1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 static cl::opt<unsigned> MinTreeSize( 90 "slp-min-tree-size", cl::init(3), cl::Hidden, 91 cl::desc("Only vectorize small trees if they are fully vectorizable")); 92 93 // Limit the number of alias checks. The limit is chosen so that 94 // it has no negative effect on the llvm benchmarks. 95 static const unsigned AliasedCheckLimit = 10; 96 97 // Another limit for the alias checks: The maximum distance between load/store 98 // instructions where alias checks are done. 99 // This limit is useful for very large basic blocks. 100 static const unsigned MaxMemDepDistance = 160; 101 102 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 103 /// regions to be handled. 104 static const int MinScheduleRegionSize = 16; 105 106 /// \brief Predicate for the element types that the SLP vectorizer supports. 107 /// 108 /// The most important thing to filter here are types which are invalid in LLVM 109 /// vectors. We also filter target specific types which have absolutely no 110 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 111 /// avoids spending time checking the cost model and realizing that they will 112 /// be inevitably scalarized. 113 static bool isValidElementType(Type *Ty) { 114 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 115 !Ty->isPPC_FP128Ty(); 116 } 117 118 /// \returns the parent basic block if all of the instructions in \p VL 119 /// are in the same block or null otherwise. 120 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return nullptr; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return nullptr; 129 130 if (BB != I->getParent()) 131 return nullptr; 132 } 133 return BB; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (Value *i : VL) 139 if (!isa<Constant>(i)) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 ///\returns Opcode that can be clubbed with \p Op to create an alternate 153 /// sequence which can later be merged as a ShuffleVector instruction. 154 static unsigned getAltOpcode(unsigned Op) { 155 switch (Op) { 156 case Instruction::FAdd: 157 return Instruction::FSub; 158 case Instruction::FSub: 159 return Instruction::FAdd; 160 case Instruction::Add: 161 return Instruction::Sub; 162 case Instruction::Sub: 163 return Instruction::Add; 164 default: 165 return 0; 166 } 167 } 168 169 ///\returns bool representing if Opcode \p Op can be part 170 /// of an alternate sequence which can later be merged as 171 /// a ShuffleVector instruction. 172 static bool canCombineAsAltInst(unsigned Op) { 173 return Op == Instruction::FAdd || Op == Instruction::FSub || 174 Op == Instruction::Sub || Op == Instruction::Add; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 215 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns The type that all of the values in \p VL have or null if there 228 /// are different types. 229 static Type* getSameType(ArrayRef<Value *> VL) { 230 Type *Ty = VL[0]->getType(); 231 for (int i = 1, e = VL.size(); i < e; i++) 232 if (VL[i]->getType() != Ty) 233 return nullptr; 234 235 return Ty; 236 } 237 238 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 239 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 240 assert(Opcode == Instruction::ExtractElement || 241 Opcode == Instruction::ExtractValue); 242 if (Opcode == Instruction::ExtractElement) { 243 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 244 return CI && CI->getZExtValue() == Idx; 245 } else { 246 ExtractValueInst *EI = cast<ExtractValueInst>(E); 247 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 248 } 249 } 250 251 /// \returns True if in-tree use also needs extract. This refers to 252 /// possible scalar operand in vectorized instruction. 253 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 254 TargetLibraryInfo *TLI) { 255 256 unsigned Opcode = UserInst->getOpcode(); 257 switch (Opcode) { 258 case Instruction::Load: { 259 LoadInst *LI = cast<LoadInst>(UserInst); 260 return (LI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Store: { 263 StoreInst *SI = cast<StoreInst>(UserInst); 264 return (SI->getPointerOperand() == Scalar); 265 } 266 case Instruction::Call: { 267 CallInst *CI = cast<CallInst>(UserInst); 268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 269 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 270 return (CI->getArgOperand(1) == Scalar); 271 } 272 } 273 default: 274 return false; 275 } 276 } 277 278 /// \returns the AA location that is being access by the instruction. 279 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return MemoryLocation::get(SI); 282 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 283 return MemoryLocation::get(LI); 284 return MemoryLocation(); 285 } 286 287 /// \returns True if the instruction is not a volatile or atomic load/store. 288 static bool isSimple(Instruction *I) { 289 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 290 return LI->isSimple(); 291 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 292 return SI->isSimple(); 293 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 294 return !MI->isVolatile(); 295 return true; 296 } 297 298 namespace llvm { 299 namespace slpvectorizer { 300 /// Bottom Up SLP Vectorizer. 301 class BoUpSLP { 302 public: 303 typedef SmallVector<Value *, 8> ValueList; 304 typedef SmallVector<Instruction *, 16> InstrList; 305 typedef SmallPtrSet<Value *, 16> ValueSet; 306 typedef SmallVector<StoreInst *, 8> StoreList; 307 308 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 309 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 310 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 311 const DataLayout *DL) 312 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 313 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 314 DL(DL), Builder(Se->getContext()) { 315 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 316 // Use the vector register size specified by the target unless overridden 317 // by a command-line option. 318 // TODO: It would be better to limit the vectorization factor based on 319 // data type rather than just register size. For example, x86 AVX has 320 // 256-bit registers, but it does not support integer operations 321 // at that width (that requires AVX2). 322 if (MaxVectorRegSizeOption.getNumOccurrences()) 323 MaxVecRegSize = MaxVectorRegSizeOption; 324 else 325 MaxVecRegSize = TTI->getRegisterBitWidth(true); 326 327 MinVecRegSize = MinVectorRegSizeOption; 328 } 329 330 /// \brief Vectorize the tree that starts with the elements in \p VL. 331 /// Returns the vectorized root. 332 Value *vectorizeTree(); 333 334 /// \returns the cost incurred by unwanted spills and fills, caused by 335 /// holding live values over call sites. 336 int getSpillCost(); 337 338 /// \returns the vectorization cost of the subtree that starts at \p VL. 339 /// A negative number means that this is profitable. 340 int getTreeCost(); 341 342 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 343 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 344 void buildTree(ArrayRef<Value *> Roots, 345 ArrayRef<Value *> UserIgnoreLst = None); 346 347 /// Clear the internal data structures that are created by 'buildTree'. 348 void deleteTree() { 349 VectorizableTree.clear(); 350 ScalarToTreeEntry.clear(); 351 MustGather.clear(); 352 ExternalUses.clear(); 353 NumLoadsWantToKeepOrder = 0; 354 NumLoadsWantToChangeOrder = 0; 355 for (auto &Iter : BlocksSchedules) { 356 BlockScheduling *BS = Iter.second.get(); 357 BS->clear(); 358 } 359 MinBWs.clear(); 360 } 361 362 /// \brief Perform LICM and CSE on the newly generated gather sequences. 363 void optimizeGatherSequence(); 364 365 /// \returns true if it is beneficial to reverse the vector order. 366 bool shouldReorder() const { 367 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 368 } 369 370 /// \return The vector element size in bits to use when vectorizing the 371 /// expression tree ending at \p V. If V is a store, the size is the width of 372 /// the stored value. Otherwise, the size is the width of the largest loaded 373 /// value reaching V. This method is used by the vectorizer to calculate 374 /// vectorization factors. 375 unsigned getVectorElementSize(Value *V); 376 377 /// Compute the minimum type sizes required to represent the entries in a 378 /// vectorizable tree. 379 void computeMinimumValueSizes(); 380 381 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 382 unsigned getMaxVecRegSize() const { 383 return MaxVecRegSize; 384 } 385 386 // \returns minimum vector register size as set by cl::opt. 387 unsigned getMinVecRegSize() const { 388 return MinVecRegSize; 389 } 390 391 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 392 /// 393 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 394 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 395 396 private: 397 struct TreeEntry; 398 399 /// \returns the cost of the vectorizable entry. 400 int getEntryCost(TreeEntry *E); 401 402 /// This is the recursive part of buildTree. 403 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 404 405 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 406 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 407 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 408 409 /// Vectorize a single entry in the tree. 410 Value *vectorizeTree(TreeEntry *E); 411 412 /// Vectorize a single entry in the tree, starting in \p VL. 413 Value *vectorizeTree(ArrayRef<Value *> VL); 414 415 /// \returns the pointer to the vectorized value if \p VL is already 416 /// vectorized, or NULL. They may happen in cycles. 417 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 418 419 /// \returns the scalarization cost for this type. Scalarization in this 420 /// context means the creation of vectors from a group of scalars. 421 int getGatherCost(Type *Ty); 422 423 /// \returns the scalarization cost for this list of values. Assuming that 424 /// this subtree gets vectorized, we may need to extract the values from the 425 /// roots. This method calculates the cost of extracting the values. 426 int getGatherCost(ArrayRef<Value *> VL); 427 428 /// \brief Set the Builder insert point to one after the last instruction in 429 /// the bundle 430 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 431 432 /// \returns a vector from a collection of scalars in \p VL. 433 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 434 435 /// \returns whether the VectorizableTree is fully vectorizable and will 436 /// be beneficial even the tree height is tiny. 437 bool isFullyVectorizableTinyTree(); 438 439 /// \reorder commutative operands in alt shuffle if they result in 440 /// vectorized code. 441 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 442 SmallVectorImpl<Value *> &Left, 443 SmallVectorImpl<Value *> &Right); 444 /// \reorder commutative operands to get better probability of 445 /// generating vectorized code. 446 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 447 SmallVectorImpl<Value *> &Left, 448 SmallVectorImpl<Value *> &Right); 449 struct TreeEntry { 450 TreeEntry() : Scalars(), VectorizedValue(nullptr), 451 NeedToGather(0) {} 452 453 /// \returns true if the scalars in VL are equal to this entry. 454 bool isSame(ArrayRef<Value *> VL) const { 455 assert(VL.size() == Scalars.size() && "Invalid size"); 456 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 457 } 458 459 /// A vector of scalars. 460 ValueList Scalars; 461 462 /// The Scalars are vectorized into this value. It is initialized to Null. 463 Value *VectorizedValue; 464 465 /// Do we need to gather this sequence ? 466 bool NeedToGather; 467 }; 468 469 /// Create a new VectorizableTree entry. 470 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 471 VectorizableTree.emplace_back(); 472 int idx = VectorizableTree.size() - 1; 473 TreeEntry *Last = &VectorizableTree[idx]; 474 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 475 Last->NeedToGather = !Vectorized; 476 if (Vectorized) { 477 for (int i = 0, e = VL.size(); i != e; ++i) { 478 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 479 ScalarToTreeEntry[VL[i]] = idx; 480 } 481 } else { 482 MustGather.insert(VL.begin(), VL.end()); 483 } 484 return Last; 485 } 486 487 /// -- Vectorization State -- 488 /// Holds all of the tree entries. 489 std::vector<TreeEntry> VectorizableTree; 490 491 /// Maps a specific scalar to its tree entry. 492 SmallDenseMap<Value*, int> ScalarToTreeEntry; 493 494 /// A list of scalars that we found that we need to keep as scalars. 495 ValueSet MustGather; 496 497 /// This POD struct describes one external user in the vectorized tree. 498 struct ExternalUser { 499 ExternalUser (Value *S, llvm::User *U, int L) : 500 Scalar(S), User(U), Lane(L){} 501 // Which scalar in our function. 502 Value *Scalar; 503 // Which user that uses the scalar. 504 llvm::User *User; 505 // Which lane does the scalar belong to. 506 int Lane; 507 }; 508 typedef SmallVector<ExternalUser, 16> UserList; 509 510 /// Checks if two instructions may access the same memory. 511 /// 512 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 513 /// is invariant in the calling loop. 514 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 515 Instruction *Inst2) { 516 517 // First check if the result is already in the cache. 518 AliasCacheKey key = std::make_pair(Inst1, Inst2); 519 Optional<bool> &result = AliasCache[key]; 520 if (result.hasValue()) { 521 return result.getValue(); 522 } 523 MemoryLocation Loc2 = getLocation(Inst2, AA); 524 bool aliased = true; 525 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 526 // Do the alias check. 527 aliased = AA->alias(Loc1, Loc2); 528 } 529 // Store the result in the cache. 530 result = aliased; 531 return aliased; 532 } 533 534 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 535 536 /// Cache for alias results. 537 /// TODO: consider moving this to the AliasAnalysis itself. 538 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 539 540 /// Removes an instruction from its block and eventually deletes it. 541 /// It's like Instruction::eraseFromParent() except that the actual deletion 542 /// is delayed until BoUpSLP is destructed. 543 /// This is required to ensure that there are no incorrect collisions in the 544 /// AliasCache, which can happen if a new instruction is allocated at the 545 /// same address as a previously deleted instruction. 546 void eraseInstruction(Instruction *I) { 547 I->removeFromParent(); 548 I->dropAllReferences(); 549 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 550 } 551 552 /// Temporary store for deleted instructions. Instructions will be deleted 553 /// eventually when the BoUpSLP is destructed. 554 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 555 556 /// A list of values that need to extracted out of the tree. 557 /// This list holds pairs of (Internal Scalar : External User). 558 UserList ExternalUses; 559 560 /// Values used only by @llvm.assume calls. 561 SmallPtrSet<const Value *, 32> EphValues; 562 563 /// Holds all of the instructions that we gathered. 564 SetVector<Instruction *> GatherSeq; 565 /// A list of blocks that we are going to CSE. 566 SetVector<BasicBlock *> CSEBlocks; 567 568 /// Contains all scheduling relevant data for an instruction. 569 /// A ScheduleData either represents a single instruction or a member of an 570 /// instruction bundle (= a group of instructions which is combined into a 571 /// vector instruction). 572 struct ScheduleData { 573 574 // The initial value for the dependency counters. It means that the 575 // dependencies are not calculated yet. 576 enum { InvalidDeps = -1 }; 577 578 ScheduleData() 579 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 580 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 581 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 582 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 583 584 void init(int BlockSchedulingRegionID) { 585 FirstInBundle = this; 586 NextInBundle = nullptr; 587 NextLoadStore = nullptr; 588 IsScheduled = false; 589 SchedulingRegionID = BlockSchedulingRegionID; 590 UnscheduledDepsInBundle = UnscheduledDeps; 591 clearDependencies(); 592 } 593 594 /// Returns true if the dependency information has been calculated. 595 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 596 597 /// Returns true for single instructions and for bundle representatives 598 /// (= the head of a bundle). 599 bool isSchedulingEntity() const { return FirstInBundle == this; } 600 601 /// Returns true if it represents an instruction bundle and not only a 602 /// single instruction. 603 bool isPartOfBundle() const { 604 return NextInBundle != nullptr || FirstInBundle != this; 605 } 606 607 /// Returns true if it is ready for scheduling, i.e. it has no more 608 /// unscheduled depending instructions/bundles. 609 bool isReady() const { 610 assert(isSchedulingEntity() && 611 "can't consider non-scheduling entity for ready list"); 612 return UnscheduledDepsInBundle == 0 && !IsScheduled; 613 } 614 615 /// Modifies the number of unscheduled dependencies, also updating it for 616 /// the whole bundle. 617 int incrementUnscheduledDeps(int Incr) { 618 UnscheduledDeps += Incr; 619 return FirstInBundle->UnscheduledDepsInBundle += Incr; 620 } 621 622 /// Sets the number of unscheduled dependencies to the number of 623 /// dependencies. 624 void resetUnscheduledDeps() { 625 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 626 } 627 628 /// Clears all dependency information. 629 void clearDependencies() { 630 Dependencies = InvalidDeps; 631 resetUnscheduledDeps(); 632 MemoryDependencies.clear(); 633 } 634 635 void dump(raw_ostream &os) const { 636 if (!isSchedulingEntity()) { 637 os << "/ " << *Inst; 638 } else if (NextInBundle) { 639 os << '[' << *Inst; 640 ScheduleData *SD = NextInBundle; 641 while (SD) { 642 os << ';' << *SD->Inst; 643 SD = SD->NextInBundle; 644 } 645 os << ']'; 646 } else { 647 os << *Inst; 648 } 649 } 650 651 Instruction *Inst; 652 653 /// Points to the head in an instruction bundle (and always to this for 654 /// single instructions). 655 ScheduleData *FirstInBundle; 656 657 /// Single linked list of all instructions in a bundle. Null if it is a 658 /// single instruction. 659 ScheduleData *NextInBundle; 660 661 /// Single linked list of all memory instructions (e.g. load, store, call) 662 /// in the block - until the end of the scheduling region. 663 ScheduleData *NextLoadStore; 664 665 /// The dependent memory instructions. 666 /// This list is derived on demand in calculateDependencies(). 667 SmallVector<ScheduleData *, 4> MemoryDependencies; 668 669 /// This ScheduleData is in the current scheduling region if this matches 670 /// the current SchedulingRegionID of BlockScheduling. 671 int SchedulingRegionID; 672 673 /// Used for getting a "good" final ordering of instructions. 674 int SchedulingPriority; 675 676 /// The number of dependencies. Constitutes of the number of users of the 677 /// instruction plus the number of dependent memory instructions (if any). 678 /// This value is calculated on demand. 679 /// If InvalidDeps, the number of dependencies is not calculated yet. 680 /// 681 int Dependencies; 682 683 /// The number of dependencies minus the number of dependencies of scheduled 684 /// instructions. As soon as this is zero, the instruction/bundle gets ready 685 /// for scheduling. 686 /// Note that this is negative as long as Dependencies is not calculated. 687 int UnscheduledDeps; 688 689 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 690 /// single instructions. 691 int UnscheduledDepsInBundle; 692 693 /// True if this instruction is scheduled (or considered as scheduled in the 694 /// dry-run). 