1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CodeMetrics.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/VectorUtils.h" 47 #include <algorithm> 48 #include <map> 49 #include <memory> 50 51 using namespace llvm; 52 53 #define SV_NAME "slp-vectorizer" 54 #define DEBUG_TYPE "SLP" 55 56 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 57 58 static cl::opt<int> 59 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 60 cl::desc("Only vectorize if you gain more than this " 61 "number ")); 62 63 static cl::opt<bool> 64 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 65 cl::desc("Attempt to vectorize horizontal reductions")); 66 67 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 68 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 69 cl::desc( 70 "Attempt to vectorize horizontal reductions feeding into a store")); 71 72 namespace { 73 74 static const unsigned MinVecRegSize = 128; 75 76 static const unsigned RecursionMaxDepth = 12; 77 78 /// \returns the parent basic block if all of the instructions in \p VL 79 /// are in the same block or null otherwise. 80 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 81 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 82 if (!I0) 83 return nullptr; 84 BasicBlock *BB = I0->getParent(); 85 for (int i = 1, e = VL.size(); i < e; i++) { 86 Instruction *I = dyn_cast<Instruction>(VL[i]); 87 if (!I) 88 return nullptr; 89 90 if (BB != I->getParent()) 91 return nullptr; 92 } 93 return BB; 94 } 95 96 /// \returns True if all of the values in \p VL are constants. 97 static bool allConstant(ArrayRef<Value *> VL) { 98 for (unsigned i = 0, e = VL.size(); i < e; ++i) 99 if (!isa<Constant>(VL[i])) 100 return false; 101 return true; 102 } 103 104 /// \returns True if all of the values in \p VL are identical. 105 static bool isSplat(ArrayRef<Value *> VL) { 106 for (unsigned i = 1, e = VL.size(); i < e; ++i) 107 if (VL[i] != VL[0]) 108 return false; 109 return true; 110 } 111 112 ///\returns Opcode that can be clubbed with \p Op to create an alternate 113 /// sequence which can later be merged as a ShuffleVector instruction. 114 static unsigned getAltOpcode(unsigned Op) { 115 switch (Op) { 116 case Instruction::FAdd: 117 return Instruction::FSub; 118 case Instruction::FSub: 119 return Instruction::FAdd; 120 case Instruction::Add: 121 return Instruction::Sub; 122 case Instruction::Sub: 123 return Instruction::Add; 124 default: 125 return 0; 126 } 127 } 128 129 ///\returns bool representing if Opcode \p Op can be part 130 /// of an alternate sequence which can later be merged as 131 /// a ShuffleVector instruction. 132 static bool canCombineAsAltInst(unsigned Op) { 133 if (Op == Instruction::FAdd || Op == Instruction::FSub || 134 Op == Instruction::Sub || Op == Instruction::Add) 135 return true; 136 return false; 137 } 138 139 /// \returns ShuffleVector instruction if intructions in \p VL have 140 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 141 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 142 static unsigned isAltInst(ArrayRef<Value *> VL) { 143 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 144 unsigned Opcode = I0->getOpcode(); 145 unsigned AltOpcode = getAltOpcode(Opcode); 146 for (int i = 1, e = VL.size(); i < e; i++) { 147 Instruction *I = dyn_cast<Instruction>(VL[i]); 148 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 149 return 0; 150 } 151 return Instruction::ShuffleVector; 152 } 153 154 /// \returns The opcode if all of the Instructions in \p VL have the same 155 /// opcode, or zero. 156 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 157 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 158 if (!I0) 159 return 0; 160 unsigned Opcode = I0->getOpcode(); 161 for (int i = 1, e = VL.size(); i < e; i++) { 162 Instruction *I = dyn_cast<Instruction>(VL[i]); 163 if (!I || Opcode != I->getOpcode()) { 164 if (canCombineAsAltInst(Opcode) && i == 1) 165 return isAltInst(VL); 166 return 0; 167 } 168 } 169 return Opcode; 170 } 171 172 /// Get the intersection (logical and) of all of the potential IR flags 173 /// of each scalar operation (VL) that will be converted into a vector (I). 174 /// Flag set: NSW, NUW, exact, and all of fast-math. 175 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 176 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 177 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 178 // Intersection is initialized to the 0th scalar, 179 // so start counting from index '1'. 180 for (int i = 1, e = VL.size(); i < e; ++i) { 181 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 182 Intersection->andIRFlags(Scalar); 183 } 184 VecOp->copyIRFlags(Intersection); 185 } 186 } 187 } 188 189 /// \returns \p I after propagating metadata from \p VL. 190 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 191 Instruction *I0 = cast<Instruction>(VL[0]); 192 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 193 I0->getAllMetadataOtherThanDebugLoc(Metadata); 194 195 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 196 unsigned Kind = Metadata[i].first; 197 MDNode *MD = Metadata[i].second; 198 199 for (int i = 1, e = VL.size(); MD && i != e; i++) { 200 Instruction *I = cast<Instruction>(VL[i]); 201 MDNode *IMD = I->getMetadata(Kind); 202 203 switch (Kind) { 204 default: 205 MD = nullptr; // Remove unknown metadata 206 break; 207 case LLVMContext::MD_tbaa: 208 MD = MDNode::getMostGenericTBAA(MD, IMD); 209 break; 210 case LLVMContext::MD_alias_scope: 211 case LLVMContext::MD_noalias: 212 MD = MDNode::intersect(MD, IMD); 213 break; 214 case LLVMContext::MD_fpmath: 215 MD = MDNode::getMostGenericFPMath(MD, IMD); 216 break; 217 } 218 } 219 I->setMetadata(Kind, MD); 220 } 221 return I; 222 } 223 224 /// \returns The type that all of the values in \p VL have or null if there 225 /// are different types. 226 static Type* getSameType(ArrayRef<Value *> VL) { 227 Type *Ty = VL[0]->getType(); 228 for (int i = 1, e = VL.size(); i < e; i++) 229 if (VL[i]->getType() != Ty) 230 return nullptr; 231 232 return Ty; 233 } 234 235 /// \returns True if the ExtractElement instructions in VL can be vectorized 236 /// to use the original vector. 237 static bool CanReuseExtract(ArrayRef<Value *> VL) { 238 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 239 // Check if all of the extracts come from the same vector and from the 240 // correct offset. 241 Value *VL0 = VL[0]; 242 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 243 Value *Vec = E0->getOperand(0); 244 245 // We have to extract from the same vector type. 246 unsigned NElts = Vec->getType()->getVectorNumElements(); 247 248 if (NElts != VL.size()) 249 return false; 250 251 // Check that all of the indices extract from the correct offset. 252 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 253 if (!CI || CI->getZExtValue()) 254 return false; 255 256 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 257 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 258 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 259 260 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 261 return false; 262 } 263 264 return true; 265 } 266 267 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 268 SmallVectorImpl<Value *> &Left, 269 SmallVectorImpl<Value *> &Right) { 270 271 SmallVector<Value *, 16> OrigLeft, OrigRight; 272 273 bool AllSameOpcodeLeft = true; 274 bool AllSameOpcodeRight = true; 275 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 276 Instruction *I = cast<Instruction>(VL[i]); 277 Value *V0 = I->getOperand(0); 278 Value *V1 = I->getOperand(1); 279 280 OrigLeft.push_back(V0); 281 OrigRight.push_back(V1); 282 283 Instruction *I0 = dyn_cast<Instruction>(V0); 284 Instruction *I1 = dyn_cast<Instruction>(V1); 285 286 // Check whether all operands on one side have the same opcode. In this case 287 // we want to preserve the original order and not make things worse by 288 // reordering. 289 AllSameOpcodeLeft = I0; 290 AllSameOpcodeRight = I1; 291 292 if (i && AllSameOpcodeLeft) { 293 if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) { 294 if(P0->getOpcode() != I0->getOpcode()) 295 AllSameOpcodeLeft = false; 296 } else 297 AllSameOpcodeLeft = false; 298 } 299 if (i && AllSameOpcodeRight) { 300 if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) { 301 if(P1->getOpcode() != I1->getOpcode()) 302 AllSameOpcodeRight = false; 303 } else 304 AllSameOpcodeRight = false; 305 } 306 307 // Sort two opcodes. In the code below we try to preserve the ability to use 308 // broadcast of values instead of individual inserts. 309 // vl1 = load 310 // vl2 = phi 311 // vr1 = load 312 // vr2 = vr2 313 // = vl1 x vr1 314 // = vl2 x vr2 315 // If we just sorted according to opcode we would leave the first line in 316 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 317 // = vl1 x vr1 318 // = vr2 x vl2 319 // Because vr2 and vr1 are from the same load we loose the opportunity of a 320 // broadcast for the packed right side in the backend: we have [vr1, vl2] 321 // instead of [vr1, vr2=vr1]. 322 if (I0 && I1) { 323 if(!i && I0->getOpcode() > I1->getOpcode()) { 324 Left.push_back(I1); 325 Right.push_back(I0); 326 } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) { 327 // Try not to destroy a broad cast for no apparent benefit. 328 Left.push_back(I1); 329 Right.push_back(I0); 330 } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) { 331 // Try preserve broadcasts. 332 Left.push_back(I1); 333 Right.push_back(I0); 334 } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) { 335 // Try preserve broadcasts. 336 Left.push_back(I1); 337 Right.push_back(I0); 338 } else { 339 Left.push_back(I0); 340 Right.push_back(I1); 341 } 342 continue; 343 } 344 // One opcode, put the instruction on the right. 345 if (I0) { 346 Left.push_back(V1); 347 Right.push_back(I0); 348 continue; 349 } 350 Left.push_back(V0); 351 Right.push_back(V1); 352 } 353 354 bool LeftBroadcast = isSplat(Left); 355 bool RightBroadcast = isSplat(Right); 356 357 // Don't reorder if the operands where good to begin with. 358 if (!(LeftBroadcast || RightBroadcast) && 359 (AllSameOpcodeRight || AllSameOpcodeLeft)) { 360 Left = OrigLeft; 361 Right = OrigRight; 362 } 363 } 364 365 /// \returns True if in-tree use also needs extract. This refers to 366 /// possible scalar operand in vectorized instruction. 367 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 368 TargetLibraryInfo *TLI) { 369 370 unsigned Opcode = UserInst->getOpcode(); 371 switch (Opcode) { 372 case Instruction::Load: { 373 LoadInst *LI = cast<LoadInst>(UserInst); 374 return (LI->getPointerOperand() == Scalar); 375 } 376 case Instruction::Store: { 377 StoreInst *SI = cast<StoreInst>(UserInst); 378 return (SI->getPointerOperand() == Scalar); 379 } 380 case Instruction::Call: { 381 CallInst *CI = cast<CallInst>(UserInst); 382 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 383 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 384 return (CI->getArgOperand(1) == Scalar); 385 } 386 } 387 default: 388 return false; 389 } 390 } 391 392 /// \returns the AA location that is being access by the instruction. 393 static AliasAnalysis::Location getLocation(Instruction *I, AliasAnalysis *AA) { 394 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 395 return AA->getLocation(SI); 396 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 397 return AA->getLocation(LI); 398 return AliasAnalysis::Location(); 399 } 400 401 /// Bottom Up SLP Vectorizer. 402 class BoUpSLP { 403 public: 404 typedef SmallVector<Value *, 8> ValueList; 405 typedef SmallVector<Instruction *, 16> InstrList; 406 typedef SmallPtrSet<Value *, 16> ValueSet; 407 typedef SmallVector<StoreInst *, 8> StoreList; 408 409 BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl, 410 TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, 411 LoopInfo *Li, DominatorTree *Dt, AssumptionCache *AC) 412 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 413 SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 414 Builder(Se->getContext()) { 415 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 416 } 417 418 /// \brief Vectorize the tree that starts with the elements in \p VL. 419 /// Returns the vectorized root. 420 Value *vectorizeTree(); 421 422 /// \returns the cost incurred by unwanted spills and fills, caused by 423 /// holding live values over call sites. 424 int getSpillCost(); 425 426 /// \returns the vectorization cost of the subtree that starts at \p VL. 427 /// A negative number means that this is profitable. 428 int getTreeCost(); 429 430 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 431 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 432 void buildTree(ArrayRef<Value *> Roots, 433 ArrayRef<Value *> UserIgnoreLst = None); 434 435 /// Clear the internal data structures that are created by 'buildTree'. 436 void deleteTree() { 437 VectorizableTree.clear(); 438 ScalarToTreeEntry.clear(); 439 MustGather.clear(); 440 ExternalUses.clear(); 441 NumLoadsWantToKeepOrder = 0; 442 NumLoadsWantToChangeOrder = 0; 443 for (auto &Iter : BlocksSchedules) { 444 BlockScheduling *BS = Iter.second.get(); 445 BS->clear(); 446 } 447 } 448 449 /// \returns true if the memory operations A and B are consecutive. 450 bool isConsecutiveAccess(Value *A, Value *B); 451 452 /// \brief Perform LICM and CSE on the newly generated gather sequences. 453 void optimizeGatherSequence(); 454 455 /// \returns true if it is benefitial to reverse the vector order. 456 bool shouldReorder() const { 457 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 458 } 459 460 private: 461 struct TreeEntry; 462 463 /// \returns the cost of the vectorizable entry. 464 int getEntryCost(TreeEntry *E); 465 466 /// This is the recursive part of buildTree. 467 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 468 469 /// Vectorize a single entry in the tree. 470 Value *vectorizeTree(TreeEntry *E); 471 472 /// Vectorize a single entry in the tree, starting in \p VL. 473 Value *vectorizeTree(ArrayRef<Value *> VL); 474 475 /// \returns the pointer to the vectorized value if \p VL is already 476 /// vectorized, or NULL. They may happen in cycles. 477 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 478 479 /// \brief Take the pointer operand from the Load/Store instruction. 480 /// \returns NULL if this is not a valid Load/Store instruction. 481 static Value *getPointerOperand(Value *I); 482 483 /// \brief Take the address space operand from the Load/Store instruction. 484 /// \returns -1 if this is not a valid Load/Store instruction. 485 static unsigned getAddressSpaceOperand(Value *I); 486 487 /// \returns the scalarization cost for this type. Scalarization in this 488 /// context means the creation of vectors from a group of scalars. 489 int getGatherCost(Type *Ty); 490 491 /// \returns the scalarization cost for this list of values. Assuming that 492 /// this subtree gets vectorized, we may need to extract the values from the 493 /// roots. This method calculates the cost of extracting the values. 494 int getGatherCost(ArrayRef<Value *> VL); 495 496 /// \brief Set the Builder insert point to one after the last instruction in 497 /// the bundle 498 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 499 500 /// \returns a vector from a collection of scalars in \p VL. 501 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 502 503 /// \returns whether the VectorizableTree is fully vectoriable and will 504 /// be beneficial even the tree height is tiny. 505 bool isFullyVectorizableTinyTree(); 506 507 struct TreeEntry { 508 TreeEntry() : Scalars(), VectorizedValue(nullptr), 509 NeedToGather(0) {} 510 511 /// \returns true if the scalars in VL are equal to this entry. 512 bool isSame(ArrayRef<Value *> VL) const { 513 assert(VL.size() == Scalars.size() && "Invalid size"); 514 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 515 } 516 517 /// A vector of scalars. 