int i = 1, e = VL.size(); i < e; i++) { 125 Instruction *I = dyn_cast<Instruction>(VL[i]); 126 if (!I) 127 return nullptr; 128 129 if (BB != I->getParent()) 130 return nullptr; 131 } 132 return BB; 133 } 134 135 /// \returns True if all of the values in \p VL are constants. 136 static bool allConstant(ArrayRef<Value *> VL) { 137 for (unsigned i = 0, e = VL.size(); i < e; ++i) 138 if (!isa<Constant>(VL[i])) 139 return false; 140 return true; 141 } 142 143 /// \returns True if all of the values in \p VL are identical. 144 static bool isSplat(ArrayRef<Value *> VL) { 145 for (unsigned i = 1, e = VL.size(); i < e; ++i) 146 if (VL[i] != VL[0]) 147 return false; 148 return true; 149 } 150 151 ///\returns Opcode that can be clubbed with \p Op to create an alternate 152 /// sequence which can later be merged as a ShuffleVector instruction. 153 static unsigned getAltOpcode(unsigned Op) { 154 switch (Op) { 155 case Instruction::FAdd: 156 return Instruction::FSub; 157 case Instruction::FSub: 158 return Instruction::FAdd; 159 case Instruction::Add: 160 return Instruction::Sub; 161 case Instruction::Sub: 162 return Instruction::Add; 163 default: 164 return 0; 165 } 166 } 167 168 ///\returns bool representing if Opcode \p Op can be part 169 /// of an alternate sequence which can later be merged as 170 /// a ShuffleVector instruction. 171 static bool canCombineAsAltInst(unsigned Op) { 172 return Op == Instruction::FAdd || Op == Instruction::FSub || 173 Op == Instruction::Sub || Op == Instruction::Add; 174 } 175 176 /// \returns ShuffleVector instruction if instructions in \p VL have 177 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 178 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 179 static unsigned isAltInst(ArrayRef<Value *> VL) { 180 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 181 unsigned Opcode = I0->getOpcode(); 182 unsigned AltOpcode = getAltOpcode(Opcode); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 186 return 0; 187 } 188 return Instruction::ShuffleVector; 189 } 190 191 /// \returns The opcode if all of the Instructions in \p VL have the same 192 /// opcode, or zero. 193 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 194 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 195 if (!I0) 196 return 0; 197 unsigned Opcode = I0->getOpcode(); 198 for (int i = 1, e = VL.size(); i < e; i++) { 199 Instruction *I = dyn_cast<Instruction>(VL[i]); 200 if (!I || Opcode != I->getOpcode()) { 201 if (canCombineAsAltInst(Opcode) && i == 1) 202 return isAltInst(VL); 203 return 0; 204 } 205 } 206 return Opcode; 207 } 208 209 /// Get the intersection (logical and) of all of the potential IR flags 210 /// of each scalar operation (VL) that will be converted into a vector (I). 211 /// Flag set: NSW, NUW, exact, and all of fast-math. 212 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 213 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 214 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 215 // Intersection is initialized to the 0th scalar, 216 // so start counting from index '1'. 217 for (int i = 1, e = VL.size(); i < e; ++i) { 218 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 219 Intersection->andIRFlags(Scalar); 220 } 221 VecOp->copyIRFlags(Intersection); 222 } 223 } 224 } 225 226 /// \returns \p I after propagating metadata from \p VL. 227 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 228 Instruction *I0 = cast<Instruction>(VL[0]); 229 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 230 I0->getAllMetadataOtherThanDebugLoc(Metadata); 231 232 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 233 unsigned Kind = Metadata[i].first; 234 MDNode *MD = Metadata[i].second; 235 236 for (int i = 1, e = VL.size(); MD && i != e; i++) { 237 Instruction *I = cast<Instruction>(VL[i]); 238 MDNode *IMD = I->getMetadata(Kind); 239 240 switch (Kind) { 241 default: 242 MD = nullptr; // Remove unknown metadata 243 break; 244 case LLVMContext::MD_tbaa: 245 MD = MDNode::getMostGenericTBAA(MD, IMD); 246 break; 247 case LLVMContext::MD_alias_scope: 248 MD = MDNode::getMostGenericAliasScope(MD, IMD); 249 break; 250 case LLVMContext::MD_noalias: 251 MD = MDNode::intersect(MD, IMD); 252 break; 253 case LLVMContext::MD_fpmath: 254 MD = MDNode::getMostGenericFPMath(MD, IMD); 255 break; 256 case LLVMContext::MD_nontemporal: 257 MD = MDNode::intersect(MD, IMD); 258 break; 259 } 260 } 261 I->setMetadata(Kind, MD); 262 } 263 return I; 264 } 265 266 /// \returns The type that all of the values in \p VL have or null if there 267 /// are different types. 268 static Type* getSameType(ArrayRef<Value *> VL) { 269 Type *Ty = VL[0]->getType(); 270 for (int i = 1, e = VL.size(); i < e; i++) 271 if (VL[i]->getType() != Ty) 272 return nullptr; 273 274 return Ty; 275 } 276 277 /// \returns True if the ExtractElement instructions in VL can be vectorized 278 /// to use the original vector. 279 static bool CanReuseExtract(ArrayRef<Value *> VL) { 280 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 281 // Check if all of the extracts come from the same vector and from the 282 // correct offset. 283 Value *VL0 = VL[0]; 284 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 285 Value *Vec = E0->getOperand(0); 286 287 // We have to extract from the same vector type. 288 unsigned NElts = Vec->getType()->getVectorNumElements(); 289 290 if (NElts != VL.size()) 291 return false; 292 293 // Check that all of the indices extract from the correct offset. 294 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 295 if (!CI || CI->getZExtValue()) 296 return false; 297 298 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 299 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 300 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 301 302 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 303 return false; 304 } 305 306 return true; 307 } 308 309 /// \returns True if in-tree use also needs extract. This refers to 310 /// possible scalar operand in vectorized instruction. 311 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 312 TargetLibraryInfo *TLI) { 313 314 unsigned Opcode = UserInst->getOpcode(); 315 switch (Opcode) { 316 case Instruction::Load: { 317 LoadInst *LI = cast<LoadInst>(UserInst); 318 return (LI->getPointerOperand() == Scalar); 319 } 320 case Instruction::Store: { 321 StoreInst *SI = cast<StoreInst>(UserInst); 322 return (SI->getPointerOperand() == Scalar); 323 } 324 case Instruction::Call: { 325 CallInst *CI = cast<CallInst>(UserInst); 326 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 327 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 328 return (CI->getArgOperand(1) == Scalar); 329 } 330 } 331 default: 332 return false; 333 } 334 } 335 336 /// \returns the AA location that is being access by the instruction. 337 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 338 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 339 return MemoryLocation::get(SI); 340 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 341 return MemoryLocation::get(LI); 342 return MemoryLocation(); 343 } 344 345 /// \returns True if the instruction is not a volatile or atomic load/store. 346 static bool isSimple(Instruction *I) { 347 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 348 return LI->isSimple(); 349 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 350 return SI->isSimple(); 351 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 352 return !MI->isVolatile(); 353 return true; 354 } 355 356 /// Bottom Up SLP Vectorizer. 357 class BoUpSLP { 358 public: 359 typedef SmallVector<Value *, 8> ValueList; 360 typedef SmallVector<Instruction *, 16> InstrList; 361 typedef SmallPtrSet<Value *, 16> ValueSet; 362 typedef SmallVector<StoreInst *, 8> StoreList; 363 364 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 365 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 366 DominatorTree *Dt, AssumptionCache *AC) 367 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 368 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 369 Builder(Se->getContext()) { 370 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 371 } 372 373 /// \brief Vectorize the tree that starts with the elements in \p VL. 374 /// Returns the vectorized root. 375 Value *vectorizeTree(); 376 377 /// \returns the cost incurred by unwanted spills and fills, caused by 378 /// holding live values over call sites. 379 int getSpillCost(); 380 381 /// \returns the vectorization cost of the subtree that starts at \p VL. 382 /// A negative number means that this is profitable. 383 int getTreeCost(); 384 385 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 386 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 387 void buildTree(ArrayRef<Value *> Roots, 388 ArrayRef<Value *> UserIgnoreLst = None); 389 390 /// Clear the internal data structures that are created by 'buildTree'. 391 void deleteTree() { 392 VectorizableTree.clear(); 393 ScalarToTreeEntry.clear(); 394 MustGather.clear(); 395 ExternalUses.clear(); 396 NumLoadsWantToKeepOrder = 0; 397 NumLoadsWantToChangeOrder = 0; 398 for (auto &Iter : BlocksSchedules) { 399 BlockScheduling *BS = Iter.second.get(); 400 BS->clear(); 401 } 402 } 403 404 /// \returns true if the memory operations A and B are consecutive. 405 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL); 406 407 /// \brief Perform LICM and CSE on the newly generated gather sequences. 408 void optimizeGatherSequence(); 409 410 /// \returns true if it is beneficial to reverse the vector order. 411 bool shouldReorder() const { 412 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 413 } 414 415 private: 416 struct TreeEntry; 417 418 /// \returns the cost of the vectorizable entry. 419 int getEntryCost(TreeEntry *E); 420 421 /// This is the recursive part of buildTree. 422 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 423 424 /// Vectorize a single entry in the tree. 425 Value *vectorizeTree(TreeEntry *E); 426 427 /// Vectorize a single entry in the tree, starting in \p VL. 428 Value *vectorizeTree(ArrayRef<Value *> VL); 429 430 /// \returns the pointer to the vectorized value if \p VL is already 431 /// vectorized, or NULL. They may happen in cycles. 432 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 433 434 /// \brief Take the pointer operand from the Load/Store instruction. 435 /// \returns NULL if this is not a valid Load/Store instruction. 436 static Value *getPointerOperand(Value *I); 437 438 /// \brief Take the address space operand from the Load/Store instruction. 439 /// \returns -1 if this is not a valid Load/Store instruction. 440 static unsigned getAddressSpaceOperand(Value *I); 441 442 /// \returns the scalarization cost for this type. Scalarization in this 443 /// context means the creation of vectors from a group of scalars. 444 int getGatherCost(Type *Ty); 445 446 /// \returns the scalarization cost for this list of values. Assuming that 447 /// this subtree gets vectorized, we may need to extract the values from the 448 /// roots. This method calculates the cost of extracting the values. 449 int getGatherCost(ArrayRef<Value *> VL); 450 451 /// \brief Set the Builder insert point to one after the last instruction in 452 /// the bundle 453 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 454 455 /// \returns a vector from a collection of scalars in \p VL. 456 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 457 458 /// \returns whether the VectorizableTree is fully vectorizable and will 459 /// be beneficial even the tree height is tiny. 460 bool isFullyVectorizableTinyTree(); 461 462 /// \reorder commutative operands in alt shuffle if they result in 463 /// vectorized code. 464 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 465 SmallVectorImpl<Value *> &Left, 466 SmallVectorImpl<Value *> &Right); 467 /// \reorder commutative operands to get better probability of 468 /// generating vectorized code. 469 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 470 SmallVectorImpl<Value *> &Left, 471 SmallVectorImpl<Value *> &Right); 472 struct TreeEntry { 473 TreeEntry() : Scalars(), VectorizedValue(nullptr), 474 NeedToGather(0) {} 475 476 /// \returns true if the scalars in VL are equal to this entry. 477 bool isSame(ArrayRef<Value *> VL) const { 478 assert(VL.size() == Scalars.size() && "Invalid size"); 479 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 480 } 481 482 /// A vector of scalars. 483 ValueList Scalars; 484 485 /// The Scalars are vectorized into this value. It is initialized to Null. 486 Value *VectorizedValue; 487 488 /// Do we need to gather this sequence ? 489 bool NeedToGather; 490 }; 491 492 /// Create a new VectorizableTree entry. 493 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 494 VectorizableTree.emplace_back(); 495 int idx = VectorizableTree.size() - 1; 496 TreeEntry *Last = &VectorizableTree[idx]; 497 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 498 Last->NeedToGather = !Vectorized; 499 if (Vectorized) { 500 for (int i = 0, e = VL.size(); i != e; ++i) { 501 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 502 ScalarToTreeEntry[VL[i]] = idx; 503 } 504 } else { 505 MustGather.insert(VL.begin(), VL.end()); 506 } 507 return Last; 508 } 509 510 /// -- Vectorization State -- 511 /// Holds all of the tree entries. 512 std::vector<TreeEntry> VectorizableTree; 513 514 /// Maps a specific scalar to its tree entry. 515 SmallDenseMap<Value*, int> ScalarToTreeEntry; 516 517 /// A list of scalars that we found that we need to keep as scalars. 518 ValueSet MustGather; 519 520 /// This POD struct describes one external user in the vectorized tree. 521 struct ExternalUser { 522 ExternalUser (Value *S, llvm::User *U, int L) : 523 Scalar(S), User(U), Lane(L){} 524 // Which scalar in our function. 525 Value *Scalar; 526 // Which user that uses the scalar. 527 llvm::User *User; 528 // Which lane does the scalar belong to. 529 int Lane; 530 }; 531 typedef SmallVector<ExternalUser, 16> UserList; 532 533 /// Checks if two instructions may access the same memory. 534 /// 535 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 536 /// is invariant in the calling loop. 537 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 538 Instruction *Inst2) { 539 540 // First check if the result is already in the cache. 541 AliasCacheKey key = std::make_pair(Inst1, Inst2); 542 Optional<bool> &result = AliasCache[key]; 543 if (result.hasValue()) { 544 return result.getValue(); 545 } 546 MemoryLocation Loc2 = getLocation(Inst2, AA); 547 bool aliased = true; 548 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 549 // Do the alias check. 550 aliased = AA->alias(Loc1, Loc2); 551 } 552 // Store the result in the cache. 553 result = aliased; 554 return aliased; 555 } 556 557 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 558 559 /// Cache for alias results. 560 /// TODO: consider moving this to the AliasAnalysis itself. 561 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 562 563 /// Removes an instruction from its block and eventually deletes it. 564 /// It's like Instruction::eraseFromParent() except that the actual deletion 565 /// is delayed until BoUpSLP is destructed. 566 /// This is required to ensure that there are no incorrect collisions in the 567 /// AliasCache, which can happen if a new instruction is allocated at the 568 /// same address as a previously deleted instruction. 569 void eraseInstruction(Instruction *I) { 570 I->removeFromParent(); 571 I->dropAllReferences(); 572 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 573 } 574 575 /// Temporary store for deleted instructions. Instructions will be deleted 576 /// eventually when the BoUpSLP is destructed. 577 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 578 579 /// A list of values that need to extracted out of the tree. 580 /// This list holds pairs of (Internal Scalar : External User). 581 UserList ExternalUses; 582 583 /// Values used only by @llvm.assume calls. 584 SmallPtrSet<const Value *, 32> EphValues; 585 586 /// Holds all of the instructions that we gathered. 587 SetVector<Instruction *> GatherSeq; 588 /// A list of blocks that we are going to CSE. 589 SetVector<BasicBlock *> CSEBlocks; 590 591 /// Contains all scheduling relevant data for an instruction. 592 /// A ScheduleData either represents a single instruction or a member of an 593 /// instruction bundle (= a group of instructions which is combined into a 594 /// vector instruction). 595 struct ScheduleData { 596 597 // The initial value for the dependency counters. It means that the 598 // dependencies are not calculated yet. 599 enum { InvalidDeps = -1 }; 600 601 ScheduleData() 602 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 603 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 604 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 605 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 606 607 void init(int BlockSchedulingRegionID) { 608 FirstInBundle = this; 609 NextInBundle = nullptr; 610 NextLoadStore = nullptr; 611 IsScheduled = false; 612 SchedulingRegionID = BlockSchedulingRegionID; 613 UnscheduledDepsInBundle = UnscheduledDeps; 614 clearDependencies(); 615 } 616 617 /// Returns true if the dependency information has been calculated. 618 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 619 620 /// Returns true for single instructions and for bundle representatives 621 /// (= the head of a bundle). 