1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/KnownBits.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/LoopUtils.h" 46 #include "llvm/Transforms/Vectorize.h" 47 #include <algorithm> 48 #include <memory> 49 50 using namespace llvm; 51 using namespace slpvectorizer; 52 53 #define SV_NAME "slp-vectorizer" 54 #define DEBUG_TYPE "SLP" 55 56 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 57 58 static cl::opt<int> 59 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 60 cl::desc("Only vectorize if you gain more than this " 61 "number ")); 62 63 static cl::opt<bool> 64 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 65 cl::desc("Attempt to vectorize horizontal reductions")); 66 67 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 68 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 69 cl::desc( 70 "Attempt to vectorize horizontal reductions feeding into a store")); 71 72 static cl::opt<int> 73 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 74 cl::desc("Attempt to vectorize for this register size in bits")); 75 76 /// Limits the size of scheduling regions in a block. 77 /// It avoid long compile times for _very_ large blocks where vector 78 /// instructions are spread over a wide range. 79 /// This limit is way higher than needed by real-world functions. 80 static cl::opt<int> 81 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 82 cl::desc("Limit the size of the SLP scheduling region per block")); 83 84 static cl::opt<int> MinVectorRegSizeOption( 85 "slp-min-reg-size", cl::init(128), cl::Hidden, 86 cl::desc("Attempt to vectorize for this register size in bits")); 87 88 static cl::opt<unsigned> RecursionMaxDepth( 89 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 90 cl::desc("Limit the recursion depth when building a vectorizable tree")); 91 92 static cl::opt<unsigned> MinTreeSize( 93 "slp-min-tree-size", cl::init(3), cl::Hidden, 94 cl::desc("Only vectorize small trees if they are fully vectorizable")); 95 96 static cl::opt<bool> 97 ViewSLPTree("view-slp-tree", cl::Hidden, 98 cl::desc("Display the SLP trees with Graphviz")); 99 100 // Limit the number of alias checks. The limit is chosen so that 101 // it has no negative effect on the llvm benchmarks. 102 static const unsigned AliasedCheckLimit = 10; 103 104 // Another limit for the alias checks: The maximum distance between load/store 105 // instructions where alias checks are done. 106 // This limit is useful for very large basic blocks. 107 static const unsigned MaxMemDepDistance = 160; 108 109 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 110 /// regions to be handled. 111 static const int MinScheduleRegionSize = 16; 112 113 /// \brief Predicate for the element types that the SLP vectorizer supports. 114 /// 115 /// The most important thing to filter here are types which are invalid in LLVM 116 /// vectors. We also filter target specific types which have absolutely no 117 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 118 /// avoids spending time checking the cost model and realizing that they will 119 /// be inevitably scalarized. 120 static bool isValidElementType(Type *Ty) { 121 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 122 !Ty->isPPC_FP128Ty(); 123 } 124 125 /// \returns true if all of the instructions in \p VL are in the same block or 126 /// false otherwise. 127 static bool allSameBlock(ArrayRef<Value *> VL) { 128 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 129 if (!I0) 130 return false; 131 BasicBlock *BB = I0->getParent(); 132 for (int i = 1, e = VL.size(); i < e; i++) { 133 Instruction *I = dyn_cast<Instruction>(VL[i]); 134 if (!I) 135 return false; 136 137 if (BB != I->getParent()) 138 return false; 139 } 140 return true; 141 } 142 143 /// \returns True if all of the values in \p VL are constants. 144 static bool allConstant(ArrayRef<Value *> VL) { 145 for (Value *i : VL) 146 if (!isa<Constant>(i)) 147 return false; 148 return true; 149 } 150 151 /// \returns True if all of the values in \p VL are identical. 152 static bool isSplat(ArrayRef<Value *> VL) { 153 for (unsigned i = 1, e = VL.size(); i < e; ++i) 154 if (VL[i] != VL[0]) 155 return false; 156 return true; 157 } 158 159 ///\returns Opcode that can be clubbed with \p Op to create an alternate 160 /// sequence which can later be merged as a ShuffleVector instruction. 161 static unsigned getAltOpcode(unsigned Op) { 162 switch (Op) { 163 case Instruction::FAdd: 164 return Instruction::FSub; 165 case Instruction::FSub: 166 return Instruction::FAdd; 167 case Instruction::Add: 168 return Instruction::Sub; 169 case Instruction::Sub: 170 return Instruction::Add; 171 default: 172 return 0; 173 } 174 } 175 176 ///\returns bool representing if Opcode \p Op can be part 177 /// of an alternate sequence which can later be merged as 178 /// a ShuffleVector instruction. 179 static bool canCombineAsAltInst(unsigned Op) { 180 return Op == Instruction::FAdd || Op == Instruction::FSub || 181 Op == Instruction::Sub || Op == Instruction::Add; 182 } 183 184 /// \returns ShuffleVector instruction if instructions in \p VL have 185 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 186 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 187 static unsigned isAltInst(ArrayRef<Value *> VL) { 188 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 189 unsigned Opcode = I0->getOpcode(); 190 unsigned AltOpcode = getAltOpcode(Opcode); 191 for (int i = 1, e = VL.size(); i < e; i++) { 192 Instruction *I = dyn_cast<Instruction>(VL[i]); 193 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 194 return 0; 195 } 196 return Instruction::ShuffleVector; 197 } 198 199 /// \returns The opcode if all of the Instructions in \p VL have the same 200 /// opcode, or zero. 201 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 202 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 203 if (!I0) 204 return 0; 205 unsigned Opcode = I0->getOpcode(); 206 for (int i = 1, e = VL.size(); i < e; i++) { 207 Instruction *I = dyn_cast<Instruction>(VL[i]); 208 if (!I || Opcode != I->getOpcode()) { 209 if (canCombineAsAltInst(Opcode) && i == 1) 210 return isAltInst(VL); 211 return 0; 212 } 213 } 214 return Opcode; 215 } 216 217 /// \returns true if all of the values in \p VL have the same type or false 218 /// otherwise. 219 static bool allSameType(ArrayRef<Value *> VL) { 220 Type *Ty = VL[0]->getType(); 221 for (int i = 1, e = VL.size(); i < e; i++) 222 if (VL[i]->getType() != Ty) 223 return false; 224 225 return true; 226 } 227 228 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 229 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 230 assert(Opcode == Instruction::ExtractElement || 231 Opcode == Instruction::ExtractValue); 232 if (Opcode == Instruction::ExtractElement) { 233 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 234 return CI && CI->getZExtValue() == Idx; 235 } else { 236 ExtractValueInst *EI = cast<ExtractValueInst>(E); 237 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 238 } 239 } 240 241 /// \returns True if in-tree use also needs extract. This refers to 242 /// possible scalar operand in vectorized instruction. 243 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 244 TargetLibraryInfo *TLI) { 245 246 unsigned Opcode = UserInst->getOpcode(); 247 switch (Opcode) { 248 case Instruction::Load: { 249 LoadInst *LI = cast<LoadInst>(UserInst); 250 return (LI->getPointerOperand() == Scalar); 251 } 252 case Instruction::Store: { 253 StoreInst *SI = cast<StoreInst>(UserInst); 254 return (SI->getPointerOperand() == Scalar); 255 } 256 case Instruction::Call: { 257 CallInst *CI = cast<CallInst>(UserInst); 258 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 259 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 260 return (CI->getArgOperand(1) == Scalar); 261 } 262 } 263 default: 264 return false; 265 } 266 } 267 268 /// \returns the AA location that is being access by the instruction. 269 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 270 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 271 return MemoryLocation::get(SI); 272 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 273 return MemoryLocation::get(LI); 274 return MemoryLocation(); 275 } 276 277 /// \returns True if the instruction is not a volatile or atomic load/store. 278 static bool isSimple(Instruction *I) { 279 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 280 return LI->isSimple(); 281 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 282 return SI->isSimple(); 283 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 284 return !MI->isVolatile(); 285 return true; 286 } 287 288 namespace llvm { 289 namespace slpvectorizer { 290 /// Bottom Up SLP Vectorizer. 291 class BoUpSLP { 292 public: 293 typedef SmallVector<Value *, 8> ValueList; 294 typedef SmallVector<Instruction *, 16> InstrList; 295 typedef SmallPtrSet<Value *, 16> ValueSet; 296 typedef SmallVector<StoreInst *, 8> StoreList; 297 typedef MapVector<Value *, SmallVector<Instruction *, 2>> 298 ExtraValueToDebugLocsMap; 299 300 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 301 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 302 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 303 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 304 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 305 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 306 DL(DL), ORE(ORE), Builder(Se->getContext()) { 307 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 308 // Use the vector register size specified by the target unless overridden 309 // by a command-line option. 310 // TODO: It would be better to limit the vectorization factor based on 311 // data type rather than just register size. For example, x86 AVX has 312 // 256-bit registers, but it does not support integer operations 313 // at that width (that requires AVX2). 314 if (MaxVectorRegSizeOption.getNumOccurrences()) 315 MaxVecRegSize = MaxVectorRegSizeOption; 316 else 317 MaxVecRegSize = TTI->getRegisterBitWidth(true); 318 319 if (MinVectorRegSizeOption.getNumOccurrences()) 320 MinVecRegSize = MinVectorRegSizeOption; 321 else 322 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 323 } 324 325 /// \brief Vectorize the tree that starts with the elements in \p VL. 326 /// Returns the vectorized root. 327 Value *vectorizeTree(); 328 /// Vectorize the tree but with the list of externally used values \p 329 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 330 /// generated extractvalue instructions. 331 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 332 333 /// \returns the cost incurred by unwanted spills and fills, caused by 334 /// holding live values over call sites. 335 int getSpillCost(); 336 337 /// \returns the vectorization cost of the subtree that starts at \p VL. 338 /// A negative number means that this is profitable. 339 int getTreeCost(); 340 341 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 342 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 343 void buildTree(ArrayRef<Value *> Roots, 344 ArrayRef<Value *> UserIgnoreLst = None); 345 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 346 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 347 /// into account (anf updating it, if required) list of externally used 348 /// values stored in \p ExternallyUsedValues. 349 void buildTree(ArrayRef<Value *> Roots, 350 ExtraValueToDebugLocsMap &ExternallyUsedValues, 351 ArrayRef<Value *> UserIgnoreLst = None); 352 353 /// Clear the internal data structures that are created by 'buildTree'. 354 void deleteTree() { 355 VectorizableTree.clear(); 356 ScalarToTreeEntry.clear(); 357 MustGather.clear(); 358 ExternalUses.clear(); 359 NumLoadsWantToKeepOrder = 0; 360 NumLoadsWantToChangeOrder = 0; 361 for (auto &Iter : BlocksSchedules) { 362 BlockScheduling *BS = Iter.second.get(); 363 BS->clear(); 364 } 365 MinBWs.clear(); 366 } 367 368 unsigned getTreeSize() const { return VectorizableTree.size(); } 369 370 /// \brief Perform LICM and CSE on the newly generated gather sequences. 371 void optimizeGatherSequence(); 372 373 /// \returns true if it is beneficial to reverse the vector order. 374 bool shouldReorder() const { 375 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 376 } 377 378 /// \return The vector element size in bits to use when vectorizing the 379 /// expression tree ending at \p V. If V is a store, the size is the width of 380 /// the stored value. Otherwise, the size is the width of the largest loaded 381 /// value reaching V. This method is used by the vectorizer to calculate 382 /// vectorization factors. 383 unsigned getVectorElementSize(Value *V); 384 385 /// Compute the minimum type sizes required to represent the entries in a 386 /// vectorizable tree. 387 void computeMinimumValueSizes(); 388 389 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 390 unsigned getMaxVecRegSize() const { 391 return MaxVecRegSize; 392 } 393 394 // \returns minimum vector register size as set by cl::opt. 395 unsigned getMinVecRegSize() const { 396 return MinVecRegSize; 397 } 398 399 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 400 /// 401 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 402 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 403 404 /// \returns True if the VectorizableTree is both tiny and not fully 405 /// vectorizable. We do not vectorize such trees. 406 bool isTreeTinyAndNotFullyVectorizable(); 407 408 OptimizationRemarkEmitter *getORE() { return ORE; } 409 410 private: 411 struct TreeEntry; 412 413 /// \returns the cost of the vectorizable entry. 414 int getEntryCost(TreeEntry *E); 415 416 /// This is the recursive part of buildTree. 417 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 418 419 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 420 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 421 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 422 423 /// Vectorize a single entry in the tree. 424 Value *vectorizeTree(TreeEntry *E); 425 426 /// Vectorize a single entry in the tree, starting in \p VL. 427 Value *vectorizeTree(ArrayRef<Value *> VL); 428 429 /// \returns the pointer to the vectorized value if \p VL is already 430 /// vectorized, or NULL. They may happen in cycles. 431 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 432 433 /// \returns the scalarization cost for this type. Scalarization in this 434 /// context means the creation of vectors from a group of scalars. 435 int getGatherCost(Type *Ty); 436 437 /// \returns the scalarization cost for this list of values. Assuming that 438 /// this subtree gets vectorized, we may need to extract the values from the 439 /// roots. This method calculates the cost of extracting the values. 440 int getGatherCost(ArrayRef<Value *> VL); 441 442 /// \brief Set the Builder insert point to one after the last instruction in 443 /// the bundle 444 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 445 446 /// \returns a vector from a collection of scalars in \p VL. 447 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 448 449 /// \returns whether the VectorizableTree is fully vectorizable and will 450 /// be beneficial even the tree height is tiny. 451 bool isFullyVectorizableTinyTree(); 452 453 /// \reorder commutative operands in alt shuffle if they result in 454 /// vectorized code. 455 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 456 SmallVectorImpl<Value *> &Left, 457 SmallVectorImpl<Value *> &Right); 458 /// \reorder commutative operands to get better probability of 459 /// generating vectorized code. 460 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 461 SmallVectorImpl<Value *> &Left, 462 SmallVectorImpl<Value *> &Right); 463 struct TreeEntry { 464 TreeEntry(std::vector<TreeEntry> &Container) 465 : Scalars(), VectorizedValue(nullptr), NeedToGather(0), 466 Container(Container) {} 467 468 /// \returns true if the scalars in VL are equal to this entry. 469 bool isSame(ArrayRef<Value *> VL) const { 470 assert(VL.size() == Scalars.size() && "Invalid size"); 471 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 472 } 473 474 /// A vector of scalars. 475 ValueList Scalars; 476 477 /// The Scalars are vectorized into this value. It is initialized to Null. 478 Value *VectorizedValue; 479 480 /// Do we need to gather this sequence ? 481 bool NeedToGather; 482 483 /// Points back to the VectorizableTree. 484 /// 485 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 486 /// to be a pointer and needs to be able to initialize the child iterator. 487 /// Thus we need a reference back to the container to translate the indices 488 /// to entries. 489 std::vector<TreeEntry> &Container; 490 491 /// The TreeEntry index containing the user of this entry. We can actually 492 /// have multiple users so the data structure is not truly a tree. 493 SmallVector<int, 1> UserTreeIndices; 494 }; 495 496 /// Create a new VectorizableTree entry. 497 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 498 int &UserTreeIdx) { 499 VectorizableTree.emplace_back(VectorizableTree); 500 int idx = VectorizableTree.size() - 1; 501 TreeEntry *Last = &VectorizableTree[idx]; 502 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 503 Last->NeedToGather = !Vectorized; 504 if (Vectorized) { 505 for (int i = 0, e = VL.size(); i != e; ++i) { 506 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 507 ScalarToTreeEntry[VL[i]] = idx; 508 } 509 } else { 510 MustGather.insert(VL.begin(), VL.end()); 511 } 512 513 if (UserTreeIdx >= 0) 514 Last->UserTreeIndices.push_back(UserTreeIdx); 515 UserTreeIdx = idx; 516 return Last; 517 } 518 519 /// -- Vectorization State -- 520 /// Holds all of the tree entries. 521 std::vector<TreeEntry> VectorizableTree; 522 523 /// Maps a specific scalar to its tree entry. 524 SmallDenseMap<Value*, int> ScalarToTreeEntry; 525 526 /// A list of scalars that we found that we need to keep as scalars. 527 ValueSet MustGather; 528 529 /// This POD struct describes one external user in the vectorized tree. 530 struct ExternalUser { 531 ExternalUser (Value *S, llvm::User *U, int L) : 532 Scalar(S), User(U), Lane(L){} 533 // Which scalar in our function. 534 Value *Scalar; 535 // Which user that uses the scalar. 536 llvm::User *User; 537 // Which lane does the scalar belong to. 538 int Lane; 539 }; 540 typedef SmallVector<ExternalUser, 16> UserList; 541 542 /// Checks if two instructions may access the same memory. 543 /// 544 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 545 /// is invariant in the calling loop. 546 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 547 Instruction *Inst2) { 548 549 // First check if the result is already in the cache. 550 AliasCacheKey key = std::make_pair(Inst1, Inst2); 551 Optional<bool> &result = AliasCache[key]; 552 if (result.hasValue()) { 553 return result.getValue(); 554 } 555 MemoryLocation Loc2 = getLocation(Inst2, AA); 556 bool aliased = true; 557 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 558 // Do the alias check. 559 aliased = AA->alias(Loc1, Loc2); 560 } 561 // Store the result in the cache. 562 result = aliased; 563 return aliased; 564 } 565 566 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 567 568 /// Cache for alias results. 569 /// TODO: consider moving this to the AliasAnalysis itself. 570 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 571 572 /// Removes an instruction from its block and eventually deletes it. 573 /// It's like Instruction::eraseFromParent() except that the actual deletion 574 /// is delayed until BoUpSLP is destructed. 575 /// This is required to ensure that there are no incorrect collisions in the 576 /// AliasCache, which can happen if a new instruction is allocated at the 577 /// same address as a previously deleted instruction. 578 void eraseInstruction(Instruction *I) { 579 I->removeFromParent(); 580 I->dropAllReferences(); 581 DeletedInstructions.emplace_back(I); 582 } 583 584 /// Temporary store for deleted instructions. Instructions will be deleted 585 /// eventually when the BoUpSLP is destructed. 586 SmallVector<unique_value, 8> DeletedInstructions; 587 588 /// A list of values that need to extracted out of the tree. 589 /// This list holds pairs of (Internal Scalar : External User). External User 590 /// can be nullptr, it means that this Internal Scalar will be used later, 591 /// after vectorization. 592 UserList ExternalUses; 593 594 /// Values used only by @llvm.assume calls. 595 SmallPtrSet<const Value *, 32> EphValues; 596 597 /// Holds all of the instructions that we gathered. 598 SetVector<Instruction *> GatherSeq; 599 /// A list of blocks that we are going to CSE. 600 SetVector<BasicBlock *> CSEBlocks; 601 602 /// Contains all scheduling relevant data for an instruction. 603 /// A ScheduleData either represents a single instruction or a member of an 604 /// instruction bundle (= a group of instructions which is combined into a 605 /// vector instruction). 606 struct ScheduleData { 607 608 // The initial value for the dependency counters. It means that the 609 // dependencies are not calculated yet. 610 enum { InvalidDeps = -1 }; 611 612 ScheduleData() 613 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 614 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 615 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 616 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 617 618 void init(int BlockSchedulingRegionID) { 619 FirstInBundle = this; 620 NextInBundle = nullptr; 621 NextLoadStore = nullptr; 622 IsScheduled = false; 623 SchedulingRegionID = BlockSchedulingRegionID; 624 UnscheduledDepsInBundle = UnscheduledDeps; 625 clearDependencies(); 626 } 627 628 /// Returns true if the dependency information has been calculated. 629 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 630 631 /// Returns true for single instructions and for bundle representatives 632 /// (= the head of a bundle). 633 bool isSchedulingEntity() const { return FirstInBundle == this; } 634 635 /// Returns true if it represents an instruction bundle and not only a 636 /// single instruction. 637 bool isPartOfBundle() const { 638 return NextInBundle != nullptr || FirstInBundle != this; 639 } 640 641 /// Returns true if it is ready for scheduling, i.e. it has no more 642 /// unscheduled depending instructions/bundles. 643 bool isReady() const { 644 assert(isSchedulingEntity() && 645 "can't consider non-scheduling entity for ready list"); 646 return UnscheduledDepsInBundle == 0 && !IsScheduled; 647 } 648 649 /// Modifies the number of unscheduled dependencies, also updating it for 650 /// the whole bundle. 