1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "VPlanBuilder.h" 52 #include "llvm/ADT/APInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/DenseMap.h" 55 #include "llvm/ADT/DenseMapInfo.h" 56 #include "llvm/ADT/Hashing.h" 57 #include "llvm/ADT/MapVector.h" 58 #include "llvm/ADT/None.h" 59 #include "llvm/ADT/Optional.h" 60 #include "llvm/ADT/SCCIterator.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallPtrSet.h" 64 #include "llvm/ADT/SmallSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/Statistic.h" 67 #include "llvm/ADT/StringRef.h" 68 #include "llvm/ADT/Twine.h" 69 #include "llvm/ADT/iterator_range.h" 70 #include "llvm/Analysis/AssumptionCache.h" 71 #include "llvm/Analysis/BasicAliasAnalysis.h" 72 #include "llvm/Analysis/BlockFrequencyInfo.h" 73 #include "llvm/Analysis/CodeMetrics.h" 74 #include "llvm/Analysis/DemandedBits.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/LoopAccessAnalysis.h" 77 #include "llvm/Analysis/LoopAnalysisManager.h" 78 #include "llvm/Analysis/LoopInfo.h" 79 #include "llvm/Analysis/LoopIterator.h" 80 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 81 #include "llvm/Analysis/ScalarEvolution.h" 82 #include "llvm/Analysis/ScalarEvolutionExpander.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/TargetTransformInfo.h" 86 #include "llvm/Analysis/VectorUtils.h" 87 #include "llvm/IR/Attributes.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DebugInfoMetadata.h" 94 #include "llvm/IR/DebugLoc.h" 95 #include "llvm/IR/DerivedTypes.h" 96 #include "llvm/IR/DiagnosticInfo.h" 97 #include "llvm/IR/Dominators.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/IR/IRBuilder.h" 100 #include "llvm/IR/InstrTypes.h" 101 #include "llvm/IR/Instruction.h" 102 #include "llvm/IR/Instructions.h" 103 #include "llvm/IR/IntrinsicInst.h" 104 #include "llvm/IR/Intrinsics.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Metadata.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/Use.h" 111 #include "llvm/IR/User.h" 112 #include "llvm/IR/Value.h" 113 #include "llvm/IR/ValueHandle.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/Pass.h" 116 #include "llvm/Support/Casting.h" 117 #include "llvm/Support/CommandLine.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/MathExtras.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 124 #include "llvm/Transforms/Utils/LoopSimplify.h" 125 #include "llvm/Transforms/Utils/LoopUtils.h" 126 #include "llvm/Transforms/Utils/LoopVersioning.h" 127 #include <algorithm> 128 #include <cassert> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <functional> 132 #include <iterator> 133 #include <limits> 134 #include <memory> 135 #include <string> 136 #include <tuple> 137 #include <utility> 138 #include <vector> 139 140 using namespace llvm; 141 142 #define LV_NAME "loop-vectorize" 143 #define DEBUG_TYPE LV_NAME 144 145 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 146 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 147 148 static cl::opt<bool> 149 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 150 cl::desc("Enable if-conversion during vectorization.")); 151 152 /// Loops with a known constant trip count below this number are vectorized only 153 /// if no scalar iteration overheads are incurred. 154 static cl::opt<unsigned> TinyTripCountVectorThreshold( 155 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 156 cl::desc("Loops with a constant trip count that is smaller than this " 157 "value are vectorized only if no scalar iteration overheads " 158 "are incurred.")); 159 160 static cl::opt<bool> MaximizeBandwidth( 161 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 162 cl::desc("Maximize bandwidth when selecting vectorization factor which " 163 "will be determined by the smallest type in loop.")); 164 165 static cl::opt<bool> EnableInterleavedMemAccesses( 166 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 167 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 168 169 /// Maximum factor for an interleaved memory access. 170 static cl::opt<unsigned> MaxInterleaveGroupFactor( 171 "max-interleave-group-factor", cl::Hidden, 172 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 173 cl::init(8)); 174 175 /// We don't interleave loops with a known constant trip count below this 176 /// number. 177 static const unsigned TinyTripCountInterleaveThreshold = 128; 178 179 static cl::opt<unsigned> ForceTargetNumScalarRegs( 180 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's number of scalar registers.")); 182 183 static cl::opt<unsigned> ForceTargetNumVectorRegs( 184 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's number of vector registers.")); 186 187 /// Maximum vectorization interleave count. 188 static const unsigned MaxInterleaveFactor = 16; 189 190 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 191 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 192 cl::desc("A flag that overrides the target's max interleave factor for " 193 "scalar loops.")); 194 195 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 196 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 197 cl::desc("A flag that overrides the target's max interleave factor for " 198 "vectorized loops.")); 199 200 static cl::opt<unsigned> ForceTargetInstructionCost( 201 "force-target-instruction-cost", cl::init(0), cl::Hidden, 202 cl::desc("A flag that overrides the target's expected cost for " 203 "an instruction to a single constant value. Mostly " 204 "useful for getting consistent testing.")); 205 206 static cl::opt<unsigned> SmallLoopCost( 207 "small-loop-cost", cl::init(20), cl::Hidden, 208 cl::desc( 209 "The cost of a loop that is considered 'small' by the interleaver.")); 210 211 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 212 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 213 cl::desc("Enable the use of the block frequency analysis to access PGO " 214 "heuristics minimizing code growth in cold regions and being more " 215 "aggressive in hot regions.")); 216 217 // Runtime interleave loops for load/store throughput. 218 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 219 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 220 cl::desc( 221 "Enable runtime interleaving until load/store ports are saturated")); 222 223 /// The number of stores in a loop that are allowed to need predication. 224 static cl::opt<unsigned> NumberOfStoresToPredicate( 225 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 226 cl::desc("Max number of stores to be predicated behind an if.")); 227 228 static cl::opt<bool> EnableIndVarRegisterHeur( 229 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 230 cl::desc("Count the induction variable only once when interleaving")); 231 232 static cl::opt<bool> EnableCondStoresVectorization( 233 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 234 cl::desc("Enable if predication of stores during vectorization.")); 235 236 static cl::opt<unsigned> MaxNestedScalarReductionIC( 237 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 238 cl::desc("The maximum interleave count to use when interleaving a scalar " 239 "reduction in a nested loop.")); 240 241 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 242 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 243 cl::desc("The maximum allowed number of runtime memory checks with a " 244 "vectorize(enable) pragma.")); 245 246 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 247 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 248 cl::desc("The maximum number of SCEV checks allowed.")); 249 250 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 251 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 252 cl::desc("The maximum number of SCEV checks allowed with a " 253 "vectorize(enable) pragma")); 254 255 /// Create an analysis remark that explains why vectorization failed 256 /// 257 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 258 /// RemarkName is the identifier for the remark. If \p I is passed it is an 259 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 260 /// the location of the remark. \return the remark object that can be 261 /// streamed to. 262 static OptimizationRemarkAnalysis 263 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 264 Instruction *I = nullptr) { 265 Value *CodeRegion = TheLoop->getHeader(); 266 DebugLoc DL = TheLoop->getStartLoc(); 267 268 if (I) { 269 CodeRegion = I->getParent(); 270 // If there is no debug location attached to the instruction, revert back to 271 // using the loop's. 272 if (I->getDebugLoc()) 273 DL = I->getDebugLoc(); 274 } 275 276 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 277 R << "loop not vectorized: "; 278 return R; 279 } 280 281 namespace { 282 283 class LoopVectorizationLegality; 284 class LoopVectorizationCostModel; 285 class LoopVectorizationRequirements; 286 287 } // end anonymous namespace 288 289 /// Returns true if the given loop body has a cycle, excluding the loop 290 /// itself. 291 static bool hasCyclesInLoopBody(const Loop &L) { 292 if (!L.empty()) 293 return true; 294 295 for (const auto &SCC : 296 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 297 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 298 if (SCC.size() > 1) { 299 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 300 DEBUG(L.dump()); 301 return true; 302 } 303 } 304 return false; 305 } 306 307 /// A helper function for converting Scalar types to vector types. 308 /// If the incoming type is void, we return void. If the VF is 1, we return 309 /// the scalar type. 310 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 311 if (Scalar->isVoidTy() || VF == 1) 312 return Scalar; 313 return VectorType::get(Scalar, VF); 314 } 315 316 // FIXME: The following helper functions have multiple implementations 317 // in the project. They can be effectively organized in a common Load/Store 318 // utilities unit. 319 320 /// A helper function that returns the pointer operand of a load or store 321 /// instruction. 322 static Value *getPointerOperand(Value *I) { 323 if (auto *LI = dyn_cast<LoadInst>(I)) 324 return LI->getPointerOperand(); 325 if (auto *SI = dyn_cast<StoreInst>(I)) 326 return SI->getPointerOperand(); 327 return nullptr; 328 } 329 330 /// A helper function that returns the type of loaded or stored value. 331 static Type *getMemInstValueType(Value *I) { 332 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 333 "Expected Load or Store instruction"); 334 if (auto *LI = dyn_cast<LoadInst>(I)) 335 return LI->getType(); 336 return cast<StoreInst>(I)->getValueOperand()->getType(); 337 } 338 339 /// A helper function that returns the alignment of load or store instruction. 340 static unsigned getMemInstAlignment(Value *I) { 341 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 342 "Expected Load or Store instruction"); 343 if (auto *LI = dyn_cast<LoadInst>(I)) 344 return LI->getAlignment(); 345 return cast<StoreInst>(I)->getAlignment(); 346 } 347 348 /// A helper function that returns the address space of the pointer operand of 349 /// load or store instruction. 350 static unsigned getMemInstAddressSpace(Value *I) { 351 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 352 "Expected Load or Store instruction"); 353 if (auto *LI = dyn_cast<LoadInst>(I)) 354 return LI->getPointerAddressSpace(); 355 return cast<StoreInst>(I)->getPointerAddressSpace(); 356 } 357 358 /// A helper function that returns true if the given type is irregular. The 359 /// type is irregular if its allocated size doesn't equal the store size of an 360 /// element of the corresponding vector type at the given vectorization factor. 361 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 362 // Determine if an array of VF elements of type Ty is "bitcast compatible" 363 // with a <VF x Ty> vector. 364 if (VF > 1) { 365 auto *VectorTy = VectorType::get(Ty, VF); 366 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 367 } 368 369 // If the vectorization factor is one, we just check if an array of type Ty 370 // requires padding between elements. 371 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 372 } 373 374 /// A helper function that returns the reciprocal of the block probability of 375 /// predicated blocks. If we return X, we are assuming the predicated block 376 /// will execute once for for every X iterations of the loop header. 377 /// 378 /// TODO: We should use actual block probability here, if available. Currently, 379 /// we always assume predicated blocks have a 50% chance of executing. 380 static unsigned getReciprocalPredBlockProb() { return 2; } 381 382 /// A helper function that adds a 'fast' flag to floating-point operations. 383 static Value *addFastMathFlag(Value *V) { 384 if (isa<FPMathOperator>(V)) { 385 FastMathFlags Flags; 386 Flags.setFast(); 387 cast<Instruction>(V)->setFastMathFlags(Flags); 388 } 389 return V; 390 } 391 392 /// A helper function that returns an integer or floating-point constant with 393 /// value C. 394 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 395 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 396 : ConstantFP::get(Ty, C); 397 } 398 399 namespace llvm { 400 401 /// InnerLoopVectorizer vectorizes loops which contain only one basic 402 /// block to a specified vectorization factor (VF). 403 /// This class performs the widening of scalars into vectors, or multiple 404 /// scalars. This class also implements the following features: 405 /// * It inserts an epilogue loop for handling loops that don't have iteration 406 /// counts that are known to be a multiple of the vectorization factor. 407 /// * It handles the code generation for reduction variables. 408 /// * Scalarization (implementation using scalars) of un-vectorizable 409 /// instructions. 410 /// InnerLoopVectorizer does not perform any vectorization-legality 411 /// checks, and relies on the caller to check for the different legality 412 /// aspects. The InnerLoopVectorizer relies on the 413 /// LoopVectorizationLegality class to provide information about the induction 414 /// and reduction variables that were found to a given vectorization factor. 415 class InnerLoopVectorizer { 416 public: 417 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 418 LoopInfo *LI, DominatorTree *DT, 419 const TargetLibraryInfo *TLI, 420 const TargetTransformInfo *TTI, AssumptionCache *AC, 421 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 422 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 423 LoopVectorizationCostModel *CM) 424 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 425 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 426 Builder(PSE.getSE()->getContext()), 427 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 428 virtual ~InnerLoopVectorizer() = default; 429 430 /// Create a new empty loop. Unlink the old loop and connect the new one. 431 /// Return the pre-header block of the new loop. 432 BasicBlock *createVectorizedLoopSkeleton(); 433 434 /// Widen a single instruction within the innermost loop. 435 void widenInstruction(Instruction &I); 436 437 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 438 void fixVectorizedLoop(); 439 440 // Return true if any runtime check is added. 441 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 442 443 /// A type for vectorized values in the new loop. Each value from the 444 /// original loop, when vectorized, is represented by UF vector values in the 445 /// new unrolled loop, where UF is the unroll factor. 446 using VectorParts = SmallVector<Value *, 2>; 447 448 /// Vectorize a single PHINode in a block. This method handles the induction 449 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 450 /// arbitrary length vectors. 451 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 452 453 /// A helper function to scalarize a single Instruction in the innermost loop. 454 /// Generates a sequence of scalar instances for each lane between \p MinLane 455 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 456 /// inclusive.. 