622 bool isSchedulingEntity() const { return FirstInBundle == this; } 623 624 /// Returns true if it represents an instruction bundle and not only a 625 /// single instruction. 626 bool isPartOfBundle() const { 627 return NextInBundle != nullptr || FirstInBundle != this; 628 } 629 630 /// Returns true if it is ready for scheduling, i.e. it has no more 631 /// unscheduled depending instructions/bundles. 632 bool isReady() const { 633 assert(isSchedulingEntity() && 634 "can't consider non-scheduling entity for ready list"); 635 return UnscheduledDepsInBundle == 0 && !IsScheduled; 636 } 637 638 /// Modifies the number of unscheduled dependencies, also updating it for 639 /// the whole bundle. 640 int incrementUnscheduledDeps(int Incr) { 641 UnscheduledDeps += Incr; 642 return FirstInBundle->UnscheduledDepsInBundle += Incr; 643 } 644 645 /// Sets the number of unscheduled dependencies to the number of 646 /// dependencies. 647 void resetUnscheduledDeps() { 648 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 649 } 650 651 /// Clears all dependency information. 652 void clearDependencies() { 653 Dependencies = InvalidDeps; 654 resetUnscheduledDeps(); 655 MemoryDependencies.clear(); 656 } 657 658 void dump(raw_ostream &os) const { 659 if (!isSchedulingEntity()) { 660 os << "/ " << *Inst; 661 } else if (NextInBundle) { 662 os << '[' << *Inst; 663 ScheduleData *SD = NextInBundle; 664 while (SD) { 665 os << ';' << *SD->Inst; 666 SD = SD->NextInBundle; 667 } 668 os << ']'; 669 } else { 670 os << *Inst; 671 } 672 } 673 674 Instruction *Inst; 675 676 /// Points to the head in an instruction bundle (and always to this for 677 /// single instructions). 678 ScheduleData *FirstInBundle; 679 680 /// Single linked list of all instructions in a bundle. Null if it is a 681 /// single instruction. 682 ScheduleData *NextInBundle; 683 684 /// Single linked list of all memory instructions (e.g. load, store, call) 685 /// in the block - until the end of the scheduling region. 686 ScheduleData *NextLoadStore; 687 688 /// The dependent memory instructions. 689 /// This list is derived on demand in calculateDependencies(). 690 SmallVector<ScheduleData *, 4> MemoryDependencies; 691 692 /// This ScheduleData is in the current scheduling region if this matches 693 /// the current SchedulingRegionID of BlockScheduling. 694 int SchedulingRegionID; 695 696 /// Used for getting a "good" final ordering of instructions. 697 int SchedulingPriority; 698 699 /// The number of dependencies. Constitutes of the number of users of the 700 /// instruction plus the number of dependent memory instructions (if any). 701 /// This value is calculated on demand. 702 /// If InvalidDeps, the number of dependencies is not calculated yet. 703 /// 704 int Dependencies; 705 706 /// The number of dependencies minus the number of dependencies of scheduled 707 /// instructions. As soon as this is zero, the instruction/bundle gets ready 708 /// for scheduling. 709 /// Note that this is negative as long as Dependencies is not calculated. 710 int UnscheduledDeps; 711 712 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 713 /// single instructions. 714 int UnscheduledDepsInBundle; 715 716 /// True if this instruction is scheduled (or considered as scheduled in the 717 /// dry-run). 718 bool IsScheduled; 719 }; 720 721 #ifndef NDEBUG 722 friend raw_ostream &operator<<(raw_ostream &os, 723 const BoUpSLP::ScheduleData &SD); 724 #endif 725 726 /// Contains all scheduling data for a basic block. 727 /// 728 struct BlockScheduling { 729 730 BlockScheduling(BasicBlock *BB) 731 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 732 ScheduleStart(nullptr), ScheduleEnd(nullptr), 733 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 734 ScheduleRegionSize(0), 735 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 736 // Make sure that the initial SchedulingRegionID is greater than the 737 // initial SchedulingRegionID in ScheduleData (which is 0). 738 SchedulingRegionID(1) {} 739 740 void clear() { 741 ReadyInsts.clear(); 742 ScheduleStart = nullptr; 743 ScheduleEnd = nullptr; 744 FirstLoadStoreInRegion = nullptr; 745 LastLoadStoreInRegion = nullptr; 746 747 // Reduce the maximum schedule region size by the size of the 748 // previous scheduling run. 749 ScheduleRegionSizeLimit -= ScheduleRegionSize; 750 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 751 ScheduleRegionSizeLimit = MinScheduleRegionSize; 752 ScheduleRegionSize = 0; 753 754 // Make a new scheduling region, i.e. all existing ScheduleData is not 755 // in the new region yet. 756 ++SchedulingRegionID; 757 } 758 759 ScheduleData *getScheduleData(Value *V) { 760 ScheduleData *SD = ScheduleDataMap[V]; 761 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 762 return SD; 763 return nullptr; 764 } 765 766 bool isInSchedulingRegion(ScheduleData *SD) { 767 return SD->SchedulingRegionID == SchedulingRegionID; 768 } 769 770 /// Marks an instruction as scheduled and puts all dependent ready 771 /// instructions into the ready-list. 772 template <typename ReadyListType> 773 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 774 SD->IsScheduled = true; 775 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 776 777 ScheduleData *BundleMember = SD; 778 while (BundleMember) { 779 // Handle the def-use chain dependencies. 780 for (Use &U : BundleMember->Inst->operands()) { 781 ScheduleData *OpDef = getScheduleData(U.get()); 782 if (OpDef && OpDef->hasValidDependencies() && 783 OpDef->incrementUnscheduledDeps(-1) == 0) { 784 // There are no more unscheduled dependencies after decrementing, 785 // so we can put the dependent instruction into the ready list. 786 ScheduleData *DepBundle = OpDef->FirstInBundle; 787 assert(!DepBundle->IsScheduled && 788 "already scheduled bundle gets ready"); 789 ReadyList.insert(DepBundle); 790 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 791 } 792 } 793 // Handle the memory dependencies. 794 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 795 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 796 // There are no more unscheduled dependencies after decrementing, 797 // so we can put the dependent instruction into the ready list. 798 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 799 assert(!DepBundle->IsScheduled && 800 "already scheduled bundle gets ready"); 801 ReadyList.insert(DepBundle); 802 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 803 } 804 } 805 BundleMember = BundleMember->NextInBundle; 806 } 807 } 808 809 /// Put all instructions into the ReadyList which are ready for scheduling. 810 template <typename ReadyListType> 811 void initialFillReadyList(ReadyListType &ReadyList) { 812 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 813 ScheduleData *SD = getScheduleData(I); 814 if (SD->isSchedulingEntity() && SD->isReady()) { 815 ReadyList.insert(SD); 816 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 817 } 818 } 819 } 820 821 /// Checks if a bundle of instructions can be scheduled, i.e. has no 822 /// cyclic dependencies. This is only a dry-run, no instructions are 823 /// actually moved at this stage. 824 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 825 826 /// Un-bundles a group of instructions. 827 void cancelScheduling(ArrayRef<Value *> VL); 828 829 /// Extends the scheduling region so that V is inside the region. 830 /// \returns true if the region size is within the limit. 831 bool extendSchedulingRegion(Value *V); 832 833 /// Initialize the ScheduleData structures for new instructions in the 834 /// scheduling region. 835 void initScheduleData(Instruction *FromI, Instruction *ToI, 836 ScheduleData *PrevLoadStore, 837 ScheduleData *NextLoadStore); 838 839 /// Updates the dependency information of a bundle and of all instructions/ 840 /// bundles which depend on the original bundle. 841 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 842 BoUpSLP *SLP); 843 844 /// Sets all instruction in the scheduling region to un-scheduled. 845 void resetSchedule(); 846 847 BasicBlock *BB; 848 849 /// Simple memory allocation for ScheduleData. 850 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 851 852 /// The size of a ScheduleData array in ScheduleDataChunks. 853 int ChunkSize; 854 855 /// The allocator position in the current chunk, which is the last entry 856 /// of ScheduleDataChunks. 857 int ChunkPos; 858 859 /// Attaches ScheduleData to Instruction. 860 /// Note that the mapping survives during all vectorization iterations, i.e. 861 /// ScheduleData structures are recycled. 862 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 863 864 struct ReadyList : SmallVector<ScheduleData *, 8> { 865 void insert(ScheduleData *SD) { push_back(SD); } 866 }; 867 868 /// The ready-list for scheduling (only used for the dry-run). 869 ReadyList ReadyInsts; 870 871 /// The first instruction of the scheduling region. 872 Instruction *ScheduleStart; 873 874 /// The first instruction _after_ the scheduling region. 875 Instruction *ScheduleEnd; 876 877 /// The first memory accessing instruction in the scheduling region 878 /// (can be null). 879 ScheduleData *FirstLoadStoreInRegion; 880 881 /// The last memory accessing instruction in the scheduling region 882 /// (can be null). 883 ScheduleData *LastLoadStoreInRegion; 884 885 /// The current size of the scheduling region. 886 int ScheduleRegionSize; 887 888 /// The maximum size allowed for the scheduling region. 889 int ScheduleRegionSizeLimit; 890 891 /// The ID of the scheduling region. For a new vectorization iteration this 892 /// is incremented which "removes" all ScheduleData from the region. 893 int SchedulingRegionID; 894 }; 895 896 /// Attaches the BlockScheduling structures to basic blocks. 897 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 898 899 /// Performs the "real" scheduling. Done before vectorization is actually 900 /// performed in a basic block. 901 void scheduleBlock(BlockScheduling *BS); 902 903 /// List of users to ignore during scheduling and that don't need extracting. 904 ArrayRef<Value *> UserIgnoreList; 905 906 // Number of load-bundles, which contain consecutive loads. 907 int NumLoadsWantToKeepOrder; 908 909 // Number of load-bundles of size 2, which are consecutive loads if reversed. 910 int NumLoadsWantToChangeOrder; 911 912 // Analysis and block reference. 913 Function *F; 914 ScalarEvolution *SE; 915 TargetTransformInfo *TTI; 916 TargetLibraryInfo *TLI; 917 AliasAnalysis *AA; 918 LoopInfo *LI; 919 DominatorTree *DT; 920 /// Instruction builder to construct the vectorized tree. 921 IRBuilder<> Builder; 922 }; 923 924 #ifndef NDEBUG 925 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 926 SD.dump(os); 927 return os; 928 } 929 #endif 930 931 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 932 ArrayRef<Value *> UserIgnoreLst) { 933 deleteTree(); 934 UserIgnoreList = UserIgnoreLst; 935 if (!getSameType(Roots)) 936 return; 937 buildTree_rec(Roots, 0); 938 939 // Collect the values that we need to extract from the tree. 940 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 941 TreeEntry *Entry = &VectorizableTree[EIdx]; 942 943 // For each lane: 944 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 945 Value *Scalar = Entry->Scalars[Lane]; 946 947 // No need to handle users of gathered values. 948 if (Entry->NeedToGather) 949 continue; 950 951 for (User *U : Scalar->users()) { 952 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 953 954 Instruction *UserInst = dyn_cast<Instruction>(U); 955 if (!UserInst) 956 continue; 957 958 // Skip in-tree scalars that become vectors 959 if (ScalarToTreeEntry.count(U)) { 960 int Idx = ScalarToTreeEntry[U]; 961 TreeEntry *UseEntry = &VectorizableTree[Idx]; 962 Value *UseScalar = UseEntry->Scalars[0]; 963 // Some in-tree scalars will remain as scalar in vectorized 964 // instructions. If that is the case, the one in Lane 0 will 965 // be used. 966 if (UseScalar != U || 967 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 968 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 969 << ".\n"); 970 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 971 continue; 972 } 973 } 974 975 // Ignore users in the user ignore list. 976 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 977 UserIgnoreList.end()) 978 continue; 979 980 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 981 Lane << " from " << *Scalar << ".\n"); 982 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 983 } 984 } 985 } 986 } 987 988 989 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 990 bool SameTy = getSameType(VL); (void)SameTy; 991 bool isAltShuffle = false; 992 assert(SameTy && "Invalid types!"); 993 994 if (Depth == RecursionMaxDepth) { 995 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 996 newTreeEntry(VL, false); 997 return; 998 } 999 1000 // Don't handle vectors. 1001 if (VL[0]->getType()->isVectorTy()) { 1002 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1003 newTreeEntry(VL, false); 1004 return; 1005 } 1006 1007 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1008 if (SI->getValueOperand()->getType()->isVectorTy()) { 1009 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1010 newTreeEntry(VL, false); 1011 return; 1012 } 1013 unsigned Opcode = getSameOpcode(VL); 1014 1015 // Check that this shuffle vector refers to the alternate 1016 // sequence of opcodes. 1017 if (Opcode == Instruction::ShuffleVector) { 1018 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1019 unsigned Op = I0->getOpcode(); 1020 if (Op != Instruction::ShuffleVector) 1021 isAltShuffle = true; 1022 } 1023 1024 // If all of the operands are identical or constant we have a simple solution. 1025 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1026 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1027 newTreeEntry(VL, false); 1028 return; 1029 } 1030 1031 // We now know that this is a vector of instructions of the same type from 1032 // the same block. 1033 1034 // Don't vectorize ephemeral values. 1035 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1036 if (EphValues.count(VL[i])) { 1037 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1038 ") is ephemeral.\n"); 1039 newTreeEntry(VL, false); 1040 return; 1041 } 1042 } 1043 1044 // Check if this is a duplicate of another entry. 1045 if (ScalarToTreeEntry.count(VL[0])) { 1046 int Idx = ScalarToTreeEntry[VL[0]]; 1047 TreeEntry *E = &VectorizableTree[Idx]; 1048 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1049 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1050 if (E->Scalars[i] != VL[i]) { 1051 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1052 newTreeEntry(VL, false); 1053 return; 1054 } 1055 } 1056 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1057 return; 1058 } 1059 1060 // Check that none of the instructions in the bundle are already in the tree. 1061 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1062 if (ScalarToTreeEntry.count(VL[i])) { 1063 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1064 ") is already in tree.\n"); 1065 newTreeEntry(VL, false); 1066 return; 1067 } 1068 } 1069 1070 // If any of the scalars is marked as a value that needs to stay scalar then 1071 // we need to gather the scalars. 1072 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1073 if (MustGather.count(VL[i])) { 1074 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1075 newTreeEntry(VL, false); 1076 return; 1077 } 1078 } 1079 1080 // Check that all of the users of the scalars that we want to vectorize are 1081 // schedulable. 1082 Instruction *VL0 = cast<Instruction>(VL[0]); 1083 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1084 1085 if (!DT->isReachableFromEntry(BB)) { 1086 // Don't go into unreachable blocks. They may contain instructions with 1087 // dependency cycles which confuse the final scheduling. 1088 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1089 newTreeEntry(VL, false); 1090 return; 1091 } 1092 1093 // Check that every instructions appears once in this bundle. 1094 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1095 for (unsigned j = i+1; j < e; ++j) 1096 if (VL[i] == VL[j]) { 1097 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1098 newTreeEntry(VL, false); 1099 return; 1100 } 1101 1102 auto &BSRef = BlocksSchedules[BB]; 1103 if (!BSRef) { 1104 BSRef = llvm::make_unique<BlockScheduling>(BB); 1105 } 1106 BlockScheduling &BS = *BSRef.get(); 1107 1108 if (!BS.tryScheduleBundle(VL, this)) { 1109 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1110 assert((!BS.getScheduleData(VL[0]) || 1111 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1112 "tryScheduleBundle should cancelScheduling on failure"); 1113 newTreeEntry(VL, false); 1114 return; 1115 } 1116 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1117 1118 switch (Opcode) { 1119 case Instruction::PHI: { 1120 PHINode *PH = dyn_cast<PHINode>(VL0); 1121 1122 // Check for terminator values (e.g. invoke). 1123 for (unsigned j = 0; j < VL.size(); ++j) 1124 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1125 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1126 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1127 if (Term) { 1128 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1129 BS.cancelScheduling(VL); 1130 newTreeEntry(VL, false); 1131 return; 1132 } 1133 } 1134 1135 newTreeEntry(VL, true); 1136 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1137 1138 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1139 ValueList Operands; 1140 // Prepare the operand vector. 