518 ValueList Scalars; 519 520 /// The Scalars are vectorized into this value. It is initialized to Null. 521 Value *VectorizedValue; 522 523 /// Do we need to gather this sequence ? 524 bool NeedToGather; 525 }; 526 527 /// Create a new VectorizableTree entry. 528 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 529 VectorizableTree.push_back(TreeEntry()); 530 int idx = VectorizableTree.size() - 1; 531 TreeEntry *Last = &VectorizableTree[idx]; 532 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 533 Last->NeedToGather = !Vectorized; 534 if (Vectorized) { 535 for (int i = 0, e = VL.size(); i != e; ++i) { 536 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 537 ScalarToTreeEntry[VL[i]] = idx; 538 } 539 } else { 540 MustGather.insert(VL.begin(), VL.end()); 541 } 542 return Last; 543 } 544 545 /// -- Vectorization State -- 546 /// Holds all of the tree entries. 547 std::vector<TreeEntry> VectorizableTree; 548 549 /// Maps a specific scalar to its tree entry. 550 SmallDenseMap<Value*, int> ScalarToTreeEntry; 551 552 /// A list of scalars that we found that we need to keep as scalars. 553 ValueSet MustGather; 554 555 /// This POD struct describes one external user in the vectorized tree. 556 struct ExternalUser { 557 ExternalUser (Value *S, llvm::User *U, int L) : 558 Scalar(S), User(U), Lane(L){}; 559 // Which scalar in our function. 560 Value *Scalar; 561 // Which user that uses the scalar. 562 llvm::User *User; 563 // Which lane does the scalar belong to. 564 int Lane; 565 }; 566 typedef SmallVector<ExternalUser, 16> UserList; 567 568 /// Checks if two instructions may access the same memory. 569 /// 570 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 571 /// is invariant in the calling loop. 572 bool isAliased(const AliasAnalysis::Location &Loc1, Instruction *Inst1, 573 Instruction *Inst2) { 574 575 // First check if the result is already in the cache. 576 AliasCacheKey key = std::make_pair(Inst1, Inst2); 577 Optional<bool> &result = AliasCache[key]; 578 if (result.hasValue()) { 579 return result.getValue(); 580 } 581 AliasAnalysis::Location Loc2 = getLocation(Inst2, AA); 582 bool aliased = true; 583 if (Loc1.Ptr && Loc2.Ptr) { 584 // Do the alias check. 585 aliased = AA->alias(Loc1, Loc2); 586 } 587 // Store the result in the cache. 588 result = aliased; 589 return aliased; 590 } 591 592 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 593 594 /// Cache for alias results. 595 /// TODO: consider moving this to the AliasAnalysis itself. 596 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 597 598 /// Removes an instruction from its block and eventually deletes it. 599 /// It's like Instruction::eraseFromParent() except that the actual deletion 600 /// is delayed until BoUpSLP is destructed. 601 /// This is required to ensure that there are no incorrect collisions in the 602 /// AliasCache, which can happen if a new instruction is allocated at the 603 /// same address as a previously deleted instruction. 604 void eraseInstruction(Instruction *I) { 605 I->removeFromParent(); 606 I->dropAllReferences(); 607 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 608 } 609 610 /// Temporary store for deleted instructions. Instructions will be deleted 611 /// eventually when the BoUpSLP is destructed. 612 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 613 614 /// A list of values that need to extracted out of the tree. 615 /// This list holds pairs of (Internal Scalar : External User). 616 UserList ExternalUses; 617 618 /// Values used only by @llvm.assume calls. 619 SmallPtrSet<const Value *, 32> EphValues; 620 621 /// Holds all of the instructions that we gathered. 622 SetVector<Instruction *> GatherSeq; 623 /// A list of blocks that we are going to CSE. 624 SetVector<BasicBlock *> CSEBlocks; 625 626 /// Contains all scheduling relevant data for an instruction. 627 /// A ScheduleData either represents a single instruction or a member of an 628 /// instruction bundle (= a group of instructions which is combined into a 629 /// vector instruction). 630 struct ScheduleData { 631 632 // The initial value for the dependency counters. It means that the 633 // dependencies are not calculated yet. 634 enum { InvalidDeps = -1 }; 635 636 ScheduleData() 637 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 638 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 639 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 640 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 641 642 void init(int BlockSchedulingRegionID) { 643 FirstInBundle = this; 644 NextInBundle = nullptr; 645 NextLoadStore = nullptr; 646 IsScheduled = false; 647 SchedulingRegionID = BlockSchedulingRegionID; 648 UnscheduledDepsInBundle = UnscheduledDeps; 649 clearDependencies(); 650 } 651 652 /// Returns true if the dependency information has been calculated. 653 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 654 655 /// Returns true for single instructions and for bundle representatives 656 /// (= the head of a bundle). 657 bool isSchedulingEntity() const { return FirstInBundle == this; } 658 659 /// Returns true if it represents an instruction bundle and not only a 660 /// single instruction. 661 bool isPartOfBundle() const { 662 return NextInBundle != nullptr || FirstInBundle != this; 663 } 664 665 /// Returns true if it is ready for scheduling, i.e. it has no more 666 /// unscheduled depending instructions/bundles. 667 bool isReady() const { 668 assert(isSchedulingEntity() && 669 "can't consider non-scheduling entity for ready list"); 670 return UnscheduledDepsInBundle == 0 && !IsScheduled; 671 } 672 673 /// Modifies the number of unscheduled dependencies, also updating it for 674 /// the whole bundle. 675 int incrementUnscheduledDeps(int Incr) { 676 UnscheduledDeps += Incr; 677 return FirstInBundle->UnscheduledDepsInBundle += Incr; 678 } 679 680 /// Sets the number of unscheduled dependencies to the number of 681 /// dependencies. 682 void resetUnscheduledDeps() { 683 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 684 } 685 686 /// Clears all dependency information. 687 void clearDependencies() { 688 Dependencies = InvalidDeps; 689 resetUnscheduledDeps(); 690 MemoryDependencies.clear(); 691 } 692 693 void dump(raw_ostream &os) const { 694 if (!isSchedulingEntity()) { 695 os << "/ " << *Inst; 696 } else if (NextInBundle) { 697 os << '[' << *Inst; 698 ScheduleData *SD = NextInBundle; 699 while (SD) { 700 os << ';' << *SD->Inst; 701 SD = SD->NextInBundle; 702 } 703 os << ']'; 704 } else { 705 os << *Inst; 706 } 707 } 708 709 Instruction *Inst; 710 711 /// Points to the head in an instruction bundle (and always to this for 712 /// single instructions). 713 ScheduleData *FirstInBundle; 714 715 /// Single linked list of all instructions in a bundle. Null if it is a 716 /// single instruction. 717 ScheduleData *NextInBundle; 718 719 /// Single linked list of all memory instructions (e.g. load, store, call) 720 /// in the block - until the end of the scheduling region. 721 ScheduleData *NextLoadStore; 722 723 /// The dependent memory instructions. 724 /// This list is derived on demand in calculateDependencies(). 725 SmallVector<ScheduleData *, 4> MemoryDependencies; 726 727 /// This ScheduleData is in the current scheduling region if this matches 728 /// the current SchedulingRegionID of BlockScheduling. 729 int SchedulingRegionID; 730 731 /// Used for getting a "good" final ordering of instructions. 732 int SchedulingPriority; 733 734 /// The number of dependencies. Constitutes of the number of users of the 735 /// instruction plus the number of dependent memory instructions (if any). 736 /// This value is calculated on demand. 737 /// If InvalidDeps, the number of dependencies is not calculated yet. 738 /// 739 int Dependencies; 740 741 /// The number of dependencies minus the number of dependencies of scheduled 742 /// instructions. As soon as this is zero, the instruction/bundle gets ready 743 /// for scheduling. 744 /// Note that this is negative as long as Dependencies is not calculated. 745 int UnscheduledDeps; 746 747 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 748 /// single instructions. 749 int UnscheduledDepsInBundle; 750 751 /// True if this instruction is scheduled (or considered as scheduled in the 752 /// dry-run). 753 bool IsScheduled; 754 }; 755 756 #ifndef NDEBUG 757 friend raw_ostream &operator<<(raw_ostream &os, 758 const BoUpSLP::ScheduleData &SD); 759 #endif 760 761 /// Contains all scheduling data for a basic block. 762 /// 763 struct BlockScheduling { 764 765 BlockScheduling(BasicBlock *BB) 766 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 767 ScheduleStart(nullptr), ScheduleEnd(nullptr), 768 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 769 // Make sure that the initial SchedulingRegionID is greater than the 770 // initial SchedulingRegionID in ScheduleData (which is 0). 771 SchedulingRegionID(1) {} 772 773 void clear() { 774 ReadyInsts.clear(); 775 ScheduleStart = nullptr; 776 ScheduleEnd = nullptr; 777 FirstLoadStoreInRegion = nullptr; 778 LastLoadStoreInRegion = nullptr; 779 780 // Make a new scheduling region, i.e. all existing ScheduleData is not 781 // in the new region yet. 782 ++SchedulingRegionID; 783 } 784 785 ScheduleData *getScheduleData(Value *V) { 786 ScheduleData *SD = ScheduleDataMap[V]; 787 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 788 return SD; 789 return nullptr; 790 } 791 792 bool isInSchedulingRegion(ScheduleData *SD) { 793 return SD->SchedulingRegionID == SchedulingRegionID; 794 } 795 796 /// Marks an instruction as scheduled and puts all dependent ready 797 /// instructions into the ready-list. 798 template <typename ReadyListType> 799 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 800 SD->IsScheduled = true; 801 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 802 803 ScheduleData *BundleMember = SD; 804 while (BundleMember) { 805 // Handle the def-use chain dependencies. 806 for (Use &U : BundleMember->Inst->operands()) { 807 ScheduleData *OpDef = getScheduleData(U.get()); 808 if (OpDef && OpDef->hasValidDependencies() && 809 OpDef->incrementUnscheduledDeps(-1) == 0) { 810 // There are no more unscheduled dependencies after decrementing, 811 // so we can put the dependent instruction into the ready list. 812 ScheduleData *DepBundle = OpDef->FirstInBundle; 813 assert(!DepBundle->IsScheduled && 814 "already scheduled bundle gets ready"); 815 ReadyList.insert(DepBundle); 816 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 817 } 818 } 819 // Handle the memory dependencies. 820 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 821 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 822 // There are no more unscheduled dependencies after decrementing, 823 // so we can put the dependent instruction into the ready list. 824 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 825 assert(!DepBundle->IsScheduled && 826 "already scheduled bundle gets ready"); 827 ReadyList.insert(DepBundle); 828 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 829 } 830 } 831 BundleMember = BundleMember->NextInBundle; 832 } 833 } 834 835 /// Put all instructions into the ReadyList which are ready for scheduling. 836 template <typename ReadyListType> 837 void initialFillReadyList(ReadyListType &ReadyList) { 838 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 839 ScheduleData *SD = getScheduleData(I); 840 if (SD->isSchedulingEntity() && SD->isReady()) { 841 ReadyList.insert(SD); 842 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 843 } 844 } 845 } 846 847 /// Checks if a bundle of instructions can be scheduled, i.e. has no 848 /// cyclic dependencies. This is only a dry-run, no instructions are 849 /// actually moved at this stage. 850 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 851 852 /// Un-bundles a group of instructions. 853 void cancelScheduling(ArrayRef<Value *> VL); 854 855 /// Extends the scheduling region so that V is inside the region. 856 void extendSchedulingRegion(Value *V); 857 858 /// Initialize the ScheduleData structures for new instructions in the 859 /// scheduling region. 860 void initScheduleData(Instruction *FromI, Instruction *ToI, 861 ScheduleData *PrevLoadStore, 862 ScheduleData *NextLoadStore); 863 864 /// Updates the dependency information of a bundle and of all instructions/ 865 /// bundles which depend on the original bundle. 866 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 867 BoUpSLP *SLP); 868 869 /// Sets all instruction in the scheduling region to un-scheduled. 870 void resetSchedule(); 871 872 BasicBlock *BB; 873 874 /// Simple memory allocation for ScheduleData. 875 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 876 877 /// The size of a ScheduleData array in ScheduleDataChunks. 878 int ChunkSize; 879 880 /// The allocator position in the current chunk, which is the last entry 881 /// of ScheduleDataChunks. 882 int ChunkPos; 883 884 /// Attaches ScheduleData to Instruction. 885 /// Note that the mapping survives during all vectorization iterations, i.e. 886 /// ScheduleData structures are recycled. 887 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 888 889 struct ReadyList : SmallVector<ScheduleData *, 8> { 890 void insert(ScheduleData *SD) { push_back(SD); } 891 }; 892 893 /// The ready-list for scheduling (only used for the dry-run). 894 ReadyList ReadyInsts; 895 896 /// The first instruction of the scheduling region. 897 Instruction *ScheduleStart; 898 899 /// The first instruction _after_ the scheduling region. 900 Instruction *ScheduleEnd; 901 902 /// The first memory accessing instruction in the scheduling region 903 /// (can be null). 904 ScheduleData *FirstLoadStoreInRegion; 905 906 /// The last memory accessing instruction in the scheduling region 907 /// (can be null). 908 ScheduleData *LastLoadStoreInRegion; 909 910 /// The ID of the scheduling region. For a new vectorization iteration this 911 /// is incremented which "removes" all ScheduleData from the region. 912 int SchedulingRegionID; 913 }; 914 915 /// Attaches the BlockScheduling structures to basic blocks. 916 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 917 918 /// Performs the "real" scheduling. Done before vectorization is actually 919 /// performed in a basic block. 920 void scheduleBlock(BlockScheduling *BS); 921 922 /// List of users to ignore during scheduling and that don't need extracting. 923 ArrayRef<Value *> UserIgnoreList; 924 925 // Number of load-bundles, which contain consecutive loads. 926 int NumLoadsWantToKeepOrder; 927 928 // Number of load-bundles of size 2, which are consecutive loads if reversed. 929 int NumLoadsWantToChangeOrder; 930 931 // Analysis and block reference. 932 Function *F; 933 ScalarEvolution *SE; 934 const DataLayout *DL; 935 TargetTransformInfo *TTI; 936 TargetLibraryInfo *TLI; 937 AliasAnalysis *AA; 938 LoopInfo *LI; 939 DominatorTree *DT; 940 /// Instruction builder to construct the vectorized tree. 941 IRBuilder<> Builder; 942 }; 943 944 #ifndef NDEBUG 945 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 946 SD.dump(os); 947 return os; 948 } 949 #endif 950 951 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 952 ArrayRef<Value *> UserIgnoreLst) { 953 deleteTree(); 954 UserIgnoreList = UserIgnoreLst; 955 if (!getSameType(Roots)) 956 return; 957 buildTree_rec(Roots, 0); 958 959 // Collect the values that we need to extract from the tree. 960 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 961 TreeEntry *Entry = &VectorizableTree[EIdx]; 962 963 // For each lane: 964 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 965 Value *Scalar = Entry->Scalars[Lane]; 966 967 // No need to handle users of gathered values. 