695 bool IsScheduled; 696 }; 697 698 #ifndef NDEBUG 699 friend inline raw_ostream &operator<<(raw_ostream &os, 700 const BoUpSLP::ScheduleData &SD) { 701 SD.dump(os); 702 return os; 703 } 704 #endif 705 706 /// Contains all scheduling data for a basic block. 707 /// 708 struct BlockScheduling { 709 710 BlockScheduling(BasicBlock *BB) 711 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 712 ScheduleStart(nullptr), ScheduleEnd(nullptr), 713 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 714 ScheduleRegionSize(0), 715 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 716 // Make sure that the initial SchedulingRegionID is greater than the 717 // initial SchedulingRegionID in ScheduleData (which is 0). 718 SchedulingRegionID(1) {} 719 720 void clear() { 721 ReadyInsts.clear(); 722 ScheduleStart = nullptr; 723 ScheduleEnd = nullptr; 724 FirstLoadStoreInRegion = nullptr; 725 LastLoadStoreInRegion = nullptr; 726 727 // Reduce the maximum schedule region size by the size of the 728 // previous scheduling run. 729 ScheduleRegionSizeLimit -= ScheduleRegionSize; 730 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 731 ScheduleRegionSizeLimit = MinScheduleRegionSize; 732 ScheduleRegionSize = 0; 733 734 // Make a new scheduling region, i.e. all existing ScheduleData is not 735 // in the new region yet. 736 ++SchedulingRegionID; 737 } 738 739 ScheduleData *getScheduleData(Value *V) { 740 ScheduleData *SD = ScheduleDataMap[V]; 741 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 742 return SD; 743 return nullptr; 744 } 745 746 bool isInSchedulingRegion(ScheduleData *SD) { 747 return SD->SchedulingRegionID == SchedulingRegionID; 748 } 749 750 /// Marks an instruction as scheduled and puts all dependent ready 751 /// instructions into the ready-list. 752 template <typename ReadyListType> 753 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 754 SD->IsScheduled = true; 755 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 756 757 ScheduleData *BundleMember = SD; 758 while (BundleMember) { 759 // Handle the def-use chain dependencies. 760 for (Use &U : BundleMember->Inst->operands()) { 761 ScheduleData *OpDef = getScheduleData(U.get()); 762 if (OpDef && OpDef->hasValidDependencies() && 763 OpDef->incrementUnscheduledDeps(-1) == 0) { 764 // There are no more unscheduled dependencies after decrementing, 765 // so we can put the dependent instruction into the ready list. 766 ScheduleData *DepBundle = OpDef->FirstInBundle; 767 assert(!DepBundle->IsScheduled && 768 "already scheduled bundle gets ready"); 769 ReadyList.insert(DepBundle); 770 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 771 } 772 } 773 // Handle the memory dependencies. 774 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 775 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 776 // There are no more unscheduled dependencies after decrementing, 777 // so we can put the dependent instruction into the ready list. 778 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 779 assert(!DepBundle->IsScheduled && 780 "already scheduled bundle gets ready"); 781 ReadyList.insert(DepBundle); 782 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 783 } 784 } 785 BundleMember = BundleMember->NextInBundle; 786 } 787 } 788 789 /// Put all instructions into the ReadyList which are ready for scheduling. 790 template <typename ReadyListType> 791 void initialFillReadyList(ReadyListType &ReadyList) { 792 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 793 ScheduleData *SD = getScheduleData(I); 794 if (SD->isSchedulingEntity() && SD->isReady()) { 795 ReadyList.insert(SD); 796 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 797 } 798 } 799 } 800 801 /// Checks if a bundle of instructions can be scheduled, i.e. has no 802 /// cyclic dependencies. This is only a dry-run, no instructions are 803 /// actually moved at this stage. 804 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 805 806 /// Un-bundles a group of instructions. 807 void cancelScheduling(ArrayRef<Value *> VL); 808 809 /// Extends the scheduling region so that V is inside the region. 810 /// \returns true if the region size is within the limit. 811 bool extendSchedulingRegion(Value *V); 812 813 /// Initialize the ScheduleData structures for new instructions in the 814 /// scheduling region. 815 void initScheduleData(Instruction *FromI, Instruction *ToI, 816 ScheduleData *PrevLoadStore, 817 ScheduleData *NextLoadStore); 818 819 /// Updates the dependency information of a bundle and of all instructions/ 820 /// bundles which depend on the original bundle. 821 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 822 BoUpSLP *SLP); 823 824 /// Sets all instruction in the scheduling region to un-scheduled. 825 void resetSchedule(); 826 827 BasicBlock *BB; 828 829 /// Simple memory allocation for ScheduleData. 830 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 831 832 /// The size of a ScheduleData array in ScheduleDataChunks. 833 int ChunkSize; 834 835 /// The allocator position in the current chunk, which is the last entry 836 /// of ScheduleDataChunks. 837 int ChunkPos; 838 839 /// Attaches ScheduleData to Instruction. 840 /// Note that the mapping survives during all vectorization iterations, i.e. 841 /// ScheduleData structures are recycled. 842 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 843 844 struct ReadyList : SmallVector<ScheduleData *, 8> { 845 void insert(ScheduleData *SD) { push_back(SD); } 846 }; 847 848 /// The ready-list for scheduling (only used for the dry-run). 849 ReadyList ReadyInsts; 850 851 /// The first instruction of the scheduling region. 852 Instruction *ScheduleStart; 853 854 /// The first instruction _after_ the scheduling region. 855 Instruction *ScheduleEnd; 856 857 /// The first memory accessing instruction in the scheduling region 858 /// (can be null). 859 ScheduleData *FirstLoadStoreInRegion; 860 861 /// The last memory accessing instruction in the scheduling region 862 /// (can be null). 863 ScheduleData *LastLoadStoreInRegion; 864 865 /// The current size of the scheduling region. 866 int ScheduleRegionSize; 867 868 /// The maximum size allowed for the scheduling region. 869 int ScheduleRegionSizeLimit; 870 871 /// The ID of the scheduling region. For a new vectorization iteration this 872 /// is incremented which "removes" all ScheduleData from the region. 873 int SchedulingRegionID; 874 }; 875 876 /// Attaches the BlockScheduling structures to basic blocks. 877 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 878 879 /// Performs the "real" scheduling. Done before vectorization is actually 880 /// performed in a basic block. 881 void scheduleBlock(BlockScheduling *BS); 882 883 /// List of users to ignore during scheduling and that don't need extracting. 884 ArrayRef<Value *> UserIgnoreList; 885 886 // Number of load-bundles, which contain consecutive loads. 887 int NumLoadsWantToKeepOrder; 888 889 // Number of load-bundles of size 2, which are consecutive loads if reversed. 890 int NumLoadsWantToChangeOrder; 891 892 // Analysis and block reference. 893 Function *F; 894 ScalarEvolution *SE; 895 TargetTransformInfo *TTI; 896 TargetLibraryInfo *TLI; 897 AliasAnalysis *AA; 898 LoopInfo *LI; 899 DominatorTree *DT; 900 AssumptionCache *AC; 901 DemandedBits *DB; 902 const DataLayout *DL; 903 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 904 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 905 /// Instruction builder to construct the vectorized tree. 906 IRBuilder<> Builder; 907 908 /// A map of scalar integer values to the smallest bit width with which they 909 /// can legally be represented. 910 MapVector<Value *, uint64_t> MinBWs; 911 }; 912 913 } // end namespace llvm 914 } // end namespace slpvectorizer 915 916 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 917 ArrayRef<Value *> UserIgnoreLst) { 918 deleteTree(); 919 UserIgnoreList = UserIgnoreLst; 920 if (!getSameType(Roots)) 921 return; 922 buildTree_rec(Roots, 0); 923 924 // Collect the values that we need to extract from the tree. 925 for (TreeEntry &EIdx : VectorizableTree) { 926 TreeEntry *Entry = &EIdx; 927 928 // For each lane: 929 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 930 Value *Scalar = Entry->Scalars[Lane]; 931 932 // No need to handle users of gathered values. 933 if (Entry->NeedToGather) 934 continue; 935 936 for (User *U : Scalar->users()) { 937 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 938 939 Instruction *UserInst = dyn_cast<Instruction>(U); 940 if (!UserInst) 941 continue; 942 943 // Skip in-tree scalars that become vectors 944 if (ScalarToTreeEntry.count(U)) { 945 int Idx = ScalarToTreeEntry[U]; 946 TreeEntry *UseEntry = &VectorizableTree[Idx]; 947 Value *UseScalar = UseEntry->Scalars[0]; 948 // Some in-tree scalars will remain as scalar in vectorized 949 // instructions. If that is the case, the one in Lane 0 will 950 // be used. 951 if (UseScalar != U || 952 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 953 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 954 << ".\n"); 955 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 956 continue; 957 } 958 } 959 960 // Ignore users in the user ignore list. 961 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 962 UserIgnoreList.end()) 963 continue; 964 965 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 966 Lane << " from " << *Scalar << ".\n"); 967 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 968 } 969 } 970 } 971 } 972 973 974 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 975 bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy; 976 bool isAltShuffle = false; 977 assert(SameTy && "Invalid types!"); 978 979 if (Depth == RecursionMaxDepth) { 980 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 981 newTreeEntry(VL, false); 982 return; 983 } 984 985 // Don't handle vectors. 986 if (VL[0]->getType()->isVectorTy()) { 987 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 988 newTreeEntry(VL, false); 989 return; 990 } 991 992 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 993 if (SI->getValueOperand()->getType()->isVectorTy()) { 994 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 995 newTreeEntry(VL, false); 996 return; 997 } 998 unsigned Opcode = getSameOpcode(VL); 999 1000 // Check that this shuffle vector refers to the alternate 1001 // sequence of opcodes. 1002 if (Opcode == Instruction::ShuffleVector) { 1003 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1004 unsigned Op = I0->getOpcode(); 1005 if (Op != Instruction::ShuffleVector) 1006 isAltShuffle = true; 1007 } 1008 1009 // If all of the operands are identical or constant we have a simple solution. 1010 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1011 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1012 newTreeEntry(VL, false); 1013 return; 1014 } 1015 1016 // We now know that this is a vector of instructions of the same type from 1017 // the same block. 1018 1019 // Don't vectorize ephemeral values. 1020 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1021 if (EphValues.count(VL[i])) { 1022 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1023 ") is ephemeral.\n"); 1024 newTreeEntry(VL, false); 1025 return; 1026 } 1027 } 1028 1029 // Check if this is a duplicate of another entry. 1030 if (ScalarToTreeEntry.count(VL[0])) { 1031 int Idx = ScalarToTreeEntry[VL[0]]; 1032 TreeEntry *E = &VectorizableTree[Idx]; 1033 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1034 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1035 if (E->Scalars[i] != VL[i]) { 1036 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1037 newTreeEntry(VL, false); 1038 return; 1039 } 1040 } 1041 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1042 return; 1043 } 1044 1045 // Check that none of the instructions in the bundle are already in the tree. 1046 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1047 if (ScalarToTreeEntry.count(VL[i])) { 1048 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1049 ") is already in tree.\n"); 1050 newTreeEntry(VL, false); 1051 return; 1052 } 1053 } 1054 1055 // If any of the scalars is marked as a value that needs to stay scalar then 1056 // we need to gather the scalars. 1057 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1058 if (MustGather.count(VL[i])) { 1059 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1060 newTreeEntry(VL, false); 1061 return; 1062 } 1063 } 1064 1065 // Check that all of the users of the scalars that we want to vectorize are 1066 // schedulable. 1067 Instruction *VL0 = cast<Instruction>(VL[0]); 1068 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1069 1070 if (!DT->isReachableFromEntry(BB)) { 1071 // Don't go into unreachable blocks. They may contain instructions with 1072 // dependency cycles which confuse the final scheduling. 1073 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1074 newTreeEntry(VL, false); 1075 return; 1076 } 1077 1078 // Check that every instructions appears once in this bundle. 1079 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1080 for (unsigned j = i+1; j < e; ++j) 1081 if (VL[i] == VL[j]) { 1082 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1083 newTreeEntry(VL, false); 1084 return; 1085 } 1086 1087 auto &BSRef = BlocksSchedules[BB]; 1088 if (!BSRef) { 1089 BSRef = llvm::make_unique<BlockScheduling>(BB); 1090 } 1091 BlockScheduling &BS = *BSRef.get(); 1092 1093 if (!BS.tryScheduleBundle(VL, this)) { 1094 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1095 assert((!BS.getScheduleData(VL[0]) || 1096 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1097 "tryScheduleBundle should cancelScheduling on failure"); 1098 newTreeEntry(VL, false); 1099 return; 1100 } 1101 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1102 1103 switch (Opcode) { 1104 case Instruction::PHI: { 1105 PHINode *PH = dyn_cast<PHINode>(VL0); 1106 1107 // Check for terminator values (e.g. invoke). 1108 for (unsigned j = 0; j < VL.size(); ++j) 1109 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1110 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1111 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1112 if (Term) { 1113 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1114 BS.cancelScheduling(VL); 1115 newTreeEntry(VL, false); 1116 return; 1117 } 1118 } 1119 1120 newTreeEntry(VL, true); 1121 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1122 1123 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1124 ValueList Operands; 1125 // Prepare the operand vector. 1126 for (Value *j : VL) 1127 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1128 PH->getIncomingBlock(i))); 1129 1130 buildTree_rec(Operands, Depth + 1); 1131 } 1132 return; 1133 } 1134 case Instruction::ExtractValue: 1135 case Instruction::ExtractElement: { 1136 bool Reuse = canReuseExtract(VL, Opcode); 1137 if (Reuse) { 1138 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1139 } else { 1140 BS.cancelScheduling(VL); 1141 } 1142 newTreeEntry(VL, Reuse); 1143 return; 1144 } 1145 case Instruction::Load: { 1146 // Check that a vectorized load would load the same memory as a scalar 1147 // load. 1148 // For example we don't want vectorize loads that are smaller than 8 bit. 1149 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1150 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1151 // such a struct we read/write packed bits disagreeing with the 1152 // unvectorized version. 1153 Type *ScalarTy = VL[0]->getType(); 1154 1155 if (DL->getTypeSizeInBits(ScalarTy) != 1156 DL->getTypeAllocSizeInBits(ScalarTy)) { 1157 BS.cancelScheduling(VL); 1158 newTreeEntry(VL, false); 1159 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1160 return; 1161 } 1162 // Check if the loads are consecutive or of we need to swizzle them. 1163 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1164 LoadInst *L = cast<LoadInst>(VL[i]); 1165 if (!L->isSimple()) { 1166 BS.cancelScheduling(VL); 1167 newTreeEntry(VL, false); 1168 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1169 return; 1170 } 1171 1172 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1173 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) { 1174 ++NumLoadsWantToChangeOrder; 1175 } 1176 BS.cancelScheduling(VL); 1177 newTreeEntry(VL, false); 1178 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1179 return; 1180 } 1181 } 1182 ++NumLoadsWantToKeepOrder; 1183 newTreeEntry(VL, true); 1184 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1185 return; 1186 } 1187 case Instruction::ZExt: 1188 case Instruction::SExt: 1189 case Instruction::FPToUI: 1190 case Instruction::FPToSI: 1191 case Instruction::FPExt: 1192 case Instruction::PtrToInt: 1193 case Instruction::IntToPtr: 1194 case Instruction::SIToFP: 1195 case Instruction::UIToFP: 1196 case Instruction::Trunc: 1197 case Instruction::FPTrunc: 1198 case Instruction::BitCast: { 1199 Type *SrcTy = VL0->getOperand(0)->getType(); 1200 for (unsigned i = 0; i < VL.size(); ++i) { 1201 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1202 if (Ty != SrcTy || !isValidElementType(Ty)) { 1203 BS.cancelScheduling(VL); 1204 newTreeEntry(VL, false); 1205 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1206 return; 1207 } 1208 } 1209 newTreeEntry(VL, true); 1210 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1211 1212 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1213 ValueList Operands; 1214 // Prepare the operand vector. 1215 for (Value *j : VL) 1216 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1217 1218 buildTree_rec(Operands, Depth+1); 1219 } 1220 return; 1221 } 1222 case Instruction::ICmp: 1223 case Instruction::FCmp: { 1224 // Check that all of the compares have the same predicate. 1225 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1226 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1227 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1228 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1229 if (Cmp->getPredicate() != P0 || 1230 Cmp->getOperand(0)->getType() != ComparedTy) { 1231 BS.cancelScheduling(VL); 1232 newTreeEntry(VL, false); 1233 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1234 return; 1235 } 1236 } 1237 1238 newTreeEntry(VL, true); 1239 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1240 1241 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1242 ValueList Operands; 1243 // Prepare the operand vector. 1244 for (Value *j : VL) 1245 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1246 1247 buildTree_rec(Operands, Depth+1); 1248 } 1249 return; 1250 } 1251 case Instruction::Select: 1252 case Instruction::Add: 1253 case Instruction::FAdd: 1254 case Instruction::Sub: 1255 case Instruction::FSub: 1256 case Instruction::Mul: 1257 case Instruction::FMul: 1258 case Instruction::UDiv: 1259 case Instruction::SDiv: 1260 case Instruction::FDiv: 1261 case Instruction::URem: 1262 case Instruction::SRem: 1263 case Instruction::FRem: 1264 case Instruction::Shl: 1265 case Instruction::LShr: 1266 case Instruction::AShr: 1267 case Instruction::And: 1268 case Instruction::Or: 1269 case Instruction::Xor: { 1270 newTreeEntry(VL, true); 1271 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1272 1273 // Sort operands of the instructions so that each side is more likely to 1274 // have the same opcode. 1275 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1276 ValueList Left, Right; 1277 reorderInputsAccordingToOpcode(VL, Left, Right); 1278 buildTree_rec(Left, Depth + 1); 1279 buildTree_rec(Right, Depth + 1); 1280 return; 1281 } 1282 1283 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1284 ValueList Operands; 1285 // Prepare the operand vector. 1286 for (Value *j : VL) 1287 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1288 1289 buildTree_rec(Operands, Depth+1); 1290 } 1291 return; 1292 } 1293 case Instruction::GetElementPtr: { 1294 // We don't combine GEPs with complicated (nested) indexing. 