1141 for (unsigned j = 0; j < VL.size(); ++j) 1142 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1143 PH->getIncomingBlock(i))); 1144 1145 buildTree_rec(Operands, Depth + 1); 1146 } 1147 return; 1148 } 1149 case Instruction::ExtractElement: { 1150 bool Reuse = CanReuseExtract(VL); 1151 if (Reuse) { 1152 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1153 } else { 1154 BS.cancelScheduling(VL); 1155 } 1156 newTreeEntry(VL, Reuse); 1157 return; 1158 } 1159 case Instruction::Load: { 1160 // Check that a vectorized load would load the same memory as a scalar 1161 // load. 1162 // For example we don't want vectorize loads that are smaller than 8 bit. 1163 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1164 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1165 // such a struct we read/write packed bits disagreeing with the 1166 // unvectorized version. 1167 const DataLayout &DL = F->getParent()->getDataLayout(); 1168 Type *ScalarTy = VL[0]->getType(); 1169 1170 if (DL.getTypeSizeInBits(ScalarTy) != 1171 DL.getTypeAllocSizeInBits(ScalarTy)) { 1172 BS.cancelScheduling(VL); 1173 newTreeEntry(VL, false); 1174 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1175 return; 1176 } 1177 // Check if the loads are consecutive or of we need to swizzle them. 1178 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1179 LoadInst *L = cast<LoadInst>(VL[i]); 1180 if (!L->isSimple()) { 1181 BS.cancelScheduling(VL); 1182 newTreeEntry(VL, false); 1183 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1184 return; 1185 } 1186 1187 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { 1188 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) { 1189 ++NumLoadsWantToChangeOrder; 1190 } 1191 BS.cancelScheduling(VL); 1192 newTreeEntry(VL, false); 1193 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1194 return; 1195 } 1196 } 1197 ++NumLoadsWantToKeepOrder; 1198 newTreeEntry(VL, true); 1199 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1200 return; 1201 } 1202 case Instruction::ZExt: 1203 case Instruction::SExt: 1204 case Instruction::FPToUI: 1205 case Instruction::FPToSI: 1206 case Instruction::FPExt: 1207 case Instruction::PtrToInt: 1208 case Instruction::IntToPtr: 1209 case Instruction::SIToFP: 1210 case Instruction::UIToFP: 1211 case Instruction::Trunc: 1212 case Instruction::FPTrunc: 1213 case Instruction::BitCast: { 1214 Type *SrcTy = VL0->getOperand(0)->getType(); 1215 for (unsigned i = 0; i < VL.size(); ++i) { 1216 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1217 if (Ty != SrcTy || !isValidElementType(Ty)) { 1218 BS.cancelScheduling(VL); 1219 newTreeEntry(VL, false); 1220 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1221 return; 1222 } 1223 } 1224 newTreeEntry(VL, true); 1225 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1226 1227 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1228 ValueList Operands; 1229 // Prepare the operand vector. 1230 for (unsigned j = 0; j < VL.size(); ++j) 1231 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1232 1233 buildTree_rec(Operands, Depth+1); 1234 } 1235 return; 1236 } 1237 case Instruction::ICmp: 1238 case Instruction::FCmp: { 1239 // Check that all of the compares have the same predicate. 1240 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1241 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1242 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1243 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1244 if (Cmp->getPredicate() != P0 || 1245 Cmp->getOperand(0)->getType() != ComparedTy) { 1246 BS.cancelScheduling(VL); 1247 newTreeEntry(VL, false); 1248 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1249 return; 1250 } 1251 } 1252 1253 newTreeEntry(VL, true); 1254 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1255 1256 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1257 ValueList Operands; 1258 // Prepare the operand vector. 1259 for (unsigned j = 0; j < VL.size(); ++j) 1260 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1261 1262 buildTree_rec(Operands, Depth+1); 1263 } 1264 return; 1265 } 1266 case Instruction::Select: 1267 case Instruction::Add: 1268 case Instruction::FAdd: 1269 case Instruction::Sub: 1270 case Instruction::FSub: 1271 case Instruction::Mul: 1272 case Instruction::FMul: 1273 case Instruction::UDiv: 1274 case Instruction::SDiv: 1275 case Instruction::FDiv: 1276 case Instruction::URem: 1277 case Instruction::SRem: 1278 case Instruction::FRem: 1279 case Instruction::Shl: 1280 case Instruction::LShr: 1281 case Instruction::AShr: 1282 case Instruction::And: 1283 case Instruction::Or: 1284 case Instruction::Xor: { 1285 newTreeEntry(VL, true); 1286 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1287 1288 // Sort operands of the instructions so that each side is more likely to 1289 // have the same opcode. 1290 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1291 ValueList Left, Right; 1292 reorderInputsAccordingToOpcode(VL, Left, Right); 1293 buildTree_rec(Left, Depth + 1); 1294 buildTree_rec(Right, Depth + 1); 1295 return; 1296 } 1297 1298 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1299 ValueList Operands; 1300 // Prepare the operand vector. 1301 for (unsigned j = 0; j < VL.size(); ++j) 1302 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1303 1304 buildTree_rec(Operands, Depth+1); 1305 } 1306 return; 1307 } 1308 case Instruction::GetElementPtr: { 1309 // We don't combine GEPs with complicated (nested) indexing. 1310 for (unsigned j = 0; j < VL.size(); ++j) { 1311 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1312 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1313 BS.cancelScheduling(VL); 1314 newTreeEntry(VL, false); 1315 return; 1316 } 1317 } 1318 1319 // We can't combine several GEPs into one vector if they operate on 1320 // different types. 1321 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1322 for (unsigned j = 0; j < VL.size(); ++j) { 1323 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1324 if (Ty0 != CurTy) { 1325 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1326 BS.cancelScheduling(VL); 1327 newTreeEntry(VL, false); 1328 return; 1329 } 1330 } 1331 1332 // We don't combine GEPs with non-constant indexes. 1333 for (unsigned j = 0; j < VL.size(); ++j) { 1334 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1335 if (!isa<ConstantInt>(Op)) { 1336 DEBUG( 1337 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1338 BS.cancelScheduling(VL); 1339 newTreeEntry(VL, false); 1340 return; 1341 } 1342 } 1343 1344 newTreeEntry(VL, true); 1345 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1346 for (unsigned i = 0, e = 2; i < e; ++i) { 1347 ValueList Operands; 1348 // Prepare the operand vector. 1349 for (unsigned j = 0; j < VL.size(); ++j) 1350 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1351 1352 buildTree_rec(Operands, Depth + 1); 1353 } 1354 return; 1355 } 1356 case Instruction::Store: { 1357 const DataLayout &DL = F->getParent()->getDataLayout(); 1358 // Check if the stores are consecutive or of we need to swizzle them. 1359 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1360 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { 1361 BS.cancelScheduling(VL); 1362 newTreeEntry(VL, false); 1363 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1364 return; 1365 } 1366 1367 newTreeEntry(VL, true); 1368 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1369 1370 ValueList Operands; 1371 for (unsigned j = 0; j < VL.size(); ++j) 1372 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1373 1374 buildTree_rec(Operands, Depth + 1); 1375 return; 1376 } 1377 case Instruction::Call: { 1378 // Check if the calls are all to the same vectorizable intrinsic. 1379 CallInst *CI = cast<CallInst>(VL[0]); 1380 // Check if this is an Intrinsic call or something that can be 1381 // represented by an intrinsic call 1382 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1383 if (!isTriviallyVectorizable(ID)) { 1384 BS.cancelScheduling(VL); 1385 newTreeEntry(VL, false); 1386 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1387 return; 1388 } 1389 Function *Int = CI->getCalledFunction(); 1390 Value *A1I = nullptr; 1391 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1392 A1I = CI->getArgOperand(1); 1393 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1394 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1395 if (!CI2 || CI2->getCalledFunction() != Int || 1396 getIntrinsicIDForCall(CI2, TLI) != ID) { 1397 BS.cancelScheduling(VL); 1398 newTreeEntry(VL, false); 1399 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1400 << "\n"); 1401 return; 1402 } 1403 // ctlz,cttz and powi are special intrinsics whose second argument 1404 // should be same in order for them to be vectorized. 1405 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1406 Value *A1J = CI2->getArgOperand(1); 1407 if (A1I != A1J) { 1408 BS.cancelScheduling(VL); 1409 newTreeEntry(VL, false); 1410 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1411 << " argument "<< A1I<<"!=" << A1J 1412 << "\n"); 1413 return; 1414 } 1415 } 1416 } 1417 1418 newTreeEntry(VL, true); 1419 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1420 ValueList Operands; 1421 // Prepare the operand vector. 1422 for (unsigned j = 0; j < VL.size(); ++j) { 1423 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1424 Operands.push_back(CI2->getArgOperand(i)); 1425 } 1426 buildTree_rec(Operands, Depth + 1); 1427 } 1428 return; 1429 } 1430 case Instruction::ShuffleVector: { 1431 // If this is not an alternate sequence of opcode like add-sub 1432 // then do not vectorize this instruction. 1433 if (!isAltShuffle) { 1434 BS.cancelScheduling(VL); 1435 newTreeEntry(VL, false); 1436 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1437 return; 1438 } 1439 newTreeEntry(VL, true); 1440 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1441 1442 // Reorder operands if reordering would enable vectorization. 1443 if (isa<BinaryOperator>(VL0)) { 1444 ValueList Left, Right; 1445 reorderAltShuffleOperands(VL, Left, Right); 1446 buildTree_rec(Left, Depth + 1); 1447 buildTree_rec(Right, Depth + 1); 1448 return; 1449 } 1450 1451 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1452 ValueList Operands; 1453 // Prepare the operand vector. 1454 for (unsigned j = 0; j < VL.size(); ++j) 1455 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1456 1457 buildTree_rec(Operands, Depth + 1); 1458 } 1459 return; 1460 } 1461 default: 1462 BS.cancelScheduling(VL); 1463 newTreeEntry(VL, false); 1464 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1465 return; 1466 } 1467 } 1468 1469 int BoUpSLP::getEntryCost(TreeEntry *E) { 1470 ArrayRef<Value*> VL = E->Scalars; 1471 1472 Type *ScalarTy = VL[0]->getType(); 1473 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1474 ScalarTy = SI->getValueOperand()->getType(); 1475 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1476 1477 if (E->NeedToGather) { 1478 if (allConstant(VL)) 1479 return 0; 1480 if (isSplat(VL)) { 1481 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1482 } 1483 return getGatherCost(E->Scalars); 1484 } 1485 unsigned Opcode = getSameOpcode(VL); 1486 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1487 Instruction *VL0 = cast<Instruction>(VL[0]); 1488 switch (Opcode) { 1489 case Instruction::PHI: { 1490 return 0; 1491 } 1492 case Instruction::ExtractElement: { 1493 if (CanReuseExtract(VL)) { 1494 int DeadCost = 0; 1495 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1496 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1497 if (E->hasOneUse()) 1498 // Take credit for instruction that will become dead. 1499 DeadCost += 1500 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1501 } 1502 return -DeadCost; 1503 } 1504 return getGatherCost(VecTy); 1505 } 1506 case Instruction::ZExt: 1507 case Instruction::SExt: 1508 case Instruction::FPToUI: 1509 case Instruction::FPToSI: 1510 case Instruction::FPExt: 1511 case Instruction::PtrToInt: 1512 case Instruction::IntToPtr: 1513 case Instruction::SIToFP: 1514 case Instruction::UIToFP: 1515 case Instruction::Trunc: 1516 case Instruction::FPTrunc: 1517 case Instruction::BitCast: { 1518 Type *SrcTy = VL0->getOperand(0)->getType(); 1519 1520 // Calculate the cost of this instruction. 1521 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1522 VL0->getType(), SrcTy); 1523 1524 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1525 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1526 return VecCost - ScalarCost; 1527 } 1528 case Instruction::FCmp: 1529 case Instruction::ICmp: 1530 case Instruction::Select: 1531 case Instruction::Add: 1532 case Instruction::FAdd: 1533 case Instruction::Sub: 1534 case Instruction::FSub: 1535 case Instruction::Mul: 1536 case Instruction::FMul: 1537 case Instruction::UDiv: 1538 case Instruction::SDiv: 1539 case Instruction::FDiv: 1540 case Instruction::URem: 1541 case Instruction::SRem: 1542 case Instruction::FRem: 1543 case Instruction::Shl: 1544 case Instruction::LShr: 1545 case Instruction::AShr: 1546 case Instruction::And: 1547 case Instruction::Or: 1548 case Instruction::Xor: { 1549 // Calculate the cost of this instruction. 1550 int ScalarCost = 0; 1551 int VecCost = 0; 1552 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1553 Opcode == Instruction::Select) { 1554 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1555 ScalarCost = VecTy->getNumElements() * 1556 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1557 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1558 } else { 1559 // Certain instructions can be cheaper to vectorize if they have a 1560 // constant second vector operand. 1561 TargetTransformInfo::OperandValueKind Op1VK = 1562 TargetTransformInfo::OK_AnyValue; 1563 TargetTransformInfo::OperandValueKind Op2VK = 1564 TargetTransformInfo::OK_UniformConstantValue; 1565 TargetTransformInfo::OperandValueProperties Op1VP = 1566 TargetTransformInfo::OP_None; 1567 TargetTransformInfo::OperandValueProperties Op2VP = 1568 TargetTransformInfo::OP_None; 1569 1570 // If all operands are exactly the same ConstantInt then set the 1571 // operand kind to OK_UniformConstantValue. 1572 // If instead not all operands are constants, then set the operand kind 1573 // to OK_AnyValue. If all operands are constants but not the same, 1574 // then set the operand kind to OK_NonUniformConstantValue. 1575 ConstantInt *CInt = nullptr; 1576 for (unsigned i = 0; i < VL.size(); ++i) { 1577 const Instruction *I = cast<Instruction>(VL[i]); 1578 if (!isa<ConstantInt>(I->getOperand(1))) { 1579 Op2VK = TargetTransformInfo::OK_AnyValue; 1580 break; 1581 } 1582 if (i == 0) { 1583 CInt = cast<ConstantInt>(I->getOperand(1)); 1584 continue; 1585 } 1586 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1587 CInt != cast<ConstantInt>(I->getOperand(1))) 1588 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1589 } 1590 // FIXME: Currently cost of model modification for division by 1591 // power of 2 is handled only for X86. Add support for other targets. 1592 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1593 CInt->getValue().isPowerOf2()) 1594 Op2VP = TargetTransformInfo::OP_PowerOf2; 1595 1596 ScalarCost = VecTy->getNumElements() * 1597 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, 1598 Op1VP, Op2VP); 1599 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1600 Op1VP, Op2VP); 1601 } 1602 return VecCost - ScalarCost; 1603 } 1604 case Instruction::GetElementPtr: { 1605 TargetTransformInfo::OperandValueKind Op1VK = 1606 TargetTransformInfo::OK_AnyValue; 1607 TargetTransformInfo::OperandValueKind Op2VK = 1608 TargetTransformInfo::OK_UniformConstantValue; 1609 1610 int ScalarCost = 1611 VecTy->getNumElements() * 1612 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1613 int VecCost = 1614 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1615 1616 return VecCost - ScalarCost; 1617 } 1618 case Instruction::Load: { 1619 // Cost of wide load - cost of scalar loads. 1620 int ScalarLdCost = VecTy->getNumElements() * 1621 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1622 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1623 return VecLdCost - ScalarLdCost; 1624 } 1625 case Instruction::Store: { 1626 // We know that we can merge the stores. Calculate the cost. 1627 int ScalarStCost = VecTy->getNumElements() * 1628 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1629 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1630 return VecStCost - ScalarStCost; 1631 } 1632 case Instruction::Call: { 1633 CallInst *CI = cast<CallInst>(VL0); 1634 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1635 1636 // Calculate the cost of the scalar and vector calls. 1637 SmallVector<Type*, 4> ScalarTys, VecTys; 1638 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1639 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1640 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1641 VecTy->getNumElements())); 1642 } 1643 1644 int ScalarCallCost = VecTy->getNumElements() * 1645 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1646 1647 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1648 1649 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1650 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1651 << " for " << *CI << "\n"); 1652 1653 return VecCallCost - ScalarCallCost; 1654 } 1655 case Instruction::ShuffleVector: { 1656 TargetTransformInfo::OperandValueKind Op1VK = 1657 TargetTransformInfo::OK_AnyValue; 1658 TargetTransformInfo::OperandValueKind Op2VK = 1659 TargetTransformInfo::OK_AnyValue; 1660 int ScalarCost = 0; 1661 int VecCost = 0; 1662 for (unsigned i = 0; i < VL.size(); ++i) { 1663 Instruction *I = cast<Instruction>(VL[i]); 1664 if (!I) 1665 break; 1666 ScalarCost += 1667 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1668 } 1669 // VecCost is equal to sum of the cost of creating 2 vectors 1670 // and the cost of creating shuffle. 