968 if (Entry->NeedToGather) 969 continue; 970 971 for (User *U : Scalar->users()) { 972 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 973 974 Instruction *UserInst = dyn_cast<Instruction>(U); 975 if (!UserInst) 976 continue; 977 978 // Skip in-tree scalars that become vectors 979 if (ScalarToTreeEntry.count(U)) { 980 int Idx = ScalarToTreeEntry[U]; 981 TreeEntry *UseEntry = &VectorizableTree[Idx]; 982 Value *UseScalar = UseEntry->Scalars[0]; 983 // Some in-tree scalars will remain as scalar in vectorized 984 // instructions. If that is the case, the one in Lane 0 will 985 // be used. 986 if (UseScalar != U || 987 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 988 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 989 << ".\n"); 990 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 991 continue; 992 } 993 } 994 995 // Ignore users in the user ignore list. 996 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 997 UserIgnoreList.end()) 998 continue; 999 1000 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1001 Lane << " from " << *Scalar << ".\n"); 1002 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1003 } 1004 } 1005 } 1006 } 1007 1008 1009 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 1010 bool SameTy = getSameType(VL); (void)SameTy; 1011 bool isAltShuffle = false; 1012 assert(SameTy && "Invalid types!"); 1013 1014 if (Depth == RecursionMaxDepth) { 1015 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1016 newTreeEntry(VL, false); 1017 return; 1018 } 1019 1020 // Don't handle vectors. 1021 if (VL[0]->getType()->isVectorTy()) { 1022 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1023 newTreeEntry(VL, false); 1024 return; 1025 } 1026 1027 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1028 if (SI->getValueOperand()->getType()->isVectorTy()) { 1029 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1030 newTreeEntry(VL, false); 1031 return; 1032 } 1033 unsigned Opcode = getSameOpcode(VL); 1034 1035 // Check that this shuffle vector refers to the alternate 1036 // sequence of opcodes. 1037 if (Opcode == Instruction::ShuffleVector) { 1038 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1039 unsigned Op = I0->getOpcode(); 1040 if (Op != Instruction::ShuffleVector) 1041 isAltShuffle = true; 1042 } 1043 1044 // If all of the operands are identical or constant we have a simple solution. 1045 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1046 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1047 newTreeEntry(VL, false); 1048 return; 1049 } 1050 1051 // We now know that this is a vector of instructions of the same type from 1052 // the same block. 1053 1054 // Don't vectorize ephemeral values. 1055 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1056 if (EphValues.count(VL[i])) { 1057 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1058 ") is ephemeral.\n"); 1059 newTreeEntry(VL, false); 1060 return; 1061 } 1062 } 1063 1064 // Check if this is a duplicate of another entry. 1065 if (ScalarToTreeEntry.count(VL[0])) { 1066 int Idx = ScalarToTreeEntry[VL[0]]; 1067 TreeEntry *E = &VectorizableTree[Idx]; 1068 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1069 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1070 if (E->Scalars[i] != VL[i]) { 1071 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1072 newTreeEntry(VL, false); 1073 return; 1074 } 1075 } 1076 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1077 return; 1078 } 1079 1080 // Check that none of the instructions in the bundle are already in the tree. 1081 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1082 if (ScalarToTreeEntry.count(VL[i])) { 1083 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1084 ") is already in tree.\n"); 1085 newTreeEntry(VL, false); 1086 return; 1087 } 1088 } 1089 1090 // If any of the scalars is marked as a value that needs to stay scalar then 1091 // we need to gather the scalars. 1092 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1093 if (MustGather.count(VL[i])) { 1094 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1095 newTreeEntry(VL, false); 1096 return; 1097 } 1098 } 1099 1100 // Check that all of the users of the scalars that we want to vectorize are 1101 // schedulable. 1102 Instruction *VL0 = cast<Instruction>(VL[0]); 1103 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1104 1105 if (!DT->isReachableFromEntry(BB)) { 1106 // Don't go into unreachable blocks. They may contain instructions with 1107 // dependency cycles which confuse the final scheduling. 1108 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1109 newTreeEntry(VL, false); 1110 return; 1111 } 1112 1113 // Check that every instructions appears once in this bundle. 1114 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1115 for (unsigned j = i+1; j < e; ++j) 1116 if (VL[i] == VL[j]) { 1117 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1118 newTreeEntry(VL, false); 1119 return; 1120 } 1121 1122 auto &BSRef = BlocksSchedules[BB]; 1123 if (!BSRef) { 1124 BSRef = llvm::make_unique<BlockScheduling>(BB); 1125 } 1126 BlockScheduling &BS = *BSRef.get(); 1127 1128 if (!BS.tryScheduleBundle(VL, this)) { 1129 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1130 BS.cancelScheduling(VL); 1131 newTreeEntry(VL, false); 1132 return; 1133 } 1134 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1135 1136 switch (Opcode) { 1137 case Instruction::PHI: { 1138 PHINode *PH = dyn_cast<PHINode>(VL0); 1139 1140 // Check for terminator values (e.g. invoke). 1141 for (unsigned j = 0; j < VL.size(); ++j) 1142 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1143 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1144 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1145 if (Term) { 1146 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1147 BS.cancelScheduling(VL); 1148 newTreeEntry(VL, false); 1149 return; 1150 } 1151 } 1152 1153 newTreeEntry(VL, true); 1154 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1155 1156 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1157 ValueList Operands; 1158 // Prepare the operand vector. 1159 for (unsigned j = 0; j < VL.size(); ++j) 1160 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1161 PH->getIncomingBlock(i))); 1162 1163 buildTree_rec(Operands, Depth + 1); 1164 } 1165 return; 1166 } 1167 case Instruction::ExtractElement: { 1168 bool Reuse = CanReuseExtract(VL); 1169 if (Reuse) { 1170 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1171 } else { 1172 BS.cancelScheduling(VL); 1173 } 1174 newTreeEntry(VL, Reuse); 1175 return; 1176 } 1177 case Instruction::Load: { 1178 // Check if the loads are consecutive or of we need to swizzle them. 1179 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1180 LoadInst *L = cast<LoadInst>(VL[i]); 1181 if (!L->isSimple()) { 1182 BS.cancelScheduling(VL); 1183 newTreeEntry(VL, false); 1184 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1185 return; 1186 } 1187 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 1188 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) { 1189 ++NumLoadsWantToChangeOrder; 1190 } 1191 BS.cancelScheduling(VL); 1192 newTreeEntry(VL, false); 1193 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1194 return; 1195 } 1196 } 1197 ++NumLoadsWantToKeepOrder; 1198 newTreeEntry(VL, true); 1199 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1200 return; 1201 } 1202 case Instruction::ZExt: 1203 case Instruction::SExt: 1204 case Instruction::FPToUI: 1205 case Instruction::FPToSI: 1206 case Instruction::FPExt: 1207 case Instruction::PtrToInt: 1208 case Instruction::IntToPtr: 1209 case Instruction::SIToFP: 1210 case Instruction::UIToFP: 1211 case Instruction::Trunc: 1212 case Instruction::FPTrunc: 1213 case Instruction::BitCast: { 1214 Type *SrcTy = VL0->getOperand(0)->getType(); 1215 for (unsigned i = 0; i < VL.size(); ++i) { 1216 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1217 if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { 1218 BS.cancelScheduling(VL); 1219 newTreeEntry(VL, false); 1220 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1221 return; 1222 } 1223 } 1224 newTreeEntry(VL, true); 1225 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1226 1227 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1228 ValueList Operands; 1229 // Prepare the operand vector. 1230 for (unsigned j = 0; j < VL.size(); ++j) 1231 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1232 1233 buildTree_rec(Operands, Depth+1); 1234 } 1235 return; 1236 } 1237 case Instruction::ICmp: 1238 case Instruction::FCmp: { 1239 // Check that all of the compares have the same predicate. 1240 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1241 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1242 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1243 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1244 if (Cmp->getPredicate() != P0 || 1245 Cmp->getOperand(0)->getType() != ComparedTy) { 1246 BS.cancelScheduling(VL); 1247 newTreeEntry(VL, false); 1248 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1249 return; 1250 } 1251 } 1252 1253 newTreeEntry(VL, true); 1254 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1255 1256 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1257 ValueList Operands; 1258 // Prepare the operand vector. 1259 for (unsigned j = 0; j < VL.size(); ++j) 1260 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1261 1262 buildTree_rec(Operands, Depth+1); 1263 } 1264 return; 1265 } 1266 case Instruction::Select: 1267 case Instruction::Add: 1268 case Instruction::FAdd: 1269 case Instruction::Sub: 1270 case Instruction::FSub: 1271 case Instruction::Mul: 1272 case Instruction::FMul: 1273 case Instruction::UDiv: 1274 case Instruction::SDiv: 1275 case Instruction::FDiv: 1276 case Instruction::URem: 1277 case Instruction::SRem: 1278 case Instruction::FRem: 1279 case Instruction::Shl: 1280 case Instruction::LShr: 1281 case Instruction::AShr: 1282 case Instruction::And: 1283 case Instruction::Or: 1284 case Instruction::Xor: { 1285 newTreeEntry(VL, true); 1286 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1287 1288 // Sort operands of the instructions so that each side is more likely to 1289 // have the same opcode. 1290 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1291 ValueList Left, Right; 1292 reorderInputsAccordingToOpcode(VL, Left, Right); 1293 buildTree_rec(Left, Depth + 1); 1294 buildTree_rec(Right, Depth + 1); 1295 return; 1296 } 1297 1298 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1299 ValueList Operands; 1300 // Prepare the operand vector. 1301 for (unsigned j = 0; j < VL.size(); ++j) 1302 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1303 1304 buildTree_rec(Operands, Depth+1); 1305 } 1306 return; 1307 } 1308 case Instruction::GetElementPtr: { 1309 // We don't combine GEPs with complicated (nested) indexing. 1310 for (unsigned j = 0; j < VL.size(); ++j) { 1311 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1312 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1313 BS.cancelScheduling(VL); 1314 newTreeEntry(VL, false); 1315 return; 1316 } 1317 } 1318 1319 // We can't combine several GEPs into one vector if they operate on 1320 // different types. 1321 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1322 for (unsigned j = 0; j < VL.size(); ++j) { 1323 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1324 if (Ty0 != CurTy) { 1325 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1326 BS.cancelScheduling(VL); 1327 newTreeEntry(VL, false); 1328 return; 1329 } 1330 } 1331 1332 // We don't combine GEPs with non-constant indexes. 1333 for (unsigned j = 0; j < VL.size(); ++j) { 1334 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1335 if (!isa<ConstantInt>(Op)) { 1336 DEBUG( 1337 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1338 BS.cancelScheduling(VL); 1339 newTreeEntry(VL, false); 1340 return; 1341 } 1342 } 1343 1344 newTreeEntry(VL, true); 1345 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1346 for (unsigned i = 0, e = 2; i < e; ++i) { 1347 ValueList Operands; 1348 // Prepare the operand vector. 1349 for (unsigned j = 0; j < VL.size(); ++j) 1350 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1351 1352 buildTree_rec(Operands, Depth + 1); 1353 } 1354 return; 1355 } 1356 case Instruction::Store: { 1357 // Check if the stores are consecutive or of we need to swizzle them. 1358 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1359 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 1360 BS.cancelScheduling(VL); 1361 newTreeEntry(VL, false); 1362 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1363 return; 1364 } 1365 1366 newTreeEntry(VL, true); 1367 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1368 1369 ValueList Operands; 1370 for (unsigned j = 0; j < VL.size(); ++j) 1371 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1372 1373 buildTree_rec(Operands, Depth + 1); 1374 return; 1375 } 1376 case Instruction::Call: { 1377 // Check if the calls are all to the same vectorizable intrinsic. 1378 CallInst *CI = cast<CallInst>(VL[0]); 1379 // Check if this is an Intrinsic call or something that can be 1380 // represented by an intrinsic call 1381 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1382 if (!isTriviallyVectorizable(ID)) { 1383 BS.cancelScheduling(VL); 1384 newTreeEntry(VL, false); 1385 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1386 return; 1387 } 1388 Function *Int = CI->getCalledFunction(); 1389 Value *A1I = nullptr; 1390 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1391 A1I = CI->getArgOperand(1); 1392 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1393 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1394 if (!CI2 || CI2->getCalledFunction() != Int || 1395 getIntrinsicIDForCall(CI2, TLI) != ID) { 1396 BS.cancelScheduling(VL); 1397 newTreeEntry(VL, false); 1398 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1399 << "\n"); 1400 return; 1401 } 1402 // ctlz,cttz and powi are special intrinsics whose second argument 1403 // should be same in order for them to be vectorized. 1404 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1405 Value *A1J = CI2->getArgOperand(1); 1406 if (A1I != A1J) { 1407 BS.cancelScheduling(VL); 1408 newTreeEntry(VL, false); 1409 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1410 << " argument "<< A1I<<"!=" << A1J 1411 << "\n"); 1412 return; 1413 } 1414 } 1415 } 1416 1417 newTreeEntry(VL, true); 1418 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1419 ValueList Operands; 1420 // Prepare the operand vector. 1421 for (unsigned j = 0; j < VL.size(); ++j) { 1422 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1423 Operands.push_back(CI2->getArgOperand(i)); 1424 } 1425 buildTree_rec(Operands, Depth + 1); 1426 } 1427 return; 1428 } 1429 case Instruction::ShuffleVector: { 1430 // If this is not an alternate sequence of opcode like add-sub 1431 // then do not vectorize this instruction. 1432 if (!isAltShuffle) { 1433 BS.cancelScheduling(VL); 1434 newTreeEntry(VL, false); 1435 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1436 return; 1437 } 1438 newTreeEntry(VL, true); 1439 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1440 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1441 ValueList Operands; 1442 // Prepare the operand vector. 