1295 for (unsigned j = 0; j < VL.size(); ++j) { 1296 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1297 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1298 BS.cancelScheduling(VL); 1299 newTreeEntry(VL, false); 1300 return; 1301 } 1302 } 1303 1304 // We can't combine several GEPs into one vector if they operate on 1305 // different types. 1306 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1307 for (unsigned j = 0; j < VL.size(); ++j) { 1308 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1309 if (Ty0 != CurTy) { 1310 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1311 BS.cancelScheduling(VL); 1312 newTreeEntry(VL, false); 1313 return; 1314 } 1315 } 1316 1317 // We don't combine GEPs with non-constant indexes. 1318 for (unsigned j = 0; j < VL.size(); ++j) { 1319 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1320 if (!isa<ConstantInt>(Op)) { 1321 DEBUG( 1322 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1323 BS.cancelScheduling(VL); 1324 newTreeEntry(VL, false); 1325 return; 1326 } 1327 } 1328 1329 newTreeEntry(VL, true); 1330 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1331 for (unsigned i = 0, e = 2; i < e; ++i) { 1332 ValueList Operands; 1333 // Prepare the operand vector. 1334 for (Value *j : VL) 1335 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1336 1337 buildTree_rec(Operands, Depth + 1); 1338 } 1339 return; 1340 } 1341 case Instruction::Store: { 1342 // Check if the stores are consecutive or of we need to swizzle them. 1343 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1344 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1345 BS.cancelScheduling(VL); 1346 newTreeEntry(VL, false); 1347 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1348 return; 1349 } 1350 1351 newTreeEntry(VL, true); 1352 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1353 1354 ValueList Operands; 1355 for (Value *j : VL) 1356 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1357 1358 buildTree_rec(Operands, Depth + 1); 1359 return; 1360 } 1361 case Instruction::Call: { 1362 // Check if the calls are all to the same vectorizable intrinsic. 1363 CallInst *CI = cast<CallInst>(VL[0]); 1364 // Check if this is an Intrinsic call or something that can be 1365 // represented by an intrinsic call 1366 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1367 if (!isTriviallyVectorizable(ID)) { 1368 BS.cancelScheduling(VL); 1369 newTreeEntry(VL, false); 1370 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1371 return; 1372 } 1373 Function *Int = CI->getCalledFunction(); 1374 Value *A1I = nullptr; 1375 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1376 A1I = CI->getArgOperand(1); 1377 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1378 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1379 if (!CI2 || CI2->getCalledFunction() != Int || 1380 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1381 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1382 BS.cancelScheduling(VL); 1383 newTreeEntry(VL, false); 1384 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1385 << "\n"); 1386 return; 1387 } 1388 // ctlz,cttz and powi are special intrinsics whose second argument 1389 // should be same in order for them to be vectorized. 1390 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1391 Value *A1J = CI2->getArgOperand(1); 1392 if (A1I != A1J) { 1393 BS.cancelScheduling(VL); 1394 newTreeEntry(VL, false); 1395 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1396 << " argument "<< A1I<<"!=" << A1J 1397 << "\n"); 1398 return; 1399 } 1400 } 1401 // Verify that the bundle operands are identical between the two calls. 1402 if (CI->hasOperandBundles() && 1403 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1404 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1405 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1406 BS.cancelScheduling(VL); 1407 newTreeEntry(VL, false); 1408 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1409 << *VL[i] << '\n'); 1410 return; 1411 } 1412 } 1413 1414 newTreeEntry(VL, true); 1415 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1416 ValueList Operands; 1417 // Prepare the operand vector. 1418 for (Value *j : VL) { 1419 CallInst *CI2 = dyn_cast<CallInst>(j); 1420 Operands.push_back(CI2->getArgOperand(i)); 1421 } 1422 buildTree_rec(Operands, Depth + 1); 1423 } 1424 return; 1425 } 1426 case Instruction::ShuffleVector: { 1427 // If this is not an alternate sequence of opcode like add-sub 1428 // then do not vectorize this instruction. 1429 if (!isAltShuffle) { 1430 BS.cancelScheduling(VL); 1431 newTreeEntry(VL, false); 1432 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1433 return; 1434 } 1435 newTreeEntry(VL, true); 1436 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1437 1438 // Reorder operands if reordering would enable vectorization. 1439 if (isa<BinaryOperator>(VL0)) { 1440 ValueList Left, Right; 1441 reorderAltShuffleOperands(VL, Left, Right); 1442 buildTree_rec(Left, Depth + 1); 1443 buildTree_rec(Right, Depth + 1); 1444 return; 1445 } 1446 1447 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1448 ValueList Operands; 1449 // Prepare the operand vector. 1450 for (Value *j : VL) 1451 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1452 1453 buildTree_rec(Operands, Depth + 1); 1454 } 1455 return; 1456 } 1457 default: 1458 BS.cancelScheduling(VL); 1459 newTreeEntry(VL, false); 1460 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1461 return; 1462 } 1463 } 1464 1465 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1466 unsigned N; 1467 Type *EltTy; 1468 auto *ST = dyn_cast<StructType>(T); 1469 if (ST) { 1470 N = ST->getNumElements(); 1471 EltTy = *ST->element_begin(); 1472 } else { 1473 N = cast<ArrayType>(T)->getNumElements(); 1474 EltTy = cast<ArrayType>(T)->getElementType(); 1475 } 1476 if (!isValidElementType(EltTy)) 1477 return 0; 1478 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1479 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1480 return 0; 1481 if (ST) { 1482 // Check that struct is homogeneous. 1483 for (const auto *Ty : ST->elements()) 1484 if (Ty != EltTy) 1485 return 0; 1486 } 1487 return N; 1488 } 1489 1490 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1491 assert(Opcode == Instruction::ExtractElement || 1492 Opcode == Instruction::ExtractValue); 1493 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1494 // Check if all of the extracts come from the same vector and from the 1495 // correct offset. 1496 Value *VL0 = VL[0]; 1497 Instruction *E0 = cast<Instruction>(VL0); 1498 Value *Vec = E0->getOperand(0); 1499 1500 // We have to extract from a vector/aggregate with the same number of elements. 1501 unsigned NElts; 1502 if (Opcode == Instruction::ExtractValue) { 1503 const DataLayout &DL = E0->getModule()->getDataLayout(); 1504 NElts = canMapToVector(Vec->getType(), DL); 1505 if (!NElts) 1506 return false; 1507 // Check if load can be rewritten as load of vector. 1508 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1509 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1510 return false; 1511 } else { 1512 NElts = Vec->getType()->getVectorNumElements(); 1513 } 1514 1515 if (NElts != VL.size()) 1516 return false; 1517 1518 // Check that all of the indices extract from the correct offset. 1519 if (!matchExtractIndex(E0, 0, Opcode)) 1520 return false; 1521 1522 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1523 Instruction *E = cast<Instruction>(VL[i]); 1524 if (!matchExtractIndex(E, i, Opcode)) 1525 return false; 1526 if (E->getOperand(0) != Vec) 1527 return false; 1528 } 1529 1530 return true; 1531 } 1532 1533 int BoUpSLP::getEntryCost(TreeEntry *E) { 1534 ArrayRef<Value*> VL = E->Scalars; 1535 1536 Type *ScalarTy = VL[0]->getType(); 1537 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1538 ScalarTy = SI->getValueOperand()->getType(); 1539 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1540 1541 // If we have computed a smaller type for the expression, update VecTy so 1542 // that the costs will be accurate. 1543 if (MinBWs.count(VL[0])) 1544 VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), 1545 VL.size()); 1546 1547 if (E->NeedToGather) { 1548 if (allConstant(VL)) 1549 return 0; 1550 if (isSplat(VL)) { 1551 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1552 } 1553 return getGatherCost(E->Scalars); 1554 } 1555 unsigned Opcode = getSameOpcode(VL); 1556 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1557 Instruction *VL0 = cast<Instruction>(VL[0]); 1558 switch (Opcode) { 1559 case Instruction::PHI: { 1560 return 0; 1561 } 1562 case Instruction::ExtractValue: 1563 case Instruction::ExtractElement: { 1564 if (canReuseExtract(VL, Opcode)) { 1565 int DeadCost = 0; 1566 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1567 Instruction *E = cast<Instruction>(VL[i]); 1568 if (E->hasOneUse()) 1569 // Take credit for instruction that will become dead. 1570 DeadCost += 1571 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1572 } 1573 return -DeadCost; 1574 } 1575 return getGatherCost(VecTy); 1576 } 1577 case Instruction::ZExt: 1578 case Instruction::SExt: 1579 case Instruction::FPToUI: 1580 case Instruction::FPToSI: 1581 case Instruction::FPExt: 1582 case Instruction::PtrToInt: 1583 case Instruction::IntToPtr: 1584 case Instruction::SIToFP: 1585 case Instruction::UIToFP: 1586 case Instruction::Trunc: 1587 case Instruction::FPTrunc: 1588 case Instruction::BitCast: { 1589 Type *SrcTy = VL0->getOperand(0)->getType(); 1590 1591 // Calculate the cost of this instruction. 1592 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1593 VL0->getType(), SrcTy); 1594 1595 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1596 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1597 return VecCost - ScalarCost; 1598 } 1599 case Instruction::FCmp: 1600 case Instruction::ICmp: 1601 case Instruction::Select: { 1602 // Calculate the cost of this instruction. 1603 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1604 int ScalarCost = VecTy->getNumElements() * 1605 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1606 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1607 return VecCost - ScalarCost; 1608 } 1609 case Instruction::Add: 1610 case Instruction::FAdd: 1611 case Instruction::Sub: 1612 case Instruction::FSub: 1613 case Instruction::Mul: 1614 case Instruction::FMul: 1615 case Instruction::UDiv: 1616 case Instruction::SDiv: 1617 case Instruction::FDiv: 1618 case Instruction::URem: 1619 case Instruction::SRem: 1620 case Instruction::FRem: 1621 case Instruction::Shl: 1622 case Instruction::LShr: 1623 case Instruction::AShr: 1624 case Instruction::And: 1625 case Instruction::Or: 1626 case Instruction::Xor: { 1627 // Certain instructions can be cheaper to vectorize if they have a 1628 // constant second vector operand. 1629 TargetTransformInfo::OperandValueKind Op1VK = 1630 TargetTransformInfo::OK_AnyValue; 1631 TargetTransformInfo::OperandValueKind Op2VK = 1632 TargetTransformInfo::OK_UniformConstantValue; 1633 TargetTransformInfo::OperandValueProperties Op1VP = 1634 TargetTransformInfo::OP_None; 1635 TargetTransformInfo::OperandValueProperties Op2VP = 1636 TargetTransformInfo::OP_None; 1637 1638 // If all operands are exactly the same ConstantInt then set the 1639 // operand kind to OK_UniformConstantValue. 1640 // If instead not all operands are constants, then set the operand kind 1641 // to OK_AnyValue. If all operands are constants but not the same, 1642 // then set the operand kind to OK_NonUniformConstantValue. 1643 ConstantInt *CInt = nullptr; 1644 for (unsigned i = 0; i < VL.size(); ++i) { 1645 const Instruction *I = cast<Instruction>(VL[i]); 1646 if (!isa<ConstantInt>(I->getOperand(1))) { 1647 Op2VK = TargetTransformInfo::OK_AnyValue; 1648 break; 1649 } 1650 if (i == 0) { 1651 CInt = cast<ConstantInt>(I->getOperand(1)); 1652 continue; 1653 } 1654 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1655 CInt != cast<ConstantInt>(I->getOperand(1))) 1656 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1657 } 1658 // FIXME: Currently cost of model modification for division by power of 1659 // 2 is handled for X86 and AArch64. Add support for other targets. 1660 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1661 CInt->getValue().isPowerOf2()) 1662 Op2VP = TargetTransformInfo::OP_PowerOf2; 1663 1664 int ScalarCost = VecTy->getNumElements() * 1665 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1666 Op2VK, Op1VP, Op2VP); 1667 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1668 Op1VP, Op2VP); 1669 return VecCost - ScalarCost; 1670 } 1671 case Instruction::GetElementPtr: { 1672 TargetTransformInfo::OperandValueKind Op1VK = 1673 TargetTransformInfo::OK_AnyValue; 1674 TargetTransformInfo::OperandValueKind Op2VK = 1675 TargetTransformInfo::OK_UniformConstantValue; 1676 1677 int ScalarCost = 1678 VecTy->getNumElements() * 1679 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1680 int VecCost = 1681 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1682 1683 return VecCost - ScalarCost; 1684 } 1685 case Instruction::Load: { 1686 // Cost of wide load - cost of scalar loads. 1687 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1688 int ScalarLdCost = VecTy->getNumElements() * 1689 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1690 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1691 VecTy, alignment, 0); 1692 return VecLdCost - ScalarLdCost; 1693 } 1694 case Instruction::Store: { 1695 // We know that we can merge the stores. Calculate the cost. 1696 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1697 int ScalarStCost = VecTy->getNumElements() * 1698 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1699 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1700 VecTy, alignment, 0); 1701 return VecStCost - ScalarStCost; 1702 } 1703 case Instruction::Call: { 1704 CallInst *CI = cast<CallInst>(VL0); 1705 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1706 1707 // Calculate the cost of the scalar and vector calls. 1708 SmallVector<Type*, 4> ScalarTys, VecTys; 1709 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1710 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1711 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1712 VecTy->getNumElements())); 1713 } 1714 1715 FastMathFlags FMF; 1716 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1717 FMF = FPMO->getFastMathFlags(); 1718 1719 int ScalarCallCost = VecTy->getNumElements() * 1720 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1721 1722 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1723 1724 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1725 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1726 << " for " << *CI << "\n"); 1727 1728 return VecCallCost - ScalarCallCost; 1729 } 1730 case Instruction::ShuffleVector: { 1731 TargetTransformInfo::OperandValueKind Op1VK = 1732 TargetTransformInfo::OK_AnyValue; 1733 TargetTransformInfo::OperandValueKind Op2VK = 1734 TargetTransformInfo::OK_AnyValue; 1735 int ScalarCost = 0; 1736 int VecCost = 0; 1737 for (Value *i : VL) { 1738 Instruction *I = cast<Instruction>(i); 1739 if (!I) 1740 break; 1741 ScalarCost += 1742 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1743 } 1744 // VecCost is equal to sum of the cost of creating 2 vectors 1745 // and the cost of creating shuffle. 1746 Instruction *I0 = cast<Instruction>(VL[0]); 1747 VecCost = 1748 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1749 Instruction *I1 = cast<Instruction>(VL[1]); 1750 VecCost += 1751 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1752 VecCost += 1753 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1754 return VecCost - ScalarCost; 1755 } 1756 default: 1757 llvm_unreachable("Unknown instruction"); 1758 } 1759 } 1760 1761 bool BoUpSLP::isFullyVectorizableTinyTree() { 1762 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1763 VectorizableTree.size() << " is fully vectorizable .\n"); 1764 1765 // We only handle trees of height 2. 1766 if (VectorizableTree.size() != 2) 1767 return false; 1768 1769 // Handle splat and all-constants stores. 1770 if (!VectorizableTree[0].NeedToGather && 1771 (allConstant(VectorizableTree[1].Scalars) || 1772 isSplat(VectorizableTree[1].Scalars))) 1773 return true; 1774 1775 // Gathering cost would be too much for tiny trees. 1776 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1777 return false; 1778 1779 return true; 1780 } 1781 1782 int BoUpSLP::getSpillCost() { 1783 // Walk from the bottom of the tree to the top, tracking which values are 1784 // live. When we see a call instruction that is not part of our tree, 1785 // query TTI to see if there is a cost to keeping values live over it 1786 // (for example, if spills and fills are required). 1787 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1788 int Cost = 0; 1789 1790 SmallPtrSet<Instruction*, 4> LiveValues; 1791 Instruction *PrevInst = nullptr; 1792 1793 for (const auto &N : VectorizableTree) { 1794 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1795 if (!Inst) 1796 continue; 1797 1798 if (!PrevInst) { 1799 PrevInst = Inst; 1800 continue; 1801 } 1802 1803 // Update LiveValues. 1804 LiveValues.erase(PrevInst); 1805 for (auto &J : PrevInst->operands()) { 1806 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1807 LiveValues.insert(cast<Instruction>(&*J)); 1808 } 1809 1810 DEBUG( 1811 dbgs() << "SLP: #LV: " << LiveValues.size(); 1812 for (auto *X : LiveValues) 1813 dbgs() << " " << X->getName(); 1814 dbgs() << ", Looking at "; 1815 Inst->dump(); 1816 ); 1817 1818 // Now find the sequence of instructions between PrevInst and Inst. 1819 BasicBlock::reverse_iterator InstIt(Inst->getIterator()), 1820 PrevInstIt(PrevInst->getIterator()); 1821 --PrevInstIt; 1822 while (InstIt != PrevInstIt) { 1823 if (PrevInstIt == PrevInst->getParent()->rend()) { 1824 PrevInstIt = Inst->getParent()->rbegin(); 1825 continue; 1826 } 1827 1828 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1829 SmallVector<Type*, 4> V; 1830 for (auto *II : LiveValues) 1831 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1832 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1833 } 1834 1835 ++PrevInstIt; 1836 } 1837 1838 PrevInst = Inst; 1839 } 1840 1841 return Cost; 1842 } 1843 1844 int BoUpSLP::getTreeCost() { 1845 int Cost = 0; 1846 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1847 VectorizableTree.size() << ".\n"); 1848 1849 // We only vectorize tiny trees if it is fully vectorizable. 1850 if (VectorizableTree.size() < MinTreeSize && !isFullyVectorizableTinyTree()) { 1851 if (VectorizableTree.empty()) { 1852 assert(!ExternalUses.size() && "We should not have any external users"); 1853 } 1854 return INT_MAX; 1855 } 1856 1857 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1858 1859 for (TreeEntry &TE : VectorizableTree) { 1860 int C = getEntryCost(&TE); 1861 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1862 << *TE.Scalars[0] << ".\n"); 1863 Cost += C; 1864 } 1865 1866 SmallSet<Value *, 16> ExtractCostCalculated; 1867 int ExtractCost = 0; 1868 for (ExternalUser &EU : ExternalUses) { 1869 // We only add extract cost once for the same scalar. 1870 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1871 continue; 1872 1873 // Uses by ephemeral values are free (because the ephemeral value will be 1874 // removed prior to code generation, and so the extraction will be 1875 // removed as well). 1876 if (EphValues.count(EU.User)) 1877 continue; 1878 1879 // If we plan to rewrite the tree in a smaller type, we will need to sign 1880 // extend the extracted value back to the original type. Here, we account 1881 // for the extract and the added cost of the sign extend if needed. 