1671 Instruction *I0 = cast<Instruction>(VL[0]); 1672 VecCost = 1673 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1674 Instruction *I1 = cast<Instruction>(VL[1]); 1675 VecCost += 1676 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1677 VecCost += 1678 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1679 return VecCost - ScalarCost; 1680 } 1681 default: 1682 llvm_unreachable("Unknown instruction"); 1683 } 1684 } 1685 1686 bool BoUpSLP::isFullyVectorizableTinyTree() { 1687 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1688 VectorizableTree.size() << " is fully vectorizable .\n"); 1689 1690 // We only handle trees of height 2. 1691 if (VectorizableTree.size() != 2) 1692 return false; 1693 1694 // Handle splat stores. 1695 if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars)) 1696 return true; 1697 1698 // Gathering cost would be too much for tiny trees. 1699 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1700 return false; 1701 1702 return true; 1703 } 1704 1705 int BoUpSLP::getSpillCost() { 1706 // Walk from the bottom of the tree to the top, tracking which values are 1707 // live. When we see a call instruction that is not part of our tree, 1708 // query TTI to see if there is a cost to keeping values live over it 1709 // (for example, if spills and fills are required). 1710 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1711 int Cost = 0; 1712 1713 SmallPtrSet<Instruction*, 4> LiveValues; 1714 Instruction *PrevInst = nullptr; 1715 1716 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1717 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1718 if (!Inst) 1719 continue; 1720 1721 if (!PrevInst) { 1722 PrevInst = Inst; 1723 continue; 1724 } 1725 1726 DEBUG( 1727 dbgs() << "SLP: #LV: " << LiveValues.size(); 1728 for (auto *X : LiveValues) 1729 dbgs() << " " << X->getName(); 1730 dbgs() << ", Looking at "; 1731 Inst->dump(); 1732 ); 1733 1734 // Update LiveValues. 1735 LiveValues.erase(PrevInst); 1736 for (auto &J : PrevInst->operands()) { 1737 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1738 LiveValues.insert(cast<Instruction>(&*J)); 1739 } 1740 1741 // Now find the sequence of instructions between PrevInst and Inst. 1742 BasicBlock::reverse_iterator InstIt(Inst->getIterator()), 1743 PrevInstIt(PrevInst->getIterator()); 1744 --PrevInstIt; 1745 while (InstIt != PrevInstIt) { 1746 if (PrevInstIt == PrevInst->getParent()->rend()) { 1747 PrevInstIt = Inst->getParent()->rbegin(); 1748 continue; 1749 } 1750 1751 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1752 SmallVector<Type*, 4> V; 1753 for (auto *II : LiveValues) 1754 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1755 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1756 } 1757 1758 ++PrevInstIt; 1759 } 1760 1761 PrevInst = Inst; 1762 } 1763 1764 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); 1765 return Cost; 1766 } 1767 1768 int BoUpSLP::getTreeCost() { 1769 int Cost = 0; 1770 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1771 VectorizableTree.size() << ".\n"); 1772 1773 // We only vectorize tiny trees if it is fully vectorizable. 1774 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1775 if (VectorizableTree.empty()) { 1776 assert(!ExternalUses.size() && "We should not have any external users"); 1777 } 1778 return INT_MAX; 1779 } 1780 1781 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1782 1783 for (TreeEntry &TE : VectorizableTree) { 1784 int C = getEntryCost(&TE); 1785 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1786 << TE.Scalars[0] << " .\n"); 1787 Cost += C; 1788 } 1789 1790 SmallSet<Value *, 16> ExtractCostCalculated; 1791 int ExtractCost = 0; 1792 for (ExternalUser &EU : ExternalUses) { 1793 // We only add extract cost once for the same scalar. 1794 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1795 continue; 1796 1797 // Uses by ephemeral values are free (because the ephemeral value will be 1798 // removed prior to code generation, and so the extraction will be 1799 // removed as well). 1800 if (EphValues.count(EU.User)) 1801 continue; 1802 1803 VectorType *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1804 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1805 EU.Lane); 1806 } 1807 1808 Cost += getSpillCost(); 1809 1810 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1811 return Cost + ExtractCost; 1812 } 1813 1814 int BoUpSLP::getGatherCost(Type *Ty) { 1815 int Cost = 0; 1816 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1817 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1818 return Cost; 1819 } 1820 1821 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1822 // Find the type of the operands in VL. 1823 Type *ScalarTy = VL[0]->getType(); 1824 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1825 ScalarTy = SI->getValueOperand()->getType(); 1826 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1827 // Find the cost of inserting/extracting values from the vector. 1828 return getGatherCost(VecTy); 1829 } 1830 1831 Value *BoUpSLP::getPointerOperand(Value *I) { 1832 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1833 return LI->getPointerOperand(); 1834 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1835 return SI->getPointerOperand(); 1836 return nullptr; 1837 } 1838 1839 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1840 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1841 return L->getPointerAddressSpace(); 1842 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1843 return S->getPointerAddressSpace(); 1844 return -1; 1845 } 1846 1847 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) { 1848 Value *PtrA = getPointerOperand(A); 1849 Value *PtrB = getPointerOperand(B); 1850 unsigned ASA = getAddressSpaceOperand(A); 1851 unsigned ASB = getAddressSpaceOperand(B); 1852 1853 // Check that the address spaces match and that the pointers are valid. 1854 if (!PtrA || !PtrB || (ASA != ASB)) 1855 return false; 1856 1857 // Make sure that A and B are different pointers of the same type. 1858 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1859 return false; 1860 1861 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1862 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1863 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1864 1865 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1866 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1867 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1868 1869 APInt OffsetDelta = OffsetB - OffsetA; 1870 1871 // Check if they are based on the same pointer. That makes the offsets 1872 // sufficient. 1873 if (PtrA == PtrB) 1874 return OffsetDelta == Size; 1875 1876 // Compute the necessary base pointer delta to have the necessary final delta 1877 // equal to the size. 1878 APInt BaseDelta = Size - OffsetDelta; 1879 1880 // Otherwise compute the distance with SCEV between the base pointers. 1881 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1882 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1883 const SCEV *C = SE->getConstant(BaseDelta); 1884 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1885 return X == PtrSCEVB; 1886 } 1887 1888 // Reorder commutative operations in alternate shuffle if the resulting vectors 1889 // are consecutive loads. This would allow us to vectorize the tree. 1890 // If we have something like- 1891 // load a[0] - load b[0] 1892 // load b[1] + load a[1] 1893 // load a[2] - load b[2] 1894 // load a[3] + load b[3] 1895 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1896 // code. 1897 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1898 SmallVectorImpl<Value *> &Left, 1899 SmallVectorImpl<Value *> &Right) { 1900 const DataLayout &DL = F->getParent()->getDataLayout(); 1901 1902 // Push left and right operands of binary operation into Left and Right 1903 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1904 Left.push_back(cast<Instruction>(VL[i])->getOperand(0)); 1905 Right.push_back(cast<Instruction>(VL[i])->getOperand(1)); 1906 } 1907 1908 // Reorder if we have a commutative operation and consecutive access 1909 // are on either side of the alternate instructions. 1910 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1911 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1912 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1913 Instruction *VL1 = cast<Instruction>(VL[j]); 1914 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1915 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { 1916 std::swap(Left[j], Right[j]); 1917 continue; 1918 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { 1919 std::swap(Left[j + 1], Right[j + 1]); 1920 continue; 1921 } 1922 // else unchanged 1923 } 1924 } 1925 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 1926 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 1927 Instruction *VL1 = cast<Instruction>(VL[j]); 1928 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1929 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { 1930 std::swap(Left[j], Right[j]); 1931 continue; 1932 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { 1933 std::swap(Left[j + 1], Right[j + 1]); 1934 continue; 1935 } 1936 // else unchanged 1937 } 1938 } 1939 } 1940 } 1941 1942 // Return true if I should be commuted before adding it's left and right 1943 // operands to the arrays Left and Right. 1944 // 1945 // The vectorizer is trying to either have all elements one side being 1946 // instruction with the same opcode to enable further vectorization, or having 1947 // a splat to lower the vectorizing cost. 1948 static bool shouldReorderOperands(int i, Instruction &I, 1949 SmallVectorImpl<Value *> &Left, 1950 SmallVectorImpl<Value *> &Right, 1951 bool AllSameOpcodeLeft, 1952 bool AllSameOpcodeRight, bool SplatLeft, 1953 bool SplatRight) { 1954 Value *VLeft = I.getOperand(0); 1955 Value *VRight = I.getOperand(1); 1956 // If we have "SplatRight", try to see if commuting is needed to preserve it. 1957 if (SplatRight) { 1958 if (VRight == Right[i - 1]) 1959 // Preserve SplatRight 1960 return false; 1961 if (VLeft == Right[i - 1]) { 1962 // Commuting would preserve SplatRight, but we don't want to break 1963 // SplatLeft either, i.e. preserve the original order if possible. 1964 // (FIXME: why do we care?) 1965 if (SplatLeft && VLeft == Left[i - 1]) 1966 return false; 1967 return true; 1968 } 1969 } 1970 // Symmetrically handle Right side. 1971 if (SplatLeft) { 1972 if (VLeft == Left[i - 1]) 1973 // Preserve SplatLeft 1974 return false; 1975 if (VRight == Left[i - 1]) 1976 return true; 1977 } 1978 1979 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 1980 Instruction *IRight = dyn_cast<Instruction>(VRight); 1981 1982 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 1983 // it and not the right, in this case we want to commute. 1984 if (AllSameOpcodeRight) { 1985 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 1986 if (IRight && RightPrevOpcode == IRight->getOpcode()) 1987 // Do not commute, a match on the right preserves AllSameOpcodeRight 1988 return false; 1989 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 1990 // We have a match and may want to commute, but first check if there is 1991 // not also a match on the existing operands on the Left to preserve 1992 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 1993 // (FIXME: why do we care?) 1994 if (AllSameOpcodeLeft && ILeft && 1995 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 1996 return false; 1997 return true; 1998 } 1999 } 2000 // Symmetrically handle Left side. 2001 if (AllSameOpcodeLeft) { 2002 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2003 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2004 return false; 2005 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2006 return true; 2007 } 2008 return false; 2009 } 2010 2011 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2012 SmallVectorImpl<Value *> &Left, 2013 SmallVectorImpl<Value *> &Right) { 2014 2015 if (VL.size()) { 2016 // Peel the first iteration out of the loop since there's nothing 2017 // interesting to do anyway and it simplifies the checks in the loop. 2018 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2019 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2020 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2021 // Favor having instruction to the right. FIXME: why? 2022 std::swap(VLeft, VRight); 2023 Left.push_back(VLeft); 2024 Right.push_back(VRight); 2025 } 2026 2027 // Keep track if we have instructions with all the same opcode on one side. 2028 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2029 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2030 // Keep track if we have one side with all the same value (broadcast). 2031 bool SplatLeft = true; 2032 bool SplatRight = true; 2033 2034 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2035 Instruction *I = cast<Instruction>(VL[i]); 2036 assert(I->isCommutative() && "Can only process commutative instruction"); 2037 // Commute to favor either a splat or maximizing having the same opcodes on 2038 // one side. 2039 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2040 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2041 Left.push_back(I->getOperand(1)); 2042 Right.push_back(I->getOperand(0)); 2043 } else { 2044 Left.push_back(I->getOperand(0)); 2045 Right.push_back(I->getOperand(1)); 2046 } 2047 // Update Splat* and AllSameOpcode* after the insertion. 2048 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2049 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2050 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2051 (cast<Instruction>(Left[i - 1])->getOpcode() == 2052 cast<Instruction>(Left[i])->getOpcode()); 2053 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2054 (cast<Instruction>(Right[i - 1])->getOpcode() == 2055 cast<Instruction>(Right[i])->getOpcode()); 2056 } 2057 2058 // If one operand end up being broadcast, return this operand order. 2059 if (SplatRight || SplatLeft) 2060 return; 2061 2062 const DataLayout &DL = F->getParent()->getDataLayout(); 2063 2064 // Finally check if we can get longer vectorizable chain by reordering 2065 // without breaking the good operand order detected above. 2066 // E.g. If we have something like- 2067 // load a[0] load b[0] 2068 // load b[1] load a[1] 2069 // load a[2] load b[2] 2070 // load a[3] load b[3] 2071 // Reordering the second load b[1] load a[1] would allow us to vectorize 2072 // this code and we still retain AllSameOpcode property. 2073 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2074 // such as- 2075 // add a[0],c[0] load b[0] 2076 // add a[1],c[2] load b[1] 2077 // b[2] load b[2] 2078 // add a[3],c[3] load b[3] 2079 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2080 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2081 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2082 if (isConsecutiveAccess(L, L1, DL)) { 2083 std::swap(Left[j + 1], Right[j + 1]); 2084 continue; 2085 } 2086 } 2087 } 2088 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2089 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2090 if (isConsecutiveAccess(L, L1, DL)) { 2091 std::swap(Left[j + 1], Right[j + 1]); 2092 continue; 2093 } 2094 } 2095 } 2096 // else unchanged 2097 } 2098 } 2099 2100 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2101 Instruction *VL0 = cast<Instruction>(VL[0]); 2102 BasicBlock::iterator NextInst(VL0); 2103 ++NextInst; 2104 Builder.SetInsertPoint(VL0->getParent(), NextInst); 2105 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 2106 } 2107 2108 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2109 Value *Vec = UndefValue::get(Ty); 2110 // Generate the 'InsertElement' instruction. 2111 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2112 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2113 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2114 GatherSeq.insert(Insrt); 2115 CSEBlocks.insert(Insrt->getParent()); 2116 2117 // Add to our 'need-to-extract' list. 2118 if (ScalarToTreeEntry.count(VL[i])) { 2119 int Idx = ScalarToTreeEntry[VL[i]]; 2120 TreeEntry *E = &VectorizableTree[Idx]; 2121 // Find which lane we need to extract. 2122 int FoundLane = -1; 2123 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2124 // Is this the lane of the scalar that we are looking for ? 