651 int incrementUnscheduledDeps(int Incr) { 652 UnscheduledDeps += Incr; 653 return FirstInBundle->UnscheduledDepsInBundle += Incr; 654 } 655 656 /// Sets the number of unscheduled dependencies to the number of 657 /// dependencies. 658 void resetUnscheduledDeps() { 659 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 660 } 661 662 /// Clears all dependency information. 663 void clearDependencies() { 664 Dependencies = InvalidDeps; 665 resetUnscheduledDeps(); 666 MemoryDependencies.clear(); 667 } 668 669 void dump(raw_ostream &os) const { 670 if (!isSchedulingEntity()) { 671 os << "/ " << *Inst; 672 } else if (NextInBundle) { 673 os << '[' << *Inst; 674 ScheduleData *SD = NextInBundle; 675 while (SD) { 676 os << ';' << *SD->Inst; 677 SD = SD->NextInBundle; 678 } 679 os << ']'; 680 } else { 681 os << *Inst; 682 } 683 } 684 685 Instruction *Inst; 686 687 /// Points to the head in an instruction bundle (and always to this for 688 /// single instructions). 689 ScheduleData *FirstInBundle; 690 691 /// Single linked list of all instructions in a bundle. Null if it is a 692 /// single instruction. 693 ScheduleData *NextInBundle; 694 695 /// Single linked list of all memory instructions (e.g. load, store, call) 696 /// in the block - until the end of the scheduling region. 697 ScheduleData *NextLoadStore; 698 699 /// The dependent memory instructions. 700 /// This list is derived on demand in calculateDependencies(). 701 SmallVector<ScheduleData *, 4> MemoryDependencies; 702 703 /// This ScheduleData is in the current scheduling region if this matches 704 /// the current SchedulingRegionID of BlockScheduling. 705 int SchedulingRegionID; 706 707 /// Used for getting a "good" final ordering of instructions. 708 int SchedulingPriority; 709 710 /// The number of dependencies. Constitutes of the number of users of the 711 /// instruction plus the number of dependent memory instructions (if any). 712 /// This value is calculated on demand. 713 /// If InvalidDeps, the number of dependencies is not calculated yet. 714 /// 715 int Dependencies; 716 717 /// The number of dependencies minus the number of dependencies of scheduled 718 /// instructions. As soon as this is zero, the instruction/bundle gets ready 719 /// for scheduling. 720 /// Note that this is negative as long as Dependencies is not calculated. 721 int UnscheduledDeps; 722 723 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 724 /// single instructions. 725 int UnscheduledDepsInBundle; 726 727 /// True if this instruction is scheduled (or considered as scheduled in the 728 /// dry-run). 729 bool IsScheduled; 730 }; 731 732 #ifndef NDEBUG 733 friend inline raw_ostream &operator<<(raw_ostream &os, 734 const BoUpSLP::ScheduleData &SD) { 735 SD.dump(os); 736 return os; 737 } 738 #endif 739 friend struct GraphTraits<BoUpSLP *>; 740 friend struct DOTGraphTraits<BoUpSLP *>; 741 742 /// Contains all scheduling data for a basic block. 743 /// 744 struct BlockScheduling { 745 746 BlockScheduling(BasicBlock *BB) 747 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 748 ScheduleStart(nullptr), ScheduleEnd(nullptr), 749 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 750 ScheduleRegionSize(0), 751 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 752 // Make sure that the initial SchedulingRegionID is greater than the 753 // initial SchedulingRegionID in ScheduleData (which is 0). 754 SchedulingRegionID(1) {} 755 756 void clear() { 757 ReadyInsts.clear(); 758 ScheduleStart = nullptr; 759 ScheduleEnd = nullptr; 760 FirstLoadStoreInRegion = nullptr; 761 LastLoadStoreInRegion = nullptr; 762 763 // Reduce the maximum schedule region size by the size of the 764 // previous scheduling run. 765 ScheduleRegionSizeLimit -= ScheduleRegionSize; 766 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 767 ScheduleRegionSizeLimit = MinScheduleRegionSize; 768 ScheduleRegionSize = 0; 769 770 // Make a new scheduling region, i.e. all existing ScheduleData is not 771 // in the new region yet. 772 ++SchedulingRegionID; 773 } 774 775 ScheduleData *getScheduleData(Value *V) { 776 ScheduleData *SD = ScheduleDataMap[V]; 777 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 778 return SD; 779 return nullptr; 780 } 781 782 bool isInSchedulingRegion(ScheduleData *SD) { 783 return SD->SchedulingRegionID == SchedulingRegionID; 784 } 785 786 /// Marks an instruction as scheduled and puts all dependent ready 787 /// instructions into the ready-list. 788 template <typename ReadyListType> 789 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 790 SD->IsScheduled = true; 791 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 792 793 ScheduleData *BundleMember = SD; 794 while (BundleMember) { 795 // Handle the def-use chain dependencies. 796 for (Use &U : BundleMember->Inst->operands()) { 797 ScheduleData *OpDef = getScheduleData(U.get()); 798 if (OpDef && OpDef->hasValidDependencies() && 799 OpDef->incrementUnscheduledDeps(-1) == 0) { 800 // There are no more unscheduled dependencies after decrementing, 801 // so we can put the dependent instruction into the ready list. 802 ScheduleData *DepBundle = OpDef->FirstInBundle; 803 assert(!DepBundle->IsScheduled && 804 "already scheduled bundle gets ready"); 805 ReadyList.insert(DepBundle); 806 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 807 } 808 } 809 // Handle the memory dependencies. 810 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 811 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 812 // There are no more unscheduled dependencies after decrementing, 813 // so we can put the dependent instruction into the ready list. 814 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 815 assert(!DepBundle->IsScheduled && 816 "already scheduled bundle gets ready"); 817 ReadyList.insert(DepBundle); 818 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 819 } 820 } 821 BundleMember = BundleMember->NextInBundle; 822 } 823 } 824 825 /// Put all instructions into the ReadyList which are ready for scheduling. 826 template <typename ReadyListType> 827 void initialFillReadyList(ReadyListType &ReadyList) { 828 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 829 ScheduleData *SD = getScheduleData(I); 830 if (SD->isSchedulingEntity() && SD->isReady()) { 831 ReadyList.insert(SD); 832 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 833 } 834 } 835 } 836 837 /// Checks if a bundle of instructions can be scheduled, i.e. has no 838 /// cyclic dependencies. This is only a dry-run, no instructions are 839 /// actually moved at this stage. 840 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 841 842 /// Un-bundles a group of instructions. 843 void cancelScheduling(ArrayRef<Value *> VL); 844 845 /// Extends the scheduling region so that V is inside the region. 846 /// \returns true if the region size is within the limit. 847 bool extendSchedulingRegion(Value *V); 848 849 /// Initialize the ScheduleData structures for new instructions in the 850 /// scheduling region. 851 void initScheduleData(Instruction *FromI, Instruction *ToI, 852 ScheduleData *PrevLoadStore, 853 ScheduleData *NextLoadStore); 854 855 /// Updates the dependency information of a bundle and of all instructions/ 856 /// bundles which depend on the original bundle. 857 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 858 BoUpSLP *SLP); 859 860 /// Sets all instruction in the scheduling region to un-scheduled. 861 void resetSchedule(); 862 863 BasicBlock *BB; 864 865 /// Simple memory allocation for ScheduleData. 866 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 867 868 /// The size of a ScheduleData array in ScheduleDataChunks. 869 int ChunkSize; 870 871 /// The allocator position in the current chunk, which is the last entry 872 /// of ScheduleDataChunks. 873 int ChunkPos; 874 875 /// Attaches ScheduleData to Instruction. 876 /// Note that the mapping survives during all vectorization iterations, i.e. 877 /// ScheduleData structures are recycled. 878 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 879 880 struct ReadyList : SmallVector<ScheduleData *, 8> { 881 void insert(ScheduleData *SD) { push_back(SD); } 882 }; 883 884 /// The ready-list for scheduling (only used for the dry-run). 885 ReadyList ReadyInsts; 886 887 /// The first instruction of the scheduling region. 888 Instruction *ScheduleStart; 889 890 /// The first instruction _after_ the scheduling region. 891 Instruction *ScheduleEnd; 892 893 /// The first memory accessing instruction in the scheduling region 894 /// (can be null). 895 ScheduleData *FirstLoadStoreInRegion; 896 897 /// The last memory accessing instruction in the scheduling region 898 /// (can be null). 899 ScheduleData *LastLoadStoreInRegion; 900 901 /// The current size of the scheduling region. 902 int ScheduleRegionSize; 903 904 /// The maximum size allowed for the scheduling region. 905 int ScheduleRegionSizeLimit; 906 907 /// The ID of the scheduling region. For a new vectorization iteration this 908 /// is incremented which "removes" all ScheduleData from the region. 909 int SchedulingRegionID; 910 }; 911 912 /// Attaches the BlockScheduling structures to basic blocks. 913 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 914 915 /// Performs the "real" scheduling. Done before vectorization is actually 916 /// performed in a basic block. 917 void scheduleBlock(BlockScheduling *BS); 918 919 /// List of users to ignore during scheduling and that don't need extracting. 920 ArrayRef<Value *> UserIgnoreList; 921 922 // Number of load bundles that contain consecutive loads. 923 int NumLoadsWantToKeepOrder; 924 925 // Number of load bundles that contain consecutive loads in reversed order. 926 int NumLoadsWantToChangeOrder; 927 928 // Analysis and block reference. 929 Function *F; 930 ScalarEvolution *SE; 931 TargetTransformInfo *TTI; 932 TargetLibraryInfo *TLI; 933 AliasAnalysis *AA; 934 LoopInfo *LI; 935 DominatorTree *DT; 936 AssumptionCache *AC; 937 DemandedBits *DB; 938 const DataLayout *DL; 939 OptimizationRemarkEmitter *ORE; 940 941 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 942 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 943 /// Instruction builder to construct the vectorized tree. 944 IRBuilder<> Builder; 945 946 /// A map of scalar integer values to the smallest bit width with which they 947 /// can legally be represented. The values map to (width, signed) pairs, 948 /// where "width" indicates the minimum bit width and "signed" is True if the 949 /// value must be signed-extended, rather than zero-extended, back to its 950 /// original width. 951 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 952 }; 953 } // end namespace slpvectorizer 954 955 template <> struct GraphTraits<BoUpSLP *> { 956 typedef BoUpSLP::TreeEntry TreeEntry; 957 958 /// NodeRef has to be a pointer per the GraphWriter. 959 typedef TreeEntry *NodeRef; 960 961 /// \brief Add the VectorizableTree to the index iterator to be able to return 962 /// TreeEntry pointers. 963 struct ChildIteratorType 964 : public iterator_adaptor_base<ChildIteratorType, 965 SmallVector<int, 1>::iterator> { 966 967 std::vector<TreeEntry> &VectorizableTree; 968 969 ChildIteratorType(SmallVector<int, 1>::iterator W, 970 std::vector<TreeEntry> &VT) 971 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 972 973 NodeRef operator*() { return &VectorizableTree[*I]; } 974 }; 975 976 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 977 978 static ChildIteratorType child_begin(NodeRef N) { 979 return {N->UserTreeIndices.begin(), N->Container}; 980 } 981 static ChildIteratorType child_end(NodeRef N) { 982 return {N->UserTreeIndices.end(), N->Container}; 983 } 984 985 /// For the node iterator we just need to turn the TreeEntry iterator into a 986 /// TreeEntry* iterator so that it dereferences to NodeRef. 987 typedef pointer_iterator<std::vector<TreeEntry>::iterator> nodes_iterator; 988 989 static nodes_iterator nodes_begin(BoUpSLP *R) { 990 return nodes_iterator(R->VectorizableTree.begin()); 991 } 992 static nodes_iterator nodes_end(BoUpSLP *R) { 993 return nodes_iterator(R->VectorizableTree.end()); 994 } 995 996 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 997 }; 998 999 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1000 typedef BoUpSLP::TreeEntry TreeEntry; 1001 1002 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1003 1004 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1005 std::string Str; 1006 raw_string_ostream OS(Str); 1007 if (isSplat(Entry->Scalars)) { 1008 OS << "<splat> " << *Entry->Scalars[0]; 1009 return Str; 1010 } 1011 for (auto V : Entry->Scalars) { 1012 OS << *V; 1013 if (std::any_of( 1014 R->ExternalUses.begin(), R->ExternalUses.end(), 1015 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1016 OS << " <extract>"; 1017 OS << "\n"; 1018 } 1019 return Str; 1020 } 1021 1022 static std::string getNodeAttributes(const TreeEntry *Entry, 1023 const BoUpSLP *) { 1024 if (Entry->NeedToGather) 1025 return "color=red"; 1026 return ""; 1027 } 1028 }; 1029 1030 } // end namespace llvm 1031 1032 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1033 ArrayRef<Value *> UserIgnoreLst) { 1034 ExtraValueToDebugLocsMap ExternallyUsedValues; 1035 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1036 } 1037 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1038 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1039 ArrayRef<Value *> UserIgnoreLst) { 1040 deleteTree(); 1041 UserIgnoreList = UserIgnoreLst; 1042 if (!allSameType(Roots)) 1043 return; 1044 buildTree_rec(Roots, 0, -1); 1045 1046 // Collect the values that we need to extract from the tree. 1047 for (TreeEntry &EIdx : VectorizableTree) { 1048 TreeEntry *Entry = &EIdx; 1049 1050 // For each lane: 1051 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1052 Value *Scalar = Entry->Scalars[Lane]; 1053 1054 // No need to handle users of gathered values. 1055 if (Entry->NeedToGather) 1056 continue; 1057 1058 // Check if the scalar is externally used as an extra arg. 1059 auto ExtI = ExternallyUsedValues.find(Scalar); 1060 if (ExtI != ExternallyUsedValues.end()) { 1061 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1062 Lane << " from " << *Scalar << ".\n"); 1063 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1064 continue; 1065 } 1066 for (User *U : Scalar->users()) { 1067 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1068 1069 Instruction *UserInst = dyn_cast<Instruction>(U); 1070 if (!UserInst) 1071 continue; 1072 1073 // Skip in-tree scalars that become vectors 1074 if (ScalarToTreeEntry.count(U)) { 1075 int Idx = ScalarToTreeEntry[U]; 1076 TreeEntry *UseEntry = &VectorizableTree[Idx]; 1077 Value *UseScalar = UseEntry->Scalars[0]; 1078 // Some in-tree scalars will remain as scalar in vectorized 1079 // instructions. If that is the case, the one in Lane 0 will 1080 // be used. 1081 if (UseScalar != U || 1082 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1083 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1084 << ".\n"); 1085 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 1086 continue; 1087 } 1088 } 1089 1090 // Ignore users in the user ignore list. 1091 if (is_contained(UserIgnoreList, UserInst)) 1092 continue; 1093 1094 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1095 Lane << " from " << *Scalar << ".\n"); 1096 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1097 } 1098 } 1099 } 1100 } 1101 1102 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1103 int UserTreeIdx) { 1104 bool isAltShuffle = false; 1105 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1106 1107 if (Depth == RecursionMaxDepth) { 1108 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1109 newTreeEntry(VL, false, UserTreeIdx); 1110 return; 1111 } 1112 1113 // Don't handle vectors. 1114 if (VL[0]->getType()->isVectorTy()) { 1115 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1116 newTreeEntry(VL, false, UserTreeIdx); 1117 return; 1118 } 1119 1120 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1121 if (SI->getValueOperand()->getType()->isVectorTy()) { 1122 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1123 newTreeEntry(VL, false, UserTreeIdx); 1124 return; 1125 } 1126 unsigned Opcode = getSameOpcode(VL); 1127 1128 // Check that this shuffle vector refers to the alternate 1129 // sequence of opcodes. 1130 if (Opcode == Instruction::ShuffleVector) { 1131 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1132 unsigned Op = I0->getOpcode(); 1133 if (Op != Instruction::ShuffleVector) 1134 isAltShuffle = true; 1135 } 1136 1137 // If all of the operands are identical or constant we have a simple solution. 1138 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1139 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1140 newTreeEntry(VL, false, UserTreeIdx); 1141 return; 1142 } 1143 1144 // We now know that this is a vector of instructions of the same type from 1145 // the same block. 1146 1147 // Don't vectorize ephemeral values. 1148 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1149 if (EphValues.count(VL[i])) { 1150 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1151 ") is ephemeral.\n"); 1152 newTreeEntry(VL, false, UserTreeIdx); 1153 return; 1154 } 1155 } 1156 1157 // Check if this is a duplicate of another entry. 1158 if (ScalarToTreeEntry.count(VL[0])) { 1159 int Idx = ScalarToTreeEntry[VL[0]]; 1160 TreeEntry *E = &VectorizableTree[Idx]; 1161 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1162 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1163 if (E->Scalars[i] != VL[i]) { 1164 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1165 newTreeEntry(VL, false, UserTreeIdx); 1166 return; 1167 } 1168 } 1169 // Record the reuse of the tree node. FIXME, currently this is only used to 1170 // properly draw the graph rather than for the actual vectorization. 1171 E->UserTreeIndices.push_back(UserTreeIdx); 1172 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1173 return; 1174 } 1175 1176 // Check that none of the instructions in the bundle are already in the tree. 1177 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1178 if (ScalarToTreeEntry.count(VL[i])) { 1179 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1180 ") is already in tree.\n"); 1181 newTreeEntry(VL, false, UserTreeIdx); 1182 return; 1183 } 1184 } 1185 1186 // If any of the scalars is marked as a value that needs to stay scalar then 1187 // we need to gather the scalars. 1188 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1189 if (MustGather.count(VL[i])) { 1190 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1191 newTreeEntry(VL, false, UserTreeIdx); 1192 return; 1193 } 1194 } 1195 1196 // Check that all of the users of the scalars that we want to vectorize are 1197 // schedulable. 1198 Instruction *VL0 = cast<Instruction>(VL[0]); 1199 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1200 1201 if (!DT->isReachableFromEntry(BB)) { 1202 // Don't go into unreachable blocks. They may contain instructions with 1203 // dependency cycles which confuse the final scheduling. 1204 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1205 newTreeEntry(VL, false, UserTreeIdx); 1206 return; 1207 } 1208 1209 // Check that every instructions appears once in this bundle. 1210 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1211 for (unsigned j = i+1; j < e; ++j) 1212 if (VL[i] == VL[j]) { 1213 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1214 newTreeEntry(VL, false, UserTreeIdx); 1215 return; 1216 } 1217 1218 auto &BSRef = BlocksSchedules[BB]; 1219 if (!BSRef) { 1220 BSRef = llvm::make_unique<BlockScheduling>(BB); 1221 } 1222 BlockScheduling &BS = *BSRef.get(); 1223 1224 if (!BS.tryScheduleBundle(VL, this)) { 1225 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1226 assert((!BS.getScheduleData(VL[0]) || 1227 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1228 "tryScheduleBundle should cancelScheduling on failure"); 1229 newTreeEntry(VL, false, UserTreeIdx); 1230 return; 1231 } 1232 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1233 1234 switch (Opcode) { 1235 case Instruction::PHI: { 1236 PHINode *PH = dyn_cast<PHINode>(VL0); 1237 1238 // Check for terminator values (e.g. invoke). 1239 for (unsigned j = 0; j < VL.size(); ++j) 1240 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1241 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1242 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1243 if (Term) { 1244 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1245 BS.cancelScheduling(VL); 1246 newTreeEntry(VL, false, UserTreeIdx); 1247 return; 1248 } 1249 } 1250 1251 newTreeEntry(VL, true, UserTreeIdx); 1252 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1253 1254 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1255 ValueList Operands; 1256 // Prepare the operand vector. 1257 for (Value *j : VL) 1258 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1259 PH->getIncomingBlock(i))); 1260 1261 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1262 } 1263 return; 1264 } 1265 case Instruction::ExtractValue: 1266 case Instruction::ExtractElement: { 1267 bool Reuse = canReuseExtract(VL, Opcode); 1268 if (Reuse) { 1269 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1270 } else { 1271 BS.cancelScheduling(VL); 1272 } 1273 newTreeEntry(VL, Reuse, UserTreeIdx); 1274 return; 1275 } 1276 case Instruction::Load: { 1277 // Check that a vectorized load would load the same memory as a scalar 1278 // load. 1279 // For example we don't want vectorize loads that are smaller than 8 bit. 1280 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1281 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1282 // such a struct we read/write packed bits disagreeing with the 1283 // unvectorized version. 1284 Type *ScalarTy = VL[0]->getType(); 1285 1286 if (DL->getTypeSizeInBits(ScalarTy) != 1287 DL->getTypeAllocSizeInBits(ScalarTy)) { 1288 BS.cancelScheduling(VL); 1289 newTreeEntry(VL, false, UserTreeIdx); 1290 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1291 return; 1292 } 1293 1294 // Make sure all loads in the bundle are simple - we can't vectorize 1295 // atomic or volatile loads. 1296 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1297 LoadInst *L = cast<LoadInst>(VL[i]); 1298 if (!L->isSimple()) { 1299 BS.cancelScheduling(VL); 1300 newTreeEntry(VL, false, UserTreeIdx); 1301 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1302 return; 1303 } 1304 } 1305 1306 // Check if the loads are consecutive, reversed, or neither. 1307 // TODO: What we really want is to sort the loads, but for now, check 1308 // the two likely directions. 