1882 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1883 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1884 if (MinBWs.count(ScalarRoot)) { 1885 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 1886 VecTy = VectorType::get(MinTy, BundleWidth); 1887 ExtractCost += TTI->getExtractWithExtendCost( 1888 Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane); 1889 } else { 1890 ExtractCost += 1891 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1892 } 1893 } 1894 1895 int SpillCost = getSpillCost(); 1896 Cost += SpillCost + ExtractCost; 1897 1898 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1899 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1900 << "SLP: Total Cost = " << Cost << ".\n"); 1901 return Cost; 1902 } 1903 1904 int BoUpSLP::getGatherCost(Type *Ty) { 1905 int Cost = 0; 1906 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1907 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1908 return Cost; 1909 } 1910 1911 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1912 // Find the type of the operands in VL. 1913 Type *ScalarTy = VL[0]->getType(); 1914 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1915 ScalarTy = SI->getValueOperand()->getType(); 1916 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1917 // Find the cost of inserting/extracting values from the vector. 1918 return getGatherCost(VecTy); 1919 } 1920 1921 // Reorder commutative operations in alternate shuffle if the resulting vectors 1922 // are consecutive loads. This would allow us to vectorize the tree. 1923 // If we have something like- 1924 // load a[0] - load b[0] 1925 // load b[1] + load a[1] 1926 // load a[2] - load b[2] 1927 // load a[3] + load b[3] 1928 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1929 // code. 1930 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1931 SmallVectorImpl<Value *> &Left, 1932 SmallVectorImpl<Value *> &Right) { 1933 // Push left and right operands of binary operation into Left and Right 1934 for (Value *i : VL) { 1935 Left.push_back(cast<Instruction>(i)->getOperand(0)); 1936 Right.push_back(cast<Instruction>(i)->getOperand(1)); 1937 } 1938 1939 // Reorder if we have a commutative operation and consecutive access 1940 // are on either side of the alternate instructions. 1941 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1942 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1943 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1944 Instruction *VL1 = cast<Instruction>(VL[j]); 1945 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1946 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1947 std::swap(Left[j], Right[j]); 1948 continue; 1949 } else if (VL2->isCommutative() && 1950 isConsecutiveAccess(L, L1, *DL, *SE)) { 1951 std::swap(Left[j + 1], Right[j + 1]); 1952 continue; 1953 } 1954 // else unchanged 1955 } 1956 } 1957 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 1958 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 1959 Instruction *VL1 = cast<Instruction>(VL[j]); 1960 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1961 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1962 std::swap(Left[j], Right[j]); 1963 continue; 1964 } else if (VL2->isCommutative() && 1965 isConsecutiveAccess(L, L1, *DL, *SE)) { 1966 std::swap(Left[j + 1], Right[j + 1]); 1967 continue; 1968 } 1969 // else unchanged 1970 } 1971 } 1972 } 1973 } 1974 1975 // Return true if I should be commuted before adding it's left and right 1976 // operands to the arrays Left and Right. 1977 // 1978 // The vectorizer is trying to either have all elements one side being 1979 // instruction with the same opcode to enable further vectorization, or having 1980 // a splat to lower the vectorizing cost. 1981 static bool shouldReorderOperands(int i, Instruction &I, 1982 SmallVectorImpl<Value *> &Left, 1983 SmallVectorImpl<Value *> &Right, 1984 bool AllSameOpcodeLeft, 1985 bool AllSameOpcodeRight, bool SplatLeft, 1986 bool SplatRight) { 1987 Value *VLeft = I.getOperand(0); 1988 Value *VRight = I.getOperand(1); 1989 // If we have "SplatRight", try to see if commuting is needed to preserve it. 1990 if (SplatRight) { 1991 if (VRight == Right[i - 1]) 1992 // Preserve SplatRight 1993 return false; 1994 if (VLeft == Right[i - 1]) { 1995 // Commuting would preserve SplatRight, but we don't want to break 1996 // SplatLeft either, i.e. preserve the original order if possible. 1997 // (FIXME: why do we care?) 1998 if (SplatLeft && VLeft == Left[i - 1]) 1999 return false; 2000 return true; 2001 } 2002 } 2003 // Symmetrically handle Right side. 2004 if (SplatLeft) { 2005 if (VLeft == Left[i - 1]) 2006 // Preserve SplatLeft 2007 return false; 2008 if (VRight == Left[i - 1]) 2009 return true; 2010 } 2011 2012 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2013 Instruction *IRight = dyn_cast<Instruction>(VRight); 2014 2015 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2016 // it and not the right, in this case we want to commute. 2017 if (AllSameOpcodeRight) { 2018 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2019 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2020 // Do not commute, a match on the right preserves AllSameOpcodeRight 2021 return false; 2022 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2023 // We have a match and may want to commute, but first check if there is 2024 // not also a match on the existing operands on the Left to preserve 2025 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2026 // (FIXME: why do we care?) 2027 if (AllSameOpcodeLeft && ILeft && 2028 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2029 return false; 2030 return true; 2031 } 2032 } 2033 // Symmetrically handle Left side. 2034 if (AllSameOpcodeLeft) { 2035 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2036 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2037 return false; 2038 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2039 return true; 2040 } 2041 return false; 2042 } 2043 2044 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2045 SmallVectorImpl<Value *> &Left, 2046 SmallVectorImpl<Value *> &Right) { 2047 2048 if (VL.size()) { 2049 // Peel the first iteration out of the loop since there's nothing 2050 // interesting to do anyway and it simplifies the checks in the loop. 2051 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2052 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2053 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2054 // Favor having instruction to the right. FIXME: why? 2055 std::swap(VLeft, VRight); 2056 Left.push_back(VLeft); 2057 Right.push_back(VRight); 2058 } 2059 2060 // Keep track if we have instructions with all the same opcode on one side. 2061 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2062 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2063 // Keep track if we have one side with all the same value (broadcast). 2064 bool SplatLeft = true; 2065 bool SplatRight = true; 2066 2067 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2068 Instruction *I = cast<Instruction>(VL[i]); 2069 assert(I->isCommutative() && "Can only process commutative instruction"); 2070 // Commute to favor either a splat or maximizing having the same opcodes on 2071 // one side. 2072 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2073 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2074 Left.push_back(I->getOperand(1)); 2075 Right.push_back(I->getOperand(0)); 2076 } else { 2077 Left.push_back(I->getOperand(0)); 2078 Right.push_back(I->getOperand(1)); 2079 } 2080 // Update Splat* and AllSameOpcode* after the insertion. 2081 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2082 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2083 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2084 (cast<Instruction>(Left[i - 1])->getOpcode() == 2085 cast<Instruction>(Left[i])->getOpcode()); 2086 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2087 (cast<Instruction>(Right[i - 1])->getOpcode() == 2088 cast<Instruction>(Right[i])->getOpcode()); 2089 } 2090 2091 // If one operand end up being broadcast, return this operand order. 2092 if (SplatRight || SplatLeft) 2093 return; 2094 2095 // Finally check if we can get longer vectorizable chain by reordering 2096 // without breaking the good operand order detected above. 2097 // E.g. If we have something like- 2098 // load a[0] load b[0] 2099 // load b[1] load a[1] 2100 // load a[2] load b[2] 2101 // load a[3] load b[3] 2102 // Reordering the second load b[1] load a[1] would allow us to vectorize 2103 // this code and we still retain AllSameOpcode property. 2104 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2105 // such as- 2106 // add a[0],c[0] load b[0] 2107 // add a[1],c[2] load b[1] 2108 // b[2] load b[2] 2109 // add a[3],c[3] load b[3] 2110 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2111 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2112 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2113 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2114 std::swap(Left[j + 1], Right[j + 1]); 2115 continue; 2116 } 2117 } 2118 } 2119 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2120 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2121 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2122 std::swap(Left[j + 1], Right[j + 1]); 2123 continue; 2124 } 2125 } 2126 } 2127 // else unchanged 2128 } 2129 } 2130 2131 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2132 2133 // Get the basic block this bundle is in. All instructions in the bundle 2134 // should be in this block. 2135 auto *Front = cast<Instruction>(VL.front()); 2136 auto *BB = Front->getParent(); 2137 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2138 return cast<Instruction>(V)->getParent() == BB; 2139 })); 2140 2141 // The last instruction in the bundle in program order. 2142 Instruction *LastInst = nullptr; 2143 2144 // Find the last instruction. The common case should be that BB has been 2145 // scheduled, and the last instruction is VL.back(). So we start with 2146 // VL.back() and iterate over schedule data until we reach the end of the 2147 // bundle. The end of the bundle is marked by null ScheduleData. 2148 if (BlocksSchedules.count(BB)) { 2149 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2150 if (Bundle && Bundle->isPartOfBundle()) 2151 for (; Bundle; Bundle = Bundle->NextInBundle) 2152 LastInst = Bundle->Inst; 2153 } 2154 2155 // LastInst can still be null at this point if there's either not an entry 2156 // for BB in BlocksSchedules or there's no ScheduleData available for 2157 // VL.back(). This can be the case if buildTree_rec aborts for various 2158 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2159 // size is reached, etc.). ScheduleData is initialized in the scheduling 2160 // "dry-run". 2161 // 2162 // If this happens, we can still find the last instruction by brute force. We 2163 // iterate forwards from Front (inclusive) until we either see all 2164 // instructions in the bundle or reach the end of the block. If Front is the 2165 // last instruction in program order, LastInst will be set to Front, and we 2166 // will visit all the remaining instructions in the block. 2167 // 2168 // One of the reasons we exit early from buildTree_rec is to place an upper 2169 // bound on compile-time. Thus, taking an additional compile-time hit here is 2170 // not ideal. However, this should be exceedingly rare since it requires that 2171 // we both exit early from buildTree_rec and that the bundle be out-of-order 2172 // (causing us to iterate all the way to the end of the block). 2173 if (!LastInst) { 2174 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2175 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2176 if (Bundle.erase(&I)) 2177 LastInst = &I; 2178 if (Bundle.empty()) 2179 break; 2180 } 2181 } 2182 2183 // Set the insertion point after the last instruction in the bundle. Set the 2184 // debug location to Front. 2185 Builder.SetInsertPoint(BB, next(BasicBlock::iterator(LastInst))); 2186 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2187 } 2188 2189 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2190 Value *Vec = UndefValue::get(Ty); 2191 // Generate the 'InsertElement' instruction. 2192 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2193 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2194 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2195 GatherSeq.insert(Insrt); 2196 CSEBlocks.insert(Insrt->getParent()); 2197 2198 // Add to our 'need-to-extract' list. 2199 if (ScalarToTreeEntry.count(VL[i])) { 2200 int Idx = ScalarToTreeEntry[VL[i]]; 2201 TreeEntry *E = &VectorizableTree[Idx]; 2202 // Find which lane we need to extract. 2203 int FoundLane = -1; 2204 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2205 // Is this the lane of the scalar that we are looking for ? 2206 if (E->Scalars[Lane] == VL[i]) { 2207 FoundLane = Lane; 2208 break; 2209 } 2210 } 2211 assert(FoundLane >= 0 && "Could not find the correct lane"); 2212 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2213 } 2214 } 2215 } 2216 2217 return Vec; 2218 } 2219 2220 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2221 SmallDenseMap<Value*, int>::const_iterator Entry 2222 = ScalarToTreeEntry.find(VL[0]); 2223 if (Entry != ScalarToTreeEntry.end()) { 2224 int Idx = Entry->second; 2225 const TreeEntry *En = &VectorizableTree[Idx]; 2226 if (En->isSame(VL) && En->VectorizedValue) 2227 return En->VectorizedValue; 2228 } 2229 return nullptr; 2230 } 2231 2232 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2233 if (ScalarToTreeEntry.count(VL[0])) { 2234 int Idx = ScalarToTreeEntry[VL[0]]; 2235 TreeEntry *E = &VectorizableTree[Idx]; 2236 if (E->isSame(VL)) 2237 return vectorizeTree(E); 2238 } 2239 2240 Type *ScalarTy = VL[0]->getType(); 2241 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2242 ScalarTy = SI->getValueOperand()->getType(); 2243 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2244 2245 return Gather(VL, VecTy); 2246 } 2247 2248 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2249 IRBuilder<>::InsertPointGuard Guard(Builder); 2250 2251 if (E->VectorizedValue) { 2252 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2253 return E->VectorizedValue; 2254 } 2255 2256 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2257 Type *ScalarTy = VL0->getType(); 2258 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2259 ScalarTy = SI->getValueOperand()->getType(); 2260 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2261 2262 if (E->NeedToGather) { 2263 setInsertPointAfterBundle(E->Scalars); 2264 auto *V = Gather(E->Scalars, VecTy); 2265 E->VectorizedValue = V; 2266 return V; 2267 } 2268 2269 unsigned Opcode = getSameOpcode(E->Scalars); 2270 2271 switch (Opcode) { 2272 case Instruction::PHI: { 2273 PHINode *PH = dyn_cast<PHINode>(VL0); 2274 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2275 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2276 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2277 E->VectorizedValue = NewPhi; 2278 2279 // PHINodes may have multiple entries from the same block. We want to 2280 // visit every block once. 2281 SmallSet<BasicBlock*, 4> VisitedBBs; 2282 2283 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2284 ValueList Operands; 2285 BasicBlock *IBB = PH->getIncomingBlock(i); 2286 2287 if (!VisitedBBs.insert(IBB).second) { 2288 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2289 continue; 2290 } 2291 2292 // Prepare the operand vector. 2293 for (Value *V : E->Scalars) 2294 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2295 2296 Builder.SetInsertPoint(IBB->getTerminator()); 2297 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2298 Value *Vec = vectorizeTree(Operands); 2299 NewPhi->addIncoming(Vec, IBB); 2300 } 2301 2302 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2303 "Invalid number of incoming values"); 2304 return NewPhi; 2305 } 2306 2307 case Instruction::ExtractElement: { 2308 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2309 Value *V = VL0->getOperand(0); 2310 E->VectorizedValue = V; 2311 return V; 2312 } 2313 setInsertPointAfterBundle(E->Scalars); 2314 auto *V = Gather(E->Scalars, VecTy); 2315 E->VectorizedValue = V; 2316 return V; 2317 } 2318 case Instruction::ExtractValue: { 2319 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2320 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2321 Builder.SetInsertPoint(LI); 2322 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2323 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2324 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2325 E->VectorizedValue = V; 2326 return propagateMetadata(V, E->Scalars); 2327 } 2328 setInsertPointAfterBundle(E->Scalars); 2329 auto *V = Gather(E->Scalars, VecTy); 2330 E->VectorizedValue = V; 2331 return V; 2332 } 2333 case Instruction::ZExt: 2334 case Instruction::SExt: 2335 case Instruction::FPToUI: 2336 case Instruction::FPToSI: 2337 case Instruction::FPExt: 2338 case Instruction::PtrToInt: 2339 case Instruction::IntToPtr: 2340 case Instruction::SIToFP: 2341 case Instruction::UIToFP: 2342 case Instruction::Trunc: 2343 case Instruction::FPTrunc: 2344 case Instruction::BitCast: { 2345 ValueList INVL; 2346 for (Value *V : E->Scalars) 2347 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2348 2349 setInsertPointAfterBundle(E->Scalars); 2350 2351 Value *InVec = vectorizeTree(INVL); 2352 2353 if (Value *V = alreadyVectorized(E->Scalars)) 2354 return V; 2355 2356 CastInst *CI = dyn_cast<CastInst>(VL0); 2357 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2358 E->VectorizedValue = V; 2359 ++NumVectorInstructions; 2360 return V; 2361 } 2362 case Instruction::FCmp: 2363 case Instruction::ICmp: { 2364 ValueList LHSV, RHSV; 2365 for (Value *V : E->Scalars) { 2366 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2367 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2368 } 2369 2370 setInsertPointAfterBundle(E->Scalars); 2371 2372 Value *L = vectorizeTree(LHSV); 2373 Value *R = vectorizeTree(RHSV); 2374 2375 if (Value *V = alreadyVectorized(E->Scalars)) 2376 return V; 2377 2378 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2379 Value *V; 2380 if (Opcode == Instruction::FCmp) 2381 V = Builder.CreateFCmp(P0, L, R); 2382 else 2383 V = Builder.CreateICmp(P0, L, R); 2384 2385 E->VectorizedValue = V; 2386 ++NumVectorInstructions; 2387 return V; 2388 } 2389 case Instruction::Select: { 2390 ValueList TrueVec, FalseVec, CondVec; 2391 for (Value *V : E->Scalars) { 2392 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2393 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2394 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2395 } 2396 2397 setInsertPointAfterBundle(E->Scalars); 2398 2399 Value *Cond = vectorizeTree(CondVec); 2400 Value *True = vectorizeTree(TrueVec); 2401 Value *False = vectorizeTree(FalseVec); 2402 2403 if (Value *V = alreadyVectorized(E->Scalars)) 2404 return V; 2405 2406 Value *V = Builder.CreateSelect(Cond, True, False); 2407 E->VectorizedValue = V; 2408 ++NumVectorInstructions; 2409 return V; 2410 } 2411 case Instruction::Add: 2412 case Instruction::FAdd: 2413 case Instruction::Sub: 2414 case Instruction::FSub: 2415 case Instruction::Mul: 2416 case Instruction::FMul: 2417 case Instruction::UDiv: 2418 case Instruction::SDiv: 2419 case Instruction::FDiv: 2420 case Instruction::URem: 2421 case Instruction::SRem: 2422 case Instruction::FRem: 2423 case Instruction::Shl: 2424 case Instruction::LShr: 2425 case Instruction::AShr: 2426 case Instruction::And: 2427 case Instruction::Or: 2428 case Instruction::Xor: { 2429 ValueList LHSVL, RHSVL; 2430 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2431 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2432 else 2433 for (Value *V : E->Scalars) { 2434 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2435 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2436 } 2437 2438 setInsertPointAfterBundle(E->Scalars); 2439 2440 Value *LHS = vectorizeTree(LHSVL); 2441 Value *RHS = vectorizeTree(RHSVL); 2442 2443 if (LHS == RHS && isa<Instruction>(LHS)) { 2444 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2445 } 2446 2447 if (Value *V = alreadyVectorized(E->Scalars)) 2448 return V; 2449 2450 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2451 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2452 E->VectorizedValue = V; 2453 propagateIRFlags(E->VectorizedValue, E->Scalars); 2454 ++NumVectorInstructions; 2455 2456 if (Instruction *I = dyn_cast<Instruction>(V)) 2457 return propagateMetadata(I, E->Scalars); 2458 2459 return V; 2460 } 2461 case Instruction::Load: { 2462 // Loads are inserted at the head of the tree because we don't want to 2463 // sink them all the way down past store instructions. 