2125 if (E->Scalars[Lane] == VL[i]) { 2126 FoundLane = Lane; 2127 break; 2128 } 2129 } 2130 assert(FoundLane >= 0 && "Could not find the correct lane"); 2131 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2132 } 2133 } 2134 } 2135 2136 return Vec; 2137 } 2138 2139 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2140 SmallDenseMap<Value*, int>::const_iterator Entry 2141 = ScalarToTreeEntry.find(VL[0]); 2142 if (Entry != ScalarToTreeEntry.end()) { 2143 int Idx = Entry->second; 2144 const TreeEntry *En = &VectorizableTree[Idx]; 2145 if (En->isSame(VL) && En->VectorizedValue) 2146 return En->VectorizedValue; 2147 } 2148 return nullptr; 2149 } 2150 2151 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2152 if (ScalarToTreeEntry.count(VL[0])) { 2153 int Idx = ScalarToTreeEntry[VL[0]]; 2154 TreeEntry *E = &VectorizableTree[Idx]; 2155 if (E->isSame(VL)) 2156 return vectorizeTree(E); 2157 } 2158 2159 Type *ScalarTy = VL[0]->getType(); 2160 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2161 ScalarTy = SI->getValueOperand()->getType(); 2162 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2163 2164 return Gather(VL, VecTy); 2165 } 2166 2167 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2168 IRBuilder<>::InsertPointGuard Guard(Builder); 2169 2170 if (E->VectorizedValue) { 2171 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2172 return E->VectorizedValue; 2173 } 2174 2175 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2176 Type *ScalarTy = VL0->getType(); 2177 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2178 ScalarTy = SI->getValueOperand()->getType(); 2179 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2180 2181 if (E->NeedToGather) { 2182 setInsertPointAfterBundle(E->Scalars); 2183 return Gather(E->Scalars, VecTy); 2184 } 2185 2186 const DataLayout &DL = F->getParent()->getDataLayout(); 2187 unsigned Opcode = getSameOpcode(E->Scalars); 2188 2189 switch (Opcode) { 2190 case Instruction::PHI: { 2191 PHINode *PH = dyn_cast<PHINode>(VL0); 2192 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2193 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2194 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2195 E->VectorizedValue = NewPhi; 2196 2197 // PHINodes may have multiple entries from the same block. We want to 2198 // visit every block once. 2199 SmallSet<BasicBlock*, 4> VisitedBBs; 2200 2201 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2202 ValueList Operands; 2203 BasicBlock *IBB = PH->getIncomingBlock(i); 2204 2205 if (!VisitedBBs.insert(IBB).second) { 2206 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2207 continue; 2208 } 2209 2210 // Prepare the operand vector. 2211 for (Value *V : E->Scalars) 2212 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2213 2214 Builder.SetInsertPoint(IBB->getTerminator()); 2215 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2216 Value *Vec = vectorizeTree(Operands); 2217 NewPhi->addIncoming(Vec, IBB); 2218 } 2219 2220 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2221 "Invalid number of incoming values"); 2222 return NewPhi; 2223 } 2224 2225 case Instruction::ExtractElement: { 2226 if (CanReuseExtract(E->Scalars)) { 2227 Value *V = VL0->getOperand(0); 2228 E->VectorizedValue = V; 2229 return V; 2230 } 2231 return Gather(E->Scalars, VecTy); 2232 } 2233 case Instruction::ZExt: 2234 case Instruction::SExt: 2235 case Instruction::FPToUI: 2236 case Instruction::FPToSI: 2237 case Instruction::FPExt: 2238 case Instruction::PtrToInt: 2239 case Instruction::IntToPtr: 2240 case Instruction::SIToFP: 2241 case Instruction::UIToFP: 2242 case Instruction::Trunc: 2243 case Instruction::FPTrunc: 2244 case Instruction::BitCast: { 2245 ValueList INVL; 2246 for (Value *V : E->Scalars) 2247 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2248 2249 setInsertPointAfterBundle(E->Scalars); 2250 2251 Value *InVec = vectorizeTree(INVL); 2252 2253 if (Value *V = alreadyVectorized(E->Scalars)) 2254 return V; 2255 2256 CastInst *CI = dyn_cast<CastInst>(VL0); 2257 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2258 E->VectorizedValue = V; 2259 ++NumVectorInstructions; 2260 return V; 2261 } 2262 case Instruction::FCmp: 2263 case Instruction::ICmp: { 2264 ValueList LHSV, RHSV; 2265 for (Value *V : E->Scalars) { 2266 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2267 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2268 } 2269 2270 setInsertPointAfterBundle(E->Scalars); 2271 2272 Value *L = vectorizeTree(LHSV); 2273 Value *R = vectorizeTree(RHSV); 2274 2275 if (Value *V = alreadyVectorized(E->Scalars)) 2276 return V; 2277 2278 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2279 Value *V; 2280 if (Opcode == Instruction::FCmp) 2281 V = Builder.CreateFCmp(P0, L, R); 2282 else 2283 V = Builder.CreateICmp(P0, L, R); 2284 2285 E->VectorizedValue = V; 2286 ++NumVectorInstructions; 2287 return V; 2288 } 2289 case Instruction::Select: { 2290 ValueList TrueVec, FalseVec, CondVec; 2291 for (Value *V : E->Scalars) { 2292 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2293 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2294 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2295 } 2296 2297 setInsertPointAfterBundle(E->Scalars); 2298 2299 Value *Cond = vectorizeTree(CondVec); 2300 Value *True = vectorizeTree(TrueVec); 2301 Value *False = vectorizeTree(FalseVec); 2302 2303 if (Value *V = alreadyVectorized(E->Scalars)) 2304 return V; 2305 2306 Value *V = Builder.CreateSelect(Cond, True, False); 2307 E->VectorizedValue = V; 2308 ++NumVectorInstructions; 2309 return V; 2310 } 2311 case Instruction::Add: 2312 case Instruction::FAdd: 2313 case Instruction::Sub: 2314 case Instruction::FSub: 2315 case Instruction::Mul: 2316 case Instruction::FMul: 2317 case Instruction::UDiv: 2318 case Instruction::SDiv: 2319 case Instruction::FDiv: 2320 case Instruction::URem: 2321 case Instruction::SRem: 2322 case Instruction::FRem: 2323 case Instruction::Shl: 2324 case Instruction::LShr: 2325 case Instruction::AShr: 2326 case Instruction::And: 2327 case Instruction::Or: 2328 case Instruction::Xor: { 2329 ValueList LHSVL, RHSVL; 2330 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2331 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2332 else 2333 for (Value *V : E->Scalars) { 2334 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2335 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2336 } 2337 2338 setInsertPointAfterBundle(E->Scalars); 2339 2340 Value *LHS = vectorizeTree(LHSVL); 2341 Value *RHS = vectorizeTree(RHSVL); 2342 2343 if (LHS == RHS && isa<Instruction>(LHS)) { 2344 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2345 } 2346 2347 if (Value *V = alreadyVectorized(E->Scalars)) 2348 return V; 2349 2350 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2351 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2352 E->VectorizedValue = V; 2353 propagateIRFlags(E->VectorizedValue, E->Scalars); 2354 ++NumVectorInstructions; 2355 2356 if (Instruction *I = dyn_cast<Instruction>(V)) 2357 return propagateMetadata(I, E->Scalars); 2358 2359 return V; 2360 } 2361 case Instruction::Load: { 2362 // Loads are inserted at the head of the tree because we don't want to 2363 // sink them all the way down past store instructions. 2364 setInsertPointAfterBundle(E->Scalars); 2365 2366 LoadInst *LI = cast<LoadInst>(VL0); 2367 Type *ScalarLoadTy = LI->getType(); 2368 unsigned AS = LI->getPointerAddressSpace(); 2369 2370 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2371 VecTy->getPointerTo(AS)); 2372 2373 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2374 // ExternalUses list to make sure that an extract will be generated in the 2375 // future. 2376 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2377 ExternalUses.push_back( 2378 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2379 2380 unsigned Alignment = LI->getAlignment(); 2381 LI = Builder.CreateLoad(VecPtr); 2382 if (!Alignment) { 2383 Alignment = DL.getABITypeAlignment(ScalarLoadTy); 2384 } 2385 LI->setAlignment(Alignment); 2386 E->VectorizedValue = LI; 2387 ++NumVectorInstructions; 2388 return propagateMetadata(LI, E->Scalars); 2389 } 2390 case Instruction::Store: { 2391 StoreInst *SI = cast<StoreInst>(VL0); 2392 unsigned Alignment = SI->getAlignment(); 2393 unsigned AS = SI->getPointerAddressSpace(); 2394 2395 ValueList ValueOp; 2396 for (Value *V : E->Scalars) 2397 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2398 2399 setInsertPointAfterBundle(E->Scalars); 2400 2401 Value *VecValue = vectorizeTree(ValueOp); 2402 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2403 VecTy->getPointerTo(AS)); 2404 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2405 2406 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2407 // ExternalUses list to make sure that an extract will be generated in the 2408 // future. 2409 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2410 ExternalUses.push_back( 2411 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2412 2413 if (!Alignment) { 2414 Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType()); 2415 } 2416 S->setAlignment(Alignment); 2417 E->VectorizedValue = S; 2418 ++NumVectorInstructions; 2419 return propagateMetadata(S, E->Scalars); 2420 } 2421 case Instruction::GetElementPtr: { 2422 setInsertPointAfterBundle(E->Scalars); 2423 2424 ValueList Op0VL; 2425 for (Value *V : E->Scalars) 2426 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2427 2428 Value *Op0 = vectorizeTree(Op0VL); 2429 2430 std::vector<Value *> OpVecs; 2431 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2432 ++j) { 2433 ValueList OpVL; 2434 for (Value *V : E->Scalars) 2435 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2436 2437 Value *OpVec = vectorizeTree(OpVL); 2438 OpVecs.push_back(OpVec); 2439 } 2440 2441 Value *V = Builder.CreateGEP( 2442 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2443 E->VectorizedValue = V; 2444 ++NumVectorInstructions; 2445 2446 if (Instruction *I = dyn_cast<Instruction>(V)) 2447 return propagateMetadata(I, E->Scalars); 2448 2449 return V; 2450 } 2451 case Instruction::Call: { 2452 CallInst *CI = cast<CallInst>(VL0); 2453 setInsertPointAfterBundle(E->Scalars); 2454 Function *FI; 2455 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2456 Value *ScalarArg = nullptr; 2457 if (CI && (FI = CI->getCalledFunction())) { 2458 IID = FI->getIntrinsicID(); 2459 } 2460 std::vector<Value *> OpVecs; 2461 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2462 ValueList OpVL; 2463 // ctlz,cttz and powi are special intrinsics whose second argument is 2464 // a scalar. This argument should not be vectorized. 2465 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2466 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2467 ScalarArg = CEI->getArgOperand(j); 2468 OpVecs.push_back(CEI->getArgOperand(j)); 2469 continue; 2470 } 2471 for (Value *V : E->Scalars) { 2472 CallInst *CEI = cast<CallInst>(V); 2473 OpVL.push_back(CEI->getArgOperand(j)); 2474 } 2475 2476 Value *OpVec = vectorizeTree(OpVL); 2477 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2478 OpVecs.push_back(OpVec); 2479 } 2480 2481 Module *M = F->getParent(); 2482 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2483 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2484 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2485 Value *V = Builder.CreateCall(CF, OpVecs); 2486 2487 // The scalar argument uses an in-tree scalar so we add the new vectorized 2488 // call to ExternalUses list to make sure that an extract will be 2489 // generated in the future. 2490 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2491 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2492 2493 E->VectorizedValue = V; 2494 ++NumVectorInstructions; 2495 return V; 2496 } 2497 case Instruction::ShuffleVector: { 2498 ValueList LHSVL, RHSVL; 2499 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2500 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2501 setInsertPointAfterBundle(E->Scalars); 2502 2503 Value *LHS = vectorizeTree(LHSVL); 2504 Value *RHS = vectorizeTree(RHSVL); 2505 2506 if (Value *V = alreadyVectorized(E->Scalars)) 2507 return V; 2508 2509 // Create a vector of LHS op1 RHS 2510 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2511 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2512 2513 // Create a vector of LHS op2 RHS 2514 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2515 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2516 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2517 2518 // Create shuffle to take alternate operations from the vector. 2519 // Also, gather up odd and even scalar ops to propagate IR flags to 2520 // each vector operation. 2521 ValueList OddScalars, EvenScalars; 2522 unsigned e = E->Scalars.size(); 2523 SmallVector<Constant *, 8> Mask(e); 2524 for (unsigned i = 0; i < e; ++i) { 2525 if (i & 1) { 2526 Mask[i] = Builder.getInt32(e + i); 2527 OddScalars.push_back(E->Scalars[i]); 2528 } else { 2529 Mask[i] = Builder.getInt32(i); 2530 EvenScalars.push_back(E->Scalars[i]); 2531 } 2532 } 2533 2534 Value *ShuffleMask = ConstantVector::get(Mask); 2535 propagateIRFlags(V0, EvenScalars); 2536 propagateIRFlags(V1, OddScalars); 2537 2538 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2539 E->VectorizedValue = V; 2540 ++NumVectorInstructions; 2541 if (Instruction *I = dyn_cast<Instruction>(V)) 2542 return propagateMetadata(I, E->Scalars); 2543 2544 return V; 2545 } 2546 default: 2547 llvm_unreachable("unknown inst"); 2548 } 2549 return nullptr; 2550 } 2551 2552 Value *BoUpSLP::vectorizeTree() { 2553 2554 // All blocks must be scheduled before any instructions are inserted. 2555 for (auto &BSIter : BlocksSchedules) { 2556 scheduleBlock(BSIter.second.get()); 2557 } 2558 2559 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2560 vectorizeTree(&VectorizableTree[0]); 2561 2562 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2563 2564 // Extract all of the elements with the external uses. 2565 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2566 it != e; ++it) { 2567 Value *Scalar = it->Scalar; 2568 llvm::User *User = it->User; 2569 2570 // Skip users that we already RAUW. This happens when one instruction 2571 // has multiple uses of the same value. 2572 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2573 Scalar->user_end()) 2574 continue; 2575 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2576 2577 int Idx = ScalarToTreeEntry[Scalar]; 2578 TreeEntry *E = &VectorizableTree[Idx]; 2579 assert(!E->NeedToGather && "Extracting from a gather list"); 2580 2581 Value *Vec = E->VectorizedValue; 2582 assert(Vec && "Can't find vectorizable value"); 2583 2584 Value *Lane = Builder.getInt32(it->Lane); 2585 // Generate extracts for out-of-tree users. 2586 // Find the insertion point for the extractelement lane. 2587 if (isa<Instruction>(Vec)){ 2588 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2589 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2590 if (PH->getIncomingValue(i) == Scalar) { 2591 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2592 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2593 CSEBlocks.insert(PH->getIncomingBlock(i)); 2594 PH->setOperand(i, Ex); 2595 } 2596 } 2597 } else { 2598 Builder.SetInsertPoint(cast<Instruction>(User)); 2599 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2600 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2601 User->replaceUsesOfWith(Scalar, Ex); 2602 } 2603 } else { 2604 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2605 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2606 CSEBlocks.insert(&F->getEntryBlock()); 2607 User->replaceUsesOfWith(Scalar, Ex); 2608 } 2609 2610 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2611 } 2612 2613 // For each vectorized value: 2614 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2615 TreeEntry *Entry = &VectorizableTree[EIdx]; 2616 2617 // For each lane: 2618 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2619 Value *Scalar = Entry->Scalars[Lane]; 2620 // No need to handle users of gathered values. 2621 if (Entry->NeedToGather) 2622 continue; 2623 2624 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2625 2626 Type *Ty = Scalar->getType(); 2627 if (!Ty->isVoidTy()) { 2628 #ifndef NDEBUG 2629 for (User *U : Scalar->users()) { 2630 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2631 2632 assert((ScalarToTreeEntry.count(U) || 2633 // It is legal to replace users in the ignorelist by undef. 2634 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2635 UserIgnoreList.end())) && 2636 "Replacing out-of-tree value with undef"); 2637 } 2638 #endif 2639 Value *Undef = UndefValue::get(Ty); 2640 Scalar->replaceAllUsesWith(Undef); 2641 } 2642 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2643 eraseInstruction(cast<Instruction>(Scalar)); 2644 } 2645 } 2646 2647 Builder.ClearInsertionPoint(); 2648 2649 return VectorizableTree[0].VectorizedValue; 2650 } 2651 2652 void BoUpSLP::optimizeGatherSequence() { 2653 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2654 << " gather sequences instructions.\n"); 2655 // LICM InsertElementInst sequences. 2656 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2657 e = GatherSeq.end(); it != e; ++it) { 2658 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2659 2660 if (!Insert) 2661 continue; 2662 2663 // Check if this block is inside a loop. 2664 Loop *L = LI->getLoopFor(Insert->getParent()); 2665 if (!L) 2666 continue; 2667 2668 // Check if it has a preheader. 2669 BasicBlock *PreHeader = L->getLoopPreheader(); 2670 if (!PreHeader) 2671 continue; 2672 2673 // If the vector or the element that we insert into it are 2674 // instructions that are defined in this basic block then we can't 2675 // hoist this instruction. 