457 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 458 bool IfPredicateInstr); 459 460 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 461 /// is provided, the integer induction variable will first be truncated to 462 /// the corresponding type. 463 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 464 465 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 466 /// vector or scalar value on-demand if one is not yet available. When 467 /// vectorizing a loop, we visit the definition of an instruction before its 468 /// uses. When visiting the definition, we either vectorize or scalarize the 469 /// instruction, creating an entry for it in the corresponding map. (In some 470 /// cases, such as induction variables, we will create both vector and scalar 471 /// entries.) Then, as we encounter uses of the definition, we derive values 472 /// for each scalar or vector use unless such a value is already available. 473 /// For example, if we scalarize a definition and one of its uses is vector, 474 /// we build the required vector on-demand with an insertelement sequence 475 /// when visiting the use. Otherwise, if the use is scalar, we can use the 476 /// existing scalar definition. 477 /// 478 /// Return a value in the new loop corresponding to \p V from the original 479 /// loop at unroll index \p Part. If the value has already been vectorized, 480 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 481 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 482 /// a new vector value on-demand by inserting the scalar values into a vector 483 /// with an insertelement sequence. If the value has been neither vectorized 484 /// nor scalarized, it must be loop invariant, so we simply broadcast the 485 /// value into a vector. 486 Value *getOrCreateVectorValue(Value *V, unsigned Part); 487 488 /// Return a value in the new loop corresponding to \p V from the original 489 /// loop at unroll and vector indices \p Instance. If the value has been 490 /// vectorized but not scalarized, the necessary extractelement instruction 491 /// will be generated. 492 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 493 494 /// Construct the vector value of a scalarized value \p V one lane at a time. 495 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 496 497 /// Try to vectorize the interleaved access group that \p Instr belongs to. 498 void vectorizeInterleaveGroup(Instruction *Instr); 499 500 /// Vectorize Load and Store instructions, optionally masking the vector 501 /// operations if \p BlockInMask is non-null. 502 void vectorizeMemoryInstruction(Instruction *Instr, 503 VectorParts *BlockInMask = nullptr); 504 505 /// \brief Set the debug location in the builder using the debug location in 506 /// the instruction. 507 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 508 509 protected: 510 friend class LoopVectorizationPlanner; 511 512 /// A small list of PHINodes. 513 using PhiVector = SmallVector<PHINode *, 4>; 514 515 /// A type for scalarized values in the new loop. Each value from the 516 /// original loop, when scalarized, is represented by UF x VF scalar values 517 /// in the new unrolled loop, where UF is the unroll factor and VF is the 518 /// vectorization factor. 519 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 520 521 /// Set up the values of the IVs correctly when exiting the vector loop. 522 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 523 Value *CountRoundDown, Value *EndValue, 524 BasicBlock *MiddleBlock); 525 526 /// Create a new induction variable inside L. 527 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 528 Value *Step, Instruction *DL); 529 530 /// Handle all cross-iteration phis in the header. 531 void fixCrossIterationPHIs(); 532 533 /// Fix a first-order recurrence. This is the second phase of vectorizing 534 /// this phi node. 535 void fixFirstOrderRecurrence(PHINode *Phi); 536 537 /// Fix a reduction cross-iteration phi. This is the second phase of 538 /// vectorizing this phi node. 539 void fixReduction(PHINode *Phi); 540 541 /// \brief The Loop exit block may have single value PHI nodes with some 542 /// incoming value. While vectorizing we only handled real values 543 /// that were defined inside the loop and we should have one value for 544 /// each predecessor of its parent basic block. See PR14725. 545 void fixLCSSAPHIs(); 546 547 /// Iteratively sink the scalarized operands of a predicated instruction into 548 /// the block that was created for it. 549 void sinkScalarOperands(Instruction *PredInst); 550 551 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 552 /// represented as. 553 void truncateToMinimalBitwidths(); 554 555 /// Insert the new loop to the loop hierarchy and pass manager 556 /// and update the analysis passes. 557 void updateAnalysis(); 558 559 /// Create a broadcast instruction. This method generates a broadcast 560 /// instruction (shuffle) for loop invariant values and for the induction 561 /// value. If this is the induction variable then we extend it to N, N+1, ... 562 /// this is needed because each iteration in the loop corresponds to a SIMD 563 /// element. 564 virtual Value *getBroadcastInstrs(Value *V); 565 566 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 567 /// to each vector element of Val. The sequence starts at StartIndex. 568 /// \p Opcode is relevant for FP induction variable. 569 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 570 Instruction::BinaryOps Opcode = 571 Instruction::BinaryOpsEnd); 572 573 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 574 /// variable on which to base the steps, \p Step is the size of the step, and 575 /// \p EntryVal is the value from the original loop that maps to the steps. 576 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 577 /// can be a truncate instruction). 578 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 579 const InductionDescriptor &ID); 580 581 /// Create a vector induction phi node based on an existing scalar one. \p 582 /// EntryVal is the value from the original loop that maps to the vector phi 583 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 584 /// truncate instruction, instead of widening the original IV, we widen a 585 /// version of the IV truncated to \p EntryVal's type. 586 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 587 Value *Step, Instruction *EntryVal); 588 589 /// Returns true if an instruction \p I should be scalarized instead of 590 /// vectorized for the chosen vectorization factor. 591 bool shouldScalarizeInstruction(Instruction *I) const; 592 593 /// Returns true if we should generate a scalar version of \p IV. 594 bool needsScalarInduction(Instruction *IV) const; 595 596 /// If there is a cast involved in the induction variable \p ID, which should 597 /// be ignored in the vectorized loop body, this function records the 598 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 599 /// cast. We had already proved that the casted Phi is equal to the uncasted 600 /// Phi in the vectorized loop (under a runtime guard), and therefore 601 /// there is no need to vectorize the cast - the same value can be used in the 602 /// vector loop for both the Phi and the cast. 603 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 604 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 605 void recordVectorLoopValueForInductionCast (const InductionDescriptor &ID, 606 Value *VectorLoopValue, 607 unsigned Part, 608 unsigned Lane = UINT_MAX); 609 610 /// Generate a shuffle sequence that will reverse the vector Vec. 611 virtual Value *reverseVector(Value *Vec); 612 613 /// Returns (and creates if needed) the original loop trip count. 614 Value *getOrCreateTripCount(Loop *NewLoop); 615 616 /// Returns (and creates if needed) the trip count of the widened loop. 617 Value *getOrCreateVectorTripCount(Loop *NewLoop); 618 619 /// Returns a bitcasted value to the requested vector type. 620 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 621 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 622 const DataLayout &DL); 623 624 /// Emit a bypass check to see if the vector trip count is zero, including if 625 /// it overflows. 626 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 627 628 /// Emit a bypass check to see if all of the SCEV assumptions we've 629 /// had to make are correct. 630 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Emit bypass checks to check any memory assumptions we may have made. 633 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 634 635 /// Add additional metadata to \p To that was not present on \p Orig. 636 /// 637 /// Currently this is used to add the noalias annotations based on the 638 /// inserted memchecks. Use this for instructions that are *cloned* into the 639 /// vector loop. 640 void addNewMetadata(Instruction *To, const Instruction *Orig); 641 642 /// Add metadata from one instruction to another. 643 /// 644 /// This includes both the original MDs from \p From and additional ones (\see 645 /// addNewMetadata). Use this for *newly created* instructions in the vector 646 /// loop. 647 void addMetadata(Instruction *To, Instruction *From); 648 649 /// \brief Similar to the previous function but it adds the metadata to a 650 /// vector of instructions. 651 void addMetadata(ArrayRef<Value *> To, Instruction *From); 652 653 /// The original loop. 654 Loop *OrigLoop; 655 656 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 657 /// dynamic knowledge to simplify SCEV expressions and converts them to a 658 /// more usable form. 659 PredicatedScalarEvolution &PSE; 660 661 /// Loop Info. 662 LoopInfo *LI; 663 664 /// Dominator Tree. 665 DominatorTree *DT; 666 667 /// Alias Analysis. 668 AliasAnalysis *AA; 669 670 /// Target Library Info. 671 const TargetLibraryInfo *TLI; 672 673 /// Target Transform Info. 674 const TargetTransformInfo *TTI; 675 676 /// Assumption Cache. 677 AssumptionCache *AC; 678 679 /// Interface to emit optimization remarks. 680 OptimizationRemarkEmitter *ORE; 681 682 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 683 /// used. 684 /// 685 /// This is currently only used to add no-alias metadata based on the 686 /// memchecks. The actually versioning is performed manually. 687 std::unique_ptr<LoopVersioning> LVer; 688 689 /// The vectorization SIMD factor to use. Each vector will have this many 690 /// vector elements. 691 unsigned VF; 692 693 /// The vectorization unroll factor to use. Each scalar is vectorized to this 694 /// many different vector instructions. 695 unsigned UF; 696 697 /// The builder that we use 698 IRBuilder<> Builder; 699 700 // --- Vectorization state --- 701 702 /// The vector-loop preheader. 703 BasicBlock *LoopVectorPreHeader; 704 705 /// The scalar-loop preheader. 706 BasicBlock *LoopScalarPreHeader; 707 708 /// Middle Block between the vector and the scalar. 709 BasicBlock *LoopMiddleBlock; 710 711 /// The ExitBlock of the scalar loop. 712 BasicBlock *LoopExitBlock; 713 714 /// The vector loop body. 715 BasicBlock *LoopVectorBody; 716 717 /// The scalar loop body. 718 BasicBlock *LoopScalarBody; 719 720 /// A list of all bypass blocks. The first block is the entry of the loop. 721 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 722 723 /// The new Induction variable which was added to the new block. 724 PHINode *Induction = nullptr; 725 726 /// The induction variable of the old basic block. 727 PHINode *OldInduction = nullptr; 728 729 /// Maps values from the original loop to their corresponding values in the 730 /// vectorized loop. A key value can map to either vector values, scalar 731 /// values or both kinds of values, depending on whether the key was 732 /// vectorized and scalarized. 733 VectorizerValueMap VectorLoopValueMap; 734 735 /// Store instructions that were predicated. 736 SmallVector<Instruction *, 4> PredicatedInstructions; 737 738 /// Trip count of the original loop. 739 Value *TripCount = nullptr; 740 741 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 742 Value *VectorTripCount = nullptr; 743 744 /// The legality analysis. 745 LoopVectorizationLegality *Legal; 746 747 /// The profitablity analysis. 748 LoopVectorizationCostModel *Cost; 749 750 // Record whether runtime checks are added. 751 bool AddedSafetyChecks = false; 752 753 // Holds the end values for each induction variable. We save the end values 754 // so we can later fix-up the external users of the induction variables. 755 DenseMap<PHINode *, Value *> IVEndValues; 756 }; 757 758 class InnerLoopUnroller : public InnerLoopVectorizer { 759 public: 760 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 761 LoopInfo *LI, DominatorTree *DT, 762 const TargetLibraryInfo *TLI, 763 const TargetTransformInfo *TTI, AssumptionCache *AC, 764 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 765 LoopVectorizationLegality *LVL, 766 LoopVectorizationCostModel *CM) 767 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 768 UnrollFactor, LVL, CM) {} 769 770 private: 771 Value *getBroadcastInstrs(Value *V) override; 772 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 773 Instruction::BinaryOps Opcode = 774 Instruction::BinaryOpsEnd) override; 775 Value *reverseVector(Value *Vec) override; 776 }; 777 778 } // end namespace llvm 779 780 /// \brief Look for a meaningful debug location on the instruction or it's 781 /// operands. 782 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 783 if (!I) 784 return I; 785 786 DebugLoc Empty; 787 if (I->getDebugLoc() != Empty) 788 return I; 789 790 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 791 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 792 if (OpInst->getDebugLoc() != Empty) 793 return OpInst; 794 } 795 796 return I; 797 } 798 799 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 800 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 801 const DILocation *DIL = Inst->getDebugLoc(); 802 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 803 !isa<DbgInfoIntrinsic>(Inst)) 804 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 805 else 806 B.SetCurrentDebugLocation(DIL); 807 } else 808 B.SetCurrentDebugLocation(DebugLoc()); 809 } 810 811 #ifndef NDEBUG 812 /// \return string containing a file name and a line # for the given loop. 813 static std::string getDebugLocString(const Loop *L) { 814 std::string Result; 815 if (L) { 816 raw_string_ostream OS(Result); 817 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 818 LoopDbgLoc.print(OS); 819 else 820 // Just print the module name. 821 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 822 OS.flush(); 823 } 824 return Result; 825 } 826 #endif 827 828 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 829 const Instruction *Orig) { 830 // If the loop was versioned with memchecks, add the corresponding no-alias 831 // metadata. 832 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 833 LVer->annotateInstWithNoAlias(To, Orig); 834 } 835 836 void InnerLoopVectorizer::addMetadata(Instruction *To, 837 Instruction *From) { 838 propagateMetadata(To, From); 839 addNewMetadata(To, From); 840 } 841 842 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 843 Instruction *From) { 844 for (Value *V : To) { 845 if (Instruction *I = dyn_cast<Instruction>(V)) 846 addMetadata(I, From); 847 } 848 } 849 850 namespace llvm { 851 852 /// \brief The group of interleaved loads/stores sharing the same stride and 853 /// close to each other. 854 /// 855 /// Each member in this group has an index starting from 0, and the largest 856 /// index should be less than interleaved factor, which is equal to the absolute 857 /// value of the access's stride. 858 /// 859 /// E.g. An interleaved load group of factor 4: 860 /// for (unsigned i = 0; i < 1024; i+=4) { 861 /// a = A[i]; // Member of index 0 862 /// b = A[i+1]; // Member of index 1 863 /// d = A[i+3]; // Member of index 3 864 /// ... 865 /// } 866 /// 867 /// An interleaved store group of factor 4: 868 /// for (unsigned i = 0; i < 1024; i+=4) { 869 /// ... 