1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // The interleaved access vectorization is based on the paper:
38 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
39 //  Data for SIMD
40 //
41 // Other ideas/concepts are from:
42 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43 //
44 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
45 //  Vectorizing Compilers.
46 //
47 //===----------------------------------------------------------------------===//
48 
49 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/SCCIterator.h"
55 #include "llvm/ADT/SetVector.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/SmallSet.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/Analysis/CodeMetrics.h"
62 #include "llvm/Analysis/GlobalsModRef.h"
63 #include "llvm/Analysis/LoopInfo.h"
64 #include "llvm/Analysis/LoopIterator.h"
65 #include "llvm/Analysis/LoopPass.h"
66 #include "llvm/Analysis/ScalarEvolutionExpander.h"
67 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
68 #include "llvm/Analysis/ValueTracking.h"
69 #include "llvm/Analysis/VectorUtils.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugInfo.h"
73 #include "llvm/IR/DerivedTypes.h"
74 #include "llvm/IR/DiagnosticInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/IR/IRBuilder.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/IR/ValueHandle.h"
87 #include "llvm/IR/Verifier.h"
88 #include "llvm/Pass.h"
89 #include "llvm/Support/BranchProbability.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include "llvm/Transforms/Scalar.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include "llvm/Transforms/Utils/Local.h"
96 #include "llvm/Transforms/Utils/LoopSimplify.h"
97 #include "llvm/Transforms/Utils/LoopUtils.h"
98 #include "llvm/Transforms/Utils/LoopVersioning.h"
99 #include "llvm/Transforms/Vectorize.h"
100 #include <algorithm>
101 #include <map>
102 #include <tuple>
103 
104 using namespace llvm;
105 using namespace llvm::PatternMatch;
106 
107 #define LV_NAME "loop-vectorize"
108 #define DEBUG_TYPE LV_NAME
109 
110 STATISTIC(LoopsVectorized, "Number of loops vectorized");
111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
112 
113 static cl::opt<bool>
114     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
115                        cl::desc("Enable if-conversion during vectorization."));
116 
117 /// We don't vectorize loops with a known constant trip count below this number.
118 static cl::opt<unsigned> TinyTripCountVectorThreshold(
119     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
120     cl::desc("Don't vectorize loops with a constant "
121              "trip count that is smaller than this "
122              "value."));
123 
124 static cl::opt<bool> MaximizeBandwidth(
125     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
126     cl::desc("Maximize bandwidth when selecting vectorization factor which "
127              "will be determined by the smallest type in loop."));
128 
129 static cl::opt<bool> EnableInterleavedMemAccesses(
130     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
131     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
132 
133 /// Maximum factor for an interleaved memory access.
134 static cl::opt<unsigned> MaxInterleaveGroupFactor(
135     "max-interleave-group-factor", cl::Hidden,
136     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
137     cl::init(8));
138 
139 /// We don't interleave loops with a known constant trip count below this
140 /// number.
141 static const unsigned TinyTripCountInterleaveThreshold = 128;
142 
143 static cl::opt<unsigned> ForceTargetNumScalarRegs(
144     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
145     cl::desc("A flag that overrides the target's number of scalar registers."));
146 
147 static cl::opt<unsigned> ForceTargetNumVectorRegs(
148     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
149     cl::desc("A flag that overrides the target's number of vector registers."));
150 
151 /// Maximum vectorization interleave count.
152 static const unsigned MaxInterleaveFactor = 16;
153 
154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
155     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
156     cl::desc("A flag that overrides the target's max interleave factor for "
157              "scalar loops."));
158 
159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
160     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
161     cl::desc("A flag that overrides the target's max interleave factor for "
162              "vectorized loops."));
163 
164 static cl::opt<unsigned> ForceTargetInstructionCost(
165     "force-target-instruction-cost", cl::init(0), cl::Hidden,
166     cl::desc("A flag that overrides the target's expected cost for "
167              "an instruction to a single constant value. Mostly "
168              "useful for getting consistent testing."));
169 
170 static cl::opt<unsigned> SmallLoopCost(
171     "small-loop-cost", cl::init(20), cl::Hidden,
172     cl::desc(
173         "The cost of a loop that is considered 'small' by the interleaver."));
174 
175 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
176     "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
177     cl::desc("Enable the use of the block frequency analysis to access PGO "
178              "heuristics minimizing code growth in cold regions and being more "
179              "aggressive in hot regions."));
180 
181 // Runtime interleave loops for load/store throughput.
182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
183     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
184     cl::desc(
185         "Enable runtime interleaving until load/store ports are saturated"));
186 
187 /// The number of stores in a loop that are allowed to need predication.
188 static cl::opt<unsigned> NumberOfStoresToPredicate(
189     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
190     cl::desc("Max number of stores to be predicated behind an if."));
191 
192 static cl::opt<bool> EnableIndVarRegisterHeur(
193     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
194     cl::desc("Count the induction variable only once when interleaving"));
195 
196 static cl::opt<bool> EnableCondStoresVectorization(
197     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
198     cl::desc("Enable if predication of stores during vectorization."));
199 
200 static cl::opt<unsigned> MaxNestedScalarReductionIC(
201     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
202     cl::desc("The maximum interleave count to use when interleaving a scalar "
203              "reduction in a nested loop."));
204 
205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
206     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
207     cl::desc("The maximum allowed number of runtime memory checks with a "
208              "vectorize(enable) pragma."));
209 
210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
211     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
212     cl::desc("The maximum number of SCEV checks allowed."));
213 
214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
215     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
216     cl::desc("The maximum number of SCEV checks allowed with a "
217              "vectorize(enable) pragma"));
218 
219 /// Create an analysis remark that explains why vectorization failed
220 ///
221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
222 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
223 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
224 /// the location of the remark.  \return the remark object that can be
225 /// streamed to.
226 static OptimizationRemarkAnalysis
227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
228                      Instruction *I = nullptr) {
229   Value *CodeRegion = TheLoop->getHeader();
230   DebugLoc DL = TheLoop->getStartLoc();
231 
232   if (I) {
233     CodeRegion = I->getParent();
234     // If there is no debug location attached to the instruction, revert back to
235     // using the loop's.
236     if (I->getDebugLoc())
237       DL = I->getDebugLoc();
238   }
239 
240   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
241   R << "loop not vectorized: ";
242   return R;
243 }
244 
245 namespace {
246 
247 // Forward declarations.
248 class LoopVectorizeHints;
249 class LoopVectorizationLegality;
250 class LoopVectorizationCostModel;
251 class LoopVectorizationRequirements;
252 
253 /// Returns true if the given loop body has a cycle, excluding the loop
254 /// itself.
255 static bool hasCyclesInLoopBody(const Loop &L) {
256   if (!L.empty())
257     return true;
258 
259   for (const auto &SCC :
260        make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L),
261                   scc_iterator<Loop, LoopBodyTraits>::end(L))) {
262     if (SCC.size() > 1) {
263       DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n");
264       DEBUG(L.dump());
265       return true;
266     }
267   }
268   return false;
269 }
270 
271 /// A helper function for converting Scalar types to vector types.
272 /// If the incoming type is void, we return void. If the VF is 1, we return
273 /// the scalar type.
274 static Type *ToVectorTy(Type *Scalar, unsigned VF) {
275   if (Scalar->isVoidTy() || VF == 1)
276     return Scalar;
277   return VectorType::get(Scalar, VF);
278 }
279 
280 // FIXME: The following helper functions have multiple implementations
281 // in the project. They can be effectively organized in a common Load/Store
282 // utilities unit.
283 
284 /// A helper function that returns the pointer operand of a load or store
285 /// instruction.
286 static Value *getPointerOperand(Value *I) {
287   if (auto *LI = dyn_cast<LoadInst>(I))
288     return LI->getPointerOperand();
289   if (auto *SI = dyn_cast<StoreInst>(I))
290     return SI->getPointerOperand();
291   return nullptr;
292 }
293 
294 /// A helper function that returns the type of loaded or stored value.
295 static Type *getMemInstValueType(Value *I) {
296   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
297          "Expected Load or Store instruction");
298   if (auto *LI = dyn_cast<LoadInst>(I))
299     return LI->getType();
300   return cast<StoreInst>(I)->getValueOperand()->getType();
301 }
302 
303 /// A helper function that returns the alignment of load or store instruction.
304 static unsigned getMemInstAlignment(Value *I) {
305   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
306          "Expected Load or Store instruction");
307   if (auto *LI = dyn_cast<LoadInst>(I))
308     return LI->getAlignment();
309   return cast<StoreInst>(I)->getAlignment();
310 }
311 
312 /// A helper function that returns the address space of the pointer operand of
313 /// load or store instruction.
314 static unsigned getMemInstAddressSpace(Value *I) {
315   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
316          "Expected Load or Store instruction");
317   if (auto *LI = dyn_cast<LoadInst>(I))
318     return LI->getPointerAddressSpace();
319   return cast<StoreInst>(I)->getPointerAddressSpace();
320 }
321 
322 /// A helper function that returns true if the given type is irregular. The
323 /// type is irregular if its allocated size doesn't equal the store size of an
324 /// element of the corresponding vector type at the given vectorization factor.
325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
326 
327   // Determine if an array of VF elements of type Ty is "bitcast compatible"
328   // with a <VF x Ty> vector.
329   if (VF > 1) {
330     auto *VectorTy = VectorType::get(Ty, VF);
331     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
332   }
333 
334   // If the vectorization factor is one, we just check if an array of type Ty
335   // requires padding between elements.
336   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
337 }
338 
339 /// A helper function that returns the reciprocal of the block probability of
340 /// predicated blocks. If we return X, we are assuming the predicated block
341 /// will execute once for for every X iterations of the loop header.
342 ///
343 /// TODO: We should use actual block probability here, if available. Currently,
344 ///       we always assume predicated blocks have a 50% chance of executing.
345 static unsigned getReciprocalPredBlockProb() { return 2; }
346 
347 /// A helper function that adds a 'fast' flag to floating-point operations.
348 static Value *addFastMathFlag(Value *V) {
349   if (isa<FPMathOperator>(V)) {
350     FastMathFlags Flags;
351     Flags.setUnsafeAlgebra();
352     cast<Instruction>(V)->setFastMathFlags(Flags);
353   }
354   return V;
355 }
356 
357 /// A helper function that returns an integer or floating-point constant with
358 /// value C.
359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
360   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
361                            : ConstantFP::get(Ty, C);
362 }
363 
364 /// InnerLoopVectorizer vectorizes loops which contain only one basic
365 /// block to a specified vectorization factor (VF).
366 /// This class performs the widening of scalars into vectors, or multiple
367 /// scalars. This class also implements the following features:
368 /// * It inserts an epilogue loop for handling loops that don't have iteration
369 ///   counts that are known to be a multiple of the vectorization factor.
370 /// * It handles the code generation for reduction variables.
371 /// * Scalarization (implementation using scalars) of un-vectorizable
372 ///   instructions.
373 /// InnerLoopVectorizer does not perform any vectorization-legality
374 /// checks, and relies on the caller to check for the different legality
375 /// aspects. The InnerLoopVectorizer relies on the
376 /// LoopVectorizationLegality class to provide information about the induction
377 /// and reduction variables that were found to a given vectorization factor.
378 class InnerLoopVectorizer {
379 public:
380   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
381                       LoopInfo *LI, DominatorTree *DT,
382                       const TargetLibraryInfo *TLI,
383                       const TargetTransformInfo *TTI, AssumptionCache *AC,
384                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
385                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
386                       LoopVectorizationCostModel *CM)
387       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
388         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
389         Builder(PSE.getSE()->getContext()), Induction(nullptr),
390         OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth),
391         TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM),
392         AddedSafetyChecks(false) {}
393 
394   // Perform the actual loop widening (vectorization).
395   void vectorize() {
396     // Create a new empty loop. Unlink the old loop and connect the new one.
397     createEmptyLoop();
398     // Widen each instruction in the old loop to a new one in the new loop.
399     vectorizeLoop();
400   }
401 
402   // Return true if any runtime check is added.
403   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
404 
405   virtual ~InnerLoopVectorizer() {}
406 
407 protected:
408   /// A small list of PHINodes.
409   typedef SmallVector<PHINode *, 4> PhiVector;
410 
411   /// A type for vectorized values in the new loop. Each value from the
412   /// original loop, when vectorized, is represented by UF vector values in the
413   /// new unrolled loop, where UF is the unroll factor.
414   typedef SmallVector<Value *, 2> VectorParts;
415 
416   /// A type for scalarized values in the new loop. Each value from the
417   /// original loop, when scalarized, is represented by UF x VF scalar values
418   /// in the new unrolled loop, where UF is the unroll factor and VF is the
419   /// vectorization factor.
420   typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts;
421 
422   // When we if-convert we need to create edge masks. We have to cache values
423   // so that we don't end up with exponential recursion/IR.
424   typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>
425       EdgeMaskCacheTy;
426   typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy;
427 
428   /// Create an empty loop, based on the loop ranges of the old loop.
429   void createEmptyLoop();
430 
431   /// Set up the values of the IVs correctly when exiting the vector loop.
432   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
433                     Value *CountRoundDown, Value *EndValue,
434                     BasicBlock *MiddleBlock);
435 
436   /// Create a new induction variable inside L.
437   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
438                                    Value *Step, Instruction *DL);
439   /// Copy and widen the instructions from the old loop.
440   virtual void vectorizeLoop();
441 
442   /// Handle all cross-iteration phis in the header.
443   void fixCrossIterationPHIs();
444 
445   /// Fix a first-order recurrence. This is the second phase of vectorizing
446   /// this phi node.
447   void fixFirstOrderRecurrence(PHINode *Phi);
448 
449   /// Fix a reduction cross-iteration phi. This is the second phase of
450   /// vectorizing this phi node.
451   void fixReduction(PHINode *Phi);
452 
453   /// \brief The Loop exit block may have single value PHI nodes where the
454   /// incoming value is 'Undef'. While vectorizing we only handled real values
455   /// that were defined inside the loop. Here we fix the 'undef case'.
456   /// See PR14725.
457   void fixLCSSAPHIs();
458 
459   /// Iteratively sink the scalarized operands of a predicated instruction into
460   /// the block that was created for it.
461   void sinkScalarOperands(Instruction *PredInst);
462 
463   /// Predicate conditional instructions that require predication on their
464   /// respective conditions.
465   void predicateInstructions();
466 
467   /// Collect the instructions from the original loop that would be trivially
468   /// dead in the vectorized loop if generated.
469   void collectTriviallyDeadInstructions(
470       SmallPtrSetImpl<Instruction *> &DeadInstructions);
471 
472   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
473   /// represented as.
474   void truncateToMinimalBitwidths();
475 
476   /// A helper function that computes the predicate of the block BB, assuming
477   /// that the header block of the loop is set to True. It returns the *entry*
478   /// mask for the block BB.
479   VectorParts createBlockInMask(BasicBlock *BB);
480   /// A helper function that computes the predicate of the edge between SRC
481   /// and DST.
482   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
483 
484   /// A helper function to vectorize a single instruction within the innermost
485   /// loop.
486   void vectorizeInstruction(Instruction &I);
487 
488   /// Vectorize a single PHINode in a block. This method handles the induction
489   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
490   /// arbitrary length vectors.
491   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
492 
493   /// Insert the new loop to the loop hierarchy and pass manager
494   /// and update the analysis passes.
495   void updateAnalysis();
496 
497   /// This instruction is un-vectorizable. Implement it as a sequence
498   /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each
499   /// scalarized instruction behind an if block predicated on the control
500   /// dependence of the instruction.
501   virtual void scalarizeInstruction(Instruction *Instr,
502                                     bool IfPredicateInstr = false);
503 
504   /// Vectorize Load and Store instructions,
505   virtual void vectorizeMemoryInstruction(Instruction *Instr);
506 
507   /// Create a broadcast instruction. This method generates a broadcast
508   /// instruction (shuffle) for loop invariant values and for the induction
509   /// value. If this is the induction variable then we extend it to N, N+1, ...
510   /// this is needed because each iteration in the loop corresponds to a SIMD
511   /// element.
512   virtual Value *getBroadcastInstrs(Value *V);
513 
514   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
515   /// to each vector element of Val. The sequence starts at StartIndex.
516   /// \p Opcode is relevant for FP induction variable.
517   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
518                                Instruction::BinaryOps Opcode =
519                                Instruction::BinaryOpsEnd);
520 
521   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
522   /// variable on which to base the steps, \p Step is the size of the step, and
523   /// \p EntryVal is the value from the original loop that maps to the steps.
524   /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it
525   /// can be a truncate instruction).
526   void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal,
527                         const InductionDescriptor &ID);
528 
529   /// Create a vector induction phi node based on an existing scalar one. \p
530   /// EntryVal is the value from the original loop that maps to the vector phi
531   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
532   /// truncate instruction, instead of widening the original IV, we widen a
533   /// version of the IV truncated to \p EntryVal's type.
534   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
535                                        Value *Step, Instruction *EntryVal);
536 
537   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
538   /// is provided, the integer induction variable will first be truncated to
539   /// the corresponding type.
540   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
541 
542   /// Returns true if an instruction \p I should be scalarized instead of
543   /// vectorized for the chosen vectorization factor.
544   bool shouldScalarizeInstruction(Instruction *I) const;
545 
546   /// Returns true if we should generate a scalar version of \p IV.
547   bool needsScalarInduction(Instruction *IV) const;
548 
549   /// Return a constant reference to the VectorParts corresponding to \p V from
550   /// the original loop. If the value has already been vectorized, the
551   /// corresponding vector entry in VectorLoopValueMap is returned. If,
552   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
553   /// new vector values on-demand by inserting the scalar values into vectors
554   /// with an insertelement sequence. If the value has been neither vectorized
555   /// nor scalarized, it must be loop invariant, so we simply broadcast the
556   /// value into vectors.
557   const VectorParts &getVectorValue(Value *V);
558 
559   /// Return a value in the new loop corresponding to \p V from the original
560   /// loop at unroll index \p Part and vector index \p Lane. If the value has
561   /// been vectorized but not scalarized, the necessary extractelement
562   /// instruction will be generated.
563   Value *getScalarValue(Value *V, unsigned Part, unsigned Lane);
564 
565   /// Try to vectorize the interleaved access group that \p Instr belongs to.
566   void vectorizeInterleaveGroup(Instruction *Instr);
567 
568   /// Generate a shuffle sequence that will reverse the vector Vec.
569   virtual Value *reverseVector(Value *Vec);
570 
571   /// Returns (and creates if needed) the original loop trip count.
572   Value *getOrCreateTripCount(Loop *NewLoop);
573 
574   /// Returns (and creates if needed) the trip count of the widened loop.
575   Value *getOrCreateVectorTripCount(Loop *NewLoop);
576 
577   /// Emit a bypass check to see if the trip count would overflow, or we
578   /// wouldn't have enough iterations to execute one vector loop.
579   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
580   /// Emit a bypass check to see if the vector trip count is nonzero.
581   void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
582   /// Emit a bypass check to see if all of the SCEV assumptions we've
583   /// had to make are correct.
584   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
585   /// Emit bypass checks to check any memory assumptions we may have made.
586   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
587 
588   /// Add additional metadata to \p To that was not present on \p Orig.
589   ///
590   /// Currently this is used to add the noalias annotations based on the
591   /// inserted memchecks.  Use this for instructions that are *cloned* into the
592   /// vector loop.
593   void addNewMetadata(Instruction *To, const Instruction *Orig);
594 
595   /// Add metadata from one instruction to another.
596   ///
597   /// This includes both the original MDs from \p From and additional ones (\see
598   /// addNewMetadata).  Use this for *newly created* instructions in the vector
599   /// loop.
600   void addMetadata(Instruction *To, Instruction *From);
601 
602   /// \brief Similar to the previous function but it adds the metadata to a
603   /// vector of instructions.
604   void addMetadata(ArrayRef<Value *> To, Instruction *From);
605 
606   /// \brief Set the debug location in the builder using the debug location in
607   /// the instruction.
608   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
609 
610   /// This is a helper class for maintaining vectorization state. It's used for
611   /// mapping values from the original loop to their corresponding values in
612   /// the new loop. Two mappings are maintained: one for vectorized values and
613   /// one for scalarized values. Vectorized values are represented with UF
614   /// vector values in the new loop, and scalarized values are represented with
615   /// UF x VF scalar values in the new loop. UF and VF are the unroll and
616   /// vectorization factors, respectively.
617   ///
618   /// Entries can be added to either map with initVector and initScalar, which
619   /// initialize and return a constant reference to the new entry. If a
620   /// non-constant reference to a vector entry is required, getVector can be
621   /// used to retrieve a mutable entry. We currently directly modify the mapped
622   /// values during "fix-up" operations that occur once the first phase of
623   /// widening is complete. These operations include type truncation and the
624   /// second phase of recurrence widening.
625   ///
626   /// Otherwise, entries from either map should be accessed using the
627   /// getVectorValue or getScalarValue functions from InnerLoopVectorizer.
628   /// getVectorValue and getScalarValue coordinate to generate a vector or
629   /// scalar value on-demand if one is not yet available. When vectorizing a
630   /// loop, we visit the definition of an instruction before its uses. When
631   /// visiting the definition, we either vectorize or scalarize the
632   /// instruction, creating an entry for it in the corresponding map. (In some
633   /// cases, such as induction variables, we will create both vector and scalar
634   /// entries.) Then, as we encounter uses of the definition, we derive values
635   /// for each scalar or vector use unless such a value is already available.
636   /// For example, if we scalarize a definition and one of its uses is vector,
637   /// we build the required vector on-demand with an insertelement sequence
638   /// when visiting the use. Otherwise, if the use is scalar, we can use the
639   /// existing scalar definition.
640   struct ValueMap {
641 
642     /// Construct an empty map with the given unroll and vectorization factors.
643     ValueMap(unsigned UnrollFactor, unsigned VecWidth)
644         : UF(UnrollFactor), VF(VecWidth) {
645       // The unroll and vectorization factors are only used in asserts builds
646       // to verify map entries are sized appropriately.
647       (void)UF;
648       (void)VF;
649     }
650 
651     /// \return True if the map has a vector entry for \p Key.
652     bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); }
653 
654     /// \return True if the map has a scalar entry for \p Key.
655     bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); }
656 
657     /// \brief Map \p Key to the given VectorParts \p Entry, and return a
658     /// constant reference to the new vector map entry. The given key should
659     /// not already be in the map, and the given VectorParts should be
660     /// correctly sized for the current unroll factor.
661     const VectorParts &initVector(Value *Key, const VectorParts &Entry) {
662       assert(!hasVector(Key) && "Vector entry already initialized");
663       assert(Entry.size() == UF && "VectorParts has wrong dimensions");
664       VectorMapStorage[Key] = Entry;
665       return VectorMapStorage[Key];
666     }
667 
668     /// \brief Map \p Key to the given ScalarParts \p Entry, and return a
669     /// constant reference to the new scalar map entry. The given key should
670     /// not already be in the map, and the given ScalarParts should be
671     /// correctly sized for the current unroll and vectorization factors.
672     const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) {
673       assert(!hasScalar(Key) && "Scalar entry already initialized");
674       assert(Entry.size() == UF &&
675              all_of(make_range(Entry.begin(), Entry.end()),
676                     [&](const SmallVectorImpl<Value *> &Values) -> bool {
677                       return Values.size() == VF;
678                     }) &&
679              "ScalarParts has wrong dimensions");
680       ScalarMapStorage[Key] = Entry;
681       return ScalarMapStorage[Key];
682     }
683 
684     /// \return A reference to the vector map entry corresponding to \p Key.
685     /// The key should already be in the map. This function should only be used
686     /// when it's necessary to update values that have already been vectorized.
687     /// This is the case for "fix-up" operations including type truncation and
688     /// the second phase of recurrence vectorization. If a non-const reference
689     /// isn't required, getVectorValue should be used instead.
690     VectorParts &getVector(Value *Key) {
691       assert(hasVector(Key) && "Vector entry not initialized");
692       return VectorMapStorage.find(Key)->second;
693     }
694 
695     /// Retrieve an entry from the vector or scalar maps. The preferred way to
696     /// access an existing mapped entry is with getVectorValue or
697     /// getScalarValue from InnerLoopVectorizer. Until those functions can be
698     /// moved inside ValueMap, we have to declare them as friends.
699     friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V);
700     friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part,
701                                                       unsigned Lane);
702 
703   private:
704     /// The unroll factor. Each entry in the vector map contains UF vector
705     /// values.
706     unsigned UF;
707 
708     /// The vectorization factor. Each entry in the scalar map contains UF x VF
709     /// scalar values.
710     unsigned VF;
711 
712     /// The vector and scalar map storage. We use std::map and not DenseMap
713     /// because insertions to DenseMap invalidate its iterators.
714     std::map<Value *, VectorParts> VectorMapStorage;
715     std::map<Value *, ScalarParts> ScalarMapStorage;
716   };
717 
718   /// The original loop.
719   Loop *OrigLoop;
720   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
721   /// dynamic knowledge to simplify SCEV expressions and converts them to a
722   /// more usable form.
723   PredicatedScalarEvolution &PSE;
724   /// Loop Info.
725   LoopInfo *LI;
726   /// Dominator Tree.
727   DominatorTree *DT;
728   /// Alias Analysis.
729   AliasAnalysis *AA;
730   /// Target Library Info.
731   const TargetLibraryInfo *TLI;
732   /// Target Transform Info.
733   const TargetTransformInfo *TTI;
734   /// Assumption Cache.
735   AssumptionCache *AC;
736   /// Interface to emit optimization remarks.
737   OptimizationRemarkEmitter *ORE;
738 
739   /// \brief LoopVersioning.  It's only set up (non-null) if memchecks were
740   /// used.
741   ///
742   /// This is currently only used to add no-alias metadata based on the
743   /// memchecks.  The actually versioning is performed manually.
744   std::unique_ptr<LoopVersioning> LVer;
745 
746   /// The vectorization SIMD factor to use. Each vector will have this many
747   /// vector elements.
748   unsigned VF;
749 
750 protected:
751   /// The vectorization unroll factor to use. Each scalar is vectorized to this
752   /// many different vector instructions.
753   unsigned UF;
754 
755   /// The builder that we use
756   IRBuilder<> Builder;
757 
758   // --- Vectorization state ---
759 
760   /// The vector-loop preheader.
761   BasicBlock *LoopVectorPreHeader;
762   /// The scalar-loop preheader.
763   BasicBlock *LoopScalarPreHeader;
764   /// Middle Block between the vector and the scalar.
765   BasicBlock *LoopMiddleBlock;
766   /// The ExitBlock of the scalar loop.
767   BasicBlock *LoopExitBlock;
768   /// The vector loop body.
769   BasicBlock *LoopVectorBody;
770   /// The scalar loop body.
771   BasicBlock *LoopScalarBody;
772   /// A list of all bypass blocks. The first block is the entry of the loop.
773   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
774 
775   /// The new Induction variable which was added to the new block.
776   PHINode *Induction;
777   /// The induction variable of the old basic block.
778   PHINode *OldInduction;
779 
780   /// Maps values from the original loop to their corresponding values in the
781   /// vectorized loop. A key value can map to either vector values, scalar
782   /// values or both kinds of values, depending on whether the key was
783   /// vectorized and scalarized.
784   ValueMap VectorLoopValueMap;
785 
786   /// Store instructions that should be predicated, as a pair
787   ///   <StoreInst, Predicate>
788   SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions;
789   EdgeMaskCacheTy EdgeMaskCache;
790   BlockMaskCacheTy BlockMaskCache;
791   /// Trip count of the original loop.
792   Value *TripCount;
793   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
794   Value *VectorTripCount;
795 
796   /// The legality analysis.
797   LoopVectorizationLegality *Legal;
798 
799   /// The profitablity analysis.
800   LoopVectorizationCostModel *Cost;
801 
802   // Record whether runtime checks are added.
803   bool AddedSafetyChecks;
804 
805   // Holds the end values for each induction variable. We save the end values
806   // so we can later fix-up the external users of the induction variables.
807   DenseMap<PHINode *, Value *> IVEndValues;
808 };
809 
810 class InnerLoopUnroller : public InnerLoopVectorizer {
811 public:
812   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
813                     LoopInfo *LI, DominatorTree *DT,
814                     const TargetLibraryInfo *TLI,
815                     const TargetTransformInfo *TTI, AssumptionCache *AC,
816                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
817                     LoopVectorizationLegality *LVL,
818                     LoopVectorizationCostModel *CM)
819       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
820                             UnrollFactor, LVL, CM) {}
821 
822 private:
823   void vectorizeMemoryInstruction(Instruction *Instr) override;
824   Value *getBroadcastInstrs(Value *V) override;
825   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
826                        Instruction::BinaryOps Opcode =
827                        Instruction::BinaryOpsEnd) override;
828   Value *reverseVector(Value *Vec) override;
829 };
830 
831 /// \brief Look for a meaningful debug location on the instruction or it's
832 /// operands.
833 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
834   if (!I)
835     return I;
836 
837   DebugLoc Empty;
838   if (I->getDebugLoc() != Empty)
839     return I;
840 
841   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
842     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
843       if (OpInst->getDebugLoc() != Empty)
844         return OpInst;
845   }
846 
847   return I;
848 }
849 
850 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
851   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
852     const DILocation *DIL = Inst->getDebugLoc();
853     if (DIL && Inst->getFunction()->isDebugInfoForProfiling())
854       B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
855     else
856       B.SetCurrentDebugLocation(DIL);
857   } else
858     B.SetCurrentDebugLocation(DebugLoc());
859 }
860 
861 #ifndef NDEBUG
862 /// \return string containing a file name and a line # for the given loop.
863 static std::string getDebugLocString(const Loop *L) {
864   std::string Result;
865   if (L) {
866     raw_string_ostream OS(Result);
867     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
868       LoopDbgLoc.print(OS);
869     else
870       // Just print the module name.
871       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
872     OS.flush();
873   }
874   return Result;
875 }
876 #endif
877 
878 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
879                                          const Instruction *Orig) {
880   // If the loop was versioned with memchecks, add the corresponding no-alias
881   // metadata.
882   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
883     LVer->annotateInstWithNoAlias(To, Orig);
884 }
885 
886 void InnerLoopVectorizer::addMetadata(Instruction *To,
887                                       Instruction *From) {
888   propagateMetadata(To, From);
889   addNewMetadata(To, From);
890 }
891 
892 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
893                                       Instruction *From) {
894   for (Value *V : To) {
895     if (Instruction *I = dyn_cast<Instruction>(V))
896       addMetadata(I, From);
897   }
898 }
899 
900 /// \brief The group of interleaved loads/stores sharing the same stride and
901 /// close to each other.
902 ///
903 /// Each member in this group has an index starting from 0, and the largest
904 /// index should be less than interleaved factor, which is equal to the absolute
905 /// value of the access's stride.
906 ///
907 /// E.g. An interleaved load group of factor 4:
908 ///        for (unsigned i = 0; i < 1024; i+=4) {
909 ///          a = A[i];                           // Member of index 0
910 ///          b = A[i+1];                         // Member of index 1
911 ///          d = A[i+3];                         // Member of index 3
912 ///          ...
913 ///        }
914 ///
915 ///      An interleaved store group of factor 4:
916 ///        for (unsigned i = 0; i < 1024; i+=4) {
917 ///          ...
918 ///          A[i]   = a;                         // Member of index 0
919 ///          A[i+1] = b;                         // Member of index 1
920 ///          A[i+2] = c;                         // Member of index 2
921 ///          A[i+3] = d;                         // Member of index 3
922 ///        }
923 ///
924 /// Note: the interleaved load group could have gaps (missing members), but
925 /// the interleaved store group doesn't allow gaps.
926 class InterleaveGroup {
927 public:
928   InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
929       : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
930     assert(Align && "The alignment should be non-zero");
931 
932     Factor = std::abs(Stride);
933     assert(Factor > 1 && "Invalid interleave factor");
934 
935     Reverse = Stride < 0;
936     Members[0] = Instr;
937   }
938 
939   bool isReverse() const { return Reverse; }
940   unsigned getFactor() const { return Factor; }
941   unsigned getAlignment() const { return Align; }
942   unsigned getNumMembers() const { return Members.size(); }
943 
944   /// \brief Try to insert a new member \p Instr with index \p Index and
945   /// alignment \p NewAlign. The index is related to the leader and it could be
946   /// negative if it is the new leader.
947   ///
948   /// \returns false if the instruction doesn't belong to the group.
949   bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
950     assert(NewAlign && "The new member's alignment should be non-zero");
951 
952     int Key = Index + SmallestKey;
953 
954     // Skip if there is already a member with the same index.
955     if (Members.count(Key))
956       return false;
957 
958     if (Key > LargestKey) {
959       // The largest index is always less than the interleave factor.
960       if (Index >= static_cast<int>(Factor))
961         return false;
962 
963       LargestKey = Key;
964     } else if (Key < SmallestKey) {
965       // The largest index is always less than the interleave factor.
966       if (LargestKey - Key >= static_cast<int>(Factor))
967         return false;
968 
969       SmallestKey = Key;
970     }
971 
972     // It's always safe to select the minimum alignment.
973     Align = std::min(Align, NewAlign);
974     Members[Key] = Instr;
975     return true;
976   }
977 
978   /// \brief Get the member with the given index \p Index
979   ///
980   /// \returns nullptr if contains no such member.
981   Instruction *getMember(unsigned Index) const {
982     int Key = SmallestKey + Index;
983     if (!Members.count(Key))
984       return nullptr;
985 
986     return Members.find(Key)->second;
987   }
988 
989   /// \brief Get the index for the given member. Unlike the key in the member
990   /// map, the index starts from 0.
991   unsigned getIndex(Instruction *Instr) const {
992     for (auto I : Members)
993       if (I.second == Instr)
994         return I.first - SmallestKey;
995 
996     llvm_unreachable("InterleaveGroup contains no such member");
997   }
998 
999   Instruction *getInsertPos() const { return InsertPos; }
1000   void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
1001 
1002 private:
1003   unsigned Factor; // Interleave Factor.
1004   bool Reverse;
1005   unsigned Align;
1006   DenseMap<int, Instruction *> Members;
1007   int SmallestKey;
1008   int LargestKey;
1009 
1010   // To avoid breaking dependences, vectorized instructions of an interleave
1011   // group should be inserted at either the first load or the last store in
1012   // program order.
1013   //
1014   // E.g. %even = load i32             // Insert Position
1015   //      %add = add i32 %even         // Use of %even
1016   //      %odd = load i32
1017   //
1018   //      store i32 %even
1019   //      %odd = add i32               // Def of %odd
1020   //      store i32 %odd               // Insert Position
1021   Instruction *InsertPos;
1022 };
1023 
1024 /// \brief Drive the analysis of interleaved memory accesses in the loop.
1025 ///
1026 /// Use this class to analyze interleaved accesses only when we can vectorize
1027 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
1028 /// on interleaved accesses is unsafe.
1029 ///
1030 /// The analysis collects interleave groups and records the relationships
1031 /// between the member and the group in a map.