1309 bool Consecutive = true; 1310 bool ReverseConsecutive = true; 1311 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1312 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1313 Consecutive = false; 1314 break; 1315 } else { 1316 ReverseConsecutive = false; 1317 } 1318 } 1319 1320 if (Consecutive) { 1321 ++NumLoadsWantToKeepOrder; 1322 newTreeEntry(VL, true, UserTreeIdx); 1323 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1324 return; 1325 } 1326 1327 // If none of the load pairs were consecutive when checked in order, 1328 // check the reverse order. 1329 if (ReverseConsecutive) 1330 for (unsigned i = VL.size() - 1; i > 0; --i) 1331 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1332 ReverseConsecutive = false; 1333 break; 1334 } 1335 1336 BS.cancelScheduling(VL); 1337 newTreeEntry(VL, false, UserTreeIdx); 1338 1339 if (ReverseConsecutive) { 1340 ++NumLoadsWantToChangeOrder; 1341 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1342 } else { 1343 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1344 } 1345 return; 1346 } 1347 case Instruction::ZExt: 1348 case Instruction::SExt: 1349 case Instruction::FPToUI: 1350 case Instruction::FPToSI: 1351 case Instruction::FPExt: 1352 case Instruction::PtrToInt: 1353 case Instruction::IntToPtr: 1354 case Instruction::SIToFP: 1355 case Instruction::UIToFP: 1356 case Instruction::Trunc: 1357 case Instruction::FPTrunc: 1358 case Instruction::BitCast: { 1359 Type *SrcTy = VL0->getOperand(0)->getType(); 1360 for (unsigned i = 0; i < VL.size(); ++i) { 1361 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1362 if (Ty != SrcTy || !isValidElementType(Ty)) { 1363 BS.cancelScheduling(VL); 1364 newTreeEntry(VL, false, UserTreeIdx); 1365 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1366 return; 1367 } 1368 } 1369 newTreeEntry(VL, true, UserTreeIdx); 1370 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1371 1372 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1373 ValueList Operands; 1374 // Prepare the operand vector. 1375 for (Value *j : VL) 1376 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1377 1378 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1379 } 1380 return; 1381 } 1382 case Instruction::ICmp: 1383 case Instruction::FCmp: { 1384 // Check that all of the compares have the same predicate. 1385 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1386 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1387 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1388 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1389 if (Cmp->getPredicate() != P0 || 1390 Cmp->getOperand(0)->getType() != ComparedTy) { 1391 BS.cancelScheduling(VL); 1392 newTreeEntry(VL, false, UserTreeIdx); 1393 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1394 return; 1395 } 1396 } 1397 1398 newTreeEntry(VL, true, UserTreeIdx); 1399 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1400 1401 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1402 ValueList Operands; 1403 // Prepare the operand vector. 1404 for (Value *j : VL) 1405 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1406 1407 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1408 } 1409 return; 1410 } 1411 case Instruction::Select: 1412 case Instruction::Add: 1413 case Instruction::FAdd: 1414 case Instruction::Sub: 1415 case Instruction::FSub: 1416 case Instruction::Mul: 1417 case Instruction::FMul: 1418 case Instruction::UDiv: 1419 case Instruction::SDiv: 1420 case Instruction::FDiv: 1421 case Instruction::URem: 1422 case Instruction::SRem: 1423 case Instruction::FRem: 1424 case Instruction::Shl: 1425 case Instruction::LShr: 1426 case Instruction::AShr: 1427 case Instruction::And: 1428 case Instruction::Or: 1429 case Instruction::Xor: { 1430 newTreeEntry(VL, true, UserTreeIdx); 1431 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1432 1433 // Sort operands of the instructions so that each side is more likely to 1434 // have the same opcode. 1435 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1436 ValueList Left, Right; 1437 reorderInputsAccordingToOpcode(VL, Left, Right); 1438 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1439 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1440 return; 1441 } 1442 1443 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1444 ValueList Operands; 1445 // Prepare the operand vector. 1446 for (Value *j : VL) 1447 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1448 1449 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1450 } 1451 return; 1452 } 1453 case Instruction::GetElementPtr: { 1454 // We don't combine GEPs with complicated (nested) indexing. 1455 for (unsigned j = 0; j < VL.size(); ++j) { 1456 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1457 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1458 BS.cancelScheduling(VL); 1459 newTreeEntry(VL, false, UserTreeIdx); 1460 return; 1461 } 1462 } 1463 1464 // We can't combine several GEPs into one vector if they operate on 1465 // different types. 1466 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1467 for (unsigned j = 0; j < VL.size(); ++j) { 1468 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1469 if (Ty0 != CurTy) { 1470 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1471 BS.cancelScheduling(VL); 1472 newTreeEntry(VL, false, UserTreeIdx); 1473 return; 1474 } 1475 } 1476 1477 // We don't combine GEPs with non-constant indexes. 1478 for (unsigned j = 0; j < VL.size(); ++j) { 1479 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1480 if (!isa<ConstantInt>(Op)) { 1481 DEBUG( 1482 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1483 BS.cancelScheduling(VL); 1484 newTreeEntry(VL, false, UserTreeIdx); 1485 return; 1486 } 1487 } 1488 1489 newTreeEntry(VL, true, UserTreeIdx); 1490 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1491 for (unsigned i = 0, e = 2; i < e; ++i) { 1492 ValueList Operands; 1493 // Prepare the operand vector. 1494 for (Value *j : VL) 1495 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1496 1497 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1498 } 1499 return; 1500 } 1501 case Instruction::Store: { 1502 // Check if the stores are consecutive or of we need to swizzle them. 1503 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1504 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1505 BS.cancelScheduling(VL); 1506 newTreeEntry(VL, false, UserTreeIdx); 1507 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1508 return; 1509 } 1510 1511 newTreeEntry(VL, true, UserTreeIdx); 1512 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1513 1514 ValueList Operands; 1515 for (Value *j : VL) 1516 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1517 1518 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1519 return; 1520 } 1521 case Instruction::Call: { 1522 // Check if the calls are all to the same vectorizable intrinsic. 1523 CallInst *CI = cast<CallInst>(VL[0]); 1524 // Check if this is an Intrinsic call or something that can be 1525 // represented by an intrinsic call 1526 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1527 if (!isTriviallyVectorizable(ID)) { 1528 BS.cancelScheduling(VL); 1529 newTreeEntry(VL, false, UserTreeIdx); 1530 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1531 return; 1532 } 1533 Function *Int = CI->getCalledFunction(); 1534 Value *A1I = nullptr; 1535 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1536 A1I = CI->getArgOperand(1); 1537 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1538 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1539 if (!CI2 || CI2->getCalledFunction() != Int || 1540 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1541 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1542 BS.cancelScheduling(VL); 1543 newTreeEntry(VL, false, UserTreeIdx); 1544 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1545 << "\n"); 1546 return; 1547 } 1548 // ctlz,cttz and powi are special intrinsics whose second argument 1549 // should be same in order for them to be vectorized. 1550 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1551 Value *A1J = CI2->getArgOperand(1); 1552 if (A1I != A1J) { 1553 BS.cancelScheduling(VL); 1554 newTreeEntry(VL, false, UserTreeIdx); 1555 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1556 << " argument "<< A1I<<"!=" << A1J 1557 << "\n"); 1558 return; 1559 } 1560 } 1561 // Verify that the bundle operands are identical between the two calls. 1562 if (CI->hasOperandBundles() && 1563 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1564 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1565 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1566 BS.cancelScheduling(VL); 1567 newTreeEntry(VL, false, UserTreeIdx); 1568 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1569 << *VL[i] << '\n'); 1570 return; 1571 } 1572 } 1573 1574 newTreeEntry(VL, true, UserTreeIdx); 1575 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1576 ValueList Operands; 1577 // Prepare the operand vector. 1578 for (Value *j : VL) { 1579 CallInst *CI2 = dyn_cast<CallInst>(j); 1580 Operands.push_back(CI2->getArgOperand(i)); 1581 } 1582 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1583 } 1584 return; 1585 } 1586 case Instruction::ShuffleVector: { 1587 // If this is not an alternate sequence of opcode like add-sub 1588 // then do not vectorize this instruction. 1589 if (!isAltShuffle) { 1590 BS.cancelScheduling(VL); 1591 newTreeEntry(VL, false, UserTreeIdx); 1592 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1593 return; 1594 } 1595 newTreeEntry(VL, true, UserTreeIdx); 1596 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1597 1598 // Reorder operands if reordering would enable vectorization. 1599 if (isa<BinaryOperator>(VL0)) { 1600 ValueList Left, Right; 1601 reorderAltShuffleOperands(VL, Left, Right); 1602 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1603 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1604 return; 1605 } 1606 1607 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1608 ValueList Operands; 1609 // Prepare the operand vector. 1610 for (Value *j : VL) 1611 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1612 1613 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1614 } 1615 return; 1616 } 1617 default: 1618 BS.cancelScheduling(VL); 1619 newTreeEntry(VL, false, UserTreeIdx); 1620 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1621 return; 1622 } 1623 } 1624 1625 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1626 unsigned N; 1627 Type *EltTy; 1628 auto *ST = dyn_cast<StructType>(T); 1629 if (ST) { 1630 N = ST->getNumElements(); 1631 EltTy = *ST->element_begin(); 1632 } else { 1633 N = cast<ArrayType>(T)->getNumElements(); 1634 EltTy = cast<ArrayType>(T)->getElementType(); 1635 } 1636 if (!isValidElementType(EltTy)) 1637 return 0; 1638 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1639 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1640 return 0; 1641 if (ST) { 1642 // Check that struct is homogeneous. 1643 for (const auto *Ty : ST->elements()) 1644 if (Ty != EltTy) 1645 return 0; 1646 } 1647 return N; 1648 } 1649 1650 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1651 assert(Opcode == Instruction::ExtractElement || 1652 Opcode == Instruction::ExtractValue); 1653 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1654 // Check if all of the extracts come from the same vector and from the 1655 // correct offset. 1656 Value *VL0 = VL[0]; 1657 Instruction *E0 = cast<Instruction>(VL0); 1658 Value *Vec = E0->getOperand(0); 1659 1660 // We have to extract from a vector/aggregate with the same number of elements. 1661 unsigned NElts; 1662 if (Opcode == Instruction::ExtractValue) { 1663 const DataLayout &DL = E0->getModule()->getDataLayout(); 1664 NElts = canMapToVector(Vec->getType(), DL); 1665 if (!NElts) 1666 return false; 1667 // Check if load can be rewritten as load of vector. 1668 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1669 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1670 return false; 1671 } else { 1672 NElts = Vec->getType()->getVectorNumElements(); 1673 } 1674 1675 if (NElts != VL.size()) 1676 return false; 1677 1678 // Check that all of the indices extract from the correct offset. 1679 if (!matchExtractIndex(E0, 0, Opcode)) 1680 return false; 1681 1682 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1683 Instruction *E = cast<Instruction>(VL[i]); 1684 if (!matchExtractIndex(E, i, Opcode)) 1685 return false; 1686 if (E->getOperand(0) != Vec) 1687 return false; 1688 } 1689 1690 return true; 1691 } 1692 1693 int BoUpSLP::getEntryCost(TreeEntry *E) { 1694 ArrayRef<Value*> VL = E->Scalars; 1695 1696 Type *ScalarTy = VL[0]->getType(); 1697 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1698 ScalarTy = SI->getValueOperand()->getType(); 1699 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1700 ScalarTy = CI->getOperand(0)->getType(); 1701 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1702 1703 // If we have computed a smaller type for the expression, update VecTy so 1704 // that the costs will be accurate. 1705 if (MinBWs.count(VL[0])) 1706 VecTy = VectorType::get( 1707 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1708 1709 if (E->NeedToGather) { 1710 if (allConstant(VL)) 1711 return 0; 1712 if (isSplat(VL)) { 1713 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1714 } 1715 return getGatherCost(E->Scalars); 1716 } 1717 unsigned Opcode = getSameOpcode(VL); 1718 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1719 Instruction *VL0 = cast<Instruction>(VL[0]); 1720 switch (Opcode) { 1721 case Instruction::PHI: { 1722 return 0; 1723 } 1724 case Instruction::ExtractValue: 1725 case Instruction::ExtractElement: { 1726 if (canReuseExtract(VL, Opcode)) { 1727 int DeadCost = 0; 1728 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1729 Instruction *E = cast<Instruction>(VL[i]); 1730 // If all users are going to be vectorized, instruction can be 1731 // considered as dead. 1732 // The same, if have only one user, it will be vectorized for sure. 1733 if (E->hasOneUse() || 1734 std::all_of(E->user_begin(), E->user_end(), [this](User *U) { 1735 return ScalarToTreeEntry.count(U) > 0; 1736 })) 1737 // Take credit for instruction that will become dead. 1738 DeadCost += 1739 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1740 } 1741 return -DeadCost; 1742 } 1743 return getGatherCost(VecTy); 1744 } 1745 case Instruction::ZExt: 1746 case Instruction::SExt: 1747 case Instruction::FPToUI: 1748 case Instruction::FPToSI: 1749 case Instruction::FPExt: 1750 case Instruction::PtrToInt: 1751 case Instruction::IntToPtr: 1752 case Instruction::SIToFP: 1753 case Instruction::UIToFP: 1754 case Instruction::Trunc: 1755 case Instruction::FPTrunc: 1756 case Instruction::BitCast: { 1757 Type *SrcTy = VL0->getOperand(0)->getType(); 1758 1759 // Calculate the cost of this instruction. 1760 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1761 VL0->getType(), SrcTy, VL0); 1762 1763 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1764 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 1765 return VecCost - ScalarCost; 1766 } 1767 case Instruction::FCmp: 1768 case Instruction::ICmp: 1769 case Instruction::Select: { 1770 // Calculate the cost of this instruction. 1771 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1772 int ScalarCost = VecTy->getNumElements() * 1773 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 1774 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0); 1775 return VecCost - ScalarCost; 1776 } 1777 case Instruction::Add: 1778 case Instruction::FAdd: 1779 case Instruction::Sub: 1780 case Instruction::FSub: 1781 case Instruction::Mul: 1782 case Instruction::FMul: 1783 case Instruction::UDiv: 1784 case Instruction::SDiv: 1785 case Instruction::FDiv: 1786 case Instruction::URem: 1787 case Instruction::SRem: 1788 case Instruction::FRem: 1789 case Instruction::Shl: 1790 case Instruction::LShr: 1791 case Instruction::AShr: 1792 case Instruction::And: 1793 case Instruction::Or: 1794 case Instruction::Xor: { 1795 // Certain instructions can be cheaper to vectorize if they have a 1796 // constant second vector operand. 1797 TargetTransformInfo::OperandValueKind Op1VK = 1798 TargetTransformInfo::OK_AnyValue; 1799 TargetTransformInfo::OperandValueKind Op2VK = 1800 TargetTransformInfo::OK_UniformConstantValue; 1801 TargetTransformInfo::OperandValueProperties Op1VP = 1802 TargetTransformInfo::OP_None; 1803 TargetTransformInfo::OperandValueProperties Op2VP = 1804 TargetTransformInfo::OP_None; 1805 1806 // If all operands are exactly the same ConstantInt then set the 1807 // operand kind to OK_UniformConstantValue. 1808 // If instead not all operands are constants, then set the operand kind 1809 // to OK_AnyValue. If all operands are constants but not the same, 1810 // then set the operand kind to OK_NonUniformConstantValue. 1811 ConstantInt *CInt = nullptr; 1812 for (unsigned i = 0; i < VL.size(); ++i) { 1813 const Instruction *I = cast<Instruction>(VL[i]); 1814 if (!isa<ConstantInt>(I->getOperand(1))) { 1815 Op2VK = TargetTransformInfo::OK_AnyValue; 1816 break; 1817 } 1818 if (i == 0) { 1819 CInt = cast<ConstantInt>(I->getOperand(1)); 1820 continue; 1821 } 1822 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1823 CInt != cast<ConstantInt>(I->getOperand(1))) 1824 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1825 } 1826 // FIXME: Currently cost of model modification for division by power of 1827 // 2 is handled for X86 and AArch64. Add support for other targets. 1828 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1829 CInt->getValue().isPowerOf2()) 1830 Op2VP = TargetTransformInfo::OP_PowerOf2; 1831 1832 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 1833 int ScalarCost = 1834 VecTy->getNumElements() * 1835 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 1836 Op2VP, Operands); 1837 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1838 Op1VP, Op2VP, Operands); 1839 return VecCost - ScalarCost; 1840 } 1841 case Instruction::GetElementPtr: { 1842 TargetTransformInfo::OperandValueKind Op1VK = 1843 TargetTransformInfo::OK_AnyValue; 1844 TargetTransformInfo::OperandValueKind Op2VK = 1845 TargetTransformInfo::OK_UniformConstantValue; 1846 1847 int ScalarCost = 1848 VecTy->getNumElements() * 1849 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1850 int VecCost = 1851 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1852 1853 return VecCost - ScalarCost; 1854 } 1855 case Instruction::Load: { 1856 // Cost of wide load - cost of scalar loads. 1857 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1858 int ScalarLdCost = VecTy->getNumElements() * 1859 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 1860 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1861 VecTy, alignment, 0, VL0); 1862 return VecLdCost - ScalarLdCost; 1863 } 1864 case Instruction::Store: { 1865 // We know that we can merge the stores. Calculate the cost. 1866 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1867 int ScalarStCost = VecTy->getNumElements() * 1868 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 1869 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1870 VecTy, alignment, 0, VL0); 1871 return VecStCost - ScalarStCost; 1872 } 1873 case Instruction::Call: { 1874 CallInst *CI = cast<CallInst>(VL0); 1875 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1876 1877 // Calculate the cost of the scalar and vector calls. 1878 SmallVector<Type*, 4> ScalarTys; 1879 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 1880 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1881 1882 FastMathFlags FMF; 1883 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1884 FMF = FPMO->getFastMathFlags(); 1885 1886 int ScalarCallCost = VecTy->getNumElements() * 1887 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1888 1889 SmallVector<Value *, 4> Args(CI->arg_operands()); 1890 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 1891 VecTy->getNumElements()); 1892 1893 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1894 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1895 << " for " << *CI << "\n"); 1896 1897 return VecCallCost - ScalarCallCost; 1898 } 1899 case Instruction::ShuffleVector: { 1900 TargetTransformInfo::OperandValueKind Op1VK = 1901 TargetTransformInfo::OK_AnyValue; 1902 TargetTransformInfo::OperandValueKind Op2VK = 1903 TargetTransformInfo::OK_AnyValue; 1904 int ScalarCost = 0; 1905 int VecCost = 0; 1906 for (Value *i : VL) { 1907 Instruction *I = cast<Instruction>(i); 1908 if (!I) 1909 break; 1910 ScalarCost += 1911 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1912 } 1913 // VecCost is equal to sum of the cost of creating 2 vectors 1914 // and the cost of creating shuffle. 1915 Instruction *I0 = cast<Instruction>(VL[0]); 1916 VecCost = 1917 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1918 Instruction *I1 = cast<Instruction>(VL[1]); 1919 VecCost += 1920 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1921 VecCost += 1922 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1923 return VecCost - ScalarCost; 1924 } 1925 default: 1926 llvm_unreachable("Unknown instruction"); 1927 } 1928 } 1929 1930 bool BoUpSLP::isFullyVectorizableTinyTree() { 1931 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1932 VectorizableTree.size() << " is fully vectorizable .\n"); 1933 1934 // We only handle trees of heights 1 and 2. 1935 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1936 return true; 1937 1938 if (VectorizableTree.size() != 2) 1939 return false; 1940 1941 // Handle splat and all-constants stores. 1942 if (!VectorizableTree[0].NeedToGather && 1943 (allConstant(VectorizableTree[1].Scalars) || 1944 isSplat(VectorizableTree[1].Scalars))) 1945 return true; 1946 1947 // Gathering cost would be too much for tiny trees. 1948 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1949 return false; 1950 1951 return true; 1952 } 1953 1954 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1955 1956 // We can vectorize the tree if its size is greater than or equal to the 1957 // minimum size specified by the MinTreeSize command line option. 1958 if (VectorizableTree.size() >= MinTreeSize) 1959 return false; 1960 1961 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1962 // can vectorize it if we can prove it fully vectorizable. 1963 if (isFullyVectorizableTinyTree()) 1964 return false; 1965 1966 assert(VectorizableTree.empty() 1967 ? ExternalUses.empty() 1968 : true && "We shouldn't have any external users"); 1969 1970 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1971 // vectorizable. 