870 /// A[i] = a; // Member of index 0 871 /// A[i+1] = b; // Member of index 1 872 /// A[i+2] = c; // Member of index 2 873 /// A[i+3] = d; // Member of index 3 874 /// } 875 /// 876 /// Note: the interleaved load group could have gaps (missing members), but 877 /// the interleaved store group doesn't allow gaps. 878 class InterleaveGroup { 879 public: 880 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 881 : Align(Align), InsertPos(Instr) { 882 assert(Align && "The alignment should be non-zero"); 883 884 Factor = std::abs(Stride); 885 assert(Factor > 1 && "Invalid interleave factor"); 886 887 Reverse = Stride < 0; 888 Members[0] = Instr; 889 } 890 891 bool isReverse() const { return Reverse; } 892 unsigned getFactor() const { return Factor; } 893 unsigned getAlignment() const { return Align; } 894 unsigned getNumMembers() const { return Members.size(); } 895 896 /// \brief Try to insert a new member \p Instr with index \p Index and 897 /// alignment \p NewAlign. The index is related to the leader and it could be 898 /// negative if it is the new leader. 899 /// 900 /// \returns false if the instruction doesn't belong to the group. 901 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 902 assert(NewAlign && "The new member's alignment should be non-zero"); 903 904 int Key = Index + SmallestKey; 905 906 // Skip if there is already a member with the same index. 907 if (Members.count(Key)) 908 return false; 909 910 if (Key > LargestKey) { 911 // The largest index is always less than the interleave factor. 912 if (Index >= static_cast<int>(Factor)) 913 return false; 914 915 LargestKey = Key; 916 } else if (Key < SmallestKey) { 917 // The largest index is always less than the interleave factor. 918 if (LargestKey - Key >= static_cast<int>(Factor)) 919 return false; 920 921 SmallestKey = Key; 922 } 923 924 // It's always safe to select the minimum alignment. 925 Align = std::min(Align, NewAlign); 926 Members[Key] = Instr; 927 return true; 928 } 929 930 /// \brief Get the member with the given index \p Index 931 /// 932 /// \returns nullptr if contains no such member. 933 Instruction *getMember(unsigned Index) const { 934 int Key = SmallestKey + Index; 935 if (!Members.count(Key)) 936 return nullptr; 937 938 return Members.find(Key)->second; 939 } 940 941 /// \brief Get the index for the given member. Unlike the key in the member 942 /// map, the index starts from 0. 943 unsigned getIndex(Instruction *Instr) const { 944 for (auto I : Members) 945 if (I.second == Instr) 946 return I.first - SmallestKey; 947 948 llvm_unreachable("InterleaveGroup contains no such member"); 949 } 950 951 Instruction *getInsertPos() const { return InsertPos; } 952 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 953 954 /// Add metadata (e.g. alias info) from the instructions in this group to \p 955 /// NewInst. 956 /// 957 /// FIXME: this function currently does not add noalias metadata a'la 958 /// addNewMedata. To do that we need to compute the intersection of the 959 /// noalias info from all members. 960 void addMetadata(Instruction *NewInst) const { 961 SmallVector<Value *, 4> VL; 962 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 963 [](std::pair<int, Instruction *> p) { return p.second; }); 964 propagateMetadata(NewInst, VL); 965 } 966 967 private: 968 unsigned Factor; // Interleave Factor. 969 bool Reverse; 970 unsigned Align; 971 DenseMap<int, Instruction *> Members; 972 int SmallestKey = 0; 973 int LargestKey = 0; 974 975 // To avoid breaking dependences, vectorized instructions of an interleave 976 // group should be inserted at either the first load or the last store in 977 // program order. 978 // 979 // E.g. %even = load i32 // Insert Position 980 // %add = add i32 %even // Use of %even 981 // %odd = load i32 982 // 983 // store i32 %even 984 // %odd = add i32 // Def of %odd 985 // store i32 %odd // Insert Position 986 Instruction *InsertPos; 987 }; 988 } // end namespace llvm 989 990 namespace { 991 992 /// \brief Drive the analysis of interleaved memory accesses in the loop. 993 /// 994 /// Use this class to analyze interleaved accesses only when we can vectorize 995 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 996 /// on interleaved accesses is unsafe. 997 /// 998 /// The analysis collects interleave groups and records the relationships 999 /// between the member and the group in a map. 1000 class InterleavedAccessInfo { 1001 public: 1002 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1003 DominatorTree *DT, LoopInfo *LI) 1004 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 1005 1006 ~InterleavedAccessInfo() { 1007 SmallSet<InterleaveGroup *, 4> DelSet; 1008 // Avoid releasing a pointer twice. 1009 for (auto &I : InterleaveGroupMap) 1010 DelSet.insert(I.second); 1011 for (auto *Ptr : DelSet) 1012 delete Ptr; 1013 } 1014 1015 /// \brief Analyze the interleaved accesses and collect them in interleave 1016 /// groups. Substitute symbolic strides using \p Strides. 1017 void analyzeInterleaving(const ValueToValueMap &Strides); 1018 1019 /// \brief Check if \p Instr belongs to any interleave group. 1020 bool isInterleaved(Instruction *Instr) const { 1021 return InterleaveGroupMap.count(Instr); 1022 } 1023 1024 /// \brief Get the interleave group that \p Instr belongs to. 1025 /// 1026 /// \returns nullptr if doesn't have such group. 1027 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1028 if (InterleaveGroupMap.count(Instr)) 1029 return InterleaveGroupMap.find(Instr)->second; 1030 return nullptr; 1031 } 1032 1033 /// \brief Returns true if an interleaved group that may access memory 1034 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1035 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1036 1037 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1038 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1039 1040 private: 1041 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1042 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1043 /// The interleaved access analysis can also add new predicates (for example 1044 /// by versioning strides of pointers). 1045 PredicatedScalarEvolution &PSE; 1046 1047 Loop *TheLoop; 1048 DominatorTree *DT; 1049 LoopInfo *LI; 1050 const LoopAccessInfo *LAI = nullptr; 1051 1052 /// True if the loop may contain non-reversed interleaved groups with 1053 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1054 /// out-of-bounds by executing at least one scalar epilogue iteration. 1055 bool RequiresScalarEpilogue = false; 1056 1057 /// Holds the relationships between the members and the interleave group. 1058 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1059 1060 /// Holds dependences among the memory accesses in the loop. It maps a source 1061 /// access to a set of dependent sink accesses. 1062 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1063 1064 /// \brief The descriptor for a strided memory access. 1065 struct StrideDescriptor { 1066 StrideDescriptor() = default; 1067 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1068 unsigned Align) 1069 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1070 1071 // The access's stride. It is negative for a reverse access. 1072 int64_t Stride = 0; 1073 1074 // The scalar expression of this access. 1075 const SCEV *Scev = nullptr; 1076 1077 // The size of the memory object. 1078 uint64_t Size = 0; 1079 1080 // The alignment of this access. 1081 unsigned Align = 0; 1082 }; 1083 1084 /// \brief A type for holding instructions and their stride descriptors. 1085 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1086 1087 /// \brief Create a new interleave group with the given instruction \p Instr, 1088 /// stride \p Stride and alignment \p Align. 1089 /// 1090 /// \returns the newly created interleave group. 1091 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1092 unsigned Align) { 1093 assert(!InterleaveGroupMap.count(Instr) && 1094 "Already in an interleaved access group"); 1095 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1096 return InterleaveGroupMap[Instr]; 1097 } 1098 1099 /// \brief Release the group and remove all the relationships. 1100 void releaseGroup(InterleaveGroup *Group) { 1101 for (unsigned i = 0; i < Group->getFactor(); i++) 1102 if (Instruction *Member = Group->getMember(i)) 1103 InterleaveGroupMap.erase(Member); 1104 1105 delete Group; 1106 } 1107 1108 /// \brief Collect all the accesses with a constant stride in program order. 1109 void collectConstStrideAccesses( 1110 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1111 const ValueToValueMap &Strides); 1112 1113 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1114 static bool isStrided(int Stride) { 1115 unsigned Factor = std::abs(Stride); 1116 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1117 } 1118 1119 /// \brief Returns true if \p BB is a predicated block. 1120 bool isPredicated(BasicBlock *BB) const { 1121 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1122 } 1123 1124 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1125 bool areDependencesValid() const { 1126 return LAI && LAI->getDepChecker().getDependences(); 1127 } 1128 1129 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1130 /// necessary, when constructing interleaved groups. 1131 /// 1132 /// \p A must precede \p B in program order. We return false if reordering is 1133 /// not necessary or is prevented because \p A and \p B may be dependent. 1134 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1135 StrideEntry *B) const { 1136 // Code motion for interleaved accesses can potentially hoist strided loads 1137 // and sink strided stores. The code below checks the legality of the 1138 // following two conditions: 1139 // 1140 // 1. Potentially moving a strided load (B) before any store (A) that 1141 // precedes B, or 1142 // 1143 // 2. Potentially moving a strided store (A) after any load or store (B) 1144 // that A precedes. 1145 // 1146 // It's legal to reorder A and B if we know there isn't a dependence from A 1147 // to B. Note that this determination is conservative since some 1148 // dependences could potentially be reordered safely. 1149 1150 // A is potentially the source of a dependence. 1151 auto *Src = A->first; 1152 auto SrcDes = A->second; 1153 1154 // B is potentially the sink of a dependence. 1155 auto *Sink = B->first; 1156 auto SinkDes = B->second; 1157 1158 // Code motion for interleaved accesses can't violate WAR dependences. 1159 // Thus, reordering is legal if the source isn't a write. 1160 if (!Src->mayWriteToMemory()) 1161 return true; 1162 1163 // At least one of the accesses must be strided. 1164 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1165 return true; 1166 1167 // If dependence information is not available from LoopAccessInfo, 1168 // conservatively assume the instructions can't be reordered. 1169 if (!areDependencesValid()) 1170 return false; 1171 1172 // If we know there is a dependence from source to sink, assume the 1173 // instructions can't be reordered. Otherwise, reordering is legal. 1174 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1175 } 1176 1177 /// \brief Collect the dependences from LoopAccessInfo. 1178 /// 1179 /// We process the dependences once during the interleaved access analysis to 1180 /// enable constant-time dependence queries. 1181 void collectDependences() { 1182 if (!areDependencesValid()) 1183 return; 1184 auto *Deps = LAI->getDepChecker().getDependences(); 1185 for (auto Dep : *Deps) 1186 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1187 } 1188 }; 1189 1190 /// Utility class for getting and setting loop vectorizer hints in the form 1191 /// of loop metadata. 1192 /// This class keeps a number of loop annotations locally (as member variables) 1193 /// and can, upon request, write them back as metadata on the loop. It will 1194 /// initially scan the loop for existing metadata, and will update the local 1195 /// values based on information in the loop. 1196 /// We cannot write all values to metadata, as the mere presence of some info, 1197 /// for example 'force', means a decision has been made. So, we need to be 1198 /// careful NOT to add them if the user hasn't specifically asked so. 1199 class LoopVectorizeHints { 1200 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1201 1202 /// Hint - associates name and validation with the hint value. 1203 struct Hint { 1204 const char *Name; 1205 unsigned Value; // This may have to change for non-numeric values. 1206 HintKind Kind; 1207 1208 Hint(const char *Name, unsigned Value, HintKind Kind) 1209 : Name(Name), Value(Value), Kind(Kind) {} 1210 1211 bool validate(unsigned Val) { 1212 switch (Kind) { 1213 case HK_WIDTH: 1214 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1215 case HK_UNROLL: 1216 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1217 case HK_FORCE: 1218 return (Val <= 1); 1219 case HK_ISVECTORIZED: 1220 return (Val==0 || Val==1); 1221 } 1222 return false; 1223 } 1224 }; 1225 1226 /// Vectorization width. 1227 Hint Width; 1228 1229 /// Vectorization interleave factor. 1230 Hint Interleave; 1231 1232 /// Vectorization forced 1233 Hint Force; 1234 1235 /// Already Vectorized 1236 Hint IsVectorized; 1237 1238 /// Return the loop metadata prefix. 1239 static StringRef Prefix() { return "llvm.loop."; } 1240 1241 /// True if there is any unsafe math in the loop. 1242 bool PotentiallyUnsafe = false; 1243 1244 public: 1245 enum ForceKind { 1246 FK_Undefined = -1, ///< Not selected. 1247 FK_Disabled = 0, ///< Forcing disabled. 1248 FK_Enabled = 1, ///< Forcing enabled. 1249 }; 1250 1251 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1252 OptimizationRemarkEmitter &ORE) 1253 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1254 HK_WIDTH), 1255 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1256 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1257 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1258 // Populate values with existing loop metadata. 1259 getHintsFromMetadata(); 1260 1261 // force-vector-interleave overrides DisableInterleaving. 1262 if (VectorizerParams::isInterleaveForced()) 1263 Interleave.Value = VectorizerParams::VectorizationInterleave; 1264 1265 if (IsVectorized.Value != 1) 1266 // If the vectorization width and interleaving count are both 1 then 1267 // consider the loop to have been already vectorized because there's 1268 // nothing more that we can do. 1269 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1270 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1271 << "LV: Interleaving disabled by the pass manager\n"); 1272 } 1273 1274 /// Mark the loop L as already vectorized by setting the width to 1. 1275 void setAlreadyVectorized() { 1276 IsVectorized.Value = 1; 1277 Hint Hints[] = {IsVectorized}; 1278 writeHintsToMetadata(Hints); 1279 } 1280 1281 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1282 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1283 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1284 emitRemarkWithHints(); 1285 return false; 1286 } 1287 1288 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1289 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1290 emitRemarkWithHints(); 1291 return false; 1292 } 1293 1294 if (getIsVectorized() == 1) { 1295 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1296 // FIXME: Add interleave.disable metadata. This will allow 1297 // vectorize.disable to be used without disabling the pass and errors 1298 // to differentiate between disabled vectorization and a width of 1. 1299 ORE.emit([&]() { 1300 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1301 "AllDisabled", L->getStartLoc(), 1302 L->getHeader()) 1303 << "loop not vectorized: vectorization and interleaving are " 1304 "explicitly disabled, or the loop has already been " 1305 "vectorized"; 1306 }); 1307 return false; 1308 } 1309 1310 return true; 1311 } 1312 1313 /// Dumps all the hint information. 