1443 for (unsigned j = 0; j < VL.size(); ++j) 1444 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1445 1446 buildTree_rec(Operands, Depth + 1); 1447 } 1448 return; 1449 } 1450 default: 1451 BS.cancelScheduling(VL); 1452 newTreeEntry(VL, false); 1453 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1454 return; 1455 } 1456 } 1457 1458 int BoUpSLP::getEntryCost(TreeEntry *E) { 1459 ArrayRef<Value*> VL = E->Scalars; 1460 1461 Type *ScalarTy = VL[0]->getType(); 1462 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1463 ScalarTy = SI->getValueOperand()->getType(); 1464 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1465 1466 if (E->NeedToGather) { 1467 if (allConstant(VL)) 1468 return 0; 1469 if (isSplat(VL)) { 1470 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1471 } 1472 return getGatherCost(E->Scalars); 1473 } 1474 unsigned Opcode = getSameOpcode(VL); 1475 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1476 Instruction *VL0 = cast<Instruction>(VL[0]); 1477 switch (Opcode) { 1478 case Instruction::PHI: { 1479 return 0; 1480 } 1481 case Instruction::ExtractElement: { 1482 if (CanReuseExtract(VL)) { 1483 int DeadCost = 0; 1484 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1485 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1486 if (E->hasOneUse()) 1487 // Take credit for instruction that will become dead. 1488 DeadCost += 1489 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1490 } 1491 return -DeadCost; 1492 } 1493 return getGatherCost(VecTy); 1494 } 1495 case Instruction::ZExt: 1496 case Instruction::SExt: 1497 case Instruction::FPToUI: 1498 case Instruction::FPToSI: 1499 case Instruction::FPExt: 1500 case Instruction::PtrToInt: 1501 case Instruction::IntToPtr: 1502 case Instruction::SIToFP: 1503 case Instruction::UIToFP: 1504 case Instruction::Trunc: 1505 case Instruction::FPTrunc: 1506 case Instruction::BitCast: { 1507 Type *SrcTy = VL0->getOperand(0)->getType(); 1508 1509 // Calculate the cost of this instruction. 1510 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1511 VL0->getType(), SrcTy); 1512 1513 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1514 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1515 return VecCost - ScalarCost; 1516 } 1517 case Instruction::FCmp: 1518 case Instruction::ICmp: 1519 case Instruction::Select: 1520 case Instruction::Add: 1521 case Instruction::FAdd: 1522 case Instruction::Sub: 1523 case Instruction::FSub: 1524 case Instruction::Mul: 1525 case Instruction::FMul: 1526 case Instruction::UDiv: 1527 case Instruction::SDiv: 1528 case Instruction::FDiv: 1529 case Instruction::URem: 1530 case Instruction::SRem: 1531 case Instruction::FRem: 1532 case Instruction::Shl: 1533 case Instruction::LShr: 1534 case Instruction::AShr: 1535 case Instruction::And: 1536 case Instruction::Or: 1537 case Instruction::Xor: { 1538 // Calculate the cost of this instruction. 1539 int ScalarCost = 0; 1540 int VecCost = 0; 1541 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1542 Opcode == Instruction::Select) { 1543 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1544 ScalarCost = VecTy->getNumElements() * 1545 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1546 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1547 } else { 1548 // Certain instructions can be cheaper to vectorize if they have a 1549 // constant second vector operand. 1550 TargetTransformInfo::OperandValueKind Op1VK = 1551 TargetTransformInfo::OK_AnyValue; 1552 TargetTransformInfo::OperandValueKind Op2VK = 1553 TargetTransformInfo::OK_UniformConstantValue; 1554 TargetTransformInfo::OperandValueProperties Op1VP = 1555 TargetTransformInfo::OP_None; 1556 TargetTransformInfo::OperandValueProperties Op2VP = 1557 TargetTransformInfo::OP_None; 1558 1559 // If all operands are exactly the same ConstantInt then set the 1560 // operand kind to OK_UniformConstantValue. 1561 // If instead not all operands are constants, then set the operand kind 1562 // to OK_AnyValue. If all operands are constants but not the same, 1563 // then set the operand kind to OK_NonUniformConstantValue. 1564 ConstantInt *CInt = nullptr; 1565 for (unsigned i = 0; i < VL.size(); ++i) { 1566 const Instruction *I = cast<Instruction>(VL[i]); 1567 if (!isa<ConstantInt>(I->getOperand(1))) { 1568 Op2VK = TargetTransformInfo::OK_AnyValue; 1569 break; 1570 } 1571 if (i == 0) { 1572 CInt = cast<ConstantInt>(I->getOperand(1)); 1573 continue; 1574 } 1575 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1576 CInt != cast<ConstantInt>(I->getOperand(1))) 1577 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1578 } 1579 // FIXME: Currently cost of model modification for division by 1580 // power of 2 is handled only for X86. Add support for other targets. 1581 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1582 CInt->getValue().isPowerOf2()) 1583 Op2VP = TargetTransformInfo::OP_PowerOf2; 1584 1585 ScalarCost = VecTy->getNumElements() * 1586 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, 1587 Op1VP, Op2VP); 1588 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1589 Op1VP, Op2VP); 1590 } 1591 return VecCost - ScalarCost; 1592 } 1593 case Instruction::GetElementPtr: { 1594 TargetTransformInfo::OperandValueKind Op1VK = 1595 TargetTransformInfo::OK_AnyValue; 1596 TargetTransformInfo::OperandValueKind Op2VK = 1597 TargetTransformInfo::OK_UniformConstantValue; 1598 1599 int ScalarCost = 1600 VecTy->getNumElements() * 1601 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1602 int VecCost = 1603 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1604 1605 return VecCost - ScalarCost; 1606 } 1607 case Instruction::Load: { 1608 // Cost of wide load - cost of scalar loads. 1609 int ScalarLdCost = VecTy->getNumElements() * 1610 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1611 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1612 return VecLdCost - ScalarLdCost; 1613 } 1614 case Instruction::Store: { 1615 // We know that we can merge the stores. Calculate the cost. 1616 int ScalarStCost = VecTy->getNumElements() * 1617 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1618 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1619 return VecStCost - ScalarStCost; 1620 } 1621 case Instruction::Call: { 1622 CallInst *CI = cast<CallInst>(VL0); 1623 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1624 1625 // Calculate the cost of the scalar and vector calls. 1626 SmallVector<Type*, 4> ScalarTys, VecTys; 1627 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1628 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1629 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1630 VecTy->getNumElements())); 1631 } 1632 1633 int ScalarCallCost = VecTy->getNumElements() * 1634 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1635 1636 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1637 1638 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1639 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1640 << " for " << *CI << "\n"); 1641 1642 return VecCallCost - ScalarCallCost; 1643 } 1644 case Instruction::ShuffleVector: { 1645 TargetTransformInfo::OperandValueKind Op1VK = 1646 TargetTransformInfo::OK_AnyValue; 1647 TargetTransformInfo::OperandValueKind Op2VK = 1648 TargetTransformInfo::OK_AnyValue; 1649 int ScalarCost = 0; 1650 int VecCost = 0; 1651 for (unsigned i = 0; i < VL.size(); ++i) { 1652 Instruction *I = cast<Instruction>(VL[i]); 1653 if (!I) 1654 break; 1655 ScalarCost += 1656 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1657 } 1658 // VecCost is equal to sum of the cost of creating 2 vectors 1659 // and the cost of creating shuffle. 1660 Instruction *I0 = cast<Instruction>(VL[0]); 1661 VecCost = 1662 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1663 Instruction *I1 = cast<Instruction>(VL[1]); 1664 VecCost += 1665 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1666 VecCost += 1667 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1668 return VecCost - ScalarCost; 1669 } 1670 default: 1671 llvm_unreachable("Unknown instruction"); 1672 } 1673 } 1674 1675 bool BoUpSLP::isFullyVectorizableTinyTree() { 1676 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1677 VectorizableTree.size() << " is fully vectorizable .\n"); 1678 1679 // We only handle trees of height 2. 1680 if (VectorizableTree.size() != 2) 1681 return false; 1682 1683 // Handle splat stores. 1684 if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars)) 1685 return true; 1686 1687 // Gathering cost would be too much for tiny trees. 1688 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1689 return false; 1690 1691 return true; 1692 } 1693 1694 int BoUpSLP::getSpillCost() { 1695 // Walk from the bottom of the tree to the top, tracking which values are 1696 // live. When we see a call instruction that is not part of our tree, 1697 // query TTI to see if there is a cost to keeping values live over it 1698 // (for example, if spills and fills are required). 1699 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1700 int Cost = 0; 1701 1702 SmallPtrSet<Instruction*, 4> LiveValues; 1703 Instruction *PrevInst = nullptr; 1704 1705 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1706 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1707 if (!Inst) 1708 continue; 1709 1710 if (!PrevInst) { 1711 PrevInst = Inst; 1712 continue; 1713 } 1714 1715 DEBUG( 1716 dbgs() << "SLP: #LV: " << LiveValues.size(); 1717 for (auto *X : LiveValues) 1718 dbgs() << " " << X->getName(); 1719 dbgs() << ", Looking at "; 1720 Inst->dump(); 1721 ); 1722 1723 // Update LiveValues. 1724 LiveValues.erase(PrevInst); 1725 for (auto &J : PrevInst->operands()) { 1726 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1727 LiveValues.insert(cast<Instruction>(&*J)); 1728 } 1729 1730 // Now find the sequence of instructions between PrevInst and Inst. 1731 BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst); 1732 --PrevInstIt; 1733 while (InstIt != PrevInstIt) { 1734 if (PrevInstIt == PrevInst->getParent()->rend()) { 1735 PrevInstIt = Inst->getParent()->rbegin(); 1736 continue; 1737 } 1738 1739 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1740 SmallVector<Type*, 4> V; 1741 for (auto *II : LiveValues) 1742 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1743 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1744 } 1745 1746 ++PrevInstIt; 1747 } 1748 1749 PrevInst = Inst; 1750 } 1751 1752 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); 1753 return Cost; 1754 } 1755 1756 int BoUpSLP::getTreeCost() { 1757 int Cost = 0; 1758 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1759 VectorizableTree.size() << ".\n"); 1760 1761 // We only vectorize tiny trees if it is fully vectorizable. 1762 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1763 if (!VectorizableTree.size()) { 1764 assert(!ExternalUses.size() && "We should not have any external users"); 1765 } 1766 return INT_MAX; 1767 } 1768 1769 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1770 1771 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1772 int C = getEntryCost(&VectorizableTree[i]); 1773 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1774 << *VectorizableTree[i].Scalars[0] << " .\n"); 1775 Cost += C; 1776 } 1777 1778 SmallSet<Value *, 16> ExtractCostCalculated; 1779 int ExtractCost = 0; 1780 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1781 I != E; ++I) { 1782 // We only add extract cost once for the same scalar. 1783 if (!ExtractCostCalculated.insert(I->Scalar).second) 1784 continue; 1785 1786 // Uses by ephemeral values are free (because the ephemeral value will be 1787 // removed prior to code generation, and so the extraction will be 1788 // removed as well). 1789 if (EphValues.count(I->User)) 1790 continue; 1791 1792 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1793 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1794 I->Lane); 1795 } 1796 1797 Cost += getSpillCost(); 1798 1799 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1800 return Cost + ExtractCost; 1801 } 1802 1803 int BoUpSLP::getGatherCost(Type *Ty) { 1804 int Cost = 0; 1805 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1806 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1807 return Cost; 1808 } 1809 1810 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1811 // Find the type of the operands in VL. 1812 Type *ScalarTy = VL[0]->getType(); 1813 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1814 ScalarTy = SI->getValueOperand()->getType(); 1815 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1816 // Find the cost of inserting/extracting values from the vector. 1817 return getGatherCost(VecTy); 1818 } 1819 1820 Value *BoUpSLP::getPointerOperand(Value *I) { 1821 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1822 return LI->getPointerOperand(); 1823 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1824 return SI->getPointerOperand(); 1825 return nullptr; 1826 } 1827 1828 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1829 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1830 return L->getPointerAddressSpace(); 1831 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1832 return S->getPointerAddressSpace(); 1833 return -1; 1834 } 1835 1836 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { 1837 Value *PtrA = getPointerOperand(A); 1838 Value *PtrB = getPointerOperand(B); 1839 unsigned ASA = getAddressSpaceOperand(A); 1840 unsigned ASB = getAddressSpaceOperand(B); 1841 1842 // Check that the address spaces match and that the pointers are valid. 1843 if (!PtrA || !PtrB || (ASA != ASB)) 1844 return false; 1845 1846 // Make sure that A and B are different pointers of the same type. 1847 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1848 return false; 1849 1850 unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA); 1851 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1852 APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty)); 1853 1854 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1855 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA); 1856 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB); 1857 1858 APInt OffsetDelta = OffsetB - OffsetA; 1859 1860 // Check if they are based on the same pointer. That makes the offsets 1861 // sufficient. 1862 if (PtrA == PtrB) 1863 return OffsetDelta == Size; 1864 1865 // Compute the necessary base pointer delta to have the necessary final delta 1866 // equal to the size. 1867 APInt BaseDelta = Size - OffsetDelta; 1868 1869 // Otherwise compute the distance with SCEV between the base pointers. 1870 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1871 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1872 const SCEV *C = SE->getConstant(BaseDelta); 1873 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1874 return X == PtrSCEVB; 1875 } 1876 1877 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 1878 Instruction *VL0 = cast<Instruction>(VL[0]); 1879 BasicBlock::iterator NextInst = VL0; 1880 ++NextInst; 1881 Builder.SetInsertPoint(VL0->getParent(), NextInst); 1882 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 1883 } 1884 1885 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 1886 Value *Vec = UndefValue::get(Ty); 1887 // Generate the 'InsertElement' instruction. 1888 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 1889 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 1890 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 1891 GatherSeq.insert(Insrt); 1892 CSEBlocks.insert(Insrt->getParent()); 1893 1894 // Add to our 'need-to-extract' list. 1895 if (ScalarToTreeEntry.count(VL[i])) { 1896 int Idx = ScalarToTreeEntry[VL[i]]; 1897 TreeEntry *E = &VectorizableTree[Idx]; 1898 // Find which lane we need to extract. 1899 int FoundLane = -1; 1900 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 1901 // Is this the lane of the scalar that we are looking for ? 