1972 return true; 1973 } 1974 1975 int BoUpSLP::getSpillCost() { 1976 // Walk from the bottom of the tree to the top, tracking which values are 1977 // live. When we see a call instruction that is not part of our tree, 1978 // query TTI to see if there is a cost to keeping values live over it 1979 // (for example, if spills and fills are required). 1980 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1981 int Cost = 0; 1982 1983 SmallPtrSet<Instruction*, 4> LiveValues; 1984 Instruction *PrevInst = nullptr; 1985 1986 for (const auto &N : VectorizableTree) { 1987 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1988 if (!Inst) 1989 continue; 1990 1991 if (!PrevInst) { 1992 PrevInst = Inst; 1993 continue; 1994 } 1995 1996 // Update LiveValues. 1997 LiveValues.erase(PrevInst); 1998 for (auto &J : PrevInst->operands()) { 1999 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 2000 LiveValues.insert(cast<Instruction>(&*J)); 2001 } 2002 2003 DEBUG( 2004 dbgs() << "SLP: #LV: " << LiveValues.size(); 2005 for (auto *X : LiveValues) 2006 dbgs() << " " << X->getName(); 2007 dbgs() << ", Looking at "; 2008 Inst->dump(); 2009 ); 2010 2011 // Now find the sequence of instructions between PrevInst and Inst. 2012 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2013 PrevInstIt = 2014 PrevInst->getIterator().getReverse(); 2015 while (InstIt != PrevInstIt) { 2016 if (PrevInstIt == PrevInst->getParent()->rend()) { 2017 PrevInstIt = Inst->getParent()->rbegin(); 2018 continue; 2019 } 2020 2021 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2022 SmallVector<Type*, 4> V; 2023 for (auto *II : LiveValues) 2024 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2025 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2026 } 2027 2028 ++PrevInstIt; 2029 } 2030 2031 PrevInst = Inst; 2032 } 2033 2034 return Cost; 2035 } 2036 2037 int BoUpSLP::getTreeCost() { 2038 int Cost = 0; 2039 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2040 VectorizableTree.size() << ".\n"); 2041 2042 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2043 2044 for (TreeEntry &TE : VectorizableTree) { 2045 int C = getEntryCost(&TE); 2046 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2047 << *TE.Scalars[0] << ".\n"); 2048 Cost += C; 2049 } 2050 2051 SmallSet<Value *, 16> ExtractCostCalculated; 2052 int ExtractCost = 0; 2053 for (ExternalUser &EU : ExternalUses) { 2054 // We only add extract cost once for the same scalar. 2055 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2056 continue; 2057 2058 // Uses by ephemeral values are free (because the ephemeral value will be 2059 // removed prior to code generation, and so the extraction will be 2060 // removed as well). 2061 if (EphValues.count(EU.User)) 2062 continue; 2063 2064 // If we plan to rewrite the tree in a smaller type, we will need to sign 2065 // extend the extracted value back to the original type. Here, we account 2066 // for the extract and the added cost of the sign extend if needed. 2067 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2068 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2069 if (MinBWs.count(ScalarRoot)) { 2070 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2071 auto Extend = 2072 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2073 VecTy = VectorType::get(MinTy, BundleWidth); 2074 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2075 VecTy, EU.Lane); 2076 } else { 2077 ExtractCost += 2078 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2079 } 2080 } 2081 2082 int SpillCost = getSpillCost(); 2083 Cost += SpillCost + ExtractCost; 2084 2085 std::string Str; 2086 { 2087 raw_string_ostream OS(Str); 2088 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2089 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2090 << "SLP: Total Cost = " << Cost << ".\n"; 2091 } 2092 DEBUG(dbgs() << Str); 2093 2094 if (ViewSLPTree) 2095 ViewGraph(this, "SLP" + F->getName(), false, Str); 2096 2097 return Cost; 2098 } 2099 2100 int BoUpSLP::getGatherCost(Type *Ty) { 2101 int Cost = 0; 2102 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2103 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2104 return Cost; 2105 } 2106 2107 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2108 // Find the type of the operands in VL. 2109 Type *ScalarTy = VL[0]->getType(); 2110 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2111 ScalarTy = SI->getValueOperand()->getType(); 2112 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2113 // Find the cost of inserting/extracting values from the vector. 2114 return getGatherCost(VecTy); 2115 } 2116 2117 // Reorder commutative operations in alternate shuffle if the resulting vectors 2118 // are consecutive loads. This would allow us to vectorize the tree. 2119 // If we have something like- 2120 // load a[0] - load b[0] 2121 // load b[1] + load a[1] 2122 // load a[2] - load b[2] 2123 // load a[3] + load b[3] 2124 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2125 // code. 2126 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 2127 SmallVectorImpl<Value *> &Left, 2128 SmallVectorImpl<Value *> &Right) { 2129 // Push left and right operands of binary operation into Left and Right 2130 for (Value *i : VL) { 2131 Left.push_back(cast<Instruction>(i)->getOperand(0)); 2132 Right.push_back(cast<Instruction>(i)->getOperand(1)); 2133 } 2134 2135 // Reorder if we have a commutative operation and consecutive access 2136 // are on either side of the alternate instructions. 2137 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2138 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2139 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2140 Instruction *VL1 = cast<Instruction>(VL[j]); 2141 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2142 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2143 std::swap(Left[j], Right[j]); 2144 continue; 2145 } else if (VL2->isCommutative() && 2146 isConsecutiveAccess(L, L1, *DL, *SE)) { 2147 std::swap(Left[j + 1], Right[j + 1]); 2148 continue; 2149 } 2150 // else unchanged 2151 } 2152 } 2153 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2154 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2155 Instruction *VL1 = cast<Instruction>(VL[j]); 2156 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2157 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2158 std::swap(Left[j], Right[j]); 2159 continue; 2160 } else if (VL2->isCommutative() && 2161 isConsecutiveAccess(L, L1, *DL, *SE)) { 2162 std::swap(Left[j + 1], Right[j + 1]); 2163 continue; 2164 } 2165 // else unchanged 2166 } 2167 } 2168 } 2169 } 2170 2171 // Return true if I should be commuted before adding it's left and right 2172 // operands to the arrays Left and Right. 2173 // 2174 // The vectorizer is trying to either have all elements one side being 2175 // instruction with the same opcode to enable further vectorization, or having 2176 // a splat to lower the vectorizing cost. 2177 static bool shouldReorderOperands(int i, Instruction &I, 2178 SmallVectorImpl<Value *> &Left, 2179 SmallVectorImpl<Value *> &Right, 2180 bool AllSameOpcodeLeft, 2181 bool AllSameOpcodeRight, bool SplatLeft, 2182 bool SplatRight) { 2183 Value *VLeft = I.getOperand(0); 2184 Value *VRight = I.getOperand(1); 2185 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2186 if (SplatRight) { 2187 if (VRight == Right[i - 1]) 2188 // Preserve SplatRight 2189 return false; 2190 if (VLeft == Right[i - 1]) { 2191 // Commuting would preserve SplatRight, but we don't want to break 2192 // SplatLeft either, i.e. preserve the original order if possible. 2193 // (FIXME: why do we care?) 2194 if (SplatLeft && VLeft == Left[i - 1]) 2195 return false; 2196 return true; 2197 } 2198 } 2199 // Symmetrically handle Right side. 2200 if (SplatLeft) { 2201 if (VLeft == Left[i - 1]) 2202 // Preserve SplatLeft 2203 return false; 2204 if (VRight == Left[i - 1]) 2205 return true; 2206 } 2207 2208 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2209 Instruction *IRight = dyn_cast<Instruction>(VRight); 2210 2211 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2212 // it and not the right, in this case we want to commute. 2213 if (AllSameOpcodeRight) { 2214 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2215 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2216 // Do not commute, a match on the right preserves AllSameOpcodeRight 2217 return false; 2218 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2219 // We have a match and may want to commute, but first check if there is 2220 // not also a match on the existing operands on the Left to preserve 2221 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2222 // (FIXME: why do we care?) 2223 if (AllSameOpcodeLeft && ILeft && 2224 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2225 return false; 2226 return true; 2227 } 2228 } 2229 // Symmetrically handle Left side. 2230 if (AllSameOpcodeLeft) { 2231 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2232 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2233 return false; 2234 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2235 return true; 2236 } 2237 return false; 2238 } 2239 2240 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2241 SmallVectorImpl<Value *> &Left, 2242 SmallVectorImpl<Value *> &Right) { 2243 2244 if (VL.size()) { 2245 // Peel the first iteration out of the loop since there's nothing 2246 // interesting to do anyway and it simplifies the checks in the loop. 2247 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2248 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2249 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2250 // Favor having instruction to the right. FIXME: why? 2251 std::swap(VLeft, VRight); 2252 Left.push_back(VLeft); 2253 Right.push_back(VRight); 2254 } 2255 2256 // Keep track if we have instructions with all the same opcode on one side. 2257 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2258 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2259 // Keep track if we have one side with all the same value (broadcast). 2260 bool SplatLeft = true; 2261 bool SplatRight = true; 2262 2263 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2264 Instruction *I = cast<Instruction>(VL[i]); 2265 assert(I->isCommutative() && "Can only process commutative instruction"); 2266 // Commute to favor either a splat or maximizing having the same opcodes on 2267 // one side. 2268 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2269 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2270 Left.push_back(I->getOperand(1)); 2271 Right.push_back(I->getOperand(0)); 2272 } else { 2273 Left.push_back(I->getOperand(0)); 2274 Right.push_back(I->getOperand(1)); 2275 } 2276 // Update Splat* and AllSameOpcode* after the insertion. 2277 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2278 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2279 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2280 (cast<Instruction>(Left[i - 1])->getOpcode() == 2281 cast<Instruction>(Left[i])->getOpcode()); 2282 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2283 (cast<Instruction>(Right[i - 1])->getOpcode() == 2284 cast<Instruction>(Right[i])->getOpcode()); 2285 } 2286 2287 // If one operand end up being broadcast, return this operand order. 2288 if (SplatRight || SplatLeft) 2289 return; 2290 2291 // Finally check if we can get longer vectorizable chain by reordering 2292 // without breaking the good operand order detected above. 2293 // E.g. If we have something like- 2294 // load a[0] load b[0] 2295 // load b[1] load a[1] 2296 // load a[2] load b[2] 2297 // load a[3] load b[3] 2298 // Reordering the second load b[1] load a[1] would allow us to vectorize 2299 // this code and we still retain AllSameOpcode property. 2300 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2301 // such as- 2302 // add a[0],c[0] load b[0] 2303 // add a[1],c[2] load b[1] 2304 // b[2] load b[2] 2305 // add a[3],c[3] load b[3] 2306 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2307 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2308 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2309 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2310 std::swap(Left[j + 1], Right[j + 1]); 2311 continue; 2312 } 2313 } 2314 } 2315 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2316 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2317 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2318 std::swap(Left[j + 1], Right[j + 1]); 2319 continue; 2320 } 2321 } 2322 } 2323 // else unchanged 2324 } 2325 } 2326 2327 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2328 2329 // Get the basic block this bundle is in. All instructions in the bundle 2330 // should be in this block. 2331 auto *Front = cast<Instruction>(VL.front()); 2332 auto *BB = Front->getParent(); 2333 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2334 return cast<Instruction>(V)->getParent() == BB; 2335 })); 2336 2337 // The last instruction in the bundle in program order. 2338 Instruction *LastInst = nullptr; 2339 2340 // Find the last instruction. The common case should be that BB has been 2341 // scheduled, and the last instruction is VL.back(). So we start with 2342 // VL.back() and iterate over schedule data until we reach the end of the 2343 // bundle. The end of the bundle is marked by null ScheduleData. 2344 if (BlocksSchedules.count(BB)) { 2345 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2346 if (Bundle && Bundle->isPartOfBundle()) 2347 for (; Bundle; Bundle = Bundle->NextInBundle) 2348 LastInst = Bundle->Inst; 2349 } 2350 2351 // LastInst can still be null at this point if there's either not an entry 2352 // for BB in BlocksSchedules or there's no ScheduleData available for 2353 // VL.back(). This can be the case if buildTree_rec aborts for various 2354 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2355 // size is reached, etc.). ScheduleData is initialized in the scheduling 2356 // "dry-run". 2357 // 2358 // If this happens, we can still find the last instruction by brute force. We 2359 // iterate forwards from Front (inclusive) until we either see all 2360 // instructions in the bundle or reach the end of the block. If Front is the 2361 // last instruction in program order, LastInst will be set to Front, and we 2362 // will visit all the remaining instructions in the block. 2363 // 2364 // One of the reasons we exit early from buildTree_rec is to place an upper 2365 // bound on compile-time. Thus, taking an additional compile-time hit here is 2366 // not ideal. However, this should be exceedingly rare since it requires that 2367 // we both exit early from buildTree_rec and that the bundle be out-of-order 2368 // (causing us to iterate all the way to the end of the block). 2369 if (!LastInst) { 2370 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2371 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2372 if (Bundle.erase(&I)) 2373 LastInst = &I; 2374 if (Bundle.empty()) 2375 break; 2376 } 2377 } 2378 2379 // Set the insertion point after the last instruction in the bundle. Set the 2380 // debug location to Front. 2381 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2382 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2383 } 2384 2385 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2386 Value *Vec = UndefValue::get(Ty); 2387 // Generate the 'InsertElement' instruction. 2388 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2389 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2390 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2391 GatherSeq.insert(Insrt); 2392 CSEBlocks.insert(Insrt->getParent()); 2393 2394 // Add to our 'need-to-extract' list. 2395 if (ScalarToTreeEntry.count(VL[i])) { 2396 int Idx = ScalarToTreeEntry[VL[i]]; 2397 TreeEntry *E = &VectorizableTree[Idx]; 2398 // Find which lane we need to extract. 2399 int FoundLane = -1; 2400 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2401 // Is this the lane of the scalar that we are looking for ? 2402 if (E->Scalars[Lane] == VL[i]) { 2403 FoundLane = Lane; 2404 break; 2405 } 2406 } 2407 assert(FoundLane >= 0 && "Could not find the correct lane"); 2408 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2409 } 2410 } 2411 } 2412 2413 return Vec; 2414 } 2415 2416 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2417 SmallDenseMap<Value*, int>::const_iterator Entry 2418 = ScalarToTreeEntry.find(VL[0]); 2419 if (Entry != ScalarToTreeEntry.end()) { 2420 int Idx = Entry->second; 2421 const TreeEntry *En = &VectorizableTree[Idx]; 2422 if (En->isSame(VL) && En->VectorizedValue) 2423 return En->VectorizedValue; 2424 } 2425 return nullptr; 2426 } 2427 2428 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2429 if (ScalarToTreeEntry.count(VL[0])) { 2430 int Idx = ScalarToTreeEntry[VL[0]]; 2431 TreeEntry *E = &VectorizableTree[Idx]; 2432 if (E->isSame(VL)) 2433 return vectorizeTree(E); 2434 } 2435 2436 Type *ScalarTy = VL[0]->getType(); 2437 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2438 ScalarTy = SI->getValueOperand()->getType(); 2439 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2440 2441 return Gather(VL, VecTy); 2442 } 2443 2444 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2445 IRBuilder<>::InsertPointGuard Guard(Builder); 2446 2447 if (E->VectorizedValue) { 2448 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2449 return E->VectorizedValue; 2450 } 2451 2452 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2453 Type *ScalarTy = VL0->getType(); 2454 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2455 ScalarTy = SI->getValueOperand()->getType(); 2456 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2457 2458 if (E->NeedToGather) { 2459 setInsertPointAfterBundle(E->Scalars); 2460 auto *V = Gather(E->Scalars, VecTy); 2461 E->VectorizedValue = V; 2462 return V; 2463 } 2464 2465 unsigned Opcode = getSameOpcode(E->Scalars); 2466 2467 switch (Opcode) { 2468 case Instruction::PHI: { 2469 PHINode *PH = dyn_cast<PHINode>(VL0); 2470 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2471 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2472 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2473 E->VectorizedValue = NewPhi; 2474 2475 // PHINodes may have multiple entries from the same block. We want to 2476 // visit every block once. 2477 SmallSet<BasicBlock*, 4> VisitedBBs; 2478 2479 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2480 ValueList Operands; 2481 BasicBlock *IBB = PH->getIncomingBlock(i); 2482 2483 if (!VisitedBBs.insert(IBB).second) { 2484 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2485 continue; 2486 } 2487 2488 // Prepare the operand vector. 2489 for (Value *V : E->Scalars) 2490 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2491 2492 Builder.SetInsertPoint(IBB->getTerminator()); 2493 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2494 Value *Vec = vectorizeTree(Operands); 2495 NewPhi->addIncoming(Vec, IBB); 2496 } 2497 2498 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2499 "Invalid number of incoming values"); 2500 return NewPhi; 2501 } 2502 2503 case Instruction::ExtractElement: { 2504 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2505 Value *V = VL0->getOperand(0); 2506 E->VectorizedValue = V; 2507 return V; 2508 } 2509 setInsertPointAfterBundle(E->Scalars); 2510 auto *V = Gather(E->Scalars, VecTy); 2511 E->VectorizedValue = V; 2512 return V; 2513 } 2514 case Instruction::ExtractValue: { 2515 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2516 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2517 Builder.SetInsertPoint(LI); 2518 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2519 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2520 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2521 E->VectorizedValue = V; 2522 return propagateMetadata(V, E->Scalars); 2523 } 2524 setInsertPointAfterBundle(E->Scalars); 2525 auto *V = Gather(E->Scalars, VecTy); 2526 E->VectorizedValue = V; 2527 return V; 2528 } 2529 case Instruction::ZExt: 2530 case Instruction::SExt: 2531 case Instruction::FPToUI: 2532 case Instruction::FPToSI: 2533 case Instruction::FPExt: 2534 case Instruction::PtrToInt: 2535 case Instruction::IntToPtr: 2536 case Instruction::SIToFP: 2537 case Instruction::UIToFP: 2538 case Instruction::Trunc: 2539 case Instruction::FPTrunc: 2540 case Instruction::BitCast: { 2541 ValueList INVL; 2542 for (Value *V : E->Scalars) 2543 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2544 2545 setInsertPointAfterBundle(E->Scalars); 2546 2547 Value *InVec = vectorizeTree(INVL); 2548 2549 if (Value *V = alreadyVectorized(E->Scalars)) 2550 return V; 2551 2552 CastInst *CI = dyn_cast<CastInst>(VL0); 2553 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2554 E->VectorizedValue = V; 2555 ++NumVectorInstructions; 2556 return V; 2557 } 2558 case Instruction::FCmp: 2559 case Instruction::ICmp: { 2560 ValueList LHSV, RHSV; 2561 for (Value *V : E->Scalars) { 2562 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2563 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2564 } 2565 2566 setInsertPointAfterBundle(E->Scalars); 2567 2568 Value *L = vectorizeTree(LHSV); 2569 Value *R = vectorizeTree(RHSV); 2570 2571 if (Value *V = alreadyVectorized(E->Scalars)) 2572 return V; 2573 2574 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2575 Value *V; 2576 if (Opcode == Instruction::FCmp) 2577 V = Builder.CreateFCmp(P0, L, R); 2578 else 2579 V = Builder.CreateICmp(P0, L, R); 2580 2581 E->VectorizedValue = V; 2582 propagateIRFlags(E->VectorizedValue, E->Scalars); 2583 ++NumVectorInstructions; 2584 return V; 2585 } 2586 case Instruction::Select: { 2587 ValueList TrueVec, FalseVec, CondVec; 2588 for (Value *V : E->Scalars) { 2589 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2590 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2591 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2592 } 2593 2594 setInsertPointAfterBundle(E->Scalars); 2595 2596 Value *Cond = vectorizeTree(CondVec); 2597 Value *True = vectorizeTree(TrueVec); 2598 Value *False = vectorizeTree(FalseVec); 2599 2600 if (Value *V = alreadyVectorized(E->Scalars)) 2601 return V; 2602 2603 Value *V = Builder.CreateSelect(Cond, True, False); 2604 E->VectorizedValue = V; 2605 ++NumVectorInstructions; 2606 return V; 2607 } 2608 case Instruction::Add: 2609 case Instruction::FAdd: 2610 case Instruction::Sub: 2611 case Instruction::FSub: 2612 case Instruction::Mul: 2613 case Instruction::FMul: 2614 case Instruction::UDiv: 2615 case Instruction::SDiv: 2616 case Instruction::FDiv: 2617 case Instruction::URem: 2618 case Instruction::SRem: 2619 case Instruction::FRem: 2620 case Instruction::Shl: 2621 case Instruction::LShr: 2622 case Instruction::AShr: 2623 case Instruction::And: 2624 case Instruction::Or: 2625 case Instruction::Xor: { 2626 ValueList LHSVL, RHSVL; 2627 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2628 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2629 else 2630 for (Value *V : E->Scalars) { 2631 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2632 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2633 } 2634 2635 setInsertPointAfterBundle(E->Scalars); 2636 2637 Value *LHS = vectorizeTree(LHSVL); 2638 Value *RHS = vectorizeTree(RHSVL); 2639 2640 if (Value *V = alreadyVectorized(E->Scalars)) 2641 return V; 2642 2643 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2644 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2645 E->VectorizedValue = V; 2646 propagateIRFlags(E->VectorizedValue, E->Scalars); 2647 ++NumVectorInstructions; 2648 2649 if (Instruction *I = dyn_cast<Instruction>(V)) 2650 return propagateMetadata(I, E->Scalars); 2651 2652 return V; 2653 } 2654 case Instruction::Load: { 2655 // Loads are inserted at the head of the tree because we don't want to 2656 // sink them all the way down past store instructions. 