1314 void emitRemarkWithHints() const { 1315 using namespace ore; 1316 1317 ORE.emit([&]() { 1318 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1319 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1320 TheLoop->getStartLoc(), 1321 TheLoop->getHeader()) 1322 << "loop not vectorized: vectorization is explicitly disabled"; 1323 else { 1324 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1325 TheLoop->getStartLoc(), 1326 TheLoop->getHeader()); 1327 R << "loop not vectorized"; 1328 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1329 R << " (Force=" << NV("Force", true); 1330 if (Width.Value != 0) 1331 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1332 if (Interleave.Value != 0) 1333 R << ", Interleave Count=" 1334 << NV("InterleaveCount", Interleave.Value); 1335 R << ")"; 1336 } 1337 return R; 1338 } 1339 }); 1340 } 1341 1342 unsigned getWidth() const { return Width.Value; } 1343 unsigned getInterleave() const { return Interleave.Value; } 1344 unsigned getIsVectorized() const { return IsVectorized.Value; } 1345 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1346 1347 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1348 /// pass name to force the frontend to print the diagnostic. 1349 const char *vectorizeAnalysisPassName() const { 1350 if (getWidth() == 1) 1351 return LV_NAME; 1352 if (getForce() == LoopVectorizeHints::FK_Disabled) 1353 return LV_NAME; 1354 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1355 return LV_NAME; 1356 return OptimizationRemarkAnalysis::AlwaysPrint; 1357 } 1358 1359 bool allowReordering() const { 1360 // When enabling loop hints are provided we allow the vectorizer to change 1361 // the order of operations that is given by the scalar loop. This is not 1362 // enabled by default because can be unsafe or inefficient. For example, 1363 // reordering floating-point operations will change the way round-off 1364 // error accumulates in the loop. 1365 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1366 } 1367 1368 bool isPotentiallyUnsafe() const { 1369 // Avoid FP vectorization if the target is unsure about proper support. 1370 // This may be related to the SIMD unit in the target not handling 1371 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1372 // Otherwise, a sequence of vectorized loops, even without reduction, 1373 // could lead to different end results on the destination vectors. 1374 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1375 } 1376 1377 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1378 1379 private: 1380 /// Find hints specified in the loop metadata and update local values. 1381 void getHintsFromMetadata() { 1382 MDNode *LoopID = TheLoop->getLoopID(); 1383 if (!LoopID) 1384 return; 1385 1386 // First operand should refer to the loop id itself. 1387 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1388 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1389 1390 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1391 const MDString *S = nullptr; 1392 SmallVector<Metadata *, 4> Args; 1393 1394 // The expected hint is either a MDString or a MDNode with the first 1395 // operand a MDString. 1396 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1397 if (!MD || MD->getNumOperands() == 0) 1398 continue; 1399 S = dyn_cast<MDString>(MD->getOperand(0)); 1400 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1401 Args.push_back(MD->getOperand(i)); 1402 } else { 1403 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1404 assert(Args.size() == 0 && "too many arguments for MDString"); 1405 } 1406 1407 if (!S) 1408 continue; 1409 1410 // Check if the hint starts with the loop metadata prefix. 1411 StringRef Name = S->getString(); 1412 if (Args.size() == 1) 1413 setHint(Name, Args[0]); 1414 } 1415 } 1416 1417 /// Checks string hint with one operand and set value if valid. 1418 void setHint(StringRef Name, Metadata *Arg) { 1419 if (!Name.startswith(Prefix())) 1420 return; 1421 Name = Name.substr(Prefix().size(), StringRef::npos); 1422 1423 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1424 if (!C) 1425 return; 1426 unsigned Val = C->getZExtValue(); 1427 1428 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1429 for (auto H : Hints) { 1430 if (Name == H->Name) { 1431 if (H->validate(Val)) 1432 H->Value = Val; 1433 else 1434 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1435 break; 1436 } 1437 } 1438 } 1439 1440 /// Create a new hint from name / value pair. 1441 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1442 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1443 Metadata *MDs[] = {MDString::get(Context, Name), 1444 ConstantAsMetadata::get( 1445 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1446 return MDNode::get(Context, MDs); 1447 } 1448 1449 /// Matches metadata with hint name. 1450 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1451 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1452 if (!Name) 1453 return false; 1454 1455 for (auto H : HintTypes) 1456 if (Name->getString().endswith(H.Name)) 1457 return true; 1458 return false; 1459 } 1460 1461 /// Sets current hints into loop metadata, keeping other values intact. 1462 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1463 if (HintTypes.empty()) 1464 return; 1465 1466 // Reserve the first element to LoopID (see below). 1467 SmallVector<Metadata *, 4> MDs(1); 1468 // If the loop already has metadata, then ignore the existing operands. 1469 MDNode *LoopID = TheLoop->getLoopID(); 1470 if (LoopID) { 1471 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1472 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1473 // If node in update list, ignore old value. 1474 if (!matchesHintMetadataName(Node, HintTypes)) 1475 MDs.push_back(Node); 1476 } 1477 } 1478 1479 // Now, add the missing hints. 1480 for (auto H : HintTypes) 1481 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1482 1483 // Replace current metadata node with new one. 1484 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1485 MDNode *NewLoopID = MDNode::get(Context, MDs); 1486 // Set operand 0 to refer to the loop id itself. 1487 NewLoopID->replaceOperandWith(0, NewLoopID); 1488 1489 TheLoop->setLoopID(NewLoopID); 1490 } 1491 1492 /// The loop these hints belong to. 1493 const Loop *TheLoop; 1494 1495 /// Interface to emit optimization remarks. 1496 OptimizationRemarkEmitter &ORE; 1497 }; 1498 1499 } // end anonymous namespace 1500 1501 static void emitMissedWarning(Function *F, Loop *L, 1502 const LoopVectorizeHints &LH, 1503 OptimizationRemarkEmitter *ORE) { 1504 LH.emitRemarkWithHints(); 1505 1506 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1507 if (LH.getWidth() != 1) 1508 ORE->emit(DiagnosticInfoOptimizationFailure( 1509 DEBUG_TYPE, "FailedRequestedVectorization", 1510 L->getStartLoc(), L->getHeader()) 1511 << "loop not vectorized: " 1512 << "failed explicitly specified loop vectorization"); 1513 else if (LH.getInterleave() != 1) 1514 ORE->emit(DiagnosticInfoOptimizationFailure( 1515 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1516 L->getHeader()) 1517 << "loop not interleaved: " 1518 << "failed explicitly specified loop interleaving"); 1519 } 1520 } 1521 1522 namespace { 1523 1524 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1525 /// to what vectorization factor. 1526 /// This class does not look at the profitability of vectorization, only the 1527 /// legality. This class has two main kinds of checks: 1528 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1529 /// will change the order of memory accesses in a way that will change the 1530 /// correctness of the program. 1531 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1532 /// checks for a number of different conditions, such as the availability of a 1533 /// single induction variable, that all types are supported and vectorize-able, 1534 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1535 /// This class is also used by InnerLoopVectorizer for identifying 1536 /// induction variable and the different reduction variables. 1537 class LoopVectorizationLegality { 1538 public: 1539 LoopVectorizationLegality( 1540 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1541 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1542 const TargetTransformInfo *TTI, 1543 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1544 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1545 LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC) 1546 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1547 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H), 1548 DB(DB), AC(AC) {} 1549 1550 /// ReductionList contains the reduction descriptors for all 1551 /// of the reductions that were found in the loop. 1552 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1553 1554 /// InductionList saves induction variables and maps them to the 1555 /// induction descriptor. 1556 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1557 1558 /// RecurrenceSet contains the phi nodes that are recurrences other than 1559 /// inductions and reductions. 1560 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1561 1562 /// Returns true if it is legal to vectorize this loop. 1563 /// This does not mean that it is profitable to vectorize this 1564 /// loop, only that it is legal to do so. 1565 bool canVectorize(); 1566 1567 /// Returns the primary induction variable. 1568 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1569 1570 /// Returns the reduction variables found in the loop. 1571 ReductionList *getReductionVars() { return &Reductions; } 1572 1573 /// Returns the induction variables found in the loop. 1574 InductionList *getInductionVars() { return &Inductions; } 1575 1576 /// Return the first-order recurrences found in the loop. 1577 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1578 1579 /// Return the set of instructions to sink to handle first-order recurrences. 1580 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1581 1582 /// Returns the widest induction type. 1583 Type *getWidestInductionType() { return WidestIndTy; } 1584 1585 /// Returns True if V is a Phi node of an induction variable in this loop. 1586 bool isInductionPhi(const Value *V); 1587 1588 /// Returns True if V is a cast that is part of an induction def-use chain, 1589 /// and had been proven to be redundant under a runtime guard (in other 1590 /// words, the cast has the same SCEV expression as the induction phi). 1591 bool isCastedInductionVariable(const Value *V); 1592 1593 /// Returns True if V can be considered as an induction variable in this 1594 /// loop. V can be the induction phi, or some redundant cast in the def-use 1595 /// chain of the inducion phi. 1596 bool isInductionVariable(const Value *V); 1597 1598 /// Returns True if PN is a reduction variable in this loop. 1599 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1600 1601 /// Returns True if Phi is a first-order recurrence in this loop. 1602 bool isFirstOrderRecurrence(const PHINode *Phi); 1603 1604 /// Return true if the block BB needs to be predicated in order for the loop 1605 /// to be vectorized. 1606 bool blockNeedsPredication(BasicBlock *BB); 1607 1608 /// Check if this pointer is consecutive when vectorizing. This happens 1609 /// when the last index of the GEP is the induction variable, or that the 1610 /// pointer itself is an induction variable. 1611 /// This check allows us to vectorize A[idx] into a wide load/store. 1612 /// Returns: 1613 /// 0 - Stride is unknown or non-consecutive. 1614 /// 1 - Address is consecutive. 1615 /// -1 - Address is consecutive, and decreasing. 1616 /// NOTE: This method must only be used before modifying the original scalar 1617 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1618 int isConsecutivePtr(Value *Ptr); 1619 1620 /// Returns true if the value V is uniform within the loop. 1621 bool isUniform(Value *V); 1622 1623 /// Returns the information that we collected about runtime memory check. 1624 const RuntimePointerChecking *getRuntimePointerChecking() const { 1625 return LAI->getRuntimePointerChecking(); 1626 } 1627 1628 const LoopAccessInfo *getLAI() const { return LAI; } 1629 1630 /// \brief Check if \p Instr belongs to any interleaved access group. 1631 bool isAccessInterleaved(Instruction *Instr) { 1632 return InterleaveInfo.isInterleaved(Instr); 1633 } 1634 1635 /// \brief Get the interleaved access group that \p Instr belongs to. 1636 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1637 return InterleaveInfo.getInterleaveGroup(Instr); 1638 } 1639 1640 /// \brief Returns true if an interleaved group requires a scalar iteration 1641 /// to handle accesses with gaps. 1642 bool requiresScalarEpilogue() const { 1643 return InterleaveInfo.requiresScalarEpilogue(); 1644 } 1645 1646 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1647 1648 uint64_t getMaxSafeRegisterWidth() const { 1649 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1650 } 1651 1652 bool hasStride(Value *V) { return LAI->hasStride(V); } 1653 1654 /// Returns true if the target machine supports masked store operation 1655 /// for the given \p DataType and kind of access to \p Ptr. 1656 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1657 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1658 } 1659 1660 /// Returns true if the target machine supports masked load operation 1661 /// for the given \p DataType and kind of access to \p Ptr. 1662 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1663 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1664 } 1665 1666 /// Returns true if the target machine supports masked scatter operation 1667 /// for the given \p DataType. 1668 bool isLegalMaskedScatter(Type *DataType) { 1669 return TTI->isLegalMaskedScatter(DataType); 1670 } 1671 1672 /// Returns true if the target machine supports masked gather operation 1673 /// for the given \p DataType. 1674 bool isLegalMaskedGather(Type *DataType) { 1675 return TTI->isLegalMaskedGather(DataType); 1676 } 1677 1678 /// Returns true if the target machine can represent \p V as a masked gather 1679 /// or scatter operation. 1680 bool isLegalGatherOrScatter(Value *V) { 1681 auto *LI = dyn_cast<LoadInst>(V); 1682 auto *SI = dyn_cast<StoreInst>(V); 1683 if (!LI && !SI) 1684 return false; 1685 auto *Ptr = getPointerOperand(V); 1686 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1687 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1688 } 1689 1690 /// Returns true if vector representation of the instruction \p I 1691 /// requires mask. 1692 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1693 1694 unsigned getNumStores() const { return LAI->getNumStores(); } 1695 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1696 unsigned getNumPredStores() const { return NumPredStores; } 1697 1698 /// Returns true if \p I is an instruction that will be scalarized with 1699 /// predication. Such instructions include conditional stores and 1700 /// instructions that may divide by zero. 1701 bool isScalarWithPredication(Instruction *I); 1702 1703 /// Returns true if \p I is a memory instruction with consecutive memory 1704 /// access that can be widened. 1705 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1706 1707 // Returns true if the NoNaN attribute is set on the function. 1708 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1709 1710 private: 1711 /// Check if a single basic block loop is vectorizable. 1712 /// At this point we know that this is a loop with a constant trip count 1713 /// and we only need to check individual instructions. 1714 bool canVectorizeInstrs(); 1715 1716 /// When we vectorize loops we may change the order in which 1717 /// we read and write from memory. This method checks if it is 1718 /// legal to vectorize the code, considering only memory constrains. 1719 /// Returns true if the loop is vectorizable 1720 bool canVectorizeMemory(); 1721 1722 /// Return true if we can vectorize this loop using the IF-conversion 1723 /// transformation. 