1902 if (E->Scalars[Lane] == VL[i]) { 1903 FoundLane = Lane; 1904 break; 1905 } 1906 } 1907 assert(FoundLane >= 0 && "Could not find the correct lane"); 1908 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 1909 } 1910 } 1911 } 1912 1913 return Vec; 1914 } 1915 1916 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 1917 SmallDenseMap<Value*, int>::const_iterator Entry 1918 = ScalarToTreeEntry.find(VL[0]); 1919 if (Entry != ScalarToTreeEntry.end()) { 1920 int Idx = Entry->second; 1921 const TreeEntry *En = &VectorizableTree[Idx]; 1922 if (En->isSame(VL) && En->VectorizedValue) 1923 return En->VectorizedValue; 1924 } 1925 return nullptr; 1926 } 1927 1928 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 1929 if (ScalarToTreeEntry.count(VL[0])) { 1930 int Idx = ScalarToTreeEntry[VL[0]]; 1931 TreeEntry *E = &VectorizableTree[Idx]; 1932 if (E->isSame(VL)) 1933 return vectorizeTree(E); 1934 } 1935 1936 Type *ScalarTy = VL[0]->getType(); 1937 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1938 ScalarTy = SI->getValueOperand()->getType(); 1939 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1940 1941 return Gather(VL, VecTy); 1942 } 1943 1944 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 1945 IRBuilder<>::InsertPointGuard Guard(Builder); 1946 1947 if (E->VectorizedValue) { 1948 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 1949 return E->VectorizedValue; 1950 } 1951 1952 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 1953 Type *ScalarTy = VL0->getType(); 1954 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 1955 ScalarTy = SI->getValueOperand()->getType(); 1956 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 1957 1958 if (E->NeedToGather) { 1959 setInsertPointAfterBundle(E->Scalars); 1960 return Gather(E->Scalars, VecTy); 1961 } 1962 1963 unsigned Opcode = getSameOpcode(E->Scalars); 1964 1965 switch (Opcode) { 1966 case Instruction::PHI: { 1967 PHINode *PH = dyn_cast<PHINode>(VL0); 1968 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 1969 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1970 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 1971 E->VectorizedValue = NewPhi; 1972 1973 // PHINodes may have multiple entries from the same block. We want to 1974 // visit every block once. 1975 SmallSet<BasicBlock*, 4> VisitedBBs; 1976 1977 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1978 ValueList Operands; 1979 BasicBlock *IBB = PH->getIncomingBlock(i); 1980 1981 if (!VisitedBBs.insert(IBB).second) { 1982 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 1983 continue; 1984 } 1985 1986 // Prepare the operand vector. 1987 for (unsigned j = 0; j < E->Scalars.size(); ++j) 1988 Operands.push_back(cast<PHINode>(E->Scalars[j])-> 1989 getIncomingValueForBlock(IBB)); 1990 1991 Builder.SetInsertPoint(IBB->getTerminator()); 1992 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1993 Value *Vec = vectorizeTree(Operands); 1994 NewPhi->addIncoming(Vec, IBB); 1995 } 1996 1997 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 1998 "Invalid number of incoming values"); 1999 return NewPhi; 2000 } 2001 2002 case Instruction::ExtractElement: { 2003 if (CanReuseExtract(E->Scalars)) { 2004 Value *V = VL0->getOperand(0); 2005 E->VectorizedValue = V; 2006 return V; 2007 } 2008 return Gather(E->Scalars, VecTy); 2009 } 2010 case Instruction::ZExt: 2011 case Instruction::SExt: 2012 case Instruction::FPToUI: 2013 case Instruction::FPToSI: 2014 case Instruction::FPExt: 2015 case Instruction::PtrToInt: 2016 case Instruction::IntToPtr: 2017 case Instruction::SIToFP: 2018 case Instruction::UIToFP: 2019 case Instruction::Trunc: 2020 case Instruction::FPTrunc: 2021 case Instruction::BitCast: { 2022 ValueList INVL; 2023 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2024 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2025 2026 setInsertPointAfterBundle(E->Scalars); 2027 2028 Value *InVec = vectorizeTree(INVL); 2029 2030 if (Value *V = alreadyVectorized(E->Scalars)) 2031 return V; 2032 2033 CastInst *CI = dyn_cast<CastInst>(VL0); 2034 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2035 E->VectorizedValue = V; 2036 ++NumVectorInstructions; 2037 return V; 2038 } 2039 case Instruction::FCmp: 2040 case Instruction::ICmp: { 2041 ValueList LHSV, RHSV; 2042 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2043 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2044 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2045 } 2046 2047 setInsertPointAfterBundle(E->Scalars); 2048 2049 Value *L = vectorizeTree(LHSV); 2050 Value *R = vectorizeTree(RHSV); 2051 2052 if (Value *V = alreadyVectorized(E->Scalars)) 2053 return V; 2054 2055 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 2056 Value *V; 2057 if (Opcode == Instruction::FCmp) 2058 V = Builder.CreateFCmp(P0, L, R); 2059 else 2060 V = Builder.CreateICmp(P0, L, R); 2061 2062 E->VectorizedValue = V; 2063 ++NumVectorInstructions; 2064 return V; 2065 } 2066 case Instruction::Select: { 2067 ValueList TrueVec, FalseVec, CondVec; 2068 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2069 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2070 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2071 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2)); 2072 } 2073 2074 setInsertPointAfterBundle(E->Scalars); 2075 2076 Value *Cond = vectorizeTree(CondVec); 2077 Value *True = vectorizeTree(TrueVec); 2078 Value *False = vectorizeTree(FalseVec); 2079 2080 if (Value *V = alreadyVectorized(E->Scalars)) 2081 return V; 2082 2083 Value *V = Builder.CreateSelect(Cond, True, False); 2084 E->VectorizedValue = V; 2085 ++NumVectorInstructions; 2086 return V; 2087 } 2088 case Instruction::Add: 2089 case Instruction::FAdd: 2090 case Instruction::Sub: 2091 case Instruction::FSub: 2092 case Instruction::Mul: 2093 case Instruction::FMul: 2094 case Instruction::UDiv: 2095 case Instruction::SDiv: 2096 case Instruction::FDiv: 2097 case Instruction::URem: 2098 case Instruction::SRem: 2099 case Instruction::FRem: 2100 case Instruction::Shl: 2101 case Instruction::LShr: 2102 case Instruction::AShr: 2103 case Instruction::And: 2104 case Instruction::Or: 2105 case Instruction::Xor: { 2106 ValueList LHSVL, RHSVL; 2107 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2108 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2109 else 2110 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2111 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2112 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2113 } 2114 2115 setInsertPointAfterBundle(E->Scalars); 2116 2117 Value *LHS = vectorizeTree(LHSVL); 2118 Value *RHS = vectorizeTree(RHSVL); 2119 2120 if (LHS == RHS && isa<Instruction>(LHS)) { 2121 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2122 } 2123 2124 if (Value *V = alreadyVectorized(E->Scalars)) 2125 return V; 2126 2127 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2128 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2129 E->VectorizedValue = V; 2130 propagateIRFlags(E->VectorizedValue, E->Scalars); 2131 ++NumVectorInstructions; 2132 2133 if (Instruction *I = dyn_cast<Instruction>(V)) 2134 return propagateMetadata(I, E->Scalars); 2135 2136 return V; 2137 } 2138 case Instruction::Load: { 2139 // Loads are inserted at the head of the tree because we don't want to 2140 // sink them all the way down past store instructions. 2141 setInsertPointAfterBundle(E->Scalars); 2142 2143 LoadInst *LI = cast<LoadInst>(VL0); 2144 Type *ScalarLoadTy = LI->getType(); 2145 unsigned AS = LI->getPointerAddressSpace(); 2146 2147 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2148 VecTy->getPointerTo(AS)); 2149 2150 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2151 // ExternalUses list to make sure that an extract will be generated in the 2152 // future. 2153 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2154 ExternalUses.push_back( 2155 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2156 2157 unsigned Alignment = LI->getAlignment(); 2158 LI = Builder.CreateLoad(VecPtr); 2159 if (!Alignment) 2160 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2161 LI->setAlignment(Alignment); 2162 E->VectorizedValue = LI; 2163 ++NumVectorInstructions; 2164 return propagateMetadata(LI, E->Scalars); 2165 } 2166 case Instruction::Store: { 2167 StoreInst *SI = cast<StoreInst>(VL0); 2168 unsigned Alignment = SI->getAlignment(); 2169 unsigned AS = SI->getPointerAddressSpace(); 2170 2171 ValueList ValueOp; 2172 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2173 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand()); 2174 2175 setInsertPointAfterBundle(E->Scalars); 2176 2177 Value *VecValue = vectorizeTree(ValueOp); 2178 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2179 VecTy->getPointerTo(AS)); 2180 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2181 2182 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2183 // ExternalUses list to make sure that an extract will be generated in the 2184 // future. 2185 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2186 ExternalUses.push_back( 2187 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2188 2189 if (!Alignment) 2190 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2191 S->setAlignment(Alignment); 2192 E->VectorizedValue = S; 2193 ++NumVectorInstructions; 2194 return propagateMetadata(S, E->Scalars); 2195 } 2196 case Instruction::GetElementPtr: { 2197 setInsertPointAfterBundle(E->Scalars); 2198 2199 ValueList Op0VL; 2200 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2201 Op0VL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(0)); 2202 2203 Value *Op0 = vectorizeTree(Op0VL); 2204 2205 std::vector<Value *> OpVecs; 2206 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2207 ++j) { 2208 ValueList OpVL; 2209 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2210 OpVL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(j)); 2211 2212 Value *OpVec = vectorizeTree(OpVL); 2213 OpVecs.push_back(OpVec); 2214 } 2215 2216 Value *V = Builder.CreateGEP(Op0, OpVecs); 2217 E->VectorizedValue = V; 2218 ++NumVectorInstructions; 2219 2220 if (Instruction *I = dyn_cast<Instruction>(V)) 2221 return propagateMetadata(I, E->Scalars); 2222 2223 return V; 2224 } 2225 case Instruction::Call: { 2226 CallInst *CI = cast<CallInst>(VL0); 2227 setInsertPointAfterBundle(E->Scalars); 2228 Function *FI; 2229 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2230 Value *ScalarArg = nullptr; 2231 if (CI && (FI = CI->getCalledFunction())) { 2232 IID = (Intrinsic::ID) FI->getIntrinsicID(); 2233 } 2234 std::vector<Value *> OpVecs; 2235 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2236 ValueList OpVL; 2237 // ctlz,cttz and powi are special intrinsics whose second argument is 2238 // a scalar. This argument should not be vectorized. 2239 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2240 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2241 ScalarArg = CEI->getArgOperand(j); 2242 OpVecs.push_back(CEI->getArgOperand(j)); 2243 continue; 2244 } 2245 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2246 CallInst *CEI = cast<CallInst>(E->Scalars[i]); 2247 OpVL.push_back(CEI->getArgOperand(j)); 2248 } 2249 2250 Value *OpVec = vectorizeTree(OpVL); 2251 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2252 OpVecs.push_back(OpVec); 2253 } 2254 2255 Module *M = F->getParent(); 2256 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2257 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2258 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2259 Value *V = Builder.CreateCall(CF, OpVecs); 2260 2261 // The scalar argument uses an in-tree scalar so we add the new vectorized 2262 // call to ExternalUses list to make sure that an extract will be 2263 // generated in the future. 2264 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2265 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2266 2267 E->VectorizedValue = V; 2268 ++NumVectorInstructions; 2269 return V; 2270 } 2271 case Instruction::ShuffleVector: { 2272 ValueList LHSVL, RHSVL; 2273 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2274 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2275 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2276 } 2277 setInsertPointAfterBundle(E->Scalars); 2278 2279 Value *LHS = vectorizeTree(LHSVL); 2280 Value *RHS = vectorizeTree(RHSVL); 2281 2282 if (Value *V = alreadyVectorized(E->Scalars)) 2283 return V; 2284 2285 // Create a vector of LHS op1 RHS 2286 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2287 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2288 2289 // Create a vector of LHS op2 RHS 2290 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2291 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2292 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2293 2294 // Create shuffle to take alternate operations from the vector. 2295 // Also, gather up odd and even scalar ops to propagate IR flags to 2296 // each vector operation. 2297 ValueList OddScalars, EvenScalars; 2298 unsigned e = E->Scalars.size(); 2299 SmallVector<Constant *, 8> Mask(e); 2300 for (unsigned i = 0; i < e; ++i) { 2301 if (i & 1) { 2302 Mask[i] = Builder.getInt32(e + i); 2303 OddScalars.push_back(E->Scalars[i]); 2304 } else { 2305 Mask[i] = Builder.getInt32(i); 2306 EvenScalars.push_back(E->Scalars[i]); 2307 } 2308 } 2309 2310 Value *ShuffleMask = ConstantVector::get(Mask); 2311 propagateIRFlags(V0, EvenScalars); 2312 propagateIRFlags(V1, OddScalars); 2313 2314 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2315 E->VectorizedValue = V; 2316 ++NumVectorInstructions; 2317 if (Instruction *I = dyn_cast<Instruction>(V)) 2318 return propagateMetadata(I, E->Scalars); 2319 2320 return V; 2321 } 2322 default: 2323 llvm_unreachable("unknown inst"); 2324 } 2325 return nullptr; 2326 } 2327 2328 Value *BoUpSLP::vectorizeTree() { 2329 2330 // All blocks must be scheduled before any instructions are inserted. 2331 for (auto &BSIter : BlocksSchedules) { 2332 scheduleBlock(BSIter.second.get()); 2333 } 2334 2335 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2336 vectorizeTree(&VectorizableTree[0]); 2337 2338 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2339 2340 // Extract all of the elements with the external uses. 2341 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2342 it != e; ++it) { 2343 Value *Scalar = it->Scalar; 2344 llvm::User *User = it->User; 2345 2346 // Skip users that we already RAUW. This happens when one instruction 2347 // has multiple uses of the same value. 2348 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2349 Scalar->user_end()) 2350 continue; 2351 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2352 2353 int Idx = ScalarToTreeEntry[Scalar]; 2354 TreeEntry *E = &VectorizableTree[Idx]; 2355 assert(!E->NeedToGather && "Extracting from a gather list"); 2356 2357 Value *Vec = E->VectorizedValue; 2358 assert(Vec && "Can't find vectorizable value"); 2359 2360 Value *Lane = Builder.getInt32(it->Lane); 2361 // Generate extracts for out-of-tree users. 2362 // Find the insertion point for the extractelement lane. 2363 if (isa<Instruction>(Vec)){ 2364 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2365 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2366 if (PH->getIncomingValue(i) == Scalar) { 2367 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2368 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2369 CSEBlocks.insert(PH->getIncomingBlock(i)); 2370 PH->setOperand(i, Ex); 2371 } 2372 } 2373 } else { 2374 Builder.SetInsertPoint(cast<Instruction>(User)); 2375 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2376 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2377 User->replaceUsesOfWith(Scalar, Ex); 2378 } 2379 } else { 2380 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2381 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2382 CSEBlocks.insert(&F->getEntryBlock()); 2383 User->replaceUsesOfWith(Scalar, Ex); 2384 } 2385 2386 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2387 } 2388 2389 // For each vectorized value: 2390 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2391 TreeEntry *Entry = &VectorizableTree[EIdx]; 2392 2393 // For each lane: 2394 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2395 Value *Scalar = Entry->Scalars[Lane]; 2396 // No need to handle users of gathered values. 