1032 class InterleavedAccessInfo {
1033 public:
1034   InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
1035                         DominatorTree *DT, LoopInfo *LI)
1036       : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr),
1037         RequiresScalarEpilogue(false) {}
1038 
1039   ~InterleavedAccessInfo() {
1040     SmallSet<InterleaveGroup *, 4> DelSet;
1041     // Avoid releasing a pointer twice.
1042     for (auto &I : InterleaveGroupMap)
1043       DelSet.insert(I.second);
1044     for (auto *Ptr : DelSet)
1045       delete Ptr;
1046   }
1047 
1048   /// \brief Analyze the interleaved accesses and collect them in interleave
1049   /// groups. Substitute symbolic strides using \p Strides.
1050   void analyzeInterleaving(const ValueToValueMap &Strides);
1051 
1052   /// \brief Check if \p Instr belongs to any interleave group.
1053   bool isInterleaved(Instruction *Instr) const {
1054     return InterleaveGroupMap.count(Instr);
1055   }
1056 
1057   /// \brief Return the maximum interleave factor of all interleaved groups.
1058   unsigned getMaxInterleaveFactor() const {
1059     unsigned MaxFactor = 1;
1060     for (auto &Entry : InterleaveGroupMap)
1061       MaxFactor = std::max(MaxFactor, Entry.second->getFactor());
1062     return MaxFactor;
1063   }
1064 
1065   /// \brief Get the interleave group that \p Instr belongs to.
1066   ///
1067   /// \returns nullptr if doesn't have such group.
1068   InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
1069     if (InterleaveGroupMap.count(Instr))
1070       return InterleaveGroupMap.find(Instr)->second;
1071     return nullptr;
1072   }
1073 
1074   /// \brief Returns true if an interleaved group that may access memory
1075   /// out-of-bounds requires a scalar epilogue iteration for correctness.
1076   bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
1077 
1078   /// \brief Initialize the LoopAccessInfo used for dependence checking.
1079   void setLAI(const LoopAccessInfo *Info) { LAI = Info; }
1080 
1081 private:
1082   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
1083   /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
1084   /// The interleaved access analysis can also add new predicates (for example
1085   /// by versioning strides of pointers).
1086   PredicatedScalarEvolution &PSE;
1087   Loop *TheLoop;
1088   DominatorTree *DT;
1089   LoopInfo *LI;
1090   const LoopAccessInfo *LAI;
1091 
1092   /// True if the loop may contain non-reversed interleaved groups with
1093   /// out-of-bounds accesses. We ensure we don't speculatively access memory
1094   /// out-of-bounds by executing at least one scalar epilogue iteration.
1095   bool RequiresScalarEpilogue;
1096 
1097   /// Holds the relationships between the members and the interleave group.
1098   DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
1099 
1100   /// Holds dependences among the memory accesses in the loop. It maps a source
1101   /// access to a set of dependent sink accesses.
1102   DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
1103 
1104   /// \brief The descriptor for a strided memory access.
1105   struct StrideDescriptor {
1106     StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
1107                      unsigned Align)
1108         : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
1109 
1110     StrideDescriptor() = default;
1111 
1112     // The access's stride. It is negative for a reverse access.
1113     int64_t Stride = 0;
1114     const SCEV *Scev = nullptr; // The scalar expression of this access
1115     uint64_t Size = 0;          // The size of the memory object.
1116     unsigned Align = 0;         // The alignment of this access.
1117   };
1118 
1119   /// \brief A type for holding instructions and their stride descriptors.
1120   typedef std::pair<Instruction *, StrideDescriptor> StrideEntry;
1121 
1122   /// \brief Create a new interleave group with the given instruction \p Instr,
1123   /// stride \p Stride and alignment \p Align.
1124   ///
1125   /// \returns the newly created interleave group.
1126   InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
1127                                          unsigned Align) {
1128     assert(!InterleaveGroupMap.count(Instr) &&
1129            "Already in an interleaved access group");
1130     InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
1131     return InterleaveGroupMap[Instr];
1132   }
1133 
1134   /// \brief Release the group and remove all the relationships.
1135   void releaseGroup(InterleaveGroup *Group) {
1136     for (unsigned i = 0; i < Group->getFactor(); i++)
1137       if (Instruction *Member = Group->getMember(i))
1138         InterleaveGroupMap.erase(Member);
1139 
1140     delete Group;
1141   }
1142 
1143   /// \brief Collect all the accesses with a constant stride in program order.
1144   void collectConstStrideAccesses(
1145       MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1146       const ValueToValueMap &Strides);
1147 
1148   /// \brief Returns true if \p Stride is allowed in an interleaved group.
1149   static bool isStrided(int Stride) {
1150     unsigned Factor = std::abs(Stride);
1151     return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1152   }
1153 
1154   /// \brief Returns true if \p BB is a predicated block.
1155   bool isPredicated(BasicBlock *BB) const {
1156     return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1157   }
1158 
1159   /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
1160   bool areDependencesValid() const {
1161     return LAI && LAI->getDepChecker().getDependences();
1162   }
1163 
1164   /// \brief Returns true if memory accesses \p A and \p B can be reordered, if
1165   /// necessary, when constructing interleaved groups.
1166   ///
1167   /// \p A must precede \p B in program order. We return false if reordering is
1168   /// not necessary or is prevented because \p A and \p B may be dependent.
1169   bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
1170                                                  StrideEntry *B) const {
1171 
1172     // Code motion for interleaved accesses can potentially hoist strided loads
1173     // and sink strided stores. The code below checks the legality of the
1174     // following two conditions:
1175     //
1176     // 1. Potentially moving a strided load (B) before any store (A) that
1177     //    precedes B, or
1178     //
1179     // 2. Potentially moving a strided store (A) after any load or store (B)
1180     //    that A precedes.
1181     //
1182     // It's legal to reorder A and B if we know there isn't a dependence from A
1183     // to B. Note that this determination is conservative since some
1184     // dependences could potentially be reordered safely.
1185 
1186     // A is potentially the source of a dependence.
1187     auto *Src = A->first;
1188     auto SrcDes = A->second;
1189 
1190     // B is potentially the sink of a dependence.
1191     auto *Sink = B->first;
1192     auto SinkDes = B->second;
1193 
1194     // Code motion for interleaved accesses can't violate WAR dependences.
1195     // Thus, reordering is legal if the source isn't a write.
1196     if (!Src->mayWriteToMemory())
1197       return true;
1198 
1199     // At least one of the accesses must be strided.
1200     if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
1201       return true;
1202 
1203     // If dependence information is not available from LoopAccessInfo,
1204     // conservatively assume the instructions can't be reordered.
1205     if (!areDependencesValid())
1206       return false;
1207 
1208     // If we know there is a dependence from source to sink, assume the
1209     // instructions can't be reordered. Otherwise, reordering is legal.
1210     return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1211   }
1212 
1213   /// \brief Collect the dependences from LoopAccessInfo.
1214   ///
1215   /// We process the dependences once during the interleaved access analysis to
1216   /// enable constant-time dependence queries.
1217   void collectDependences() {
1218     if (!areDependencesValid())
1219       return;
1220     auto *Deps = LAI->getDepChecker().getDependences();
1221     for (auto Dep : *Deps)
1222       Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1223   }
1224 };
1225 
1226 /// Utility class for getting and setting loop vectorizer hints in the form
1227 /// of loop metadata.
1228 /// This class keeps a number of loop annotations locally (as member variables)
1229 /// and can, upon request, write them back as metadata on the loop. It will
1230 /// initially scan the loop for existing metadata, and will update the local
1231 /// values based on information in the loop.
1232 /// We cannot write all values to metadata, as the mere presence of some info,
1233 /// for example 'force', means a decision has been made. So, we need to be
1234 /// careful NOT to add them if the user hasn't specifically asked so.
1235 class LoopVectorizeHints {
1236   enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE };
1237 
1238   /// Hint - associates name and validation with the hint value.
1239   struct Hint {
1240     const char *Name;
1241     unsigned Value; // This may have to change for non-numeric values.
1242     HintKind Kind;
1243 
1244     Hint(const char *Name, unsigned Value, HintKind Kind)
1245         : Name(Name), Value(Value), Kind(Kind) {}
1246 
1247     bool validate(unsigned Val) {
1248       switch (Kind) {
1249       case HK_WIDTH:
1250         return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1251       case HK_UNROLL:
1252         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1253       case HK_FORCE:
1254         return (Val <= 1);
1255       }
1256       return false;
1257     }
1258   };
1259 
1260   /// Vectorization width.
1261   Hint Width;
1262   /// Vectorization interleave factor.
1263   Hint Interleave;
1264   /// Vectorization forced
1265   Hint Force;
1266 
1267   /// Return the loop metadata prefix.
1268   static StringRef Prefix() { return "llvm.loop."; }
1269 
1270   /// True if there is any unsafe math in the loop.
1271   bool PotentiallyUnsafe;
1272 
1273 public:
1274   enum ForceKind {
1275     FK_Undefined = -1, ///< Not selected.
1276     FK_Disabled = 0,   ///< Forcing disabled.
1277     FK_Enabled = 1,    ///< Forcing enabled.
1278   };
1279 
1280   LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
1281                      OptimizationRemarkEmitter &ORE)
1282       : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1283               HK_WIDTH),
1284         Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1285         Force("vectorize.enable", FK_Undefined, HK_FORCE),
1286         PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) {
1287     // Populate values with existing loop metadata.
1288     getHintsFromMetadata();
1289 
1290     // force-vector-interleave overrides DisableInterleaving.
1291     if (VectorizerParams::isInterleaveForced())
1292       Interleave.Value = VectorizerParams::VectorizationInterleave;
1293 
1294     DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1295           << "LV: Interleaving disabled by the pass manager\n");
1296   }
1297 
1298   /// Mark the loop L as already vectorized by setting the width to 1.
1299   void setAlreadyVectorized() {
1300     Width.Value = Interleave.Value = 1;
1301     Hint Hints[] = {Width, Interleave};
1302     writeHintsToMetadata(Hints);
1303   }
1304 
1305   bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
1306     if (getForce() == LoopVectorizeHints::FK_Disabled) {
1307       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1308       emitRemarkWithHints();
1309       return false;
1310     }
1311 
1312     if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
1313       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1314       emitRemarkWithHints();
1315       return false;
1316     }
1317 
1318     if (getWidth() == 1 && getInterleave() == 1) {
1319       // FIXME: Add a separate metadata to indicate when the loop has already
1320       // been vectorized instead of setting width and count to 1.
1321       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1322       // FIXME: Add interleave.disable metadata. This will allow
1323       // vectorize.disable to be used without disabling the pass and errors
1324       // to differentiate between disabled vectorization and a width of 1.
1325       ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
1326                                           "AllDisabled", L->getStartLoc(),
1327                                           L->getHeader())
1328                << "loop not vectorized: vectorization and interleaving are "
1329                   "explicitly disabled, or vectorize width and interleave "
1330                   "count are both set to 1");
1331       return false;
1332     }
1333 
1334     return true;
1335   }
1336 
1337   /// Dumps all the hint information.
1338   void emitRemarkWithHints() const {
1339     using namespace ore;
1340     if (Force.Value == LoopVectorizeHints::FK_Disabled)
1341       ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
1342                                         TheLoop->getStartLoc(),
1343                                         TheLoop->getHeader())
1344                << "loop not vectorized: vectorization is explicitly disabled");
1345     else {
1346       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
1347                                  TheLoop->getStartLoc(), TheLoop->getHeader());
1348       R << "loop not vectorized";
1349       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1350         R << " (Force=" << NV("Force", true);
1351         if (Width.Value != 0)
1352           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
1353         if (Interleave.Value != 0)
1354           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
1355         R << ")";
1356       }
1357       ORE.emit(R);
1358     }
1359   }
1360 
1361   unsigned getWidth() const { return Width.Value; }
1362   unsigned getInterleave() const { return Interleave.Value; }
1363   enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1364 
1365   /// \brief If hints are provided that force vectorization, use the AlwaysPrint
1366   /// pass name to force the frontend to print the diagnostic.
1367   const char *vectorizeAnalysisPassName() const {
1368     if (getWidth() == 1)
1369       return LV_NAME;
1370     if (getForce() == LoopVectorizeHints::FK_Disabled)
1371       return LV_NAME;
1372     if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1373       return LV_NAME;
1374     return OptimizationRemarkAnalysis::AlwaysPrint;
1375   }
1376 
1377   bool allowReordering() const {
1378     // When enabling loop hints are provided we allow the vectorizer to change
1379     // the order of operations that is given by the scalar loop. This is not
1380     // enabled by default because can be unsafe or inefficient. For example,
1381     // reordering floating-point operations will change the way round-off
1382     // error accumulates in the loop.
1383     return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1384   }
1385 
1386   bool isPotentiallyUnsafe() const {
1387     // Avoid FP vectorization if the target is unsure about proper support.
1388     // This may be related to the SIMD unit in the target not handling
1389     // IEEE 754 FP ops properly, or bad single-to-double promotions.
1390     // Otherwise, a sequence of vectorized loops, even without reduction,
1391     // could lead to different end results on the destination vectors.
1392     return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
1393   }
1394 
1395   void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
1396 
1397 private:
1398   /// Find hints specified in the loop metadata and update local values.
1399   void getHintsFromMetadata() {
1400     MDNode *LoopID = TheLoop->getLoopID();
1401     if (!LoopID)
1402       return;
1403 
1404     // First operand should refer to the loop id itself.
1405     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1406     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1407 
1408     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1409       const MDString *S = nullptr;
1410       SmallVector<Metadata *, 4> Args;
1411 
1412       // The expected hint is either a MDString or a MDNode with the first
1413       // operand a MDString.
1414       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1415         if (!MD || MD->getNumOperands() == 0)
1416           continue;
1417         S = dyn_cast<MDString>(MD->getOperand(0));
1418         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1419           Args.push_back(MD->getOperand(i));
1420       } else {
1421         S = dyn_cast<MDString>(LoopID->getOperand(i));
1422         assert(Args.size() == 0 && "too many arguments for MDString");
1423       }
1424 
1425       if (!S)
1426         continue;
1427 
1428       // Check if the hint starts with the loop metadata prefix.
1429       StringRef Name = S->getString();
1430       if (Args.size() == 1)
1431         setHint(Name, Args[0]);
1432     }
1433   }
1434 
1435   /// Checks string hint with one operand and set value if valid.
1436   void setHint(StringRef Name, Metadata *Arg) {
1437     if (!Name.startswith(Prefix()))
1438       return;
1439     Name = Name.substr(Prefix().size(), StringRef::npos);
1440 
1441     const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1442     if (!C)
1443       return;
1444     unsigned Val = C->getZExtValue();
1445 
1446     Hint *Hints[] = {&Width, &Interleave, &Force};
1447     for (auto H : Hints) {
1448       if (Name == H->Name) {
1449         if (H->validate(Val))
1450           H->Value = Val;
1451         else
1452           DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1453         break;
1454       }
1455     }
1456   }
1457 
1458   /// Create a new hint from name / value pair.
1459   MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1460     LLVMContext &Context = TheLoop->getHeader()->getContext();
1461     Metadata *MDs[] = {MDString::get(Context, Name),
1462                        ConstantAsMetadata::get(
1463                            ConstantInt::get(Type::getInt32Ty(Context), V))};
1464     return MDNode::get(Context, MDs);
1465   }
1466 
1467   /// Matches metadata with hint name.
1468   bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1469     MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
1470     if (!Name)
1471       return false;
1472 
1473     for (auto H : HintTypes)
1474       if (Name->getString().endswith(H.Name))
1475         return true;
1476     return false;
1477   }
1478 
1479   /// Sets current hints into loop metadata, keeping other values intact.
1480   void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1481     if (HintTypes.size() == 0)
1482       return;
1483 
1484     // Reserve the first element to LoopID (see below).
1485     SmallVector<Metadata *, 4> MDs(1);
1486     // If the loop already has metadata, then ignore the existing operands.
1487     MDNode *LoopID = TheLoop->getLoopID();
1488     if (LoopID) {
1489       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1490         MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1491         // If node in update list, ignore old value.
1492         if (!matchesHintMetadataName(Node, HintTypes))
1493           MDs.push_back(Node);
1494       }
1495     }
1496 
1497     // Now, add the missing hints.
1498     for (auto H : HintTypes)
1499       MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1500 
1501     // Replace current metadata node with new one.
1502     LLVMContext &Context = TheLoop->getHeader()->getContext();
1503     MDNode *NewLoopID = MDNode::get(Context, MDs);
1504     // Set operand 0 to refer to the loop id itself.
1505     NewLoopID->replaceOperandWith(0, NewLoopID);
1506 
1507     TheLoop->setLoopID(NewLoopID);
1508   }
1509 
1510   /// The loop these hints belong to.
1511   const Loop *TheLoop;
1512 
1513   /// Interface to emit optimization remarks.
1514   OptimizationRemarkEmitter &ORE;
1515 };
1516 
1517 static void emitMissedWarning(Function *F, Loop *L,
1518                               const LoopVectorizeHints &LH,
1519                               OptimizationRemarkEmitter *ORE) {
1520   LH.emitRemarkWithHints();
1521 
1522   if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1523     if (LH.getWidth() != 1)
1524       ORE->emit(DiagnosticInfoOptimizationFailure(
1525                     DEBUG_TYPE, "FailedRequestedVectorization",
1526                     L->getStartLoc(), L->getHeader())
1527                 << "loop not vectorized: "
1528                 << "failed explicitly specified loop vectorization");
1529     else if (LH.getInterleave() != 1)
1530       ORE->emit(DiagnosticInfoOptimizationFailure(
1531                     DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(),
1532                     L->getHeader())
1533                 << "loop not interleaved: "
1534                 << "failed explicitly specified loop interleaving");
1535   }
1536 }
1537 
1538 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1539 /// to what vectorization factor.
1540 /// This class does not look at the profitability of vectorization, only the
1541 /// legality. This class has two main kinds of checks:
1542 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
1543 ///   will change the order of memory accesses in a way that will change the
1544 ///   correctness of the program.
1545 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1546 /// checks for a number of different conditions, such as the availability of a
1547 /// single induction variable, that all types are supported and vectorize-able,
1548 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
1549 /// This class is also used by InnerLoopVectorizer for identifying
1550 /// induction variable and the different reduction variables.
1551 class LoopVectorizationLegality {
1552 public:
1553   LoopVectorizationLegality(
1554       Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
1555       TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
1556       const TargetTransformInfo *TTI,
1557       std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
1558       OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
1559       LoopVectorizeHints *H)
1560       : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT),
1561         GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI),
1562         PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
1563         Requirements(R), Hints(H) {}
1564 
1565   /// ReductionList contains the reduction descriptors for all
1566   /// of the reductions that were found in the loop.
1567   typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
1568 
1569   /// InductionList saves induction variables and maps them to the
1570   /// induction descriptor.
1571   typedef MapVector<PHINode *, InductionDescriptor> InductionList;
1572 
1573   /// RecurrenceSet contains the phi nodes that are recurrences other than
1574   /// inductions and reductions.
1575   typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet;
1576 
1577   /// Returns true if it is legal to vectorize this loop.
1578   /// This does not mean that it is profitable to vectorize this
1579   /// loop, only that it is legal to do so.
1580   bool canVectorize();
1581 
1582   /// Returns the primary induction variable.
1583   PHINode *getPrimaryInduction() { return PrimaryInduction; }
1584 
1585   /// Returns the reduction variables found in the loop.
1586   ReductionList *getReductionVars() { return &Reductions; }
1587 
1588   /// Returns the induction variables found in the loop.
1589   InductionList *getInductionVars() { return &Inductions; }
1590 
1591   /// Return the first-order recurrences found in the loop.
1592   RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
1593 
1594   /// Returns the widest induction type.
1595   Type *getWidestInductionType() { return WidestIndTy; }
1596 
1597   /// Returns True if V is an induction variable in this loop.
1598   bool isInductionVariable(const Value *V);
1599 
1600   /// Returns True if PN is a reduction variable in this loop.
1601   bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1602 
1603   /// Returns True if Phi is a first-order recurrence in this loop.
1604   bool isFirstOrderRecurrence(const PHINode *Phi);
1605 
1606   /// Return true if the block BB needs to be predicated in order for the loop
1607   /// to be vectorized.
1608   bool blockNeedsPredication(BasicBlock *BB);
1609 
1610   /// Check if this pointer is consecutive when vectorizing. This happens
1611   /// when the last index of the GEP is the induction variable, or that the
1612   /// pointer itself is an induction variable.
1613   /// This check allows us to vectorize A[idx] into a wide load/store.
1614   /// Returns:
1615   /// 0 - Stride is unknown or non-consecutive.
1616   /// 1 - Address is consecutive.
1617   /// -1 - Address is consecutive, and decreasing.
1618   int isConsecutivePtr(Value *Ptr);
1619 
1620   /// Returns true if the value V is uniform within the loop.
1621   bool isUniform(Value *V);
1622 
1623   /// Returns the information that we collected about runtime memory check.
1624   const RuntimePointerChecking *getRuntimePointerChecking() const {
1625     return LAI->getRuntimePointerChecking();
1626   }
1627 
1628   const LoopAccessInfo *getLAI() const { return LAI; }
1629 
1630   /// \brief Check if \p Instr belongs to any interleaved access group.
1631   bool isAccessInterleaved(Instruction *Instr) {
1632     return InterleaveInfo.isInterleaved(Instr);
1633   }
1634 
1635   /// \brief Return the maximum interleave factor of all interleaved groups.
1636   unsigned getMaxInterleaveFactor() const {
1637     return InterleaveInfo.getMaxInterleaveFactor();
1638   }
1639 
1640   /// \brief Get the interleaved access group that \p Instr belongs to.
1641   const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1642     return InterleaveInfo.getInterleaveGroup(Instr);
1643   }
1644 
1645   /// \brief Returns true if an interleaved group requires a scalar iteration
1646   /// to handle accesses with gaps.
1647   bool requiresScalarEpilogue() const {
1648     return InterleaveInfo.requiresScalarEpilogue();
1649   }
1650 
1651   unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1652 
1653   bool hasStride(Value *V) { return LAI->hasStride(V); }
1654 
1655   /// Returns true if the target machine supports masked store operation
1656   /// for the given \p DataType and kind of access to \p Ptr.
1657   bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1658     return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
1659   }
1660   /// Returns true if the target machine supports masked load operation
1661   /// for the given \p DataType and kind of access to \p Ptr.
1662   bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1663     return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
1664   }
1665   /// Returns true if the target machine supports masked scatter operation
1666   /// for the given \p DataType.
1667   bool isLegalMaskedScatter(Type *DataType) {
1668     return TTI->isLegalMaskedScatter(DataType);
1669   }
1670   /// Returns true if the target machine supports masked gather operation
1671   /// for the given \p DataType.
1672   bool isLegalMaskedGather(Type *DataType) {
1673     return TTI->isLegalMaskedGather(DataType);
1674   }
1675   /// Returns true if the target machine can represent \p V as a masked gather
1676   /// or scatter operation.
1677   bool isLegalGatherOrScatter(Value *V) {
1678     auto *LI = dyn_cast<LoadInst>(V);
1679     auto *SI = dyn_cast<StoreInst>(V);
1680     if (!LI && !SI)
1681       return false;
1682     auto *Ptr = getPointerOperand(V);
1683     auto *Ty = cast<PointerType>(Ptr->getType())->getElementType();
1684     return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
1685   }
1686 
1687   /// Returns true if vector representation of the instruction \p I
1688   /// requires mask.
1689   bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
1690   unsigned getNumStores() const { return LAI->getNumStores(); }
1691   unsigned getNumLoads() const { return LAI->getNumLoads(); }
1692   unsigned getNumPredStores() const { return NumPredStores; }
1693 
1694   /// Returns true if \p I is an instruction that will be scalarized with
1695   /// predication. Such instructions include conditional stores and
1696   /// instructions that may divide by zero.
1697   bool isScalarWithPredication(Instruction *I);
1698 
1699   /// Returns true if \p I is a memory instruction with consecutive memory
1700   /// access that can be widened.
1701   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1702 
1703 private:
1704   /// Check if a single basic block loop is vectorizable.
1705   /// At this point we know that this is a loop with a constant trip count
1706   /// and we only need to check individual instructions.
1707   bool canVectorizeInstrs();
1708 
1709   /// When we vectorize loops we may change the order in which
1710   /// we read and write from memory. This method checks if it is
1711   /// legal to vectorize the code, considering only memory constrains.
1712   /// Returns true if the loop is vectorizable
1713   bool canVectorizeMemory();
1714 
1715   /// Return true if we can vectorize this loop using the IF-conversion
1716   /// transformation.
1717   bool canVectorizeWithIfConvert();
1718 
1719   /// Return true if all of the instructions in the block can be speculatively
1720   /// executed. \p SafePtrs is a list of addresses that are known to be legal
1721   /// and we know that we can read from them without segfault.
1722   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1723 
1724   /// Updates the vectorization state by adding \p Phi to the inductions list.
1725   /// This can set \p Phi as the main induction of the loop if \p Phi is a
1726   /// better choice for the main induction than the existing one.
1727   void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
1728                        SmallPtrSetImpl<Value *> &AllowedExit);
1729 
1730   /// Create an analysis remark that explains why vectorization failed
1731   ///
1732   /// \p RemarkName is the identifier for the remark.  If \p I is passed it is
1733   /// an instruction that prevents vectorization.  Otherwise the loop is used
1734   /// for the location of the remark.  \return the remark object that can be
1735   /// streamed to.
1736   OptimizationRemarkAnalysis
1737   createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
1738     return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
1739                                   RemarkName, TheLoop, I);
1740   }
1741 
1742   /// \brief If an access has a symbolic strides, this maps the pointer value to
1743   /// the stride symbol.
1744   const ValueToValueMap *getSymbolicStrides() {
1745     // FIXME: Currently, the set of symbolic strides is sometimes queried before
1746     // it's collected.  This happens from canVectorizeWithIfConvert, when the
1747     // pointer is checked to reference consecutive elements suitable for a
1748     // masked access.
1749     return LAI ? &LAI->getSymbolicStrides() : nullptr;
1750   }
1751 
1752   unsigned NumPredStores;
1753 
1754   /// The loop that we evaluate.
1755   Loop *TheLoop;
1756   /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1757   /// Applies dynamic knowledge to simplify SCEV expressions in the context
1758   /// of existing SCEV assumptions. The analysis will also add a minimal set
1759   /// of new predicates if this is required to enable vectorization and
1760   /// unrolling.
1761   PredicatedScalarEvolution &PSE;
1762   /// Target Library Info.
1763   TargetLibraryInfo *TLI;
1764   /// Target Transform Info
1765   const TargetTransformInfo *TTI;
1766   /// Dominator Tree.
1767   DominatorTree *DT;
1768   // LoopAccess analysis.
1769   std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
1770   // And the loop-accesses info corresponding to this loop.  This pointer is
1771   // null until canVectorizeMemory sets it up.
1772   const LoopAccessInfo *LAI;
1773   /// Interface to emit optimization remarks.
1774   OptimizationRemarkEmitter *ORE;
1775 
1776   /// The interleave access information contains groups of interleaved accesses
1777   /// with the same stride and close to each other.
1778   InterleavedAccessInfo InterleaveInfo;
1779 
1780   //  ---  vectorization state --- //
1781 
1782   /// Holds the primary induction variable. This is the counter of the
1783   /// loop.
1784   PHINode *PrimaryInduction;
1785   /// Holds the reduction variables.
1786   ReductionList Reductions;
1787   /// Holds all of the induction variables that we found in the loop.
1788   /// Notice that inductions don't need to start at zero and that induction
1789   /// variables can be pointers.
1790   InductionList Inductions;
1791   /// Holds the phi nodes that are first-order recurrences.
1792   RecurrenceSet FirstOrderRecurrences;
1793   /// Holds the widest induction type encountered.
1794   Type *WidestIndTy;
1795 
1796   /// Allowed outside users. This holds the induction and reduction
1797   /// vars which can be accessed from outside the loop.
1798   SmallPtrSet<Value *, 4> AllowedExit;
1799 
1800   /// Can we assume the absence of NaNs.
1801   bool HasFunNoNaNAttr;
1802 
1803   /// Vectorization requirements that will go through late-evaluation.
1804   LoopVectorizationRequirements *Requirements;
1805 
1806   /// Used to emit an analysis of any legality issues.
1807   LoopVectorizeHints *Hints;
1808 
1809   /// While vectorizing these instructions we have to generate a
1810   /// call to the appropriate masked intrinsic
1811   SmallPtrSet<const Instruction *, 8> MaskedOp;
1812 };
1813 
1814 /// LoopVectorizationCostModel - estimates the expected speedups due to
1815 /// vectorization.
1816 /// In many cases vectorization is not profitable. This can happen because of
1817 /// a number of reasons. In this class we mainly attempt to predict the
1818 /// expected speedup/slowdowns due to the supported instruction set. We use the
1819 /// TargetTransformInfo to query the different backends for the cost of
1820 /// different operations.
1821 class LoopVectorizationCostModel {
1822 public:
1823   LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1824                              LoopInfo *LI, LoopVectorizationLegality *Legal,
1825                              const TargetTransformInfo &TTI,
1826                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1827                              AssumptionCache *AC,
1828                              OptimizationRemarkEmitter *ORE, const Function *F,
1829                              const LoopVectorizeHints *Hints)
1830       : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1831         AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {}
1832 
1833   /// \return An upper bound for the vectorization factor, or None if
1834   /// vectorization should be avoided up front.
1835   Optional<unsigned> computeMaxVF(bool OptForSize);
1836 
1837   /// Information about vectorization costs
1838   struct VectorizationFactor {
1839     unsigned Width; // Vector width with best cost
1840     unsigned Cost;  // Cost of the loop with that width
1841   };
1842   /// \return The most profitable vectorization factor and the cost of that VF.
1843   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1844   /// then this vectorization factor will be selected if vectorization is
1845   /// possible.
1846   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
1847 
1848   /// Setup cost-based decisions for user vectorization factor.
1849   void selectUserVectorizationFactor(unsigned UserVF) {
1850     collectUniformsAndScalars(UserVF);
1851     collectInstsToScalarize(UserVF);
1852   }
1853 
1854   /// \return The size (in bits) of the smallest and widest types in the code
1855   /// that needs to be vectorized. We ignore values that remain scalar such as
1856   /// 64 bit loop indices.
1857   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1858 
1859   /// \return The desired interleave count.
1860   /// If interleave count has been specified by metadata it will be returned.
1861   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1862   /// are the selected vectorization factor and the cost of the selected VF.
1863   unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1864                                  unsigned LoopCost);
1865 
1866   /// Memory access instruction may be vectorized in more than one way.
1867   /// Form of instruction after vectorization depends on cost.
1868   /// This function takes cost-based decisions for Load/Store instructions
1869   /// and collects them in a map. This decisions map is used for building
1870   /// the lists of loop-uniform and loop-scalar instructions.
1871   /// The calculated cost is saved with widening decision in order to
1872   /// avoid redundant calculations.
1873   void setCostBasedWideningDecision(unsigned VF);
1874 
1875   /// \brief A struct that represents some properties of the register usage
1876   /// of a loop.
1877   struct RegisterUsage {
1878     /// Holds the number of loop invariant values that are used in the loop.
1879     unsigned LoopInvariantRegs;
1880     /// Holds the maximum number of concurrent live intervals in the loop.
1881     unsigned MaxLocalUsers;
1882     /// Holds the number of instructions in the loop.
1883     unsigned NumInstructions;
1884   };
1885 
1886   /// \return Returns information about the register usages of the loop for the
1887   /// given vectorization factors.
1888   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1889 
1890   /// Collect values we want to ignore in the cost model.
1891   void collectValuesToIgnore();
1892 
1893   /// \returns The smallest bitwidth each instruction can be represented with.
1894   /// The vector equivalents of these instructions should be truncated to this
1895   /// type.
1896   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1897     return MinBWs;
1898   }
1899 
1900   /// \returns True if it is more profitable to scalarize instruction \p I for
1901   /// vectorization factor \p VF.
1902   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1903     auto Scalars = InstsToScalarize.find(VF);
1904     assert(Scalars != InstsToScalarize.end() &&
1905            "VF not yet analyzed for scalarization profitability");
1906     return Scalars->second.count(I);
1907   }
1908 
1909   /// Returns true if \p I is known to be uniform after vectorization.
1910   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1911     if (VF == 1)
1912       return true;
1913     assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity");
1914     auto UniformsPerVF = Uniforms.find(VF);
1915     return UniformsPerVF->second.count(I);
1916   }
1917 
1918   /// Returns true if \p I is known to be scalar after vectorization.
1919   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1920     if (VF == 1)
1921       return true;
1922     assert(Scalars.count(VF) && "Scalar values are not calculated for VF");
1923     auto ScalarsPerVF = Scalars.find(VF);
1924     return ScalarsPerVF->second.count(I);
1925   }
1926 
1927   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1928   /// for vectorization factor \p VF.
1929   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1930     return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) &&
1931            !isScalarAfterVectorization(I, VF);
1932   }
1933 
1934   /// Decision that was taken during cost calculation for memory instruction.
1935   enum InstWidening {
1936     CM_Unknown,
1937     CM_Widen,
1938     CM_Interleave,
1939     CM_GatherScatter,
1940     CM_Scalarize
1941   };
1942 
1943   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1944   /// instruction \p I and vector width \p VF.
1945   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1946                            unsigned Cost) {
1947     assert(VF >= 2 && "Expected VF >=2");
1948     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1949   }
1950 
1951   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1952   /// interleaving group \p Grp and vector width \p VF.
1953   void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
1954                            InstWidening W, unsigned Cost) {
1955     assert(VF >= 2 && "Expected VF >=2");
1956     /// Broadcast this decicion to all instructions inside the group.
1957     /// But the cost will be assigned to one instruction only.
1958     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1959       if (auto *I = Grp->getMember(i)) {
1960         if (Grp->getInsertPos() == I)
1961           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1962         else
1963           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1964       }
1965     }
1966   }
1967 
1968   /// Return the cost model decision for the given instruction \p I and vector
1969   /// width \p VF. Return CM_Unknown if this instruction did not pass
1970   /// through the cost modeling.
1971   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1972     assert(VF >= 2 && "Expected VF >=2");
1973     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1974     auto Itr = WideningDecisions.find(InstOnVF);
1975     if (Itr == WideningDecisions.end())
1976       return CM_Unknown;
1977     return Itr->second.first;
1978   }
1979 
1980   /// Return the vectorization cost for the given instruction \p I and vector
1981   /// width \p VF.
1982   unsigned getWideningCost(Instruction *I, unsigned VF) {
1983     assert(VF >= 2 && "Expected VF >=2");
1984     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1985     assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated");
1986     return WideningDecisions[InstOnVF].second;
1987   }
1988 
1989   /// Return True if instruction \p I is an optimizable truncate whose operand
1990   /// is an induction variable. Such a truncate will be removed by adding a new
1991   /// induction variable with the destination type.
1992   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1993 
1994     // If the instruction is not a truncate, return false.