2657 setInsertPointAfterBundle(E->Scalars); 2658 2659 LoadInst *LI = cast<LoadInst>(VL0); 2660 Type *ScalarLoadTy = LI->getType(); 2661 unsigned AS = LI->getPointerAddressSpace(); 2662 2663 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2664 VecTy->getPointerTo(AS)); 2665 2666 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2667 // ExternalUses list to make sure that an extract will be generated in the 2668 // future. 2669 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2670 ExternalUses.push_back( 2671 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2672 2673 unsigned Alignment = LI->getAlignment(); 2674 LI = Builder.CreateLoad(VecPtr); 2675 if (!Alignment) { 2676 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2677 } 2678 LI->setAlignment(Alignment); 2679 E->VectorizedValue = LI; 2680 ++NumVectorInstructions; 2681 return propagateMetadata(LI, E->Scalars); 2682 } 2683 case Instruction::Store: { 2684 StoreInst *SI = cast<StoreInst>(VL0); 2685 unsigned Alignment = SI->getAlignment(); 2686 unsigned AS = SI->getPointerAddressSpace(); 2687 2688 ValueList ValueOp; 2689 for (Value *V : E->Scalars) 2690 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2691 2692 setInsertPointAfterBundle(E->Scalars); 2693 2694 Value *VecValue = vectorizeTree(ValueOp); 2695 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2696 VecTy->getPointerTo(AS)); 2697 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2698 2699 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2700 // ExternalUses list to make sure that an extract will be generated in the 2701 // future. 2702 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2703 ExternalUses.push_back( 2704 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2705 2706 if (!Alignment) { 2707 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2708 } 2709 S->setAlignment(Alignment); 2710 E->VectorizedValue = S; 2711 ++NumVectorInstructions; 2712 return propagateMetadata(S, E->Scalars); 2713 } 2714 case Instruction::GetElementPtr: { 2715 setInsertPointAfterBundle(E->Scalars); 2716 2717 ValueList Op0VL; 2718 for (Value *V : E->Scalars) 2719 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2720 2721 Value *Op0 = vectorizeTree(Op0VL); 2722 2723 std::vector<Value *> OpVecs; 2724 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2725 ++j) { 2726 ValueList OpVL; 2727 for (Value *V : E->Scalars) 2728 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2729 2730 Value *OpVec = vectorizeTree(OpVL); 2731 OpVecs.push_back(OpVec); 2732 } 2733 2734 Value *V = Builder.CreateGEP( 2735 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2736 E->VectorizedValue = V; 2737 ++NumVectorInstructions; 2738 2739 if (Instruction *I = dyn_cast<Instruction>(V)) 2740 return propagateMetadata(I, E->Scalars); 2741 2742 return V; 2743 } 2744 case Instruction::Call: { 2745 CallInst *CI = cast<CallInst>(VL0); 2746 setInsertPointAfterBundle(E->Scalars); 2747 Function *FI; 2748 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2749 Value *ScalarArg = nullptr; 2750 if (CI && (FI = CI->getCalledFunction())) { 2751 IID = FI->getIntrinsicID(); 2752 } 2753 std::vector<Value *> OpVecs; 2754 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2755 ValueList OpVL; 2756 // ctlz,cttz and powi are special intrinsics whose second argument is 2757 // a scalar. This argument should not be vectorized. 2758 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2759 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2760 ScalarArg = CEI->getArgOperand(j); 2761 OpVecs.push_back(CEI->getArgOperand(j)); 2762 continue; 2763 } 2764 for (Value *V : E->Scalars) { 2765 CallInst *CEI = cast<CallInst>(V); 2766 OpVL.push_back(CEI->getArgOperand(j)); 2767 } 2768 2769 Value *OpVec = vectorizeTree(OpVL); 2770 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2771 OpVecs.push_back(OpVec); 2772 } 2773 2774 Module *M = F->getParent(); 2775 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2776 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2777 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2778 SmallVector<OperandBundleDef, 1> OpBundles; 2779 CI->getOperandBundlesAsDefs(OpBundles); 2780 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2781 2782 // The scalar argument uses an in-tree scalar so we add the new vectorized 2783 // call to ExternalUses list to make sure that an extract will be 2784 // generated in the future. 2785 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2786 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2787 2788 E->VectorizedValue = V; 2789 propagateIRFlags(E->VectorizedValue, E->Scalars); 2790 ++NumVectorInstructions; 2791 return V; 2792 } 2793 case Instruction::ShuffleVector: { 2794 ValueList LHSVL, RHSVL; 2795 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2796 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2797 setInsertPointAfterBundle(E->Scalars); 2798 2799 Value *LHS = vectorizeTree(LHSVL); 2800 Value *RHS = vectorizeTree(RHSVL); 2801 2802 if (Value *V = alreadyVectorized(E->Scalars)) 2803 return V; 2804 2805 // Create a vector of LHS op1 RHS 2806 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2807 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2808 2809 // Create a vector of LHS op2 RHS 2810 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2811 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2812 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2813 2814 // Create shuffle to take alternate operations from the vector. 2815 // Also, gather up odd and even scalar ops to propagate IR flags to 2816 // each vector operation. 2817 ValueList OddScalars, EvenScalars; 2818 unsigned e = E->Scalars.size(); 2819 SmallVector<Constant *, 8> Mask(e); 2820 for (unsigned i = 0; i < e; ++i) { 2821 if (i & 1) { 2822 Mask[i] = Builder.getInt32(e + i); 2823 OddScalars.push_back(E->Scalars[i]); 2824 } else { 2825 Mask[i] = Builder.getInt32(i); 2826 EvenScalars.push_back(E->Scalars[i]); 2827 } 2828 } 2829 2830 Value *ShuffleMask = ConstantVector::get(Mask); 2831 propagateIRFlags(V0, EvenScalars); 2832 propagateIRFlags(V1, OddScalars); 2833 2834 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2835 E->VectorizedValue = V; 2836 ++NumVectorInstructions; 2837 if (Instruction *I = dyn_cast<Instruction>(V)) 2838 return propagateMetadata(I, E->Scalars); 2839 2840 return V; 2841 } 2842 default: 2843 llvm_unreachable("unknown inst"); 2844 } 2845 return nullptr; 2846 } 2847 2848 Value *BoUpSLP::vectorizeTree() { 2849 ExtraValueToDebugLocsMap ExternallyUsedValues; 2850 return vectorizeTree(ExternallyUsedValues); 2851 } 2852 2853 Value * 2854 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 2855 2856 // All blocks must be scheduled before any instructions are inserted. 2857 for (auto &BSIter : BlocksSchedules) { 2858 scheduleBlock(BSIter.second.get()); 2859 } 2860 2861 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2862 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2863 2864 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2865 // vectorized root. InstCombine will then rewrite the entire expression. We 2866 // sign extend the extracted values below. 2867 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2868 if (MinBWs.count(ScalarRoot)) { 2869 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2870 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2871 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2872 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2873 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2874 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2875 VectorizableTree[0].VectorizedValue = Trunc; 2876 } 2877 2878 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2879 2880 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2881 // specified by ScalarType. 2882 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2883 if (!MinBWs.count(ScalarRoot)) 2884 return Ex; 2885 if (MinBWs[ScalarRoot].second) 2886 return Builder.CreateSExt(Ex, ScalarType); 2887 return Builder.CreateZExt(Ex, ScalarType); 2888 }; 2889 2890 // Extract all of the elements with the external uses. 2891 for (const auto &ExternalUse : ExternalUses) { 2892 Value *Scalar = ExternalUse.Scalar; 2893 llvm::User *User = ExternalUse.User; 2894 2895 // Skip users that we already RAUW. This happens when one instruction 2896 // has multiple uses of the same value. 2897 if (User && !is_contained(Scalar->users(), User)) 2898 continue; 2899 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2900 2901 int Idx = ScalarToTreeEntry[Scalar]; 2902 TreeEntry *E = &VectorizableTree[Idx]; 2903 assert(!E->NeedToGather && "Extracting from a gather list"); 2904 2905 Value *Vec = E->VectorizedValue; 2906 assert(Vec && "Can't find vectorizable value"); 2907 2908 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2909 // If User == nullptr, the Scalar is used as extra arg. Generate 2910 // ExtractElement instruction and update the record for this scalar in 2911 // ExternallyUsedValues. 2912 if (!User) { 2913 assert(ExternallyUsedValues.count(Scalar) && 2914 "Scalar with nullptr as an external user must be registered in " 2915 "ExternallyUsedValues map"); 2916 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2917 Builder.SetInsertPoint(VecI->getParent(), 2918 std::next(VecI->getIterator())); 2919 } else { 2920 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2921 } 2922 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2923 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2924 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 2925 auto &Locs = ExternallyUsedValues[Scalar]; 2926 ExternallyUsedValues.insert({Ex, Locs}); 2927 ExternallyUsedValues.erase(Scalar); 2928 continue; 2929 } 2930 2931 // Generate extracts for out-of-tree users. 2932 // Find the insertion point for the extractelement lane. 2933 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2934 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2935 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2936 if (PH->getIncomingValue(i) == Scalar) { 2937 TerminatorInst *IncomingTerminator = 2938 PH->getIncomingBlock(i)->getTerminator(); 2939 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2940 Builder.SetInsertPoint(VecI->getParent(), 2941 std::next(VecI->getIterator())); 2942 } else { 2943 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2944 } 2945 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2946 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2947 CSEBlocks.insert(PH->getIncomingBlock(i)); 2948 PH->setOperand(i, Ex); 2949 } 2950 } 2951 } else { 2952 Builder.SetInsertPoint(cast<Instruction>(User)); 2953 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2954 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2955 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2956 User->replaceUsesOfWith(Scalar, Ex); 2957 } 2958 } else { 2959 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2960 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2961 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2962 CSEBlocks.insert(&F->getEntryBlock()); 2963 User->replaceUsesOfWith(Scalar, Ex); 2964 } 2965 2966 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2967 } 2968 2969 // For each vectorized value: 2970 for (TreeEntry &EIdx : VectorizableTree) { 2971 TreeEntry *Entry = &EIdx; 2972 2973 // For each lane: 2974 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2975 Value *Scalar = Entry->Scalars[Lane]; 2976 // No need to handle users of gathered values. 2977 if (Entry->NeedToGather) 2978 continue; 2979 2980 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2981 2982 Type *Ty = Scalar->getType(); 2983 if (!Ty->isVoidTy()) { 2984 #ifndef NDEBUG 2985 for (User *U : Scalar->users()) { 2986 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2987 2988 assert((ScalarToTreeEntry.count(U) || 2989 // It is legal to replace users in the ignorelist by undef. 2990 is_contained(UserIgnoreList, U)) && 2991 "Replacing out-of-tree value with undef"); 2992 } 2993 #endif 2994 Value *Undef = UndefValue::get(Ty); 2995 Scalar->replaceAllUsesWith(Undef); 2996 } 2997 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2998 eraseInstruction(cast<Instruction>(Scalar)); 2999 } 3000 } 3001 3002 Builder.ClearInsertionPoint(); 3003 3004 return VectorizableTree[0].VectorizedValue; 3005 } 3006 3007 void BoUpSLP::optimizeGatherSequence() { 3008 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3009 << " gather sequences instructions.\n"); 3010 // LICM InsertElementInst sequences. 3011 for (Instruction *it : GatherSeq) { 3012 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3013 3014 if (!Insert) 3015 continue; 3016 3017 // Check if this block is inside a loop. 3018 Loop *L = LI->getLoopFor(Insert->getParent()); 3019 if (!L) 3020 continue; 3021 3022 // Check if it has a preheader. 3023 BasicBlock *PreHeader = L->getLoopPreheader(); 3024 if (!PreHeader) 3025 continue; 3026 3027 // If the vector or the element that we insert into it are 3028 // instructions that are defined in this basic block then we can't 3029 // hoist this instruction. 3030 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3031 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3032 if (CurrVec && L->contains(CurrVec)) 3033 continue; 3034 if (NewElem && L->contains(NewElem)) 3035 continue; 3036 3037 // We can hoist this instruction. Move it to the pre-header. 3038 Insert->moveBefore(PreHeader->getTerminator()); 3039 } 3040 3041 // Make a list of all reachable blocks in our CSE queue. 3042 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3043 CSEWorkList.reserve(CSEBlocks.size()); 3044 for (BasicBlock *BB : CSEBlocks) 3045 if (DomTreeNode *N = DT->getNode(BB)) { 3046 assert(DT->isReachableFromEntry(N)); 3047 CSEWorkList.push_back(N); 3048 } 3049 3050 // Sort blocks by domination. This ensures we visit a block after all blocks 3051 // dominating it are visited. 3052 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3053 [this](const DomTreeNode *A, const DomTreeNode *B) { 3054 return DT->properlyDominates(A, B); 3055 }); 3056 3057 // Perform O(N^2) search over the gather sequences and merge identical 3058 // instructions. TODO: We can further optimize this scan if we split the 3059 // instructions into different buckets based on the insert lane. 3060 SmallVector<Instruction *, 16> Visited; 3061 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3062 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3063 "Worklist not sorted properly!"); 3064 BasicBlock *BB = (*I)->getBlock(); 3065 // For all instructions in blocks containing gather sequences: 3066 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3067 Instruction *In = &*it++; 3068 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3069 continue; 3070 3071 // Check if we can replace this instruction with any of the 3072 // visited instructions. 3073 for (Instruction *v : Visited) { 3074 if (In->isIdenticalTo(v) && 3075 DT->dominates(v->getParent(), In->getParent())) { 3076 In->replaceAllUsesWith(v); 3077 eraseInstruction(In); 3078 In = nullptr; 3079 break; 3080 } 3081 } 3082 if (In) { 3083 assert(!is_contained(Visited, In)); 3084 Visited.push_back(In); 3085 } 3086 } 3087 } 3088 CSEBlocks.clear(); 3089 GatherSeq.clear(); 3090 } 3091 3092 // Groups the instructions to a bundle (which is then a single scheduling entity) 3093 // and schedules instructions until the bundle gets ready. 3094 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3095 BoUpSLP *SLP) { 3096 if (isa<PHINode>(VL[0])) 3097 return true; 3098 3099 // Initialize the instruction bundle. 3100 Instruction *OldScheduleEnd = ScheduleEnd; 3101 ScheduleData *PrevInBundle = nullptr; 3102 ScheduleData *Bundle = nullptr; 3103 bool ReSchedule = false; 3104 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 3105 3106 // Make sure that the scheduling region contains all 3107 // instructions of the bundle. 3108 for (Value *V : VL) { 3109 if (!extendSchedulingRegion(V)) 3110 return false; 3111 } 3112 3113 for (Value *V : VL) { 3114 ScheduleData *BundleMember = getScheduleData(V); 3115 assert(BundleMember && 3116 "no ScheduleData for bundle member (maybe not in same basic block)"); 3117 if (BundleMember->IsScheduled) { 3118 // A bundle member was scheduled as single instruction before and now 3119 // needs to be scheduled as part of the bundle. We just get rid of the 3120 // existing schedule. 3121 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3122 << " was already scheduled\n"); 3123 ReSchedule = true; 3124 } 3125 assert(BundleMember->isSchedulingEntity() && 3126 "bundle member already part of other bundle"); 3127 if (PrevInBundle) { 3128 PrevInBundle->NextInBundle = BundleMember; 3129 } else { 3130 Bundle = BundleMember; 3131 } 3132 BundleMember->UnscheduledDepsInBundle = 0; 3133 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3134 3135 // Group the instructions to a bundle. 3136 BundleMember->FirstInBundle = Bundle; 3137 PrevInBundle = BundleMember; 3138 } 3139 if (ScheduleEnd != OldScheduleEnd) { 3140 // The scheduling region got new instructions at the lower end (or it is a 3141 // new region for the first bundle). This makes it necessary to 3142 // recalculate all dependencies. 3143 // It is seldom that this needs to be done a second time after adding the 3144 // initial bundle to the region. 3145 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3146 ScheduleData *SD = getScheduleData(I); 3147 SD->clearDependencies(); 3148 } 3149 ReSchedule = true; 3150 } 3151 if (ReSchedule) { 3152 resetSchedule(); 3153 initialFillReadyList(ReadyInsts); 3154 } 3155 3156 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3157 << BB->getName() << "\n"); 3158 3159 calculateDependencies(Bundle, true, SLP); 3160 3161 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3162 // means that there are no cyclic dependencies and we can schedule it. 3163 // Note that's important that we don't "schedule" the bundle yet (see 3164 // cancelScheduling). 3165 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3166 3167 ScheduleData *pickedSD = ReadyInsts.back(); 3168 ReadyInsts.pop_back(); 3169 3170 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3171 schedule(pickedSD, ReadyInsts); 3172 } 3173 } 3174 if (!Bundle->isReady()) { 3175 cancelScheduling(VL); 3176 return false; 3177 } 3178 return true; 3179 } 3180 3181 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3182 if (isa<PHINode>(VL[0])) 3183 return; 3184 3185 ScheduleData *Bundle = getScheduleData(VL[0]); 3186 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3187 assert(!Bundle->IsScheduled && 3188 "Can't cancel bundle which is already scheduled"); 3189 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3190 "tried to unbundle something which is not a bundle"); 3191 3192 // Un-bundle: make single instructions out of the bundle. 3193 ScheduleData *BundleMember = Bundle; 3194 while (BundleMember) { 3195 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3196 BundleMember->FirstInBundle = BundleMember; 3197 ScheduleData *Next = BundleMember->NextInBundle; 3198 BundleMember->NextInBundle = nullptr; 3199 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3200 if (BundleMember->UnscheduledDepsInBundle == 0) { 3201 ReadyInsts.insert(BundleMember); 3202 } 3203 BundleMember = Next; 3204 } 3205 } 3206 3207 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3208 if (getScheduleData(V)) 3209 return true; 3210 Instruction *I = dyn_cast<Instruction>(V); 3211 assert(I && "bundle member must be an instruction"); 3212 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3213 if (!ScheduleStart) { 3214 // It's the first instruction in the new region. 3215 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3216 ScheduleStart = I; 3217 ScheduleEnd = I->getNextNode(); 3218 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3219 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3220 return true; 3221 } 3222 // Search up and down at the same time, because we don't know if the new 3223 // instruction is above or below the existing scheduling region. 3224 BasicBlock::reverse_iterator UpIter = 3225 ++ScheduleStart->getIterator().getReverse(); 3226 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3227 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3228 BasicBlock::iterator LowerEnd = BB->end(); 3229 for (;;) { 3230 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3231 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3232 return false; 3233 } 3234 3235 if (UpIter != UpperEnd) { 3236 if (&*UpIter == I) { 3237 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3238 ScheduleStart = I; 3239 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3240 return true; 3241 } 3242 UpIter++; 3243 } 3244 if (DownIter != LowerEnd) { 3245 if (&*DownIter == I) { 3246 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3247 nullptr); 3248 ScheduleEnd = I->getNextNode(); 3249 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3250 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3251 return true; 3252 } 3253 DownIter++; 3254 } 3255 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3256 "instruction not found in block"); 3257 } 3258 return true; 3259 } 3260 3261 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3262 Instruction *ToI, 3263 ScheduleData *PrevLoadStore, 3264 ScheduleData *NextLoadStore) { 3265 ScheduleData *CurrentLoadStore = PrevLoadStore; 3266 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3267 ScheduleData *SD = ScheduleDataMap[I]; 3268 if (!SD) { 3269 // Allocate a new ScheduleData for the instruction. 