2464 setInsertPointAfterBundle(E->Scalars); 2465 2466 LoadInst *LI = cast<LoadInst>(VL0); 2467 Type *ScalarLoadTy = LI->getType(); 2468 unsigned AS = LI->getPointerAddressSpace(); 2469 2470 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2471 VecTy->getPointerTo(AS)); 2472 2473 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2474 // ExternalUses list to make sure that an extract will be generated in the 2475 // future. 2476 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2477 ExternalUses.push_back( 2478 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2479 2480 unsigned Alignment = LI->getAlignment(); 2481 LI = Builder.CreateLoad(VecPtr); 2482 if (!Alignment) { 2483 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2484 } 2485 LI->setAlignment(Alignment); 2486 E->VectorizedValue = LI; 2487 ++NumVectorInstructions; 2488 return propagateMetadata(LI, E->Scalars); 2489 } 2490 case Instruction::Store: { 2491 StoreInst *SI = cast<StoreInst>(VL0); 2492 unsigned Alignment = SI->getAlignment(); 2493 unsigned AS = SI->getPointerAddressSpace(); 2494 2495 ValueList ValueOp; 2496 for (Value *V : E->Scalars) 2497 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2498 2499 setInsertPointAfterBundle(E->Scalars); 2500 2501 Value *VecValue = vectorizeTree(ValueOp); 2502 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2503 VecTy->getPointerTo(AS)); 2504 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2505 2506 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2507 // ExternalUses list to make sure that an extract will be generated in the 2508 // future. 2509 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2510 ExternalUses.push_back( 2511 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2512 2513 if (!Alignment) { 2514 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2515 } 2516 S->setAlignment(Alignment); 2517 E->VectorizedValue = S; 2518 ++NumVectorInstructions; 2519 return propagateMetadata(S, E->Scalars); 2520 } 2521 case Instruction::GetElementPtr: { 2522 setInsertPointAfterBundle(E->Scalars); 2523 2524 ValueList Op0VL; 2525 for (Value *V : E->Scalars) 2526 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2527 2528 Value *Op0 = vectorizeTree(Op0VL); 2529 2530 std::vector<Value *> OpVecs; 2531 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2532 ++j) { 2533 ValueList OpVL; 2534 for (Value *V : E->Scalars) 2535 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2536 2537 Value *OpVec = vectorizeTree(OpVL); 2538 OpVecs.push_back(OpVec); 2539 } 2540 2541 Value *V = Builder.CreateGEP( 2542 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2543 E->VectorizedValue = V; 2544 ++NumVectorInstructions; 2545 2546 if (Instruction *I = dyn_cast<Instruction>(V)) 2547 return propagateMetadata(I, E->Scalars); 2548 2549 return V; 2550 } 2551 case Instruction::Call: { 2552 CallInst *CI = cast<CallInst>(VL0); 2553 setInsertPointAfterBundle(E->Scalars); 2554 Function *FI; 2555 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2556 Value *ScalarArg = nullptr; 2557 if (CI && (FI = CI->getCalledFunction())) { 2558 IID = FI->getIntrinsicID(); 2559 } 2560 std::vector<Value *> OpVecs; 2561 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2562 ValueList OpVL; 2563 // ctlz,cttz and powi are special intrinsics whose second argument is 2564 // a scalar. This argument should not be vectorized. 2565 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2566 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2567 ScalarArg = CEI->getArgOperand(j); 2568 OpVecs.push_back(CEI->getArgOperand(j)); 2569 continue; 2570 } 2571 for (Value *V : E->Scalars) { 2572 CallInst *CEI = cast<CallInst>(V); 2573 OpVL.push_back(CEI->getArgOperand(j)); 2574 } 2575 2576 Value *OpVec = vectorizeTree(OpVL); 2577 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2578 OpVecs.push_back(OpVec); 2579 } 2580 2581 Module *M = F->getParent(); 2582 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2583 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2584 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2585 SmallVector<OperandBundleDef, 1> OpBundles; 2586 CI->getOperandBundlesAsDefs(OpBundles); 2587 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2588 2589 // The scalar argument uses an in-tree scalar so we add the new vectorized 2590 // call to ExternalUses list to make sure that an extract will be 2591 // generated in the future. 2592 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2593 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2594 2595 E->VectorizedValue = V; 2596 ++NumVectorInstructions; 2597 return V; 2598 } 2599 case Instruction::ShuffleVector: { 2600 ValueList LHSVL, RHSVL; 2601 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2602 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2603 setInsertPointAfterBundle(E->Scalars); 2604 2605 Value *LHS = vectorizeTree(LHSVL); 2606 Value *RHS = vectorizeTree(RHSVL); 2607 2608 if (Value *V = alreadyVectorized(E->Scalars)) 2609 return V; 2610 2611 // Create a vector of LHS op1 RHS 2612 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2613 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2614 2615 // Create a vector of LHS op2 RHS 2616 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2617 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2618 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2619 2620 // Create shuffle to take alternate operations from the vector. 2621 // Also, gather up odd and even scalar ops to propagate IR flags to 2622 // each vector operation. 2623 ValueList OddScalars, EvenScalars; 2624 unsigned e = E->Scalars.size(); 2625 SmallVector<Constant *, 8> Mask(e); 2626 for (unsigned i = 0; i < e; ++i) { 2627 if (i & 1) { 2628 Mask[i] = Builder.getInt32(e + i); 2629 OddScalars.push_back(E->Scalars[i]); 2630 } else { 2631 Mask[i] = Builder.getInt32(i); 2632 EvenScalars.push_back(E->Scalars[i]); 2633 } 2634 } 2635 2636 Value *ShuffleMask = ConstantVector::get(Mask); 2637 propagateIRFlags(V0, EvenScalars); 2638 propagateIRFlags(V1, OddScalars); 2639 2640 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2641 E->VectorizedValue = V; 2642 ++NumVectorInstructions; 2643 if (Instruction *I = dyn_cast<Instruction>(V)) 2644 return propagateMetadata(I, E->Scalars); 2645 2646 return V; 2647 } 2648 default: 2649 llvm_unreachable("unknown inst"); 2650 } 2651 return nullptr; 2652 } 2653 2654 Value *BoUpSLP::vectorizeTree() { 2655 2656 // All blocks must be scheduled before any instructions are inserted. 2657 for (auto &BSIter : BlocksSchedules) { 2658 scheduleBlock(BSIter.second.get()); 2659 } 2660 2661 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2662 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2663 2664 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2665 // vectorized root. InstCombine will then rewrite the entire expression. We 2666 // sign extend the extracted values below. 2667 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2668 if (MinBWs.count(ScalarRoot)) { 2669 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2670 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2671 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2672 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 2673 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2674 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2675 VectorizableTree[0].VectorizedValue = Trunc; 2676 } 2677 2678 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2679 2680 // Extract all of the elements with the external uses. 2681 for (const auto &ExternalUse : ExternalUses) { 2682 Value *Scalar = ExternalUse.Scalar; 2683 llvm::User *User = ExternalUse.User; 2684 2685 // Skip users that we already RAUW. This happens when one instruction 2686 // has multiple uses of the same value. 2687 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2688 Scalar->user_end()) 2689 continue; 2690 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2691 2692 int Idx = ScalarToTreeEntry[Scalar]; 2693 TreeEntry *E = &VectorizableTree[Idx]; 2694 assert(!E->NeedToGather && "Extracting from a gather list"); 2695 2696 Value *Vec = E->VectorizedValue; 2697 assert(Vec && "Can't find vectorizable value"); 2698 2699 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2700 // Generate extracts for out-of-tree users. 2701 // Find the insertion point for the extractelement lane. 2702 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2703 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2704 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2705 if (PH->getIncomingValue(i) == Scalar) { 2706 TerminatorInst *IncomingTerminator = 2707 PH->getIncomingBlock(i)->getTerminator(); 2708 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2709 Builder.SetInsertPoint(VecI->getParent(), 2710 std::next(VecI->getIterator())); 2711 } else { 2712 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2713 } 2714 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2715 if (MinBWs.count(ScalarRoot)) 2716 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2717 CSEBlocks.insert(PH->getIncomingBlock(i)); 2718 PH->setOperand(i, Ex); 2719 } 2720 } 2721 } else { 2722 Builder.SetInsertPoint(cast<Instruction>(User)); 2723 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2724 if (MinBWs.count(ScalarRoot)) 2725 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2726 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2727 User->replaceUsesOfWith(Scalar, Ex); 2728 } 2729 } else { 2730 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2731 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2732 if (MinBWs.count(ScalarRoot)) 2733 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2734 CSEBlocks.insert(&F->getEntryBlock()); 2735 User->replaceUsesOfWith(Scalar, Ex); 2736 } 2737 2738 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2739 } 2740 2741 // For each vectorized value: 2742 for (TreeEntry &EIdx : VectorizableTree) { 2743 TreeEntry *Entry = &EIdx; 2744 2745 // For each lane: 2746 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2747 Value *Scalar = Entry->Scalars[Lane]; 2748 // No need to handle users of gathered values. 2749 if (Entry->NeedToGather) 2750 continue; 2751 2752 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2753 2754 Type *Ty = Scalar->getType(); 2755 if (!Ty->isVoidTy()) { 2756 #ifndef NDEBUG 2757 for (User *U : Scalar->users()) { 2758 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2759 2760 assert((ScalarToTreeEntry.count(U) || 2761 // It is legal to replace users in the ignorelist by undef. 2762 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2763 UserIgnoreList.end())) && 2764 "Replacing out-of-tree value with undef"); 2765 } 2766 #endif 2767 Value *Undef = UndefValue::get(Ty); 2768 Scalar->replaceAllUsesWith(Undef); 2769 } 2770 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2771 eraseInstruction(cast<Instruction>(Scalar)); 2772 } 2773 } 2774 2775 Builder.ClearInsertionPoint(); 2776 2777 return VectorizableTree[0].VectorizedValue; 2778 } 2779 2780 void BoUpSLP::optimizeGatherSequence() { 2781 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2782 << " gather sequences instructions.\n"); 2783 // LICM InsertElementInst sequences. 2784 for (Instruction *it : GatherSeq) { 2785 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2786 2787 if (!Insert) 2788 continue; 2789 2790 // Check if this block is inside a loop. 2791 Loop *L = LI->getLoopFor(Insert->getParent()); 2792 if (!L) 2793 continue; 2794 2795 // Check if it has a preheader. 2796 BasicBlock *PreHeader = L->getLoopPreheader(); 2797 if (!PreHeader) 2798 continue; 2799 2800 // If the vector or the element that we insert into it are 2801 // instructions that are defined in this basic block then we can't 2802 // hoist this instruction. 2803 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2804 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2805 if (CurrVec && L->contains(CurrVec)) 2806 continue; 2807 if (NewElem && L->contains(NewElem)) 2808 continue; 2809 2810 // We can hoist this instruction. Move it to the pre-header. 2811 Insert->moveBefore(PreHeader->getTerminator()); 2812 } 2813 2814 // Make a list of all reachable blocks in our CSE queue. 2815 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2816 CSEWorkList.reserve(CSEBlocks.size()); 2817 for (BasicBlock *BB : CSEBlocks) 2818 if (DomTreeNode *N = DT->getNode(BB)) { 2819 assert(DT->isReachableFromEntry(N)); 2820 CSEWorkList.push_back(N); 2821 } 2822 2823 // Sort blocks by domination. This ensures we visit a block after all blocks 2824 // dominating it are visited. 2825 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2826 [this](const DomTreeNode *A, const DomTreeNode *B) { 2827 return DT->properlyDominates(A, B); 2828 }); 2829 2830 // Perform O(N^2) search over the gather sequences and merge identical 2831 // instructions. TODO: We can further optimize this scan if we split the 2832 // instructions into different buckets based on the insert lane. 2833 SmallVector<Instruction *, 16> Visited; 2834 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2835 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2836 "Worklist not sorted properly!"); 2837 BasicBlock *BB = (*I)->getBlock(); 2838 // For all instructions in blocks containing gather sequences: 2839 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2840 Instruction *In = &*it++; 2841 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2842 continue; 2843 2844 // Check if we can replace this instruction with any of the 2845 // visited instructions. 2846 for (Instruction *v : Visited) { 2847 if (In->isIdenticalTo(v) && 2848 DT->dominates(v->getParent(), In->getParent())) { 2849 In->replaceAllUsesWith(v); 2850 eraseInstruction(In); 2851 In = nullptr; 2852 break; 2853 } 2854 } 2855 if (In) { 2856 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2857 Visited.push_back(In); 2858 } 2859 } 2860 } 2861 CSEBlocks.clear(); 2862 GatherSeq.clear(); 2863 } 2864 2865 // Groups the instructions to a bundle (which is then a single scheduling entity) 2866 // and schedules instructions until the bundle gets ready. 2867 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2868 BoUpSLP *SLP) { 2869 if (isa<PHINode>(VL[0])) 2870 return true; 2871 2872 // Initialize the instruction bundle. 2873 Instruction *OldScheduleEnd = ScheduleEnd; 2874 ScheduleData *PrevInBundle = nullptr; 2875 ScheduleData *Bundle = nullptr; 2876 bool ReSchedule = false; 2877 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2878 2879 // Make sure that the scheduling region contains all 2880 // instructions of the bundle. 2881 for (Value *V : VL) { 2882 if (!extendSchedulingRegion(V)) 2883 return false; 2884 } 2885 2886 for (Value *V : VL) { 2887 ScheduleData *BundleMember = getScheduleData(V); 2888 assert(BundleMember && 2889 "no ScheduleData for bundle member (maybe not in same basic block)"); 2890 if (BundleMember->IsScheduled) { 2891 // A bundle member was scheduled as single instruction before and now 2892 // needs to be scheduled as part of the bundle. We just get rid of the 2893 // existing schedule. 2894 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2895 << " was already scheduled\n"); 2896 ReSchedule = true; 2897 } 2898 assert(BundleMember->isSchedulingEntity() && 2899 "bundle member already part of other bundle"); 2900 if (PrevInBundle) { 2901 PrevInBundle->NextInBundle = BundleMember; 2902 } else { 2903 Bundle = BundleMember; 2904 } 2905 BundleMember->UnscheduledDepsInBundle = 0; 2906 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2907 2908 // Group the instructions to a bundle. 2909 BundleMember->FirstInBundle = Bundle; 2910 PrevInBundle = BundleMember; 2911 } 2912 if (ScheduleEnd != OldScheduleEnd) { 2913 // The scheduling region got new instructions at the lower end (or it is a 2914 // new region for the first bundle). This makes it necessary to 2915 // recalculate all dependencies. 2916 // It is seldom that this needs to be done a second time after adding the 2917 // initial bundle to the region. 2918 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2919 ScheduleData *SD = getScheduleData(I); 2920 SD->clearDependencies(); 2921 } 2922 ReSchedule = true; 2923 } 2924 if (ReSchedule) { 2925 resetSchedule(); 2926 initialFillReadyList(ReadyInsts); 2927 } 2928 2929 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2930 << BB->getName() << "\n"); 2931 2932 calculateDependencies(Bundle, true, SLP); 2933 2934 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2935 // means that there are no cyclic dependencies and we can schedule it. 2936 // Note that's important that we don't "schedule" the bundle yet (see 2937 // cancelScheduling). 2938 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2939 2940 ScheduleData *pickedSD = ReadyInsts.back(); 2941 ReadyInsts.pop_back(); 2942 2943 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2944 schedule(pickedSD, ReadyInsts); 2945 } 2946 } 2947 if (!Bundle->isReady()) { 2948 cancelScheduling(VL); 2949 return false; 2950 } 2951 return true; 2952 } 2953 2954 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2955 if (isa<PHINode>(VL[0])) 2956 return; 2957 2958 ScheduleData *Bundle = getScheduleData(VL[0]); 2959 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2960 assert(!Bundle->IsScheduled && 2961 "Can't cancel bundle which is already scheduled"); 2962 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2963 "tried to unbundle something which is not a bundle"); 2964 2965 // Un-bundle: make single instructions out of the bundle. 2966 ScheduleData *BundleMember = Bundle; 2967 while (BundleMember) { 2968 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2969 BundleMember->FirstInBundle = BundleMember; 2970 ScheduleData *Next = BundleMember->NextInBundle; 2971 BundleMember->NextInBundle = nullptr; 2972 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2973 if (BundleMember->UnscheduledDepsInBundle == 0) { 2974 ReadyInsts.insert(BundleMember); 2975 } 2976 BundleMember = Next; 2977 } 2978 } 2979 2980 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2981 if (getScheduleData(V)) 2982 return true; 2983 Instruction *I = dyn_cast<Instruction>(V); 2984 assert(I && "bundle member must be an instruction"); 2985 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2986 if (!ScheduleStart) { 2987 // It's the first instruction in the new region. 2988 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2989 ScheduleStart = I; 2990 ScheduleEnd = I->getNextNode(); 2991 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2992 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2993 return true; 2994 } 2995 // Search up and down at the same time, because we don't know if the new 2996 // instruction is above or below the existing scheduling region. 