2676 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2677 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2678 if (CurrVec && L->contains(CurrVec)) 2679 continue; 2680 if (NewElem && L->contains(NewElem)) 2681 continue; 2682 2683 // We can hoist this instruction. Move it to the pre-header. 2684 Insert->moveBefore(PreHeader->getTerminator()); 2685 } 2686 2687 // Make a list of all reachable blocks in our CSE queue. 2688 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2689 CSEWorkList.reserve(CSEBlocks.size()); 2690 for (BasicBlock *BB : CSEBlocks) 2691 if (DomTreeNode *N = DT->getNode(BB)) { 2692 assert(DT->isReachableFromEntry(N)); 2693 CSEWorkList.push_back(N); 2694 } 2695 2696 // Sort blocks by domination. This ensures we visit a block after all blocks 2697 // dominating it are visited. 2698 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2699 [this](const DomTreeNode *A, const DomTreeNode *B) { 2700 return DT->properlyDominates(A, B); 2701 }); 2702 2703 // Perform O(N^2) search over the gather sequences and merge identical 2704 // instructions. TODO: We can further optimize this scan if we split the 2705 // instructions into different buckets based on the insert lane. 2706 SmallVector<Instruction *, 16> Visited; 2707 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2708 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2709 "Worklist not sorted properly!"); 2710 BasicBlock *BB = (*I)->getBlock(); 2711 // For all instructions in blocks containing gather sequences: 2712 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2713 Instruction *In = &*it++; 2714 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2715 continue; 2716 2717 // Check if we can replace this instruction with any of the 2718 // visited instructions. 2719 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2720 ve = Visited.end(); 2721 v != ve; ++v) { 2722 if (In->isIdenticalTo(*v) && 2723 DT->dominates((*v)->getParent(), In->getParent())) { 2724 In->replaceAllUsesWith(*v); 2725 eraseInstruction(In); 2726 In = nullptr; 2727 break; 2728 } 2729 } 2730 if (In) { 2731 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2732 Visited.push_back(In); 2733 } 2734 } 2735 } 2736 CSEBlocks.clear(); 2737 GatherSeq.clear(); 2738 } 2739 2740 // Groups the instructions to a bundle (which is then a single scheduling entity) 2741 // and schedules instructions until the bundle gets ready. 2742 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2743 BoUpSLP *SLP) { 2744 if (isa<PHINode>(VL[0])) 2745 return true; 2746 2747 // Initialize the instruction bundle. 2748 Instruction *OldScheduleEnd = ScheduleEnd; 2749 ScheduleData *PrevInBundle = nullptr; 2750 ScheduleData *Bundle = nullptr; 2751 bool ReSchedule = false; 2752 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2753 2754 // Make sure that the scheduling region contains all 2755 // instructions of the bundle. 2756 for (Value *V : VL) { 2757 if (!extendSchedulingRegion(V)) 2758 return false; 2759 } 2760 2761 for (Value *V : VL) { 2762 ScheduleData *BundleMember = getScheduleData(V); 2763 assert(BundleMember && 2764 "no ScheduleData for bundle member (maybe not in same basic block)"); 2765 if (BundleMember->IsScheduled) { 2766 // A bundle member was scheduled as single instruction before and now 2767 // needs to be scheduled as part of the bundle. We just get rid of the 2768 // existing schedule. 2769 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2770 << " was already scheduled\n"); 2771 ReSchedule = true; 2772 } 2773 assert(BundleMember->isSchedulingEntity() && 2774 "bundle member already part of other bundle"); 2775 if (PrevInBundle) { 2776 PrevInBundle->NextInBundle = BundleMember; 2777 } else { 2778 Bundle = BundleMember; 2779 } 2780 BundleMember->UnscheduledDepsInBundle = 0; 2781 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2782 2783 // Group the instructions to a bundle. 2784 BundleMember->FirstInBundle = Bundle; 2785 PrevInBundle = BundleMember; 2786 } 2787 if (ScheduleEnd != OldScheduleEnd) { 2788 // The scheduling region got new instructions at the lower end (or it is a 2789 // new region for the first bundle). This makes it necessary to 2790 // recalculate all dependencies. 2791 // It is seldom that this needs to be done a second time after adding the 2792 // initial bundle to the region. 2793 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2794 ScheduleData *SD = getScheduleData(I); 2795 SD->clearDependencies(); 2796 } 2797 ReSchedule = true; 2798 } 2799 if (ReSchedule) { 2800 resetSchedule(); 2801 initialFillReadyList(ReadyInsts); 2802 } 2803 2804 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2805 << BB->getName() << "\n"); 2806 2807 calculateDependencies(Bundle, true, SLP); 2808 2809 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2810 // means that there are no cyclic dependencies and we can schedule it. 2811 // Note that's important that we don't "schedule" the bundle yet (see 2812 // cancelScheduling). 2813 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2814 2815 ScheduleData *pickedSD = ReadyInsts.back(); 2816 ReadyInsts.pop_back(); 2817 2818 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2819 schedule(pickedSD, ReadyInsts); 2820 } 2821 } 2822 if (!Bundle->isReady()) { 2823 cancelScheduling(VL); 2824 return false; 2825 } 2826 return true; 2827 } 2828 2829 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2830 if (isa<PHINode>(VL[0])) 2831 return; 2832 2833 ScheduleData *Bundle = getScheduleData(VL[0]); 2834 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2835 assert(!Bundle->IsScheduled && 2836 "Can't cancel bundle which is already scheduled"); 2837 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2838 "tried to unbundle something which is not a bundle"); 2839 2840 // Un-bundle: make single instructions out of the bundle. 2841 ScheduleData *BundleMember = Bundle; 2842 while (BundleMember) { 2843 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2844 BundleMember->FirstInBundle = BundleMember; 2845 ScheduleData *Next = BundleMember->NextInBundle; 2846 BundleMember->NextInBundle = nullptr; 2847 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2848 if (BundleMember->UnscheduledDepsInBundle == 0) { 2849 ReadyInsts.insert(BundleMember); 2850 } 2851 BundleMember = Next; 2852 } 2853 } 2854 2855 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2856 if (getScheduleData(V)) 2857 return true; 2858 Instruction *I = dyn_cast<Instruction>(V); 2859 assert(I && "bundle member must be an instruction"); 2860 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2861 if (!ScheduleStart) { 2862 // It's the first instruction in the new region. 2863 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2864 ScheduleStart = I; 2865 ScheduleEnd = I->getNextNode(); 2866 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2867 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2868 return true; 2869 } 2870 // Search up and down at the same time, because we don't know if the new 2871 // instruction is above or below the existing scheduling region. 2872 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); 2873 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2874 BasicBlock::iterator DownIter(ScheduleEnd); 2875 BasicBlock::iterator LowerEnd = BB->end(); 2876 for (;;) { 2877 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 2878 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 2879 return false; 2880 } 2881 2882 if (UpIter != UpperEnd) { 2883 if (&*UpIter == I) { 2884 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2885 ScheduleStart = I; 2886 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2887 return true; 2888 } 2889 UpIter++; 2890 } 2891 if (DownIter != LowerEnd) { 2892 if (&*DownIter == I) { 2893 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2894 nullptr); 2895 ScheduleEnd = I->getNextNode(); 2896 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2897 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2898 return true; 2899 } 2900 DownIter++; 2901 } 2902 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2903 "instruction not found in block"); 2904 } 2905 return true; 2906 } 2907 2908 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 2909 Instruction *ToI, 2910 ScheduleData *PrevLoadStore, 2911 ScheduleData *NextLoadStore) { 2912 ScheduleData *CurrentLoadStore = PrevLoadStore; 2913 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 2914 ScheduleData *SD = ScheduleDataMap[I]; 2915 if (!SD) { 2916 // Allocate a new ScheduleData for the instruction. 2917 if (ChunkPos >= ChunkSize) { 2918 ScheduleDataChunks.push_back( 2919 llvm::make_unique<ScheduleData[]>(ChunkSize)); 2920 ChunkPos = 0; 2921 } 2922 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 2923 ScheduleDataMap[I] = SD; 2924 SD->Inst = I; 2925 } 2926 assert(!isInSchedulingRegion(SD) && 2927 "new ScheduleData already in scheduling region"); 2928 SD->init(SchedulingRegionID); 2929 2930 if (I->mayReadOrWriteMemory()) { 2931 // Update the linked list of memory accessing instructions. 2932 if (CurrentLoadStore) { 2933 CurrentLoadStore->NextLoadStore = SD; 2934 } else { 2935 FirstLoadStoreInRegion = SD; 2936 } 2937 CurrentLoadStore = SD; 2938 } 2939 } 2940 if (NextLoadStore) { 2941 if (CurrentLoadStore) 2942 CurrentLoadStore->NextLoadStore = NextLoadStore; 2943 } else { 2944 LastLoadStoreInRegion = CurrentLoadStore; 2945 } 2946 } 2947 2948 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 2949 bool InsertInReadyList, 2950 BoUpSLP *SLP) { 2951 assert(SD->isSchedulingEntity()); 2952 2953 SmallVector<ScheduleData *, 10> WorkList; 2954 WorkList.push_back(SD); 2955 2956 while (!WorkList.empty()) { 2957 ScheduleData *SD = WorkList.back(); 2958 WorkList.pop_back(); 2959 2960 ScheduleData *BundleMember = SD; 2961 while (BundleMember) { 2962 assert(isInSchedulingRegion(BundleMember)); 2963 if (!BundleMember->hasValidDependencies()) { 2964 2965 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 2966 BundleMember->Dependencies = 0; 2967 BundleMember->resetUnscheduledDeps(); 2968 2969 // Handle def-use chain dependencies. 2970 for (User *U : BundleMember->Inst->users()) { 2971 if (isa<Instruction>(U)) { 2972 ScheduleData *UseSD = getScheduleData(U); 2973 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 2974 BundleMember->Dependencies++; 2975 ScheduleData *DestBundle = UseSD->FirstInBundle; 2976 if (!DestBundle->IsScheduled) { 2977 BundleMember->incrementUnscheduledDeps(1); 2978 } 2979 if (!DestBundle->hasValidDependencies()) { 2980 WorkList.push_back(DestBundle); 2981 } 2982 } 2983 } else { 2984 // I'm not sure if this can ever happen. But we need to be safe. 2985 // This lets the instruction/bundle never be scheduled and 2986 // eventually disable vectorization. 2987 BundleMember->Dependencies++; 2988 BundleMember->incrementUnscheduledDeps(1); 2989 } 2990 } 2991 2992 // Handle the memory dependencies. 2993 ScheduleData *DepDest = BundleMember->NextLoadStore; 2994 if (DepDest) { 2995 Instruction *SrcInst = BundleMember->Inst; 2996 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 2997 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 2998 unsigned numAliased = 0; 2999 unsigned DistToSrc = 1; 3000 3001 while (DepDest) { 3002 assert(isInSchedulingRegion(DepDest)); 3003 3004 // We have two limits to reduce the complexity: 3005 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3006 // SLP->isAliased (which is the expensive part in this loop). 3007 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3008 // the whole loop (even if the loop is fast, it's quadratic). 3009 // It's important for the loop break condition (see below) to 3010 // check this limit even between two read-only instructions. 3011 if (DistToSrc >= MaxMemDepDistance || 3012 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3013 (numAliased >= AliasedCheckLimit || 3014 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3015 3016 // We increment the counter only if the locations are aliased 3017 // (instead of counting all alias checks). This gives a better 3018 // balance between reduced runtime and accurate dependencies. 3019 numAliased++; 3020 3021 DepDest->MemoryDependencies.push_back(BundleMember); 3022 BundleMember->Dependencies++; 3023 ScheduleData *DestBundle = DepDest->FirstInBundle; 3024 if (!DestBundle->IsScheduled) { 3025 BundleMember->incrementUnscheduledDeps(1); 3026 } 3027 if (!DestBundle->hasValidDependencies()) { 3028 WorkList.push_back(DestBundle); 3029 } 3030 } 3031 DepDest = DepDest->NextLoadStore; 3032 3033 // Example, explaining the loop break condition: Let's assume our 3034 // starting instruction is i0 and MaxMemDepDistance = 3. 3035 // 3036 // +--------v--v--v 3037 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3038 // +--------^--^--^ 3039 // 3040 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3041 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3042 // Previously we already added dependencies from i3 to i6,i7,i8 3043 // (because of MaxMemDepDistance). As we added a dependency from 3044 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3045 // and we can abort this loop at i6. 3046 if (DistToSrc >= 2 * MaxMemDepDistance) 3047 break; 3048 DistToSrc++; 3049 } 3050 } 3051 } 3052 BundleMember = BundleMember->NextInBundle; 3053 } 3054 if (InsertInReadyList && SD->isReady()) { 3055 ReadyInsts.push_back(SD); 3056 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3057 } 3058 } 3059 } 3060 3061 void BoUpSLP::BlockScheduling::resetSchedule() { 3062 assert(ScheduleStart && 3063 "tried to reset schedule on block which has not been scheduled"); 3064 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3065 ScheduleData *SD = getScheduleData(I); 3066 assert(isInSchedulingRegion(SD)); 3067 SD->IsScheduled = false; 3068 SD->resetUnscheduledDeps(); 3069 } 3070 ReadyInsts.clear(); 3071 } 3072 3073 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3074 3075 if (!BS->ScheduleStart) 3076 return; 3077 3078 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3079 3080 BS->resetSchedule(); 3081 3082 // For the real scheduling we use a more sophisticated ready-list: it is 3083 // sorted by the original instruction location. This lets the final schedule 3084 // be as close as possible to the original instruction order. 3085 struct ScheduleDataCompare { 3086 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3087 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3088 } 3089 }; 3090 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3091 3092 // Ensure that all dependency data is updated and fill the ready-list with 3093 // initial instructions. 3094 int Idx = 0; 3095 int NumToSchedule = 0; 3096 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3097 I = I->getNextNode()) { 3098 ScheduleData *SD = BS->getScheduleData(I); 3099 assert( 3100 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3101 "scheduler and vectorizer have different opinion on what is a bundle"); 3102 SD->FirstInBundle->SchedulingPriority = Idx++; 3103 if (SD->isSchedulingEntity()) { 3104 BS->calculateDependencies(SD, false, this); 3105 NumToSchedule++; 3106 } 3107 } 3108 BS->initialFillReadyList(ReadyInsts); 3109 3110 Instruction *LastScheduledInst = BS->ScheduleEnd; 3111 3112 // Do the "real" scheduling. 3113 while (!ReadyInsts.empty()) { 3114 ScheduleData *picked = *ReadyInsts.begin(); 3115 ReadyInsts.erase(ReadyInsts.begin()); 3116 3117 // Move the scheduled instruction(s) to their dedicated places, if not 3118 // there yet. 3119 ScheduleData *BundleMember = picked; 3120 while (BundleMember) { 3121 Instruction *pickedInst = BundleMember->Inst; 3122 if (LastScheduledInst->getNextNode() != pickedInst) { 3123 BS->BB->getInstList().remove(pickedInst); 3124 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3125 pickedInst); 3126 } 3127 LastScheduledInst = pickedInst; 3128 BundleMember = BundleMember->NextInBundle; 3129 } 3130 3131 BS->schedule(picked, ReadyInsts); 3132 NumToSchedule--; 3133 } 3134 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3135 3136 // Avoid duplicate scheduling of the block. 3137 BS->ScheduleStart = nullptr; 3138 } 3139 3140 /// The SLPVectorizer Pass. 3141 struct SLPVectorizer : public FunctionPass { 3142 typedef SmallVector<StoreInst *, 8> StoreList; 3143 typedef MapVector<Value *, StoreList> StoreListMap; 3144 3145 /// Pass identification, replacement for typeid 3146 static char ID; 3147 3148 explicit SLPVectorizer() : FunctionPass(ID) { 3149 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3150 } 3151 3152 ScalarEvolution *SE; 3153 TargetTransformInfo *TTI; 3154 TargetLibraryInfo *TLI; 3155 AliasAnalysis *AA; 3156 LoopInfo *LI; 3157 DominatorTree *DT; 3158 AssumptionCache *AC; 3159 3160 bool runOnFunction(Function &F) override { 3161 if (skipOptnoneFunction(F)) 3162 return false; 3163 3164 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3165 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3166 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3167 TLI = TLIP ? &TLIP->getTLI() : nullptr; 3168 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3169 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3170 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3171 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3172 3173 StoreRefs.clear(); 3174 bool Changed = false; 3175 3176 // If the target claims to have no vector registers don't attempt 3177 // vectorization. 