1995     auto *Trunc = dyn_cast<TruncInst>(I);
1996     if (!Trunc)
1997       return false;
1998 
1999     // Get the source and destination types of the truncate.
2000     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
2001     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
2002 
2003     // If the truncate is free for the given types, return false. Replacing a
2004     // free truncate with an induction variable would add an induction variable
2005     // update instruction to each iteration of the loop. We exclude from this
2006     // check the primary induction variable since it will need an update
2007     // instruction regardless.
2008     Value *Op = Trunc->getOperand(0);
2009     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
2010       return false;
2011 
2012     // If the truncated value is not an induction variable, return false.
2013     return Legal->isInductionVariable(Op);
2014   }
2015 
2016 private:
2017   /// \return An upper bound for the vectorization factor, larger than zero.
2018   /// One is returned if vectorization should best be avoided due to cost.
2019   unsigned computeFeasibleMaxVF(bool OptForSize);
2020 
2021   /// The vectorization cost is a combination of the cost itself and a boolean
2022   /// indicating whether any of the contributing operations will actually
2023   /// operate on
2024   /// vector values after type legalization in the backend. If this latter value
2025   /// is
2026   /// false, then all operations will be scalarized (i.e. no vectorization has
2027   /// actually taken place).
2028   typedef std::pair<unsigned, bool> VectorizationCostTy;
2029 
2030   /// Returns the expected execution cost. The unit of the cost does
2031   /// not matter because we use the 'cost' units to compare different
2032   /// vector widths. The cost that is returned is *not* normalized by
2033   /// the factor width.
2034   VectorizationCostTy expectedCost(unsigned VF);
2035 
2036   /// Returns the execution time cost of an instruction for a given vector
2037   /// width. Vector width of one means scalar.
2038   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
2039 
2040   /// The cost-computation logic from getInstructionCost which provides
2041   /// the vector type as an output parameter.
2042   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
2043 
2044   /// Calculate vectorization cost of memory instruction \p I.
2045   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
2046 
2047   /// The cost computation for scalarized memory instruction.
2048   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
2049 
2050   /// The cost computation for interleaving group of memory instructions.
2051   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
2052 
2053   /// The cost computation for Gather/Scatter instruction.
2054   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
2055 
2056   /// The cost computation for widening instruction \p I with consecutive
2057   /// memory access.
2058   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
2059 
2060   /// The cost calculation for Load instruction \p I with uniform pointer -
2061   /// scalar load + broadcast.
2062   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
2063 
2064   /// Returns whether the instruction is a load or store and will be a emitted
2065   /// as a vector operation.
2066   bool isConsecutiveLoadOrStore(Instruction *I);
2067 
2068   /// Create an analysis remark that explains why vectorization failed
2069   ///
2070   /// \p RemarkName is the identifier for the remark.  \return the remark object
2071   /// that can be streamed to.
2072   OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
2073     return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
2074                                   RemarkName, TheLoop);
2075   }
2076 
2077   /// Map of scalar integer values to the smallest bitwidth they can be legally
2078   /// represented as. The vector equivalents of these values should be truncated
2079   /// to this type.
2080   MapVector<Instruction *, uint64_t> MinBWs;
2081 
2082   /// A type representing the costs for instructions if they were to be
2083   /// scalarized rather than vectorized. The entries are Instruction-Cost
2084   /// pairs.
2085   typedef DenseMap<Instruction *, unsigned> ScalarCostsTy;
2086 
2087   /// A set containing all BasicBlocks that are known to present after
2088   /// vectorization as a predicated block.
2089   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
2090 
2091   /// A map holding scalar costs for different vectorization factors. The
2092   /// presence of a cost for an instruction in the mapping indicates that the
2093   /// instruction will be scalarized when vectorizing with the associated
2094   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
2095   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
2096 
2097   /// Holds the instructions known to be uniform after vectorization.
2098   /// The data is collected per VF.
2099   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
2100 
2101   /// Holds the instructions known to be scalar after vectorization.
2102   /// The data is collected per VF.
2103   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
2104 
2105   /// Returns the expected difference in cost from scalarizing the expression
2106   /// feeding a predicated instruction \p PredInst. The instructions to
2107   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
2108   /// non-negative return value implies the expression will be scalarized.
2109   /// Currently, only single-use chains are considered for scalarization.
2110   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
2111                               unsigned VF);
2112 
2113   /// Collects the instructions to scalarize for each predicated instruction in
2114   /// the loop.
2115   void collectInstsToScalarize(unsigned VF);
2116 
2117   /// Collect the instructions that are uniform after vectorization. An
2118   /// instruction is uniform if we represent it with a single scalar value in
2119   /// the vectorized loop corresponding to each vector iteration. Examples of
2120   /// uniform instructions include pointer operands of consecutive or
2121   /// interleaved memory accesses. Note that although uniformity implies an
2122   /// instruction will be scalar, the reverse is not true. In general, a
2123   /// scalarized instruction will be represented by VF scalar values in the
2124   /// vectorized loop, each corresponding to an iteration of the original
2125   /// scalar loop.
2126   void collectLoopUniforms(unsigned VF);
2127 
2128   /// Collect the instructions that are scalar after vectorization. An
2129   /// instruction is scalar if it is known to be uniform or will be scalarized
2130   /// during vectorization. Non-uniform scalarized instructions will be
2131   /// represented by VF values in the vectorized loop, each corresponding to an
2132   /// iteration of the original scalar loop.
2133   void collectLoopScalars(unsigned VF);
2134 
2135   /// Collect Uniform and Scalar values for the given \p VF.
2136   /// The sets depend on CM decision for Load/Store instructions
2137   /// that may be vectorized as interleave, gather-scatter or scalarized.
2138   void collectUniformsAndScalars(unsigned VF) {
2139     // Do the analysis once.
2140     if (VF == 1 || Uniforms.count(VF))
2141       return;
2142     setCostBasedWideningDecision(VF);
2143     collectLoopUniforms(VF);
2144     collectLoopScalars(VF);
2145   }
2146 
2147   /// Keeps cost model vectorization decision and cost for instructions.
2148   /// Right now it is used for memory instructions only.
2149   typedef DenseMap<std::pair<Instruction *, unsigned>,
2150                    std::pair<InstWidening, unsigned>>
2151       DecisionList;
2152 
2153   DecisionList WideningDecisions;
2154 
2155 public:
2156   /// The loop that we evaluate.
2157   Loop *TheLoop;
2158   /// Predicated scalar evolution analysis.
2159   PredicatedScalarEvolution &PSE;
2160   /// Loop Info analysis.
2161   LoopInfo *LI;
2162   /// Vectorization legality.
2163   LoopVectorizationLegality *Legal;
2164   /// Vector target information.
2165   const TargetTransformInfo &TTI;
2166   /// Target Library Info.
2167   const TargetLibraryInfo *TLI;
2168   /// Demanded bits analysis.
2169   DemandedBits *DB;
2170   /// Assumption cache.
2171   AssumptionCache *AC;
2172   /// Interface to emit optimization remarks.
2173   OptimizationRemarkEmitter *ORE;
2174 
2175   const Function *TheFunction;
2176   /// Loop Vectorize Hint.
2177   const LoopVectorizeHints *Hints;
2178   /// Values to ignore in the cost model.
2179   SmallPtrSet<const Value *, 16> ValuesToIgnore;
2180   /// Values to ignore in the cost model when VF > 1.
2181   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
2182 };
2183 
2184 /// LoopVectorizationPlanner - drives the vectorization process after having
2185 /// passed Legality checks.
2186 class LoopVectorizationPlanner {
2187 public:
2188   LoopVectorizationPlanner(LoopVectorizationCostModel &CM) : CM(CM) {}
2189 
2190   ~LoopVectorizationPlanner() {}
2191 
2192   /// Plan how to best vectorize, return the best VF and its cost.
2193   LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize,
2194                                                        unsigned UserVF);
2195 
2196 private:
2197   /// The profitablity analysis.
2198   LoopVectorizationCostModel &CM;
2199 };
2200 
2201 /// \brief This holds vectorization requirements that must be verified late in
2202 /// the process. The requirements are set by legalize and costmodel. Once
2203 /// vectorization has been determined to be possible and profitable the
2204 /// requirements can be verified by looking for metadata or compiler options.
2205 /// For example, some loops require FP commutativity which is only allowed if
2206 /// vectorization is explicitly specified or if the fast-math compiler option
2207 /// has been provided.
2208 /// Late evaluation of these requirements allows helpful diagnostics to be
2209 /// composed that tells the user what need to be done to vectorize the loop. For
2210 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
2211 /// evaluation should be used only when diagnostics can generated that can be
2212 /// followed by a non-expert user.
2213 class LoopVectorizationRequirements {
2214 public:
2215   LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE)
2216       : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {}
2217 
2218   void addUnsafeAlgebraInst(Instruction *I) {
2219     // First unsafe algebra instruction.
2220     if (!UnsafeAlgebraInst)
2221       UnsafeAlgebraInst = I;
2222   }
2223 
2224   void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
2225 
2226   bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
2227     const char *PassName = Hints.vectorizeAnalysisPassName();
2228     bool Failed = false;
2229     if (UnsafeAlgebraInst && !Hints.allowReordering()) {
2230       ORE.emit(
2231           OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps",
2232                                               UnsafeAlgebraInst->getDebugLoc(),
2233                                               UnsafeAlgebraInst->getParent())
2234           << "loop not vectorized: cannot prove it is safe to reorder "
2235              "floating-point operations");
2236       Failed = true;
2237     }
2238 
2239     // Test if runtime memcheck thresholds are exceeded.
2240     bool PragmaThresholdReached =
2241         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
2242     bool ThresholdReached =
2243         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
2244     if ((ThresholdReached && !Hints.allowReordering()) ||
2245         PragmaThresholdReached) {
2246       ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
2247                                                   L->getStartLoc(),
2248                                                   L->getHeader())
2249                << "loop not vectorized: cannot prove it is safe to reorder "
2250                   "memory operations");
2251       DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
2252       Failed = true;
2253     }
2254 
2255     return Failed;
2256   }
2257 
2258 private:
2259   unsigned NumRuntimePointerChecks;
2260   Instruction *UnsafeAlgebraInst;
2261 
2262   /// Interface to emit optimization remarks.
2263   OptimizationRemarkEmitter &ORE;
2264 };
2265 
2266 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
2267   if (L.empty()) {
2268     if (!hasCyclesInLoopBody(L))
2269       V.push_back(&L);
2270     return;
2271   }
2272   for (Loop *InnerL : L)
2273     addAcyclicInnerLoop(*InnerL, V);
2274 }
2275 
2276 /// The LoopVectorize Pass.
2277 struct LoopVectorize : public FunctionPass {
2278   /// Pass identification, replacement for typeid
2279   static char ID;
2280 
2281   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
2282       : FunctionPass(ID) {
2283     Impl.DisableUnrolling = NoUnrolling;
2284     Impl.AlwaysVectorize = AlwaysVectorize;
2285     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2286   }
2287 
2288   LoopVectorizePass Impl;
2289 
2290   bool runOnFunction(Function &F) override {
2291     if (skipFunction(F))
2292       return false;
2293 
2294     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2295     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2296     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2297     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2298     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2299     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2300     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2301     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2302     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2303     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2304     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2305     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2306 
2307     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2308         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2309 
2310     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2311                         GetLAA, *ORE);
2312   }
2313 
2314   void getAnalysisUsage(AnalysisUsage &AU) const override {
2315     AU.addRequired<AssumptionCacheTracker>();
2316     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2317     AU.addRequired<DominatorTreeWrapperPass>();
2318     AU.addRequired<LoopInfoWrapperPass>();
2319     AU.addRequired<ScalarEvolutionWrapperPass>();
2320     AU.addRequired<TargetTransformInfoWrapperPass>();
2321     AU.addRequired<AAResultsWrapperPass>();
2322     AU.addRequired<LoopAccessLegacyAnalysis>();
2323     AU.addRequired<DemandedBitsWrapperPass>();
2324     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2325     AU.addPreserved<LoopInfoWrapperPass>();
2326     AU.addPreserved<DominatorTreeWrapperPass>();
2327     AU.addPreserved<BasicAAWrapperPass>();
2328     AU.addPreserved<GlobalsAAWrapperPass>();
2329   }
2330 };
2331 
2332 } // end anonymous namespace
2333 
2334 //===----------------------------------------------------------------------===//
2335 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2336 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2337 //===----------------------------------------------------------------------===//
2338 
2339 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2340   // We need to place the broadcast of invariant variables outside the loop.
2341   Instruction *Instr = dyn_cast<Instruction>(V);
2342   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
2343   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
2344 
2345   // Place the code for broadcasting invariant variables in the new preheader.
2346   IRBuilder<>::InsertPointGuard Guard(Builder);
2347   if (Invariant)
2348     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2349 
2350   // Broadcast the scalar into all locations in the vector.
2351   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2352 
2353   return Shuf;
2354 }
2355 
2356 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2357     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
2358   Value *Start = II.getStartValue();
2359 
2360   // Construct the initial value of the vector IV in the vector loop preheader
2361   auto CurrIP = Builder.saveIP();
2362   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2363   if (isa<TruncInst>(EntryVal)) {
2364     assert(Start->getType()->isIntegerTy() &&
2365            "Truncation requires an integer type");
2366     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2367     Step = Builder.CreateTrunc(Step, TruncType);
2368     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2369   }
2370   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2371   Value *SteppedStart =
2372       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2373 
2374   // We create vector phi nodes for both integer and floating-point induction
2375   // variables. Here, we determine the kind of arithmetic we will perform.
2376   Instruction::BinaryOps AddOp;
2377   Instruction::BinaryOps MulOp;
2378   if (Step->getType()->isIntegerTy()) {
2379     AddOp = Instruction::Add;
2380     MulOp = Instruction::Mul;
2381   } else {
2382     AddOp = II.getInductionOpcode();
2383     MulOp = Instruction::FMul;
2384   }
2385 
2386   // Multiply the vectorization factor by the step using integer or
2387   // floating-point arithmetic as appropriate.
2388   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
2389   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
2390 
2391   // Create a vector splat to use in the induction update.
2392   //
2393   // FIXME: If the step is non-constant, we create the vector splat with
2394   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2395   //        handle a constant vector splat.
2396   Value *SplatVF = isa<Constant>(Mul)
2397                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2398                        : Builder.CreateVectorSplat(VF, Mul);
2399   Builder.restoreIP(CurrIP);
2400 
2401   // We may need to add the step a number of times, depending on the unroll
2402   // factor. The last of those goes into the PHI.
2403   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2404                                     &*LoopVectorBody->getFirstInsertionPt());
2405   Instruction *LastInduction = VecInd;
2406   VectorParts Entry(UF);
2407   for (unsigned Part = 0; Part < UF; ++Part) {
2408     Entry[Part] = LastInduction;
2409     LastInduction = cast<Instruction>(addFastMathFlag(
2410         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
2411   }
2412   VectorLoopValueMap.initVector(EntryVal, Entry);
2413   if (isa<TruncInst>(EntryVal))
2414     addMetadata(Entry, EntryVal);
2415 
2416   // Move the last step to the end of the latch block. This ensures consistent
2417   // placement of all induction updates.
2418   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2419   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2420   auto *ICmp = cast<Instruction>(Br->getCondition());
2421   LastInduction->moveBefore(ICmp);
2422   LastInduction->setName("vec.ind.next");
2423 
2424   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2425   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2426 }
2427 
2428 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2429   return Cost->isScalarAfterVectorization(I, VF) ||
2430          Cost->isProfitableToScalarize(I, VF);
2431 }
2432 
2433 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2434   if (shouldScalarizeInstruction(IV))
2435     return true;
2436   auto isScalarInst = [&](User *U) -> bool {
2437     auto *I = cast<Instruction>(U);
2438     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2439   };
2440   return any_of(IV->users(), isScalarInst);
2441 }
2442 
2443 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
2444 
2445   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2446          "Primary induction variable must have an integer type");
2447 
2448   auto II = Legal->getInductionVars()->find(IV);
2449   assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
2450 
2451   auto ID = II->second;
2452   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2453 
2454   // The scalar value to broadcast. This will be derived from the canonical
2455   // induction variable.
2456   Value *ScalarIV = nullptr;
2457 
2458   // The value from the original loop to which we are mapping the new induction
2459   // variable.
2460   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2461 
2462   // True if we have vectorized the induction variable.
2463   auto VectorizedIV = false;
2464 
2465   // Determine if we want a scalar version of the induction variable. This is
2466   // true if the induction variable itself is not widened, or if it has at
2467   // least one user in the loop that is not widened.
2468   auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
2469 
2470   // Generate code for the induction step. Note that induction steps are
2471   // required to be loop-invariant
2472   assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
2473          "Induction step should be loop invariant");
2474   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2475   Value *Step = nullptr;
2476   if (PSE.getSE()->isSCEVable(IV->getType())) {
2477     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2478     Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
2479                              LoopVectorPreHeader->getTerminator());
2480   } else {
2481     Step = cast<SCEVUnknown>(ID.getStep())->getValue();
2482   }
2483 
2484   // Try to create a new independent vector induction variable. If we can't
2485   // create the phi node, we will splat the scalar induction variable in each
2486   // loop iteration.
2487   if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
2488     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2489     VectorizedIV = true;
2490   }
2491 
2492   // If we haven't yet vectorized the induction variable, or if we will create
2493   // a scalar one, we need to define the scalar induction variable and step
2494   // values. If we were given a truncation type, truncate the canonical
2495   // induction variable and step. Otherwise, derive these values from the
2496   // induction descriptor.
2497   if (!VectorizedIV || NeedsScalarIV) {
2498     ScalarIV = Induction;
2499     if (IV != OldInduction) {
2500       ScalarIV = IV->getType()->isIntegerTy()
2501                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2502                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2503                                           IV->getType());
2504       ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
2505       ScalarIV->setName("offset.idx");
2506     }
2507     if (Trunc) {
2508       auto *TruncType = cast<IntegerType>(Trunc->getType());
2509       assert(Step->getType()->isIntegerTy() &&
2510              "Truncation requires an integer step");
2511       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2512       Step = Builder.CreateTrunc(Step, TruncType);
2513     }
2514   }
2515 
2516   // If we haven't yet vectorized the induction variable, splat the scalar
2517   // induction variable, and build the necessary step vectors.
2518   if (!VectorizedIV) {
2519     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2520     VectorParts Entry(UF);
2521     for (unsigned Part = 0; Part < UF; ++Part)
2522       Entry[Part] =
2523           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
2524     VectorLoopValueMap.initVector(EntryVal, Entry);
2525     if (Trunc)
2526       addMetadata(Entry, Trunc);
2527   }
2528 
2529   // If an induction variable is only used for counting loop iterations or
2530   // calculating addresses, it doesn't need to be widened. Create scalar steps
2531   // that can be used by instructions we will later scalarize. Note that the
2532   // addition of the scalar steps will not increase the number of instructions
2533   // in the loop in the common case prior to InstCombine. We will be trading
2534   // one vector extract for each scalar step.
2535   if (NeedsScalarIV)
2536     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2537 }
2538 
2539 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2540                                           Instruction::BinaryOps BinOp) {
2541   // Create and check the types.
2542   assert(Val->getType()->isVectorTy() && "Must be a vector");
2543   int VLen = Val->getType()->getVectorNumElements();
2544 
2545   Type *STy = Val->getType()->getScalarType();
2546   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2547          "Induction Step must be an integer or FP");
2548   assert(Step->getType() == STy && "Step has wrong type");
2549 
2550   SmallVector<Constant *, 8> Indices;
2551 
2552   if (STy->isIntegerTy()) {
2553     // Create a vector of consecutive numbers from zero to VF.
2554     for (int i = 0; i < VLen; ++i)
2555       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2556 
2557     // Add the consecutive indices to the vector value.
2558     Constant *Cv = ConstantVector::get(Indices);
2559     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
2560     Step = Builder.CreateVectorSplat(VLen, Step);
2561     assert(Step->getType() == Val->getType() && "Invalid step vec");
2562     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2563     // which can be found from the original scalar operations.
2564     Step = Builder.CreateMul(Cv, Step);
2565     return Builder.CreateAdd(Val, Step, "induction");
2566   }
2567 
2568   // Floating point induction.
2569   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2570          "Binary Opcode should be specified for FP induction");
2571   // Create a vector of consecutive numbers from zero to VF.
2572   for (int i = 0; i < VLen; ++i)
2573     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2574 
2575   // Add the consecutive indices to the vector value.
2576   Constant *Cv = ConstantVector::get(Indices);
2577 
2578   Step = Builder.CreateVectorSplat(VLen, Step);
2579 
2580   // Floating point operations had to be 'fast' to enable the induction.
2581   FastMathFlags Flags;
2582   Flags.setUnsafeAlgebra();
2583 
2584   Value *MulOp = Builder.CreateFMul(Cv, Step);
2585   if (isa<Instruction>(MulOp))
2586     // Have to check, MulOp may be a constant
2587     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2588 
2589   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2590   if (isa<Instruction>(BOp))
2591     cast<Instruction>(BOp)->setFastMathFlags(Flags);
2592   return BOp;
2593 }
2594 
2595 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2596                                            Value *EntryVal,
2597                                            const InductionDescriptor &ID) {
2598 
2599   // We shouldn't have to build scalar steps if we aren't vectorizing.
2600   assert(VF > 1 && "VF should be greater than one");
2601 
2602   // Get the value type and ensure it and the step have the same integer type.
2603   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2604   assert(ScalarIVTy == Step->getType() &&
2605          "Val and Step should have the same type");
2606 
2607   // We build scalar steps for both integer and floating-point induction
2608   // variables. Here, we determine the kind of arithmetic we will perform.
2609   Instruction::BinaryOps AddOp;
2610   Instruction::BinaryOps MulOp;
2611   if (ScalarIVTy->isIntegerTy()) {
2612     AddOp = Instruction::Add;
2613     MulOp = Instruction::Mul;
2614   } else {
2615     AddOp = ID.getInductionOpcode();
2616     MulOp = Instruction::FMul;
2617   }
2618 
2619   // Determine the number of scalars we need to generate for each unroll
2620   // iteration. If EntryVal is uniform, we only need to generate the first
2621   // lane. Otherwise, we generate all VF values.
2622   unsigned Lanes =
2623     Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF;
2624 
2625   // Compute the scalar steps and save the results in VectorLoopValueMap.
2626   ScalarParts Entry(UF);
2627   for (unsigned Part = 0; Part < UF; ++Part) {
2628     Entry[Part].resize(VF);
2629     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2630       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2631       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2632       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2633       Entry[Part][Lane] = Add;
2634     }
2635   }
2636   VectorLoopValueMap.initScalar(EntryVal, Entry);
2637 }
2638 
2639 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2640 
2641   const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
2642     ValueToValueMap();
2643 
2644   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
2645   if (Stride == 1 || Stride == -1)
2646     return Stride;
2647   return 0;
2648 }
2649 
2650 bool LoopVectorizationLegality::isUniform(Value *V) {
2651   return LAI->isUniform(V);
2652 }
2653 
2654 const InnerLoopVectorizer::VectorParts &
2655 InnerLoopVectorizer::getVectorValue(Value *V) {
2656   assert(V != Induction && "The new induction variable should not be used.");
2657   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2658   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2659 
2660   // If we have a stride that is replaced by one, do it here.
2661   if (Legal->hasStride(V))
2662     V = ConstantInt::get(V->getType(), 1);
2663 
2664   // If we have this scalar in the map, return it.
2665   if (VectorLoopValueMap.hasVector(V))
2666     return VectorLoopValueMap.VectorMapStorage[V];
2667 
2668   // If the value has not been vectorized, check if it has been scalarized
2669   // instead. If it has been scalarized, and we actually need the value in
2670   // vector form, we will construct the vector values on demand.
2671   if (VectorLoopValueMap.hasScalar(V)) {
2672 
2673     // Initialize a new vector map entry.
2674     VectorParts Entry(UF);
2675 
2676     // If we've scalarized a value, that value should be an instruction.
2677     auto *I = cast<Instruction>(V);
2678 
2679     // If we aren't vectorizing, we can just copy the scalar map values over to
2680     // the vector map.
2681     if (VF == 1) {
2682       for (unsigned Part = 0; Part < UF; ++Part)
2683         Entry[Part] = getScalarValue(V, Part, 0);
2684       return VectorLoopValueMap.initVector(V, Entry);
2685     }
2686 
2687     // Get the last scalar instruction we generated for V. If the value is
2688     // known to be uniform after vectorization, this corresponds to lane zero
2689     // of the last unroll iteration. Otherwise, the last instruction is the one
2690     // we created for the last vector lane of the last unroll iteration.
2691     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2692     auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane));
2693 
2694     // Set the insert point after the last scalarized instruction. This ensures
2695     // the insertelement sequence will directly follow the scalar definitions.
2696     auto OldIP = Builder.saveIP();
2697     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2698     Builder.SetInsertPoint(&*NewIP);
2699 
2700     // However, if we are vectorizing, we need to construct the vector values.
2701     // If the value is known to be uniform after vectorization, we can just
2702     // broadcast the scalar value corresponding to lane zero for each unroll
2703     // iteration. Otherwise, we construct the vector values using insertelement
2704     // instructions. Since the resulting vectors are stored in
2705     // VectorLoopValueMap, we will only generate the insertelements once.
2706     for (unsigned Part = 0; Part < UF; ++Part) {
2707       Value *VectorValue = nullptr;
2708       if (Cost->isUniformAfterVectorization(I, VF)) {
2709         VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0));
2710       } else {
2711         VectorValue = UndefValue::get(VectorType::get(V->getType(), VF));
2712         for (unsigned Lane = 0; Lane < VF; ++Lane)
2713           VectorValue = Builder.CreateInsertElement(
2714               VectorValue, getScalarValue(V, Part, Lane),
2715               Builder.getInt32(Lane));
2716       }
2717       Entry[Part] = VectorValue;
2718     }
2719     Builder.restoreIP(OldIP);
2720     return VectorLoopValueMap.initVector(V, Entry);
2721   }
2722 
2723   // If this scalar is unknown, assume that it is a constant or that it is
2724   // loop invariant. Broadcast V and save the value for future uses.
2725   Value *B = getBroadcastInstrs(V);
2726   return VectorLoopValueMap.initVector(V, VectorParts(UF, B));
2727 }
2728 
2729 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part,
2730                                            unsigned Lane) {
2731 
2732   // If the value is not an instruction contained in the loop, it should
2733   // already be scalar.
2734   if (OrigLoop->isLoopInvariant(V))
2735     return V;
2736 
2737   assert(Lane > 0 ?
2738          !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2739          : true && "Uniform values only have lane zero");
2740 
2741   // If the value from the original loop has not been vectorized, it is
2742   // represented by UF x VF scalar values in the new loop. Return the requested
2743   // scalar value.
2744   if (VectorLoopValueMap.hasScalar(V))
2745     return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane];
2746 
2747   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2748   // for the given unroll part. If this entry is not a vector type (i.e., the
2749   // vectorization factor is one), there is no need to generate an
2750   // extractelement instruction.
2751   auto *U = getVectorValue(V)[Part];
2752   if (!U->getType()->isVectorTy()) {
2753     assert(VF == 1 && "Value not scalarized has non-vector type");
2754     return U;
2755   }
2756 
2757   // Otherwise, the value from the original loop has been vectorized and is
2758   // represented by UF vector values. Extract and return the requested scalar
2759   // value from the appropriate vector lane.
2760   return Builder.CreateExtractElement(U, Builder.getInt32(Lane));
2761 }
2762 
2763 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2764   assert(Vec->getType()->isVectorTy() && "Invalid type");
2765   SmallVector<Constant *, 8> ShuffleMask;
2766   for (unsigned i = 0; i < VF; ++i)
2767     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2768 
2769   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2770                                      ConstantVector::get(ShuffleMask),
2771                                      "reverse");
2772 }
2773 
2774 // Try to vectorize the interleave group that \p Instr belongs to.
2775 //
2776 // E.g. Translate following interleaved load group (factor = 3):
2777 //   for (i = 0; i < N; i+=3) {
2778 //     R = Pic[i];             // Member of index 0
2779 //     G = Pic[i+1];           // Member of index 1
2780 //     B = Pic[i+2];           // Member of index 2
2781 //     ... // do something to R, G, B
2782 //   }
2783 // To:
2784 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2785 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2786 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2787 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2788 //
2789 // Or translate following interleaved store group (factor = 3):
2790 //   for (i = 0; i < N; i+=3) {
2791 //     ... do something to R, G, B
2792 //     Pic[i]   = R;           // Member of index 0
2793 //     Pic[i+1] = G;           // Member of index 1
2794 //     Pic[i+2] = B;           // Member of index 2
2795 //   }
2796 // To:
2797 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2798 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2799 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2800 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2801 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2802 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2803   const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2804   assert(Group && "Fail to get an interleaved access group.");
2805 
2806   // Skip if current instruction is not the insert position.
2807   if (Instr != Group->getInsertPos())
2808     return;
2809 
2810   Value *Ptr = getPointerOperand(Instr);
2811 
2812   // Prepare for the vector type of the interleaved load/store.
2813   Type *ScalarTy = getMemInstValueType(Instr);
2814   unsigned InterleaveFactor = Group->getFactor();
2815   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2816   Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr));
2817 
2818   // Prepare for the new pointers.
2819   setDebugLocFromInst(Builder, Ptr);
2820   SmallVector<Value *, 2> NewPtrs;
2821   unsigned Index = Group->getIndex(Instr);
2822 
2823   // If the group is reverse, adjust the index to refer to the last vector lane
2824   // instead of the first. We adjust the index from the first vector lane,
2825   // rather than directly getting the pointer for lane VF - 1, because the
2826   // pointer operand of the interleaved access is supposed to be uniform. For
2827   // uniform instructions, we're only required to generate a value for the
2828   // first vector lane in each unroll iteration.
2829   if (Group->isReverse())
2830     Index += (VF - 1) * Group->getFactor();
2831 
2832   for (unsigned Part = 0; Part < UF; Part++) {
2833     Value *NewPtr = getScalarValue(Ptr, Part, 0);
2834 
2835     // Notice current instruction could be any index. Need to adjust the address
2836     // to the member of index 0.
2837     //
2838     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2839     //       b = A[i];       // Member of index 0
2840     // Current pointer is pointed to A[i+1], adjust it to A[i].
2841     //
2842     // E.g.  A[i+1] = a;     // Member of index 1
2843     //       A[i]   = b;     // Member of index 0
2844     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2845     // Current pointer is pointed to A[i+2], adjust it to A[i].
2846     NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2847 
2848     // Cast to the vector pointer type.
2849     NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2850   }
2851 
2852   setDebugLocFromInst(Builder, Instr);
2853   Value *UndefVec = UndefValue::get(VecTy);
2854 
2855   // Vectorize the interleaved load group.
2856   if (isa<LoadInst>(Instr)) {
2857 
2858     // For each unroll part, create a wide load for the group.
2859     SmallVector<Value *, 2> NewLoads;
2860     for (unsigned Part = 0; Part < UF; Part++) {
2861       auto *NewLoad = Builder.CreateAlignedLoad(
2862           NewPtrs[Part], Group->getAlignment(), "wide.vec");
2863       addMetadata(NewLoad, Instr);
2864       NewLoads.push_back(NewLoad);
2865     }
2866 
2867     // For each member in the group, shuffle out the appropriate data from the
2868     // wide loads.
2869     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2870       Instruction *Member = Group->getMember(I);
2871 
2872       // Skip the gaps in the group.
2873       if (!Member)
2874         continue;
2875 
2876       VectorParts Entry(UF);
2877       Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
2878       for (unsigned Part = 0; Part < UF; Part++) {
2879         Value *StridedVec = Builder.CreateShuffleVector(
2880             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2881 
2882         // If this member has different type, cast the result type.
2883         if (Member->getType() != ScalarTy) {
2884           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2885           StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
2886         }
2887 
2888         Entry[Part] =
2889             Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
2890       }
2891       VectorLoopValueMap.initVector(Member, Entry);
2892     }
2893     return;
2894   }
2895 
2896   // The sub vector type for current instruction.
2897   VectorType *SubVT = VectorType::get(ScalarTy, VF);
2898 
2899   // Vectorize the interleaved store group.
2900   for (unsigned Part = 0; Part < UF; Part++) {
2901     // Collect the stored vector from each member.
2902     SmallVector<Value *, 4> StoredVecs;
2903     for (unsigned i = 0; i < InterleaveFactor; i++) {
2904       // Interleaved store group doesn't allow a gap, so each index has a member
2905       Instruction *Member = Group->getMember(i);
2906       assert(Member && "Fail to get a member from an interleaved store group");
2907 
2908       Value *StoredVec =
2909           getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part];
2910       if (Group->isReverse())
2911         StoredVec = reverseVector(StoredVec);
2912 
2913       // If this member has different type, cast it to an unified type.
2914       if (StoredVec->getType() != SubVT)
2915         StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
2916 
2917       StoredVecs.push_back(StoredVec);
2918     }
2919 
2920     // Concatenate all vectors into a wide vector.
2921     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2922 
2923     // Interleave the elements in the wide vector.
2924     Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
2925     Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2926                                               "interleaved.vec");
2927 
2928     Instruction *NewStoreInstr =
2929         Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2930     addMetadata(NewStoreInstr, Instr);
2931   }
2932 }
2933 
2934 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
2935   // Attempt to issue a wide load.
2936   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2937   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2938 
2939   assert((LI || SI) && "Invalid Load/Store instruction");
2940 
2941   LoopVectorizationCostModel::InstWidening Decision =
2942       Cost->getWideningDecision(Instr, VF);
2943   assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
2944          "CM decision should be taken at this point");
2945   if (Decision == LoopVectorizationCostModel::CM_Interleave)
2946     return vectorizeInterleaveGroup(Instr);
2947 
2948   Type *ScalarDataTy = getMemInstValueType(Instr);
2949   Type *DataTy = VectorType::get(ScalarDataTy, VF);
2950   Value *Ptr = getPointerOperand(Instr);
2951   unsigned Alignment = getMemInstAlignment(Instr);
2952   // An alignment of 0 means target abi alignment. We need to use the scalar's
2953   // target abi alignment in such a case.
2954   const DataLayout &DL = Instr->getModule()->getDataLayout();
2955   if (!Alignment)
2956     Alignment = DL.getABITypeAlignment(ScalarDataTy);
2957   unsigned AddressSpace = getMemInstAddressSpace(Instr);
2958 
2959   // Scalarize the memory instruction if necessary.
2960   if (Decision == LoopVectorizationCostModel::CM_Scalarize)
2961     return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr));
2962 
2963   // Determine if the pointer operand of the access is either consecutive or
2964   // reverse consecutive.
2965   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
2966   bool Reverse = ConsecutiveStride < 0;
2967   bool CreateGatherScatter =
2968       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2969 
2970   VectorParts VectorGep;
2971 
2972   // Handle consecutive loads/stores.