1724 bool canVectorizeWithIfConvert(); 1725 1726 /// Return true if all of the instructions in the block can be speculatively 1727 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1728 /// and we know that we can read from them without segfault. 1729 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1730 1731 /// Updates the vectorization state by adding \p Phi to the inductions list. 1732 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1733 /// better choice for the main induction than the existing one. 1734 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1735 SmallPtrSetImpl<Value *> &AllowedExit); 1736 1737 /// Create an analysis remark that explains why vectorization failed 1738 /// 1739 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1740 /// an instruction that prevents vectorization. Otherwise the loop is used 1741 /// for the location of the remark. \return the remark object that can be 1742 /// streamed to. 1743 OptimizationRemarkAnalysis 1744 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1745 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1746 RemarkName, TheLoop, I); 1747 } 1748 1749 /// \brief If an access has a symbolic strides, this maps the pointer value to 1750 /// the stride symbol. 1751 const ValueToValueMap *getSymbolicStrides() { 1752 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1753 // it's collected. This happens from canVectorizeWithIfConvert, when the 1754 // pointer is checked to reference consecutive elements suitable for a 1755 // masked access. 1756 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1757 } 1758 1759 unsigned NumPredStores = 0; 1760 1761 /// The loop that we evaluate. 1762 Loop *TheLoop; 1763 1764 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1765 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1766 /// of existing SCEV assumptions. The analysis will also add a minimal set 1767 /// of new predicates if this is required to enable vectorization and 1768 /// unrolling. 1769 PredicatedScalarEvolution &PSE; 1770 1771 /// Target Library Info. 1772 TargetLibraryInfo *TLI; 1773 1774 /// Target Transform Info 1775 const TargetTransformInfo *TTI; 1776 1777 /// Dominator Tree. 1778 DominatorTree *DT; 1779 1780 // LoopAccess analysis. 1781 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1782 1783 // And the loop-accesses info corresponding to this loop. This pointer is 1784 // null until canVectorizeMemory sets it up. 1785 const LoopAccessInfo *LAI = nullptr; 1786 1787 /// Interface to emit optimization remarks. 1788 OptimizationRemarkEmitter *ORE; 1789 1790 /// The interleave access information contains groups of interleaved accesses 1791 /// with the same stride and close to each other. 1792 InterleavedAccessInfo InterleaveInfo; 1793 1794 // --- vectorization state --- // 1795 1796 /// Holds the primary induction variable. This is the counter of the 1797 /// loop. 1798 PHINode *PrimaryInduction = nullptr; 1799 1800 /// Holds the reduction variables. 1801 ReductionList Reductions; 1802 1803 /// Holds all of the induction variables that we found in the loop. 1804 /// Notice that inductions don't need to start at zero and that induction 1805 /// variables can be pointers. 1806 InductionList Inductions; 1807 1808 /// Holds all the casts that participate in the update chain of the induction 1809 /// variables, and that have been proven to be redundant (possibly under a 1810 /// runtime guard). These casts can be ignored when creating the vectorized 1811 /// loop body. 1812 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1813 1814 /// Holds the phi nodes that are first-order recurrences. 1815 RecurrenceSet FirstOrderRecurrences; 1816 1817 /// Holds instructions that need to sink past other instructions to handle 1818 /// first-order recurrences. 1819 DenseMap<Instruction *, Instruction *> SinkAfter; 1820 1821 /// Holds the widest induction type encountered. 1822 Type *WidestIndTy = nullptr; 1823 1824 /// Allowed outside users. This holds the induction and reduction 1825 /// vars which can be accessed from outside the loop. 1826 SmallPtrSet<Value *, 4> AllowedExit; 1827 1828 /// Can we assume the absence of NaNs. 1829 bool HasFunNoNaNAttr = false; 1830 1831 /// Vectorization requirements that will go through late-evaluation. 1832 LoopVectorizationRequirements *Requirements; 1833 1834 /// Used to emit an analysis of any legality issues. 1835 LoopVectorizeHints *Hints; 1836 1837 /// The demanded bits analsyis is used to compute the minimum type size in 1838 /// which a reduction can be computed. 1839 DemandedBits *DB; 1840 1841 /// The assumption cache analysis is used to compute the minimum type size in 1842 /// which a reduction can be computed. 1843 AssumptionCache *AC; 1844 1845 /// While vectorizing these instructions we have to generate a 1846 /// call to the appropriate masked intrinsic 1847 SmallPtrSet<const Instruction *, 8> MaskedOp; 1848 }; 1849 1850 /// LoopVectorizationCostModel - estimates the expected speedups due to 1851 /// vectorization. 1852 /// In many cases vectorization is not profitable. This can happen because of 1853 /// a number of reasons. In this class we mainly attempt to predict the 1854 /// expected speedup/slowdowns due to the supported instruction set. We use the 1855 /// TargetTransformInfo to query the different backends for the cost of 1856 /// different operations. 1857 class LoopVectorizationCostModel { 1858 public: 1859 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1860 LoopInfo *LI, LoopVectorizationLegality *Legal, 1861 const TargetTransformInfo &TTI, 1862 const TargetLibraryInfo *TLI, DemandedBits *DB, 1863 AssumptionCache *AC, 1864 OptimizationRemarkEmitter *ORE, const Function *F, 1865 const LoopVectorizeHints *Hints) 1866 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1867 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1868 1869 /// \return An upper bound for the vectorization factor, or None if 1870 /// vectorization should be avoided up front. 1871 Optional<unsigned> computeMaxVF(bool OptForSize); 1872 1873 /// Information about vectorization costs 1874 struct VectorizationFactor { 1875 // Vector width with best cost 1876 unsigned Width; 1877 1878 // Cost of the loop with that width 1879 unsigned Cost; 1880 }; 1881 1882 /// \return The most profitable vectorization factor and the cost of that VF. 1883 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1884 /// then this vectorization factor will be selected if vectorization is 1885 /// possible. 1886 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1887 1888 /// Setup cost-based decisions for user vectorization factor. 1889 void selectUserVectorizationFactor(unsigned UserVF) { 1890 collectUniformsAndScalars(UserVF); 1891 collectInstsToScalarize(UserVF); 1892 } 1893 1894 /// \return The size (in bits) of the smallest and widest types in the code 1895 /// that needs to be vectorized. We ignore values that remain scalar such as 1896 /// 64 bit loop indices. 1897 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1898 1899 /// \return The desired interleave count. 1900 /// If interleave count has been specified by metadata it will be returned. 1901 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1902 /// are the selected vectorization factor and the cost of the selected VF. 1903 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1904 unsigned LoopCost); 1905 1906 /// Memory access instruction may be vectorized in more than one way. 1907 /// Form of instruction after vectorization depends on cost. 1908 /// This function takes cost-based decisions for Load/Store instructions 1909 /// and collects them in a map. This decisions map is used for building 1910 /// the lists of loop-uniform and loop-scalar instructions. 1911 /// The calculated cost is saved with widening decision in order to 1912 /// avoid redundant calculations. 1913 void setCostBasedWideningDecision(unsigned VF); 1914 1915 /// \brief A struct that represents some properties of the register usage 1916 /// of a loop. 1917 struct RegisterUsage { 1918 /// Holds the number of loop invariant values that are used in the loop. 1919 unsigned LoopInvariantRegs; 1920 1921 /// Holds the maximum number of concurrent live intervals in the loop. 1922 unsigned MaxLocalUsers; 1923 1924 /// Holds the number of instructions in the loop. 1925 unsigned NumInstructions; 1926 }; 1927 1928 /// \return Returns information about the register usages of the loop for the 1929 /// given vectorization factors. 1930 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1931 1932 /// Collect values we want to ignore in the cost model. 1933 void collectValuesToIgnore(); 1934 1935 /// \returns The smallest bitwidth each instruction can be represented with. 1936 /// The vector equivalents of these instructions should be truncated to this 1937 /// type. 1938 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1939 return MinBWs; 1940 } 1941 1942 /// \returns True if it is more profitable to scalarize instruction \p I for 1943 /// vectorization factor \p VF. 1944 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1945 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1946 auto Scalars = InstsToScalarize.find(VF); 1947 assert(Scalars != InstsToScalarize.end() && 1948 "VF not yet analyzed for scalarization profitability"); 1949 return Scalars->second.count(I); 1950 } 1951 1952 /// Returns true if \p I is known to be uniform after vectorization. 1953 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1954 if (VF == 1) 1955 return true; 1956 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1957 auto UniformsPerVF = Uniforms.find(VF); 1958 return UniformsPerVF->second.count(I); 1959 } 1960 1961 /// Returns true if \p I is known to be scalar after vectorization. 1962 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1963 if (VF == 1) 1964 return true; 1965 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1966 auto ScalarsPerVF = Scalars.find(VF); 1967 return ScalarsPerVF->second.count(I); 1968 } 1969 1970 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1971 /// for vectorization factor \p VF. 1972 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1973 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1974 !isScalarAfterVectorization(I, VF); 1975 } 1976 1977 /// Decision that was taken during cost calculation for memory instruction. 1978 enum InstWidening { 1979 CM_Unknown, 1980 CM_Widen, // For consecutive accesses with stride +1. 1981 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1982 CM_Interleave, 1983 CM_GatherScatter, 1984 CM_Scalarize 1985 }; 1986 1987 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1988 /// instruction \p I and vector width \p VF. 1989 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1990 unsigned Cost) { 1991 assert(VF >= 2 && "Expected VF >=2"); 1992 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1993 } 1994 1995 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1996 /// interleaving group \p Grp and vector width \p VF. 1997 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1998 InstWidening W, unsigned Cost) { 1999 assert(VF >= 2 && "Expected VF >=2"); 2000 /// Broadcast this decicion to all instructions inside the group. 2001 /// But the cost will be assigned to one instruction only. 2002 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 2003 if (auto *I = Grp->getMember(i)) { 2004 if (Grp->getInsertPos() == I) 2005 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 2006 else 2007 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 2008 } 2009 } 2010 } 2011 2012 /// Return the cost model decision for the given instruction \p I and vector 2013 /// width \p VF. Return CM_Unknown if this instruction did not pass 2014 /// through the cost modeling. 2015 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 2016 assert(VF >= 2 && "Expected VF >=2"); 2017 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2018 auto Itr = WideningDecisions.find(InstOnVF); 2019 if (Itr == WideningDecisions.end()) 2020 return CM_Unknown; 2021 return Itr->second.first; 2022 } 2023 2024 /// Return the vectorization cost for the given instruction \p I and vector 2025 /// width \p VF. 2026 unsigned getWideningCost(Instruction *I, unsigned VF) { 2027 assert(VF >= 2 && "Expected VF >=2"); 2028 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2029 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2030 return WideningDecisions[InstOnVF].second; 2031 } 2032 2033 /// Return True if instruction \p I is an optimizable truncate whose operand 2034 /// is an induction variable. Such a truncate will be removed by adding a new 2035 /// induction variable with the destination type. 2036 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2037 // If the instruction is not a truncate, return false. 2038 auto *Trunc = dyn_cast<TruncInst>(I); 2039 if (!Trunc) 2040 return false; 2041 2042 // Get the source and destination types of the truncate. 2043 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2044 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2045 2046 // If the truncate is free for the given types, return false. Replacing a 2047 // free truncate with an induction variable would add an induction variable 2048 // update instruction to each iteration of the loop. We exclude from this 2049 // check the primary induction variable since it will need an update 2050 // instruction regardless. 2051 Value *Op = Trunc->getOperand(0); 2052 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2053 return false; 2054 2055 // If the truncated value is not an induction variable, return false. 2056 return Legal->isInductionPhi(Op); 2057 } 2058 2059 /// Collects the instructions to scalarize for each predicated instruction in 2060 /// the loop. 2061 void collectInstsToScalarize(unsigned VF); 2062 2063 /// Collect Uniform and Scalar values for the given \p VF. 2064 /// The sets depend on CM decision for Load/Store instructions 2065 /// that may be vectorized as interleave, gather-scatter or scalarized. 2066 void collectUniformsAndScalars(unsigned VF) { 2067 // Do the analysis once. 2068 if (VF == 1 || Uniforms.count(VF)) 2069 return; 2070 setCostBasedWideningDecision(VF); 2071 collectLoopUniforms(VF); 2072 collectLoopScalars(VF); 2073 } 2074 2075 private: 2076 /// \return An upper bound for the vectorization factor, larger than zero. 2077 /// One is returned if vectorization should best be avoided due to cost. 2078 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2079 2080 /// The vectorization cost is a combination of the cost itself and a boolean 2081 /// indicating whether any of the contributing operations will actually 2082 /// operate on 2083 /// vector values after type legalization in the backend. If this latter value 2084 /// is 2085 /// false, then all operations will be scalarized (i.e. no vectorization has 2086 /// actually taken place). 2087 using VectorizationCostTy = std::pair<unsigned, bool>; 2088 2089 /// Returns the expected execution cost. The unit of the cost does 2090 /// not matter because we use the 'cost' units to compare different 2091 /// vector widths. The cost that is returned is *not* normalized by 2092 /// the factor width. 2093 VectorizationCostTy expectedCost(unsigned VF); 2094 2095 /// Returns the execution time cost of an instruction for a given vector 2096 /// width. Vector width of one means scalar. 2097 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2098 2099 /// The cost-computation logic from getInstructionCost which provides 2100 /// the vector type as an output parameter. 2101 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2102 2103 /// Calculate vectorization cost of memory instruction \p I. 2104 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2105 2106 /// The cost computation for scalarized memory instruction. 2107 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2108 2109 /// The cost computation for interleaving group of memory instructions. 