2997 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); 2998 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2999 BasicBlock::iterator DownIter(ScheduleEnd); 3000 BasicBlock::iterator LowerEnd = BB->end(); 3001 for (;;) { 3002 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3003 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3004 return false; 3005 } 3006 3007 if (UpIter != UpperEnd) { 3008 if (&*UpIter == I) { 3009 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3010 ScheduleStart = I; 3011 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3012 return true; 3013 } 3014 UpIter++; 3015 } 3016 if (DownIter != LowerEnd) { 3017 if (&*DownIter == I) { 3018 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3019 nullptr); 3020 ScheduleEnd = I->getNextNode(); 3021 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3022 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3023 return true; 3024 } 3025 DownIter++; 3026 } 3027 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3028 "instruction not found in block"); 3029 } 3030 return true; 3031 } 3032 3033 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3034 Instruction *ToI, 3035 ScheduleData *PrevLoadStore, 3036 ScheduleData *NextLoadStore) { 3037 ScheduleData *CurrentLoadStore = PrevLoadStore; 3038 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3039 ScheduleData *SD = ScheduleDataMap[I]; 3040 if (!SD) { 3041 // Allocate a new ScheduleData for the instruction. 3042 if (ChunkPos >= ChunkSize) { 3043 ScheduleDataChunks.push_back( 3044 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3045 ChunkPos = 0; 3046 } 3047 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3048 ScheduleDataMap[I] = SD; 3049 SD->Inst = I; 3050 } 3051 assert(!isInSchedulingRegion(SD) && 3052 "new ScheduleData already in scheduling region"); 3053 SD->init(SchedulingRegionID); 3054 3055 if (I->mayReadOrWriteMemory()) { 3056 // Update the linked list of memory accessing instructions. 3057 if (CurrentLoadStore) { 3058 CurrentLoadStore->NextLoadStore = SD; 3059 } else { 3060 FirstLoadStoreInRegion = SD; 3061 } 3062 CurrentLoadStore = SD; 3063 } 3064 } 3065 if (NextLoadStore) { 3066 if (CurrentLoadStore) 3067 CurrentLoadStore->NextLoadStore = NextLoadStore; 3068 } else { 3069 LastLoadStoreInRegion = CurrentLoadStore; 3070 } 3071 } 3072 3073 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3074 bool InsertInReadyList, 3075 BoUpSLP *SLP) { 3076 assert(SD->isSchedulingEntity()); 3077 3078 SmallVector<ScheduleData *, 10> WorkList; 3079 WorkList.push_back(SD); 3080 3081 while (!WorkList.empty()) { 3082 ScheduleData *SD = WorkList.back(); 3083 WorkList.pop_back(); 3084 3085 ScheduleData *BundleMember = SD; 3086 while (BundleMember) { 3087 assert(isInSchedulingRegion(BundleMember)); 3088 if (!BundleMember->hasValidDependencies()) { 3089 3090 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3091 BundleMember->Dependencies = 0; 3092 BundleMember->resetUnscheduledDeps(); 3093 3094 // Handle def-use chain dependencies. 3095 for (User *U : BundleMember->Inst->users()) { 3096 if (isa<Instruction>(U)) { 3097 ScheduleData *UseSD = getScheduleData(U); 3098 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3099 BundleMember->Dependencies++; 3100 ScheduleData *DestBundle = UseSD->FirstInBundle; 3101 if (!DestBundle->IsScheduled) { 3102 BundleMember->incrementUnscheduledDeps(1); 3103 } 3104 if (!DestBundle->hasValidDependencies()) { 3105 WorkList.push_back(DestBundle); 3106 } 3107 } 3108 } else { 3109 // I'm not sure if this can ever happen. But we need to be safe. 3110 // This lets the instruction/bundle never be scheduled and 3111 // eventually disable vectorization. 3112 BundleMember->Dependencies++; 3113 BundleMember->incrementUnscheduledDeps(1); 3114 } 3115 } 3116 3117 // Handle the memory dependencies. 3118 ScheduleData *DepDest = BundleMember->NextLoadStore; 3119 if (DepDest) { 3120 Instruction *SrcInst = BundleMember->Inst; 3121 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3122 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3123 unsigned numAliased = 0; 3124 unsigned DistToSrc = 1; 3125 3126 while (DepDest) { 3127 assert(isInSchedulingRegion(DepDest)); 3128 3129 // We have two limits to reduce the complexity: 3130 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3131 // SLP->isAliased (which is the expensive part in this loop). 3132 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3133 // the whole loop (even if the loop is fast, it's quadratic). 3134 // It's important for the loop break condition (see below) to 3135 // check this limit even between two read-only instructions. 3136 if (DistToSrc >= MaxMemDepDistance || 3137 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3138 (numAliased >= AliasedCheckLimit || 3139 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3140 3141 // We increment the counter only if the locations are aliased 3142 // (instead of counting all alias checks). This gives a better 3143 // balance between reduced runtime and accurate dependencies. 3144 numAliased++; 3145 3146 DepDest->MemoryDependencies.push_back(BundleMember); 3147 BundleMember->Dependencies++; 3148 ScheduleData *DestBundle = DepDest->FirstInBundle; 3149 if (!DestBundle->IsScheduled) { 3150 BundleMember->incrementUnscheduledDeps(1); 3151 } 3152 if (!DestBundle->hasValidDependencies()) { 3153 WorkList.push_back(DestBundle); 3154 } 3155 } 3156 DepDest = DepDest->NextLoadStore; 3157 3158 // Example, explaining the loop break condition: Let's assume our 3159 // starting instruction is i0 and MaxMemDepDistance = 3. 3160 // 3161 // +--------v--v--v 3162 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3163 // +--------^--^--^ 3164 // 3165 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3166 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3167 // Previously we already added dependencies from i3 to i6,i7,i8 3168 // (because of MaxMemDepDistance). As we added a dependency from 3169 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3170 // and we can abort this loop at i6. 3171 if (DistToSrc >= 2 * MaxMemDepDistance) 3172 break; 3173 DistToSrc++; 3174 } 3175 } 3176 } 3177 BundleMember = BundleMember->NextInBundle; 3178 } 3179 if (InsertInReadyList && SD->isReady()) { 3180 ReadyInsts.push_back(SD); 3181 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3182 } 3183 } 3184 } 3185 3186 void BoUpSLP::BlockScheduling::resetSchedule() { 3187 assert(ScheduleStart && 3188 "tried to reset schedule on block which has not been scheduled"); 3189 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3190 ScheduleData *SD = getScheduleData(I); 3191 assert(isInSchedulingRegion(SD)); 3192 SD->IsScheduled = false; 3193 SD->resetUnscheduledDeps(); 3194 } 3195 ReadyInsts.clear(); 3196 } 3197 3198 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3199 3200 if (!BS->ScheduleStart) 3201 return; 3202 3203 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3204 3205 BS->resetSchedule(); 3206 3207 // For the real scheduling we use a more sophisticated ready-list: it is 3208 // sorted by the original instruction location. This lets the final schedule 3209 // be as close as possible to the original instruction order. 3210 struct ScheduleDataCompare { 3211 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3212 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3213 } 3214 }; 3215 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3216 3217 // Ensure that all dependency data is updated and fill the ready-list with 3218 // initial instructions. 3219 int Idx = 0; 3220 int NumToSchedule = 0; 3221 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3222 I = I->getNextNode()) { 3223 ScheduleData *SD = BS->getScheduleData(I); 3224 assert( 3225 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3226 "scheduler and vectorizer have different opinion on what is a bundle"); 3227 SD->FirstInBundle->SchedulingPriority = Idx++; 3228 if (SD->isSchedulingEntity()) { 3229 BS->calculateDependencies(SD, false, this); 3230 NumToSchedule++; 3231 } 3232 } 3233 BS->initialFillReadyList(ReadyInsts); 3234 3235 Instruction *LastScheduledInst = BS->ScheduleEnd; 3236 3237 // Do the "real" scheduling. 3238 while (!ReadyInsts.empty()) { 3239 ScheduleData *picked = *ReadyInsts.begin(); 3240 ReadyInsts.erase(ReadyInsts.begin()); 3241 3242 // Move the scheduled instruction(s) to their dedicated places, if not 3243 // there yet. 3244 ScheduleData *BundleMember = picked; 3245 while (BundleMember) { 3246 Instruction *pickedInst = BundleMember->Inst; 3247 if (LastScheduledInst->getNextNode() != pickedInst) { 3248 BS->BB->getInstList().remove(pickedInst); 3249 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3250 pickedInst); 3251 } 3252 LastScheduledInst = pickedInst; 3253 BundleMember = BundleMember->NextInBundle; 3254 } 3255 3256 BS->schedule(picked, ReadyInsts); 3257 NumToSchedule--; 3258 } 3259 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3260 3261 // Avoid duplicate scheduling of the block. 3262 BS->ScheduleStart = nullptr; 3263 } 3264 3265 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3266 // If V is a store, just return the width of the stored value without 3267 // traversing the expression tree. This is the common case. 3268 if (auto *Store = dyn_cast<StoreInst>(V)) 3269 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3270 3271 // If V is not a store, we can traverse the expression tree to find loads 3272 // that feed it. The type of the loaded value may indicate a more suitable 3273 // width than V's type. We want to base the vector element size on the width 3274 // of memory operations where possible. 3275 SmallVector<Instruction *, 16> Worklist; 3276 SmallPtrSet<Instruction *, 16> Visited; 3277 if (auto *I = dyn_cast<Instruction>(V)) 3278 Worklist.push_back(I); 3279 3280 // Traverse the expression tree in bottom-up order looking for loads. If we 3281 // encounter an instruciton we don't yet handle, we give up. 3282 auto MaxWidth = 0u; 3283 auto FoundUnknownInst = false; 3284 while (!Worklist.empty() && !FoundUnknownInst) { 3285 auto *I = Worklist.pop_back_val(); 3286 Visited.insert(I); 3287 3288 // We should only be looking at scalar instructions here. If the current 3289 // instruction has a vector type, give up. 3290 auto *Ty = I->getType(); 3291 if (isa<VectorType>(Ty)) 3292 FoundUnknownInst = true; 3293 3294 // If the current instruction is a load, update MaxWidth to reflect the 3295 // width of the loaded value. 3296 else if (isa<LoadInst>(I)) 3297 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3298 3299 // Otherwise, we need to visit the operands of the instruction. We only 3300 // handle the interesting cases from buildTree here. If an operand is an 3301 // instruction we haven't yet visited, we add it to the worklist. 3302 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3303 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3304 for (Use &U : I->operands()) 3305 if (auto *J = dyn_cast<Instruction>(U.get())) 3306 if (!Visited.count(J)) 3307 Worklist.push_back(J); 3308 } 3309 3310 // If we don't yet handle the instruction, give up. 3311 else 3312 FoundUnknownInst = true; 3313 } 3314 3315 // If we didn't encounter a memory access in the expression tree, or if we 3316 // gave up for some reason, just return the width of V. 3317 if (!MaxWidth || FoundUnknownInst) 3318 return DL->getTypeSizeInBits(V->getType()); 3319 3320 // Otherwise, return the maximum width we found. 3321 return MaxWidth; 3322 } 3323 3324 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3325 // smaller type with a truncation. We collect the values that will be demoted 3326 // in ToDemote and additional roots that require investigating in Roots. 3327 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3328 SmallVectorImpl<Value *> &ToDemote, 3329 SmallVectorImpl<Value *> &Roots) { 3330 3331 // We can always demote constants. 3332 if (isa<Constant>(V)) { 3333 ToDemote.push_back(V); 3334 return true; 3335 } 3336 3337 // If the value is not an instruction in the expression with only one use, it 3338 // cannot be demoted. 3339 auto *I = dyn_cast<Instruction>(V); 3340 if (!I || !I->hasOneUse() || !Expr.count(I)) 3341 return false; 3342 3343 switch (I->getOpcode()) { 3344 3345 // We can always demote truncations and extensions. Since truncations can 3346 // seed additional demotion, we save the truncated value. 3347 case Instruction::Trunc: 3348 Roots.push_back(I->getOperand(0)); 3349 case Instruction::ZExt: 3350 case Instruction::SExt: 3351 break; 3352 3353 // We can demote certain binary operations if we can demote both of their 3354 // operands. 3355 case Instruction::Add: 3356 case Instruction::Sub: 3357 case Instruction::Mul: 3358 case Instruction::And: 3359 case Instruction::Or: 3360 case Instruction::Xor: 3361 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3362 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3363 return false; 3364 break; 3365 3366 // We can demote selects if we can demote their true and false values. 3367 case Instruction::Select: { 3368 SelectInst *SI = cast<SelectInst>(I); 3369 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3370 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3371 return false; 3372 break; 3373 } 3374 3375 // We can demote phis if we can demote all their incoming operands. Note that 3376 // we don't need to worry about cycles since we ensure single use above. 3377 case Instruction::PHI: { 3378 PHINode *PN = cast<PHINode>(I); 3379 for (Value *IncValue : PN->incoming_values()) 3380 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3381 return false; 3382 break; 3383 } 3384 3385 // Otherwise, conservatively give up. 3386 default: 3387 return false; 3388 } 3389 3390 // Record the value that we can demote. 3391 ToDemote.push_back(V); 3392 return true; 3393 } 3394 3395 void BoUpSLP::computeMinimumValueSizes() { 3396 // If there are no external uses, the expression tree must be rooted by a 3397 // store. We can't demote in-memory values, so there is nothing to do here. 3398 if (ExternalUses.empty()) 3399 return; 3400 3401 // We only attempt to truncate integer expressions. 3402 auto &TreeRoot = VectorizableTree[0].Scalars; 3403 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3404 if (!TreeRootIT) 3405 return; 3406 3407 // If the expression is not rooted by a store, these roots should have 3408 // external uses. We will rely on InstCombine to rewrite the expression in 3409 // the narrower type. However, InstCombine only rewrites single-use values. 3410 // This means that if a tree entry other than a root is used externally, it 3411 // must have multiple uses and InstCombine will not rewrite it. The code 3412 // below ensures that only the roots are used externally. 3413 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3414 for (auto &EU : ExternalUses) 3415 if (!Expr.erase(EU.Scalar)) 3416 return; 3417 if (!Expr.empty()) 3418 return; 3419 3420 // Collect the scalar values of the vectorizable expression. We will use this 3421 // context to determine which values can be demoted. If we see a truncation, 3422 // we mark it as seeding another demotion. 3423 for (auto &Entry : VectorizableTree) 3424 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3425 3426 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3427 // have a single external user that is not in the vectorizable tree. 3428 for (auto *Root : TreeRoot) 3429 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3430 return; 3431 3432 // Conservatively determine if we can actually truncate the roots of the 3433 // expression. Collect the values that can be demoted in ToDemote and 3434 // additional roots that require investigating in Roots. 3435 SmallVector<Value *, 32> ToDemote; 3436 SmallVector<Value *, 4> Roots; 3437 for (auto *Root : TreeRoot) 3438 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3439 return; 3440 3441 // The maximum bit width required to represent all the values that can be 3442 // demoted without loss of precision. It would be safe to truncate the roots 3443 // of the expression to this width. 3444 auto MaxBitWidth = 8u; 3445 3446 // We first check if all the bits of the roots are demanded. If they're not, 3447 // we can truncate the roots to this narrower type. 3448 for (auto *Root : TreeRoot) { 3449 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3450 MaxBitWidth = std::max<unsigned>( 3451 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3452 } 3453 3454 // If all the bits of the roots are demanded, we can try a little harder to 3455 // compute a narrower type. This can happen, for example, if the roots are 3456 // getelementptr indices. InstCombine promotes these indices to the pointer 3457 // width. Thus, all their bits are technically demanded even though the 3458 // address computation might be vectorized in a smaller type. 3459 // 3460 // We start by looking at each entry that can be demoted. We compute the 3461 // maximum bit width required to store the scalar by using ValueTracking to 3462 // compute the number of high-order bits we can truncate. 3463 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3464 MaxBitWidth = 8u; 3465 for (auto *Scalar : ToDemote) { 3466 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3467 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3468 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3469 } 3470 } 3471 3472 // Round MaxBitWidth up to the next power-of-two. 3473 if (!isPowerOf2_64(MaxBitWidth)) 3474 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3475 3476 // If the maximum bit width we compute is less than the with of the roots' 3477 // type, we can proceed with the narrowing. Otherwise, do nothing. 3478 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3479 return; 3480 3481 // If we can truncate the root, we must collect additional values that might 3482 // be demoted as a result. That is, those seeded by truncations we will 3483 // modify. 3484 while (!Roots.empty()) 3485 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3486 3487 // Finally, map the values we can demote to the maximum bit with we computed. 3488 for (auto *Scalar : ToDemote) 3489 MinBWs[Scalar] = MaxBitWidth; 3490 } 3491 3492 namespace { 3493 /// The SLPVectorizer Pass. 3494 struct SLPVectorizer : public FunctionPass { 3495 SLPVectorizerPass Impl; 3496 3497 /// Pass identification, replacement for typeid 3498 static char ID; 3499 3500 explicit SLPVectorizer() : FunctionPass(ID) { 3501 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3502 } 3503 3504 3505 bool doInitialization(Module &M) override { 3506 return false; 3507 } 3508 3509 bool runOnFunction(Function &F) override { 3510 if (skipFunction(F)) 3511 return false; 3512 3513 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3514 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3515 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3516 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3517 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3518 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3519 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3520 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3521 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3522 3523 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3524 } 3525 3526 void getAnalysisUsage(AnalysisUsage &AU) const override { 3527 FunctionPass::getAnalysisUsage(AU); 3528 AU.addRequired<AssumptionCacheTracker>(); 3529 AU.addRequired<ScalarEvolutionWrapperPass>(); 3530 AU.addRequired<AAResultsWrapperPass>(); 3531 AU.addRequired<TargetTransformInfoWrapperPass>(); 3532 AU.addRequired<LoopInfoWrapperPass>(); 3533 AU.addRequired<DominatorTreeWrapperPass>(); 3534 AU.addRequired<DemandedBitsWrapperPass>(); 3535 AU.addPreserved<LoopInfoWrapperPass>(); 3536 AU.addPreserved<DominatorTreeWrapperPass>(); 3537 AU.addPreserved<AAResultsWrapperPass>(); 3538 AU.addPreserved<GlobalsAAWrapperPass>(); 3539 AU.setPreservesCFG(); 3540 } 3541 }; 3542 } // end anonymous namespace 3543 3544 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3545 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3546 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3547 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3548 auto *AA = &AM.getResult<AAManager>(F); 3549 auto *LI = &AM.getResult<LoopAnalysis>(F); 3550 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3551 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3552 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3553 3554 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3555 if (!Changed) 3556 return PreservedAnalyses::all(); 3557 PreservedAnalyses PA; 3558 PA.preserve<LoopAnalysis>(); 3559 PA.preserve<DominatorTreeAnalysis>(); 3560 PA.preserve<AAManager>(); 3561 PA.preserve<GlobalsAA>(); 3562 return PA; 3563 } 3564 3565 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3566 TargetTransformInfo *TTI_, 3567 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3568 LoopInfo *LI_, DominatorTree *DT_, 3569 AssumptionCache *AC_, DemandedBits *DB_) { 3570 SE = SE_; 3571 TTI = TTI_; 3572 TLI = TLI_; 3573 AA = AA_; 3574 LI = LI_; 3575 DT = DT_; 3576 AC = AC_; 3577 DB = DB_; 3578 DL = &F.getParent()->getDataLayout(); 3579 3580 Stores.clear(); 3581 GEPs.clear(); 3582 bool Changed = false; 3583 3584 // If the target claims to have no vector registers don't attempt 3585 // vectorization. 