2973   if (ConsecutiveStride) {
2974     Ptr = getScalarValue(Ptr, 0, 0);
2975   } else {
2976     // At this point we should vector version of GEP for Gather or Scatter
2977     assert(CreateGatherScatter && "The instruction should be scalarized");
2978     VectorGep = getVectorValue(Ptr);
2979   }
2980 
2981   VectorParts Mask = createBlockInMask(Instr->getParent());
2982   // Handle Stores:
2983   if (SI) {
2984     assert(!Legal->isUniform(SI->getPointerOperand()) &&
2985            "We do not allow storing to uniform addresses");
2986     setDebugLocFromInst(Builder, SI);
2987     // We don't want to update the value in the map as it might be used in
2988     // another expression. So don't use a reference type for "StoredVal".
2989     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
2990 
2991     for (unsigned Part = 0; Part < UF; ++Part) {
2992       Instruction *NewSI = nullptr;
2993       if (CreateGatherScatter) {
2994         Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr;
2995         NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part],
2996                                             Alignment, MaskPart);
2997       } else {
2998         // Calculate the pointer for the specific unroll-part.
2999         Value *PartPtr =
3000             Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3001 
3002         if (Reverse) {
3003           // If we store to reverse consecutive memory locations, then we need
3004           // to reverse the order of elements in the stored value.
3005           StoredVal[Part] = reverseVector(StoredVal[Part]);
3006           // If the address is consecutive but reversed, then the
3007           // wide store needs to start at the last vector element.
3008           PartPtr =
3009               Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3010           PartPtr =
3011               Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3012           Mask[Part] = reverseVector(Mask[Part]);
3013         }
3014 
3015         Value *VecPtr =
3016             Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3017 
3018         if (Legal->isMaskRequired(SI))
3019           NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
3020                                             Mask[Part]);
3021         else
3022           NewSI =
3023               Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
3024       }
3025       addMetadata(NewSI, SI);
3026     }
3027     return;
3028   }
3029 
3030   // Handle loads.
3031   assert(LI && "Must have a load instruction");
3032   setDebugLocFromInst(Builder, LI);
3033   VectorParts Entry(UF);
3034   for (unsigned Part = 0; Part < UF; ++Part) {
3035     Instruction *NewLI;
3036     if (CreateGatherScatter) {
3037       Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr;
3038       NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart,
3039                                          0, "wide.masked.gather");
3040       Entry[Part] = NewLI;
3041     } else {
3042       // Calculate the pointer for the specific unroll-part.
3043       Value *PartPtr =
3044           Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3045 
3046       if (Reverse) {
3047         // If the address is consecutive but reversed, then the
3048         // wide load needs to start at the last vector element.
3049         PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3050         PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3051         Mask[Part] = reverseVector(Mask[Part]);
3052       }
3053 
3054       Value *VecPtr =
3055           Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3056       if (Legal->isMaskRequired(LI))
3057         NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
3058                                          UndefValue::get(DataTy),
3059                                          "wide.masked.load");
3060       else
3061         NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
3062       Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
3063     }
3064     addMetadata(NewLI, LI);
3065   }
3066   VectorLoopValueMap.initVector(Instr, Entry);
3067 }
3068 
3069 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
3070                                                bool IfPredicateInstr) {
3071   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3072   DEBUG(dbgs() << "LV: Scalarizing"
3073                << (IfPredicateInstr ? " and predicating:" : ":") << *Instr
3074                << '\n');
3075   // Holds vector parameters or scalars, in case of uniform vals.
3076   SmallVector<VectorParts, 4> Params;
3077 
3078   setDebugLocFromInst(Builder, Instr);
3079 
3080   // Does this instruction return a value ?
3081   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3082 
3083   // Initialize a new scalar map entry.
3084   ScalarParts Entry(UF);
3085 
3086   VectorParts Cond;
3087   if (IfPredicateInstr)
3088     Cond = createBlockInMask(Instr->getParent());
3089 
3090   // Determine the number of scalars we need to generate for each unroll
3091   // iteration. If the instruction is uniform, we only need to generate the
3092   // first lane. Otherwise, we generate all VF values.
3093   unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF;
3094 
3095   // For each vector unroll 'part':
3096   for (unsigned Part = 0; Part < UF; ++Part) {
3097     Entry[Part].resize(VF);
3098     // For each scalar that we create:
3099     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
3100 
3101       // Start if-block.
3102       Value *Cmp = nullptr;
3103       if (IfPredicateInstr) {
3104         Cmp = Cond[Part];
3105         if (Cmp->getType()->isVectorTy())
3106           Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane));
3107         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
3108                                  ConstantInt::get(Cmp->getType(), 1));
3109       }
3110 
3111       Instruction *Cloned = Instr->clone();
3112       if (!IsVoidRetTy)
3113         Cloned->setName(Instr->getName() + ".cloned");
3114 
3115       // Replace the operands of the cloned instructions with their scalar
3116       // equivalents in the new loop.
3117       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
3118         auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane);
3119         Cloned->setOperand(op, NewOp);
3120       }
3121       addNewMetadata(Cloned, Instr);
3122 
3123       // Place the cloned scalar in the new loop.
3124       Builder.Insert(Cloned);
3125 
3126       // Add the cloned scalar to the scalar map entry.
3127       Entry[Part][Lane] = Cloned;
3128 
3129       // If we just cloned a new assumption, add it the assumption cache.
3130       if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
3131         if (II->getIntrinsicID() == Intrinsic::assume)
3132           AC->registerAssumption(II);
3133 
3134       // End if-block.
3135       if (IfPredicateInstr)
3136         PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp));
3137     }
3138   }
3139   VectorLoopValueMap.initScalar(Instr, Entry);
3140 }
3141 
3142 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3143                                                       Value *End, Value *Step,
3144                                                       Instruction *DL) {
3145   BasicBlock *Header = L->getHeader();
3146   BasicBlock *Latch = L->getLoopLatch();
3147   // As we're just creating this loop, it's possible no latch exists
3148   // yet. If so, use the header as this will be a single block loop.
3149   if (!Latch)
3150     Latch = Header;
3151 
3152   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3153   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3154   setDebugLocFromInst(Builder, OldInst);
3155   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3156 
3157   Builder.SetInsertPoint(Latch->getTerminator());
3158   setDebugLocFromInst(Builder, OldInst);
3159 
3160   // Create i+1 and fill the PHINode.
3161   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3162   Induction->addIncoming(Start, L->getLoopPreheader());
3163   Induction->addIncoming(Next, Latch);
3164   // Create the compare.
3165   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3166   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
3167 
3168   // Now we have two terminators. Remove the old one from the block.
3169   Latch->getTerminator()->eraseFromParent();
3170 
3171   return Induction;
3172 }
3173 
3174 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3175   if (TripCount)
3176     return TripCount;
3177 
3178   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3179   // Find the loop boundaries.
3180   ScalarEvolution *SE = PSE.getSE();
3181   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3182   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
3183          "Invalid loop count");
3184 
3185   Type *IdxTy = Legal->getWidestInductionType();
3186 
3187   // The exit count might have the type of i64 while the phi is i32. This can
3188   // happen if we have an induction variable that is sign extended before the
3189   // compare. The only way that we get a backedge taken count is that the
3190   // induction variable was signed and as such will not overflow. In such a case
3191   // truncation is legal.
3192   if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
3193       IdxTy->getPrimitiveSizeInBits())
3194     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3195   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3196 
3197   // Get the total trip count from the count by adding 1.
3198   const SCEV *ExitCount = SE->getAddExpr(
3199       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3200 
3201   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3202 
3203   // Expand the trip count and place the new instructions in the preheader.
3204   // Notice that the pre-header does not change, only the loop body.
3205   SCEVExpander Exp(*SE, DL, "induction");
3206 
3207   // Count holds the overall loop count (N).
3208   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3209                                 L->getLoopPreheader()->getTerminator());
3210 
3211   if (TripCount->getType()->isPointerTy())
3212     TripCount =
3213         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3214                                     L->getLoopPreheader()->getTerminator());
3215 
3216   return TripCount;
3217 }
3218 
3219 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3220   if (VectorTripCount)
3221     return VectorTripCount;
3222 
3223   Value *TC = getOrCreateTripCount(L);
3224   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3225 
3226   // Now we need to generate the expression for the part of the loop that the
3227   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3228   // iterations are not required for correctness, or N - Step, otherwise. Step
3229   // is equal to the vectorization factor (number of SIMD elements) times the
3230   // unroll factor (number of SIMD instructions).
3231   Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
3232   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3233 
3234   // If there is a non-reversed interleaved group that may speculatively access
3235   // memory out-of-bounds, we need to ensure that there will be at least one
3236   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
3237   // the trip count, we set the remainder to be equal to the step. If the step
3238   // does not evenly divide the trip count, no adjustment is necessary since
3239   // there will already be scalar iterations. Note that the minimum iterations
3240   // check ensures that N >= Step.
3241   if (VF > 1 && Legal->requiresScalarEpilogue()) {
3242     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3243     R = Builder.CreateSelect(IsZero, Step, R);
3244   }
3245 
3246   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3247 
3248   return VectorTripCount;
3249 }
3250 
3251 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3252                                                          BasicBlock *Bypass) {
3253   Value *Count = getOrCreateTripCount(L);
3254   BasicBlock *BB = L->getLoopPreheader();
3255   IRBuilder<> Builder(BB->getTerminator());
3256 
3257   // Generate code to check that the loop's trip count that we computed by
3258   // adding one to the backedge-taken count will not overflow.
3259   Value *CheckMinIters = Builder.CreateICmpULT(
3260       Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
3261 
3262   BasicBlock *NewBB =
3263       BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked");
3264   // Update dominator tree immediately if the generated block is a
3265   // LoopBypassBlock because SCEV expansions to generate loop bypass
3266   // checks may query it before the current function is finished.
3267   DT->addNewBlock(NewBB, BB);
3268   if (L->getParentLoop())
3269     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3270   ReplaceInstWithInst(BB->getTerminator(),
3271                       BranchInst::Create(Bypass, NewBB, CheckMinIters));
3272   LoopBypassBlocks.push_back(BB);
3273 }
3274 
3275 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
3276                                                      BasicBlock *Bypass) {
3277   Value *TC = getOrCreateVectorTripCount(L);
3278   BasicBlock *BB = L->getLoopPreheader();
3279   IRBuilder<> Builder(BB->getTerminator());
3280 
3281   // Now, compare the new count to zero. If it is zero skip the vector loop and
3282   // jump to the scalar loop.
3283   Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
3284                                     "cmp.zero");
3285 
3286   // Generate code to check that the loop's trip count that we computed by
3287   // adding one to the backedge-taken count will not overflow.
3288   BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3289   // Update dominator tree immediately if the generated block is a
3290   // LoopBypassBlock because SCEV expansions to generate loop bypass
3291   // checks may query it before the current function is finished.
3292   DT->addNewBlock(NewBB, BB);
3293   if (L->getParentLoop())
3294     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3295   ReplaceInstWithInst(BB->getTerminator(),
3296                       BranchInst::Create(Bypass, NewBB, Cmp));
3297   LoopBypassBlocks.push_back(BB);
3298 }
3299 
3300 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3301   BasicBlock *BB = L->getLoopPreheader();
3302 
3303   // Generate the code to check that the SCEV assumptions that we made.
3304   // We want the new basic block to start at the first instruction in a
3305   // sequence of instructions that form a check.
3306   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
3307                    "scev.check");
3308   Value *SCEVCheck =
3309       Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
3310 
3311   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
3312     if (C->isZero())
3313       return;
3314 
3315   // Create a new block containing the stride check.
3316   BB->setName("vector.scevcheck");
3317   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3318   // Update dominator tree immediately if the generated block is a
3319   // LoopBypassBlock because SCEV expansions to generate loop bypass
3320   // checks may query it before the current function is finished.
3321   DT->addNewBlock(NewBB, BB);
3322   if (L->getParentLoop())
3323     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3324   ReplaceInstWithInst(BB->getTerminator(),
3325                       BranchInst::Create(Bypass, NewBB, SCEVCheck));
3326   LoopBypassBlocks.push_back(BB);
3327   AddedSafetyChecks = true;
3328 }
3329 
3330 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
3331   BasicBlock *BB = L->getLoopPreheader();
3332 
3333   // Generate the code that checks in runtime if arrays overlap. We put the
3334   // checks into a separate block to make the more common case of few elements
3335   // faster.
3336   Instruction *FirstCheckInst;
3337   Instruction *MemRuntimeCheck;
3338   std::tie(FirstCheckInst, MemRuntimeCheck) =
3339       Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
3340   if (!MemRuntimeCheck)
3341     return;
3342 
3343   // Create a new block containing the memory check.
3344   BB->setName("vector.memcheck");
3345   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3346   // Update dominator tree immediately if the generated block is a
3347   // LoopBypassBlock because SCEV expansions to generate loop bypass
3348   // checks may query it before the current function is finished.
3349   DT->addNewBlock(NewBB, BB);
3350   if (L->getParentLoop())
3351     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3352   ReplaceInstWithInst(BB->getTerminator(),
3353                       BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
3354   LoopBypassBlocks.push_back(BB);
3355   AddedSafetyChecks = true;
3356 
3357   // We currently don't use LoopVersioning for the actual loop cloning but we
3358   // still use it to add the noalias metadata.
3359   LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
3360                                            PSE.getSE());
3361   LVer->prepareNoAliasMetadata();
3362 }
3363 
3364 void InnerLoopVectorizer::createEmptyLoop() {
3365   /*
3366    In this function we generate a new loop. The new loop will contain
3367    the vectorized instructions while the old loop will continue to run the
3368    scalar remainder.
3369 
3370        [ ] <-- loop iteration number check.
3371     /   |
3372    /    v
3373   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3374   |  /  |
3375   | /   v
3376   ||   [ ]     <-- vector pre header.
3377   |/    |
3378   |     v
3379   |    [  ] \
3380   |    [  ]_|   <-- vector loop.
3381   |     |
3382   |     v
3383   |   -[ ]   <--- middle-block.
3384   |  /  |
3385   | /   v
3386   -|- >[ ]     <--- new preheader.
3387    |    |
3388    |    v
3389    |   [ ] \
3390    |   [ ]_|   <-- old scalar loop to handle remainder.
3391     \   |
3392      \  v
3393       >[ ]     <-- exit block.
3394    ...
3395    */
3396 
3397   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
3398   BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
3399   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
3400   assert(VectorPH && "Invalid loop structure");
3401   assert(ExitBlock && "Must have an exit block");
3402 
3403   // Some loops have a single integer induction variable, while other loops
3404   // don't. One example is c++ iterators that often have multiple pointer
3405   // induction variables. In the code below we also support a case where we
3406   // don't have a single induction variable.
3407   //
3408   // We try to obtain an induction variable from the original loop as hard
3409   // as possible. However if we don't find one that:
3410   //   - is an integer
3411   //   - counts from zero, stepping by one
3412   //   - is the size of the widest induction variable type
3413   // then we create a new one.
3414   OldInduction = Legal->getPrimaryInduction();
3415   Type *IdxTy = Legal->getWidestInductionType();
3416 
3417   // Split the single block loop into the two loop structure described above.
3418   BasicBlock *VecBody =
3419       VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
3420   BasicBlock *MiddleBlock =
3421       VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
3422   BasicBlock *ScalarPH =
3423       MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
3424 
3425   // Create and register the new vector loop.
3426   Loop *Lp = new Loop();
3427   Loop *ParentLoop = OrigLoop->getParentLoop();
3428 
3429   // Insert the new loop into the loop nest and register the new basic blocks
3430   // before calling any utilities such as SCEV that require valid LoopInfo.
3431   if (ParentLoop) {
3432     ParentLoop->addChildLoop(Lp);
3433     ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
3434     ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
3435   } else {
3436     LI->addTopLevelLoop(Lp);
3437   }
3438   Lp->addBasicBlockToLoop(VecBody, *LI);
3439 
3440   // Find the loop boundaries.
3441   Value *Count = getOrCreateTripCount(Lp);
3442 
3443   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3444 
3445   // We need to test whether the backedge-taken count is uint##_max. Adding one
3446   // to it will cause overflow and an incorrect loop trip count in the vector
3447   // body. In case of overflow we want to directly jump to the scalar remainder
3448   // loop.
3449   emitMinimumIterationCountCheck(Lp, ScalarPH);
3450   // Now, compare the new count to zero. If it is zero skip the vector loop and
3451   // jump to the scalar loop.
3452   emitVectorLoopEnteredCheck(Lp, ScalarPH);
3453   // Generate the code to check any assumptions that we've made for SCEV
3454   // expressions.
3455   emitSCEVChecks(Lp, ScalarPH);
3456 
3457   // Generate the code that checks in runtime if arrays overlap. We put the
3458   // checks into a separate block to make the more common case of few elements
3459   // faster.
3460   emitMemRuntimeChecks(Lp, ScalarPH);
3461 
3462   // Generate the induction variable.
3463   // The loop step is equal to the vectorization factor (num of SIMD elements)
3464   // times the unroll factor (num of SIMD instructions).
3465   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3466   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3467   Induction =
3468       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3469                               getDebugLocFromInstOrOperands(OldInduction));
3470 
3471   // We are going to resume the execution of the scalar loop.
3472   // Go over all of the induction variables that we found and fix the
3473   // PHIs that are left in the scalar version of the loop.
3474   // The starting values of PHI nodes depend on the counter of the last
3475   // iteration in the vectorized loop.
3476   // If we come from a bypass edge then we need to start from the original
3477   // start value.
3478 
3479   // This variable saves the new starting index for the scalar loop. It is used
3480   // to test if there are any tail iterations left once the vector loop has
3481   // completed.
3482   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3483   for (auto &InductionEntry : *List) {
3484     PHINode *OrigPhi = InductionEntry.first;
3485     InductionDescriptor II = InductionEntry.second;
3486 
3487     // Create phi nodes to merge from the  backedge-taken check block.
3488     PHINode *BCResumeVal = PHINode::Create(
3489         OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
3490     Value *&EndValue = IVEndValues[OrigPhi];
3491     if (OrigPhi == OldInduction) {
3492       // We know what the end value is.
3493       EndValue = CountRoundDown;
3494     } else {
3495       IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
3496       Type *StepType = II.getStep()->getType();
3497       Instruction::CastOps CastOp =
3498         CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3499       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3500       const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3501       EndValue = II.transform(B, CRD, PSE.getSE(), DL);
3502       EndValue->setName("ind.end");
3503     }
3504 
3505     // The new PHI merges the original incoming value, in case of a bypass,
3506     // or the value at the end of the vectorized loop.
3507     BCResumeVal->addIncoming(EndValue, MiddleBlock);
3508 
3509     // Fix the scalar body counter (PHI node).
3510     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
3511 
3512     // The old induction's phi node in the scalar body needs the truncated
3513     // value.
3514     for (BasicBlock *BB : LoopBypassBlocks)
3515       BCResumeVal->addIncoming(II.getStartValue(), BB);
3516     OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
3517   }
3518 
3519   // Add a check in the middle block to see if we have completed
3520   // all of the iterations in the first vector loop.
3521   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3522   Value *CmpN =
3523       CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3524                       CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
3525   ReplaceInstWithInst(MiddleBlock->getTerminator(),
3526                       BranchInst::Create(ExitBlock, ScalarPH, CmpN));
3527 
3528   // Get ready to start creating new instructions into the vectorized body.
3529   Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
3530 
3531   // Save the state.
3532   LoopVectorPreHeader = Lp->getLoopPreheader();
3533   LoopScalarPreHeader = ScalarPH;
3534   LoopMiddleBlock = MiddleBlock;
3535   LoopExitBlock = ExitBlock;
3536   LoopVectorBody = VecBody;
3537   LoopScalarBody = OldBasicBlock;
3538 
3539   // Keep all loop hints from the original loop on the vector loop (we'll
3540   // replace the vectorizer-specific hints below).
3541   if (MDNode *LID = OrigLoop->getLoopID())
3542     Lp->setLoopID(LID);
3543 
3544   LoopVectorizeHints Hints(Lp, true, *ORE);
3545   Hints.setAlreadyVectorized();
3546 }
3547 
3548 // Fix up external users of the induction variable. At this point, we are
3549 // in LCSSA form, with all external PHIs that use the IV having one input value,
3550 // coming from the remainder loop. We need those PHIs to also have a correct
3551 // value for the IV when arriving directly from the middle block.
3552 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3553                                        const InductionDescriptor &II,
3554                                        Value *CountRoundDown, Value *EndValue,
3555                                        BasicBlock *MiddleBlock) {
3556   // There are two kinds of external IV usages - those that use the value
3557   // computed in the last iteration (the PHI) and those that use the penultimate
3558   // value (the value that feeds into the phi from the loop latch).
3559   // We allow both, but they, obviously, have different values.
3560 
3561   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3562 
3563   DenseMap<Value *, Value *> MissingVals;
3564 
3565   // An external user of the last iteration's value should see the value that
3566   // the remainder loop uses to initialize its own IV.
3567   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3568   for (User *U : PostInc->users()) {
3569     Instruction *UI = cast<Instruction>(U);
3570     if (!OrigLoop->contains(UI)) {
3571       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3572       MissingVals[UI] = EndValue;
3573     }
3574   }
3575 
3576   // An external user of the penultimate value need to see EndValue - Step.
3577   // The simplest way to get this is to recompute it from the constituent SCEVs,
3578   // that is Start + (Step * (CRD - 1)).
3579   for (User *U : OrigPhi->users()) {
3580     auto *UI = cast<Instruction>(U);
3581     if (!OrigLoop->contains(UI)) {
3582       const DataLayout &DL =
3583           OrigLoop->getHeader()->getModule()->getDataLayout();
3584       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3585 
3586       IRBuilder<> B(MiddleBlock->getTerminator());
3587       Value *CountMinusOne = B.CreateSub(
3588           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3589       Value *CMO =
3590           !II.getStep()->getType()->isIntegerTy()
3591               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3592                              II.getStep()->getType())
3593               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3594       CMO->setName("cast.cmo");
3595       Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3596       Escape->setName("ind.escape");
3597       MissingVals[UI] = Escape;
3598     }
3599   }
3600 
3601   for (auto &I : MissingVals) {
3602     PHINode *PHI = cast<PHINode>(I.first);
3603     // One corner case we have to handle is two IVs "chasing" each-other,
3604     // that is %IV2 = phi [...], [ %IV1, %latch ]
3605     // In this case, if IV1 has an external use, we need to avoid adding both
3606     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3607     // don't already have an incoming value for the middle block.
3608     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3609       PHI->addIncoming(I.second, MiddleBlock);
3610   }
3611 }
3612 
3613 namespace {
3614 struct CSEDenseMapInfo {
3615   static bool canHandle(const Instruction *I) {
3616     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3617            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3618   }
3619   static inline Instruction *getEmptyKey() {
3620     return DenseMapInfo<Instruction *>::getEmptyKey();
3621   }
3622   static inline Instruction *getTombstoneKey() {
3623     return DenseMapInfo<Instruction *>::getTombstoneKey();
3624   }
3625   static unsigned getHashValue(const Instruction *I) {
3626     assert(canHandle(I) && "Unknown instruction!");
3627     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3628                                                            I->value_op_end()));
3629   }
3630   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3631     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3632         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3633       return LHS == RHS;
3634     return LHS->isIdenticalTo(RHS);
3635   }
3636 };
3637 }
3638 
3639 ///\brief Perform cse of induction variable instructions.
3640 static void cse(BasicBlock *BB) {
3641   // Perform simple cse.
3642   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3643   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3644     Instruction *In = &*I++;
3645 
3646     if (!CSEDenseMapInfo::canHandle(In))
3647       continue;
3648 
3649     // Check if we can replace this instruction with any of the
3650     // visited instructions.
3651     if (Instruction *V = CSEMap.lookup(In)) {
3652       In->replaceAllUsesWith(V);
3653       In->eraseFromParent();
3654       continue;
3655     }
3656 
3657     CSEMap[In] = In;
3658   }
3659 }
3660 
3661 /// \brief Estimate the overhead of scalarizing an instruction. This is a
3662 /// convenience wrapper for the type-based getScalarizationOverhead API.
3663 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
3664                                          const TargetTransformInfo &TTI) {
3665   if (VF == 1)
3666     return 0;
3667 
3668   unsigned Cost = 0;
3669   Type *RetTy = ToVectorTy(I->getType(), VF);
3670   if (!RetTy->isVoidTy() &&
3671       (!isa<LoadInst>(I) ||
3672        !TTI.supportsEfficientVectorElementLoadStore()))
3673     Cost += TTI.getScalarizationOverhead(RetTy, true, false);
3674 
3675   if (CallInst *CI = dyn_cast<CallInst>(I)) {
3676     SmallVector<const Value *, 4> Operands(CI->arg_operands());
3677     Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3678   }
3679   else if (!isa<StoreInst>(I) ||
3680            !TTI.supportsEfficientVectorElementLoadStore()) {
3681     SmallVector<const Value *, 4> Operands(I->operand_values());
3682     Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3683   }
3684 
3685   return Cost;
3686 }
3687 
3688 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3689 // Return the cost of the instruction, including scalarization overhead if it's
3690 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3691 // i.e. either vector version isn't available, or is too expensive.
3692 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3693                                   const TargetTransformInfo &TTI,
3694                                   const TargetLibraryInfo *TLI,
3695                                   bool &NeedToScalarize) {
3696   Function *F = CI->getCalledFunction();
3697   StringRef FnName = CI->getCalledFunction()->getName();
3698   Type *ScalarRetTy = CI->getType();
3699   SmallVector<Type *, 4> Tys, ScalarTys;
3700   for (auto &ArgOp : CI->arg_operands())
3701     ScalarTys.push_back(ArgOp->getType());
3702 
3703   // Estimate cost of scalarized vector call. The source operands are assumed
3704   // to be vectors, so we need to extract individual elements from there,
3705   // execute VF scalar calls, and then gather the result into the vector return
3706   // value.
3707   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3708   if (VF == 1)
3709     return ScalarCallCost;
3710 
3711   // Compute corresponding vector type for return value and arguments.
3712   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3713   for (Type *ScalarTy : ScalarTys)
3714     Tys.push_back(ToVectorTy(ScalarTy, VF));
3715 
3716   // Compute costs of unpacking argument values for the scalar calls and
3717   // packing the return values to a vector.
3718   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
3719 
3720   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3721 
3722   // If we can't emit a vector call for this function, then the currently found
3723   // cost is the cost we need to return.
3724   NeedToScalarize = true;
3725   if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3726     return Cost;
3727 
3728   // If the corresponding vector cost is cheaper, return its cost.
3729   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3730   if (VectorCallCost < Cost) {
3731     NeedToScalarize = false;
3732     return VectorCallCost;
3733   }
3734   return Cost;
3735 }
3736 
3737 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3738 // factor VF.  Return the cost of the instruction, including scalarization
3739 // overhead if it's needed.
3740 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3741                                        const TargetTransformInfo &TTI,
3742                                        const TargetLibraryInfo *TLI) {
3743   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3744   assert(ID && "Expected intrinsic call!");
3745 
3746   FastMathFlags FMF;
3747   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3748     FMF = FPMO->getFastMathFlags();
3749 
3750   SmallVector<Value *, 4> Operands(CI->arg_operands());
3751   return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
3752 }
3753 
3754 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3755   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3756   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3757   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3758 }
3759 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3760   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3761   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3762   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3763 }
3764 
3765 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3766   // For every instruction `I` in MinBWs, truncate the operands, create a
3767   // truncated version of `I` and reextend its result. InstCombine runs
3768   // later and will remove any ext/trunc pairs.
3769   //
3770   SmallPtrSet<Value *, 4> Erased;
3771   for (const auto &KV : Cost->getMinimalBitwidths()) {
3772     // If the value wasn't vectorized, we must maintain the original scalar
3773     // type. The absence of the value from VectorLoopValueMap indicates that it
3774     // wasn't vectorized.
3775     if (!VectorLoopValueMap.hasVector(KV.first))
3776       continue;
3777     VectorParts &Parts = VectorLoopValueMap.getVector(KV.first);
3778     for (Value *&I : Parts) {
3779       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3780         continue;
3781       Type *OriginalTy = I->getType();
3782       Type *ScalarTruncatedTy =
3783           IntegerType::get(OriginalTy->getContext(), KV.second);
3784       Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3785                                           OriginalTy->getVectorNumElements());
3786       if (TruncatedTy == OriginalTy)
3787         continue;
3788 
3789       IRBuilder<> B(cast<Instruction>(I));
3790       auto ShrinkOperand = [&](Value *V) -> Value * {
3791         if (auto *ZI = dyn_cast<ZExtInst>(V))
3792           if (ZI->getSrcTy() == TruncatedTy)
3793             return ZI->getOperand(0);
3794         return B.CreateZExtOrTrunc(V, TruncatedTy);
3795       };
3796 
3797       // The actual instruction modification depends on the instruction type,
3798       // unfortunately.
3799       Value *NewI = nullptr;
3800       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3801         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3802                              ShrinkOperand(BO->getOperand(1)));
3803         cast<BinaryOperator>(NewI)->copyIRFlags(I);
3804       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3805         NewI =
3806             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3807                          ShrinkOperand(CI->getOperand(1)));
3808       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3809         NewI = B.CreateSelect(SI->getCondition(),
3810                               ShrinkOperand(SI->getTrueValue()),
3811                               ShrinkOperand(SI->getFalseValue()));
3812       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3813         switch (CI->getOpcode()) {
3814         default:
3815           llvm_unreachable("Unhandled cast!");
3816         case Instruction::Trunc:
3817           NewI = ShrinkOperand(CI->getOperand(0));
3818           break;
3819         case Instruction::SExt:
3820           NewI = B.CreateSExtOrTrunc(
3821               CI->getOperand(0),
3822               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3823           break;
3824         case Instruction::ZExt:
3825           NewI = B.CreateZExtOrTrunc(
3826               CI->getOperand(0),
3827               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3828           break;
3829         }
3830       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3831         auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3832         auto *O0 = B.CreateZExtOrTrunc(
3833             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3834         auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3835         auto *O1 = B.CreateZExtOrTrunc(
3836             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3837 
3838         NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3839       } else if (isa<LoadInst>(I)) {
3840         // Don't do anything with the operands, just extend the result.
3841         continue;
3842       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3843         auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3844         auto *O0 = B.CreateZExtOrTrunc(
3845             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3846         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3847         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3848       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3849         auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3850         auto *O0 = B.CreateZExtOrTrunc(
3851             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3852         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3853       } else {
3854         llvm_unreachable("Unhandled instruction type!");
3855       }
3856 
3857       // Lastly, extend the result.
3858       NewI->takeName(cast<Instruction>(I));
3859       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3860       I->replaceAllUsesWith(Res);
3861       cast<Instruction>(I)->eraseFromParent();
3862       Erased.insert(I);
3863       I = Res;
3864     }
3865   }
3866 
3867   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3868   for (const auto &KV : Cost->getMinimalBitwidths()) {
3869     // If the value wasn't vectorized, we must maintain the original scalar
3870     // type. The absence of the value from VectorLoopValueMap indicates that it
3871     // wasn't vectorized.
3872     if (!VectorLoopValueMap.hasVector(KV.first))
3873       continue;
3874     VectorParts &Parts = VectorLoopValueMap.getVector(KV.first);
3875     for (Value *&I : Parts) {
3876       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3877       if (Inst && Inst->use_empty()) {
3878         Value *NewI = Inst->getOperand(0);
3879         Inst->eraseFromParent();
3880         I = NewI;
3881       }
3882     }
3883   }
3884 }
3885 
3886 void InnerLoopVectorizer::vectorizeLoop() {
3887   //===------------------------------------------------===//
3888   //
3889   // Notice: any optimization or new instruction that go
3890   // into the code below should be also be implemented in
3891   // the cost-model.
3892   //
3893   //===------------------------------------------------===//
3894 
3895   // Collect instructions from the original loop that will become trivially dead
3896   // in the vectorized loop. We don't need to vectorize these instructions. For
3897   // example, original induction update instructions can become dead because we
3898   // separately emit induction "steps" when generating code for the new loop.
3899   // Similarly, we create a new latch condition when setting up the structure
3900   // of the new loop, so the old one can become dead.
3901   SmallPtrSet<Instruction *, 4> DeadInstructions;
3902   collectTriviallyDeadInstructions(DeadInstructions);
3903 
3904   // Scan the loop in a topological order to ensure that defs are vectorized
3905   // before users.
3906   LoopBlocksDFS DFS(OrigLoop);
3907   DFS.perform(LI);
3908 
3909   // Vectorize all instructions in the original loop that will not become
3910   // trivially dead when vectorized.
3911   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
3912     for (Instruction &I : *BB)
3913       if (!DeadInstructions.count(&I))
3914         vectorizeInstruction(I);
3915 
3916   // Insert truncates and extends for any truncated instructions as hints to
3917   // InstCombine.
3918   if (VF > 1)
3919     truncateToMinimalBitwidths();
3920 
3921   // At this point every instruction in the original loop is widened to a
3922   // vector form. Now we need to fix the recurrences in the loop. These PHI
3923   // nodes are currently empty because we did not want to introduce cycles.
3924   // This is the second stage of vectorizing recurrences.
3925   fixCrossIterationPHIs();
3926 
3927   // Update the dominator tree.
3928   //
3929   // FIXME: After creating the structure of the new loop, the dominator tree is
3930   //        no longer up-to-date, and it remains that way until we update it
3931   //        here. An out-of-date dominator tree is problematic for SCEV,
3932   //        because SCEVExpander uses it to guide code generation. The
3933   //        vectorizer use SCEVExpanders in several places. Instead, we should
3934   //        keep the dominator tree up-to-date as we go.
3935   updateAnalysis();
3936 
3937   // Fix-up external users of the induction variables.
3938   for (auto &Entry : *Legal->getInductionVars())
3939     fixupIVUsers(Entry.first, Entry.second,
3940                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3941                  IVEndValues[Entry.first], LoopMiddleBlock);
3942 
3943   fixLCSSAPHIs();
3944   predicateInstructions();
3945 
3946   // Remove redundant induction instructions.
3947   cse(LoopVectorBody);
3948 }
3949 
3950 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3951   // In order to support recurrences we need to be able to vectorize Phi nodes.
3952   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3953   // stage #2: We now need to fix the recurrences by adding incoming edges to
3954   // the currently empty PHI nodes. At this point every instruction in the
3955   // original loop is widened to a vector form so we can use them to construct
3956   // the incoming edges.
3957   for (Instruction &I : *OrigLoop->getHeader()) {
3958     PHINode *Phi = dyn_cast<PHINode>(&I);
3959     if (!Phi)
3960       break;
3961     // Handle first-order recurrences and reductions that need to be fixed.
3962     if (Legal->isFirstOrderRecurrence(Phi))
3963       fixFirstOrderRecurrence(Phi);
3964     else if (Legal->isReductionVariable(Phi))
3965       fixReduction(Phi);
3966   }
3967 }
3968 
3969 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3970 
3971   // This is the second phase of vectorizing first-order recurrences. An
3972   // overview of the transformation is described below. Suppose we have the
3973   // following loop.