2397 if (Entry->NeedToGather) 2398 continue; 2399 2400 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2401 2402 Type *Ty = Scalar->getType(); 2403 if (!Ty->isVoidTy()) { 2404 #ifndef NDEBUG 2405 for (User *U : Scalar->users()) { 2406 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2407 2408 assert((ScalarToTreeEntry.count(U) || 2409 // It is legal to replace users in the ignorelist by undef. 2410 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2411 UserIgnoreList.end())) && 2412 "Replacing out-of-tree value with undef"); 2413 } 2414 #endif 2415 Value *Undef = UndefValue::get(Ty); 2416 Scalar->replaceAllUsesWith(Undef); 2417 } 2418 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2419 eraseInstruction(cast<Instruction>(Scalar)); 2420 } 2421 } 2422 2423 Builder.ClearInsertionPoint(); 2424 2425 return VectorizableTree[0].VectorizedValue; 2426 } 2427 2428 void BoUpSLP::optimizeGatherSequence() { 2429 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2430 << " gather sequences instructions.\n"); 2431 // LICM InsertElementInst sequences. 2432 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2433 e = GatherSeq.end(); it != e; ++it) { 2434 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2435 2436 if (!Insert) 2437 continue; 2438 2439 // Check if this block is inside a loop. 2440 Loop *L = LI->getLoopFor(Insert->getParent()); 2441 if (!L) 2442 continue; 2443 2444 // Check if it has a preheader. 2445 BasicBlock *PreHeader = L->getLoopPreheader(); 2446 if (!PreHeader) 2447 continue; 2448 2449 // If the vector or the element that we insert into it are 2450 // instructions that are defined in this basic block then we can't 2451 // hoist this instruction. 2452 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2453 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2454 if (CurrVec && L->contains(CurrVec)) 2455 continue; 2456 if (NewElem && L->contains(NewElem)) 2457 continue; 2458 2459 // We can hoist this instruction. Move it to the pre-header. 2460 Insert->moveBefore(PreHeader->getTerminator()); 2461 } 2462 2463 // Make a list of all reachable blocks in our CSE queue. 2464 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2465 CSEWorkList.reserve(CSEBlocks.size()); 2466 for (BasicBlock *BB : CSEBlocks) 2467 if (DomTreeNode *N = DT->getNode(BB)) { 2468 assert(DT->isReachableFromEntry(N)); 2469 CSEWorkList.push_back(N); 2470 } 2471 2472 // Sort blocks by domination. This ensures we visit a block after all blocks 2473 // dominating it are visited. 2474 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2475 [this](const DomTreeNode *A, const DomTreeNode *B) { 2476 return DT->properlyDominates(A, B); 2477 }); 2478 2479 // Perform O(N^2) search over the gather sequences and merge identical 2480 // instructions. TODO: We can further optimize this scan if we split the 2481 // instructions into different buckets based on the insert lane. 2482 SmallVector<Instruction *, 16> Visited; 2483 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2484 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2485 "Worklist not sorted properly!"); 2486 BasicBlock *BB = (*I)->getBlock(); 2487 // For all instructions in blocks containing gather sequences: 2488 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2489 Instruction *In = it++; 2490 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2491 continue; 2492 2493 // Check if we can replace this instruction with any of the 2494 // visited instructions. 2495 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2496 ve = Visited.end(); 2497 v != ve; ++v) { 2498 if (In->isIdenticalTo(*v) && 2499 DT->dominates((*v)->getParent(), In->getParent())) { 2500 In->replaceAllUsesWith(*v); 2501 eraseInstruction(In); 2502 In = nullptr; 2503 break; 2504 } 2505 } 2506 if (In) { 2507 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2508 Visited.push_back(In); 2509 } 2510 } 2511 } 2512 CSEBlocks.clear(); 2513 GatherSeq.clear(); 2514 } 2515 2516 // Groups the instructions to a bundle (which is then a single scheduling entity) 2517 // and schedules instructions until the bundle gets ready. 2518 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2519 BoUpSLP *SLP) { 2520 if (isa<PHINode>(VL[0])) 2521 return true; 2522 2523 // Initialize the instruction bundle. 2524 Instruction *OldScheduleEnd = ScheduleEnd; 2525 ScheduleData *PrevInBundle = nullptr; 2526 ScheduleData *Bundle = nullptr; 2527 bool ReSchedule = false; 2528 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2529 for (Value *V : VL) { 2530 extendSchedulingRegion(V); 2531 ScheduleData *BundleMember = getScheduleData(V); 2532 assert(BundleMember && 2533 "no ScheduleData for bundle member (maybe not in same basic block)"); 2534 if (BundleMember->IsScheduled) { 2535 // A bundle member was scheduled as single instruction before and now 2536 // needs to be scheduled as part of the bundle. We just get rid of the 2537 // existing schedule. 2538 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2539 << " was already scheduled\n"); 2540 ReSchedule = true; 2541 } 2542 assert(BundleMember->isSchedulingEntity() && 2543 "bundle member already part of other bundle"); 2544 if (PrevInBundle) { 2545 PrevInBundle->NextInBundle = BundleMember; 2546 } else { 2547 Bundle = BundleMember; 2548 } 2549 BundleMember->UnscheduledDepsInBundle = 0; 2550 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2551 2552 // Group the instructions to a bundle. 2553 BundleMember->FirstInBundle = Bundle; 2554 PrevInBundle = BundleMember; 2555 } 2556 if (ScheduleEnd != OldScheduleEnd) { 2557 // The scheduling region got new instructions at the lower end (or it is a 2558 // new region for the first bundle). This makes it necessary to 2559 // recalculate all dependencies. 2560 // It is seldom that this needs to be done a second time after adding the 2561 // initial bundle to the region. 2562 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2563 ScheduleData *SD = getScheduleData(I); 2564 SD->clearDependencies(); 2565 } 2566 ReSchedule = true; 2567 } 2568 if (ReSchedule) { 2569 resetSchedule(); 2570 initialFillReadyList(ReadyInsts); 2571 } 2572 2573 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2574 << BB->getName() << "\n"); 2575 2576 calculateDependencies(Bundle, true, SLP); 2577 2578 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2579 // means that there are no cyclic dependencies and we can schedule it. 2580 // Note that's important that we don't "schedule" the bundle yet (see 2581 // cancelScheduling). 2582 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2583 2584 ScheduleData *pickedSD = ReadyInsts.back(); 2585 ReadyInsts.pop_back(); 2586 2587 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2588 schedule(pickedSD, ReadyInsts); 2589 } 2590 } 2591 return Bundle->isReady(); 2592 } 2593 2594 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2595 if (isa<PHINode>(VL[0])) 2596 return; 2597 2598 ScheduleData *Bundle = getScheduleData(VL[0]); 2599 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2600 assert(!Bundle->IsScheduled && 2601 "Can't cancel bundle which is already scheduled"); 2602 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2603 "tried to unbundle something which is not a bundle"); 2604 2605 // Un-bundle: make single instructions out of the bundle. 2606 ScheduleData *BundleMember = Bundle; 2607 while (BundleMember) { 2608 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2609 BundleMember->FirstInBundle = BundleMember; 2610 ScheduleData *Next = BundleMember->NextInBundle; 2611 BundleMember->NextInBundle = nullptr; 2612 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2613 if (BundleMember->UnscheduledDepsInBundle == 0) { 2614 ReadyInsts.insert(BundleMember); 2615 } 2616 BundleMember = Next; 2617 } 2618 } 2619 2620 void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2621 if (getScheduleData(V)) 2622 return; 2623 Instruction *I = dyn_cast<Instruction>(V); 2624 assert(I && "bundle member must be an instruction"); 2625 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2626 if (!ScheduleStart) { 2627 // It's the first instruction in the new region. 2628 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2629 ScheduleStart = I; 2630 ScheduleEnd = I->getNextNode(); 2631 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2632 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2633 return; 2634 } 2635 // Search up and down at the same time, because we don't know if the new 2636 // instruction is above or below the existing scheduling region. 2637 BasicBlock::reverse_iterator UpIter(ScheduleStart); 2638 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2639 BasicBlock::iterator DownIter(ScheduleEnd); 2640 BasicBlock::iterator LowerEnd = BB->end(); 2641 for (;;) { 2642 if (UpIter != UpperEnd) { 2643 if (&*UpIter == I) { 2644 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2645 ScheduleStart = I; 2646 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2647 return; 2648 } 2649 UpIter++; 2650 } 2651 if (DownIter != LowerEnd) { 2652 if (&*DownIter == I) { 2653 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2654 nullptr); 2655 ScheduleEnd = I->getNextNode(); 2656 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2657 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2658 return; 2659 } 2660 DownIter++; 2661 } 2662 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2663 "instruction not found in block"); 2664 } 2665 } 2666 2667 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 2668 Instruction *ToI, 2669 ScheduleData *PrevLoadStore, 2670 ScheduleData *NextLoadStore) { 2671 ScheduleData *CurrentLoadStore = PrevLoadStore; 2672 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 2673 ScheduleData *SD = ScheduleDataMap[I]; 2674 if (!SD) { 2675 // Allocate a new ScheduleData for the instruction. 2676 if (ChunkPos >= ChunkSize) { 2677 ScheduleDataChunks.push_back( 2678 llvm::make_unique<ScheduleData[]>(ChunkSize)); 2679 ChunkPos = 0; 2680 } 2681 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 2682 ScheduleDataMap[I] = SD; 2683 SD->Inst = I; 2684 } 2685 assert(!isInSchedulingRegion(SD) && 2686 "new ScheduleData already in scheduling region"); 2687 SD->init(SchedulingRegionID); 2688 2689 if (I->mayReadOrWriteMemory()) { 2690 // Update the linked list of memory accessing instructions. 2691 if (CurrentLoadStore) { 2692 CurrentLoadStore->NextLoadStore = SD; 2693 } else { 2694 FirstLoadStoreInRegion = SD; 2695 } 2696 CurrentLoadStore = SD; 2697 } 2698 } 2699 if (NextLoadStore) { 2700 if (CurrentLoadStore) 2701 CurrentLoadStore->NextLoadStore = NextLoadStore; 2702 } else { 2703 LastLoadStoreInRegion = CurrentLoadStore; 2704 } 2705 } 2706 2707 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 2708 bool InsertInReadyList, 2709 BoUpSLP *SLP) { 2710 assert(SD->isSchedulingEntity()); 2711 2712 SmallVector<ScheduleData *, 10> WorkList; 2713 WorkList.push_back(SD); 2714 2715 while (!WorkList.empty()) { 2716 ScheduleData *SD = WorkList.back(); 2717 WorkList.pop_back(); 2718 2719 ScheduleData *BundleMember = SD; 2720 while (BundleMember) { 2721 assert(isInSchedulingRegion(BundleMember)); 2722 if (!BundleMember->hasValidDependencies()) { 2723 2724 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 2725 BundleMember->Dependencies = 0; 2726 BundleMember->resetUnscheduledDeps(); 2727 2728 // Handle def-use chain dependencies. 2729 for (User *U : BundleMember->Inst->users()) { 2730 if (isa<Instruction>(U)) { 2731 ScheduleData *UseSD = getScheduleData(U); 2732 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 2733 BundleMember->Dependencies++; 2734 ScheduleData *DestBundle = UseSD->FirstInBundle; 2735 if (!DestBundle->IsScheduled) { 2736 BundleMember->incrementUnscheduledDeps(1); 2737 } 2738 if (!DestBundle->hasValidDependencies()) { 2739 WorkList.push_back(DestBundle); 2740 } 2741 } 2742 } else { 2743 // I'm not sure if this can ever happen. But we need to be safe. 2744 // This lets the instruction/bundle never be scheduled and eventally 2745 // disable vectorization. 2746 BundleMember->Dependencies++; 2747 BundleMember->incrementUnscheduledDeps(1); 2748 } 2749 } 2750 2751 // Handle the memory dependencies. 2752 ScheduleData *DepDest = BundleMember->NextLoadStore; 2753 if (DepDest) { 2754 Instruction *SrcInst = BundleMember->Inst; 2755 AliasAnalysis::Location SrcLoc = getLocation(SrcInst, SLP->AA); 2756 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 2757 2758 while (DepDest) { 2759 assert(isInSchedulingRegion(DepDest)); 2760 if (SrcMayWrite || DepDest->Inst->mayWriteToMemory()) { 2761 if (SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)) { 2762 DepDest->MemoryDependencies.push_back(BundleMember); 2763 BundleMember->Dependencies++; 2764 ScheduleData *DestBundle = DepDest->FirstInBundle; 2765 if (!DestBundle->IsScheduled) { 2766 BundleMember->incrementUnscheduledDeps(1); 2767 } 2768 if (!DestBundle->hasValidDependencies()) { 2769 WorkList.push_back(DestBundle); 2770 } 2771 } 2772 } 2773 DepDest = DepDest->NextLoadStore; 2774 } 2775 } 2776 } 2777 BundleMember = BundleMember->NextInBundle; 2778 } 2779 if (InsertInReadyList && SD->isReady()) { 2780 ReadyInsts.push_back(SD); 2781 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 2782 } 2783 } 2784 } 2785 2786 void BoUpSLP::BlockScheduling::resetSchedule() { 2787 assert(ScheduleStart && 2788 "tried to reset schedule on block which has not been scheduled"); 2789 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2790 ScheduleData *SD = getScheduleData(I); 2791 assert(isInSchedulingRegion(SD)); 2792 SD->IsScheduled = false; 2793 SD->resetUnscheduledDeps(); 2794 } 2795 ReadyInsts.clear(); 2796 } 2797 2798 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 2799 2800 if (!BS->ScheduleStart) 2801 return; 2802 2803 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 2804 2805 BS->resetSchedule(); 2806 2807 // For the real scheduling we use a more sophisticated ready-list: it is 2808 // sorted by the original instruction location. This lets the final schedule 2809 // be as close as possible to the original instruction order. 2810 struct ScheduleDataCompare { 2811 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 2812 return SD2->SchedulingPriority < SD1->SchedulingPriority; 2813 } 2814 }; 2815 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 2816 2817 // Ensure that all depencency data is updated and fill the ready-list with 2818 // initial instructions. 2819 int Idx = 0; 2820 int NumToSchedule = 0; 2821 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 2822 I = I->getNextNode()) { 2823 ScheduleData *SD = BS->getScheduleData(I); 2824 assert( 2825 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 2826 "scheduler and vectorizer have different opinion on what is a bundle"); 2827 SD->FirstInBundle->SchedulingPriority = Idx++; 2828 if (SD->isSchedulingEntity()) { 2829 BS->calculateDependencies(SD, false, this); 2830 NumToSchedule++; 2831 } 2832 } 2833 BS->initialFillReadyList(ReadyInsts); 2834 2835 Instruction *LastScheduledInst = BS->ScheduleEnd; 2836 2837 // Do the "real" scheduling. 2838 while (!ReadyInsts.empty()) { 2839 ScheduleData *picked = *ReadyInsts.begin(); 2840 ReadyInsts.erase(ReadyInsts.begin()); 2841 2842 // Move the scheduled instruction(s) to their dedicated places, if not 2843 // there yet. 2844 ScheduleData *BundleMember = picked; 2845 while (BundleMember) { 2846 Instruction *pickedInst = BundleMember->Inst; 2847 if (LastScheduledInst->getNextNode() != pickedInst) { 2848 BS->BB->getInstList().remove(pickedInst); 2849 BS->BB->getInstList().insert(LastScheduledInst, pickedInst); 2850 } 2851 LastScheduledInst = pickedInst; 2852 BundleMember = BundleMember->NextInBundle; 2853 } 2854 2855 BS->schedule(picked, ReadyInsts); 2856 NumToSchedule--; 2857 } 2858 assert(NumToSchedule == 0 && "could not schedule all instructions"); 2859 2860 // Avoid duplicate scheduling of the block. 