3270 if (ChunkPos >= ChunkSize) { 3271 ScheduleDataChunks.push_back( 3272 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3273 ChunkPos = 0; 3274 } 3275 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3276 ScheduleDataMap[I] = SD; 3277 SD->Inst = I; 3278 } 3279 assert(!isInSchedulingRegion(SD) && 3280 "new ScheduleData already in scheduling region"); 3281 SD->init(SchedulingRegionID); 3282 3283 if (I->mayReadOrWriteMemory()) { 3284 // Update the linked list of memory accessing instructions. 3285 if (CurrentLoadStore) { 3286 CurrentLoadStore->NextLoadStore = SD; 3287 } else { 3288 FirstLoadStoreInRegion = SD; 3289 } 3290 CurrentLoadStore = SD; 3291 } 3292 } 3293 if (NextLoadStore) { 3294 if (CurrentLoadStore) 3295 CurrentLoadStore->NextLoadStore = NextLoadStore; 3296 } else { 3297 LastLoadStoreInRegion = CurrentLoadStore; 3298 } 3299 } 3300 3301 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3302 bool InsertInReadyList, 3303 BoUpSLP *SLP) { 3304 assert(SD->isSchedulingEntity()); 3305 3306 SmallVector<ScheduleData *, 10> WorkList; 3307 WorkList.push_back(SD); 3308 3309 while (!WorkList.empty()) { 3310 ScheduleData *SD = WorkList.back(); 3311 WorkList.pop_back(); 3312 3313 ScheduleData *BundleMember = SD; 3314 while (BundleMember) { 3315 assert(isInSchedulingRegion(BundleMember)); 3316 if (!BundleMember->hasValidDependencies()) { 3317 3318 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3319 BundleMember->Dependencies = 0; 3320 BundleMember->resetUnscheduledDeps(); 3321 3322 // Handle def-use chain dependencies. 3323 for (User *U : BundleMember->Inst->users()) { 3324 if (isa<Instruction>(U)) { 3325 ScheduleData *UseSD = getScheduleData(U); 3326 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3327 BundleMember->Dependencies++; 3328 ScheduleData *DestBundle = UseSD->FirstInBundle; 3329 if (!DestBundle->IsScheduled) { 3330 BundleMember->incrementUnscheduledDeps(1); 3331 } 3332 if (!DestBundle->hasValidDependencies()) { 3333 WorkList.push_back(DestBundle); 3334 } 3335 } 3336 } else { 3337 // I'm not sure if this can ever happen. But we need to be safe. 3338 // This lets the instruction/bundle never be scheduled and 3339 // eventually disable vectorization. 3340 BundleMember->Dependencies++; 3341 BundleMember->incrementUnscheduledDeps(1); 3342 } 3343 } 3344 3345 // Handle the memory dependencies. 3346 ScheduleData *DepDest = BundleMember->NextLoadStore; 3347 if (DepDest) { 3348 Instruction *SrcInst = BundleMember->Inst; 3349 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3350 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3351 unsigned numAliased = 0; 3352 unsigned DistToSrc = 1; 3353 3354 while (DepDest) { 3355 assert(isInSchedulingRegion(DepDest)); 3356 3357 // We have two limits to reduce the complexity: 3358 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3359 // SLP->isAliased (which is the expensive part in this loop). 3360 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3361 // the whole loop (even if the loop is fast, it's quadratic). 3362 // It's important for the loop break condition (see below) to 3363 // check this limit even between two read-only instructions. 3364 if (DistToSrc >= MaxMemDepDistance || 3365 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3366 (numAliased >= AliasedCheckLimit || 3367 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3368 3369 // We increment the counter only if the locations are aliased 3370 // (instead of counting all alias checks). This gives a better 3371 // balance between reduced runtime and accurate dependencies. 3372 numAliased++; 3373 3374 DepDest->MemoryDependencies.push_back(BundleMember); 3375 BundleMember->Dependencies++; 3376 ScheduleData *DestBundle = DepDest->FirstInBundle; 3377 if (!DestBundle->IsScheduled) { 3378 BundleMember->incrementUnscheduledDeps(1); 3379 } 3380 if (!DestBundle->hasValidDependencies()) { 3381 WorkList.push_back(DestBundle); 3382 } 3383 } 3384 DepDest = DepDest->NextLoadStore; 3385 3386 // Example, explaining the loop break condition: Let's assume our 3387 // starting instruction is i0 and MaxMemDepDistance = 3. 3388 // 3389 // +--------v--v--v 3390 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3391 // +--------^--^--^ 3392 // 3393 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3394 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3395 // Previously we already added dependencies from i3 to i6,i7,i8 3396 // (because of MaxMemDepDistance). As we added a dependency from 3397 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3398 // and we can abort this loop at i6. 3399 if (DistToSrc >= 2 * MaxMemDepDistance) 3400 break; 3401 DistToSrc++; 3402 } 3403 } 3404 } 3405 BundleMember = BundleMember->NextInBundle; 3406 } 3407 if (InsertInReadyList && SD->isReady()) { 3408 ReadyInsts.push_back(SD); 3409 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3410 } 3411 } 3412 } 3413 3414 void BoUpSLP::BlockScheduling::resetSchedule() { 3415 assert(ScheduleStart && 3416 "tried to reset schedule on block which has not been scheduled"); 3417 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3418 ScheduleData *SD = getScheduleData(I); 3419 assert(isInSchedulingRegion(SD)); 3420 SD->IsScheduled = false; 3421 SD->resetUnscheduledDeps(); 3422 } 3423 ReadyInsts.clear(); 3424 } 3425 3426 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3427 3428 if (!BS->ScheduleStart) 3429 return; 3430 3431 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3432 3433 BS->resetSchedule(); 3434 3435 // For the real scheduling we use a more sophisticated ready-list: it is 3436 // sorted by the original instruction location. This lets the final schedule 3437 // be as close as possible to the original instruction order. 3438 struct ScheduleDataCompare { 3439 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3440 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3441 } 3442 }; 3443 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3444 3445 // Ensure that all dependency data is updated and fill the ready-list with 3446 // initial instructions. 3447 int Idx = 0; 3448 int NumToSchedule = 0; 3449 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3450 I = I->getNextNode()) { 3451 ScheduleData *SD = BS->getScheduleData(I); 3452 assert( 3453 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3454 "scheduler and vectorizer have different opinion on what is a bundle"); 3455 SD->FirstInBundle->SchedulingPriority = Idx++; 3456 if (SD->isSchedulingEntity()) { 3457 BS->calculateDependencies(SD, false, this); 3458 NumToSchedule++; 3459 } 3460 } 3461 BS->initialFillReadyList(ReadyInsts); 3462 3463 Instruction *LastScheduledInst = BS->ScheduleEnd; 3464 3465 // Do the "real" scheduling. 3466 while (!ReadyInsts.empty()) { 3467 ScheduleData *picked = *ReadyInsts.begin(); 3468 ReadyInsts.erase(ReadyInsts.begin()); 3469 3470 // Move the scheduled instruction(s) to their dedicated places, if not 3471 // there yet. 3472 ScheduleData *BundleMember = picked; 3473 while (BundleMember) { 3474 Instruction *pickedInst = BundleMember->Inst; 3475 if (LastScheduledInst->getNextNode() != pickedInst) { 3476 BS->BB->getInstList().remove(pickedInst); 3477 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3478 pickedInst); 3479 } 3480 LastScheduledInst = pickedInst; 3481 BundleMember = BundleMember->NextInBundle; 3482 } 3483 3484 BS->schedule(picked, ReadyInsts); 3485 NumToSchedule--; 3486 } 3487 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3488 3489 // Avoid duplicate scheduling of the block. 3490 BS->ScheduleStart = nullptr; 3491 } 3492 3493 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3494 // If V is a store, just return the width of the stored value without 3495 // traversing the expression tree. This is the common case. 3496 if (auto *Store = dyn_cast<StoreInst>(V)) 3497 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3498 3499 // If V is not a store, we can traverse the expression tree to find loads 3500 // that feed it. The type of the loaded value may indicate a more suitable 3501 // width than V's type. We want to base the vector element size on the width 3502 // of memory operations where possible. 3503 SmallVector<Instruction *, 16> Worklist; 3504 SmallPtrSet<Instruction *, 16> Visited; 3505 if (auto *I = dyn_cast<Instruction>(V)) 3506 Worklist.push_back(I); 3507 3508 // Traverse the expression tree in bottom-up order looking for loads. If we 3509 // encounter an instruciton we don't yet handle, we give up. 3510 auto MaxWidth = 0u; 3511 auto FoundUnknownInst = false; 3512 while (!Worklist.empty() && !FoundUnknownInst) { 3513 auto *I = Worklist.pop_back_val(); 3514 Visited.insert(I); 3515 3516 // We should only be looking at scalar instructions here. If the current 3517 // instruction has a vector type, give up. 3518 auto *Ty = I->getType(); 3519 if (isa<VectorType>(Ty)) 3520 FoundUnknownInst = true; 3521 3522 // If the current instruction is a load, update MaxWidth to reflect the 3523 // width of the loaded value. 3524 else if (isa<LoadInst>(I)) 3525 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3526 3527 // Otherwise, we need to visit the operands of the instruction. We only 3528 // handle the interesting cases from buildTree here. If an operand is an 3529 // instruction we haven't yet visited, we add it to the worklist. 3530 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3531 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3532 for (Use &U : I->operands()) 3533 if (auto *J = dyn_cast<Instruction>(U.get())) 3534 if (!Visited.count(J)) 3535 Worklist.push_back(J); 3536 } 3537 3538 // If we don't yet handle the instruction, give up. 3539 else 3540 FoundUnknownInst = true; 3541 } 3542 3543 // If we didn't encounter a memory access in the expression tree, or if we 3544 // gave up for some reason, just return the width of V. 3545 if (!MaxWidth || FoundUnknownInst) 3546 return DL->getTypeSizeInBits(V->getType()); 3547 3548 // Otherwise, return the maximum width we found. 3549 return MaxWidth; 3550 } 3551 3552 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3553 // smaller type with a truncation. We collect the values that will be demoted 3554 // in ToDemote and additional roots that require investigating in Roots. 3555 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3556 SmallVectorImpl<Value *> &ToDemote, 3557 SmallVectorImpl<Value *> &Roots) { 3558 3559 // We can always demote constants. 3560 if (isa<Constant>(V)) { 3561 ToDemote.push_back(V); 3562 return true; 3563 } 3564 3565 // If the value is not an instruction in the expression with only one use, it 3566 // cannot be demoted. 3567 auto *I = dyn_cast<Instruction>(V); 3568 if (!I || !I->hasOneUse() || !Expr.count(I)) 3569 return false; 3570 3571 switch (I->getOpcode()) { 3572 3573 // We can always demote truncations and extensions. Since truncations can 3574 // seed additional demotion, we save the truncated value. 3575 case Instruction::Trunc: 3576 Roots.push_back(I->getOperand(0)); 3577 case Instruction::ZExt: 3578 case Instruction::SExt: 3579 break; 3580 3581 // We can demote certain binary operations if we can demote both of their 3582 // operands. 3583 case Instruction::Add: 3584 case Instruction::Sub: 3585 case Instruction::Mul: 3586 case Instruction::And: 3587 case Instruction::Or: 3588 case Instruction::Xor: 3589 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3590 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3591 return false; 3592 break; 3593 3594 // We can demote selects if we can demote their true and false values. 3595 case Instruction::Select: { 3596 SelectInst *SI = cast<SelectInst>(I); 3597 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3598 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3599 return false; 3600 break; 3601 } 3602 3603 // We can demote phis if we can demote all their incoming operands. Note that 3604 // we don't need to worry about cycles since we ensure single use above. 3605 case Instruction::PHI: { 3606 PHINode *PN = cast<PHINode>(I); 3607 for (Value *IncValue : PN->incoming_values()) 3608 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3609 return false; 3610 break; 3611 } 3612 3613 // Otherwise, conservatively give up. 3614 default: 3615 return false; 3616 } 3617 3618 // Record the value that we can demote. 3619 ToDemote.push_back(V); 3620 return true; 3621 } 3622 3623 void BoUpSLP::computeMinimumValueSizes() { 3624 // If there are no external uses, the expression tree must be rooted by a 3625 // store. We can't demote in-memory values, so there is nothing to do here. 3626 if (ExternalUses.empty()) 3627 return; 3628 3629 // We only attempt to truncate integer expressions. 3630 auto &TreeRoot = VectorizableTree[0].Scalars; 3631 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3632 if (!TreeRootIT) 3633 return; 3634 3635 // If the expression is not rooted by a store, these roots should have 3636 // external uses. We will rely on InstCombine to rewrite the expression in 3637 // the narrower type. However, InstCombine only rewrites single-use values. 3638 // This means that if a tree entry other than a root is used externally, it 3639 // must have multiple uses and InstCombine will not rewrite it. The code 3640 // below ensures that only the roots are used externally. 3641 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3642 for (auto &EU : ExternalUses) 3643 if (!Expr.erase(EU.Scalar)) 3644 return; 3645 if (!Expr.empty()) 3646 return; 3647 3648 // Collect the scalar values of the vectorizable expression. We will use this 3649 // context to determine which values can be demoted. If we see a truncation, 3650 // we mark it as seeding another demotion. 3651 for (auto &Entry : VectorizableTree) 3652 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3653 3654 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3655 // have a single external user that is not in the vectorizable tree. 3656 for (auto *Root : TreeRoot) 3657 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3658 return; 3659 3660 // Conservatively determine if we can actually truncate the roots of the 3661 // expression. Collect the values that can be demoted in ToDemote and 3662 // additional roots that require investigating in Roots. 3663 SmallVector<Value *, 32> ToDemote; 3664 SmallVector<Value *, 4> Roots; 3665 for (auto *Root : TreeRoot) 3666 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3667 return; 3668 3669 // The maximum bit width required to represent all the values that can be 3670 // demoted without loss of precision. It would be safe to truncate the roots 3671 // of the expression to this width. 3672 auto MaxBitWidth = 8u; 3673 3674 // We first check if all the bits of the roots are demanded. If they're not, 3675 // we can truncate the roots to this narrower type. 3676 for (auto *Root : TreeRoot) { 3677 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3678 MaxBitWidth = std::max<unsigned>( 3679 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3680 } 3681 3682 // True if the roots can be zero-extended back to their original type, rather 3683 // than sign-extended. We know that if the leading bits are not demanded, we 3684 // can safely zero-extend. So we initialize IsKnownPositive to True. 3685 bool IsKnownPositive = true; 3686 3687 // If all the bits of the roots are demanded, we can try a little harder to 3688 // compute a narrower type. This can happen, for example, if the roots are 3689 // getelementptr indices. InstCombine promotes these indices to the pointer 3690 // width. Thus, all their bits are technically demanded even though the 3691 // address computation might be vectorized in a smaller type. 3692 // 3693 // We start by looking at each entry that can be demoted. We compute the 3694 // maximum bit width required to store the scalar by using ValueTracking to 3695 // compute the number of high-order bits we can truncate. 3696 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3697 MaxBitWidth = 8u; 3698 3699 // Determine if the sign bit of all the roots is known to be zero. If not, 3700 // IsKnownPositive is set to False. 3701 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3702 KnownBits Known = computeKnownBits(R, *DL); 3703 return Known.isNonNegative(); 3704 }); 3705 3706 // Determine the maximum number of bits required to store the scalar 3707 // values. 3708 for (auto *Scalar : ToDemote) { 3709 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3710 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3711 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3712 } 3713 3714 // If we can't prove that the sign bit is zero, we must add one to the 3715 // maximum bit width to account for the unknown sign bit. This preserves 3716 // the existing sign bit so we can safely sign-extend the root back to the 3717 // original type. Otherwise, if we know the sign bit is zero, we will 3718 // zero-extend the root instead. 3719 // 3720 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3721 // one to the maximum bit width will yield a larger-than-necessary 3722 // type. In general, we need to add an extra bit only if we can't 3723 // prove that the upper bit of the original type is equal to the 3724 // upper bit of the proposed smaller type. If these two bits are the 3725 // same (either zero or one) we know that sign-extending from the 3726 // smaller type will result in the same value. Here, since we can't 3727 // yet prove this, we are just making the proposed smaller type 3728 // larger to ensure correctness. 3729 if (!IsKnownPositive) 3730 ++MaxBitWidth; 3731 } 3732 3733 // Round MaxBitWidth up to the next power-of-two. 3734 if (!isPowerOf2_64(MaxBitWidth)) 3735 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3736 3737 // If the maximum bit width we compute is less than the with of the roots' 3738 // type, we can proceed with the narrowing. Otherwise, do nothing. 3739 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3740 return; 3741 3742 // If we can truncate the root, we must collect additional values that might 3743 // be demoted as a result. That is, those seeded by truncations we will 3744 // modify. 3745 while (!Roots.empty()) 3746 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3747 3748 // Finally, map the values we can demote to the maximum bit with we computed. 3749 for (auto *Scalar : ToDemote) 3750 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3751 } 3752 3753 namespace { 3754 /// The SLPVectorizer Pass. 3755 struct SLPVectorizer : public FunctionPass { 3756 SLPVectorizerPass Impl; 3757 3758 /// Pass identification, replacement for typeid 3759 static char ID; 3760 3761 explicit SLPVectorizer() : FunctionPass(ID) { 3762 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3763 } 3764 3765 3766 bool doInitialization(Module &M) override { 3767 return false; 3768 } 3769 3770 bool runOnFunction(Function &F) override { 3771 if (skipFunction(F)) 3772 return false; 3773 3774 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3775 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3776 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3777 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3778 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3779 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3780 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3781 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3782 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3783 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3784 3785 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 3786 } 3787 3788 void getAnalysisUsage(AnalysisUsage &AU) const override { 3789 FunctionPass::getAnalysisUsage(AU); 3790 AU.addRequired<AssumptionCacheTracker>(); 3791 AU.addRequired<ScalarEvolutionWrapperPass>(); 3792 AU.addRequired<AAResultsWrapperPass>(); 3793 AU.addRequired<TargetTransformInfoWrapperPass>(); 3794 AU.addRequired<LoopInfoWrapperPass>(); 3795 AU.addRequired<DominatorTreeWrapperPass>(); 3796 AU.addRequired<DemandedBitsWrapperPass>(); 3797 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3798 AU.addPreserved<LoopInfoWrapperPass>(); 3799 AU.addPreserved<DominatorTreeWrapperPass>(); 3800 AU.addPreserved<AAResultsWrapperPass>(); 3801 AU.addPreserved<GlobalsAAWrapperPass>(); 3802 AU.setPreservesCFG(); 3803 } 3804 }; 3805 } // end anonymous namespace 3806 3807 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3808 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3809 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3810 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3811 auto *AA = &AM.getResult<AAManager>(F); 3812 auto *LI = &AM.getResult<LoopAnalysis>(F); 3813 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3814 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3815 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3816 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3817 3818 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 3819 if (!Changed) 3820 return PreservedAnalyses::all(); 3821 3822 PreservedAnalyses PA; 3823 PA.preserveSet<CFGAnalyses>(); 3824 PA.preserve<AAManager>(); 3825 PA.preserve<GlobalsAA>(); 3826 return PA; 3827 } 3828 3829 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3830 TargetTransformInfo *TTI_, 3831 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3832 LoopInfo *LI_, DominatorTree *DT_, 3833 AssumptionCache *AC_, DemandedBits *DB_, 3834 OptimizationRemarkEmitter *ORE_) { 3835 SE = SE_; 3836 TTI = TTI_; 3837 TLI = TLI_; 3838 AA = AA_; 3839 LI = LI_; 3840 DT = DT_; 3841 AC = AC_; 3842 DB = DB_; 3843 DL = &F.getParent()->getDataLayout(); 3844 3845 Stores.clear(); 3846 GEPs.clear(); 3847 bool Changed = false; 3848 3849 // If the target claims to have no vector registers don't attempt 3850 // vectorization. 3851 if (!TTI->getNumberOfRegisters(true)) 3852 return false; 3853 3854 // Don't vectorize when the attribute NoImplicitFloat is used. 3855 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3856 return false; 3857 3858 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3859 3860 // Use the bottom up slp vectorizer to construct chains that start with 3861 // store instructions. 3862 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 3863 3864 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3865 // delete instructions. 