3974   //
3975   //   for (int i = 0; i < n; ++i)
3976   //     b[i] = a[i] - a[i - 1];
3977   //
3978   // There is a first-order recurrence on "a". For this loop, the shorthand
3979   // scalar IR looks like:
3980   //
3981   //   scalar.ph:
3982   //     s_init = a[-1]
3983   //     br scalar.body
3984   //
3985   //   scalar.body:
3986   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3987   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3988   //     s2 = a[i]
3989   //     b[i] = s2 - s1
3990   //     br cond, scalar.body, ...
3991   //
3992   // In this example, s1 is a recurrence because it's value depends on the
3993   // previous iteration. In the first phase of vectorization, we created a
3994   // temporary value for s1. We now complete the vectorization and produce the
3995   // shorthand vector IR shown below (for VF = 4, UF = 1).
3996   //
3997   //   vector.ph:
3998   //     v_init = vector(..., ..., ..., a[-1])
3999   //     br vector.body
4000   //
4001   //   vector.body
4002   //     i = phi [0, vector.ph], [i+4, vector.body]
4003   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4004   //     v2 = a[i, i+1, i+2, i+3];
4005   //     v3 = vector(v1(3), v2(0, 1, 2))
4006   //     b[i, i+1, i+2, i+3] = v2 - v3
4007   //     br cond, vector.body, middle.block
4008   //
4009   //   middle.block:
4010   //     x = v2(3)
4011   //     br scalar.ph
4012   //
4013   //   scalar.ph:
4014   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4015   //     br scalar.body
4016   //
4017   // After execution completes the vector loop, we extract the next value of
4018   // the recurrence (x) to use as the initial value in the scalar loop.
4019 
4020   // Get the original loop preheader and single loop latch.
4021   auto *Preheader = OrigLoop->getLoopPreheader();
4022   auto *Latch = OrigLoop->getLoopLatch();
4023 
4024   // Get the initial and previous values of the scalar recurrence.
4025   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4026   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4027 
4028   // Create a vector from the initial value.
4029   auto *VectorInit = ScalarInit;
4030   if (VF > 1) {
4031     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4032     VectorInit = Builder.CreateInsertElement(
4033         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4034         Builder.getInt32(VF - 1), "vector.recur.init");
4035   }
4036 
4037   // We constructed a temporary phi node in the first phase of vectorization.
4038   // This phi node will eventually be deleted.
4039   VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi);
4040   Builder.SetInsertPoint(cast<Instruction>(PhiParts[0]));
4041 
4042   // Create a phi node for the new recurrence. The current value will either be
4043   // the initial value inserted into a vector or loop-varying vector value.
4044   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4045   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4046 
4047   // Get the vectorized previous value.
4048   auto &PreviousParts = getVectorValue(Previous);
4049 
4050   // Set the insertion point after the previous value if it is an instruction.
4051   // Note that the previous value may have been constant-folded so it is not
4052   // guaranteed to be an instruction in the vector loop.
4053   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1]))
4054     Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
4055   else
4056     Builder.SetInsertPoint(
4057         &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1])));
4058 
4059   // We will construct a vector for the recurrence by combining the values for
4060   // the current and previous iterations. This is the required shuffle mask.
4061   SmallVector<Constant *, 8> ShuffleMask(VF);
4062   ShuffleMask[0] = Builder.getInt32(VF - 1);
4063   for (unsigned I = 1; I < VF; ++I)
4064     ShuffleMask[I] = Builder.getInt32(I + VF - 1);
4065 
4066   // The vector from which to take the initial value for the current iteration
4067   // (actual or unrolled). Initially, this is the vector phi node.
4068   Value *Incoming = VecPhi;
4069 
4070   // Shuffle the current and previous vector and update the vector parts.
4071   for (unsigned Part = 0; Part < UF; ++Part) {
4072     auto *Shuffle =
4073         VF > 1
4074             ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part],
4075                                           ConstantVector::get(ShuffleMask))
4076             : Incoming;
4077     PhiParts[Part]->replaceAllUsesWith(Shuffle);
4078     cast<Instruction>(PhiParts[Part])->eraseFromParent();
4079     PhiParts[Part] = Shuffle;
4080     Incoming = PreviousParts[Part];
4081   }
4082 
4083   // Fix the latch value of the new recurrence in the vector loop.
4084   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4085 
4086   // Extract the last vector element in the middle block. This will be the
4087   // initial value for the recurrence when jumping to the scalar loop.
4088   auto *ExtractForScalar = Incoming;
4089   if (VF > 1) {
4090     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4091     ExtractForScalar = Builder.CreateExtractElement(
4092         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
4093   }
4094   // Extract the second last element in the middle block if the
4095   // Phi is used outside the loop. We need to extract the phi itself
4096   // and not the last element (the phi update in the current iteration). This
4097   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4098   // when the scalar loop is not run at all.
4099   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4100   if (VF > 1)
4101     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4102         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
4103   // When loop is unrolled without vectorizing, initialize
4104   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4105   // `Incoming`. This is analogous to the vectorized case above: extracting the
4106   // second last element when VF > 1.
4107   else if (UF > 1)
4108     ExtractForPhiUsedOutsideLoop = PreviousParts[UF - 2];
4109 
4110   // Fix the initial value of the original recurrence in the scalar loop.
4111   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4112   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4113   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4114     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4115     Start->addIncoming(Incoming, BB);
4116   }
4117 
4118   Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
4119   Phi->setName("scalar.recur");
4120 
4121   // Finally, fix users of the recurrence outside the loop. The users will need
4122   // either the last value of the scalar recurrence or the last value of the
4123   // vector recurrence we extracted in the middle block. Since the loop is in
4124   // LCSSA form, we just need to find the phi node for the original scalar
4125   // recurrence in the exit block, and then add an edge for the middle block.
4126   for (auto &I : *LoopExitBlock) {
4127     auto *LCSSAPhi = dyn_cast<PHINode>(&I);
4128     if (!LCSSAPhi)
4129       break;
4130     if (LCSSAPhi->getIncomingValue(0) == Phi) {
4131       LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4132       break;
4133     }
4134   }
4135 }
4136 
4137 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
4138   Constant *Zero = Builder.getInt32(0);
4139 
4140   // Get it's reduction variable descriptor.
4141   assert(Legal->isReductionVariable(Phi) &&
4142          "Unable to find the reduction variable");
4143   RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
4144 
4145   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
4146   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4147   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4148   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
4149     RdxDesc.getMinMaxRecurrenceKind();
4150   setDebugLocFromInst(Builder, ReductionStartValue);
4151 
4152   // We need to generate a reduction vector from the incoming scalar.
4153   // To do so, we need to generate the 'identity' vector and override
4154   // one of the elements with the incoming scalar reduction. We need
4155   // to do it in the vector-loop preheader.
4156   Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
4157 
4158   // This is the vector-clone of the value that leaves the loop.
4159   const VectorParts &VectorExit = getVectorValue(LoopExitInst);
4160   Type *VecTy = VectorExit[0]->getType();
4161 
4162   // Find the reduction identity variable. Zero for addition, or, xor,
4163   // one for multiplication, -1 for And.
4164   Value *Identity;
4165   Value *VectorStart;
4166   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
4167       RK == RecurrenceDescriptor::RK_FloatMinMax) {
4168     // MinMax reduction have the start value as their identify.
4169     if (VF == 1) {
4170       VectorStart = Identity = ReductionStartValue;
4171     } else {
4172       VectorStart = Identity =
4173         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
4174     }
4175   } else {
4176     // Handle other reduction kinds:
4177     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
4178         RK, VecTy->getScalarType());
4179     if (VF == 1) {
4180       Identity = Iden;
4181       // This vector is the Identity vector where the first element is the
4182       // incoming scalar reduction.
4183       VectorStart = ReductionStartValue;
4184     } else {
4185       Identity = ConstantVector::getSplat(VF, Iden);
4186 
4187       // This vector is the Identity vector where the first element is the
4188       // incoming scalar reduction.
4189       VectorStart =
4190         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
4191     }
4192   }
4193 
4194   // Fix the vector-loop phi.
4195 
4196   // Reductions do not have to start at zero. They can start with
4197   // any loop invariant values.
4198   const VectorParts &VecRdxPhi = getVectorValue(Phi);
4199   BasicBlock *Latch = OrigLoop->getLoopLatch();
4200   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4201   const VectorParts &Val = getVectorValue(LoopVal);
4202   for (unsigned part = 0; part < UF; ++part) {
4203     // Make sure to add the reduction stat value only to the
4204     // first unroll part.
4205     Value *StartVal = (part == 0) ? VectorStart : Identity;
4206     cast<PHINode>(VecRdxPhi[part])
4207       ->addIncoming(StartVal, LoopVectorPreHeader);
4208     cast<PHINode>(VecRdxPhi[part])
4209       ->addIncoming(Val[part], LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4210   }
4211 
4212   // Before each round, move the insertion point right between
4213   // the PHIs and the values we are going to write.
4214   // This allows us to write both PHINodes and the extractelement
4215   // instructions.
4216   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4217 
4218   VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst);
4219   setDebugLocFromInst(Builder, LoopExitInst);
4220 
4221   // If the vector reduction can be performed in a smaller type, we truncate
4222   // then extend the loop exit value to enable InstCombine to evaluate the
4223   // entire expression in the smaller type.
4224   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
4225     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4226     Builder.SetInsertPoint(LoopVectorBody->getTerminator());
4227     for (unsigned part = 0; part < UF; ++part) {
4228       Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
4229       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4230         : Builder.CreateZExt(Trunc, VecTy);
4231       for (Value::user_iterator UI = RdxParts[part]->user_begin();
4232            UI != RdxParts[part]->user_end();)
4233         if (*UI != Trunc) {
4234           (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
4235           RdxParts[part] = Extnd;
4236         } else {
4237           ++UI;
4238         }
4239     }
4240     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4241     for (unsigned part = 0; part < UF; ++part)
4242       RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
4243   }
4244 
4245   // Reduce all of the unrolled parts into a single vector.
4246   Value *ReducedPartRdx = RdxParts[0];
4247   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
4248   setDebugLocFromInst(Builder, ReducedPartRdx);
4249   for (unsigned part = 1; part < UF; ++part) {
4250     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4251       // Floating point operations had to be 'fast' to enable the reduction.
4252       ReducedPartRdx = addFastMathFlag(
4253           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
4254                               ReducedPartRdx, "bin.rdx"));
4255     else
4256       ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
4257           Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
4258   }
4259 
4260   if (VF > 1) {
4261     // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
4262     // and vector ops, reducing the set of values being computed by half each
4263     // round.
4264     assert(isPowerOf2_32(VF) &&
4265            "Reduction emission only supported for pow2 vectors!");
4266     Value *TmpVec = ReducedPartRdx;
4267     SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
4268     for (unsigned i = VF; i != 1; i >>= 1) {
4269       // Move the upper half of the vector to the lower half.
4270       for (unsigned j = 0; j != i / 2; ++j)
4271         ShuffleMask[j] = Builder.getInt32(i / 2 + j);
4272 
4273       // Fill the rest of the mask with undef.
4274       std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
4275                 UndefValue::get(Builder.getInt32Ty()));
4276 
4277       Value *Shuf = Builder.CreateShuffleVector(
4278           TmpVec, UndefValue::get(TmpVec->getType()),
4279           ConstantVector::get(ShuffleMask), "rdx.shuf");
4280 
4281       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4282         // Floating point operations had to be 'fast' to enable the reduction.
4283         TmpVec = addFastMathFlag(Builder.CreateBinOp(
4284                                      (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
4285       else
4286         TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
4287                                                       TmpVec, Shuf);
4288     }
4289 
4290     // The result is in the first element of the vector.
4291     ReducedPartRdx =
4292       Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
4293 
4294     // If the reduction can be performed in a smaller type, we need to extend
4295     // the reduction to the wider type before we branch to the original loop.
4296     if (Phi->getType() != RdxDesc.getRecurrenceType())
4297       ReducedPartRdx =
4298         RdxDesc.isSigned()
4299         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4300         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4301   }
4302 
4303   // Create a phi node that merges control-flow from the backedge-taken check
4304   // block and the middle block.
4305   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4306                                         LoopScalarPreHeader->getTerminator());
4307   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4308     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4309   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4310 
4311   // Now, we need to fix the users of the reduction variable
4312   // inside and outside of the scalar remainder loop.
4313   // We know that the loop is in LCSSA form. We need to update the
4314   // PHI nodes in the exit blocks.
4315   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
4316          LEE = LoopExitBlock->end();
4317        LEI != LEE; ++LEI) {
4318     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
4319     if (!LCSSAPhi)
4320       break;
4321 
4322     // All PHINodes need to have a single entry edge, or two if
4323     // we already fixed them.
4324     assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
4325 
4326     // We found a reduction value exit-PHI. Update it with the
4327     // incoming bypass edge.
4328     if (LCSSAPhi->getIncomingValue(0) == LoopExitInst)
4329       LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4330   } // end of the LCSSA phi scan.
4331 
4332     // Fix the scalar loop reduction variable with the incoming reduction sum
4333     // from the vector body and from the backedge value.
4334   int IncomingEdgeBlockIdx =
4335     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4336   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4337   // Pick the other block.
4338   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4339   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4340   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4341 }
4342 
4343 void InnerLoopVectorizer::fixLCSSAPHIs() {
4344   for (Instruction &LEI : *LoopExitBlock) {
4345     auto *LCSSAPhi = dyn_cast<PHINode>(&LEI);
4346     if (!LCSSAPhi)
4347       break;
4348     if (LCSSAPhi->getNumIncomingValues() == 1)
4349       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
4350                             LoopMiddleBlock);
4351   }
4352 }
4353 
4354 void InnerLoopVectorizer::collectTriviallyDeadInstructions(
4355     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
4356   BasicBlock *Latch = OrigLoop->getLoopLatch();
4357 
4358   // We create new control-flow for the vectorized loop, so the original
4359   // condition will be dead after vectorization if it's only used by the
4360   // branch.
4361   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4362   if (Cmp && Cmp->hasOneUse())
4363     DeadInstructions.insert(Cmp);
4364 
4365   // We create new "steps" for induction variable updates to which the original
4366   // induction variables map. An original update instruction will be dead if
4367   // all its users except the induction variable are dead.
4368   for (auto &Induction : *Legal->getInductionVars()) {
4369     PHINode *Ind = Induction.first;
4370     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4371     if (all_of(IndUpdate->users(), [&](User *U) -> bool {
4372           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
4373         }))
4374       DeadInstructions.insert(IndUpdate);
4375   }
4376 }
4377 
4378 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4379 
4380   // The basic block and loop containing the predicated instruction.
4381   auto *PredBB = PredInst->getParent();
4382   auto *VectorLoop = LI->getLoopFor(PredBB);
4383 
4384   // Initialize a worklist with the operands of the predicated instruction.
4385   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4386 
4387   // Holds instructions that we need to analyze again. An instruction may be
4388   // reanalyzed if we don't yet know if we can sink it or not.
4389   SmallVector<Instruction *, 8> InstsToReanalyze;
4390 
4391   // Returns true if a given use occurs in the predicated block. Phi nodes use
4392   // their operands in their corresponding predecessor blocks.
4393   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4394     auto *I = cast<Instruction>(U.getUser());
4395     BasicBlock *BB = I->getParent();
4396     if (auto *Phi = dyn_cast<PHINode>(I))
4397       BB = Phi->getIncomingBlock(
4398           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4399     return BB == PredBB;
4400   };
4401 
4402   // Iteratively sink the scalarized operands of the predicated instruction
4403   // into the block we created for it. When an instruction is sunk, it's
4404   // operands are then added to the worklist. The algorithm ends after one pass
4405   // through the worklist doesn't sink a single instruction.
4406   bool Changed;
4407   do {
4408 
4409     // Add the instructions that need to be reanalyzed to the worklist, and
4410     // reset the changed indicator.
4411     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4412     InstsToReanalyze.clear();
4413     Changed = false;
4414 
4415     while (!Worklist.empty()) {
4416       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4417 
4418       // We can't sink an instruction if it is a phi node, is already in the
4419       // predicated block, is not in the loop, or may have side effects.
4420       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4421           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4422         continue;
4423 
4424       // It's legal to sink the instruction if all its uses occur in the
4425       // predicated block. Otherwise, there's nothing to do yet, and we may
4426       // need to reanalyze the instruction.
4427       if (!all_of(I->uses(), isBlockOfUsePredicated)) {
4428         InstsToReanalyze.push_back(I);
4429         continue;
4430       }
4431 
4432       // Move the instruction to the beginning of the predicated block, and add
4433       // it's operands to the worklist.
4434       I->moveBefore(&*PredBB->getFirstInsertionPt());
4435       Worklist.insert(I->op_begin(), I->op_end());
4436 
4437       // The sinking may have enabled other instructions to be sunk, so we will
4438       // need to iterate.
4439       Changed = true;
4440     }
4441   } while (Changed);
4442 }
4443 
4444 void InnerLoopVectorizer::predicateInstructions() {
4445 
4446   // For each instruction I marked for predication on value C, split I into its
4447   // own basic block to form an if-then construct over C. Since I may be fed by
4448   // an extractelement instruction or other scalar operand, we try to
4449   // iteratively sink its scalar operands into the predicated block. If I feeds
4450   // an insertelement instruction, we try to move this instruction into the
4451   // predicated block as well. For non-void types, a phi node will be created
4452   // for the resulting value (either vector or scalar).
4453   //
4454   // So for some predicated instruction, e.g. the conditional sdiv in:
4455   //
4456   // for.body:
4457   //  ...
4458   //  %add = add nsw i32 %mul, %0
4459   //  %cmp5 = icmp sgt i32 %2, 7
4460   //  br i1 %cmp5, label %if.then, label %if.end
4461   //
4462   // if.then:
4463   //  %div = sdiv i32 %0, %1
4464   //  br label %if.end
4465   //
4466   // if.end:
4467   //  %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ]
4468   //
4469   // the sdiv at this point is scalarized and if-converted using a select.
4470   // The inactive elements in the vector are not used, but the predicated
4471   // instruction is still executed for all vector elements, essentially:
4472   //
4473   // vector.body:
4474   //  ...
4475   //  %17 = add nsw <2 x i32> %16, %wide.load
4476   //  %29 = extractelement <2 x i32> %wide.load, i32 0
4477   //  %30 = extractelement <2 x i32> %wide.load51, i32 0
4478   //  %31 = sdiv i32 %29, %30
4479   //  %32 = insertelement <2 x i32> undef, i32 %31, i32 0
4480   //  %35 = extractelement <2 x i32> %wide.load, i32 1
4481   //  %36 = extractelement <2 x i32> %wide.load51, i32 1
4482   //  %37 = sdiv i32 %35, %36
4483   //  %38 = insertelement <2 x i32> %32, i32 %37, i32 1
4484   //  %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17
4485   //
4486   // Predication will now re-introduce the original control flow to avoid false
4487   // side-effects by the sdiv instructions on the inactive elements, yielding
4488   // (after cleanup):
4489   //
4490   // vector.body:
4491   //  ...
4492   //  %5 = add nsw <2 x i32> %4, %wide.load
4493   //  %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7>
4494   //  %9 = extractelement <2 x i1> %8, i32 0
4495   //  br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue
4496   //
4497   // pred.sdiv.if:
4498   //  %10 = extractelement <2 x i32> %wide.load, i32 0
4499   //  %11 = extractelement <2 x i32> %wide.load51, i32 0
4500   //  %12 = sdiv i32 %10, %11
4501   //  %13 = insertelement <2 x i32> undef, i32 %12, i32 0
4502   //  br label %pred.sdiv.continue
4503   //
4504   // pred.sdiv.continue:
4505   //  %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ]
4506   //  %15 = extractelement <2 x i1> %8, i32 1
4507   //  br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55
4508   //
4509   // pred.sdiv.if54:
4510   //  %16 = extractelement <2 x i32> %wide.load, i32 1
4511   //  %17 = extractelement <2 x i32> %wide.load51, i32 1
4512   //  %18 = sdiv i32 %16, %17
4513   //  %19 = insertelement <2 x i32> %14, i32 %18, i32 1
4514   //  br label %pred.sdiv.continue55
4515   //
4516   // pred.sdiv.continue55:
4517   //  %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ]
4518   //  %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5
4519 
4520   for (auto KV : PredicatedInstructions) {
4521     BasicBlock::iterator I(KV.first);
4522     BasicBlock *Head = I->getParent();
4523     auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
4524                                         /*BranchWeights=*/nullptr, DT, LI);
4525     I->moveBefore(T);
4526     sinkScalarOperands(&*I);
4527 
4528     BasicBlock *PredicatedBlock = I->getParent();
4529     Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName();
4530     PredicatedBlock->setName(BBNamePrefix + ".if");
4531     PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue");
4532 
4533     // If the instruction is non-void create a Phi node at reconvergence point.
4534     if (!I->getType()->isVoidTy()) {
4535       Value *IncomingTrue = nullptr;
4536       Value *IncomingFalse = nullptr;
4537 
4538       if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) {
4539         // If the predicated instruction is feeding an insert-element, move it
4540         // into the Then block; Phi node will be created for the vector.
4541         InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin());
4542         IEI->moveBefore(T);
4543         IncomingTrue = IEI; // the new vector with the inserted element.
4544         IncomingFalse = IEI->getOperand(0); // the unmodified vector
4545       } else {
4546         // Phi node will be created for the scalar predicated instruction.
4547         IncomingTrue = &*I;
4548         IncomingFalse = UndefValue::get(I->getType());
4549       }
4550 
4551       BasicBlock *PostDom = I->getParent()->getSingleSuccessor();
4552       assert(PostDom && "Then block has multiple successors");
4553       PHINode *Phi =
4554           PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front());
4555       IncomingTrue->replaceAllUsesWith(Phi);
4556       Phi->addIncoming(IncomingFalse, Head);
4557       Phi->addIncoming(IncomingTrue, I->getParent());
4558     }
4559   }
4560 
4561   DEBUG(DT->verifyDomTree());
4562 }
4563 
4564 InnerLoopVectorizer::VectorParts
4565 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
4566   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
4567 
4568   // Look for cached value.
4569   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
4570   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
4571   if (ECEntryIt != EdgeMaskCache.end())
4572     return ECEntryIt->second;
4573 
4574   VectorParts SrcMask = createBlockInMask(Src);
4575 
4576   // The terminator has to be a branch inst!
4577   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
4578   assert(BI && "Unexpected terminator found");
4579 
4580   if (BI->isConditional()) {
4581     VectorParts EdgeMask = getVectorValue(BI->getCondition());
4582 
4583     if (BI->getSuccessor(0) != Dst)
4584       for (unsigned part = 0; part < UF; ++part)
4585         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
4586 
4587     for (unsigned part = 0; part < UF; ++part)
4588       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
4589 
4590     EdgeMaskCache[Edge] = EdgeMask;
4591     return EdgeMask;
4592   }
4593 
4594   EdgeMaskCache[Edge] = SrcMask;
4595   return SrcMask;
4596 }
4597 
4598 InnerLoopVectorizer::VectorParts
4599 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
4600   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
4601 
4602   // Look for cached value.
4603   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
4604   if (BCEntryIt != BlockMaskCache.end())
4605     return BCEntryIt->second;
4606 
4607   // Loop incoming mask is all-one.
4608   if (OrigLoop->getHeader() == BB) {
4609     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
4610     const VectorParts &BlockMask = getVectorValue(C);
4611     BlockMaskCache[BB] = BlockMask;
4612     return BlockMask;
4613   }
4614 
4615   // This is the block mask. We OR all incoming edges, and with zero.
4616   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
4617   VectorParts BlockMask = getVectorValue(Zero);
4618 
4619   // For each pred:
4620   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
4621     VectorParts EM = createEdgeMask(*it, BB);
4622     for (unsigned part = 0; part < UF; ++part)
4623       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
4624   }
4625 
4626   BlockMaskCache[BB] = BlockMask;
4627   return BlockMask;
4628 }
4629 
4630 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4631                                               unsigned VF) {
4632   PHINode *P = cast<PHINode>(PN);
4633   // In order to support recurrences we need to be able to vectorize Phi nodes.
4634   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4635   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4636   // this value when we vectorize all of the instructions that use the PHI.
4637   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4638     VectorParts Entry(UF);
4639     for (unsigned part = 0; part < UF; ++part) {
4640       // This is phase one of vectorizing PHIs.
4641       Type *VecTy =
4642           (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4643       Entry[part] = PHINode::Create(
4644           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4645     }
4646     VectorLoopValueMap.initVector(P, Entry);
4647     return;
4648   }
4649 
4650   setDebugLocFromInst(Builder, P);
4651   // Check for PHI nodes that are lowered to vector selects.
4652   if (P->getParent() != OrigLoop->getHeader()) {
4653     // We know that all PHIs in non-header blocks are converted into
4654     // selects, so we don't have to worry about the insertion order and we
4655     // can just use the builder.
4656     // At this point we generate the predication tree. There may be
4657     // duplications since this is a simple recursive scan, but future
4658     // optimizations will clean it up.
4659 
4660     unsigned NumIncoming = P->getNumIncomingValues();
4661 
4662     // Generate a sequence of selects of the form:
4663     // SELECT(Mask3, In3,
4664     //      SELECT(Mask2, In2,
4665     //                   ( ...)))
4666     VectorParts Entry(UF);
4667     for (unsigned In = 0; In < NumIncoming; In++) {
4668       VectorParts Cond =
4669           createEdgeMask(P->getIncomingBlock(In), P->getParent());
4670       const VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
4671 
4672       for (unsigned part = 0; part < UF; ++part) {
4673         // We might have single edge PHIs (blocks) - use an identity
4674         // 'select' for the first PHI operand.
4675         if (In == 0)
4676           Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]);
4677         else
4678           // Select between the current value and the previous incoming edge
4679           // based on the incoming mask.
4680           Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part],
4681                                              "predphi");
4682       }
4683     }
4684     VectorLoopValueMap.initVector(P, Entry);
4685     return;
4686   }
4687 
4688   // This PHINode must be an induction variable.
4689   // Make sure that we know about it.
4690   assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
4691 
4692   InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4693   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4694 
4695   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4696   // which can be found from the original scalar operations.
4697   switch (II.getKind()) {
4698   case InductionDescriptor::IK_NoInduction:
4699     llvm_unreachable("Unknown induction");
4700   case InductionDescriptor::IK_IntInduction:
4701   case InductionDescriptor::IK_FpInduction:
4702     return widenIntOrFpInduction(P);
4703   case InductionDescriptor::IK_PtrInduction: {
4704     // Handle the pointer induction variable case.
4705     assert(P->getType()->isPointerTy() && "Unexpected type.");
4706     // This is the normalized GEP that starts counting at zero.
4707     Value *PtrInd = Induction;
4708     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4709     // Determine the number of scalars we need to generate for each unroll
4710     // iteration. If the instruction is uniform, we only need to generate the
4711     // first lane. Otherwise, we generate all VF values.
4712     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4713     // These are the scalar results. Notice that we don't generate vector GEPs
4714     // because scalar GEPs result in better code.
4715     ScalarParts Entry(UF);
4716     for (unsigned Part = 0; Part < UF; ++Part) {
4717       Entry[Part].resize(VF);
4718       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4719         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4720         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4721         Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4722         SclrGep->setName("next.gep");
4723         Entry[Part][Lane] = SclrGep;
4724       }
4725     }
4726     VectorLoopValueMap.initScalar(P, Entry);
4727     return;
4728   }
4729   }
4730 }
4731 
4732 /// A helper function for checking whether an integer division-related
4733 /// instruction may divide by zero (in which case it must be predicated if
4734 /// executed conditionally in the scalar code).
4735 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4736 /// Non-zero divisors that are non compile-time constants will not be
4737 /// converted into multiplication, so we will still end up scalarizing
4738 /// the division, but can do so w/o predication.
4739 static bool mayDivideByZero(Instruction &I) {
4740   assert((I.getOpcode() == Instruction::UDiv ||
4741           I.getOpcode() == Instruction::SDiv ||
4742           I.getOpcode() == Instruction::URem ||
4743           I.getOpcode() == Instruction::SRem) &&
4744          "Unexpected instruction");
4745   Value *Divisor = I.getOperand(1);
4746   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4747   return !CInt || CInt->isZero();
4748 }
4749 
4750 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) {
4751   // Scalarize instructions that should remain scalar after vectorization.
4752   if (VF > 1 &&
4753       !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) &&
4754       shouldScalarizeInstruction(&I)) {
4755     scalarizeInstruction(&I, Legal->isScalarWithPredication(&I));
4756     return;
4757   }
4758 
4759   switch (I.getOpcode()) {
4760   case Instruction::Br:
4761     // Nothing to do for PHIs and BR, since we already took care of the
4762     // loop control flow instructions.
4763     break;
4764   case Instruction::PHI: {
4765     // Vectorize PHINodes.
4766     widenPHIInstruction(&I, UF, VF);
4767     break;
4768   } // End of PHI.
4769   case Instruction::GetElementPtr: {
4770     // Construct a vector GEP by widening the operands of the scalar GEP as
4771     // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4772     // results in a vector of pointers when at least one operand of the GEP
4773     // is vector-typed. Thus, to keep the representation compact, we only use
4774     // vector-typed operands for loop-varying values.
4775     auto *GEP = cast<GetElementPtrInst>(&I);
4776     VectorParts Entry(UF);
4777 
4778     if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
4779       // If we are vectorizing, but the GEP has only loop-invariant operands,
4780       // the GEP we build (by only using vector-typed operands for
4781       // loop-varying values) would be a scalar pointer. Thus, to ensure we
4782       // produce a vector of pointers, we need to either arbitrarily pick an
4783       // operand to broadcast, or broadcast a clone of the original GEP.
4784       // Here, we broadcast a clone of the original.
4785       //
4786       // TODO: If at some point we decide to scalarize instructions having
4787       //       loop-invariant operands, this special case will no longer be
4788       //       required. We would add the scalarization decision to
4789       //       collectLoopScalars() and teach getVectorValue() to broadcast
4790       //       the lane-zero scalar value.
4791       auto *Clone = Builder.Insert(GEP->clone());
4792       for (unsigned Part = 0; Part < UF; ++Part)
4793         Entry[Part] = Builder.CreateVectorSplat(VF, Clone);
4794     } else {
4795       // If the GEP has at least one loop-varying operand, we are sure to
4796       // produce a vector of pointers. But if we are only unrolling, we want
4797       // to produce a scalar GEP for each unroll part. Thus, the GEP we
4798       // produce with the code below will be scalar (if VF == 1) or vector
4799       // (otherwise). Note that for the unroll-only case, we still maintain
4800       // values in the vector mapping with initVector, as we do for other
4801       // instructions.
4802       for (unsigned Part = 0; Part < UF; ++Part) {
4803 
4804         // The pointer operand of the new GEP. If it's loop-invariant, we
4805         // won't broadcast it.
4806         auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand())
4807                         ? GEP->getPointerOperand()
4808                         : getVectorValue(GEP->getPointerOperand())[Part];
4809 
4810         // Collect all the indices for the new GEP. If any index is
4811         // loop-invariant, we won't broadcast it.
4812         SmallVector<Value *, 4> Indices;
4813         for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
4814           if (OrigLoop->isLoopInvariant(U.get()))
4815             Indices.push_back(U.get());
4816           else
4817             Indices.push_back(getVectorValue(U.get())[Part]);
4818         }
4819 
4820         // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4821         // but it should be a vector, otherwise.
4822         auto *NewGEP = GEP->isInBounds()
4823                            ? Builder.CreateInBoundsGEP(Ptr, Indices)
4824                            : Builder.CreateGEP(Ptr, Indices);
4825         assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4826                "NewGEP is not a pointer vector");
4827         Entry[Part] = NewGEP;
4828       }
4829     }
4830 
4831     VectorLoopValueMap.initVector(&I, Entry);
4832     addMetadata(Entry, GEP);
4833     break;
4834   }
4835   case Instruction::UDiv:
4836   case Instruction::SDiv:
4837   case Instruction::SRem:
4838   case Instruction::URem:
4839     // Scalarize with predication if this instruction may divide by zero and
4840     // block execution is conditional, otherwise fallthrough.
4841     if (Legal->isScalarWithPredication(&I)) {
4842       scalarizeInstruction(&I, true);
4843       break;
4844     }
4845   case Instruction::Add:
4846   case Instruction::FAdd:
4847   case Instruction::Sub:
4848   case Instruction::FSub:
4849   case Instruction::Mul:
4850   case Instruction::FMul:
4851   case Instruction::FDiv:
4852   case Instruction::FRem:
4853   case Instruction::Shl:
4854   case Instruction::LShr:
4855   case Instruction::AShr:
4856   case Instruction::And:
4857   case Instruction::Or:
4858   case Instruction::Xor: {
4859     // Just widen binops.
4860     auto *BinOp = cast<BinaryOperator>(&I);
4861     setDebugLocFromInst(Builder, BinOp);
4862     const VectorParts &A = getVectorValue(BinOp->getOperand(0));
4863     const VectorParts &B = getVectorValue(BinOp->getOperand(1));
4864 
4865     // Use this vector value for all users of the original instruction.
4866     VectorParts Entry(UF);
4867     for (unsigned Part = 0; Part < UF; ++Part) {
4868       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
4869 
4870       if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
4871         VecOp->copyIRFlags(BinOp);
4872 
4873       Entry[Part] = V;
4874     }
4875 
4876     VectorLoopValueMap.initVector(&I, Entry);
4877     addMetadata(Entry, BinOp);
4878     break;
4879   }
4880   case Instruction::Select: {
4881     // Widen selects.
4882     // If the selector is loop invariant we can create a select
4883     // instruction with a scalar condition. Otherwise, use vector-select.
4884     auto *SE = PSE.getSE();
4885     bool InvariantCond =
4886         SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4887     setDebugLocFromInst(Builder, &I);
4888 
4889     // The condition can be loop invariant  but still defined inside the
4890     // loop. This means that we can't just use the original 'cond' value.
4891     // We have to take the 'vectorized' value and pick the first lane.
4892     // Instcombine will make this a no-op.
4893     const VectorParts &Cond = getVectorValue(I.getOperand(0));
4894     const VectorParts &Op0 = getVectorValue(I.getOperand(1));
4895     const VectorParts &Op1 = getVectorValue(I.getOperand(2));
4896 
4897     auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0);
4898 
4899     VectorParts Entry(UF);
4900     for (unsigned Part = 0; Part < UF; ++Part) {
4901       Entry[Part] = Builder.CreateSelect(
4902           InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]);
4903     }
4904 
4905     VectorLoopValueMap.initVector(&I, Entry);
4906     addMetadata(Entry, &I);
4907     break;
4908   }
4909 
4910   case Instruction::ICmp:
4911   case Instruction::FCmp: {
4912     // Widen compares. Generate vector compares.