2861 BS->ScheduleStart = nullptr; 2862 } 2863 2864 /// The SLPVectorizer Pass. 2865 struct SLPVectorizer : public FunctionPass { 2866 typedef SmallVector<StoreInst *, 8> StoreList; 2867 typedef MapVector<Value *, StoreList> StoreListMap; 2868 2869 /// Pass identification, replacement for typeid 2870 static char ID; 2871 2872 explicit SLPVectorizer() : FunctionPass(ID) { 2873 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 2874 } 2875 2876 ScalarEvolution *SE; 2877 const DataLayout *DL; 2878 TargetTransformInfo *TTI; 2879 TargetLibraryInfo *TLI; 2880 AliasAnalysis *AA; 2881 LoopInfo *LI; 2882 DominatorTree *DT; 2883 AssumptionCache *AC; 2884 2885 bool runOnFunction(Function &F) override { 2886 if (skipOptnoneFunction(F)) 2887 return false; 2888 2889 SE = &getAnalysis<ScalarEvolution>(); 2890 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 2891 DL = DLP ? &DLP->getDataLayout() : nullptr; 2892 TTI = &getAnalysis<TargetTransformInfo>(); 2893 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 2894 AA = &getAnalysis<AliasAnalysis>(); 2895 LI = &getAnalysis<LoopInfo>(); 2896 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2897 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2898 2899 StoreRefs.clear(); 2900 bool Changed = false; 2901 2902 // If the target claims to have no vector registers don't attempt 2903 // vectorization. 2904 if (!TTI->getNumberOfRegisters(true)) 2905 return false; 2906 2907 // Must have DataLayout. We can't require it because some tests run w/o 2908 // triple. 2909 if (!DL) 2910 return false; 2911 2912 // Don't vectorize when the attribute NoImplicitFloat is used. 2913 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 2914 return false; 2915 2916 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 2917 2918 // Use the bottom up slp vectorizer to construct chains that start with 2919 // store instructions. 2920 BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT, AC); 2921 2922 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 2923 // delete instructions. 2924 2925 // Scan the blocks in the function in post order. 2926 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()), 2927 e = po_end(&F.getEntryBlock()); it != e; ++it) { 2928 BasicBlock *BB = *it; 2929 // Vectorize trees that end at stores. 2930 if (unsigned count = collectStores(BB, R)) { 2931 (void)count; 2932 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 2933 Changed |= vectorizeStoreChains(R); 2934 } 2935 2936 // Vectorize trees that end at reductions. 2937 Changed |= vectorizeChainsInBlock(BB, R); 2938 } 2939 2940 if (Changed) { 2941 R.optimizeGatherSequence(); 2942 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 2943 DEBUG(verifyFunction(F)); 2944 } 2945 return Changed; 2946 } 2947 2948 void getAnalysisUsage(AnalysisUsage &AU) const override { 2949 FunctionPass::getAnalysisUsage(AU); 2950 AU.addRequired<AssumptionCacheTracker>(); 2951 AU.addRequired<ScalarEvolution>(); 2952 AU.addRequired<AliasAnalysis>(); 2953 AU.addRequired<TargetTransformInfo>(); 2954 AU.addRequired<LoopInfo>(); 2955 AU.addRequired<DominatorTreeWrapperPass>(); 2956 AU.addPreserved<LoopInfo>(); 2957 AU.addPreserved<DominatorTreeWrapperPass>(); 2958 AU.setPreservesCFG(); 2959 } 2960 2961 private: 2962 2963 /// \brief Collect memory references and sort them according to their base 2964 /// object. We sort the stores to their base objects to reduce the cost of the 2965 /// quadratic search on the stores. TODO: We can further reduce this cost 2966 /// if we flush the chain creation every time we run into a memory barrier. 2967 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 2968 2969 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 2970 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 2971 2972 /// \brief Try to vectorize a list of operands. 2973 /// \@param BuildVector A list of users to ignore for the purpose of 2974 /// scheduling and that don't need extracting. 2975 /// \returns true if a value was vectorized. 2976 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2977 ArrayRef<Value *> BuildVector = None, 2978 bool allowReorder = false); 2979 2980 /// \brief Try to vectorize a chain that may start at the operands of \V; 2981 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 2982 2983 /// \brief Vectorize the stores that were collected in StoreRefs. 2984 bool vectorizeStoreChains(BoUpSLP &R); 2985 2986 /// \brief Scan the basic block and look for patterns that are likely to start 2987 /// a vectorization chain. 2988 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 2989 2990 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 2991 BoUpSLP &R); 2992 2993 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 2994 BoUpSLP &R); 2995 private: 2996 StoreListMap StoreRefs; 2997 }; 2998 2999 /// \brief Check that the Values in the slice in VL array are still existent in 3000 /// the WeakVH array. 3001 /// Vectorization of part of the VL array may cause later values in the VL array 3002 /// to become invalid. We track when this has happened in the WeakVH array. 3003 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL, 3004 SmallVectorImpl<WeakVH> &VH, 3005 unsigned SliceBegin, 3006 unsigned SliceSize) { 3007 for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i) 3008 if (VH[i] != VL[i]) 3009 return true; 3010 3011 return false; 3012 } 3013 3014 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 3015 int CostThreshold, BoUpSLP &R) { 3016 unsigned ChainLen = Chain.size(); 3017 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3018 << "\n"); 3019 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 3020 unsigned Sz = DL->getTypeSizeInBits(StoreTy); 3021 unsigned VF = MinVecRegSize / Sz; 3022 3023 if (!isPowerOf2_32(Sz) || VF < 2) 3024 return false; 3025 3026 // Keep track of values that were deleted by vectorizing in the loop below. 3027 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3028 3029 bool Changed = false; 3030 // Look for profitable vectorizable trees at all offsets, starting at zero. 3031 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3032 if (i + VF > e) 3033 break; 3034 3035 // Check that a previous iteration of this loop did not delete the Value. 3036 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3037 continue; 3038 3039 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3040 << "\n"); 3041 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3042 3043 R.buildTree(Operands); 3044 3045 int Cost = R.getTreeCost(); 3046 3047 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3048 if (Cost < CostThreshold) { 3049 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3050 R.vectorizeTree(); 3051 3052 // Move to the next bundle. 3053 i += VF - 1; 3054 Changed = true; 3055 } 3056 } 3057 3058 return Changed; 3059 } 3060 3061 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 3062 int costThreshold, BoUpSLP &R) { 3063 SetVector<Value *> Heads, Tails; 3064 SmallDenseMap<Value *, Value *> ConsecutiveChain; 3065 3066 // We may run into multiple chains that merge into a single chain. We mark the 3067 // stores that we vectorized so that we don't visit the same store twice. 3068 BoUpSLP::ValueSet VectorizedStores; 3069 bool Changed = false; 3070 3071 // Do a quadratic search on all of the given stores and find 3072 // all of the pairs of stores that follow each other. 3073 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3074 for (unsigned j = 0; j < e; ++j) { 3075 if (i == j) 3076 continue; 3077 3078 if (R.isConsecutiveAccess(Stores[i], Stores[j])) { 3079 Tails.insert(Stores[j]); 3080 Heads.insert(Stores[i]); 3081 ConsecutiveChain[Stores[i]] = Stores[j]; 3082 } 3083 } 3084 } 3085 3086 // For stores that start but don't end a link in the chain: 3087 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end(); 3088 it != e; ++it) { 3089 if (Tails.count(*it)) 3090 continue; 3091 3092 // We found a store instr that starts a chain. Now follow the chain and try 3093 // to vectorize it. 3094 BoUpSLP::ValueList Operands; 3095 Value *I = *it; 3096 // Collect the chain into a list. 3097 while (Tails.count(I) || Heads.count(I)) { 3098 if (VectorizedStores.count(I)) 3099 break; 3100 Operands.push_back(I); 3101 // Move to the next value in the chain. 3102 I = ConsecutiveChain[I]; 3103 } 3104 3105 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); 3106 3107 // Mark the vectorized stores so that we don't vectorize them again. 3108 if (Vectorized) 3109 VectorizedStores.insert(Operands.begin(), Operands.end()); 3110 Changed |= Vectorized; 3111 } 3112 3113 return Changed; 3114 } 3115 3116 3117 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 3118 unsigned count = 0; 3119 StoreRefs.clear(); 3120 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3121 StoreInst *SI = dyn_cast<StoreInst>(it); 3122 if (!SI) 3123 continue; 3124 3125 // Don't touch volatile stores. 3126 if (!SI->isSimple()) 3127 continue; 3128 3129 // Check that the pointer points to scalars. 3130 Type *Ty = SI->getValueOperand()->getType(); 3131 if (Ty->isAggregateType() || Ty->isVectorTy()) 3132 continue; 3133 3134 // Find the base pointer. 3135 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 3136 3137 // Save the store locations. 3138 StoreRefs[Ptr].push_back(SI); 3139 count++; 3140 } 3141 return count; 3142 } 3143 3144 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3145 if (!A || !B) 3146 return false; 3147 Value *VL[] = { A, B }; 3148 return tryToVectorizeList(VL, R, None, true); 3149 } 3150 3151 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3152 ArrayRef<Value *> BuildVector, 3153 bool allowReorder) { 3154 if (VL.size() < 2) 3155 return false; 3156 3157 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3158 3159 // Check that all of the parts are scalar instructions of the same type. 3160 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3161 if (!I0) 3162 return false; 3163 3164 unsigned Opcode0 = I0->getOpcode(); 3165 3166 Type *Ty0 = I0->getType(); 3167 unsigned Sz = DL->getTypeSizeInBits(Ty0); 3168 unsigned VF = MinVecRegSize / Sz; 3169 3170 for (int i = 0, e = VL.size(); i < e; ++i) { 3171 Type *Ty = VL[i]->getType(); 3172 if (Ty->isAggregateType() || Ty->isVectorTy()) 3173 return false; 3174 Instruction *Inst = dyn_cast<Instruction>(VL[i]); 3175 if (!Inst || Inst->getOpcode() != Opcode0) 3176 return false; 3177 } 3178 3179 bool Changed = false; 3180 3181 // Keep track of values that were deleted by vectorizing in the loop below. 3182 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3183 3184 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3185 unsigned OpsWidth = 0; 3186 3187 if (i + VF > e) 3188 OpsWidth = e - i; 3189 else 3190 OpsWidth = VF; 3191 3192 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3193 break; 3194 3195 // Check that a previous iteration of this loop did not delete the Value. 3196 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3197 continue; 3198 3199 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3200 << "\n"); 3201 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3202 3203 ArrayRef<Value *> BuildVectorSlice; 3204 if (!BuildVector.empty()) 3205 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3206 3207 R.buildTree(Ops, BuildVectorSlice); 3208 // TODO: check if we can allow reordering also for other cases than 3209 // tryToVectorizePair() 3210 if (allowReorder && R.shouldReorder()) { 3211 assert(Ops.size() == 2); 3212 assert(BuildVectorSlice.empty()); 3213 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3214 R.buildTree(ReorderedOps, None); 3215 } 3216 int Cost = R.getTreeCost(); 3217 3218 if (Cost < -SLPCostThreshold) { 3219 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3220 Value *VectorizedRoot = R.vectorizeTree(); 3221 3222 // Reconstruct the build vector by extracting the vectorized root. This 3223 // way we handle the case where some elements of the vector are undefined. 3224 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3225 if (!BuildVectorSlice.empty()) { 3226 // The insert point is the last build vector instruction. The vectorized 3227 // root will precede it. This guarantees that we get an instruction. The 3228 // vectorized tree could have been constant folded. 3229 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3230 unsigned VecIdx = 0; 3231 for (auto &V : BuildVectorSlice) { 3232 IRBuilder<true, NoFolder> Builder( 3233 ++BasicBlock::iterator(InsertAfter)); 3234 InsertElementInst *IE = cast<InsertElementInst>(V); 3235 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3236 VectorizedRoot, Builder.getInt32(VecIdx++))); 3237 IE->setOperand(1, Extract); 3238 IE->removeFromParent(); 3239 IE->insertAfter(Extract); 3240 InsertAfter = IE; 3241 } 3242 } 3243 // Move to the next bundle. 3244 i += VF - 1; 3245 Changed = true; 3246 } 3247 } 3248 3249 return Changed; 3250 } 3251 3252 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3253 if (!V) 3254 return false; 3255 3256 // Try to vectorize V. 3257 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3258 return true; 3259 3260 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3261 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3262 // Try to skip B. 3263 if (B && B->hasOneUse()) { 3264 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3265 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3266 if (tryToVectorizePair(A, B0, R)) { 3267 return true; 3268 } 3269 if (tryToVectorizePair(A, B1, R)) { 3270 return true; 3271 } 3272 } 3273 3274 // Try to skip A. 3275 if (A && A->hasOneUse()) { 3276 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3277 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3278 if (tryToVectorizePair(A0, B, R)) { 3279 return true; 3280 } 3281 if (tryToVectorizePair(A1, B, R)) { 3282 return true; 3283 } 3284 } 3285 return 0; 3286 } 3287 3288 /// \brief Generate a shuffle mask to be used in a reduction tree. 3289 /// 3290 /// \param VecLen The length of the vector to be reduced. 3291 /// \param NumEltsToRdx The number of elements that should be reduced in the 3292 /// vector. 3293 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3294 /// reduction. A pairwise reduction will generate a mask of 3295 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3296 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3297 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3298 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3299 bool IsPairwise, bool IsLeft, 3300 IRBuilder<> &Builder) { 3301 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3302 3303 SmallVector<Constant *, 32> ShuffleMask( 3304 VecLen, UndefValue::get(Builder.getInt32Ty())); 3305 3306 if (IsPairwise) 3307 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3308 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3309 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3310 else 3311 // Move the upper half of the vector to the lower half. 3312 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3313 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3314 3315 return ConstantVector::get(ShuffleMask); 3316 } 3317 3318 3319 /// Model horizontal reductions. 3320 /// 3321 /// A horizontal reduction is a tree of reduction operations (currently add and 3322 /// fadd) that has operations that can be put into a vector as its leaf. 3323 /// For example, this tree: 3324 /// 3325 /// mul mul mul mul 3326 /// \ / \ / 3327 /// + + 3328 /// \ / 3329 /// + 3330 /// This tree has "mul" as its reduced values and "+" as its reduction 3331 /// operations. A reduction might be feeding into a store or a binary operation 3332 /// feeding a phi. 3333 /// ... 3334 /// \ / 3335 /// + 3336 /// | 3337 /// phi += 3338 /// 3339 /// Or: 3340 /// ... 3341 /// \ / 3342 /// + 3343 /// | 3344 /// *p = 3345 /// 3346 class HorizontalReduction { 3347 SmallVector<Value *, 16> ReductionOps; 3348 SmallVector<Value *, 32> ReducedVals; 3349 3350 BinaryOperator *ReductionRoot; 3351 PHINode *ReductionPHI; 3352 3353 /// The opcode of the reduction. 