3586 if (!TTI->getNumberOfRegisters(true)) 3587 return false; 3588 3589 // Don't vectorize when the attribute NoImplicitFloat is used. 3590 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3591 return false; 3592 3593 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3594 3595 // Use the bottom up slp vectorizer to construct chains that start with 3596 // store instructions. 3597 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3598 3599 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3600 // delete instructions. 3601 3602 // Scan the blocks in the function in post order. 3603 for (auto BB : post_order(&F.getEntryBlock())) { 3604 collectSeedInstructions(BB); 3605 3606 // Vectorize trees that end at stores. 3607 if (!Stores.empty()) { 3608 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3609 << " underlying objects.\n"); 3610 Changed |= vectorizeStoreChains(R); 3611 } 3612 3613 // Vectorize trees that end at reductions. 3614 Changed |= vectorizeChainsInBlock(BB, R); 3615 3616 // Vectorize the index computations of getelementptr instructions. This 3617 // is primarily intended to catch gather-like idioms ending at 3618 // non-consecutive loads. 3619 if (!GEPs.empty()) { 3620 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3621 << " underlying objects.\n"); 3622 Changed |= vectorizeGEPIndices(BB, R); 3623 } 3624 } 3625 3626 if (Changed) { 3627 R.optimizeGatherSequence(); 3628 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3629 DEBUG(verifyFunction(F)); 3630 } 3631 return Changed; 3632 } 3633 3634 /// \brief Check that the Values in the slice in VL array are still existent in 3635 /// the WeakVH array. 3636 /// Vectorization of part of the VL array may cause later values in the VL array 3637 /// to become invalid. We track when this has happened in the WeakVH array. 3638 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3639 unsigned SliceBegin, unsigned SliceSize) { 3640 VL = VL.slice(SliceBegin, SliceSize); 3641 VH = VH.slice(SliceBegin, SliceSize); 3642 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3643 } 3644 3645 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, 3646 int CostThreshold, BoUpSLP &R, 3647 unsigned VecRegSize) { 3648 unsigned ChainLen = Chain.size(); 3649 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3650 << "\n"); 3651 unsigned Sz = R.getVectorElementSize(Chain[0]); 3652 unsigned VF = VecRegSize / Sz; 3653 3654 if (!isPowerOf2_32(Sz) || VF < 2) 3655 return false; 3656 3657 // Keep track of values that were deleted by vectorizing in the loop below. 3658 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3659 3660 bool Changed = false; 3661 // Look for profitable vectorizable trees at all offsets, starting at zero. 3662 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3663 if (i + VF > e) 3664 break; 3665 3666 // Check that a previous iteration of this loop did not delete the Value. 3667 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3668 continue; 3669 3670 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3671 << "\n"); 3672 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3673 3674 R.buildTree(Operands); 3675 R.computeMinimumValueSizes(); 3676 3677 int Cost = R.getTreeCost(); 3678 3679 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3680 if (Cost < CostThreshold) { 3681 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3682 R.vectorizeTree(); 3683 3684 // Move to the next bundle. 3685 i += VF - 1; 3686 Changed = true; 3687 } 3688 } 3689 3690 return Changed; 3691 } 3692 3693 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3694 int costThreshold, BoUpSLP &R) { 3695 SetVector<StoreInst *> Heads, Tails; 3696 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3697 3698 // We may run into multiple chains that merge into a single chain. We mark the 3699 // stores that we vectorized so that we don't visit the same store twice. 3700 BoUpSLP::ValueSet VectorizedStores; 3701 bool Changed = false; 3702 3703 // Do a quadratic search on all of the given stores and find 3704 // all of the pairs of stores that follow each other. 3705 SmallVector<unsigned, 16> IndexQueue; 3706 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3707 IndexQueue.clear(); 3708 // If a store has multiple consecutive store candidates, search Stores 3709 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3710 // This is because usually pairing with immediate succeeding or preceding 3711 // candidate create the best chance to find slp vectorization opportunity. 3712 unsigned j = 0; 3713 for (j = i + 1; j < e; ++j) 3714 IndexQueue.push_back(j); 3715 for (j = i; j > 0; --j) 3716 IndexQueue.push_back(j - 1); 3717 3718 for (auto &k : IndexQueue) { 3719 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3720 Tails.insert(Stores[k]); 3721 Heads.insert(Stores[i]); 3722 ConsecutiveChain[Stores[i]] = Stores[k]; 3723 break; 3724 } 3725 } 3726 } 3727 3728 // For stores that start but don't end a link in the chain: 3729 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3730 it != e; ++it) { 3731 if (Tails.count(*it)) 3732 continue; 3733 3734 // We found a store instr that starts a chain. Now follow the chain and try 3735 // to vectorize it. 3736 BoUpSLP::ValueList Operands; 3737 StoreInst *I = *it; 3738 // Collect the chain into a list. 3739 while (Tails.count(I) || Heads.count(I)) { 3740 if (VectorizedStores.count(I)) 3741 break; 3742 Operands.push_back(I); 3743 // Move to the next value in the chain. 3744 I = ConsecutiveChain[I]; 3745 } 3746 3747 // FIXME: Is division-by-2 the correct step? Should we assert that the 3748 // register size is a power-of-2? 3749 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) { 3750 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3751 // Mark the vectorized stores so that we don't vectorize them again. 3752 VectorizedStores.insert(Operands.begin(), Operands.end()); 3753 Changed = true; 3754 break; 3755 } 3756 } 3757 } 3758 3759 return Changed; 3760 } 3761 3762 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3763 3764 // Initialize the collections. We will make a single pass over the block. 3765 Stores.clear(); 3766 GEPs.clear(); 3767 3768 // Visit the store and getelementptr instructions in BB and organize them in 3769 // Stores and GEPs according to the underlying objects of their pointer 3770 // operands. 3771 for (Instruction &I : *BB) { 3772 3773 // Ignore store instructions that are volatile or have a pointer operand 3774 // that doesn't point to a scalar type. 3775 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3776 if (!SI->isSimple()) 3777 continue; 3778 if (!isValidElementType(SI->getValueOperand()->getType())) 3779 continue; 3780 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3781 } 3782 3783 // Ignore getelementptr instructions that have more than one index, a 3784 // constant index, or a pointer operand that doesn't point to a scalar 3785 // type. 3786 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3787 auto Idx = GEP->idx_begin()->get(); 3788 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3789 continue; 3790 if (!isValidElementType(Idx->getType())) 3791 continue; 3792 if (GEP->getType()->isVectorTy()) 3793 continue; 3794 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3795 } 3796 } 3797 } 3798 3799 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3800 if (!A || !B) 3801 return false; 3802 Value *VL[] = { A, B }; 3803 return tryToVectorizeList(VL, R, None, true); 3804 } 3805 3806 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3807 ArrayRef<Value *> BuildVector, 3808 bool allowReorder) { 3809 if (VL.size() < 2) 3810 return false; 3811 3812 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3813 3814 // Check that all of the parts are scalar instructions of the same type. 3815 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3816 if (!I0) 3817 return false; 3818 3819 unsigned Opcode0 = I0->getOpcode(); 3820 3821 // FIXME: Register size should be a parameter to this function, so we can 3822 // try different vectorization factors. 3823 unsigned Sz = R.getVectorElementSize(I0); 3824 unsigned VF = R.getMinVecRegSize() / Sz; 3825 3826 for (Value *V : VL) { 3827 Type *Ty = V->getType(); 3828 if (!isValidElementType(Ty)) 3829 return false; 3830 Instruction *Inst = dyn_cast<Instruction>(V); 3831 if (!Inst || Inst->getOpcode() != Opcode0) 3832 return false; 3833 } 3834 3835 bool Changed = false; 3836 3837 // Keep track of values that were deleted by vectorizing in the loop below. 3838 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3839 3840 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3841 unsigned OpsWidth = 0; 3842 3843 if (i + VF > e) 3844 OpsWidth = e - i; 3845 else 3846 OpsWidth = VF; 3847 3848 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3849 break; 3850 3851 // Check that a previous iteration of this loop did not delete the Value. 3852 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3853 continue; 3854 3855 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3856 << "\n"); 3857 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3858 3859 ArrayRef<Value *> BuildVectorSlice; 3860 if (!BuildVector.empty()) 3861 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3862 3863 R.buildTree(Ops, BuildVectorSlice); 3864 // TODO: check if we can allow reordering also for other cases than 3865 // tryToVectorizePair() 3866 if (allowReorder && R.shouldReorder()) { 3867 assert(Ops.size() == 2); 3868 assert(BuildVectorSlice.empty()); 3869 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3870 R.buildTree(ReorderedOps, None); 3871 } 3872 R.computeMinimumValueSizes(); 3873 int Cost = R.getTreeCost(); 3874 3875 if (Cost < -SLPCostThreshold) { 3876 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3877 Value *VectorizedRoot = R.vectorizeTree(); 3878 3879 // Reconstruct the build vector by extracting the vectorized root. This 3880 // way we handle the case where some elements of the vector are undefined. 3881 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3882 if (!BuildVectorSlice.empty()) { 3883 // The insert point is the last build vector instruction. The vectorized 3884 // root will precede it. This guarantees that we get an instruction. The 3885 // vectorized tree could have been constant folded. 3886 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3887 unsigned VecIdx = 0; 3888 for (auto &V : BuildVectorSlice) { 3889 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 3890 ++BasicBlock::iterator(InsertAfter)); 3891 Instruction *I = cast<Instruction>(V); 3892 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 3893 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3894 VectorizedRoot, Builder.getInt32(VecIdx++))); 3895 I->setOperand(1, Extract); 3896 I->removeFromParent(); 3897 I->insertAfter(Extract); 3898 InsertAfter = I; 3899 } 3900 } 3901 // Move to the next bundle. 3902 i += VF - 1; 3903 Changed = true; 3904 } 3905 } 3906 3907 return Changed; 3908 } 3909 3910 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3911 if (!V) 3912 return false; 3913 3914 // Try to vectorize V. 3915 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3916 return true; 3917 3918 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3919 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3920 // Try to skip B. 3921 if (B && B->hasOneUse()) { 3922 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3923 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3924 if (tryToVectorizePair(A, B0, R)) { 3925 return true; 3926 } 3927 if (tryToVectorizePair(A, B1, R)) { 3928 return true; 3929 } 3930 } 3931 3932 // Try to skip A. 3933 if (A && A->hasOneUse()) { 3934 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3935 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3936 if (tryToVectorizePair(A0, B, R)) { 3937 return true; 3938 } 3939 if (tryToVectorizePair(A1, B, R)) { 3940 return true; 3941 } 3942 } 3943 return 0; 3944 } 3945 3946 /// \brief Generate a shuffle mask to be used in a reduction tree. 3947 /// 3948 /// \param VecLen The length of the vector to be reduced. 3949 /// \param NumEltsToRdx The number of elements that should be reduced in the 3950 /// vector. 3951 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3952 /// reduction. A pairwise reduction will generate a mask of 3953 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3954 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3955 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3956 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3957 bool IsPairwise, bool IsLeft, 3958 IRBuilder<> &Builder) { 3959 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3960 3961 SmallVector<Constant *, 32> ShuffleMask( 3962 VecLen, UndefValue::get(Builder.getInt32Ty())); 3963 3964 if (IsPairwise) 3965 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3966 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3967 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3968 else 3969 // Move the upper half of the vector to the lower half. 3970 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3971 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3972 3973 return ConstantVector::get(ShuffleMask); 3974 } 3975 3976 3977 /// Model horizontal reductions. 3978 /// 3979 /// A horizontal reduction is a tree of reduction operations (currently add and 3980 /// fadd) that has operations that can be put into a vector as its leaf. 3981 /// For example, this tree: 3982 /// 3983 /// mul mul mul mul 3984 /// \ / \ / 3985 /// + + 3986 /// \ / 3987 /// + 3988 /// This tree has "mul" as its reduced values and "+" as its reduction 3989 /// operations. A reduction might be feeding into a store or a binary operation 3990 /// feeding a phi. 3991 /// ... 3992 /// \ / 3993 /// + 3994 /// | 3995 /// phi += 3996 /// 3997 /// Or: 3998 /// ... 3999 /// \ / 4000 /// + 4001 /// | 4002 /// *p = 4003 /// 4004 class HorizontalReduction { 4005 SmallVector<Value *, 16> ReductionOps; 4006 SmallVector<Value *, 32> ReducedVals; 4007 4008 BinaryOperator *ReductionRoot; 4009 PHINode *ReductionPHI; 4010 4011 /// The opcode of the reduction. 4012 unsigned ReductionOpcode; 4013 /// The opcode of the values we perform a reduction on. 4014 unsigned ReducedValueOpcode; 4015 /// Should we model this reduction as a pairwise reduction tree or a tree that 4016 /// splits the vector in halves and adds those halves. 4017 bool IsPairwiseReduction; 4018 4019 public: 4020 /// The width of one full horizontal reduction operation. 4021 unsigned ReduxWidth; 4022 4023 /// Minimal width of available vector registers. It's used to determine 4024 /// ReduxWidth. 4025 unsigned MinVecRegSize; 4026 4027 HorizontalReduction(unsigned MinVecRegSize) 4028 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 4029 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), 4030 MinVecRegSize(MinVecRegSize) {} 4031 4032 /// \brief Try to find a reduction tree. 4033 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4034 assert((!Phi || 4035 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 4036 "Thi phi needs to use the binary operator"); 4037 4038 // We could have a initial reductions that is not an add. 4039 // r *= v1 + v2 + v3 + v4 4040 // In such a case start looking for a tree rooted in the first '+'. 4041 if (Phi) { 4042 if (B->getOperand(0) == Phi) { 4043 Phi = nullptr; 4044 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4045 } else if (B->getOperand(1) == Phi) { 4046 Phi = nullptr; 4047 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4048 } 4049 } 4050 4051 if (!B) 4052 return false; 4053 4054 Type *Ty = B->getType(); 4055 if (!isValidElementType(Ty)) 4056 return false; 4057 4058 const DataLayout &DL = B->getModule()->getDataLayout(); 4059 ReductionOpcode = B->getOpcode(); 4060 ReducedValueOpcode = 0; 4061 // FIXME: Register size should be a parameter to this function, so we can 4062 // try different vectorization factors. 4063 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 4064 ReductionRoot = B; 4065 ReductionPHI = Phi; 4066 4067 if (ReduxWidth < 4) 4068 return false; 4069 4070 // We currently only support adds. 4071 if (ReductionOpcode != Instruction::Add && 4072 ReductionOpcode != Instruction::FAdd) 4073 return false; 4074 4075 // Post order traverse the reduction tree starting at B. We only handle true 4076 // trees containing only binary operators or selects. 4077 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4078 Stack.push_back(std::make_pair(B, 0)); 4079 while (!Stack.empty()) { 4080 Instruction *TreeN = Stack.back().first; 4081 unsigned EdgeToVist = Stack.back().second++; 4082 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4083 4084 // Only handle trees in the current basic block. 4085 if (TreeN->getParent() != B->getParent()) 4086 return false; 4087 4088 // Each tree node needs to have one user except for the ultimate 4089 // reduction. 4090 if (!TreeN->hasOneUse() && TreeN != B) 4091 return false; 4092 4093 // Postorder vist. 4094 if (EdgeToVist == 2 || IsReducedValue) { 4095 if (IsReducedValue) { 4096 // Make sure that the opcodes of the operations that we are going to 4097 // reduce match. 4098 if (!ReducedValueOpcode) 4099 ReducedValueOpcode = TreeN->getOpcode(); 4100 else if (ReducedValueOpcode != TreeN->getOpcode()) 4101 return false; 4102 ReducedVals.push_back(TreeN); 4103 } else { 4104 // We need to be able to reassociate the adds. 4105 if (!TreeN->isAssociative()) 4106 return false; 4107 ReductionOps.push_back(TreeN); 4108 } 4109 // Retract. 4110 Stack.pop_back(); 4111 continue; 4112 } 4113 4114 // Visit left or right. 4115 Value *NextV = TreeN->getOperand(EdgeToVist); 4116 // We currently only allow BinaryOperator's and SelectInst's as reduction 4117 // values in our tree. 4118 if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) 4119 Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); 4120 else if (NextV != Phi) 4121 return false; 4122 } 4123 return true; 4124 } 4125 4126 /// \brief Attempt to vectorize the tree found by 4127 /// matchAssociativeReduction. 