2110 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2111 2112 /// The cost computation for Gather/Scatter instruction. 2113 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2114 2115 /// The cost computation for widening instruction \p I with consecutive 2116 /// memory access. 2117 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2118 2119 /// The cost calculation for Load instruction \p I with uniform pointer - 2120 /// scalar load + broadcast. 2121 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2122 2123 /// Returns whether the instruction is a load or store and will be a emitted 2124 /// as a vector operation. 2125 bool isConsecutiveLoadOrStore(Instruction *I); 2126 2127 /// Create an analysis remark that explains why vectorization failed 2128 /// 2129 /// \p RemarkName is the identifier for the remark. \return the remark object 2130 /// that can be streamed to. 2131 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2132 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2133 RemarkName, TheLoop); 2134 } 2135 2136 /// Map of scalar integer values to the smallest bitwidth they can be legally 2137 /// represented as. The vector equivalents of these values should be truncated 2138 /// to this type. 2139 MapVector<Instruction *, uint64_t> MinBWs; 2140 2141 /// A type representing the costs for instructions if they were to be 2142 /// scalarized rather than vectorized. The entries are Instruction-Cost 2143 /// pairs. 2144 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2145 2146 /// A set containing all BasicBlocks that are known to present after 2147 /// vectorization as a predicated block. 2148 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2149 2150 /// A map holding scalar costs for different vectorization factors. The 2151 /// presence of a cost for an instruction in the mapping indicates that the 2152 /// instruction will be scalarized when vectorizing with the associated 2153 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2154 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2155 2156 /// Holds the instructions known to be uniform after vectorization. 2157 /// The data is collected per VF. 2158 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2159 2160 /// Holds the instructions known to be scalar after vectorization. 2161 /// The data is collected per VF. 2162 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2163 2164 /// Holds the instructions (address computations) that are forced to be 2165 /// scalarized. 2166 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2167 2168 /// Returns the expected difference in cost from scalarizing the expression 2169 /// feeding a predicated instruction \p PredInst. The instructions to 2170 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2171 /// non-negative return value implies the expression will be scalarized. 2172 /// Currently, only single-use chains are considered for scalarization. 2173 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2174 unsigned VF); 2175 2176 /// Collect the instructions that are uniform after vectorization. An 2177 /// instruction is uniform if we represent it with a single scalar value in 2178 /// the vectorized loop corresponding to each vector iteration. Examples of 2179 /// uniform instructions include pointer operands of consecutive or 2180 /// interleaved memory accesses. Note that although uniformity implies an 2181 /// instruction will be scalar, the reverse is not true. In general, a 2182 /// scalarized instruction will be represented by VF scalar values in the 2183 /// vectorized loop, each corresponding to an iteration of the original 2184 /// scalar loop. 2185 void collectLoopUniforms(unsigned VF); 2186 2187 /// Collect the instructions that are scalar after vectorization. An 2188 /// instruction is scalar if it is known to be uniform or will be scalarized 2189 /// during vectorization. Non-uniform scalarized instructions will be 2190 /// represented by VF values in the vectorized loop, each corresponding to an 2191 /// iteration of the original scalar loop. 2192 void collectLoopScalars(unsigned VF); 2193 2194 /// Keeps cost model vectorization decision and cost for instructions. 2195 /// Right now it is used for memory instructions only. 2196 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2197 std::pair<InstWidening, unsigned>>; 2198 2199 DecisionList WideningDecisions; 2200 2201 public: 2202 /// The loop that we evaluate. 2203 Loop *TheLoop; 2204 2205 /// Predicated scalar evolution analysis. 2206 PredicatedScalarEvolution &PSE; 2207 2208 /// Loop Info analysis. 2209 LoopInfo *LI; 2210 2211 /// Vectorization legality. 2212 LoopVectorizationLegality *Legal; 2213 2214 /// Vector target information. 2215 const TargetTransformInfo &TTI; 2216 2217 /// Target Library Info. 2218 const TargetLibraryInfo *TLI; 2219 2220 /// Demanded bits analysis. 2221 DemandedBits *DB; 2222 2223 /// Assumption cache. 2224 AssumptionCache *AC; 2225 2226 /// Interface to emit optimization remarks. 2227 OptimizationRemarkEmitter *ORE; 2228 2229 const Function *TheFunction; 2230 2231 /// Loop Vectorize Hint. 2232 const LoopVectorizeHints *Hints; 2233 2234 /// Values to ignore in the cost model. 2235 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2236 2237 /// Values to ignore in the cost model when VF > 1. 2238 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2239 }; 2240 2241 } // end anonymous namespace 2242 2243 namespace llvm { 2244 2245 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2246 /// LoopVectorizationPlanner - drives the vectorization process after having 2247 /// passed Legality checks. 2248 /// The planner builds and optimizes the Vectorization Plans which record the 2249 /// decisions how to vectorize the given loop. In particular, represent the 2250 /// control-flow of the vectorized version, the replication of instructions that 2251 /// are to be scalarized, and interleave access groups. 2252 class LoopVectorizationPlanner { 2253 /// The loop that we evaluate. 2254 Loop *OrigLoop; 2255 2256 /// Loop Info analysis. 2257 LoopInfo *LI; 2258 2259 /// Target Library Info. 2260 const TargetLibraryInfo *TLI; 2261 2262 /// Target Transform Info. 2263 const TargetTransformInfo *TTI; 2264 2265 /// The legality analysis. 2266 LoopVectorizationLegality *Legal; 2267 2268 /// The profitablity analysis. 2269 LoopVectorizationCostModel &CM; 2270 2271 using VPlanPtr = std::unique_ptr<VPlan>; 2272 2273 SmallVector<VPlanPtr, 4> VPlans; 2274 2275 /// This class is used to enable the VPlan to invoke a method of ILV. This is 2276 /// needed until the method is refactored out of ILV and becomes reusable. 2277 struct VPCallbackILV : public VPCallback { 2278 InnerLoopVectorizer &ILV; 2279 2280 VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} 2281 2282 Value *getOrCreateVectorValues(Value *V, unsigned Part) override { 2283 return ILV.getOrCreateVectorValue(V, Part); 2284 } 2285 }; 2286 2287 /// A builder used to construct the current plan. 2288 VPBuilder Builder; 2289 2290 /// When we if-convert we need to create edge masks. We have to cache values 2291 /// so that we don't end up with exponential recursion/IR. Note that 2292 /// if-conversion currently takes place during VPlan-construction, so these 2293 /// caches are only used at that stage. 2294 using EdgeMaskCacheTy = 2295 DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>; 2296 using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>; 2297 EdgeMaskCacheTy EdgeMaskCache; 2298 BlockMaskCacheTy BlockMaskCache; 2299 2300 unsigned BestVF = 0; 2301 unsigned BestUF = 0; 2302 2303 public: 2304 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2305 const TargetTransformInfo *TTI, 2306 LoopVectorizationLegality *Legal, 2307 LoopVectorizationCostModel &CM) 2308 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {} 2309 2310 /// Plan how to best vectorize, return the best VF and its cost. 2311 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2312 unsigned UserVF); 2313 2314 /// Finalize the best decision and dispose of all other VPlans. 2315 void setBestPlan(unsigned VF, unsigned UF); 2316 2317 /// Generate the IR code for the body of the vectorized loop according to the 2318 /// best selected VPlan. 2319 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2320 2321 void printPlans(raw_ostream &O) { 2322 for (const auto &Plan : VPlans) 2323 O << *Plan; 2324 } 2325 2326 protected: 2327 /// Collect the instructions from the original loop that would be trivially 2328 /// dead in the vectorized loop if generated. 2329 void collectTriviallyDeadInstructions( 2330 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2331 2332 /// A range of powers-of-2 vectorization factors with fixed start and 2333 /// adjustable end. The range includes start and excludes end, e.g.,: 2334 /// [1, 9) = {1, 2, 4, 8} 2335 struct VFRange { 2336 // A power of 2. 2337 const unsigned Start; 2338 2339 // Need not be a power of 2. If End <= Start range is empty. 2340 unsigned End; 2341 }; 2342 2343 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2344 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2345 /// returned value holds for the entire \p Range. 2346 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2347 VFRange &Range); 2348 2349 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2350 /// according to the information gathered by Legal when it checked if it is 2351 /// legal to vectorize the loop. 2352 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2353 2354 private: 2355 /// A helper function that computes the predicate of the block BB, assuming 2356 /// that the header block of the loop is set to True. It returns the *entry* 2357 /// mask for the block BB. 2358 VPValue *createBlockInMask(BasicBlock *BB, VPlanPtr &Plan); 2359 2360 /// A helper function that computes the predicate of the edge between SRC 2361 /// and DST. 2362 VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst, VPlanPtr &Plan); 2363 2364 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2365 /// \return true in the first returned value if so and false otherwise. 2366 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2367 /// for \p Range.Start, and provide it as the second returned value. 2368 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2369 /// \return value is <true, nullptr>, as it is handled by another recipe. 2370 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2371 /// to \p Range.End. 2372 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2373 2374 // Check if \I is a memory instruction to be widened for \p Range.Start and 2375 // potentially masked. Such instructions are handled by a recipe that takes an 2376 // additional VPInstruction for the mask. 2377 VPWidenMemoryInstructionRecipe *tryToWidenMemory(Instruction *I, 2378 VFRange &Range, 2379 VPlanPtr &Plan); 2380 2381 /// Check if an induction recipe should be constructed for \I within the given 2382 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2383 /// may be decreased to ensure same decision from \p Range.Start to 2384 /// \p Range.End. 2385 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2386 VFRange &Range); 2387 2388 /// Handle non-loop phi nodes. Currently all such phi nodes are turned into 2389 /// a sequence of select instructions as the vectorizer currently performs 2390 /// full if-conversion. 2391 VPBlendRecipe *tryToBlend(Instruction *I, VPlanPtr &Plan); 2392 2393 /// Check if \p I can be widened within the given VF \p Range. If \p I can be 2394 /// widened for \p Range.Start, check if the last recipe of \p VPBB can be 2395 /// extended to include \p I or else build a new VPWidenRecipe for it and 2396 /// append it to \p VPBB. Return true if \p I can be widened for Range.Start, 2397 /// false otherwise. Range.End may be decreased to ensure same decision from 2398 /// \p Range.Start to \p Range.End. 2399 bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range); 2400 2401 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2402 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2403 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2404 /// Region. Update the packing decision of predicated instructions if they 2405 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2406 /// \p Range.Start to \p Range.End. 2407 VPBasicBlock *handleReplication( 2408 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2409 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 2410 VPlanPtr &Plan); 2411 2412 /// Create a replicating region for instruction \p I that requires 2413 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2414 VPRegionBlock *createReplicateRegion(Instruction *I, VPRecipeBase *PredRecipe, 2415 VPlanPtr &Plan); 2416 2417 /// Build a VPlan according to the information gathered by Legal. \return a 2418 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2419 /// exclusive, possibly decreasing \p Range.End. 2420 VPlanPtr buildVPlan(VFRange &Range, 2421 const SmallPtrSetImpl<Value *> &NeedDef); 2422 }; 2423 2424 } // end namespace llvm 2425 2426 namespace { 2427 2428 /// \brief This holds vectorization requirements that must be verified late in 2429 /// the process. The requirements are set by legalize and costmodel. Once 2430 /// vectorization has been determined to be possible and profitable the 2431 /// requirements can be verified by looking for metadata or compiler options. 2432 /// For example, some loops require FP commutativity which is only allowed if 2433 /// vectorization is explicitly specified or if the fast-math compiler option 2434 /// has been provided. 2435 /// Late evaluation of these requirements allows helpful diagnostics to be 2436 /// composed that tells the user what need to be done to vectorize the loop. For 2437 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2438 /// evaluation should be used only when diagnostics can generated that can be 2439 /// followed by a non-expert user. 2440 class LoopVectorizationRequirements { 2441 public: 2442 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2443 2444 void addUnsafeAlgebraInst(Instruction *I) { 2445 // First unsafe algebra instruction. 2446 if (!UnsafeAlgebraInst) 2447 UnsafeAlgebraInst = I; 2448 } 2449 2450 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2451 2452 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2453 const char *PassName = Hints.vectorizeAnalysisPassName(); 2454 bool Failed = false; 2455 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2456 ORE.emit([&]() { 2457 return OptimizationRemarkAnalysisFPCommute( 2458 PassName, "CantReorderFPOps", 2459 UnsafeAlgebraInst->getDebugLoc(), 2460 UnsafeAlgebraInst->getParent()) 2461 << "loop not vectorized: cannot prove it is safe to reorder " 2462 "floating-point operations"; 2463 }); 2464 Failed = true; 2465 } 2466 2467 // Test if runtime memcheck thresholds are exceeded. 2468 bool PragmaThresholdReached = 2469 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2470 bool ThresholdReached = 2471 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2472 if ((ThresholdReached && !Hints.allowReordering()) || 2473 PragmaThresholdReached) { 2474 ORE.emit([&]() { 2475 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2476 L->getStartLoc(), 2477 L->getHeader()) 2478 << "loop not vectorized: cannot prove it is safe to reorder " 2479 "memory operations"; 2480 }); 2481 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2482 Failed = true; 2483 } 2484 2485 return Failed; 2486 } 2487 2488 private: 2489 unsigned NumRuntimePointerChecks = 0; 2490 Instruction *UnsafeAlgebraInst = nullptr; 2491 2492 /// Interface to emit optimization remarks. 