3866 3867 // Scan the blocks in the function in post order. 3868 for (auto BB : post_order(&F.getEntryBlock())) { 3869 collectSeedInstructions(BB); 3870 3871 // Vectorize trees that end at stores. 3872 if (!Stores.empty()) { 3873 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3874 << " underlying objects.\n"); 3875 Changed |= vectorizeStoreChains(R); 3876 } 3877 3878 // Vectorize trees that end at reductions. 3879 Changed |= vectorizeChainsInBlock(BB, R); 3880 3881 // Vectorize the index computations of getelementptr instructions. This 3882 // is primarily intended to catch gather-like idioms ending at 3883 // non-consecutive loads. 3884 if (!GEPs.empty()) { 3885 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3886 << " underlying objects.\n"); 3887 Changed |= vectorizeGEPIndices(BB, R); 3888 } 3889 } 3890 3891 if (Changed) { 3892 R.optimizeGatherSequence(); 3893 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3894 DEBUG(verifyFunction(F)); 3895 } 3896 return Changed; 3897 } 3898 3899 /// \brief Check that the Values in the slice in VL array are still existent in 3900 /// the WeakTrackingVH array. 3901 /// Vectorization of part of the VL array may cause later values in the VL array 3902 /// to become invalid. We track when this has happened in the WeakTrackingVH 3903 /// array. 3904 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 3905 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 3906 unsigned SliceSize) { 3907 VL = VL.slice(SliceBegin, SliceSize); 3908 VH = VH.slice(SliceBegin, SliceSize); 3909 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3910 } 3911 3912 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3913 unsigned VecRegSize) { 3914 unsigned ChainLen = Chain.size(); 3915 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3916 << "\n"); 3917 unsigned Sz = R.getVectorElementSize(Chain[0]); 3918 unsigned VF = VecRegSize / Sz; 3919 3920 if (!isPowerOf2_32(Sz) || VF < 2) 3921 return false; 3922 3923 // Keep track of values that were deleted by vectorizing in the loop below. 3924 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 3925 3926 bool Changed = false; 3927 // Look for profitable vectorizable trees at all offsets, starting at zero. 3928 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3929 if (i + VF > e) 3930 break; 3931 3932 // Check that a previous iteration of this loop did not delete the Value. 3933 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3934 continue; 3935 3936 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3937 << "\n"); 3938 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3939 3940 R.buildTree(Operands); 3941 if (R.isTreeTinyAndNotFullyVectorizable()) 3942 continue; 3943 3944 R.computeMinimumValueSizes(); 3945 3946 int Cost = R.getTreeCost(); 3947 3948 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3949 if (Cost < -SLPCostThreshold) { 3950 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3951 using namespace ore; 3952 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 3953 cast<StoreInst>(Chain[i])) 3954 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 3955 << " and with tree size " 3956 << NV("TreeSize", R.getTreeSize())); 3957 3958 R.vectorizeTree(); 3959 3960 // Move to the next bundle. 3961 i += VF - 1; 3962 Changed = true; 3963 } 3964 } 3965 3966 return Changed; 3967 } 3968 3969 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3970 BoUpSLP &R) { 3971 SetVector<StoreInst *> Heads, Tails; 3972 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3973 3974 // We may run into multiple chains that merge into a single chain. We mark the 3975 // stores that we vectorized so that we don't visit the same store twice. 3976 BoUpSLP::ValueSet VectorizedStores; 3977 bool Changed = false; 3978 3979 // Do a quadratic search on all of the given stores and find 3980 // all of the pairs of stores that follow each other. 3981 SmallVector<unsigned, 16> IndexQueue; 3982 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3983 IndexQueue.clear(); 3984 // If a store has multiple consecutive store candidates, search Stores 3985 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3986 // This is because usually pairing with immediate succeeding or preceding 3987 // candidate create the best chance to find slp vectorization opportunity. 3988 unsigned j = 0; 3989 for (j = i + 1; j < e; ++j) 3990 IndexQueue.push_back(j); 3991 for (j = i; j > 0; --j) 3992 IndexQueue.push_back(j - 1); 3993 3994 for (auto &k : IndexQueue) { 3995 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3996 Tails.insert(Stores[k]); 3997 Heads.insert(Stores[i]); 3998 ConsecutiveChain[Stores[i]] = Stores[k]; 3999 break; 4000 } 4001 } 4002 } 4003 4004 // For stores that start but don't end a link in the chain: 4005 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 4006 it != e; ++it) { 4007 if (Tails.count(*it)) 4008 continue; 4009 4010 // We found a store instr that starts a chain. Now follow the chain and try 4011 // to vectorize it. 4012 BoUpSLP::ValueList Operands; 4013 StoreInst *I = *it; 4014 // Collect the chain into a list. 4015 while (Tails.count(I) || Heads.count(I)) { 4016 if (VectorizedStores.count(I)) 4017 break; 4018 Operands.push_back(I); 4019 // Move to the next value in the chain. 4020 I = ConsecutiveChain[I]; 4021 } 4022 4023 // FIXME: Is division-by-2 the correct step? Should we assert that the 4024 // register size is a power-of-2? 4025 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4026 Size /= 2) { 4027 if (vectorizeStoreChain(Operands, R, Size)) { 4028 // Mark the vectorized stores so that we don't vectorize them again. 4029 VectorizedStores.insert(Operands.begin(), Operands.end()); 4030 Changed = true; 4031 break; 4032 } 4033 } 4034 } 4035 4036 return Changed; 4037 } 4038 4039 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4040 4041 // Initialize the collections. We will make a single pass over the block. 4042 Stores.clear(); 4043 GEPs.clear(); 4044 4045 // Visit the store and getelementptr instructions in BB and organize them in 4046 // Stores and GEPs according to the underlying objects of their pointer 4047 // operands. 4048 for (Instruction &I : *BB) { 4049 4050 // Ignore store instructions that are volatile or have a pointer operand 4051 // that doesn't point to a scalar type. 4052 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4053 if (!SI->isSimple()) 4054 continue; 4055 if (!isValidElementType(SI->getValueOperand()->getType())) 4056 continue; 4057 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4058 } 4059 4060 // Ignore getelementptr instructions that have more than one index, a 4061 // constant index, or a pointer operand that doesn't point to a scalar 4062 // type. 4063 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4064 auto Idx = GEP->idx_begin()->get(); 4065 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4066 continue; 4067 if (!isValidElementType(Idx->getType())) 4068 continue; 4069 if (GEP->getType()->isVectorTy()) 4070 continue; 4071 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4072 } 4073 } 4074 } 4075 4076 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4077 if (!A || !B) 4078 return false; 4079 Value *VL[] = { A, B }; 4080 return tryToVectorizeList(VL, R, None, true); 4081 } 4082 4083 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4084 ArrayRef<Value *> BuildVector, 4085 bool AllowReorder) { 4086 if (VL.size() < 2) 4087 return false; 4088 4089 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4090 << ".\n"); 4091 4092 // Check that all of the parts are scalar instructions of the same type. 4093 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4094 if (!I0) 4095 return false; 4096 4097 unsigned Opcode0 = I0->getOpcode(); 4098 4099 unsigned Sz = R.getVectorElementSize(I0); 4100 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4101 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4102 if (MaxVF < 2) 4103 return false; 4104 4105 for (Value *V : VL) { 4106 Type *Ty = V->getType(); 4107 if (!isValidElementType(Ty)) 4108 return false; 4109 Instruction *Inst = dyn_cast<Instruction>(V); 4110 if (!Inst || Inst->getOpcode() != Opcode0) 4111 return false; 4112 } 4113 4114 bool Changed = false; 4115 4116 // Keep track of values that were deleted by vectorizing in the loop below. 4117 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4118 4119 unsigned NextInst = 0, MaxInst = VL.size(); 4120 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4121 VF /= 2) { 4122 // No actual vectorization should happen, if number of parts is the same as 4123 // provided vectorization factor (i.e. the scalar type is used for vector 4124 // code during codegen). 4125 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4126 if (TTI->getNumberOfParts(VecTy) == VF) 4127 continue; 4128 for (unsigned I = NextInst; I < MaxInst; ++I) { 4129 unsigned OpsWidth = 0; 4130 4131 if (I + VF > MaxInst) 4132 OpsWidth = MaxInst - I; 4133 else 4134 OpsWidth = VF; 4135 4136 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4137 break; 4138 4139 // Check that a previous iteration of this loop did not delete the Value. 4140 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4141 continue; 4142 4143 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4144 << "\n"); 4145 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4146 4147 ArrayRef<Value *> BuildVectorSlice; 4148 if (!BuildVector.empty()) 4149 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4150 4151 R.buildTree(Ops, BuildVectorSlice); 4152 // TODO: check if we can allow reordering for more cases. 4153 if (AllowReorder && R.shouldReorder()) { 4154 // Conceptually, there is nothing actually preventing us from trying to 4155 // reorder a larger list. In fact, we do exactly this when vectorizing 4156 // reductions. However, at this point, we only expect to get here when 4157 // there are exactly two operations. 4158 assert(Ops.size() == 2); 4159 assert(BuildVectorSlice.empty()); 4160 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4161 R.buildTree(ReorderedOps, None); 4162 } 4163 if (R.isTreeTinyAndNotFullyVectorizable()) 4164 continue; 4165 4166 R.computeMinimumValueSizes(); 4167 int Cost = R.getTreeCost(); 4168 4169 if (Cost < -SLPCostThreshold) { 4170 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4171 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4172 cast<Instruction>(Ops[0])) 4173 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4174 << " and with tree size " 4175 << ore::NV("TreeSize", R.getTreeSize())); 4176 4177 Value *VectorizedRoot = R.vectorizeTree(); 4178 4179 // Reconstruct the build vector by extracting the vectorized root. This 4180 // way we handle the case where some elements of the vector are 4181 // undefined. 4182 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4183 if (!BuildVectorSlice.empty()) { 4184 // The insert point is the last build vector instruction. The 4185 // vectorized root will precede it. This guarantees that we get an 4186 // instruction. The vectorized tree could have been constant folded. 4187 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4188 unsigned VecIdx = 0; 4189 for (auto &V : BuildVectorSlice) { 4190 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4191 ++BasicBlock::iterator(InsertAfter)); 4192 Instruction *I = cast<Instruction>(V); 4193 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4194 Instruction *Extract = 4195 cast<Instruction>(Builder.CreateExtractElement( 4196 VectorizedRoot, Builder.getInt32(VecIdx++))); 4197 I->setOperand(1, Extract); 4198 I->removeFromParent(); 4199 I->insertAfter(Extract); 4200 InsertAfter = I; 4201 } 4202 } 4203 // Move to the next bundle. 4204 I += VF - 1; 4205 NextInst = I + 1; 4206 Changed = true; 4207 } 4208 } 4209 } 4210 4211 return Changed; 4212 } 4213 4214 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4215 if (!V) 4216 return false; 4217 4218 Value *P = V->getParent(); 4219 4220 // Vectorize in current basic block only. 4221 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0)); 4222 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1)); 4223 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4224 return false; 4225 4226 // Try to vectorize V. 4227 if (tryToVectorizePair(Op0, Op1, R)) 4228 return true; 4229 4230 auto *A = dyn_cast<BinaryOperator>(Op0); 4231 auto *B = dyn_cast<BinaryOperator>(Op1); 4232 // Try to skip B. 4233 if (B && B->hasOneUse()) { 4234 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4235 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4236 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4237 return true; 4238 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4239 return true; 4240 } 4241 4242 // Try to skip A. 4243 if (A && A->hasOneUse()) { 4244 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4245 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4246 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4247 return true; 4248 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4249 return true; 4250 } 4251 return false; 4252 } 4253 4254 /// \brief Generate a shuffle mask to be used in a reduction tree. 4255 /// 4256 /// \param VecLen The length of the vector to be reduced. 4257 /// \param NumEltsToRdx The number of elements that should be reduced in the 4258 /// vector. 4259 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4260 /// reduction. A pairwise reduction will generate a mask of 4261 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4262 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4263 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4264 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4265 bool IsPairwise, bool IsLeft, 4266 IRBuilder<> &Builder) { 4267 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4268 4269 SmallVector<Constant *, 32> ShuffleMask( 4270 VecLen, UndefValue::get(Builder.getInt32Ty())); 4271 4272 if (IsPairwise) 4273 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4274 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4275 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4276 else 4277 // Move the upper half of the vector to the lower half. 4278 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4279 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4280 4281 return ConstantVector::get(ShuffleMask); 4282 } 4283 4284 namespace { 4285 /// Model horizontal reductions. 4286 /// 4287 /// A horizontal reduction is a tree of reduction operations (currently add and 4288 /// fadd) that has operations that can be put into a vector as its leaf. 4289 /// For example, this tree: 4290 /// 4291 /// mul mul mul mul 4292 /// \ / \ / 4293 /// + + 4294 /// \ / 4295 /// + 4296 /// This tree has "mul" as its reduced values and "+" as its reduction 4297 /// operations. A reduction might be feeding into a store or a binary operation 4298 /// feeding a phi. 4299 /// ... 4300 /// \ / 4301 /// + 4302 /// | 4303 /// phi += 4304 /// 4305 /// Or: 4306 /// ... 4307 /// \ / 4308 /// + 4309 /// | 4310 /// *p = 4311 /// 4312 class HorizontalReduction { 4313 SmallVector<Value *, 16> ReductionOps; 4314 SmallVector<Value *, 32> ReducedVals; 4315 // Use map vector to make stable output. 4316 MapVector<Instruction *, Value *> ExtraArgs; 4317 4318 BinaryOperator *ReductionRoot = nullptr; 4319 4320 /// The opcode of the reduction. 4321 Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd; 4322 /// The opcode of the values we perform a reduction on. 4323 unsigned ReducedValueOpcode = 0; 4324 /// Should we model this reduction as a pairwise reduction tree or a tree that 4325 /// splits the vector in halves and adds those halves. 4326 bool IsPairwiseReduction = false; 4327 4328 /// Checks if the ParentStackElem.first should be marked as a reduction 4329 /// operation with an extra argument or as extra argument itself. 4330 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 4331 Value *ExtraArg) { 4332 if (ExtraArgs.count(ParentStackElem.first)) { 4333 ExtraArgs[ParentStackElem.first] = nullptr; 4334 // We ran into something like: 4335 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 4336 // The whole ParentStackElem.first should be considered as an extra value 4337 // in this case. 4338 // Do not perform analysis of remaining operands of ParentStackElem.first 4339 // instruction, this whole instruction is an extra argument. 4340 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 4341 } else { 4342 // We ran into something like: 4343 // ParentStackElem.first += ... + ExtraArg + ... 4344 ExtraArgs[ParentStackElem.first] = ExtraArg; 4345 } 4346 } 4347 4348 public: 4349 HorizontalReduction() = default; 4350 4351 /// \brief Try to find a reduction tree. 4352 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4353 assert((!Phi || is_contained(Phi->operands(), B)) && 4354 "Thi phi needs to use the binary operator"); 4355 4356 // We could have a initial reductions that is not an add. 4357 // r *= v1 + v2 + v3 + v4 4358 // In such a case start looking for a tree rooted in the first '+'. 4359 if (Phi) { 4360 if (B->getOperand(0) == Phi) { 4361 Phi = nullptr; 4362 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4363 } else if (B->getOperand(1) == Phi) { 4364 Phi = nullptr; 4365 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4366 } 4367 } 4368 4369 if (!B) 4370 return false; 4371 4372 Type *Ty = B->getType(); 4373 if (!isValidElementType(Ty)) 4374 return false; 4375 4376 ReductionOpcode = B->getOpcode(); 4377 ReducedValueOpcode = 0; 4378 ReductionRoot = B; 4379 4380 // We currently only support adds. 4381 if ((ReductionOpcode != Instruction::Add && 4382 ReductionOpcode != Instruction::FAdd) || 4383 !B->isAssociative()) 4384 return false; 4385 4386 // Post order traverse the reduction tree starting at B. We only handle true 4387 // trees containing only binary operators or selects. 4388 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4389 Stack.push_back(std::make_pair(B, 0)); 4390 while (!Stack.empty()) { 4391 Instruction *TreeN = Stack.back().first; 4392 unsigned EdgeToVist = Stack.back().second++; 4393 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4394 4395 // Postorder vist. 4396 if (EdgeToVist == 2 || IsReducedValue) { 4397 if (IsReducedValue) 4398 ReducedVals.push_back(TreeN); 4399 else { 4400 auto I = ExtraArgs.find(TreeN); 4401 if (I != ExtraArgs.end() && !I->second) { 4402 // Check if TreeN is an extra argument of its parent operation. 4403 if (Stack.size() <= 1) { 4404 // TreeN can't be an extra argument as it is a root reduction 4405 // operation. 4406 return false; 4407 } 4408 // Yes, TreeN is an extra argument, do not add it to a list of 4409 // reduction operations. 4410 // Stack[Stack.size() - 2] always points to the parent operation. 4411 markExtraArg(Stack[Stack.size() - 2], TreeN); 4412 ExtraArgs.erase(TreeN); 4413 } else 4414 ReductionOps.push_back(TreeN); 4415 } 4416 // Retract. 4417 Stack.pop_back(); 4418 continue; 4419 } 4420 4421 // Visit left or right. 4422 Value *NextV = TreeN->getOperand(EdgeToVist); 4423 if (NextV != Phi) { 4424 auto *I = dyn_cast<Instruction>(NextV); 4425 // Continue analysis if the next operand is a reduction operation or 4426 // (possibly) a reduced value. If the reduced value opcode is not set, 4427 // the first met operation != reduction operation is considered as the 4428 // reduced value class. 4429 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4430 I->getOpcode() == ReductionOpcode)) { 4431 // Only handle trees in the current basic block. 4432 if (I->getParent() != B->getParent()) { 4433 // I is an extra argument for TreeN (its parent operation). 4434 markExtraArg(Stack.back(), I); 4435 continue; 4436 } 4437 4438 // Each tree node needs to have one user except for the ultimate 4439 // reduction. 4440 if (!I->hasOneUse() && I != B) { 4441 // I is an extra argument for TreeN (its parent operation). 4442 markExtraArg(Stack.back(), I); 4443 continue; 4444 } 4445 4446 if (I->getOpcode() == ReductionOpcode) { 4447 // We need to be able to reassociate the reduction operations. 4448 if (!I->isAssociative()) { 4449 // I is an extra argument for TreeN (its parent operation). 4450 markExtraArg(Stack.back(), I); 4451 continue; 4452 } 4453 } else if (ReducedValueOpcode && 4454 ReducedValueOpcode != I->getOpcode()) { 4455 // Make sure that the opcodes of the operations that we are going to 4456 // reduce match. 4457 // I is an extra argument for TreeN (its parent operation). 4458 markExtraArg(Stack.back(), I); 4459 continue; 4460 } else if (!ReducedValueOpcode) 4461 ReducedValueOpcode = I->getOpcode(); 4462 4463 Stack.push_back(std::make_pair(I, 0)); 4464 continue; 4465 } 4466 } 4467 // NextV is an extra argument for TreeN (its parent operation). 4468 markExtraArg(Stack.back(), NextV); 4469 } 4470 return true; 4471 } 4472 4473 /// \brief Attempt to vectorize the tree found by 4474 /// matchAssociativeReduction. 4475 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4476 if (ReducedVals.empty()) 4477 return false; 4478 4479 // If there is a sufficient number of reduction values, reduce 4480 // to a nearby power-of-2. Can safely generate oversized 4481 // vectors and rely on the backend to split them to legal sizes. 4482 unsigned NumReducedVals = ReducedVals.size(); 4483 if (NumReducedVals < 4) 4484 return false; 4485 4486 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4487 4488 Value *VectorizedTree = nullptr; 4489 IRBuilder<> Builder(ReductionRoot); 4490 FastMathFlags Unsafe; 4491 Unsafe.setUnsafeAlgebra(); 4492 Builder.setFastMathFlags(Unsafe); 4493 unsigned i = 0; 4494 4495 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 4496 // The same extra argument may be used several time, so log each attempt 4497 // to use it. 4498 for (auto &Pair : ExtraArgs) 4499 ExternallyUsedValues[Pair.second].push_back(Pair.first); 4500 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4501 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4502 V.buildTree(VL, ExternallyUsedValues, ReductionOps); 4503 if (V.shouldReorder()) { 4504 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4505 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps); 4506 } 4507 if (V.isTreeTinyAndNotFullyVectorizable()) 4508 break; 4509 4510 V.computeMinimumValueSizes(); 4511 4512 // Estimate cost. 4513 int Cost = 4514 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4515 if (Cost >= -SLPCostThreshold) 4516 break; 4517 4518 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4519 << ". (HorRdx)\n"); 4520 auto *I0 = cast<Instruction>(VL[0]); 4521 V.getORE()->emit( 4522 OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0) 4523 << "Vectorized horizontal reduction with cost " 4524 << ore::NV("Cost", Cost) << " and with tree size " 4525 << ore::NV("TreeSize", V.getTreeSize())); 4526 4527 // Vectorize a tree. 4528 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4529 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 4530 4531 // Emit a reduction. 