3354 unsigned ReductionOpcode; 3355 /// The opcode of the values we perform a reduction on. 3356 unsigned ReducedValueOpcode; 3357 /// The width of one full horizontal reduction operation. 3358 unsigned ReduxWidth; 3359 /// Should we model this reduction as a pairwise reduction tree or a tree that 3360 /// splits the vector in halves and adds those halves. 3361 bool IsPairwiseReduction; 3362 3363 public: 3364 HorizontalReduction() 3365 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3366 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 3367 3368 /// \brief Try to find a reduction tree. 3369 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B, 3370 const DataLayout *DL) { 3371 assert((!Phi || 3372 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 3373 "Thi phi needs to use the binary operator"); 3374 3375 // We could have a initial reductions that is not an add. 3376 // r *= v1 + v2 + v3 + v4 3377 // In such a case start looking for a tree rooted in the first '+'. 3378 if (Phi) { 3379 if (B->getOperand(0) == Phi) { 3380 Phi = nullptr; 3381 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 3382 } else if (B->getOperand(1) == Phi) { 3383 Phi = nullptr; 3384 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 3385 } 3386 } 3387 3388 if (!B) 3389 return false; 3390 3391 Type *Ty = B->getType(); 3392 if (Ty->isVectorTy()) 3393 return false; 3394 3395 ReductionOpcode = B->getOpcode(); 3396 ReducedValueOpcode = 0; 3397 ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty); 3398 ReductionRoot = B; 3399 ReductionPHI = Phi; 3400 3401 if (ReduxWidth < 4) 3402 return false; 3403 3404 // We currently only support adds. 3405 if (ReductionOpcode != Instruction::Add && 3406 ReductionOpcode != Instruction::FAdd) 3407 return false; 3408 3409 // Post order traverse the reduction tree starting at B. We only handle true 3410 // trees containing only binary operators. 3411 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 3412 Stack.push_back(std::make_pair(B, 0)); 3413 while (!Stack.empty()) { 3414 BinaryOperator *TreeN = Stack.back().first; 3415 unsigned EdgeToVist = Stack.back().second++; 3416 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 3417 3418 // Only handle trees in the current basic block. 3419 if (TreeN->getParent() != B->getParent()) 3420 return false; 3421 3422 // Each tree node needs to have one user except for the ultimate 3423 // reduction. 3424 if (!TreeN->hasOneUse() && TreeN != B) 3425 return false; 3426 3427 // Postorder vist. 3428 if (EdgeToVist == 2 || IsReducedValue) { 3429 if (IsReducedValue) { 3430 // Make sure that the opcodes of the operations that we are going to 3431 // reduce match. 3432 if (!ReducedValueOpcode) 3433 ReducedValueOpcode = TreeN->getOpcode(); 3434 else if (ReducedValueOpcode != TreeN->getOpcode()) 3435 return false; 3436 ReducedVals.push_back(TreeN); 3437 } else { 3438 // We need to be able to reassociate the adds. 3439 if (!TreeN->isAssociative()) 3440 return false; 3441 ReductionOps.push_back(TreeN); 3442 } 3443 // Retract. 3444 Stack.pop_back(); 3445 continue; 3446 } 3447 3448 // Visit left or right. 3449 Value *NextV = TreeN->getOperand(EdgeToVist); 3450 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 3451 if (Next) 3452 Stack.push_back(std::make_pair(Next, 0)); 3453 else if (NextV != Phi) 3454 return false; 3455 } 3456 return true; 3457 } 3458 3459 /// \brief Attempt to vectorize the tree found by 3460 /// matchAssociativeReduction. 3461 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 3462 if (ReducedVals.empty()) 3463 return false; 3464 3465 unsigned NumReducedVals = ReducedVals.size(); 3466 if (NumReducedVals < ReduxWidth) 3467 return false; 3468 3469 Value *VectorizedTree = nullptr; 3470 IRBuilder<> Builder(ReductionRoot); 3471 FastMathFlags Unsafe; 3472 Unsafe.setUnsafeAlgebra(); 3473 Builder.SetFastMathFlags(Unsafe); 3474 unsigned i = 0; 3475 3476 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 3477 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 3478 3479 // Estimate cost. 3480 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 3481 if (Cost >= -SLPCostThreshold) 3482 break; 3483 3484 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 3485 << ". (HorRdx)\n"); 3486 3487 // Vectorize a tree. 3488 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 3489 Value *VectorizedRoot = V.vectorizeTree(); 3490 3491 // Emit a reduction. 3492 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 3493 if (VectorizedTree) { 3494 Builder.SetCurrentDebugLocation(Loc); 3495 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3496 ReducedSubTree, "bin.rdx"); 3497 } else 3498 VectorizedTree = ReducedSubTree; 3499 } 3500 3501 if (VectorizedTree) { 3502 // Finish the reduction. 3503 for (; i < NumReducedVals; ++i) { 3504 Builder.SetCurrentDebugLocation( 3505 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 3506 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3507 ReducedVals[i]); 3508 } 3509 // Update users. 3510 if (ReductionPHI) { 3511 assert(ReductionRoot && "Need a reduction operation"); 3512 ReductionRoot->setOperand(0, VectorizedTree); 3513 ReductionRoot->setOperand(1, ReductionPHI); 3514 } else 3515 ReductionRoot->replaceAllUsesWith(VectorizedTree); 3516 } 3517 return VectorizedTree != nullptr; 3518 } 3519 3520 private: 3521 3522 /// \brief Calcuate the cost of a reduction. 3523 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 3524 Type *ScalarTy = FirstReducedVal->getType(); 3525 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 3526 3527 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 3528 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 3529 3530 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 3531 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 3532 3533 int ScalarReduxCost = 3534 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 3535 3536 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 3537 << " for reduction that starts with " << *FirstReducedVal 3538 << " (It is a " 3539 << (IsPairwiseReduction ? "pairwise" : "splitting") 3540 << " reduction)\n"); 3541 3542 return VecReduxCost - ScalarReduxCost; 3543 } 3544 3545 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 3546 Value *R, const Twine &Name = "") { 3547 if (Opcode == Instruction::FAdd) 3548 return Builder.CreateFAdd(L, R, Name); 3549 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 3550 } 3551 3552 /// \brief Emit a horizontal reduction of the vectorized value. 3553 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 3554 assert(VectorizedValue && "Need to have a vectorized tree node"); 3555 assert(isPowerOf2_32(ReduxWidth) && 3556 "We only handle power-of-two reductions for now"); 3557 3558 Value *TmpVec = VectorizedValue; 3559 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 3560 if (IsPairwiseReduction) { 3561 Value *LeftMask = 3562 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 3563 Value *RightMask = 3564 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 3565 3566 Value *LeftShuf = Builder.CreateShuffleVector( 3567 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 3568 Value *RightShuf = Builder.CreateShuffleVector( 3569 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 3570 "rdx.shuf.r"); 3571 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 3572 "bin.rdx"); 3573 } else { 3574 Value *UpperHalf = 3575 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 3576 Value *Shuf = Builder.CreateShuffleVector( 3577 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 3578 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 3579 } 3580 } 3581 3582 // The result is in the first element of the vector. 3583 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3584 } 3585 }; 3586 3587 /// \brief Recognize construction of vectors like 3588 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 3589 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 3590 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 3591 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 3592 /// 3593 /// Returns true if it matches 3594 /// 3595 static bool findBuildVector(InsertElementInst *FirstInsertElem, 3596 SmallVectorImpl<Value *> &BuildVector, 3597 SmallVectorImpl<Value *> &BuildVectorOpds) { 3598 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 3599 return false; 3600 3601 InsertElementInst *IE = FirstInsertElem; 3602 while (true) { 3603 BuildVector.push_back(IE); 3604 BuildVectorOpds.push_back(IE->getOperand(1)); 3605 3606 if (IE->use_empty()) 3607 return false; 3608 3609 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 3610 if (!NextUse) 3611 return true; 3612 3613 // If this isn't the final use, make sure the next insertelement is the only 3614 // use. It's OK if the final constructed vector is used multiple times 3615 if (!IE->hasOneUse()) 3616 return false; 3617 3618 IE = NextUse; 3619 } 3620 3621 return false; 3622 } 3623 3624 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 3625 return V->getType() < V2->getType(); 3626 } 3627 3628 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 3629 bool Changed = false; 3630 SmallVector<Value *, 4> Incoming; 3631 SmallSet<Value *, 16> VisitedInstrs; 3632 3633 bool HaveVectorizedPhiNodes = true; 3634 while (HaveVectorizedPhiNodes) { 3635 HaveVectorizedPhiNodes = false; 3636 3637 // Collect the incoming values from the PHIs. 3638 Incoming.clear(); 3639 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 3640 ++instr) { 3641 PHINode *P = dyn_cast<PHINode>(instr); 3642 if (!P) 3643 break; 3644 3645 if (!VisitedInstrs.count(P)) 3646 Incoming.push_back(P); 3647 } 3648 3649 // Sort by type. 3650 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 3651 3652 // Try to vectorize elements base on their type. 3653 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 3654 E = Incoming.end(); 3655 IncIt != E;) { 3656 3657 // Look for the next elements with the same type. 3658 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 3659 while (SameTypeIt != E && 3660 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 3661 VisitedInstrs.insert(*SameTypeIt); 3662 ++SameTypeIt; 3663 } 3664 3665 // Try to vectorize them. 3666 unsigned NumElts = (SameTypeIt - IncIt); 3667 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 3668 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 3669 // Success start over because instructions might have been changed. 3670 HaveVectorizedPhiNodes = true; 3671 Changed = true; 3672 break; 3673 } 3674 3675 // Start over at the next instruction of a different type (or the end). 3676 IncIt = SameTypeIt; 3677 } 3678 } 3679 3680 VisitedInstrs.clear(); 3681 3682 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 3683 // We may go through BB multiple times so skip the one we have checked. 3684 if (!VisitedInstrs.insert(it).second) 3685 continue; 3686 3687 if (isa<DbgInfoIntrinsic>(it)) 3688 continue; 3689 3690 // Try to vectorize reductions that use PHINodes. 3691 if (PHINode *P = dyn_cast<PHINode>(it)) { 3692 // Check that the PHI is a reduction PHI. 3693 if (P->getNumIncomingValues() != 2) 3694 return Changed; 3695 Value *Rdx = 3696 (P->getIncomingBlock(0) == BB 3697 ? (P->getIncomingValue(0)) 3698 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) 3699 : nullptr)); 3700 // Check if this is a Binary Operator. 3701 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 3702 if (!BI) 3703 continue; 3704 3705 // Try to match and vectorize a horizontal reduction. 3706 HorizontalReduction HorRdx; 3707 if (ShouldVectorizeHor && 3708 HorRdx.matchAssociativeReduction(P, BI, DL) && 3709 HorRdx.tryToReduce(R, TTI)) { 3710 Changed = true; 3711 it = BB->begin(); 3712 e = BB->end(); 3713 continue; 3714 } 3715 3716 Value *Inst = BI->getOperand(0); 3717 if (Inst == P) 3718 Inst = BI->getOperand(1); 3719 3720 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 3721 // We would like to start over since some instructions are deleted 3722 // and the iterator may become invalid value. 3723 Changed = true; 3724 it = BB->begin(); 3725 e = BB->end(); 3726 continue; 3727 } 3728 3729 continue; 3730 } 3731 3732 // Try to vectorize horizontal reductions feeding into a store. 3733 if (ShouldStartVectorizeHorAtStore) 3734 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 3735 if (BinaryOperator *BinOp = 3736 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 3737 HorizontalReduction HorRdx; 3738 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) && 3739 HorRdx.tryToReduce(R, TTI)) || 3740 tryToVectorize(BinOp, R))) { 3741 Changed = true; 3742 it = BB->begin(); 3743 e = BB->end(); 3744 continue; 3745 } 3746 } 3747 3748 // Try to vectorize horizontal reductions feeding into a return. 3749 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 3750 if (RI->getNumOperands() != 0) 3751 if (BinaryOperator *BinOp = 3752 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 3753 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 3754 if (tryToVectorizePair(BinOp->getOperand(0), 3755 BinOp->getOperand(1), R)) { 3756 Changed = true; 3757 it = BB->begin(); 3758 e = BB->end(); 3759 continue; 3760 } 3761 } 3762 3763 // Try to vectorize trees that start at compare instructions. 3764 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 3765 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 3766 Changed = true; 3767 // We would like to start over since some instructions are deleted 3768 // and the iterator may become invalid value. 3769 it = BB->begin(); 3770 e = BB->end(); 3771 continue; 3772 } 3773 3774 for (int i = 0; i < 2; ++i) { 3775 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 3776 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 3777 Changed = true; 3778 // We would like to start over since some instructions are deleted 3779 // and the iterator may become invalid value. 3780 it = BB->begin(); 3781 e = BB->end(); 3782 } 3783 } 3784 } 3785 continue; 3786 } 3787 3788 // Try to vectorize trees that start at insertelement instructions. 3789 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 3790 SmallVector<Value *, 16> BuildVector; 3791 SmallVector<Value *, 16> BuildVectorOpds; 3792 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 3793 continue; 3794 3795 // Vectorize starting with the build vector operands ignoring the 3796 // BuildVector instructions for the purpose of scheduling and user 3797 // extraction. 3798 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 3799 Changed = true; 3800 it = BB->begin(); 3801 e = BB->end(); 3802 } 3803 3804 continue; 3805 } 3806 } 3807 3808 return Changed; 3809 } 3810 3811 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 3812 bool Changed = false; 3813 // Attempt to sort and vectorize each of the store-groups. 3814 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 3815 it != e; ++it) { 3816 if (it->second.size() < 2) 3817 continue; 3818 3819 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 3820 << it->second.size() << ".\n"); 3821 3822 // Process the stores in chunks of 16. 3823 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 3824 unsigned Len = std::min<unsigned>(CE - CI, 16); 3825 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 3826 -SLPCostThreshold, R); 3827 } 3828 } 3829 return Changed; 3830 } 3831 3832 } // end anonymous namespace 3833 3834 char SLPVectorizer::ID = 0; 3835 static const char lv_name[] = "SLP Vectorizer"; 3836 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 3837 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 3838 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 3839 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3840 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3841 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3842 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 3843 3844 namespace llvm { 3845 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 3846 } 3847