2493 OptimizationRemarkEmitter &ORE; 2494 }; 2495 2496 } // end anonymous namespace 2497 2498 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2499 if (L.empty()) { 2500 if (!hasCyclesInLoopBody(L)) 2501 V.push_back(&L); 2502 return; 2503 } 2504 for (Loop *InnerL : L) 2505 addAcyclicInnerLoop(*InnerL, V); 2506 } 2507 2508 namespace { 2509 2510 /// The LoopVectorize Pass. 2511 struct LoopVectorize : public FunctionPass { 2512 /// Pass identification, replacement for typeid 2513 static char ID; 2514 2515 LoopVectorizePass Impl; 2516 2517 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2518 : FunctionPass(ID) { 2519 Impl.DisableUnrolling = NoUnrolling; 2520 Impl.AlwaysVectorize = AlwaysVectorize; 2521 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2522 } 2523 2524 bool runOnFunction(Function &F) override { 2525 if (skipFunction(F)) 2526 return false; 2527 2528 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2529 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2530 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2531 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2532 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2533 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2534 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2535 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2536 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2537 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2538 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2539 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2540 2541 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2542 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2543 2544 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2545 GetLAA, *ORE); 2546 } 2547 2548 void getAnalysisUsage(AnalysisUsage &AU) const override { 2549 AU.addRequired<AssumptionCacheTracker>(); 2550 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2551 AU.addRequired<DominatorTreeWrapperPass>(); 2552 AU.addRequired<LoopInfoWrapperPass>(); 2553 AU.addRequired<ScalarEvolutionWrapperPass>(); 2554 AU.addRequired<TargetTransformInfoWrapperPass>(); 2555 AU.addRequired<AAResultsWrapperPass>(); 2556 AU.addRequired<LoopAccessLegacyAnalysis>(); 2557 AU.addRequired<DemandedBitsWrapperPass>(); 2558 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2559 AU.addPreserved<LoopInfoWrapperPass>(); 2560 AU.addPreserved<DominatorTreeWrapperPass>(); 2561 AU.addPreserved<BasicAAWrapperPass>(); 2562 AU.addPreserved<GlobalsAAWrapperPass>(); 2563 } 2564 }; 2565 2566 } // end anonymous namespace 2567 2568 //===----------------------------------------------------------------------===// 2569 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2570 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2571 //===----------------------------------------------------------------------===// 2572 2573 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2574 // We need to place the broadcast of invariant variables outside the loop. 2575 Instruction *Instr = dyn_cast<Instruction>(V); 2576 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2577 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2578 2579 // Place the code for broadcasting invariant variables in the new preheader. 2580 IRBuilder<>::InsertPointGuard Guard(Builder); 2581 if (Invariant) 2582 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2583 2584 // Broadcast the scalar into all locations in the vector. 2585 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2586 2587 return Shuf; 2588 } 2589 2590 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2591 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2592 Value *Start = II.getStartValue(); 2593 2594 // Construct the initial value of the vector IV in the vector loop preheader 2595 auto CurrIP = Builder.saveIP(); 2596 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2597 if (isa<TruncInst>(EntryVal)) { 2598 assert(Start->getType()->isIntegerTy() && 2599 "Truncation requires an integer type"); 2600 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2601 Step = Builder.CreateTrunc(Step, TruncType); 2602 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2603 } 2604 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2605 Value *SteppedStart = 2606 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2607 2608 // We create vector phi nodes for both integer and floating-point induction 2609 // variables. Here, we determine the kind of arithmetic we will perform. 2610 Instruction::BinaryOps AddOp; 2611 Instruction::BinaryOps MulOp; 2612 if (Step->getType()->isIntegerTy()) { 2613 AddOp = Instruction::Add; 2614 MulOp = Instruction::Mul; 2615 } else { 2616 AddOp = II.getInductionOpcode(); 2617 MulOp = Instruction::FMul; 2618 } 2619 2620 // Multiply the vectorization factor by the step using integer or 2621 // floating-point arithmetic as appropriate. 2622 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2623 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2624 2625 // Create a vector splat to use in the induction update. 2626 // 2627 // FIXME: If the step is non-constant, we create the vector splat with 2628 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2629 // handle a constant vector splat. 2630 Value *SplatVF = isa<Constant>(Mul) 2631 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2632 : Builder.CreateVectorSplat(VF, Mul); 2633 Builder.restoreIP(CurrIP); 2634 2635 // We may need to add the step a number of times, depending on the unroll 2636 // factor. The last of those goes into the PHI. 2637 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2638 &*LoopVectorBody->getFirstInsertionPt()); 2639 Instruction *LastInduction = VecInd; 2640 for (unsigned Part = 0; Part < UF; ++Part) { 2641 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2642 2643 if (isa<TruncInst>(EntryVal)) 2644 addMetadata(LastInduction, EntryVal); 2645 else 2646 recordVectorLoopValueForInductionCast(II, LastInduction, Part); 2647 2648 LastInduction = cast<Instruction>(addFastMathFlag( 2649 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2650 } 2651 2652 // Move the last step to the end of the latch block. This ensures consistent 2653 // placement of all induction updates. 2654 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2655 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2656 auto *ICmp = cast<Instruction>(Br->getCondition()); 2657 LastInduction->moveBefore(ICmp); 2658 LastInduction->setName("vec.ind.next"); 2659 2660 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2661 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2662 } 2663 2664 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2665 return Cost->isScalarAfterVectorization(I, VF) || 2666 Cost->isProfitableToScalarize(I, VF); 2667 } 2668 2669 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2670 if (shouldScalarizeInstruction(IV)) 2671 return true; 2672 auto isScalarInst = [&](User *U) -> bool { 2673 auto *I = cast<Instruction>(U); 2674 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2675 }; 2676 return llvm::any_of(IV->users(), isScalarInst); 2677 } 2678 2679 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2680 const InductionDescriptor &ID, Value *VectorLoopVal, unsigned Part, 2681 unsigned Lane) { 2682 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2683 if (Casts.empty()) 2684 return; 2685 // Only the first Cast instruction in the Casts vector is of interest. 2686 // The rest of the Casts (if exist) have no uses outside the 2687 // induction update chain itself. 2688 Instruction *CastInst = *Casts.begin(); 2689 if (Lane < UINT_MAX) 2690 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2691 else 2692 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2693 } 2694 2695 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2696 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2697 "Primary induction variable must have an integer type"); 2698 2699 auto II = Legal->getInductionVars()->find(IV); 2700 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2701 2702 auto ID = II->second; 2703 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2704 2705 // The scalar value to broadcast. This will be derived from the canonical 2706 // induction variable. 2707 Value *ScalarIV = nullptr; 2708 2709 // The value from the original loop to which we are mapping the new induction 2710 // variable. 2711 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2712 2713 // True if we have vectorized the induction variable. 2714 auto VectorizedIV = false; 2715 2716 // Determine if we want a scalar version of the induction variable. This is 2717 // true if the induction variable itself is not widened, or if it has at 2718 // least one user in the loop that is not widened. 2719 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2720 2721 // Generate code for the induction step. Note that induction steps are 2722 // required to be loop-invariant 2723 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2724 "Induction step should be loop invariant"); 2725 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2726 Value *Step = nullptr; 2727 if (PSE.getSE()->isSCEVable(IV->getType())) { 2728 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2729 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2730 LoopVectorPreHeader->getTerminator()); 2731 } else { 2732 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2733 } 2734 2735 // Try to create a new independent vector induction variable. If we can't 2736 // create the phi node, we will splat the scalar induction variable in each 2737 // loop iteration. 2738 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2739 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2740 VectorizedIV = true; 2741 } 2742 2743 // If we haven't yet vectorized the induction variable, or if we will create 2744 // a scalar one, we need to define the scalar induction variable and step 2745 // values. If we were given a truncation type, truncate the canonical 2746 // induction variable and step. Otherwise, derive these values from the 2747 // induction descriptor. 2748 if (!VectorizedIV || NeedsScalarIV) { 2749 ScalarIV = Induction; 2750 if (IV != OldInduction) { 2751 ScalarIV = IV->getType()->isIntegerTy() 2752 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2753 : Builder.CreateCast(Instruction::SIToFP, Induction, 2754 IV->getType()); 2755 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2756 ScalarIV->setName("offset.idx"); 2757 } 2758 if (Trunc) { 2759 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2760 assert(Step->getType()->isIntegerTy() && 2761 "Truncation requires an integer step"); 2762 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2763 Step = Builder.CreateTrunc(Step, TruncType); 2764 } 2765 } 2766 2767 // If we haven't yet vectorized the induction variable, splat the scalar 2768 // induction variable, and build the necessary step vectors. 2769 // TODO: Don't do it unless the vectorized IV is really required. 2770 if (!VectorizedIV) { 2771 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2772 for (unsigned Part = 0; Part < UF; ++Part) { 2773 Value *EntryPart = 2774 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2775 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2776 if (Trunc) 2777 addMetadata(EntryPart, Trunc); 2778 else 2779 recordVectorLoopValueForInductionCast(ID, EntryPart, Part); 2780 } 2781 } 2782 2783 // If an induction variable is only used for counting loop iterations or 2784 // calculating addresses, it doesn't need to be widened. Create scalar steps 2785 // that can be used by instructions we will later scalarize. Note that the 2786 // addition of the scalar steps will not increase the number of instructions 2787 // in the loop in the common case prior to InstCombine. We will be trading 2788 // one vector extract for each scalar step. 2789 if (NeedsScalarIV) 2790 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2791 } 2792 2793 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2794 Instruction::BinaryOps BinOp) { 2795 // Create and check the types. 2796 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2797 int VLen = Val->getType()->getVectorNumElements(); 2798 2799 Type *STy = Val->getType()->getScalarType(); 2800 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2801 "Induction Step must be an integer or FP"); 2802 assert(Step->getType() == STy && "Step has wrong type"); 2803 2804 SmallVector<Constant *, 8> Indices; 2805 2806 if (STy->isIntegerTy()) { 2807 // Create a vector of consecutive numbers from zero to VF. 2808 for (int i = 0; i < VLen; ++i) 2809 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2810 2811 // Add the consecutive indices to the vector value. 2812 Constant *Cv = ConstantVector::get(Indices); 2813 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2814 Step = Builder.CreateVectorSplat(VLen, Step); 2815 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2816 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2817 // which can be found from the original scalar operations. 2818 Step = Builder.CreateMul(Cv, Step); 2819 return Builder.CreateAdd(Val, Step, "induction"); 2820 } 2821 2822 // Floating point induction. 2823 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2824 "Binary Opcode should be specified for FP induction"); 2825 // Create a vector of consecutive numbers from zero to VF. 2826 for (int i = 0; i < VLen; ++i) 2827 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2828 2829 // Add the consecutive indices to the vector value. 2830 Constant *Cv = ConstantVector::get(Indices); 2831 2832 Step = Builder.CreateVectorSplat(VLen, Step); 2833 2834 // Floating point operations had to be 'fast' to enable the induction. 2835 FastMathFlags Flags; 2836 Flags.setFast(); 2837 2838 Value *MulOp = Builder.CreateFMul(Cv, Step); 2839 if (isa<Instruction>(MulOp)) 2840 // Have to check, MulOp may be a constant 2841 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2842 2843 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2844 if (isa<Instruction>(BOp)) 2845 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2846 return BOp; 2847 } 2848 2849 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2850 Value *EntryVal, 2851 const InductionDescriptor &ID) { 2852 // We shouldn't have to build scalar steps if we aren't vectorizing. 2853 assert(VF > 1 && "VF should be greater than one"); 2854 2855 // Get the value type and ensure it and the step have the same integer type. 2856 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2857 assert(ScalarIVTy == Step->getType() && 2858 "Val and Step should have the same type"); 2859 2860 // We build scalar steps for both integer and floating-point induction 2861 // variables. Here, we determine the kind of arithmetic we will perform. 2862 Instruction::BinaryOps AddOp; 2863 Instruction::BinaryOps MulOp; 2864 if (ScalarIVTy->isIntegerTy()) { 2865 AddOp = Instruction::Add; 2866 MulOp = Instruction::Mul; 2867 } else { 2868 AddOp = ID.getInductionOpcode(); 2869 MulOp = Instruction::FMul; 2870 } 2871 2872 // Determine the number of scalars we need to generate for each unroll 2873 // iteration. If EntryVal is uniform, we only need to generate the first 2874 // lane. Otherwise, we generate all VF values. 2875 unsigned Lanes = 2876 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2877 : VF; 2878 // Compute the scalar steps and save the results in VectorLoopValueMap. 2879 for (unsigned Part = 0; Part < UF; ++Part) { 2880 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2881 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2882 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2883 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2884 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2885 recordVectorLoopValueForInductionCast(ID, Add, Part, Lane); 2886 } 2887 } 2888 } 2889 2890 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2891 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2892 ValueToValueMap(); 2893 2894 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2895 if (Stride == 1 || Stride == -1) 2896 return Stride; 2897 return 0; 2898 } 2899 2900 bool LoopVectorizationLegality::isUniform(Value *V) { 2901 return LAI->isUniform(V); 2902 } 2903 2904 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2905 assert(V != Induction && "The new induction variable should not be used."); 2906 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2907 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2908 2909 // If we have a stride that is replaced by one, do it here. 2910 if (Legal->hasStride(V)) 2911 V = ConstantInt::get(V->getType(), 1); 2912 2913 // If we have a vector mapped to this value, return it. 2914 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2915 return VectorLoopValueMap.getVectorValue(V, Part); 2916 2917 // If the value has not been vectorized, check if it has been scalarized 2918 // instead. If it has been scalarized, and we actually need the value in 2919 // vector form, we will construct the vector values on demand. 