4128 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4129 if (ReducedVals.empty()) 4130 return false; 4131 4132 unsigned NumReducedVals = ReducedVals.size(); 4133 if (NumReducedVals < ReduxWidth) 4134 return false; 4135 4136 Value *VectorizedTree = nullptr; 4137 IRBuilder<> Builder(ReductionRoot); 4138 FastMathFlags Unsafe; 4139 Unsafe.setUnsafeAlgebra(); 4140 Builder.setFastMathFlags(Unsafe); 4141 unsigned i = 0; 4142 4143 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4144 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 4145 V.computeMinimumValueSizes(); 4146 4147 // Estimate cost. 4148 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4149 if (Cost >= -SLPCostThreshold) 4150 break; 4151 4152 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4153 << ". (HorRdx)\n"); 4154 4155 // Vectorize a tree. 4156 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4157 Value *VectorizedRoot = V.vectorizeTree(); 4158 4159 // Emit a reduction. 4160 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4161 if (VectorizedTree) { 4162 Builder.SetCurrentDebugLocation(Loc); 4163 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4164 ReducedSubTree, "bin.rdx"); 4165 } else 4166 VectorizedTree = ReducedSubTree; 4167 } 4168 4169 if (VectorizedTree) { 4170 // Finish the reduction. 4171 for (; i < NumReducedVals; ++i) { 4172 Builder.SetCurrentDebugLocation( 4173 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4174 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4175 ReducedVals[i]); 4176 } 4177 // Update users. 4178 if (ReductionPHI) { 4179 assert(ReductionRoot && "Need a reduction operation"); 4180 ReductionRoot->setOperand(0, VectorizedTree); 4181 ReductionRoot->setOperand(1, ReductionPHI); 4182 } else 4183 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4184 } 4185 return VectorizedTree != nullptr; 4186 } 4187 4188 unsigned numReductionValues() const { 4189 return ReducedVals.size(); 4190 } 4191 4192 private: 4193 /// \brief Calculate the cost of a reduction. 4194 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4195 Type *ScalarTy = FirstReducedVal->getType(); 4196 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4197 4198 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4199 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4200 4201 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4202 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4203 4204 int ScalarReduxCost = 4205 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 4206 4207 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4208 << " for reduction that starts with " << *FirstReducedVal 4209 << " (It is a " 4210 << (IsPairwiseReduction ? "pairwise" : "splitting") 4211 << " reduction)\n"); 4212 4213 return VecReduxCost - ScalarReduxCost; 4214 } 4215 4216 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4217 Value *R, const Twine &Name = "") { 4218 if (Opcode == Instruction::FAdd) 4219 return Builder.CreateFAdd(L, R, Name); 4220 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4221 } 4222 4223 /// \brief Emit a horizontal reduction of the vectorized value. 4224 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4225 assert(VectorizedValue && "Need to have a vectorized tree node"); 4226 assert(isPowerOf2_32(ReduxWidth) && 4227 "We only handle power-of-two reductions for now"); 4228 4229 Value *TmpVec = VectorizedValue; 4230 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4231 if (IsPairwiseReduction) { 4232 Value *LeftMask = 4233 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4234 Value *RightMask = 4235 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4236 4237 Value *LeftShuf = Builder.CreateShuffleVector( 4238 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4239 Value *RightShuf = Builder.CreateShuffleVector( 4240 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4241 "rdx.shuf.r"); 4242 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4243 "bin.rdx"); 4244 } else { 4245 Value *UpperHalf = 4246 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4247 Value *Shuf = Builder.CreateShuffleVector( 4248 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4249 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4250 } 4251 } 4252 4253 // The result is in the first element of the vector. 4254 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4255 } 4256 }; 4257 4258 /// \brief Recognize construction of vectors like 4259 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4260 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4261 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4262 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4263 /// 4264 /// Returns true if it matches 4265 /// 4266 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4267 SmallVectorImpl<Value *> &BuildVector, 4268 SmallVectorImpl<Value *> &BuildVectorOpds) { 4269 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4270 return false; 4271 4272 InsertElementInst *IE = FirstInsertElem; 4273 while (true) { 4274 BuildVector.push_back(IE); 4275 BuildVectorOpds.push_back(IE->getOperand(1)); 4276 4277 if (IE->use_empty()) 4278 return false; 4279 4280 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4281 if (!NextUse) 4282 return true; 4283 4284 // If this isn't the final use, make sure the next insertelement is the only 4285 // use. It's OK if the final constructed vector is used multiple times 4286 if (!IE->hasOneUse()) 4287 return false; 4288 4289 IE = NextUse; 4290 } 4291 4292 return false; 4293 } 4294 4295 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4296 /// 4297 /// \return true if it matches. 4298 static bool findBuildAggregate(InsertValueInst *IV, 4299 SmallVectorImpl<Value *> &BuildVector, 4300 SmallVectorImpl<Value *> &BuildVectorOpds) { 4301 if (!IV->hasOneUse()) 4302 return false; 4303 Value *V = IV->getAggregateOperand(); 4304 if (!isa<UndefValue>(V)) { 4305 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4306 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4307 return false; 4308 } 4309 BuildVector.push_back(IV); 4310 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4311 return true; 4312 } 4313 4314 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4315 return V->getType() < V2->getType(); 4316 } 4317 4318 /// \brief Try and get a reduction value from a phi node. 4319 /// 4320 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4321 /// if they come from either \p ParentBB or a containing loop latch. 4322 /// 4323 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4324 /// if not possible. 4325 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4326 BasicBlock *ParentBB, LoopInfo *LI) { 4327 // There are situations where the reduction value is not dominated by the 4328 // reduction phi. Vectorizing such cases has been reported to cause 4329 // miscompiles. See PR25787. 4330 auto DominatedReduxValue = [&](Value *R) { 4331 return ( 4332 dyn_cast<Instruction>(R) && 4333 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4334 }; 4335 4336 Value *Rdx = nullptr; 4337 4338 // Return the incoming value if it comes from the same BB as the phi node. 4339 if (P->getIncomingBlock(0) == ParentBB) { 4340 Rdx = P->getIncomingValue(0); 4341 } else if (P->getIncomingBlock(1) == ParentBB) { 4342 Rdx = P->getIncomingValue(1); 4343 } 4344 4345 if (Rdx && DominatedReduxValue(Rdx)) 4346 return Rdx; 4347 4348 // Otherwise, check whether we have a loop latch to look at. 4349 Loop *BBL = LI->getLoopFor(ParentBB); 4350 if (!BBL) 4351 return nullptr; 4352 BasicBlock *BBLatch = BBL->getLoopLatch(); 4353 if (!BBLatch) 4354 return nullptr; 4355 4356 // There is a loop latch, return the incoming value if it comes from 4357 // that. This reduction pattern occassionaly turns up. 4358 if (P->getIncomingBlock(0) == BBLatch) { 4359 Rdx = P->getIncomingValue(0); 4360 } else if (P->getIncomingBlock(1) == BBLatch) { 4361 Rdx = P->getIncomingValue(1); 4362 } 4363 4364 if (Rdx && DominatedReduxValue(Rdx)) 4365 return Rdx; 4366 4367 return nullptr; 4368 } 4369 4370 /// \brief Attempt to reduce a horizontal reduction. 4371 /// If it is legal to match a horizontal reduction feeding 4372 /// the phi node P with reduction operators BI, then check if it 4373 /// can be done. 4374 /// \returns true if a horizontal reduction was matched and reduced. 4375 /// \returns false if a horizontal reduction was not matched. 4376 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 4377 BoUpSLP &R, TargetTransformInfo *TTI, 4378 unsigned MinRegSize) { 4379 if (!ShouldVectorizeHor) 4380 return false; 4381 4382 HorizontalReduction HorRdx(MinRegSize); 4383 if (!HorRdx.matchAssociativeReduction(P, BI)) 4384 return false; 4385 4386 // If there is a sufficient number of reduction values, reduce 4387 // to a nearby power-of-2. Can safely generate oversized 4388 // vectors and rely on the backend to split them to legal sizes. 4389 HorRdx.ReduxWidth = 4390 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4391 4392 return HorRdx.tryToReduce(R, TTI); 4393 } 4394 4395 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4396 bool Changed = false; 4397 SmallVector<Value *, 4> Incoming; 4398 SmallSet<Value *, 16> VisitedInstrs; 4399 4400 bool HaveVectorizedPhiNodes = true; 4401 while (HaveVectorizedPhiNodes) { 4402 HaveVectorizedPhiNodes = false; 4403 4404 // Collect the incoming values from the PHIs. 4405 Incoming.clear(); 4406 for (Instruction &I : *BB) { 4407 PHINode *P = dyn_cast<PHINode>(&I); 4408 if (!P) 4409 break; 4410 4411 if (!VisitedInstrs.count(P)) 4412 Incoming.push_back(P); 4413 } 4414 4415 // Sort by type. 4416 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4417 4418 // Try to vectorize elements base on their type. 4419 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4420 E = Incoming.end(); 4421 IncIt != E;) { 4422 4423 // Look for the next elements with the same type. 4424 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4425 while (SameTypeIt != E && 4426 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4427 VisitedInstrs.insert(*SameTypeIt); 4428 ++SameTypeIt; 4429 } 4430 4431 // Try to vectorize them. 4432 unsigned NumElts = (SameTypeIt - IncIt); 4433 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4434 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4435 // Success start over because instructions might have been changed. 4436 HaveVectorizedPhiNodes = true; 4437 Changed = true; 4438 break; 4439 } 4440 4441 // Start over at the next instruction of a different type (or the end). 4442 IncIt = SameTypeIt; 4443 } 4444 } 4445 4446 VisitedInstrs.clear(); 4447 4448 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4449 // We may go through BB multiple times so skip the one we have checked. 4450 if (!VisitedInstrs.insert(&*it).second) 4451 continue; 4452 4453 if (isa<DbgInfoIntrinsic>(it)) 4454 continue; 4455 4456 // Try to vectorize reductions that use PHINodes. 4457 if (PHINode *P = dyn_cast<PHINode>(it)) { 4458 // Check that the PHI is a reduction PHI. 4459 if (P->getNumIncomingValues() != 2) 4460 return Changed; 4461 4462 Value *Rdx = getReductionValue(DT, P, BB, LI); 4463 4464 // Check if this is a Binary Operator. 4465 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4466 if (!BI) 4467 continue; 4468 4469 // Try to match and vectorize a horizontal reduction. 4470 if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { 4471 Changed = true; 4472 it = BB->begin(); 4473 e = BB->end(); 4474 continue; 4475 } 4476 4477 Value *Inst = BI->getOperand(0); 4478 if (Inst == P) 4479 Inst = BI->getOperand(1); 4480 4481 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4482 // We would like to start over since some instructions are deleted 4483 // and the iterator may become invalid value. 4484 Changed = true; 4485 it = BB->begin(); 4486 e = BB->end(); 4487 continue; 4488 } 4489 4490 continue; 4491 } 4492 4493 if (ShouldStartVectorizeHorAtStore) 4494 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4495 if (BinaryOperator *BinOp = 4496 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4497 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4498 R.getMinVecRegSize()) || 4499 tryToVectorize(BinOp, R)) { 4500 Changed = true; 4501 it = BB->begin(); 4502 e = BB->end(); 4503 continue; 4504 } 4505 } 4506 4507 // Try to vectorize horizontal reductions feeding into a return. 4508 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4509 if (RI->getNumOperands() != 0) 4510 if (BinaryOperator *BinOp = 4511 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4512 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4513 if (tryToVectorizePair(BinOp->getOperand(0), 4514 BinOp->getOperand(1), R)) { 4515 Changed = true; 4516 it = BB->begin(); 4517 e = BB->end(); 4518 continue; 4519 } 4520 } 4521 4522 // Try to vectorize trees that start at compare instructions. 4523 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4524 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4525 Changed = true; 4526 // We would like to start over since some instructions are deleted 4527 // and the iterator may become invalid value. 4528 it = BB->begin(); 4529 e = BB->end(); 4530 continue; 4531 } 4532 4533 for (int i = 0; i < 2; ++i) { 4534 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4535 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4536 Changed = true; 4537 // We would like to start over since some instructions are deleted 4538 // and the iterator may become invalid value. 4539 it = BB->begin(); 4540 e = BB->end(); 4541 break; 4542 } 4543 } 4544 } 4545 continue; 4546 } 4547 4548 // Try to vectorize trees that start at insertelement instructions. 4549 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4550 SmallVector<Value *, 16> BuildVector; 4551 SmallVector<Value *, 16> BuildVectorOpds; 4552 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4553 continue; 4554 4555 // Vectorize starting with the build vector operands ignoring the 4556 // BuildVector instructions for the purpose of scheduling and user 4557 // extraction. 4558 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4559 Changed = true; 4560 it = BB->begin(); 4561 e = BB->end(); 4562 } 4563 4564 continue; 4565 } 4566 4567 // Try to vectorize trees that start at insertvalue instructions feeding into 4568 // a store. 4569 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4570 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4571 const DataLayout &DL = BB->getModule()->getDataLayout(); 4572 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4573 SmallVector<Value *, 16> BuildVector; 4574 SmallVector<Value *, 16> BuildVectorOpds; 4575 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4576 continue; 4577 4578 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4579 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4580 Changed = true; 4581 it = BB->begin(); 4582 e = BB->end(); 4583 } 4584 continue; 4585 } 4586 } 4587 } 4588 } 4589 4590 return Changed; 4591 } 4592 4593 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4594 auto Changed = false; 4595 for (auto &Entry : GEPs) { 4596 4597 // If the getelementptr list has fewer than two elements, there's nothing 4598 // to do. 4599 if (Entry.second.size() < 2) 4600 continue; 4601 4602 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4603 << Entry.second.size() << ".\n"); 4604 4605 // We process the getelementptr list in chunks of 16 (like we do for 4606 // stores) to minimize compile-time. 4607 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4608 auto Len = std::min<unsigned>(BE - BI, 16); 4609 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4610 4611 // Initialize a set a candidate getelementptrs. Note that we use a 4612 // SetVector here to preserve program order. If the index computations 4613 // are vectorizable and begin with loads, we want to minimize the chance 4614 // of having to reorder them later. 4615 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4616 4617 // Some of the candidates may have already been vectorized after we 4618 // initially collected them. If so, the WeakVHs will have nullified the 4619 // values, so remove them from the set of candidates. 4620 Candidates.remove(nullptr); 4621 4622 // Remove from the set of candidates all pairs of getelementptrs with 4623 // constant differences. Such getelementptrs are likely not good 4624 // candidates for vectorization in a bottom-up phase since one can be 4625 // computed from the other. We also ensure all candidate getelementptr 4626 // indices are unique. 4627 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4628 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4629 if (!Candidates.count(GEPI)) 4630 continue; 4631 auto *SCEVI = SE->getSCEV(GEPList[I]); 4632 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4633 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4634 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4635 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4636 Candidates.remove(GEPList[I]); 4637 Candidates.remove(GEPList[J]); 4638 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4639 Candidates.remove(GEPList[J]); 4640 } 4641 } 4642 } 4643 4644 // We break out of the above computation as soon as we know there are 4645 // fewer than two candidates remaining. 4646 if (Candidates.size() < 2) 4647 continue; 4648 4649 // Add the single, non-constant index of each candidate to the bundle. We 4650 // ensured the indices met these constraints when we originally collected 4651 // the getelementptrs. 4652 SmallVector<Value *, 16> Bundle(Candidates.size()); 4653 auto BundleIndex = 0u; 4654 for (auto *V : Candidates) { 4655 auto *GEP = cast<GetElementPtrInst>(V); 4656 auto *GEPIdx = GEP->idx_begin()->get(); 4657 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4658 Bundle[BundleIndex++] = GEPIdx; 4659 } 4660 4661 // Try and vectorize the indices. We are currently only interested in 4662 // gather-like cases of the form: 4663 // 4664 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4665 // 4666 // where the loads of "a", the loads of "b", and the subtractions can be 4667 // performed in parallel. It's likely that detecting this pattern in a 4668 // bottom-up phase will be simpler and less costly than building a 4669 // full-blown top-down phase beginning at the consecutive loads. 4670 Changed |= tryToVectorizeList(Bundle, R); 4671 } 4672 } 4673 return Changed; 4674 } 4675 4676 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4677 bool Changed = false; 4678 // Attempt to sort and vectorize each of the store-groups. 4679 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4680 ++it) { 4681 if (it->second.size() < 2) 4682 continue; 4683 4684 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4685 << it->second.size() << ".\n"); 4686 4687 // Process the stores in chunks of 16. 4688 // TODO: The limit of 16 inhibits greater vectorization factors. 4689 // For example, AVX2 supports v32i8. Increasing this limit, however, 4690 // may cause a significant compile-time increase. 4691 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4692 unsigned Len = std::min<unsigned>(CE - CI, 16); 4693 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4694 -SLPCostThreshold, R); 4695 } 4696 } 4697 return Changed; 4698 } 4699 4700 char SLPVectorizer::ID = 0; 4701 static const char lv_name[] = "SLP Vectorizer"; 4702 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4703 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4704 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4705 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4706 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4707 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4708 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4709 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4710 4711 namespace llvm { 4712 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4713 } 4714