4913     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4914     auto *Cmp = dyn_cast<CmpInst>(&I);
4915     setDebugLocFromInst(Builder, Cmp);
4916     const VectorParts &A = getVectorValue(Cmp->getOperand(0));
4917     const VectorParts &B = getVectorValue(Cmp->getOperand(1));
4918     VectorParts Entry(UF);
4919     for (unsigned Part = 0; Part < UF; ++Part) {
4920       Value *C = nullptr;
4921       if (FCmp) {
4922         C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
4923         cast<FCmpInst>(C)->copyFastMathFlags(Cmp);
4924       } else {
4925         C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
4926       }
4927       Entry[Part] = C;
4928     }
4929 
4930     VectorLoopValueMap.initVector(&I, Entry);
4931     addMetadata(Entry, &I);
4932     break;
4933   }
4934 
4935   case Instruction::Store:
4936   case Instruction::Load:
4937     vectorizeMemoryInstruction(&I);
4938     break;
4939   case Instruction::ZExt:
4940   case Instruction::SExt:
4941   case Instruction::FPToUI:
4942   case Instruction::FPToSI:
4943   case Instruction::FPExt:
4944   case Instruction::PtrToInt:
4945   case Instruction::IntToPtr:
4946   case Instruction::SIToFP:
4947   case Instruction::UIToFP:
4948   case Instruction::Trunc:
4949   case Instruction::FPTrunc:
4950   case Instruction::BitCast: {
4951     auto *CI = dyn_cast<CastInst>(&I);
4952     setDebugLocFromInst(Builder, CI);
4953 
4954     // Optimize the special case where the source is a constant integer
4955     // induction variable. Notice that we can only optimize the 'trunc' case
4956     // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
4957     // (c) other casts depend on pointer size.
4958     if (Cost->isOptimizableIVTruncate(CI, VF)) {
4959       widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)),
4960                             cast<TruncInst>(CI));
4961       break;
4962     }
4963 
4964     /// Vectorize casts.
4965     Type *DestTy =
4966         (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4967 
4968     const VectorParts &A = getVectorValue(CI->getOperand(0));
4969     VectorParts Entry(UF);
4970     for (unsigned Part = 0; Part < UF; ++Part)
4971       Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
4972     VectorLoopValueMap.initVector(&I, Entry);
4973     addMetadata(Entry, &I);
4974     break;
4975   }
4976 
4977   case Instruction::Call: {
4978     // Ignore dbg intrinsics.
4979     if (isa<DbgInfoIntrinsic>(I))
4980       break;
4981     setDebugLocFromInst(Builder, &I);
4982 
4983     Module *M = I.getParent()->getParent()->getParent();
4984     auto *CI = cast<CallInst>(&I);
4985 
4986     StringRef FnName = CI->getCalledFunction()->getName();
4987     Function *F = CI->getCalledFunction();
4988     Type *RetTy = ToVectorTy(CI->getType(), VF);
4989     SmallVector<Type *, 4> Tys;
4990     for (Value *ArgOperand : CI->arg_operands())
4991       Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4992 
4993     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4994     if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
4995                ID == Intrinsic::lifetime_start)) {
4996       scalarizeInstruction(&I);
4997       break;
4998     }
4999     // The flag shows whether we use Intrinsic or a usual Call for vectorized
5000     // version of the instruction.
5001     // Is it beneficial to perform intrinsic call compared to lib call?
5002     bool NeedToScalarize;
5003     unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
5004     bool UseVectorIntrinsic =
5005         ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
5006     if (!UseVectorIntrinsic && NeedToScalarize) {
5007       scalarizeInstruction(&I);
5008       break;
5009     }
5010 
5011     VectorParts Entry(UF);
5012     for (unsigned Part = 0; Part < UF; ++Part) {
5013       SmallVector<Value *, 4> Args;
5014       for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
5015         Value *Arg = CI->getArgOperand(i);
5016         // Some intrinsics have a scalar argument - don't replace it with a
5017         // vector.
5018         if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
5019           const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
5020           Arg = VectorArg[Part];
5021         }
5022         Args.push_back(Arg);
5023       }
5024 
5025       Function *VectorF;
5026       if (UseVectorIntrinsic) {
5027         // Use vector version of the intrinsic.
5028         Type *TysForDecl[] = {CI->getType()};
5029         if (VF > 1)
5030           TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5031         VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5032       } else {
5033         // Use vector version of the library call.
5034         StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
5035         assert(!VFnName.empty() && "Vector function name is empty.");
5036         VectorF = M->getFunction(VFnName);
5037         if (!VectorF) {
5038           // Generate a declaration
5039           FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
5040           VectorF =
5041               Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
5042           VectorF->copyAttributesFrom(F);
5043         }
5044       }
5045       assert(VectorF && "Can't create vector function.");
5046 
5047       SmallVector<OperandBundleDef, 1> OpBundles;
5048       CI->getOperandBundlesAsDefs(OpBundles);
5049       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5050 
5051       if (isa<FPMathOperator>(V))
5052         V->copyFastMathFlags(CI);
5053 
5054       Entry[Part] = V;
5055     }
5056 
5057     VectorLoopValueMap.initVector(&I, Entry);
5058     addMetadata(Entry, &I);
5059     break;
5060   }
5061 
5062   default:
5063     // All other instructions are unsupported. Scalarize them.
5064     scalarizeInstruction(&I);
5065     break;
5066   } // end of switch.
5067 }
5068 
5069 void InnerLoopVectorizer::updateAnalysis() {
5070   // Forget the original basic block.
5071   PSE.getSE()->forgetLoop(OrigLoop);
5072 
5073   // Update the dominator tree information.
5074   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
5075          "Entry does not dominate exit.");
5076 
5077   DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(),
5078                   LoopVectorPreHeader);
5079   DT->addNewBlock(LoopMiddleBlock,
5080                   LI->getLoopFor(LoopVectorBody)->getLoopLatch());
5081   DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
5082   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
5083   DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
5084 
5085   DEBUG(DT->verifyDomTree());
5086 }
5087 
5088 /// \brief Check whether it is safe to if-convert this phi node.
5089 ///
5090 /// Phi nodes with constant expressions that can trap are not safe to if
5091 /// convert.
5092 static bool canIfConvertPHINodes(BasicBlock *BB) {
5093   for (Instruction &I : *BB) {
5094     auto *Phi = dyn_cast<PHINode>(&I);
5095     if (!Phi)
5096       return true;
5097     for (Value *V : Phi->incoming_values())
5098       if (auto *C = dyn_cast<Constant>(V))
5099         if (C->canTrap())
5100           return false;
5101   }
5102   return true;
5103 }
5104 
5105 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
5106   if (!EnableIfConversion) {
5107     ORE->emit(createMissedAnalysis("IfConversionDisabled")
5108               << "if-conversion is disabled");
5109     return false;
5110   }
5111 
5112   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
5113 
5114   // A list of pointers that we can safely read and write to.
5115   SmallPtrSet<Value *, 8> SafePointes;
5116 
5117   // Collect safe addresses.
5118   for (BasicBlock *BB : TheLoop->blocks()) {
5119     if (blockNeedsPredication(BB))
5120       continue;
5121 
5122     for (Instruction &I : *BB)
5123       if (auto *Ptr = getPointerOperand(&I))
5124         SafePointes.insert(Ptr);
5125   }
5126 
5127   // Collect the blocks that need predication.
5128   BasicBlock *Header = TheLoop->getHeader();
5129   for (BasicBlock *BB : TheLoop->blocks()) {
5130     // We don't support switch statements inside loops.
5131     if (!isa<BranchInst>(BB->getTerminator())) {
5132       ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
5133                 << "loop contains a switch statement");
5134       return false;
5135     }
5136 
5137     // We must be able to predicate all blocks that need to be predicated.
5138     if (blockNeedsPredication(BB)) {
5139       if (!blockCanBePredicated(BB, SafePointes)) {
5140         ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
5141                   << "control flow cannot be substituted for a select");
5142         return false;
5143       }
5144     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
5145       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
5146                 << "control flow cannot be substituted for a select");
5147       return false;
5148     }
5149   }
5150 
5151   // We can if-convert this loop.
5152   return true;
5153 }
5154 
5155 bool LoopVectorizationLegality::canVectorize() {
5156   // We must have a loop in canonical form. Loops with indirectbr in them cannot
5157   // be canonicalized.
5158   if (!TheLoop->getLoopPreheader()) {
5159     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
5160               << "loop control flow is not understood by vectorizer");
5161     return false;
5162   }
5163 
5164   // FIXME: The code is currently dead, since the loop gets sent to
5165   // LoopVectorizationLegality is already an innermost loop.
5166   //
5167   // We can only vectorize innermost loops.
5168   if (!TheLoop->empty()) {
5169     ORE->emit(createMissedAnalysis("NotInnermostLoop")
5170               << "loop is not the innermost loop");
5171     return false;
5172   }
5173 
5174   // We must have a single backedge.
5175   if (TheLoop->getNumBackEdges() != 1) {
5176     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
5177               << "loop control flow is not understood by vectorizer");
5178     return false;
5179   }
5180 
5181   // We must have a single exiting block.
5182   if (!TheLoop->getExitingBlock()) {
5183     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
5184               << "loop control flow is not understood by vectorizer");
5185     return false;
5186   }
5187 
5188   // We only handle bottom-tested loops, i.e. loop in which the condition is
5189   // checked at the end of each iteration. With that we can assume that all
5190   // instructions in the loop are executed the same number of times.
5191   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5192     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
5193               << "loop control flow is not understood by vectorizer");
5194     return false;
5195   }
5196 
5197   // We need to have a loop header.
5198   DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
5199                << '\n');
5200 
5201   // Check if we can if-convert non-single-bb loops.
5202   unsigned NumBlocks = TheLoop->getNumBlocks();
5203   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
5204     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
5205     return false;
5206   }
5207 
5208   // ScalarEvolution needs to be able to find the exit count.
5209   const SCEV *ExitCount = PSE.getBackedgeTakenCount();
5210   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
5211     ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations")
5212               << "could not determine number of loop iterations");
5213     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
5214     return false;
5215   }
5216 
5217   // Check if we can vectorize the instructions and CFG in this loop.
5218   if (!canVectorizeInstrs()) {
5219     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
5220     return false;
5221   }
5222 
5223   // Go over each instruction and look at memory deps.
5224   if (!canVectorizeMemory()) {
5225     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
5226     return false;
5227   }
5228 
5229   DEBUG(dbgs() << "LV: We can vectorize this loop"
5230                << (LAI->getRuntimePointerChecking()->Need
5231                        ? " (with a runtime bound check)"
5232                        : "")
5233                << "!\n");
5234 
5235   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
5236 
5237   // If an override option has been passed in for interleaved accesses, use it.
5238   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
5239     UseInterleaved = EnableInterleavedMemAccesses;
5240 
5241   // Analyze interleaved memory accesses.
5242   if (UseInterleaved)
5243     InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
5244 
5245   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
5246   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
5247     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
5248 
5249   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
5250     ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
5251               << "Too many SCEV assumptions need to be made and checked "
5252               << "at runtime");
5253     DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
5254     return false;
5255   }
5256 
5257   // Okay! We can vectorize. At this point we don't have any other mem analysis
5258   // which may limit our maximum vectorization factor, so just return true with
5259   // no restrictions.
5260   return true;
5261 }
5262 
5263 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
5264   if (Ty->isPointerTy())
5265     return DL.getIntPtrType(Ty);
5266 
5267   // It is possible that char's or short's overflow when we ask for the loop's
5268   // trip count, work around this by changing the type size.
5269   if (Ty->getScalarSizeInBits() < 32)
5270     return Type::getInt32Ty(Ty->getContext());
5271 
5272   return Ty;
5273 }
5274 
5275 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
5276   Ty0 = convertPointerToIntegerType(DL, Ty0);
5277   Ty1 = convertPointerToIntegerType(DL, Ty1);
5278   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
5279     return Ty0;
5280   return Ty1;
5281 }
5282 
5283 /// \brief Check that the instruction has outside loop users and is not an
5284 /// identified reduction variable.
5285 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
5286                                SmallPtrSetImpl<Value *> &AllowedExit) {
5287   // Reduction and Induction instructions are allowed to have exit users. All
5288   // other instructions must not have external users.
5289   if (!AllowedExit.count(Inst))
5290     // Check that all of the users of the loop are inside the BB.
5291     for (User *U : Inst->users()) {
5292       Instruction *UI = cast<Instruction>(U);
5293       // This user may be a reduction exit value.
5294       if (!TheLoop->contains(UI)) {
5295         DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
5296         return true;
5297       }
5298     }
5299   return false;
5300 }
5301 
5302 void LoopVectorizationLegality::addInductionPhi(
5303     PHINode *Phi, const InductionDescriptor &ID,
5304     SmallPtrSetImpl<Value *> &AllowedExit) {
5305   Inductions[Phi] = ID;
5306   Type *PhiTy = Phi->getType();
5307   const DataLayout &DL = Phi->getModule()->getDataLayout();
5308 
5309   // Get the widest type.
5310   if (!PhiTy->isFloatingPointTy()) {
5311     if (!WidestIndTy)
5312       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
5313     else
5314       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
5315   }
5316 
5317   // Int inductions are special because we only allow one IV.
5318   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
5319       ID.getConstIntStepValue() &&
5320       ID.getConstIntStepValue()->isOne() &&
5321       isa<Constant>(ID.getStartValue()) &&
5322       cast<Constant>(ID.getStartValue())->isNullValue()) {
5323 
5324     // Use the phi node with the widest type as induction. Use the last
5325     // one if there are multiple (no good reason for doing this other
5326     // than it is expedient). We've checked that it begins at zero and
5327     // steps by one, so this is a canonical induction variable.
5328     if (!PrimaryInduction || PhiTy == WidestIndTy)
5329       PrimaryInduction = Phi;
5330   }
5331 
5332   // Both the PHI node itself, and the "post-increment" value feeding
5333   // back into the PHI node may have external users.
5334   AllowedExit.insert(Phi);
5335   AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
5336 
5337   DEBUG(dbgs() << "LV: Found an induction variable.\n");
5338   return;
5339 }
5340 
5341 bool LoopVectorizationLegality::canVectorizeInstrs() {
5342   BasicBlock *Header = TheLoop->getHeader();
5343 
5344   // Look for the attribute signaling the absence of NaNs.
5345   Function &F = *Header->getParent();
5346   HasFunNoNaNAttr =
5347       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
5348 
5349   // For each block in the loop.
5350   for (BasicBlock *BB : TheLoop->blocks()) {
5351     // Scan the instructions in the block and look for hazards.
5352     for (Instruction &I : *BB) {
5353       if (auto *Phi = dyn_cast<PHINode>(&I)) {
5354         Type *PhiTy = Phi->getType();
5355         // Check that this PHI type is allowed.
5356         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
5357             !PhiTy->isPointerTy()) {
5358           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5359                     << "loop control flow is not understood by vectorizer");
5360           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
5361           return false;
5362         }
5363 
5364         // If this PHINode is not in the header block, then we know that we
5365         // can convert it to select during if-conversion. No need to check if
5366         // the PHIs in this block are induction or reduction variables.
5367         if (BB != Header) {
5368           // Check that this instruction has no outside users or is an
5369           // identified reduction value with an outside user.
5370           if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
5371             continue;
5372           ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
5373                     << "value could not be identified as "
5374                        "an induction or reduction variable");
5375           return false;
5376         }
5377 
5378         // We only allow if-converted PHIs with exactly two incoming values.
5379         if (Phi->getNumIncomingValues() != 2) {
5380           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5381                     << "control flow not understood by vectorizer");
5382           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
5383           return false;
5384         }
5385 
5386         RecurrenceDescriptor RedDes;
5387         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
5388           if (RedDes.hasUnsafeAlgebra())
5389             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
5390           AllowedExit.insert(RedDes.getLoopExitInstr());
5391           Reductions[Phi] = RedDes;
5392           continue;
5393         }
5394 
5395         InductionDescriptor ID;
5396         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
5397           addInductionPhi(Phi, ID, AllowedExit);
5398           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
5399             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
5400           continue;
5401         }
5402 
5403         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) {
5404           FirstOrderRecurrences.insert(Phi);
5405           continue;
5406         }
5407 
5408         // As a last resort, coerce the PHI to a AddRec expression
5409         // and re-try classifying it a an induction PHI.
5410         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
5411           addInductionPhi(Phi, ID, AllowedExit);
5412           continue;
5413         }
5414 
5415         ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
5416                   << "value that could not be identified as "
5417                      "reduction is used outside the loop");
5418         DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
5419         return false;
5420       } // end of PHI handling
5421 
5422       // We handle calls that:
5423       //   * Are debug info intrinsics.
5424       //   * Have a mapping to an IR intrinsic.
5425       //   * Have a vector version available.
5426       auto *CI = dyn_cast<CallInst>(&I);
5427       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
5428           !isa<DbgInfoIntrinsic>(CI) &&
5429           !(CI->getCalledFunction() && TLI &&
5430             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
5431         ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
5432                   << "call instruction cannot be vectorized");
5433         DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
5434         return false;
5435       }
5436 
5437       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
5438       // second argument is the same (i.e. loop invariant)
5439       if (CI && hasVectorInstrinsicScalarOpd(
5440                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
5441         auto *SE = PSE.getSE();
5442         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
5443           ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
5444                     << "intrinsic instruction cannot be vectorized");
5445           DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
5446           return false;
5447         }
5448       }
5449 
5450       // Check that the instruction return type is vectorizable.
5451       // Also, we can't vectorize extractelement instructions.
5452       if ((!VectorType::isValidElementType(I.getType()) &&
5453            !I.getType()->isVoidTy()) ||
5454           isa<ExtractElementInst>(I)) {
5455         ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
5456                   << "instruction return type cannot be vectorized");
5457         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
5458         return false;
5459       }
5460 
5461       // Check that the stored type is vectorizable.
5462       if (auto *ST = dyn_cast<StoreInst>(&I)) {
5463         Type *T = ST->getValueOperand()->getType();
5464         if (!VectorType::isValidElementType(T)) {
5465           ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
5466                     << "store instruction cannot be vectorized");
5467           return false;
5468         }
5469 
5470         // FP instructions can allow unsafe algebra, thus vectorizable by
5471         // non-IEEE-754 compliant SIMD units.
5472         // This applies to floating-point math operations and calls, not memory
5473         // operations, shuffles, or casts, as they don't change precision or
5474         // semantics.
5475       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
5476                  !I.hasUnsafeAlgebra()) {
5477         DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
5478         Hints->setPotentiallyUnsafe();
5479       }
5480 
5481       // Reduction instructions are allowed to have exit users.
5482       // All other instructions must not have external users.
5483       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
5484         ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
5485                   << "value cannot be used outside the loop");
5486         return false;
5487       }
5488 
5489     } // next instr.
5490   }
5491 
5492   if (!PrimaryInduction) {
5493     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
5494     if (Inductions.empty()) {
5495       ORE->emit(createMissedAnalysis("NoInductionVariable")
5496                 << "loop induction variable could not be identified");
5497       return false;
5498     }
5499   }
5500 
5501   // Now we know the widest induction type, check if our found induction
5502   // is the same size. If it's not, unset it here and InnerLoopVectorizer
5503   // will create another.
5504   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
5505     PrimaryInduction = nullptr;
5506 
5507   return true;
5508 }
5509 
5510 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
5511 
5512   // We should not collect Scalars more than once per VF. Right now, this
5513   // function is called from collectUniformsAndScalars(), which already does
5514   // this check. Collecting Scalars for VF=1 does not make any sense.
5515   assert(VF >= 2 && !Scalars.count(VF) &&
5516          "This function should not be visited twice for the same VF");
5517 
5518   SmallSetVector<Instruction *, 8> Worklist;
5519 
5520   // These sets are used to seed the analysis with pointers used by memory
5521   // accesses that will remain scalar.
5522   SmallSetVector<Instruction *, 8> ScalarPtrs;
5523   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5524 
5525   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5526   // The pointer operands of loads and stores will be scalar as long as the
5527   // memory access is not a gather or scatter operation. The value operand of a
5528   // store will remain scalar if the store is scalarized.
5529   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5530     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5531     assert(WideningDecision != CM_Unknown &&
5532            "Widening decision should be ready at this moment");
5533     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5534       if (Ptr == Store->getValueOperand())
5535         return WideningDecision == CM_Scalarize;
5536     assert(Ptr == getPointerOperand(MemAccess) &&
5537            "Ptr is neither a value or pointer operand");
5538     return WideningDecision != CM_GatherScatter;
5539   };
5540 
5541   // A helper that returns true if the given value is a bitcast or
5542   // getelementptr instruction contained in the loop.
5543   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5544     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5545             isa<GetElementPtrInst>(V)) &&
5546            !TheLoop->isLoopInvariant(V);
5547   };
5548 
5549   // A helper that evaluates a memory access's use of a pointer. If the use
5550   // will be a scalar use, and the pointer is only used by memory accesses, we
5551   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
5552   // PossibleNonScalarPtrs.
5553   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5554 
5555     // We only care about bitcast and getelementptr instructions contained in
5556     // the loop.
5557     if (!isLoopVaryingBitCastOrGEP(Ptr))
5558       return;
5559 
5560     // If the pointer has already been identified as scalar (e.g., if it was
5561     // also identified as uniform), there's nothing to do.
5562     auto *I = cast<Instruction>(Ptr);
5563     if (Worklist.count(I))
5564       return;
5565 
5566     // If the use of the pointer will be a scalar use, and all users of the
5567     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5568     // place the pointer in PossibleNonScalarPtrs.
5569     if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) {
5570           return isa<LoadInst>(U) || isa<StoreInst>(U);
5571         }))
5572       ScalarPtrs.insert(I);
5573     else
5574       PossibleNonScalarPtrs.insert(I);
5575   };
5576 
5577   // We seed the scalars analysis with three classes of instructions: (1)
5578   // instructions marked uniform-after-vectorization, (2) bitcast and
5579   // getelementptr instructions used by memory accesses requiring a scalar use,
5580   // and (3) pointer induction variables and their update instructions (we
5581   // currently only scalarize these).
5582   //
5583   // (1) Add to the worklist all instructions that have been identified as
5584   // uniform-after-vectorization.
5585   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5586 
5587   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5588   // memory accesses requiring a scalar use. The pointer operands of loads and
5589   // stores will be scalar as long as the memory accesses is not a gather or
5590   // scatter operation. The value operand of a store will remain scalar if the
5591   // store is scalarized.
5592   for (auto *BB : TheLoop->blocks())
5593     for (auto &I : *BB) {
5594       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5595         evaluatePtrUse(Load, Load->getPointerOperand());
5596       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5597         evaluatePtrUse(Store, Store->getPointerOperand());
5598         evaluatePtrUse(Store, Store->getValueOperand());
5599       }
5600     }
5601   for (auto *I : ScalarPtrs)
5602     if (!PossibleNonScalarPtrs.count(I)) {
5603       DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5604       Worklist.insert(I);
5605     }
5606 
5607   // (3) Add to the worklist all pointer induction variables and their update
5608   // instructions.
5609   //
5610   // TODO: Once we are able to vectorize pointer induction variables we should
5611   //       no longer insert them into the worklist here.
5612   auto *Latch = TheLoop->getLoopLatch();
5613   for (auto &Induction : *Legal->getInductionVars()) {
5614     auto *Ind = Induction.first;
5615     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5616     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
5617       continue;
5618     Worklist.insert(Ind);
5619     Worklist.insert(IndUpdate);
5620     DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5621     DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n");
5622   }
5623 
5624   // Expand the worklist by looking through any bitcasts and getelementptr
5625   // instructions we've already identified as scalar. This is similar to the
5626   // expansion step in collectLoopUniforms(); however, here we're only
5627   // expanding to include additional bitcasts and getelementptr instructions.
5628   unsigned Idx = 0;
5629   while (Idx != Worklist.size()) {
5630     Instruction *Dst = Worklist[Idx++];
5631     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5632       continue;
5633     auto *Src = cast<Instruction>(Dst->getOperand(0));
5634     if (all_of(Src->users(), [&](User *U) -> bool {
5635           auto *J = cast<Instruction>(U);
5636           return !TheLoop->contains(J) || Worklist.count(J) ||
5637                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5638                   isScalarUse(J, Src));
5639         })) {
5640       Worklist.insert(Src);
5641       DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5642     }
5643   }
5644 
5645   // An induction variable will remain scalar if all users of the induction
5646   // variable and induction variable update remain scalar.
5647   for (auto &Induction : *Legal->getInductionVars()) {
5648     auto *Ind = Induction.first;
5649     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5650 
5651     // We already considered pointer induction variables, so there's no reason
5652     // to look at their users again.
5653     //
5654     // TODO: Once we are able to vectorize pointer induction variables we
5655     //       should no longer skip over them here.
5656     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
5657       continue;
5658 
5659     // Determine if all users of the induction variable are scalar after
5660     // vectorization.
5661     auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
5662       auto *I = cast<Instruction>(U);
5663       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5664     });
5665     if (!ScalarInd)
5666       continue;
5667 
5668     // Determine if all users of the induction variable update instruction are
5669     // scalar after vectorization.
5670     auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
5671       auto *I = cast<Instruction>(U);
5672       return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5673     });
5674     if (!ScalarIndUpdate)
5675       continue;
5676 
5677     // The induction variable and its update instruction will remain scalar.
5678     Worklist.insert(Ind);
5679     Worklist.insert(IndUpdate);
5680     DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5681     DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n");
5682   }
5683 
5684   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5685 }
5686 
5687 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) {
5688   if (!blockNeedsPredication(I->getParent()))
5689     return false;
5690   switch(I->getOpcode()) {
5691   default:
5692     break;
5693   case Instruction::Store:
5694     return !isMaskRequired(I);
5695   case Instruction::UDiv:
5696   case Instruction::SDiv:
5697   case Instruction::SRem:
5698   case Instruction::URem:
5699     return mayDivideByZero(*I);
5700   }
5701   return false;
5702 }
5703 
5704 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I,
5705                                                               unsigned VF) {
5706   // Get and ensure we have a valid memory instruction.
5707   LoadInst *LI = dyn_cast<LoadInst>(I);
5708   StoreInst *SI = dyn_cast<StoreInst>(I);
5709   assert((LI || SI) && "Invalid memory instruction");
5710 
5711   auto *Ptr = getPointerOperand(I);
5712 
5713   // In order to be widened, the pointer should be consecutive, first of all.
5714   if (!isConsecutivePtr(Ptr))
5715     return false;
5716 
5717   // If the instruction is a store located in a predicated block, it will be
5718   // scalarized.
5719   if (isScalarWithPredication(I))
5720     return false;
5721 
5722   // If the instruction's allocated size doesn't equal it's type size, it
5723   // requires padding and will be scalarized.
5724   auto &DL = I->getModule()->getDataLayout();
5725   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5726   if (hasIrregularType(ScalarTy, DL, VF))
5727     return false;
5728 
5729   return true;
5730 }
5731 
5732 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
5733 
5734   // We should not collect Uniforms more than once per VF. Right now,
5735   // this function is called from collectUniformsAndScalars(), which
5736   // already does this check. Collecting Uniforms for VF=1 does not make any
5737   // sense.
5738 
5739   assert(VF >= 2 && !Uniforms.count(VF) &&
5740          "This function should not be visited twice for the same VF");
5741 
5742   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5743   // not analyze again.  Uniforms.count(VF) will return 1.
5744   Uniforms[VF].clear();
5745 
5746   // We now know that the loop is vectorizable!
5747   // Collect instructions inside the loop that will remain uniform after
5748   // vectorization.
5749 
5750   // Global values, params and instructions outside of current loop are out of
5751   // scope.
5752   auto isOutOfScope = [&](Value *V) -> bool {
5753     Instruction *I = dyn_cast<Instruction>(V);
5754     return (!I || !TheLoop->contains(I));
5755   };
5756 
5757   SetVector<Instruction *> Worklist;
5758   BasicBlock *Latch = TheLoop->getLoopLatch();
5759 
5760   // Start with the conditional branch. If the branch condition is an
5761   // instruction contained in the loop that is only used by the branch, it is
5762   // uniform.
5763   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5764   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
5765     Worklist.insert(Cmp);
5766     DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
5767   }
5768 
5769   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
5770   // are pointers that are treated like consecutive pointers during
5771   // vectorization. The pointer operands of interleaved accesses are an
5772   // example.
5773   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
5774 
5775   // Holds pointer operands of instructions that are possibly non-uniform.
5776   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
5777 
5778   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
5779     InstWidening WideningDecision = getWideningDecision(I, VF);
5780     assert(WideningDecision != CM_Unknown &&
5781            "Widening decision should be ready at this moment");
5782 
5783     return (WideningDecision == CM_Widen ||
5784             WideningDecision == CM_Interleave);
5785   };
5786   // Iterate over the instructions in the loop, and collect all
5787   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
5788   // that a consecutive-like pointer operand will be scalarized, we collect it
5789   // in PossibleNonUniformPtrs instead. We use two sets here because a single
5790   // getelementptr instruction can be used by both vectorized and scalarized
5791   // memory instructions. For example, if a loop loads and stores from the same
5792   // location, but the store is conditional, the store will be scalarized, and
5793   // the getelementptr won't remain uniform.
5794   for (auto *BB : TheLoop->blocks())
5795     for (auto &I : *BB) {
5796 
5797       // If there's no pointer operand, there's nothing to do.
5798       auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I));
5799       if (!Ptr)
5800         continue;
5801 
5802       // True if all users of Ptr are memory accesses that have Ptr as their
5803       // pointer operand.
5804       auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool {
5805         return getPointerOperand(U) == Ptr;
5806       });
5807 
5808       // Ensure the memory instruction will not be scalarized or used by
5809       // gather/scatter, making its pointer operand non-uniform. If the pointer
5810       // operand is used by any instruction other than a memory access, we
5811       // conservatively assume the pointer operand may be non-uniform.
5812       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
5813         PossibleNonUniformPtrs.insert(Ptr);
5814 
5815       // If the memory instruction will be vectorized and its pointer operand
5816       // is consecutive-like, or interleaving - the pointer operand should
5817       // remain uniform.
5818       else
5819         ConsecutiveLikePtrs.insert(Ptr);
5820     }
5821 
5822   // Add to the Worklist all consecutive and consecutive-like pointers that
5823   // aren't also identified as possibly non-uniform.
5824   for (auto *V : ConsecutiveLikePtrs)
5825     if (!PossibleNonUniformPtrs.count(V)) {
5826       DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
5827       Worklist.insert(V);
5828     }
5829 
5830   // Expand Worklist in topological order: whenever a new instruction
5831   // is added , its users should be either already inside Worklist, or
5832   // out of scope. It ensures a uniform instruction will only be used
5833   // by uniform instructions or out of scope instructions.
5834   unsigned idx = 0;
5835   while (idx != Worklist.size()) {
5836     Instruction *I = Worklist[idx++];
5837 
5838     for (auto OV : I->operand_values()) {
5839       if (isOutOfScope(OV))
5840         continue;
5841       auto *OI = cast<Instruction>(OV);
5842       if (all_of(OI->users(), [&](User *U) -> bool {
5843             auto *J = cast<Instruction>(U);
5844             return !TheLoop->contains(J) || Worklist.count(J) ||
5845                    (OI == getPointerOperand(J) && isUniformDecision(J, VF));
5846           })) {
5847         Worklist.insert(OI);
5848         DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
5849       }
5850     }
5851   }
5852 
5853   // Returns true if Ptr is the pointer operand of a memory access instruction
5854   // I, and I is known to not require scalarization.
5855   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5856     return getPointerOperand(I) == Ptr && isUniformDecision(I, VF);
5857   };
5858 
5859   // For an instruction to be added into Worklist above, all its users inside
5860   // the loop should also be in Worklist. However, this condition cannot be
5861   // true for phi nodes that form a cyclic dependence. We must process phi
5862   // nodes separately. An induction variable will remain uniform if all users
5863   // of the induction variable and induction variable update remain uniform.
5864   // The code below handles both pointer and non-pointer induction variables.
5865   for (auto &Induction : *Legal->getInductionVars()) {
5866     auto *Ind = Induction.first;
5867     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5868 
5869     // Determine if all users of the induction variable are uniform after
5870     // vectorization.
5871     auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
5872       auto *I = cast<Instruction>(U);
5873       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5874              isVectorizedMemAccessUse(I, Ind);
5875     });
5876     if (!UniformInd)
5877       continue;
5878 
5879     // Determine if all users of the induction variable update instruction are
5880     // uniform after vectorization.
5881     auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
5882       auto *I = cast<Instruction>(U);
5883       return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5884              isVectorizedMemAccessUse(I, IndUpdate);
5885     });
5886     if (!UniformIndUpdate)
5887       continue;
5888 
5889     // The induction variable and its update instruction will remain uniform.
5890     Worklist.insert(Ind);
5891     Worklist.insert(IndUpdate);
5892     DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
5893     DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n");
5894   }
5895 
5896   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5897 }
5898 
5899 bool LoopVectorizationLegality::canVectorizeMemory() {
5900   LAI = &(*GetLAA)(*TheLoop);
5901   InterleaveInfo.setLAI(LAI);
5902   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
5903   if (LAR) {
5904     OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(),
5905                                   "loop not vectorized: ", *LAR);
5906     ORE->emit(VR);
5907   }
5908   if (!LAI->canVectorizeMemory())
5909     return false;
5910 
5911   if (LAI->hasStoreToLoopInvariantAddress()) {
5912     ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
5913               << "write to a loop invariant address could not be vectorized");
5914     DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
5915     return false;
5916   }
5917 
5918   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
5919   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
5920 
5921   return true;
5922 }
5923 
5924 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5925   Value *In0 = const_cast<Value *>(V);
5926   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5927   if (!PN)
5928     return false;
5929 
5930   return Inductions.count(PN);
5931 }
5932 
5933 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
5934   return FirstOrderRecurrences.count(Phi);
5935 }
5936 
5937 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
5938   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
5939 }
5940 
5941 bool LoopVectorizationLegality::blockCanBePredicated(
5942     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
5943   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
5944 
5945   for (Instruction &I : *BB) {
5946     // Check that we don't have a constant expression that can trap as operand.
5947     for (Value *Operand : I.operands()) {
5948       if (auto *C = dyn_cast<Constant>(Operand))
5949         if (C->canTrap())
5950           return false;
5951     }
5952     // We might be able to hoist the load.
5953     if (I.mayReadFromMemory()) {
5954       auto *LI = dyn_cast<LoadInst>(&I);
5955       if (!LI)
5956         return false;
5957       if (!SafePtrs.count(LI->getPointerOperand())) {
5958         if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) ||
5959             isLegalMaskedGather(LI->getType())) {
5960           MaskedOp.insert(LI);
5961           continue;
5962         }
5963         // !llvm.mem.parallel_loop_access implies if-conversion safety.
5964         if (IsAnnotatedParallel)
5965           continue;
5966         return false;
5967       }
5968     }
5969 
5970     if (I.mayWriteToMemory()) {
5971       auto *SI = dyn_cast<StoreInst>(&I);
5972       // We only support predication of stores in basic blocks with one
5973       // predecessor.
5974       if (!SI)
5975         return false;
5976 
5977       // Build a masked store if it is legal for the target.