3178 if (!TTI->getNumberOfRegisters(true)) 3179 return false; 3180 3181 // Use the vector register size specified by the target unless overridden 3182 // by a command-line option. 3183 // TODO: It would be better to limit the vectorization factor based on 3184 // data type rather than just register size. For example, x86 AVX has 3185 // 256-bit registers, but it does not support integer operations 3186 // at that width (that requires AVX2). 3187 if (MaxVectorRegSizeOption.getNumOccurrences()) 3188 MaxVecRegSize = MaxVectorRegSizeOption; 3189 else 3190 MaxVecRegSize = TTI->getRegisterBitWidth(true); 3191 3192 // Don't vectorize when the attribute NoImplicitFloat is used. 3193 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3194 return false; 3195 3196 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3197 3198 // Use the bottom up slp vectorizer to construct chains that start with 3199 // store instructions. 3200 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC); 3201 3202 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3203 // delete instructions. 3204 3205 // Scan the blocks in the function in post order. 3206 for (auto BB : post_order(&F.getEntryBlock())) { 3207 // Vectorize trees that end at stores. 3208 if (unsigned count = collectStores(BB, R)) { 3209 (void)count; 3210 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 3211 Changed |= vectorizeStoreChains(R); 3212 } 3213 3214 // Vectorize trees that end at reductions. 3215 Changed |= vectorizeChainsInBlock(BB, R); 3216 } 3217 3218 if (Changed) { 3219 R.optimizeGatherSequence(); 3220 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3221 DEBUG(verifyFunction(F)); 3222 } 3223 return Changed; 3224 } 3225 3226 void getAnalysisUsage(AnalysisUsage &AU) const override { 3227 FunctionPass::getAnalysisUsage(AU); 3228 AU.addRequired<AssumptionCacheTracker>(); 3229 AU.addRequired<ScalarEvolutionWrapperPass>(); 3230 AU.addRequired<AAResultsWrapperPass>(); 3231 AU.addRequired<TargetTransformInfoWrapperPass>(); 3232 AU.addRequired<LoopInfoWrapperPass>(); 3233 AU.addRequired<DominatorTreeWrapperPass>(); 3234 AU.addPreserved<LoopInfoWrapperPass>(); 3235 AU.addPreserved<DominatorTreeWrapperPass>(); 3236 AU.addPreserved<AAResultsWrapperPass>(); 3237 AU.addPreserved<GlobalsAAWrapperPass>(); 3238 AU.setPreservesCFG(); 3239 } 3240 3241 private: 3242 3243 /// \brief Collect memory references and sort them according to their base 3244 /// object. We sort the stores to their base objects to reduce the cost of the 3245 /// quadratic search on the stores. TODO: We can further reduce this cost 3246 /// if we flush the chain creation every time we run into a memory barrier. 3247 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 3248 3249 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 3250 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 3251 3252 /// \brief Try to vectorize a list of operands. 3253 /// \@param BuildVector A list of users to ignore for the purpose of 3254 /// scheduling and that don't need extracting. 3255 /// \returns true if a value was vectorized. 3256 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3257 ArrayRef<Value *> BuildVector = None, 3258 bool allowReorder = false); 3259 3260 /// \brief Try to vectorize a chain that may start at the operands of \V; 3261 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 3262 3263 /// \brief Vectorize the stores that were collected in StoreRefs. 3264 bool vectorizeStoreChains(BoUpSLP &R); 3265 3266 /// \brief Scan the basic block and look for patterns that are likely to start 3267 /// a vectorization chain. 3268 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 3269 3270 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 3271 BoUpSLP &R, unsigned VecRegSize); 3272 3273 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 3274 BoUpSLP &R); 3275 private: 3276 StoreListMap StoreRefs; 3277 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3278 }; 3279 3280 /// \brief Check that the Values in the slice in VL array are still existent in 3281 /// the WeakVH array. 3282 /// Vectorization of part of the VL array may cause later values in the VL array 3283 /// to become invalid. We track when this has happened in the WeakVH array. 3284 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3285 unsigned SliceBegin, unsigned SliceSize) { 3286 VL = VL.slice(SliceBegin, SliceSize); 3287 VH = VH.slice(SliceBegin, SliceSize); 3288 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3289 } 3290 3291 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 3292 int CostThreshold, BoUpSLP &R, 3293 unsigned VecRegSize) { 3294 unsigned ChainLen = Chain.size(); 3295 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3296 << "\n"); 3297 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 3298 auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout(); 3299 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 3300 unsigned VF = VecRegSize / Sz; 3301 3302 if (!isPowerOf2_32(Sz) || VF < 2) 3303 return false; 3304 3305 // Keep track of values that were deleted by vectorizing in the loop below. 3306 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3307 3308 bool Changed = false; 3309 // Look for profitable vectorizable trees at all offsets, starting at zero. 3310 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3311 if (i + VF > e) 3312 break; 3313 3314 // Check that a previous iteration of this loop did not delete the Value. 3315 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3316 continue; 3317 3318 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3319 << "\n"); 3320 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3321 3322 R.buildTree(Operands); 3323 3324 int Cost = R.getTreeCost(); 3325 3326 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3327 if (Cost < CostThreshold) { 3328 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3329 R.vectorizeTree(); 3330 3331 // Move to the next bundle. 3332 i += VF - 1; 3333 Changed = true; 3334 } 3335 } 3336 3337 return Changed; 3338 } 3339 3340 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 3341 int costThreshold, BoUpSLP &R) { 3342 SetVector<StoreInst *> Heads, Tails; 3343 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3344 3345 // We may run into multiple chains that merge into a single chain. We mark the 3346 // stores that we vectorized so that we don't visit the same store twice. 3347 BoUpSLP::ValueSet VectorizedStores; 3348 bool Changed = false; 3349 3350 // Do a quadratic search on all of the given stores and find 3351 // all of the pairs of stores that follow each other. 3352 SmallVector<unsigned, 16> IndexQueue; 3353 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3354 const DataLayout &DL = Stores[i]->getModule()->getDataLayout(); 3355 IndexQueue.clear(); 3356 // If a store has multiple consecutive store candidates, search Stores 3357 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3358 // This is because usually pairing with immediate succeeding or preceding 3359 // candidate create the best chance to find slp vectorization opportunity. 3360 unsigned j = 0; 3361 for (j = i + 1; j < e; ++j) 3362 IndexQueue.push_back(j); 3363 for (j = i; j > 0; --j) 3364 IndexQueue.push_back(j - 1); 3365 3366 for (auto &k : IndexQueue) { 3367 if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) { 3368 Tails.insert(Stores[k]); 3369 Heads.insert(Stores[i]); 3370 ConsecutiveChain[Stores[i]] = Stores[k]; 3371 break; 3372 } 3373 } 3374 } 3375 3376 // For stores that start but don't end a link in the chain: 3377 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3378 it != e; ++it) { 3379 if (Tails.count(*it)) 3380 continue; 3381 3382 // We found a store instr that starts a chain. Now follow the chain and try 3383 // to vectorize it. 3384 BoUpSLP::ValueList Operands; 3385 StoreInst *I = *it; 3386 // Collect the chain into a list. 3387 while (Tails.count(I) || Heads.count(I)) { 3388 if (VectorizedStores.count(I)) 3389 break; 3390 Operands.push_back(I); 3391 // Move to the next value in the chain. 3392 I = ConsecutiveChain[I]; 3393 } 3394 3395 // FIXME: Is division-by-2 the correct step? Should we assert that the 3396 // register size is a power-of-2? 3397 for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) { 3398 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3399 // Mark the vectorized stores so that we don't vectorize them again. 3400 VectorizedStores.insert(Operands.begin(), Operands.end()); 3401 Changed = true; 3402 break; 3403 } 3404 } 3405 } 3406 3407 return Changed; 3408 } 3409 3410 3411 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 3412 unsigned count = 0; 3413 StoreRefs.clear(); 3414 const DataLayout &DL = BB->getModule()->getDataLayout(); 3415 for (Instruction &I : *BB) { 3416 StoreInst *SI = dyn_cast<StoreInst>(&I); 3417 if (!SI) 3418 continue; 3419 3420 // Don't touch volatile stores. 3421 if (!SI->isSimple()) 3422 continue; 3423 3424 // Check that the pointer points to scalars. 3425 Type *Ty = SI->getValueOperand()->getType(); 3426 if (!isValidElementType(Ty)) 3427 continue; 3428 3429 // Find the base pointer. 3430 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 3431 3432 // Save the store locations. 3433 StoreRefs[Ptr].push_back(SI); 3434 count++; 3435 } 3436 return count; 3437 } 3438 3439 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3440 if (!A || !B) 3441 return false; 3442 Value *VL[] = { A, B }; 3443 return tryToVectorizeList(VL, R, None, true); 3444 } 3445 3446 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3447 ArrayRef<Value *> BuildVector, 3448 bool allowReorder) { 3449 if (VL.size() < 2) 3450 return false; 3451 3452 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3453 3454 // Check that all of the parts are scalar instructions of the same type. 3455 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3456 if (!I0) 3457 return false; 3458 3459 unsigned Opcode0 = I0->getOpcode(); 3460 const DataLayout &DL = I0->getModule()->getDataLayout(); 3461 3462 Type *Ty0 = I0->getType(); 3463 unsigned Sz = DL.getTypeSizeInBits(Ty0); 3464 // FIXME: Register size should be a parameter to this function, so we can 3465 // try different vectorization factors. 3466 unsigned VF = MinVecRegSize / Sz; 3467 3468 for (Value *V : VL) { 3469 Type *Ty = V->getType(); 3470 if (!isValidElementType(Ty)) 3471 return false; 3472 Instruction *Inst = dyn_cast<Instruction>(V); 3473 if (!Inst || Inst->getOpcode() != Opcode0) 3474 return false; 3475 } 3476 3477 bool Changed = false; 3478 3479 // Keep track of values that were deleted by vectorizing in the loop below. 3480 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3481 3482 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3483 unsigned OpsWidth = 0; 3484 3485 if (i + VF > e) 3486 OpsWidth = e - i; 3487 else 3488 OpsWidth = VF; 3489 3490 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3491 break; 3492 3493 // Check that a previous iteration of this loop did not delete the Value. 3494 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3495 continue; 3496 3497 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3498 << "\n"); 3499 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3500 3501 ArrayRef<Value *> BuildVectorSlice; 3502 if (!BuildVector.empty()) 3503 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3504 3505 R.buildTree(Ops, BuildVectorSlice); 3506 // TODO: check if we can allow reordering also for other cases than 3507 // tryToVectorizePair() 3508 if (allowReorder && R.shouldReorder()) { 3509 assert(Ops.size() == 2); 3510 assert(BuildVectorSlice.empty()); 3511 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3512 R.buildTree(ReorderedOps, None); 3513 } 3514 int Cost = R.getTreeCost(); 3515 3516 if (Cost < -SLPCostThreshold) { 3517 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3518 Value *VectorizedRoot = R.vectorizeTree(); 3519 3520 // Reconstruct the build vector by extracting the vectorized root. This 3521 // way we handle the case where some elements of the vector are undefined. 3522 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3523 if (!BuildVectorSlice.empty()) { 3524 // The insert point is the last build vector instruction. The vectorized 3525 // root will precede it. This guarantees that we get an instruction. The 3526 // vectorized tree could have been constant folded. 3527 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3528 unsigned VecIdx = 0; 3529 for (auto &V : BuildVectorSlice) { 3530 IRBuilder<true, NoFolder> Builder( 3531 InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); 3532 InsertElementInst *IE = cast<InsertElementInst>(V); 3533 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3534 VectorizedRoot, Builder.getInt32(VecIdx++))); 3535 IE->setOperand(1, Extract); 3536 IE->removeFromParent(); 3537 IE->insertAfter(Extract); 3538 InsertAfter = IE; 3539 } 3540 } 3541 // Move to the next bundle. 3542 i += VF - 1; 3543 Changed = true; 3544 } 3545 } 3546 3547 return Changed; 3548 } 3549 3550 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3551 if (!V) 3552 return false; 3553 3554 // Try to vectorize V. 3555 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3556 return true; 3557 3558 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3559 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3560 // Try to skip B. 3561 if (B && B->hasOneUse()) { 3562 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3563 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3564 if (tryToVectorizePair(A, B0, R)) { 3565 return true; 3566 } 3567 if (tryToVectorizePair(A, B1, R)) { 3568 return true; 3569 } 3570 } 3571 3572 // Try to skip A. 3573 if (A && A->hasOneUse()) { 3574 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3575 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3576 if (tryToVectorizePair(A0, B, R)) { 3577 return true; 3578 } 3579 if (tryToVectorizePair(A1, B, R)) { 3580 return true; 3581 } 3582 } 3583 return 0; 3584 } 3585 3586 /// \brief Generate a shuffle mask to be used in a reduction tree. 3587 /// 3588 /// \param VecLen The length of the vector to be reduced. 3589 /// \param NumEltsToRdx The number of elements that should be reduced in the 3590 /// vector. 3591 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3592 /// reduction. A pairwise reduction will generate a mask of 3593 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3594 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3595 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3596 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3597 bool IsPairwise, bool IsLeft, 3598 IRBuilder<> &Builder) { 3599 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3600 3601 SmallVector<Constant *, 32> ShuffleMask( 3602 VecLen, UndefValue::get(Builder.getInt32Ty())); 3603 3604 if (IsPairwise) 3605 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3606 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3607 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3608 else 3609 // Move the upper half of the vector to the lower half. 3610 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3611 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3612 3613 return ConstantVector::get(ShuffleMask); 3614 } 3615 3616 3617 /// Model horizontal reductions. 3618 /// 3619 /// A horizontal reduction is a tree of reduction operations (currently add and 3620 /// fadd) that has operations that can be put into a vector as its leaf. 3621 /// For example, this tree: 3622 /// 3623 /// mul mul mul mul 3624 /// \ / \ / 3625 /// + + 3626 /// \ / 3627 /// + 3628 /// This tree has "mul" as its reduced values and "+" as its reduction 3629 /// operations. A reduction might be feeding into a store or a binary operation 3630 /// feeding a phi. 3631 /// ... 3632 /// \ / 3633 /// + 3634 /// | 3635 /// phi += 3636 /// 3637 /// Or: 3638 /// ... 3639 /// \ / 3640 /// + 3641 /// | 3642 /// *p = 3643 /// 3644 class HorizontalReduction { 3645 SmallVector<Value *, 16> ReductionOps; 3646 SmallVector<Value *, 32> ReducedVals; 3647 3648 BinaryOperator *ReductionRoot; 3649 PHINode *ReductionPHI; 3650 3651 /// The opcode of the reduction. 3652 unsigned ReductionOpcode; 3653 /// The opcode of the values we perform a reduction on. 3654 unsigned ReducedValueOpcode; 3655 /// Should we model this reduction as a pairwise reduction tree or a tree that 3656 /// splits the vector in halves and adds those halves. 3657 bool IsPairwiseReduction; 3658 3659 public: 3660 /// The width of one full horizontal reduction operation. 3661 unsigned ReduxWidth; 3662 3663 HorizontalReduction() 3664 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3665 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0) {} 3666 3667 /// \brief Try to find a reduction tree. 3668 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 3669 assert((!Phi || 3670 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 3671 "Thi phi needs to use the binary operator"); 3672 3673 // We could have a initial reductions that is not an add. 3674 // r *= v1 + v2 + v3 + v4 3675 // In such a case start looking for a tree rooted in the first '+'. 3676 if (Phi) { 3677 if (B->getOperand(0) == Phi) { 3678 Phi = nullptr; 3679 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 3680 } else if (B->getOperand(1) == Phi) { 3681 Phi = nullptr; 3682 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 3683 } 3684 } 3685 3686 if (!B) 3687 return false; 3688 3689 Type *Ty = B->getType(); 3690 if (!isValidElementType(Ty)) 3691 return false; 3692 3693 const DataLayout &DL = B->getModule()->getDataLayout(); 3694 ReductionOpcode = B->getOpcode(); 3695 ReducedValueOpcode = 0; 3696 // FIXME: Register size should be a parameter to this function, so we can 3697 // try different vectorization factors. 