4532 Value *ReducedSubTree = 4533 emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI); 4534 if (VectorizedTree) { 4535 Builder.SetCurrentDebugLocation(Loc); 4536 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4537 ReducedSubTree, "bin.rdx"); 4538 propagateIRFlags(VectorizedTree, ReductionOps); 4539 } else 4540 VectorizedTree = ReducedSubTree; 4541 i += ReduxWidth; 4542 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4543 } 4544 4545 if (VectorizedTree) { 4546 // Finish the reduction. 4547 for (; i < NumReducedVals; ++i) { 4548 auto *I = cast<Instruction>(ReducedVals[i]); 4549 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4550 VectorizedTree = 4551 Builder.CreateBinOp(ReductionOpcode, VectorizedTree, I); 4552 propagateIRFlags(VectorizedTree, ReductionOps); 4553 } 4554 for (auto &Pair : ExternallyUsedValues) { 4555 assert(!Pair.second.empty() && 4556 "At least one DebugLoc must be inserted"); 4557 // Add each externally used value to the final reduction. 4558 for (auto *I : Pair.second) { 4559 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4560 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4561 Pair.first, "bin.extra"); 4562 propagateIRFlags(VectorizedTree, I); 4563 } 4564 } 4565 // Update users. 4566 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4567 } 4568 return VectorizedTree != nullptr; 4569 } 4570 4571 unsigned numReductionValues() const { 4572 return ReducedVals.size(); 4573 } 4574 4575 private: 4576 /// \brief Calculate the cost of a reduction. 4577 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 4578 unsigned ReduxWidth) { 4579 Type *ScalarTy = FirstReducedVal->getType(); 4580 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4581 4582 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4583 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4584 4585 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4586 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4587 4588 int ScalarReduxCost = 4589 (ReduxWidth - 1) * 4590 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4591 4592 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4593 << " for reduction that starts with " << *FirstReducedVal 4594 << " (It is a " 4595 << (IsPairwiseReduction ? "pairwise" : "splitting") 4596 << " reduction)\n"); 4597 4598 return VecReduxCost - ScalarReduxCost; 4599 } 4600 4601 /// \brief Emit a horizontal reduction of the vectorized value. 4602 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 4603 unsigned ReduxWidth, ArrayRef<Value *> RedOps, 4604 const TargetTransformInfo *TTI) { 4605 assert(VectorizedValue && "Need to have a vectorized tree node"); 4606 assert(isPowerOf2_32(ReduxWidth) && 4607 "We only handle power-of-two reductions for now"); 4608 4609 if (!IsPairwiseReduction) 4610 return createSimpleTargetReduction( 4611 Builder, TTI, ReductionOpcode, VectorizedValue, 4612 TargetTransformInfo::ReductionFlags(), RedOps); 4613 4614 Value *TmpVec = VectorizedValue; 4615 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4616 Value *LeftMask = 4617 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4618 Value *RightMask = 4619 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4620 4621 Value *LeftShuf = Builder.CreateShuffleVector( 4622 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4623 Value *RightShuf = Builder.CreateShuffleVector( 4624 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4625 "rdx.shuf.r"); 4626 TmpVec = 4627 Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, "bin.rdx"); 4628 propagateIRFlags(TmpVec, RedOps); 4629 } 4630 4631 // The result is in the first element of the vector. 4632 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4633 } 4634 }; 4635 } // end anonymous namespace 4636 4637 /// \brief Recognize construction of vectors like 4638 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4639 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4640 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4641 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4642 /// 4643 /// Returns true if it matches 4644 /// 4645 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4646 SmallVectorImpl<Value *> &BuildVector, 4647 SmallVectorImpl<Value *> &BuildVectorOpds) { 4648 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4649 return false; 4650 4651 InsertElementInst *IE = FirstInsertElem; 4652 while (true) { 4653 BuildVector.push_back(IE); 4654 BuildVectorOpds.push_back(IE->getOperand(1)); 4655 4656 if (IE->use_empty()) 4657 return false; 4658 4659 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4660 if (!NextUse) 4661 return true; 4662 4663 // If this isn't the final use, make sure the next insertelement is the only 4664 // use. It's OK if the final constructed vector is used multiple times 4665 if (!IE->hasOneUse()) 4666 return false; 4667 4668 IE = NextUse; 4669 } 4670 4671 return false; 4672 } 4673 4674 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4675 /// 4676 /// \return true if it matches. 4677 static bool findBuildAggregate(InsertValueInst *IV, 4678 SmallVectorImpl<Value *> &BuildVector, 4679 SmallVectorImpl<Value *> &BuildVectorOpds) { 4680 Value *V; 4681 do { 4682 BuildVector.push_back(IV); 4683 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4684 V = IV->getAggregateOperand(); 4685 if (isa<UndefValue>(V)) 4686 break; 4687 IV = dyn_cast<InsertValueInst>(V); 4688 if (!IV || !IV->hasOneUse()) 4689 return false; 4690 } while (true); 4691 std::reverse(BuildVector.begin(), BuildVector.end()); 4692 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 4693 return true; 4694 } 4695 4696 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4697 return V->getType() < V2->getType(); 4698 } 4699 4700 /// \brief Try and get a reduction value from a phi node. 4701 /// 4702 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4703 /// if they come from either \p ParentBB or a containing loop latch. 4704 /// 4705 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4706 /// if not possible. 4707 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4708 BasicBlock *ParentBB, LoopInfo *LI) { 4709 // There are situations where the reduction value is not dominated by the 4710 // reduction phi. Vectorizing such cases has been reported to cause 4711 // miscompiles. See PR25787. 4712 auto DominatedReduxValue = [&](Value *R) { 4713 return ( 4714 dyn_cast<Instruction>(R) && 4715 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4716 }; 4717 4718 Value *Rdx = nullptr; 4719 4720 // Return the incoming value if it comes from the same BB as the phi node. 4721 if (P->getIncomingBlock(0) == ParentBB) { 4722 Rdx = P->getIncomingValue(0); 4723 } else if (P->getIncomingBlock(1) == ParentBB) { 4724 Rdx = P->getIncomingValue(1); 4725 } 4726 4727 if (Rdx && DominatedReduxValue(Rdx)) 4728 return Rdx; 4729 4730 // Otherwise, check whether we have a loop latch to look at. 4731 Loop *BBL = LI->getLoopFor(ParentBB); 4732 if (!BBL) 4733 return nullptr; 4734 BasicBlock *BBLatch = BBL->getLoopLatch(); 4735 if (!BBLatch) 4736 return nullptr; 4737 4738 // There is a loop latch, return the incoming value if it comes from 4739 // that. This reduction pattern occasionally turns up. 4740 if (P->getIncomingBlock(0) == BBLatch) { 4741 Rdx = P->getIncomingValue(0); 4742 } else if (P->getIncomingBlock(1) == BBLatch) { 4743 Rdx = P->getIncomingValue(1); 4744 } 4745 4746 if (Rdx && DominatedReduxValue(Rdx)) 4747 return Rdx; 4748 4749 return nullptr; 4750 } 4751 4752 namespace { 4753 /// Tracks instructons and its children. 4754 class WeakTrackingVHWithLevel final : public CallbackVH { 4755 /// Operand index of the instruction currently beeing analized. 4756 unsigned Level = 0; 4757 /// Is this the instruction that should be vectorized, or are we now 4758 /// processing children (i.e. operands of this instruction) for potential 4759 /// vectorization? 4760 bool IsInitial = true; 4761 4762 public: 4763 explicit WeakTrackingVHWithLevel() = default; 4764 WeakTrackingVHWithLevel(Value *V) : CallbackVH(V){}; 4765 /// Restart children analysis each time it is repaced by the new instruction. 4766 void allUsesReplacedWith(Value *New) override { 4767 setValPtr(New); 4768 Level = 0; 4769 IsInitial = true; 4770 } 4771 /// Check if the instruction was not deleted during vectorization. 4772 bool isValid() const { return !getValPtr(); } 4773 /// Is the istruction itself must be vectorized? 4774 bool isInitial() const { return IsInitial; } 4775 /// Try to vectorize children. 4776 void clearInitial() { IsInitial = false; } 4777 /// Are all children processed already? 4778 bool isFinal() const { 4779 assert(getValPtr() && 4780 (isa<Instruction>(getValPtr()) && 4781 cast<Instruction>(getValPtr())->getNumOperands() >= Level)); 4782 return getValPtr() && 4783 cast<Instruction>(getValPtr())->getNumOperands() == Level; 4784 } 4785 /// Get next child operation. 4786 Value *nextOperand() { 4787 assert(getValPtr() && isa<Instruction>(getValPtr()) && 4788 cast<Instruction>(getValPtr())->getNumOperands() > Level); 4789 return cast<Instruction>(getValPtr())->getOperand(Level++); 4790 } 4791 virtual ~WeakTrackingVHWithLevel() = default; 4792 }; 4793 } // namespace 4794 4795 /// \brief Attempt to reduce a horizontal reduction. 4796 /// If it is legal to match a horizontal reduction feeding 4797 /// the phi node P with reduction operators Root in a basic block BB, then check 4798 /// if it can be done. 4799 /// \returns true if a horizontal reduction was matched and reduced. 4800 /// \returns false if a horizontal reduction was not matched. 4801 static bool canBeVectorized( 4802 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 4803 TargetTransformInfo *TTI, 4804 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) { 4805 if (!ShouldVectorizeHor) 4806 return false; 4807 4808 if (!Root) 4809 return false; 4810 4811 if (Root->getParent() != BB) 4812 return false; 4813 SmallVector<WeakTrackingVHWithLevel, 8> Stack(1, Root); 4814 SmallSet<Value *, 8> VisitedInstrs; 4815 bool Res = false; 4816 while (!Stack.empty()) { 4817 Value *V = Stack.back(); 4818 if (!V) { 4819 Stack.pop_back(); 4820 continue; 4821 } 4822 auto *Inst = dyn_cast<Instruction>(V); 4823 if (!Inst || isa<PHINode>(Inst)) { 4824 Stack.pop_back(); 4825 continue; 4826 } 4827 if (Stack.back().isInitial()) { 4828 Stack.back().clearInitial(); 4829 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 4830 HorizontalReduction HorRdx; 4831 if (HorRdx.matchAssociativeReduction(P, BI)) { 4832 if (HorRdx.tryToReduce(R, TTI)) { 4833 Res = true; 4834 P = nullptr; 4835 continue; 4836 } 4837 } 4838 if (P) { 4839 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 4840 if (Inst == P) 4841 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 4842 if (!Inst) { 4843 P = nullptr; 4844 continue; 4845 } 4846 } 4847 } 4848 P = nullptr; 4849 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4850 Res = true; 4851 continue; 4852 } 4853 } 4854 if (Stack.back().isFinal()) { 4855 Stack.pop_back(); 4856 continue; 4857 } 4858 4859 if (auto *NextV = dyn_cast<Instruction>(Stack.back().nextOperand())) 4860 if (NextV->getParent() == BB && VisitedInstrs.insert(NextV).second && 4861 Stack.size() < RecursionMaxDepth) 4862 Stack.push_back(NextV); 4863 } 4864 return Res; 4865 } 4866 4867 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 4868 BasicBlock *BB, BoUpSLP &R, 4869 TargetTransformInfo *TTI) { 4870 if (!V) 4871 return false; 4872 auto *I = dyn_cast<Instruction>(V); 4873 if (!I) 4874 return false; 4875 4876 if (!isa<BinaryOperator>(I)) 4877 P = nullptr; 4878 // Try to match and vectorize a horizontal reduction. 4879 return canBeVectorized(P, I, BB, R, TTI, 4880 [this](BinaryOperator *BI, BoUpSLP &R) -> bool { 4881 return tryToVectorize(BI, R); 4882 }); 4883 } 4884 4885 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4886 bool Changed = false; 4887 SmallVector<Value *, 4> Incoming; 4888 SmallSet<Value *, 16> VisitedInstrs; 4889 4890 bool HaveVectorizedPhiNodes = true; 4891 while (HaveVectorizedPhiNodes) { 4892 HaveVectorizedPhiNodes = false; 4893 4894 // Collect the incoming values from the PHIs. 4895 Incoming.clear(); 4896 for (Instruction &I : *BB) { 4897 PHINode *P = dyn_cast<PHINode>(&I); 4898 if (!P) 4899 break; 4900 4901 if (!VisitedInstrs.count(P)) 4902 Incoming.push_back(P); 4903 } 4904 4905 // Sort by type. 4906 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4907 4908 // Try to vectorize elements base on their type. 4909 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4910 E = Incoming.end(); 4911 IncIt != E;) { 4912 4913 // Look for the next elements with the same type. 4914 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4915 while (SameTypeIt != E && 4916 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4917 VisitedInstrs.insert(*SameTypeIt); 4918 ++SameTypeIt; 4919 } 4920 4921 // Try to vectorize them. 4922 unsigned NumElts = (SameTypeIt - IncIt); 4923 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4924 // The order in which the phi nodes appear in the program does not matter. 4925 // So allow tryToVectorizeList to reorder them if it is beneficial. This 4926 // is done when there are exactly two elements since tryToVectorizeList 4927 // asserts that there are only two values when AllowReorder is true. 4928 bool AllowReorder = NumElts == 2; 4929 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 4930 None, AllowReorder)) { 4931 // Success start over because instructions might have been changed. 4932 HaveVectorizedPhiNodes = true; 4933 Changed = true; 4934 break; 4935 } 4936 4937 // Start over at the next instruction of a different type (or the end). 4938 IncIt = SameTypeIt; 4939 } 4940 } 4941 4942 VisitedInstrs.clear(); 4943 4944 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4945 // We may go through BB multiple times so skip the one we have checked. 4946 if (!VisitedInstrs.insert(&*it).second) 4947 continue; 4948 4949 if (isa<DbgInfoIntrinsic>(it)) 4950 continue; 4951 4952 // Try to vectorize reductions that use PHINodes. 4953 if (PHINode *P = dyn_cast<PHINode>(it)) { 4954 // Check that the PHI is a reduction PHI. 4955 if (P->getNumIncomingValues() != 2) 4956 return Changed; 4957 4958 // Try to match and vectorize a horizontal reduction. 4959 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 4960 TTI)) { 4961 Changed = true; 4962 it = BB->begin(); 4963 e = BB->end(); 4964 continue; 4965 } 4966 continue; 4967 } 4968 4969 if (ShouldStartVectorizeHorAtStore) { 4970 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4971 // Try to match and vectorize a horizontal reduction. 4972 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R, 4973 TTI)) { 4974 Changed = true; 4975 it = BB->begin(); 4976 e = BB->end(); 4977 continue; 4978 } 4979 } 4980 } 4981 4982 // Try to vectorize horizontal reductions feeding into a return. 4983 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) { 4984 if (RI->getNumOperands() != 0) { 4985 // Try to match and vectorize a horizontal reduction. 4986 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) { 4987 Changed = true; 4988 it = BB->begin(); 4989 e = BB->end(); 4990 continue; 4991 } 4992 } 4993 } 4994 4995 // Try to vectorize trees that start at compare instructions. 4996 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4997 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4998 Changed = true; 4999 // We would like to start over since some instructions are deleted 5000 // and the iterator may become invalid value. 5001 it = BB->begin(); 5002 e = BB->end(); 5003 continue; 5004 } 5005 5006 for (int I = 0; I < 2; ++I) { 5007 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) { 5008 Changed = true; 5009 // We would like to start over since some instructions are deleted 5010 // and the iterator may become invalid value. 5011 it = BB->begin(); 5012 e = BB->end(); 5013 break; 5014 } 5015 } 5016 continue; 5017 } 5018 5019 // Try to vectorize trees that start at insertelement instructions. 5020 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 5021 SmallVector<Value *, 16> BuildVector; 5022 SmallVector<Value *, 16> BuildVectorOpds; 5023 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 5024 continue; 5025 5026 // Vectorize starting with the build vector operands ignoring the 5027 // BuildVector instructions for the purpose of scheduling and user 5028 // extraction. 5029 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 5030 Changed = true; 5031 it = BB->begin(); 5032 e = BB->end(); 5033 } 5034 5035 continue; 5036 } 5037 5038 // Try to vectorize trees that start at insertvalue instructions feeding into 5039 // a store. 5040 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 5041 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 5042 const DataLayout &DL = BB->getModule()->getDataLayout(); 5043 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 5044 SmallVector<Value *, 16> BuildVector; 5045 SmallVector<Value *, 16> BuildVectorOpds; 5046 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 5047 continue; 5048 5049 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 5050 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 5051 Changed = true; 5052 it = BB->begin(); 5053 e = BB->end(); 5054 } 5055 continue; 5056 } 5057 } 5058 } 5059 } 5060 5061 return Changed; 5062 } 5063 5064 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5065 auto Changed = false; 5066 for (auto &Entry : GEPs) { 5067 5068 // If the getelementptr list has fewer than two elements, there's nothing 5069 // to do. 5070 if (Entry.second.size() < 2) 5071 continue; 5072 5073 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5074 << Entry.second.size() << ".\n"); 5075 5076 // We process the getelementptr list in chunks of 16 (like we do for 5077 // stores) to minimize compile-time. 5078 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5079 auto Len = std::min<unsigned>(BE - BI, 16); 5080 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5081 5082 // Initialize a set a candidate getelementptrs. Note that we use a 5083 // SetVector here to preserve program order. If the index computations 5084 // are vectorizable and begin with loads, we want to minimize the chance 5085 // of having to reorder them later. 5086 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5087 5088 // Some of the candidates may have already been vectorized after we 5089 // initially collected them. If so, the WeakTrackingVHs will have 5090 // nullified the 5091 // values, so remove them from the set of candidates. 5092 Candidates.remove(nullptr); 5093 5094 // Remove from the set of candidates all pairs of getelementptrs with 5095 // constant differences. Such getelementptrs are likely not good 5096 // candidates for vectorization in a bottom-up phase since one can be 5097 // computed from the other. We also ensure all candidate getelementptr 5098 // indices are unique. 5099 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5100 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5101 if (!Candidates.count(GEPI)) 5102 continue; 5103 auto *SCEVI = SE->getSCEV(GEPList[I]); 5104 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5105 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5106 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5107 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5108 Candidates.remove(GEPList[I]); 5109 Candidates.remove(GEPList[J]); 5110 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5111 Candidates.remove(GEPList[J]); 5112 } 5113 } 5114 } 5115 5116 // We break out of the above computation as soon as we know there are 5117 // fewer than two candidates remaining. 5118 if (Candidates.size() < 2) 5119 continue; 5120 5121 // Add the single, non-constant index of each candidate to the bundle. We 5122 // ensured the indices met these constraints when we originally collected 5123 // the getelementptrs. 5124 SmallVector<Value *, 16> Bundle(Candidates.size()); 5125 auto BundleIndex = 0u; 5126 for (auto *V : Candidates) { 5127 auto *GEP = cast<GetElementPtrInst>(V); 5128 auto *GEPIdx = GEP->idx_begin()->get(); 5129 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5130 Bundle[BundleIndex++] = GEPIdx; 5131 } 5132 5133 // Try and vectorize the indices. We are currently only interested in 5134 // gather-like cases of the form: 5135 // 5136 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5137 // 5138 // where the loads of "a", the loads of "b", and the subtractions can be 5139 // performed in parallel. It's likely that detecting this pattern in a 5140 // bottom-up phase will be simpler and less costly than building a 5141 // full-blown top-down phase beginning at the consecutive loads. 5142 Changed |= tryToVectorizeList(Bundle, R); 5143 } 5144 } 5145 return Changed; 5146 } 5147 5148 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5149 bool Changed = false; 5150 // Attempt to sort and vectorize each of the store-groups. 5151 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5152 ++it) { 5153 if (it->second.size() < 2) 5154 continue; 5155 5156 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5157 << it->second.size() << ".\n"); 5158 5159 // Process the stores in chunks of 16. 5160 // TODO: The limit of 16 inhibits greater vectorization factors. 5161 // For example, AVX2 supports v32i8. Increasing this limit, however, 5162 // may cause a significant compile-time increase. 5163 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5164 unsigned Len = std::min<unsigned>(CE - CI, 16); 5165 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5166 } 5167 } 5168 return Changed; 5169 } 5170 5171 char SLPVectorizer::ID = 0; 5172 static const char lv_name[] = "SLP Vectorizer"; 5173 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5174 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5175 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5176 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5177 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5178 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5179 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5180 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5181 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5182 5183 namespace llvm { 5184 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 5185 } 5186