5978       if (isLegalMaskedStore(SI->getValueOperand()->getType(),
5979                              SI->getPointerOperand()) ||
5980           isLegalMaskedScatter(SI->getValueOperand()->getType())) {
5981         MaskedOp.insert(SI);
5982         continue;
5983       }
5984 
5985       bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
5986       bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
5987 
5988       if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
5989           !isSinglePredecessor)
5990         return false;
5991     }
5992     if (I.mayThrow())
5993       return false;
5994   }
5995 
5996   return true;
5997 }
5998 
5999 void InterleavedAccessInfo::collectConstStrideAccesses(
6000     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
6001     const ValueToValueMap &Strides) {
6002 
6003   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
6004 
6005   // Since it's desired that the load/store instructions be maintained in
6006   // "program order" for the interleaved access analysis, we have to visit the
6007   // blocks in the loop in reverse postorder (i.e., in a topological order).
6008   // Such an ordering will ensure that any load/store that may be executed
6009   // before a second load/store will precede the second load/store in
6010   // AccessStrideInfo.
6011   LoopBlocksDFS DFS(TheLoop);
6012   DFS.perform(LI);
6013   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
6014     for (auto &I : *BB) {
6015       auto *LI = dyn_cast<LoadInst>(&I);
6016       auto *SI = dyn_cast<StoreInst>(&I);
6017       if (!LI && !SI)
6018         continue;
6019 
6020       Value *Ptr = getPointerOperand(&I);
6021       // We don't check wrapping here because we don't know yet if Ptr will be
6022       // part of a full group or a group with gaps. Checking wrapping for all
6023       // pointers (even those that end up in groups with no gaps) will be overly
6024       // conservative. For full groups, wrapping should be ok since if we would
6025       // wrap around the address space we would do a memory access at nullptr
6026       // even without the transformation. The wrapping checks are therefore
6027       // deferred until after we've formed the interleaved groups.
6028       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
6029                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
6030 
6031       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
6032       PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
6033       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
6034 
6035       // An alignment of 0 means target ABI alignment.
6036       unsigned Align = getMemInstAlignment(&I);
6037       if (!Align)
6038         Align = DL.getABITypeAlignment(PtrTy->getElementType());
6039 
6040       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
6041     }
6042 }
6043 
6044 // Analyze interleaved accesses and collect them into interleaved load and
6045 // store groups.
6046 //
6047 // When generating code for an interleaved load group, we effectively hoist all
6048 // loads in the group to the location of the first load in program order. When
6049 // generating code for an interleaved store group, we sink all stores to the
6050 // location of the last store. This code motion can change the order of load
6051 // and store instructions and may break dependences.
6052 //
6053 // The code generation strategy mentioned above ensures that we won't violate
6054 // any write-after-read (WAR) dependences.
6055 //
6056 // E.g., for the WAR dependence:  a = A[i];      // (1)
6057 //                                A[i] = b;      // (2)
6058 //
6059 // The store group of (2) is always inserted at or below (2), and the load
6060 // group of (1) is always inserted at or above (1). Thus, the instructions will
6061 // never be reordered. All other dependences are checked to ensure the
6062 // correctness of the instruction reordering.
6063 //
6064 // The algorithm visits all memory accesses in the loop in bottom-up program
6065 // order. Program order is established by traversing the blocks in the loop in
6066 // reverse postorder when collecting the accesses.
6067 //
6068 // We visit the memory accesses in bottom-up order because it can simplify the
6069 // construction of store groups in the presence of write-after-write (WAW)
6070 // dependences.
6071 //
6072 // E.g., for the WAW dependence:  A[i] = a;      // (1)
6073 //                                A[i] = b;      // (2)
6074 //                                A[i + 1] = c;  // (3)
6075 //
6076 // We will first create a store group with (3) and (2). (1) can't be added to
6077 // this group because it and (2) are dependent. However, (1) can be grouped
6078 // with other accesses that may precede it in program order. Note that a
6079 // bottom-up order does not imply that WAW dependences should not be checked.
6080 void InterleavedAccessInfo::analyzeInterleaving(
6081     const ValueToValueMap &Strides) {
6082   DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
6083 
6084   // Holds all accesses with a constant stride.
6085   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
6086   collectConstStrideAccesses(AccessStrideInfo, Strides);
6087 
6088   if (AccessStrideInfo.empty())
6089     return;
6090 
6091   // Collect the dependences in the loop.
6092   collectDependences();
6093 
6094   // Holds all interleaved store groups temporarily.
6095   SmallSetVector<InterleaveGroup *, 4> StoreGroups;
6096   // Holds all interleaved load groups temporarily.
6097   SmallSetVector<InterleaveGroup *, 4> LoadGroups;
6098 
6099   // Search in bottom-up program order for pairs of accesses (A and B) that can
6100   // form interleaved load or store groups. In the algorithm below, access A
6101   // precedes access B in program order. We initialize a group for B in the
6102   // outer loop of the algorithm, and then in the inner loop, we attempt to
6103   // insert each A into B's group if:
6104   //
6105   //  1. A and B have the same stride,
6106   //  2. A and B have the same memory object size, and
6107   //  3. A belongs in B's group according to its distance from B.
6108   //
6109   // Special care is taken to ensure group formation will not break any
6110   // dependences.
6111   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
6112        BI != E; ++BI) {
6113     Instruction *B = BI->first;
6114     StrideDescriptor DesB = BI->second;
6115 
6116     // Initialize a group for B if it has an allowable stride. Even if we don't
6117     // create a group for B, we continue with the bottom-up algorithm to ensure
6118     // we don't break any of B's dependences.
6119     InterleaveGroup *Group = nullptr;
6120     if (isStrided(DesB.Stride)) {
6121       Group = getInterleaveGroup(B);
6122       if (!Group) {
6123         DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n');
6124         Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
6125       }
6126       if (B->mayWriteToMemory())
6127         StoreGroups.insert(Group);
6128       else
6129         LoadGroups.insert(Group);
6130     }
6131 
6132     for (auto AI = std::next(BI); AI != E; ++AI) {
6133       Instruction *A = AI->first;
6134       StrideDescriptor DesA = AI->second;
6135 
6136       // Our code motion strategy implies that we can't have dependences
6137       // between accesses in an interleaved group and other accesses located
6138       // between the first and last member of the group. Note that this also
6139       // means that a group can't have more than one member at a given offset.
6140       // The accesses in a group can have dependences with other accesses, but
6141       // we must ensure we don't extend the boundaries of the group such that
6142       // we encompass those dependent accesses.
6143       //
6144       // For example, assume we have the sequence of accesses shown below in a
6145       // stride-2 loop:
6146       //
6147       //  (1, 2) is a group | A[i]   = a;  // (1)
6148       //                    | A[i-1] = b;  // (2) |
6149       //                      A[i-3] = c;  // (3)
6150       //                      A[i]   = d;  // (4) | (2, 4) is not a group
6151       //
6152       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
6153       // but not with (4). If we did, the dependent access (3) would be within
6154       // the boundaries of the (2, 4) group.
6155       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
6156 
6157         // If a dependence exists and A is already in a group, we know that A
6158         // must be a store since A precedes B and WAR dependences are allowed.
6159         // Thus, A would be sunk below B. We release A's group to prevent this
6160         // illegal code motion. A will then be free to form another group with
6161         // instructions that precede it.
6162         if (isInterleaved(A)) {
6163           InterleaveGroup *StoreGroup = getInterleaveGroup(A);
6164           StoreGroups.remove(StoreGroup);
6165           releaseGroup(StoreGroup);
6166         }
6167 
6168         // If a dependence exists and A is not already in a group (or it was
6169         // and we just released it), B might be hoisted above A (if B is a
6170         // load) or another store might be sunk below A (if B is a store). In
6171         // either case, we can't add additional instructions to B's group. B
6172         // will only form a group with instructions that it precedes.
6173         break;
6174       }
6175 
6176       // At this point, we've checked for illegal code motion. If either A or B
6177       // isn't strided, there's nothing left to do.
6178       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
6179         continue;
6180 
6181       // Ignore A if it's already in a group or isn't the same kind of memory
6182       // operation as B.
6183       if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory())
6184         continue;
6185 
6186       // Check rules 1 and 2. Ignore A if its stride or size is different from
6187       // that of B.
6188       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
6189         continue;
6190 
6191       // Ignore A if the memory object of A and B don't belong to the same
6192       // address space
6193       if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B))
6194         continue;
6195 
6196       // Calculate the distance from A to B.
6197       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
6198           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
6199       if (!DistToB)
6200         continue;
6201       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
6202 
6203       // Check rule 3. Ignore A if its distance to B is not a multiple of the
6204       // size.
6205       if (DistanceToB % static_cast<int64_t>(DesB.Size))
6206         continue;
6207 
6208       // Ignore A if either A or B is in a predicated block. Although we
6209       // currently prevent group formation for predicated accesses, we may be
6210       // able to relax this limitation in the future once we handle more
6211       // complicated blocks.
6212       if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
6213         continue;
6214 
6215       // The index of A is the index of B plus A's distance to B in multiples
6216       // of the size.
6217       int IndexA =
6218           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
6219 
6220       // Try to insert A into B's group.
6221       if (Group->insertMember(A, IndexA, DesA.Align)) {
6222         DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
6223                      << "    into the interleave group with" << *B << '\n');
6224         InterleaveGroupMap[A] = Group;
6225 
6226         // Set the first load in program order as the insert position.
6227         if (A->mayReadFromMemory())
6228           Group->setInsertPos(A);
6229       }
6230     } // Iteration over A accesses.
6231   } // Iteration over B accesses.
6232 
6233   // Remove interleaved store groups with gaps.
6234   for (InterleaveGroup *Group : StoreGroups)
6235     if (Group->getNumMembers() != Group->getFactor())
6236       releaseGroup(Group);
6237 
6238   // Remove interleaved groups with gaps (currently only loads) whose memory
6239   // accesses may wrap around. We have to revisit the getPtrStride analysis,
6240   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
6241   // not check wrapping (see documentation there).
6242   // FORNOW we use Assume=false;
6243   // TODO: Change to Assume=true but making sure we don't exceed the threshold
6244   // of runtime SCEV assumptions checks (thereby potentially failing to
6245   // vectorize altogether).
6246   // Additional optional optimizations:
6247   // TODO: If we are peeling the loop and we know that the first pointer doesn't
6248   // wrap then we can deduce that all pointers in the group don't wrap.
6249   // This means that we can forcefully peel the loop in order to only have to
6250   // check the first pointer for no-wrap. When we'll change to use Assume=true
6251   // we'll only need at most one runtime check per interleaved group.
6252   //
6253   for (InterleaveGroup *Group : LoadGroups) {
6254 
6255     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
6256     // load would wrap around the address space we would do a memory access at
6257     // nullptr even without the transformation.
6258     if (Group->getNumMembers() == Group->getFactor())
6259       continue;
6260 
6261     // Case 2: If first and last members of the group don't wrap this implies
6262     // that all the pointers in the group don't wrap.
6263     // So we check only group member 0 (which is always guaranteed to exist),
6264     // and group member Factor - 1; If the latter doesn't exist we rely on
6265     // peeling (if it is a non-reveresed accsess -- see Case 3).
6266     Value *FirstMemberPtr = getPointerOperand(Group->getMember(0));
6267     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
6268                       /*ShouldCheckWrap=*/true)) {
6269       DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
6270                       "first group member potentially pointer-wrapping.\n");
6271       releaseGroup(Group);
6272       continue;
6273     }
6274     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
6275     if (LastMember) {
6276       Value *LastMemberPtr = getPointerOperand(LastMember);
6277       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
6278                         /*ShouldCheckWrap=*/true)) {
6279         DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
6280                         "last group member potentially pointer-wrapping.\n");
6281         releaseGroup(Group);
6282       }
6283     } else {
6284       // Case 3: A non-reversed interleaved load group with gaps: We need
6285       // to execute at least one scalar epilogue iteration. This will ensure
6286       // we don't speculatively access memory out-of-bounds. We only need
6287       // to look for a member at index factor - 1, since every group must have
6288       // a member at index zero.
6289       if (Group->isReverse()) {
6290         releaseGroup(Group);
6291         continue;
6292       }
6293       DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
6294       RequiresScalarEpilogue = true;
6295     }
6296   }
6297 }
6298 
6299 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
6300   if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
6301     ORE->emit(createMissedAnalysis("ConditionalStore")
6302               << "store that is conditionally executed prevents vectorization");
6303     DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
6304     return None;
6305   }
6306 
6307   if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
6308     return computeFeasibleMaxVF(OptForSize);
6309 
6310   if (Legal->getRuntimePointerChecking()->Need) {
6311     ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
6312               << "runtime pointer checks needed. Enable vectorization of this "
6313                  "loop with '#pragma clang loop vectorize(enable)' when "
6314                  "compiling with -Os/-Oz");
6315     DEBUG(dbgs()
6316           << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
6317     return None;
6318   }
6319 
6320   // If we optimize the program for size, avoid creating the tail loop.
6321   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6322   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
6323 
6324   // If we don't know the precise trip count, don't try to vectorize.
6325   if (TC < 2) {
6326     ORE->emit(
6327         createMissedAnalysis("UnknownLoopCountComplexCFG")
6328         << "unable to calculate the loop count due to complex control flow");
6329     DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
6330     return None;
6331   }
6332 
6333   unsigned MaxVF = computeFeasibleMaxVF(OptForSize);
6334 
6335   if (TC % MaxVF != 0) {
6336     // If the trip count that we found modulo the vectorization factor is not
6337     // zero then we require a tail.
6338     // FIXME: look for a smaller MaxVF that does divide TC rather than give up.
6339     // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
6340     //        smaller MaxVF that does not require a scalar epilog.
6341 
6342     ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
6343               << "cannot optimize for size and vectorize at the "
6344                  "same time. Enable vectorization of this loop "
6345                  "with '#pragma clang loop vectorize(enable)' "
6346                  "when compiling with -Os/-Oz");
6347     DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
6348     return None;
6349   }
6350 
6351   return MaxVF;
6352 }
6353 
6354 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) {
6355   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
6356   unsigned SmallestType, WidestType;
6357   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
6358   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
6359   unsigned MaxSafeDepDist = -1U;
6360 
6361   // Get the maximum safe dependence distance in bits computed by LAA. If the
6362   // loop contains any interleaved accesses, we divide the dependence distance
6363   // by the maximum interleave factor of all interleaved groups. Note that
6364   // although the division ensures correctness, this is a fairly conservative
6365   // computation because the maximum distance computed by LAA may not involve
6366   // any of the interleaved accesses.
6367   if (Legal->getMaxSafeDepDistBytes() != -1U)
6368     MaxSafeDepDist =
6369         Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor();
6370 
6371   WidestRegister =
6372       ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist);
6373   unsigned MaxVectorSize = WidestRegister / WidestType;
6374 
6375   DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
6376                << WidestType << " bits.\n");
6377   DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister
6378                << " bits.\n");
6379 
6380   if (MaxVectorSize == 0) {
6381     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
6382     MaxVectorSize = 1;
6383   }
6384 
6385   assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
6386                                 " into one vector!");
6387 
6388   unsigned MaxVF = MaxVectorSize;
6389   if (MaximizeBandwidth && !OptForSize) {
6390     // Collect all viable vectorization factors.
6391     SmallVector<unsigned, 8> VFs;
6392     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
6393     for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2)
6394       VFs.push_back(VS);
6395 
6396     // For each VF calculate its register usage.
6397     auto RUs = calculateRegisterUsage(VFs);
6398 
6399     // Select the largest VF which doesn't require more registers than existing
6400     // ones.
6401     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
6402     for (int i = RUs.size() - 1; i >= 0; --i) {
6403       if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
6404         MaxVF = VFs[i];
6405         break;
6406       }
6407     }
6408   }
6409   return MaxVF;
6410 }
6411 
6412 LoopVectorizationCostModel::VectorizationFactor
6413 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
6414   float Cost = expectedCost(1).first;
6415 #ifndef NDEBUG
6416   const float ScalarCost = Cost;
6417 #endif /* NDEBUG */
6418   unsigned Width = 1;
6419   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
6420 
6421   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6422   // Ignore scalar width, because the user explicitly wants vectorization.
6423   if (ForceVectorization && MaxVF > 1) {
6424     Width = 2;
6425     Cost = expectedCost(Width).first / (float)Width;
6426   }
6427 
6428   for (unsigned i = 2; i <= MaxVF; i *= 2) {
6429     // Notice that the vector loop needs to be executed less times, so
6430     // we need to divide the cost of the vector loops by the width of
6431     // the vector elements.
6432     VectorizationCostTy C = expectedCost(i);
6433     float VectorCost = C.first / (float)i;
6434     DEBUG(dbgs() << "LV: Vector loop of width " << i
6435                  << " costs: " << (int)VectorCost << ".\n");
6436     if (!C.second && !ForceVectorization) {
6437       DEBUG(
6438           dbgs() << "LV: Not considering vector loop of width " << i
6439                  << " because it will not generate any vector instructions.\n");
6440       continue;
6441     }
6442     if (VectorCost < Cost) {
6443       Cost = VectorCost;
6444       Width = i;
6445     }
6446   }
6447 
6448   DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
6449         << "LV: Vectorization seems to be not beneficial, "
6450         << "but was forced by a user.\n");
6451   DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
6452   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
6453   return Factor;
6454 }
6455 
6456 std::pair<unsigned, unsigned>
6457 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6458   unsigned MinWidth = -1U;
6459   unsigned MaxWidth = 8;
6460   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6461 
6462   // For each block.
6463   for (BasicBlock *BB : TheLoop->blocks()) {
6464     // For each instruction in the loop.
6465     for (Instruction &I : *BB) {
6466       Type *T = I.getType();
6467 
6468       // Skip ignored values.
6469       if (ValuesToIgnore.count(&I))
6470         continue;
6471 
6472       // Only examine Loads, Stores and PHINodes.
6473       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6474         continue;
6475 
6476       // Examine PHI nodes that are reduction variables. Update the type to
6477       // account for the recurrence type.
6478       if (auto *PN = dyn_cast<PHINode>(&I)) {
6479         if (!Legal->isReductionVariable(PN))
6480           continue;
6481         RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
6482         T = RdxDesc.getRecurrenceType();
6483       }
6484 
6485       // Examine the stored values.
6486       if (auto *ST = dyn_cast<StoreInst>(&I))
6487         T = ST->getValueOperand()->getType();
6488 
6489       // Ignore loaded pointer types and stored pointer types that are not
6490       // vectorizable.
6491       //
6492       // FIXME: The check here attempts to predict whether a load or store will
6493       //        be vectorized. We only know this for certain after a VF has
6494       //        been selected. Here, we assume that if an access can be
6495       //        vectorized, it will be. We should also look at extending this
6496       //        optimization to non-pointer types.
6497       //
6498       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6499           !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I))
6500         continue;
6501 
6502       MinWidth = std::min(MinWidth,
6503                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6504       MaxWidth = std::max(MaxWidth,
6505                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6506     }
6507   }
6508 
6509   return {MinWidth, MaxWidth};
6510 }
6511 
6512 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
6513                                                            unsigned VF,
6514                                                            unsigned LoopCost) {
6515 
6516   // -- The interleave heuristics --
6517   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6518   // There are many micro-architectural considerations that we can't predict
6519   // at this level. For example, frontend pressure (on decode or fetch) due to
6520   // code size, or the number and capabilities of the execution ports.
6521   //
6522   // We use the following heuristics to select the interleave count:
6523   // 1. If the code has reductions, then we interleave to break the cross
6524   // iteration dependency.
6525   // 2. If the loop is really small, then we interleave to reduce the loop
6526   // overhead.
6527   // 3. We don't interleave if we think that we will spill registers to memory
6528   // due to the increased register pressure.
6529 
6530   // When we optimize for size, we don't interleave.
6531   if (OptForSize)
6532     return 1;
6533 
6534   // We used the distance for the interleave count.
6535   if (Legal->getMaxSafeDepDistBytes() != -1U)
6536     return 1;
6537 
6538   // Do not interleave loops with a relatively small trip count.
6539   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6540   if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
6541     return 1;
6542 
6543   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
6544   DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6545                << " registers\n");
6546 
6547   if (VF == 1) {
6548     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6549       TargetNumRegisters = ForceTargetNumScalarRegs;
6550   } else {
6551     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6552       TargetNumRegisters = ForceTargetNumVectorRegs;
6553   }
6554 
6555   RegisterUsage R = calculateRegisterUsage({VF})[0];
6556   // We divide by these constants so assume that we have at least one
6557   // instruction that uses at least one register.
6558   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
6559   R.NumInstructions = std::max(R.NumInstructions, 1U);
6560 
6561   // We calculate the interleave count using the following formula.
6562   // Subtract the number of loop invariants from the number of available
6563   // registers. These registers are used by all of the interleaved instances.
6564   // Next, divide the remaining registers by the number of registers that is
6565   // required by the loop, in order to estimate how many parallel instances
6566   // fit without causing spills. All of this is rounded down if necessary to be
6567   // a power of two. We want power of two interleave count to simplify any
6568   // addressing operations or alignment considerations.
6569   unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
6570                               R.MaxLocalUsers);
6571 
6572   // Don't count the induction variable as interleaved.
6573   if (EnableIndVarRegisterHeur)
6574     IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
6575                        std::max(1U, (R.MaxLocalUsers - 1)));
6576 
6577   // Clamp the interleave ranges to reasonable counts.
6578   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
6579 
6580   // Check if the user has overridden the max.
6581   if (VF == 1) {
6582     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6583       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6584   } else {
6585     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6586       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6587   }
6588 
6589   // If we did not calculate the cost for VF (because the user selected the VF)
6590   // then we calculate the cost of VF here.
6591   if (LoopCost == 0)
6592     LoopCost = expectedCost(VF).first;
6593 
6594   // Clamp the calculated IC to be between the 1 and the max interleave count
6595   // that the target allows.
6596   if (IC > MaxInterleaveCount)
6597     IC = MaxInterleaveCount;
6598   else if (IC < 1)
6599     IC = 1;
6600 
6601   // Interleave if we vectorized this loop and there is a reduction that could
6602   // benefit from interleaving.
6603   if (VF > 1 && Legal->getReductionVars()->size()) {
6604     DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6605     return IC;
6606   }
6607 
6608   // Note that if we've already vectorized the loop we will have done the
6609   // runtime check and so interleaving won't require further checks.
6610   bool InterleavingRequiresRuntimePointerCheck =
6611       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
6612 
6613   // We want to interleave small loops in order to reduce the loop overhead and
6614   // potentially expose ILP opportunities.
6615   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
6616   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6617     // We assume that the cost overhead is 1 and we use the cost model
6618     // to estimate the cost of the loop and interleave until the cost of the
6619     // loop overhead is about 5% of the cost of the loop.
6620     unsigned SmallIC =
6621         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6622 
6623     // Interleave until store/load ports (estimated by max interleave count) are
6624     // saturated.
6625     unsigned NumStores = Legal->getNumStores();
6626     unsigned NumLoads = Legal->getNumLoads();
6627     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6628     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6629 
6630     // If we have a scalar reduction (vector reductions are already dealt with
6631     // by this point), we can increase the critical path length if the loop
6632     // we're interleaving is inside another loop. Limit, by default to 2, so the
6633     // critical path only gets increased by one reduction operation.
6634     if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) {
6635       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6636       SmallIC = std::min(SmallIC, F);
6637       StoresIC = std::min(StoresIC, F);
6638       LoadsIC = std::min(LoadsIC, F);
6639     }
6640 
6641     if (EnableLoadStoreRuntimeInterleave &&
6642         std::max(StoresIC, LoadsIC) > SmallIC) {
6643       DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6644       return std::max(StoresIC, LoadsIC);
6645     }
6646 
6647     DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6648     return SmallIC;
6649   }
6650 
6651   // Interleave if this is a large loop (small loops are already dealt with by
6652   // this point) that could benefit from interleaving.
6653   bool HasReductions = (Legal->getReductionVars()->size() > 0);
6654   if (TTI.enableAggressiveInterleaving(HasReductions)) {
6655     DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6656     return IC;
6657   }
6658 
6659   DEBUG(dbgs() << "LV: Not Interleaving.\n");
6660   return 1;
6661 }
6662 
6663 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6664 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
6665   // This function calculates the register usage by measuring the highest number
6666   // of values that are alive at a single location. Obviously, this is a very
6667   // rough estimation. We scan the loop in a topological order in order and
6668   // assign a number to each instruction. We use RPO to ensure that defs are
6669   // met before their users. We assume that each instruction that has in-loop
6670   // users starts an interval. We record every time that an in-loop value is
6671   // used, so we have a list of the first and last occurrences of each
6672   // instruction. Next, we transpose this data structure into a multi map that
6673   // holds the list of intervals that *end* at a specific location. This multi
6674   // map allows us to perform a linear search. We scan the instructions linearly
6675   // and record each time that a new interval starts, by placing it in a set.
6676   // If we find this value in the multi-map then we remove it from the set.
6677   // The max register usage is the maximum size of the set.
6678   // We also search for instructions that are defined outside the loop, but are
6679   // used inside the loop. We need this number separately from the max-interval
6680   // usage number because when we unroll, loop-invariant values do not take
6681   // more register.
6682   LoopBlocksDFS DFS(TheLoop);
6683   DFS.perform(LI);
6684 
6685   RegisterUsage RU;
6686   RU.NumInstructions = 0;
6687 
6688   // Each 'key' in the map opens a new interval. The values
6689   // of the map are the index of the 'last seen' usage of the
6690   // instruction that is the key.
6691   typedef DenseMap<Instruction *, unsigned> IntervalMap;
6692   // Maps instruction to its index.
6693   DenseMap<unsigned, Instruction *> IdxToInstr;
6694   // Marks the end of each interval.
6695   IntervalMap EndPoint;
6696   // Saves the list of instruction indices that are used in the loop.
6697   SmallSet<Instruction *, 8> Ends;
6698   // Saves the list of values that are used in the loop but are
6699   // defined outside the loop, such as arguments and constants.
6700   SmallPtrSet<Value *, 8> LoopInvariants;
6701 
6702   unsigned Index = 0;
6703   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6704     RU.NumInstructions += BB->size();
6705     for (Instruction &I : *BB) {
6706       IdxToInstr[Index++] = &I;
6707 
6708       // Save the end location of each USE.
6709       for (Value *U : I.operands()) {
6710         auto *Instr = dyn_cast<Instruction>(U);
6711 
6712         // Ignore non-instruction values such as arguments, constants, etc.
6713         if (!Instr)
6714           continue;
6715 
6716         // If this instruction is outside the loop then record it and continue.
6717         if (!TheLoop->contains(Instr)) {
6718           LoopInvariants.insert(Instr);
6719           continue;
6720         }
6721 
6722         // Overwrite previous end points.
6723         EndPoint[Instr] = Index;
6724         Ends.insert(Instr);
6725       }
6726     }
6727   }
6728 
6729   // Saves the list of intervals that end with the index in 'key'.
6730   typedef SmallVector<Instruction *, 2> InstrList;
6731   DenseMap<unsigned, InstrList> TransposeEnds;
6732 
6733   // Transpose the EndPoints to a list of values that end at each index.
6734   for (auto &Interval : EndPoint)
6735     TransposeEnds[Interval.second].push_back(Interval.first);
6736 
6737   SmallSet<Instruction *, 8> OpenIntervals;
6738 
6739   // Get the size of the widest register.
6740   unsigned MaxSafeDepDist = -1U;
6741   if (Legal->getMaxSafeDepDistBytes() != -1U)
6742     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
6743   unsigned WidestRegister =
6744       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
6745   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6746 
6747   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6748   SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
6749 
6750   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6751 
6752   // A lambda that gets the register usage for the given type and VF.
6753   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
6754     if (Ty->isTokenTy())
6755       return 0U;
6756     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
6757     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
6758   };
6759 
6760   for (unsigned int i = 0; i < Index; ++i) {
6761     Instruction *I = IdxToInstr[i];
6762 
6763     // Remove all of the instructions that end at this location.
6764     InstrList &List = TransposeEnds[i];
6765     for (Instruction *ToRemove : List)
6766       OpenIntervals.erase(ToRemove);
6767 
6768     // Ignore instructions that are never used within the loop.
6769     if (!Ends.count(I))
6770       continue;
6771 
6772     // Skip ignored values.
6773     if (ValuesToIgnore.count(I))
6774       continue;
6775 
6776     // For each VF find the maximum usage of registers.
6777     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6778       if (VFs[j] == 1) {
6779         MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
6780         continue;
6781       }
6782       collectUniformsAndScalars(VFs[j]);
6783       // Count the number of live intervals.
6784       unsigned RegUsage = 0;
6785       for (auto Inst : OpenIntervals) {
6786         // Skip ignored values for VF > 1.
6787         if (VecValuesToIgnore.count(Inst) ||
6788             isScalarAfterVectorization(Inst, VFs[j]))
6789           continue;
6790         RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
6791       }
6792       MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
6793     }
6794 
6795     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6796                  << OpenIntervals.size() << '\n');
6797 
6798     // Add the current instruction to the list of open intervals.
6799     OpenIntervals.insert(I);
6800   }
6801 
6802   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6803     unsigned Invariant = 0;
6804     if (VFs[i] == 1)
6805       Invariant = LoopInvariants.size();
6806     else {
6807       for (auto Inst : LoopInvariants)
6808         Invariant += GetRegUsage(Inst->getType(), VFs[i]);
6809     }
6810 
6811     DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
6812     DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
6813     DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
6814     DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');
6815 
6816     RU.LoopInvariantRegs = Invariant;
6817     RU.MaxLocalUsers = MaxUsages[i];
6818     RUs[i] = RU;
6819   }
6820 
6821   return RUs;
6822 }
6823 
6824 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
6825 
6826   // If we aren't vectorizing the loop, or if we've already collected the
6827   // instructions to scalarize, there's nothing to do. Collection may already
6828   // have occurred if we have a user-selected VF and are now computing the
6829   // expected cost for interleaving.
6830   if (VF < 2 || InstsToScalarize.count(VF))
6831     return;
6832 
6833   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6834   // not profitable to scalarize any instructions, the presence of VF in the
6835   // map will indicate that we've analyzed it already.
6836   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6837 
6838   // Find all the instructions that are scalar with predication in the loop and
6839   // determine if it would be better to not if-convert the blocks they are in.
6840   // If so, we also record the instructions to scalarize.
6841   for (BasicBlock *BB : TheLoop->blocks()) {
6842     if (!Legal->blockNeedsPredication(BB))
6843       continue;
6844     for (Instruction &I : *BB)
6845       if (Legal->isScalarWithPredication(&I)) {
6846         ScalarCostsTy ScalarCosts;
6847         if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6848           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6849 
6850         // Remember that BB will remain after vectorization.
6851         PredicatedBBsAfterVectorization.insert(BB);
6852       }
6853   }
6854 }
6855 
6856 int LoopVectorizationCostModel::computePredInstDiscount(
6857     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
6858     unsigned VF) {
6859 
6860   assert(!isUniformAfterVectorization(PredInst, VF) &&
6861          "Instruction marked uniform-after-vectorization will be predicated");
6862 
6863   // Initialize the discount to zero, meaning that the scalar version and the
6864   // vector version cost the same.
6865   int Discount = 0;
6866 
6867   // Holds instructions to analyze. The instructions we visit are mapped in
6868   // ScalarCosts. Those instructions are the ones that would be scalarized if
6869   // we find that the scalar version costs less.
6870   SmallVector<Instruction *, 8> Worklist;
6871 
6872   // Returns true if the given instruction can be scalarized.
6873   auto canBeScalarized = [&](Instruction *I) -> bool {
6874 
6875     // We only attempt to scalarize instructions forming a single-use chain
6876     // from the original predicated block that would otherwise be vectorized.
6877     // Although not strictly necessary, we give up on instructions we know will
6878     // already be scalar to avoid traversing chains that are unlikely to be
6879     // beneficial.
6880     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6881         isScalarAfterVectorization(I, VF))
6882       return false;
6883 
6884     // If the instruction is scalar with predication, it will be analyzed
6885     // separately. We ignore it within the context of PredInst.
6886     if (Legal->isScalarWithPredication(I))
6887       return false;
6888 
6889     // If any of the instruction's operands are uniform after vectorization,
6890     // the instruction cannot be scalarized. This prevents, for example, a
6891     // masked load from being scalarized.
6892     //
6893     // We assume we will only emit a value for lane zero of an instruction
6894     // marked uniform after vectorization, rather than VF identical values.
6895     // Thus, if we scalarize an instruction that uses a uniform, we would
6896     // create uses of values corresponding to the lanes we aren't emitting code
6897     // for. This behavior can be changed by allowing getScalarValue to clone
6898     // the lane zero values for uniforms rather than asserting.
6899     for (Use &U : I->operands())
6900       if (auto *J = dyn_cast<Instruction>(U.get()))
6901         if (isUniformAfterVectorization(J, VF))
6902           return false;
6903 
6904     // Otherwise, we can scalarize the instruction.
6905     return true;
6906   };
6907 
6908   // Returns true if an operand that cannot be scalarized must be extracted
6909   // from a vector. We will account for this scalarization overhead below. Note
6910   // that the non-void predicated instructions are placed in their own blocks,
6911   // and their return values are inserted into vectors. Thus, an extract would
6912   // still be required.
6913   auto needsExtract = [&](Instruction *I) -> bool {
6914     return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
6915   };
6916 
6917   // Compute the expected cost discount from scalarizing the entire expression
6918   // feeding the predicated instruction. We currently only consider expressions
6919   // that are single-use instruction chains.
6920   Worklist.push_back(PredInst);
6921   while (!Worklist.empty()) {
6922     Instruction *I = Worklist.pop_back_val();
6923 
6924     // If we've already analyzed the instruction, there's nothing to do.
6925     if (ScalarCosts.count(I))
6926       continue;
6927 
6928     // Compute the cost of the vector instruction. Note that this cost already
6929     // includes the scalarization overhead of the predicated instruction.
6930     unsigned VectorCost = getInstructionCost(I, VF).first;
6931 
6932     // Compute the cost of the scalarized instruction. This cost is the cost of
6933     // the instruction as if it wasn't if-converted and instead remained in the
6934     // predicated block. We will scale this cost by block probability after
6935     // computing the scalarization overhead.
6936     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
6937 
6938     // Compute the scalarization overhead of needed insertelement instructions
6939     // and phi nodes.
6940     if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6941       ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
6942                                                  true, false);
6943       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
6944     }
6945 
6946     // Compute the scalarization overhead of needed extractelement
6947     // instructions. For each of the instruction's operands, if the operand can
6948     // be scalarized, add it to the worklist; otherwise, account for the
6949     // overhead.
6950     for (Use &U : I->operands())
6951       if (auto *J = dyn_cast<Instruction>(U.get())) {
6952         assert(VectorType::isValidElementType(J->getType()) &&
6953                "Instruction has non-scalar type");
6954         if (canBeScalarized(J))
6955           Worklist.push_back(J);
6956         else if (needsExtract(J))
6957           ScalarCost += TTI.getScalarizationOverhead(
6958                               ToVectorTy(J->getType(),VF), false, true);
6959       }
6960 
6961     // Scale the total scalar cost by block probability.
6962     ScalarCost /= getReciprocalPredBlockProb();
6963 
6964     // Compute the discount. A non-negative discount means the vector version
6965     // of the instruction costs more, and scalarizing would be beneficial.