3698 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 3699 ReductionRoot = B; 3700 ReductionPHI = Phi; 3701 3702 if (ReduxWidth < 4) 3703 return false; 3704 3705 // We currently only support adds. 3706 if (ReductionOpcode != Instruction::Add && 3707 ReductionOpcode != Instruction::FAdd) 3708 return false; 3709 3710 // Post order traverse the reduction tree starting at B. We only handle true 3711 // trees containing only binary operators or selects. 3712 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 3713 Stack.push_back(std::make_pair(B, 0)); 3714 while (!Stack.empty()) { 3715 Instruction *TreeN = Stack.back().first; 3716 unsigned EdgeToVist = Stack.back().second++; 3717 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 3718 3719 // Only handle trees in the current basic block. 3720 if (TreeN->getParent() != B->getParent()) 3721 return false; 3722 3723 // Each tree node needs to have one user except for the ultimate 3724 // reduction. 3725 if (!TreeN->hasOneUse() && TreeN != B) 3726 return false; 3727 3728 // Postorder vist. 3729 if (EdgeToVist == 2 || IsReducedValue) { 3730 if (IsReducedValue) { 3731 // Make sure that the opcodes of the operations that we are going to 3732 // reduce match. 3733 if (!ReducedValueOpcode) 3734 ReducedValueOpcode = TreeN->getOpcode(); 3735 else if (ReducedValueOpcode != TreeN->getOpcode()) 3736 return false; 3737 ReducedVals.push_back(TreeN); 3738 } else { 3739 // We need to be able to reassociate the adds. 3740 if (!TreeN->isAssociative()) 3741 return false; 3742 ReductionOps.push_back(TreeN); 3743 } 3744 // Retract. 3745 Stack.pop_back(); 3746 continue; 3747 } 3748 3749 // Visit left or right. 3750 Value *NextV = TreeN->getOperand(EdgeToVist); 3751 // We currently only allow BinaryOperator's and SelectInst's as reduction 3752 // values in our tree. 3753 if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) 3754 Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); 3755 else if (NextV != Phi) 3756 return false; 3757 } 3758 return true; 3759 } 3760 3761 /// \brief Attempt to vectorize the tree found by 3762 /// matchAssociativeReduction. 3763 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 3764 if (ReducedVals.empty()) 3765 return false; 3766 3767 unsigned NumReducedVals = ReducedVals.size(); 3768 if (NumReducedVals < ReduxWidth) 3769 return false; 3770 3771 Value *VectorizedTree = nullptr; 3772 IRBuilder<> Builder(ReductionRoot); 3773 FastMathFlags Unsafe; 3774 Unsafe.setUnsafeAlgebra(); 3775 Builder.setFastMathFlags(Unsafe); 3776 unsigned i = 0; 3777 3778 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 3779 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 3780 3781 // Estimate cost. 3782 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 3783 if (Cost >= -SLPCostThreshold) 3784 break; 3785 3786 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 3787 << ". (HorRdx)\n"); 3788 3789 // Vectorize a tree. 3790 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 3791 Value *VectorizedRoot = V.vectorizeTree(); 3792 3793 // Emit a reduction. 3794 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 3795 if (VectorizedTree) { 3796 Builder.SetCurrentDebugLocation(Loc); 3797 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3798 ReducedSubTree, "bin.rdx"); 3799 } else 3800 VectorizedTree = ReducedSubTree; 3801 } 3802 3803 if (VectorizedTree) { 3804 // Finish the reduction. 3805 for (; i < NumReducedVals; ++i) { 3806 Builder.SetCurrentDebugLocation( 3807 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 3808 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3809 ReducedVals[i]); 3810 } 3811 // Update users. 3812 if (ReductionPHI) { 3813 assert(ReductionRoot && "Need a reduction operation"); 3814 ReductionRoot->setOperand(0, VectorizedTree); 3815 ReductionRoot->setOperand(1, ReductionPHI); 3816 } else 3817 ReductionRoot->replaceAllUsesWith(VectorizedTree); 3818 } 3819 return VectorizedTree != nullptr; 3820 } 3821 3822 unsigned numReductionValues() const { 3823 return ReducedVals.size(); 3824 } 3825 3826 private: 3827 /// \brief Calculate the cost of a reduction. 3828 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 3829 Type *ScalarTy = FirstReducedVal->getType(); 3830 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 3831 3832 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 3833 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 3834 3835 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 3836 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 3837 3838 int ScalarReduxCost = 3839 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 3840 3841 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 3842 << " for reduction that starts with " << *FirstReducedVal 3843 << " (It is a " 3844 << (IsPairwiseReduction ? "pairwise" : "splitting") 3845 << " reduction)\n"); 3846 3847 return VecReduxCost - ScalarReduxCost; 3848 } 3849 3850 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 3851 Value *R, const Twine &Name = "") { 3852 if (Opcode == Instruction::FAdd) 3853 return Builder.CreateFAdd(L, R, Name); 3854 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 3855 } 3856 3857 /// \brief Emit a horizontal reduction of the vectorized value. 3858 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 3859 assert(VectorizedValue && "Need to have a vectorized tree node"); 3860 assert(isPowerOf2_32(ReduxWidth) && 3861 "We only handle power-of-two reductions for now"); 3862 3863 Value *TmpVec = VectorizedValue; 3864 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 3865 if (IsPairwiseReduction) { 3866 Value *LeftMask = 3867 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 3868 Value *RightMask = 3869 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 3870 3871 Value *LeftShuf = Builder.CreateShuffleVector( 3872 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 3873 Value *RightShuf = Builder.CreateShuffleVector( 3874 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 3875 "rdx.shuf.r"); 3876 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 3877 "bin.rdx"); 3878 } else { 3879 Value *UpperHalf = 3880 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 3881 Value *Shuf = Builder.CreateShuffleVector( 3882 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 3883 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 3884 } 3885 } 3886 3887 // The result is in the first element of the vector. 3888 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3889 } 3890 }; 3891 3892 /// \brief Recognize construction of vectors like 3893 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 3894 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 3895 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 3896 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 3897 /// 3898 /// Returns true if it matches 3899 /// 3900 static bool findBuildVector(InsertElementInst *FirstInsertElem, 3901 SmallVectorImpl<Value *> &BuildVector, 3902 SmallVectorImpl<Value *> &BuildVectorOpds) { 3903 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 3904 return false; 3905 3906 InsertElementInst *IE = FirstInsertElem; 3907 while (true) { 3908 BuildVector.push_back(IE); 3909 BuildVectorOpds.push_back(IE->getOperand(1)); 3910 3911 if (IE->use_empty()) 3912 return false; 3913 3914 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 3915 if (!NextUse) 3916 return true; 3917 3918 // If this isn't the final use, make sure the next insertelement is the only 3919 // use. It's OK if the final constructed vector is used multiple times 3920 if (!IE->hasOneUse()) 3921 return false; 3922 3923 IE = NextUse; 3924 } 3925 3926 return false; 3927 } 3928 3929 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 3930 return V->getType() < V2->getType(); 3931 } 3932 3933 /// \brief Try and get a reduction value from a phi node. 3934 /// 3935 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 3936 /// if they come from either \p ParentBB or a containing loop latch. 3937 /// 3938 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 3939 /// if not possible. 3940 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 3941 BasicBlock *ParentBB, LoopInfo *LI) { 3942 // There are situations where the reduction value is not dominated by the 3943 // reduction phi. Vectorizing such cases has been reported to cause 3944 // miscompiles. See PR25787. 3945 auto DominatedReduxValue = [&](Value *R) { 3946 return ( 3947 dyn_cast<Instruction>(R) && 3948 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 3949 }; 3950 3951 Value *Rdx = nullptr; 3952 3953 // Return the incoming value if it comes from the same BB as the phi node. 3954 if (P->getIncomingBlock(0) == ParentBB) { 3955 Rdx = P->getIncomingValue(0); 3956 } else if (P->getIncomingBlock(1) == ParentBB) { 3957 Rdx = P->getIncomingValue(1); 3958 } 3959 3960 if (Rdx && DominatedReduxValue(Rdx)) 3961 return Rdx; 3962 3963 // Otherwise, check whether we have a loop latch to look at. 3964 Loop *BBL = LI->getLoopFor(ParentBB); 3965 if (!BBL) 3966 return nullptr; 3967 BasicBlock *BBLatch = BBL->getLoopLatch(); 3968 if (!BBLatch) 3969 return nullptr; 3970 3971 // There is a loop latch, return the incoming value if it comes from 3972 // that. This reduction pattern occassionaly turns up. 3973 if (P->getIncomingBlock(0) == BBLatch) { 3974 Rdx = P->getIncomingValue(0); 3975 } else if (P->getIncomingBlock(1) == BBLatch) { 3976 Rdx = P->getIncomingValue(1); 3977 } 3978 3979 if (Rdx && DominatedReduxValue(Rdx)) 3980 return Rdx; 3981 3982 return nullptr; 3983 } 3984 3985 /// \brief Attempt to reduce a horizontal reduction. 3986 /// If it is legal to match a horizontal reduction feeding 3987 /// the phi node P with reduction operators BI, then check if it 3988 /// can be done. 3989 /// \returns true if a horizontal reduction was matched and reduced. 3990 /// \returns false if a horizontal reduction was not matched. 3991 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 3992 BoUpSLP &R, TargetTransformInfo *TTI) { 3993 if (!ShouldVectorizeHor) 3994 return false; 3995 3996 HorizontalReduction HorRdx; 3997 if (!HorRdx.matchAssociativeReduction(P, BI)) 3998 return false; 3999 4000 // If there is a sufficient number of reduction values, reduce 4001 // to a nearby power-of-2. Can safely generate oversized 4002 // vectors and rely on the backend to split them to legal sizes. 4003 HorRdx.ReduxWidth = 4004 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4005 4006 return HorRdx.tryToReduce(R, TTI); 4007 } 4008 4009 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4010 bool Changed = false; 4011 SmallVector<Value *, 4> Incoming; 4012 SmallSet<Value *, 16> VisitedInstrs; 4013 4014 bool HaveVectorizedPhiNodes = true; 4015 while (HaveVectorizedPhiNodes) { 4016 HaveVectorizedPhiNodes = false; 4017 4018 // Collect the incoming values from the PHIs. 4019 Incoming.clear(); 4020 for (Instruction &I : *BB) { 4021 PHINode *P = dyn_cast<PHINode>(&I); 4022 if (!P) 4023 break; 4024 4025 if (!VisitedInstrs.count(P)) 4026 Incoming.push_back(P); 4027 } 4028 4029 // Sort by type. 4030 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4031 4032 // Try to vectorize elements base on their type. 4033 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4034 E = Incoming.end(); 4035 IncIt != E;) { 4036 4037 // Look for the next elements with the same type. 4038 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4039 while (SameTypeIt != E && 4040 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4041 VisitedInstrs.insert(*SameTypeIt); 4042 ++SameTypeIt; 4043 } 4044 4045 // Try to vectorize them. 4046 unsigned NumElts = (SameTypeIt - IncIt); 4047 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4048 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4049 // Success start over because instructions might have been changed. 4050 HaveVectorizedPhiNodes = true; 4051 Changed = true; 4052 break; 4053 } 4054 4055 // Start over at the next instruction of a different type (or the end). 4056 IncIt = SameTypeIt; 4057 } 4058 } 4059 4060 VisitedInstrs.clear(); 4061 4062 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4063 // We may go through BB multiple times so skip the one we have checked. 4064 if (!VisitedInstrs.insert(&*it).second) 4065 continue; 4066 4067 if (isa<DbgInfoIntrinsic>(it)) 4068 continue; 4069 4070 // Try to vectorize reductions that use PHINodes. 4071 if (PHINode *P = dyn_cast<PHINode>(it)) { 4072 // Check that the PHI is a reduction PHI. 4073 if (P->getNumIncomingValues() != 2) 4074 return Changed; 4075 4076 Value *Rdx = getReductionValue(DT, P, BB, LI); 4077 4078 // Check if this is a Binary Operator. 4079 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4080 if (!BI) 4081 continue; 4082 4083 // Try to match and vectorize a horizontal reduction. 4084 if (canMatchHorizontalReduction(P, BI, R, TTI)) { 4085 Changed = true; 4086 it = BB->begin(); 4087 e = BB->end(); 4088 continue; 4089 } 4090 4091 Value *Inst = BI->getOperand(0); 4092 if (Inst == P) 4093 Inst = BI->getOperand(1); 4094 4095 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4096 // We would like to start over since some instructions are deleted 4097 // and the iterator may become invalid value. 4098 Changed = true; 4099 it = BB->begin(); 4100 e = BB->end(); 4101 continue; 4102 } 4103 4104 continue; 4105 } 4106 4107 if (ShouldStartVectorizeHorAtStore) 4108 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4109 if (BinaryOperator *BinOp = 4110 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4111 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI) || 4112 tryToVectorize(BinOp, R)) { 4113 Changed = true; 4114 it = BB->begin(); 4115 e = BB->end(); 4116 continue; 4117 } 4118 } 4119 4120 // Try to vectorize horizontal reductions feeding into a return. 4121 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4122 if (RI->getNumOperands() != 0) 4123 if (BinaryOperator *BinOp = 4124 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4125 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4126 if (tryToVectorizePair(BinOp->getOperand(0), 4127 BinOp->getOperand(1), R)) { 4128 Changed = true; 4129 it = BB->begin(); 4130 e = BB->end(); 4131 continue; 4132 } 4133 } 4134 4135 // Try to vectorize trees that start at compare instructions. 4136 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4137 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4138 Changed = true; 4139 // We would like to start over since some instructions are deleted 4140 // and the iterator may become invalid value. 4141 it = BB->begin(); 4142 e = BB->end(); 4143 continue; 4144 } 4145 4146 for (int i = 0; i < 2; ++i) { 4147 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4148 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4149 Changed = true; 4150 // We would like to start over since some instructions are deleted 4151 // and the iterator may become invalid value. 4152 it = BB->begin(); 4153 e = BB->end(); 4154 break; 4155 } 4156 } 4157 } 4158 continue; 4159 } 4160 4161 // Try to vectorize trees that start at insertelement instructions. 4162 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4163 SmallVector<Value *, 16> BuildVector; 4164 SmallVector<Value *, 16> BuildVectorOpds; 4165 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4166 continue; 4167 4168 // Vectorize starting with the build vector operands ignoring the 4169 // BuildVector instructions for the purpose of scheduling and user 4170 // extraction. 4171 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4172 Changed = true; 4173 it = BB->begin(); 4174 e = BB->end(); 4175 } 4176 4177 continue; 4178 } 4179 } 4180 4181 return Changed; 4182 } 4183 4184 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 4185 bool Changed = false; 4186 // Attempt to sort and vectorize each of the store-groups. 4187 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 4188 it != e; ++it) { 4189 if (it->second.size() < 2) 4190 continue; 4191 4192 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4193 << it->second.size() << ".\n"); 4194 4195 // Process the stores in chunks of 16. 4196 // TODO: The limit of 16 inhibits greater vectorization factors. 4197 // For example, AVX2 supports v32i8. Increasing this limit, however, 4198 // may cause a significant compile-time increase. 4199 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4200 unsigned Len = std::min<unsigned>(CE - CI, 16); 4201 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4202 -SLPCostThreshold, R); 4203 } 4204 } 4205 return Changed; 4206 } 4207 4208 } // end anonymous namespace 4209 4210 char SLPVectorizer::ID = 0; 4211 static const char lv_name[] = "SLP Vectorizer"; 4212 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4213 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4214 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4215 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4216 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4217 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4218 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4219 4220 namespace llvm { 4221 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4222 } 4223