6966     Discount += VectorCost - ScalarCost;
6967     ScalarCosts[I] = ScalarCost;
6968   }
6969 
6970   return Discount;
6971 }
6972 
6973 LoopVectorizationCostModel::VectorizationCostTy
6974 LoopVectorizationCostModel::expectedCost(unsigned VF) {
6975   VectorizationCostTy Cost;
6976 
6977   // Collect Uniform and Scalar instructions after vectorization with VF.
6978   collectUniformsAndScalars(VF);
6979 
6980   // Collect the instructions (and their associated costs) that will be more
6981   // profitable to scalarize.
6982   collectInstsToScalarize(VF);
6983 
6984   // For each block.
6985   for (BasicBlock *BB : TheLoop->blocks()) {
6986     VectorizationCostTy BlockCost;
6987 
6988     // For each instruction in the old loop.
6989     for (Instruction &I : *BB) {
6990       // Skip dbg intrinsics.
6991       if (isa<DbgInfoIntrinsic>(I))
6992         continue;
6993 
6994       // Skip ignored values.
6995       if (ValuesToIgnore.count(&I))
6996         continue;
6997 
6998       VectorizationCostTy C = getInstructionCost(&I, VF);
6999 
7000       // Check if we should override the cost.
7001       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
7002         C.first = ForceTargetInstructionCost;
7003 
7004       BlockCost.first += C.first;
7005       BlockCost.second |= C.second;
7006       DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "
7007                    << VF << " For instruction: " << I << '\n');
7008     }
7009 
7010     // If we are vectorizing a predicated block, it will have been
7011     // if-converted. This means that the block's instructions (aside from
7012     // stores and instructions that may divide by zero) will now be
7013     // unconditionally executed. For the scalar case, we may not always execute
7014     // the predicated block. Thus, scale the block's cost by the probability of
7015     // executing it.
7016     if (VF == 1 && Legal->blockNeedsPredication(BB))
7017       BlockCost.first /= getReciprocalPredBlockProb();
7018 
7019     Cost.first += BlockCost.first;
7020     Cost.second |= BlockCost.second;
7021   }
7022 
7023   return Cost;
7024 }
7025 
7026 /// \brief Gets Address Access SCEV after verifying that the access pattern
7027 /// is loop invariant except the induction variable dependence.
7028 ///
7029 /// This SCEV can be sent to the Target in order to estimate the address
7030 /// calculation cost.
7031 static const SCEV *getAddressAccessSCEV(
7032               Value *Ptr,
7033               LoopVectorizationLegality *Legal,
7034               ScalarEvolution *SE,
7035               const Loop *TheLoop) {
7036   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7037   if (!Gep)
7038     return nullptr;
7039 
7040   // We are looking for a gep with all loop invariant indices except for one
7041   // which should be an induction variable.
7042   unsigned NumOperands = Gep->getNumOperands();
7043   for (unsigned i = 1; i < NumOperands; ++i) {
7044     Value *Opd = Gep->getOperand(i);
7045     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7046         !Legal->isInductionVariable(Opd))
7047       return nullptr;
7048   }
7049 
7050   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7051   return SE->getSCEV(Ptr);
7052 }
7053 
7054 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7055   return Legal->hasStride(I->getOperand(0)) ||
7056          Legal->hasStride(I->getOperand(1));
7057 }
7058 
7059 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7060                                                                  unsigned VF) {
7061   Type *ValTy = getMemInstValueType(I);
7062   auto SE = PSE.getSE();
7063 
7064   unsigned Alignment = getMemInstAlignment(I);
7065   unsigned AS = getMemInstAddressSpace(I);
7066   Value *Ptr = getPointerOperand(I);
7067   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7068 
7069   // Figure out whether the access is strided and get the stride value
7070   // if it's known in compile time
7071   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop);
7072 
7073   // Get the cost of the scalar memory instruction and address computation.
7074   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7075 
7076   Cost += VF *
7077           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7078                               AS, I);
7079 
7080   // Get the overhead of the extractelement and insertelement instructions
7081   // we might create due to scalarization.
7082   Cost += getScalarizationOverhead(I, VF, TTI);
7083 
7084   // If we have a predicated store, it may not be executed for each vector
7085   // lane. Scale the cost by the probability of executing the predicated
7086   // block.
7087   if (Legal->isScalarWithPredication(I))
7088     Cost /= getReciprocalPredBlockProb();
7089 
7090   return Cost;
7091 }
7092 
7093 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7094                                                              unsigned VF) {
7095   Type *ValTy = getMemInstValueType(I);
7096   Type *VectorTy = ToVectorTy(ValTy, VF);
7097   unsigned Alignment = getMemInstAlignment(I);
7098   Value *Ptr = getPointerOperand(I);
7099   unsigned AS = getMemInstAddressSpace(I);
7100   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7101 
7102   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7103          "Stride should be 1 or -1 for consecutive memory access");
7104   unsigned Cost = 0;
7105   if (Legal->isMaskRequired(I))
7106     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
7107   else
7108     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
7109 
7110   bool Reverse = ConsecutiveStride < 0;
7111   if (Reverse)
7112     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
7113   return Cost;
7114 }
7115 
7116 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7117                                                          unsigned VF) {
7118   LoadInst *LI = cast<LoadInst>(I);
7119   Type *ValTy = LI->getType();
7120   Type *VectorTy = ToVectorTy(ValTy, VF);
7121   unsigned Alignment = LI->getAlignment();
7122   unsigned AS = LI->getPointerAddressSpace();
7123 
7124   return TTI.getAddressComputationCost(ValTy) +
7125          TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
7126          TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7127 }
7128 
7129 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7130                                                           unsigned VF) {
7131   Type *ValTy = getMemInstValueType(I);
7132   Type *VectorTy = ToVectorTy(ValTy, VF);
7133   unsigned Alignment = getMemInstAlignment(I);
7134   Value *Ptr = getPointerOperand(I);
7135 
7136   return TTI.getAddressComputationCost(VectorTy) +
7137          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
7138                                     Legal->isMaskRequired(I), Alignment);
7139 }
7140 
7141 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7142                                                             unsigned VF) {
7143   Type *ValTy = getMemInstValueType(I);
7144   Type *VectorTy = ToVectorTy(ValTy, VF);
7145   unsigned AS = getMemInstAddressSpace(I);
7146 
7147   auto Group = Legal->getInterleavedAccessGroup(I);
7148   assert(Group && "Fail to get an interleaved access group.");
7149 
7150   unsigned InterleaveFactor = Group->getFactor();
7151   Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7152 
7153   // Holds the indices of existing members in an interleaved load group.
7154   // An interleaved store group doesn't need this as it doesn't allow gaps.
7155   SmallVector<unsigned, 4> Indices;
7156   if (isa<LoadInst>(I)) {
7157     for (unsigned i = 0; i < InterleaveFactor; i++)
7158       if (Group->getMember(i))
7159         Indices.push_back(i);
7160   }
7161 
7162   // Calculate the cost of the whole interleaved group.
7163   unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
7164                                                  Group->getFactor(), Indices,
7165                                                  Group->getAlignment(), AS);
7166 
7167   if (Group->isReverse())
7168     Cost += Group->getNumMembers() *
7169             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
7170   return Cost;
7171 }
7172 
7173 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7174                                                               unsigned VF) {
7175 
7176   // Calculate scalar cost only. Vectorization cost should be ready at this
7177   // moment.
7178   if (VF == 1) {
7179     Type *ValTy = getMemInstValueType(I);
7180     unsigned Alignment = getMemInstAlignment(I);
7181     unsigned AS = getMemInstAlignment(I);
7182 
7183     return TTI.getAddressComputationCost(ValTy) +
7184            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
7185   }
7186   return getWideningCost(I, VF);
7187 }
7188 
7189 LoopVectorizationCostModel::VectorizationCostTy
7190 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
7191   // If we know that this instruction will remain uniform, check the cost of
7192   // the scalar version.
7193   if (isUniformAfterVectorization(I, VF))
7194     VF = 1;
7195 
7196   if (VF > 1 && isProfitableToScalarize(I, VF))
7197     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7198 
7199   Type *VectorTy;
7200   unsigned C = getInstructionCost(I, VF, VectorTy);
7201 
7202   bool TypeNotScalarized =
7203       VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF;
7204   return VectorizationCostTy(C, TypeNotScalarized);
7205 }
7206 
7207 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
7208   if (VF == 1)
7209     return;
7210   for (BasicBlock *BB : TheLoop->blocks()) {
7211     // For each instruction in the old loop.
7212     for (Instruction &I : *BB) {
7213       Value *Ptr = getPointerOperand(&I);
7214       if (!Ptr)
7215         continue;
7216 
7217       if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) {
7218         // Scalar load + broadcast
7219         unsigned Cost = getUniformMemOpCost(&I, VF);
7220         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7221         continue;
7222       }
7223 
7224       // We assume that widening is the best solution when possible.
7225       if (Legal->memoryInstructionCanBeWidened(&I, VF)) {
7226         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
7227         setWideningDecision(&I, VF, CM_Widen, Cost);
7228         continue;
7229       }
7230 
7231       // Choose between Interleaving, Gather/Scatter or Scalarization.
7232       unsigned InterleaveCost = UINT_MAX;
7233       unsigned NumAccesses = 1;
7234       if (Legal->isAccessInterleaved(&I)) {
7235         auto Group = Legal->getInterleavedAccessGroup(&I);
7236         assert(Group && "Fail to get an interleaved access group.");
7237 
7238         // Make one decision for the whole group.
7239         if (getWideningDecision(&I, VF) != CM_Unknown)
7240           continue;
7241 
7242         NumAccesses = Group->getNumMembers();
7243         InterleaveCost = getInterleaveGroupCost(&I, VF);
7244       }
7245 
7246       unsigned GatherScatterCost =
7247           Legal->isLegalGatherOrScatter(&I)
7248               ? getGatherScatterCost(&I, VF) * NumAccesses
7249               : UINT_MAX;
7250 
7251       unsigned ScalarizationCost =
7252           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7253 
7254       // Choose better solution for the current VF,
7255       // write down this decision and use it during vectorization.
7256       unsigned Cost;
7257       InstWidening Decision;
7258       if (InterleaveCost <= GatherScatterCost &&
7259           InterleaveCost < ScalarizationCost) {
7260         Decision = CM_Interleave;
7261         Cost = InterleaveCost;
7262       } else if (GatherScatterCost < ScalarizationCost) {
7263         Decision = CM_GatherScatter;
7264         Cost = GatherScatterCost;
7265       } else {
7266         Decision = CM_Scalarize;
7267         Cost = ScalarizationCost;
7268       }
7269       // If the instructions belongs to an interleave group, the whole group
7270       // receives the same decision. The whole group receives the cost, but
7271       // the cost will actually be assigned to one instruction.
7272       if (auto Group = Legal->getInterleavedAccessGroup(&I))
7273         setWideningDecision(Group, VF, Decision, Cost);
7274       else
7275         setWideningDecision(&I, VF, Decision, Cost);
7276     }
7277   }
7278 }
7279 
7280 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7281                                                         unsigned VF,
7282                                                         Type *&VectorTy) {
7283   Type *RetTy = I->getType();
7284   if (canTruncateToMinimalBitwidth(I, VF))
7285     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7286   VectorTy = ToVectorTy(RetTy, VF);
7287   auto SE = PSE.getSE();
7288 
7289   // TODO: We need to estimate the cost of intrinsic calls.
7290   switch (I->getOpcode()) {
7291   case Instruction::GetElementPtr:
7292     // We mark this instruction as zero-cost because the cost of GEPs in
7293     // vectorized code depends on whether the corresponding memory instruction
7294     // is scalarized or not. Therefore, we handle GEPs with the memory
7295     // instruction cost.
7296     return 0;
7297   case Instruction::Br: {
7298     // In cases of scalarized and predicated instructions, there will be VF
7299     // predicated blocks in the vectorized loop. Each branch around these
7300     // blocks requires also an extract of its vector compare i1 element.
7301     bool ScalarPredicatedBB = false;
7302     BranchInst *BI = cast<BranchInst>(I);
7303     if (VF > 1 && BI->isConditional() &&
7304         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7305          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7306       ScalarPredicatedBB = true;
7307 
7308     if (ScalarPredicatedBB) {
7309       // Return cost for branches around scalarized and predicated blocks.
7310       Type *Vec_i1Ty =
7311           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7312       return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
7313               (TTI.getCFInstrCost(Instruction::Br) * VF));
7314     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
7315       // The back-edge branch will remain, as will all scalar branches.
7316       return TTI.getCFInstrCost(Instruction::Br);
7317     else
7318       // This branch will be eliminated by if-conversion.
7319       return 0;
7320     // Note: We currently assume zero cost for an unconditional branch inside
7321     // a predicated block since it will become a fall-through, although we
7322     // may decide in the future to call TTI for all branches.
7323   }
7324   case Instruction::PHI: {
7325     auto *Phi = cast<PHINode>(I);
7326 
7327     // First-order recurrences are replaced by vector shuffles inside the loop.
7328     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
7329       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
7330                                 VectorTy, VF - 1, VectorTy);
7331 
7332     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7333     // converted into select instructions. We require N - 1 selects per phi
7334     // node, where N is the number of incoming values.
7335     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
7336       return (Phi->getNumIncomingValues() - 1) *
7337              TTI.getCmpSelInstrCost(
7338                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7339                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
7340 
7341     return TTI.getCFInstrCost(Instruction::PHI);
7342   }
7343   case Instruction::UDiv:
7344   case Instruction::SDiv:
7345   case Instruction::URem:
7346   case Instruction::SRem:
7347     // If we have a predicated instruction, it may not be executed for each
7348     // vector lane. Get the scalarization cost and scale this amount by the
7349     // probability of executing the predicated block. If the instruction is not
7350     // predicated, we fall through to the next case.
7351     if (VF > 1 && Legal->isScalarWithPredication(I)) {
7352       unsigned Cost = 0;
7353 
7354       // These instructions have a non-void type, so account for the phi nodes
7355       // that we will create. This cost is likely to be zero. The phi node
7356       // cost, if any, should be scaled by the block probability because it
7357       // models a copy at the end of each predicated block.
7358       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
7359 
7360       // The cost of the non-predicated instruction.
7361       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
7362 
7363       // The cost of insertelement and extractelement instructions needed for
7364       // scalarization.
7365       Cost += getScalarizationOverhead(I, VF, TTI);
7366 
7367       // Scale the cost by the probability of executing the predicated blocks.
7368       // This assumes the predicated block for each vector lane is equally
7369       // likely.
7370       return Cost / getReciprocalPredBlockProb();
7371     }
7372   case Instruction::Add:
7373   case Instruction::FAdd:
7374   case Instruction::Sub:
7375   case Instruction::FSub:
7376   case Instruction::Mul:
7377   case Instruction::FMul:
7378   case Instruction::FDiv:
7379   case Instruction::FRem:
7380   case Instruction::Shl:
7381   case Instruction::LShr:
7382   case Instruction::AShr:
7383   case Instruction::And:
7384   case Instruction::Or:
7385   case Instruction::Xor: {
7386     // Since we will replace the stride by 1 the multiplication should go away.
7387     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7388       return 0;
7389     // Certain instructions can be cheaper to vectorize if they have a constant
7390     // second vector operand. One example of this are shifts on x86.
7391     TargetTransformInfo::OperandValueKind Op1VK =
7392         TargetTransformInfo::OK_AnyValue;
7393     TargetTransformInfo::OperandValueKind Op2VK =
7394         TargetTransformInfo::OK_AnyValue;
7395     TargetTransformInfo::OperandValueProperties Op1VP =
7396         TargetTransformInfo::OP_None;
7397     TargetTransformInfo::OperandValueProperties Op2VP =
7398         TargetTransformInfo::OP_None;
7399     Value *Op2 = I->getOperand(1);
7400 
7401     // Check for a splat or for a non uniform vector of constants.
7402     if (isa<ConstantInt>(Op2)) {
7403       ConstantInt *CInt = cast<ConstantInt>(Op2);
7404       if (CInt && CInt->getValue().isPowerOf2())
7405         Op2VP = TargetTransformInfo::OP_PowerOf2;
7406       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7407     } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
7408       Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
7409       Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
7410       if (SplatValue) {
7411         ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
7412         if (CInt && CInt->getValue().isPowerOf2())
7413           Op2VP = TargetTransformInfo::OP_PowerOf2;
7414         Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7415       }
7416     } else if (Legal->isUniform(Op2)) {
7417       Op2VK = TargetTransformInfo::OK_UniformValue;
7418     }
7419     SmallVector<const Value *, 4> Operands(I->operand_values());
7420     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK,
7421                                       Op2VK, Op1VP, Op2VP, Operands);
7422   }
7423   case Instruction::Select: {
7424     SelectInst *SI = cast<SelectInst>(I);
7425     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7426     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7427     Type *CondTy = SI->getCondition()->getType();
7428     if (!ScalarCond)
7429       CondTy = VectorType::get(CondTy, VF);
7430 
7431     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
7432   }
7433   case Instruction::ICmp:
7434   case Instruction::FCmp: {
7435     Type *ValTy = I->getOperand(0)->getType();
7436     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7437     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7438       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7439     VectorTy = ToVectorTy(ValTy, VF);
7440     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
7441   }
7442   case Instruction::Store:
7443   case Instruction::Load: {
7444     VectorTy = ToVectorTy(getMemInstValueType(I), VF);
7445     return getMemoryInstructionCost(I, VF);
7446   }
7447   case Instruction::ZExt:
7448   case Instruction::SExt:
7449   case Instruction::FPToUI:
7450   case Instruction::FPToSI:
7451   case Instruction::FPExt:
7452   case Instruction::PtrToInt:
7453   case Instruction::IntToPtr:
7454   case Instruction::SIToFP:
7455   case Instruction::UIToFP:
7456   case Instruction::Trunc:
7457   case Instruction::FPTrunc:
7458   case Instruction::BitCast: {
7459     // We optimize the truncation of induction variables having constant
7460     // integer steps. The cost of these truncations is the same as the scalar
7461     // operation.
7462     if (isOptimizableIVTruncate(I, VF)) {
7463       auto *Trunc = cast<TruncInst>(I);
7464       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7465                                   Trunc->getSrcTy(), Trunc);
7466     }
7467 
7468     Type *SrcScalarTy = I->getOperand(0)->getType();
7469     Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF);
7470     if (canTruncateToMinimalBitwidth(I, VF)) {
7471       // This cast is going to be shrunk. This may remove the cast or it might
7472       // turn it into slightly different cast. For example, if MinBW == 16,
7473       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7474       //
7475       // Calculate the modified src and dest types.
7476       Type *MinVecTy = VectorTy;
7477       if (I->getOpcode() == Instruction::Trunc) {
7478         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7479         VectorTy =
7480             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7481       } else if (I->getOpcode() == Instruction::ZExt ||
7482                  I->getOpcode() == Instruction::SExt) {
7483         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7484         VectorTy =
7485             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7486       }
7487     }
7488 
7489     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
7490   }
7491   case Instruction::Call: {
7492     bool NeedToScalarize;
7493     CallInst *CI = cast<CallInst>(I);
7494     unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
7495     if (getVectorIntrinsicIDForCall(CI, TLI))
7496       return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
7497     return CallCost;
7498   }
7499   default:
7500     // The cost of executing VF copies of the scalar instruction. This opcode
7501     // is unknown. Assume that it is the same as 'mul'.
7502     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
7503            getScalarizationOverhead(I, VF, TTI);
7504   } // end of switch.
7505 }
7506 
7507 char LoopVectorize::ID = 0;
7508 static const char lv_name[] = "Loop Vectorization";
7509 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7510 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7511 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7512 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7513 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7515 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7516 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7517 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7518 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7519 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7520 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7521 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7522 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7523 
7524 namespace llvm {
7525 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
7526   return new LoopVectorize(NoUnrolling, AlwaysVectorize);
7527 }
7528 }
7529 
7530 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7531 
7532   // Check if the pointer operand of a load or store instruction is
7533   // consecutive.
7534   if (auto *Ptr = getPointerOperand(Inst))
7535     return Legal->isConsecutivePtr(Ptr);
7536   return false;
7537 }
7538 
7539 void LoopVectorizationCostModel::collectValuesToIgnore() {
7540   // Ignore ephemeral values.
7541   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7542 
7543   // Ignore type-promoting instructions we identified during reduction
7544   // detection.
7545   for (auto &Reduction : *Legal->getReductionVars()) {
7546     RecurrenceDescriptor &RedDes = Reduction.second;
7547     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7548     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7549   }
7550 }
7551 
7552 LoopVectorizationCostModel::VectorizationFactor
7553 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
7554 
7555   // Width 1 means no vectorize, cost 0 means uncomputed cost.
7556   const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U,
7557                                                                            0U};
7558   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
7559   if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
7560     return NoVectorization;
7561 
7562   if (UserVF) {
7563     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7564     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
7565     // Collect the instructions (and their associated costs) that will be more
7566     // profitable to scalarize.
7567     CM.selectUserVectorizationFactor(UserVF);
7568     return {UserVF, 0};
7569   }
7570 
7571   unsigned MaxVF = MaybeMaxVF.getValue();
7572   assert(MaxVF != 0 && "MaxVF is zero.");
7573   if (MaxVF == 1)
7574     return NoVectorization;
7575 
7576   // Select the optimal vectorization factor.
7577   return CM.selectVectorizationFactor(MaxVF);
7578 }
7579 
7580 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
7581   auto *SI = dyn_cast<StoreInst>(Instr);
7582   bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent()));
7583 
7584   return scalarizeInstruction(Instr, IfPredicateInstr);
7585 }
7586 
7587 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7588 
7589 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7590 
7591 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7592                                         Instruction::BinaryOps BinOp) {
7593   // When unrolling and the VF is 1, we only need to add a simple scalar.
7594   Type *Ty = Val->getType();
7595   assert(!Ty->isVectorTy() && "Val must be a scalar");
7596 
7597   if (Ty->isFloatingPointTy()) {
7598     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7599 
7600     // Floating point operations had to be 'fast' to enable the unrolling.
7601     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
7602     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
7603   }
7604   Constant *C = ConstantInt::get(Ty, StartIdx);
7605   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7606 }
7607 
7608 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7609   SmallVector<Metadata *, 4> MDs;
7610   // Reserve first location for self reference to the LoopID metadata node.
7611   MDs.push_back(nullptr);
7612   bool IsUnrollMetadata = false;
7613   MDNode *LoopID = L->getLoopID();
7614   if (LoopID) {
7615     // First find existing loop unrolling disable metadata.
7616     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7617       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7618       if (MD) {
7619         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7620         IsUnrollMetadata =
7621             S && S->getString().startswith("llvm.loop.unroll.disable");
7622       }
7623       MDs.push_back(LoopID->getOperand(i));
7624     }
7625   }
7626 
7627   if (!IsUnrollMetadata) {
7628     // Add runtime unroll disable metadata.
7629     LLVMContext &Context = L->getHeader()->getContext();
7630     SmallVector<Metadata *, 1> DisableOperands;
7631     DisableOperands.push_back(
7632         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7633     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7634     MDs.push_back(DisableNode);
7635     MDNode *NewLoopID = MDNode::get(Context, MDs);
7636     // Set operand 0 to refer to the loop id itself.
7637     NewLoopID->replaceOperandWith(0, NewLoopID);
7638     L->setLoopID(NewLoopID);
7639   }
7640 }
7641 
7642 bool LoopVectorizePass::processLoop(Loop *L) {
7643   assert(L->empty() && "Only process inner loops.");
7644 
7645 #ifndef NDEBUG
7646   const std::string DebugLocStr = getDebugLocString(L);
7647 #endif /* NDEBUG */
7648 
7649   DEBUG(dbgs() << "\nLV: Checking a loop in \""
7650                << L->getHeader()->getParent()->getName() << "\" from "
7651                << DebugLocStr << "\n");
7652 
7653   LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
7654 
7655   DEBUG(dbgs() << "LV: Loop hints:"
7656                << " force="
7657                << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7658                        ? "disabled"
7659                        : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7660                               ? "enabled"
7661                               : "?"))
7662                << " width=" << Hints.getWidth()
7663                << " unroll=" << Hints.getInterleave() << "\n");
7664 
7665   // Function containing loop
7666   Function *F = L->getHeader()->getParent();
7667 
7668   // Looking at the diagnostic output is the only way to determine if a loop
7669   // was vectorized (other than looking at the IR or machine code), so it
7670   // is important to generate an optimization remark for each loop. Most of
7671   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7672   // generated as OptimizationRemark and OptimizationRemarkMissed are
7673   // less verbose reporting vectorized loops and unvectorized loops that may
7674   // benefit from vectorization, respectively.
7675 
7676   if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
7677     DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7678     return false;
7679   }
7680 
7681   // Check the loop for a trip count threshold:
7682   // do not vectorize loops with a tiny trip count.
7683   const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L);
7684   if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) {
7685     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7686                  << "This loop is not worth vectorizing.");
7687     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7688       DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7689     else {
7690       DEBUG(dbgs() << "\n");
7691       ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
7692                                      "NotBeneficial", L)
7693                 << "vectorization is not beneficial "
7694                    "and is not explicitly forced");
7695       return false;
7696     }
7697   }
7698 
7699   PredicatedScalarEvolution PSE(*SE, *L);
7700 
7701   // Check if it is legal to vectorize the loop.
7702   LoopVectorizationRequirements Requirements(*ORE);
7703   LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE,
7704                                 &Requirements, &Hints);
7705   if (!LVL.canVectorize()) {
7706     DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7707     emitMissedWarning(F, L, Hints, ORE);
7708     return false;
7709   }
7710 
7711   // Check the function attributes to find out if this function should be
7712   // optimized for size.
7713   bool OptForSize =
7714       Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
7715 
7716   // Compute the weighted frequency of this loop being executed and see if it
7717   // is less than 20% of the function entry baseline frequency. Note that we
7718   // always have a canonical loop here because we think we *can* vectorize.
7719   // FIXME: This is hidden behind a flag due to pervasive problems with
7720   // exactly what block frequency models.
7721   if (LoopVectorizeWithBlockFrequency) {
7722     BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
7723     if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
7724         LoopEntryFreq < ColdEntryFreq)
7725       OptForSize = true;
7726   }
7727 
7728   // Check the function attributes to see if implicit floats are allowed.
7729   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7730   // an integer loop and the vector instructions selected are purely integer
7731   // vector instructions?
7732   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7733     DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
7734                     "attribute is used.\n");
7735     ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
7736                                    "NoImplicitFloat", L)
7737               << "loop not vectorized due to NoImplicitFloat attribute");
7738     emitMissedWarning(F, L, Hints, ORE);
7739     return false;
7740   }
7741 
7742   // Check if the target supports potentially unsafe FP vectorization.
7743   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7744   // for the target we're vectorizing for, to make sure none of the
7745   // additional fp-math flags can help.
7746   if (Hints.isPotentiallyUnsafe() &&
7747       TTI->isFPVectorizationPotentiallyUnsafe()) {
7748     DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
7749     ORE->emit(
7750         createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
7751         << "loop not vectorized due to unsafe FP support.");
7752     emitMissedWarning(F, L, Hints, ORE);
7753     return false;
7754   }
7755 
7756   // Use the cost model.
7757   LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
7758                                 &Hints);
7759   CM.collectValuesToIgnore();
7760 
7761   // Use the planner for vectorization.
7762   LoopVectorizationPlanner LVP(CM);
7763 
7764   // Get user vectorization factor.
7765   unsigned UserVF = Hints.getWidth();
7766 
7767   // Plan how to best vectorize, return the best VF and its cost.
7768   LoopVectorizationCostModel::VectorizationFactor VF =
7769       LVP.plan(OptForSize, UserVF);
7770 
7771   // Select the interleave count.
7772   unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
7773 
7774   // Get user interleave count.
7775   unsigned UserIC = Hints.getInterleave();
7776 
7777   // Identify the diagnostic messages that should be produced.
7778   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7779   bool VectorizeLoop = true, InterleaveLoop = true;
7780   if (Requirements.doesNotMeet(F, L, Hints)) {
7781     DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7782                     "requirements.\n");
7783     emitMissedWarning(F, L, Hints, ORE);
7784     return false;
7785   }
7786 
7787   if (VF.Width == 1) {
7788     DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7789     VecDiagMsg = std::make_pair(
7790         "VectorizationNotBeneficial",
7791         "the cost-model indicates that vectorization is not beneficial");
7792     VectorizeLoop = false;
7793   }
7794 
7795   if (IC == 1 && UserIC <= 1) {
7796     // Tell the user interleaving is not beneficial.
7797     DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7798     IntDiagMsg = std::make_pair(
7799         "InterleavingNotBeneficial",
7800         "the cost-model indicates that interleaving is not beneficial");
7801     InterleaveLoop = false;
7802     if (UserIC == 1) {
7803       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7804       IntDiagMsg.second +=
7805           " and is explicitly disabled or interleave count is set to 1";
7806     }
7807   } else if (IC > 1 && UserIC == 1) {
7808     // Tell the user interleaving is beneficial, but it explicitly disabled.
7809     DEBUG(dbgs()
7810           << "LV: Interleaving is beneficial but is explicitly disabled.");
7811     IntDiagMsg = std::make_pair(
7812         "InterleavingBeneficialButDisabled",
7813         "the cost-model indicates that interleaving is beneficial "
7814         "but is explicitly disabled or interleave count is set to 1");
7815     InterleaveLoop = false;
7816   }
7817 
7818   // Override IC if user provided an interleave count.
7819   IC = UserIC > 0 ? UserIC : IC;
7820 
7821   // Emit diagnostic messages, if any.
7822   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7823   if (!VectorizeLoop && !InterleaveLoop) {
7824     // Do not vectorize or interleaving the loop.
7825     ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7826                                          L->getStartLoc(), L->getHeader())
7827               << VecDiagMsg.second);
7828     ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7829                                          L->getStartLoc(), L->getHeader())
7830               << IntDiagMsg.second);
7831     return false;
7832   } else if (!VectorizeLoop && InterleaveLoop) {
7833     DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7834     ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7835                                          L->getStartLoc(), L->getHeader())
7836               << VecDiagMsg.second);
7837   } else if (VectorizeLoop && !InterleaveLoop) {
7838     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
7839                  << DebugLocStr << '\n');
7840     ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7841                                          L->getStartLoc(), L->getHeader())
7842               << IntDiagMsg.second);
7843   } else if (VectorizeLoop && InterleaveLoop) {
7844     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
7845                  << DebugLocStr << '\n');
7846     DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7847   }
7848 
7849   using namespace ore;
7850   if (!VectorizeLoop) {
7851     assert(IC > 1 && "interleave count should not be 1 or 0");
7852     // If we decided that it is not legal to vectorize the loop, then
7853     // interleave it.
7854     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7855                                &CM);
7856     Unroller.vectorize();
7857 
7858     ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7859                                  L->getHeader())
7860               << "interleaved loop (interleaved count: "
7861               << NV("InterleaveCount", IC) << ")");
7862   } else {
7863     // If we decided that it is *legal* to vectorize the loop, then do it.
7864     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7865                            &LVL, &CM);
7866     LB.vectorize();
7867     ++LoopsVectorized;
7868 
7869     // Add metadata to disable runtime unrolling a scalar loop when there are
7870     // no runtime checks about strides and memory. A scalar loop that is
7871     // rarely used is not worth unrolling.
7872     if (!LB.areSafetyChecksAdded())
7873       AddRuntimeUnrollDisableMetaData(L);
7874 
7875     // Report the vectorization decision.
7876     ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7877                                  L->getHeader())
7878               << "vectorized loop (vectorization width: "
7879               << NV("VectorizationFactor", VF.Width)
7880               << ", interleaved count: " << NV("InterleaveCount", IC) << ")");
7881   }
7882 
7883   // Mark the loop as already vectorized to avoid vectorizing again.
7884   Hints.setAlreadyVectorized();
7885 
7886   DEBUG(verifyFunction(*L->getHeader()->getParent()));
7887   return true;
7888 }
7889 
7890 bool LoopVectorizePass::runImpl(
7891     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7892     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7893     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7894     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7895     OptimizationRemarkEmitter &ORE_) {
7896 
7897   SE = &SE_;
7898   LI = &LI_;
7899   TTI = &TTI_;
7900   DT = &DT_;
7901   BFI = &BFI_;
7902   TLI = TLI_;
7903   AA = &AA_;
7904   AC = &AC_;
7905   GetLAA = &GetLAA_;
7906   DB = &DB_;
7907   ORE = &ORE_;
7908 
7909   // Compute some weights outside of the loop over the loops. Compute this
7910   // using a BranchProbability to re-use its scaling math.
7911   const BranchProbability ColdProb(1, 5); // 20%
7912   ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
7913 
7914   // Don't attempt if
7915   // 1. the target claims to have no vector registers, and
7916   // 2. interleaving won't help ILP.
7917   //
7918   // The second condition is necessary because, even if the target has no
7919   // vector registers, loop vectorization may still enable scalar
7920   // interleaving.
7921   if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
7922     return false;
7923 
7924   bool Changed = false;
7925 
7926   // The vectorizer requires loops to be in simplified form.
7927   // Since simplification may add new inner loops, it has to run before the
7928   // legality and profitability checks. This means running the loop vectorizer
7929   // will simplify all loops, regardless of whether anything end up being
7930   // vectorized.
7931   for (auto &L : *LI)
7932     Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);
7933 
7934   // Build up a worklist of inner-loops to vectorize. This is necessary as
7935   // the act of vectorizing or partially unrolling a loop creates new loops
7936   // and can invalidate iterators across the loops.
7937   SmallVector<Loop *, 8> Worklist;
7938 
7939   for (Loop *L : *LI)
7940     addAcyclicInnerLoop(*L, Worklist);
7941 
7942   LoopsAnalyzed += Worklist.size();
7943 
7944   // Now walk the identified inner loops.
7945   while (!Worklist.empty()) {
7946     Loop *L = Worklist.pop_back_val();
7947 
7948     // For the inner loops we actually process, form LCSSA to simplify the
7949     // transform.
7950     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
7951 
7952     Changed |= processLoop(L);
7953   }
7954 
7955   // Process each loop nest in the function.
7956   return Changed;
7957 
7958 }
7959 
7960 
7961 PreservedAnalyses LoopVectorizePass::run(Function &F,
7962                                          FunctionAnalysisManager &AM) {
7963     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
7964     auto &LI = AM.getResult<LoopAnalysis>(F);
7965     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
7966     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
7967     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
7968     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
7969     auto &AA = AM.getResult<AAManager>(F);
7970     auto &AC = AM.getResult<AssumptionAnalysis>(F);
7971     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
7972     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
7973 
7974     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
7975     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
7976         [&](Loop &L) -> const LoopAccessInfo & {
7977       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI};
7978       return LAM.getResult<LoopAccessAnalysis>(L, AR);
7979     };
7980     bool Changed =
7981         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
7982     if (!Changed)
7983       return PreservedAnalyses::all();
7984     PreservedAnalyses PA;
7985     PA.preserve<LoopAnalysis>();
7986     PA.preserve<DominatorTreeAnalysis>();
7987     PA.preserve<BasicAA>();
7988     PA.preserve<GlobalsAA>();
7989     return PA;
7990 }
7991