2920 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2921 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2922 2923 // If we've scalarized a value, that value should be an instruction. 2924 auto *I = cast<Instruction>(V); 2925 2926 // If we aren't vectorizing, we can just copy the scalar map values over to 2927 // the vector map. 2928 if (VF == 1) { 2929 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2930 return ScalarValue; 2931 } 2932 2933 // Get the last scalar instruction we generated for V and Part. If the value 2934 // is known to be uniform after vectorization, this corresponds to lane zero 2935 // of the Part unroll iteration. Otherwise, the last instruction is the one 2936 // we created for the last vector lane of the Part unroll iteration. 2937 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2938 auto *LastInst = cast<Instruction>( 2939 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2940 2941 // Set the insert point after the last scalarized instruction. This ensures 2942 // the insertelement sequence will directly follow the scalar definitions. 2943 auto OldIP = Builder.saveIP(); 2944 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2945 Builder.SetInsertPoint(&*NewIP); 2946 2947 // However, if we are vectorizing, we need to construct the vector values. 2948 // If the value is known to be uniform after vectorization, we can just 2949 // broadcast the scalar value corresponding to lane zero for each unroll 2950 // iteration. Otherwise, we construct the vector values using insertelement 2951 // instructions. Since the resulting vectors are stored in 2952 // VectorLoopValueMap, we will only generate the insertelements once. 2953 Value *VectorValue = nullptr; 2954 if (Cost->isUniformAfterVectorization(I, VF)) { 2955 VectorValue = getBroadcastInstrs(ScalarValue); 2956 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2957 } else { 2958 // Initialize packing with insertelements to start from undef. 2959 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2960 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2961 for (unsigned Lane = 0; Lane < VF; ++Lane) 2962 packScalarIntoVectorValue(V, {Part, Lane}); 2963 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2964 } 2965 Builder.restoreIP(OldIP); 2966 return VectorValue; 2967 } 2968 2969 // If this scalar is unknown, assume that it is a constant or that it is 2970 // loop invariant. Broadcast V and save the value for future uses. 2971 Value *B = getBroadcastInstrs(V); 2972 VectorLoopValueMap.setVectorValue(V, Part, B); 2973 return B; 2974 } 2975 2976 Value * 2977 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2978 const VPIteration &Instance) { 2979 // If the value is not an instruction contained in the loop, it should 2980 // already be scalar. 2981 if (OrigLoop->isLoopInvariant(V)) 2982 return V; 2983 2984 assert(Instance.Lane > 0 2985 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2986 : true && "Uniform values only have lane zero"); 2987 2988 // If the value from the original loop has not been vectorized, it is 2989 // represented by UF x VF scalar values in the new loop. Return the requested 2990 // scalar value. 2991 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2992 return VectorLoopValueMap.getScalarValue(V, Instance); 2993 2994 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2995 // for the given unroll part. If this entry is not a vector type (i.e., the 2996 // vectorization factor is one), there is no need to generate an 2997 // extractelement instruction. 2998 auto *U = getOrCreateVectorValue(V, Instance.Part); 2999 if (!U->getType()->isVectorTy()) { 3000 assert(VF == 1 && "Value not scalarized has non-vector type"); 3001 return U; 3002 } 3003 3004 // Otherwise, the value from the original loop has been vectorized and is 3005 // represented by UF vector values. Extract and return the requested scalar 3006 // value from the appropriate vector lane. 3007 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 3008 } 3009 3010 void InnerLoopVectorizer::packScalarIntoVectorValue( 3011 Value *V, const VPIteration &Instance) { 3012 assert(V != Induction && "The new induction variable should not be used."); 3013 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 3014 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 3015 3016 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 3017 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 3018 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 3019 Builder.getInt32(Instance.Lane)); 3020 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 3021 } 3022 3023 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 3024 assert(Vec->getType()->isVectorTy() && "Invalid type"); 3025 SmallVector<Constant *, 8> ShuffleMask; 3026 for (unsigned i = 0; i < VF; ++i) 3027 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 3028 3029 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 3030 ConstantVector::get(ShuffleMask), 3031 "reverse"); 3032 } 3033 3034 // Try to vectorize the interleave group that \p Instr belongs to. 3035 // 3036 // E.g. Translate following interleaved load group (factor = 3): 3037 // for (i = 0; i < N; i+=3) { 3038 // R = Pic[i]; // Member of index 0 3039 // G = Pic[i+1]; // Member of index 1 3040 // B = Pic[i+2]; // Member of index 2 3041 // ... // do something to R, G, B 3042 // } 3043 // To: 3044 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 3045 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 3046 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 3047 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 3048 // 3049 // Or translate following interleaved store group (factor = 3): 3050 // for (i = 0; i < N; i+=3) { 3051 // ... do something to R, G, B 3052 // Pic[i] = R; // Member of index 0 3053 // Pic[i+1] = G; // Member of index 1 3054 // Pic[i+2] = B; // Member of index 2 3055 // } 3056 // To: 3057 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 3058 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 3059 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 3060 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 3061 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 3062 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 3063 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 3064 assert(Group && "Fail to get an interleaved access group."); 3065 3066 // Skip if current instruction is not the insert position. 3067 if (Instr != Group->getInsertPos()) 3068 return; 3069 3070 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3071 Value *Ptr = getPointerOperand(Instr); 3072 3073 // Prepare for the vector type of the interleaved load/store. 3074 Type *ScalarTy = getMemInstValueType(Instr); 3075 unsigned InterleaveFactor = Group->getFactor(); 3076 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 3077 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 3078 3079 // Prepare for the new pointers. 3080 setDebugLocFromInst(Builder, Ptr); 3081 SmallVector<Value *, 2> NewPtrs; 3082 unsigned Index = Group->getIndex(Instr); 3083 3084 // If the group is reverse, adjust the index to refer to the last vector lane 3085 // instead of the first. We adjust the index from the first vector lane, 3086 // rather than directly getting the pointer for lane VF - 1, because the 3087 // pointer operand of the interleaved access is supposed to be uniform. For 3088 // uniform instructions, we're only required to generate a value for the 3089 // first vector lane in each unroll iteration. 3090 if (Group->isReverse()) 3091 Index += (VF - 1) * Group->getFactor(); 3092 3093 for (unsigned Part = 0; Part < UF; Part++) { 3094 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 3095 3096 // Notice current instruction could be any index. Need to adjust the address 3097 // to the member of index 0. 3098 // 3099 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 3100 // b = A[i]; // Member of index 0 3101 // Current pointer is pointed to A[i+1], adjust it to A[i]. 3102 // 3103 // E.g. A[i+1] = a; // Member of index 1 3104 // A[i] = b; // Member of index 0 3105 // A[i+2] = c; // Member of index 2 (Current instruction) 3106 // Current pointer is pointed to A[i+2], adjust it to A[i]. 3107 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 3108 3109 // Cast to the vector pointer type. 3110 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 3111 } 3112 3113 setDebugLocFromInst(Builder, Instr); 3114 Value *UndefVec = UndefValue::get(VecTy); 3115 3116 // Vectorize the interleaved load group. 3117 if (isa<LoadInst>(Instr)) { 3118 // For each unroll part, create a wide load for the group. 3119 SmallVector<Value *, 2> NewLoads; 3120 for (unsigned Part = 0; Part < UF; Part++) { 3121 auto *NewLoad = Builder.CreateAlignedLoad( 3122 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 3123 Group->addMetadata(NewLoad); 3124 NewLoads.push_back(NewLoad); 3125 } 3126 3127 // For each member in the group, shuffle out the appropriate data from the 3128 // wide loads. 3129 for (unsigned I = 0; I < InterleaveFactor; ++I) { 3130 Instruction *Member = Group->getMember(I); 3131 3132 // Skip the gaps in the group. 3133 if (!Member) 3134 continue; 3135 3136 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 3137 for (unsigned Part = 0; Part < UF; Part++) { 3138 Value *StridedVec = Builder.CreateShuffleVector( 3139 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 3140 3141 // If this member has different type, cast the result type. 3142 if (Member->getType() != ScalarTy) { 3143 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 3144 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 3145 } 3146 3147 if (Group->isReverse()) 3148 StridedVec = reverseVector(StridedVec); 3149 3150 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 3151 } 3152 } 3153 return; 3154 } 3155 3156 // The sub vector type for current instruction. 3157 VectorType *SubVT = VectorType::get(ScalarTy, VF); 3158 3159 // Vectorize the interleaved store group. 3160 for (unsigned Part = 0; Part < UF; Part++) { 3161 // Collect the stored vector from each member. 3162 SmallVector<Value *, 4> StoredVecs; 3163 for (unsigned i = 0; i < InterleaveFactor; i++) { 3164 // Interleaved store group doesn't allow a gap, so each index has a member 3165 Instruction *Member = Group->getMember(i); 3166 assert(Member && "Fail to get a member from an interleaved store group"); 3167 3168 Value *StoredVec = getOrCreateVectorValue( 3169 cast<StoreInst>(Member)->getValueOperand(), Part); 3170 if (Group->isReverse()) 3171 StoredVec = reverseVector(StoredVec); 3172 3173 // If this member has different type, cast it to a unified type. 3174 3175 if (StoredVec->getType() != SubVT) 3176 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 3177 3178 StoredVecs.push_back(StoredVec); 3179 } 3180 3181 // Concatenate all vectors into a wide vector. 3182 Value *WideVec = concatenateVectors(Builder, StoredVecs); 3183 3184 // Interleave the elements in the wide vector. 3185 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 3186 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 3187 "interleaved.vec"); 3188 3189 Instruction *NewStoreInstr = 3190 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 3191 3192 Group->addMetadata(NewStoreInstr); 3193 } 3194 } 3195 3196 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 3197 VectorParts *BlockInMask) { 3198 // Attempt to issue a wide load. 3199 LoadInst *LI = dyn_cast<LoadInst>(Instr); 3200 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3201 3202 assert((LI || SI) && "Invalid Load/Store instruction"); 3203 3204 LoopVectorizationCostModel::InstWidening Decision = 3205 Cost->getWideningDecision(Instr, VF); 3206 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3207 "CM decision should be taken at this point"); 3208 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3209 return vectorizeInterleaveGroup(Instr); 3210 3211 Type *ScalarDataTy = getMemInstValueType(Instr); 3212 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3213 Value *Ptr = getPointerOperand(Instr); 3214 unsigned Alignment = getMemInstAlignment(Instr); 3215 // An alignment of 0 means target abi alignment. We need to use the scalar's 3216 // target abi alignment in such a case. 3217 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3218 if (!Alignment) 3219 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3220 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3221 3222 // Determine if the pointer operand of the access is either consecutive or 3223 // reverse consecutive. 3224 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3225 bool ConsecutiveStride = 3226 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3227 bool CreateGatherScatter = 3228 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3229 3230 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3231 // gather/scatter. Otherwise Decision should have been to Scalarize. 3232 assert((ConsecutiveStride || CreateGatherScatter) && 3233 "The instruction should be scalarized"); 3234 3235 // Handle consecutive loads/stores. 3236 if (ConsecutiveStride) 3237 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3238 3239 VectorParts Mask; 3240 bool isMaskRequired = BlockInMask; 3241 if (isMaskRequired) 3242 Mask = *BlockInMask; 3243 3244 // Handle Stores: 3245 if (SI) { 3246 assert(!Legal->isUniform(SI->getPointerOperand()) && 3247 "We do not allow storing to uniform addresses"); 3248 setDebugLocFromInst(Builder, SI); 3249 3250 for (unsigned Part = 0; Part < UF; ++Part) { 3251 Instruction *NewSI = nullptr; 3252 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3253 if (CreateGatherScatter) { 3254 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3255 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3256 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3257 MaskPart); 3258 } else { 3259 // Calculate the pointer for the specific unroll-part. 3260 Value *PartPtr = 3261 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3262 3263 if (Reverse) { 3264 // If we store to reverse consecutive memory locations, then we need 3265 // to reverse the order of elements in the stored value. 3266 StoredVal = reverseVector(StoredVal); 3267 // We don't want to update the value in the map as it might be used in 3268 // another expression. So don't call resetVectorValue(StoredVal). 3269 3270 // If the address is consecutive but reversed, then the 3271 // wide store needs to start at the last vector element. 3272 PartPtr = 3273 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3274 PartPtr = 3275 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3276 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3277 Mask[Part] = reverseVector(Mask[Part]); 3278 } 3279 3280 Value *VecPtr = 3281 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3282 3283 if (isMaskRequired) 3284 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3285 Mask[Part]); 3286 else 3287 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3288 } 3289 addMetadata(NewSI, SI); 3290 } 3291 return; 3292 } 3293 3294 // Handle loads. 3295 assert(LI && "Must have a load instruction"); 3296 setDebugLocFromInst(Builder, LI); 3297 for (unsigned Part = 0; Part < UF; ++Part) { 3298 Value *NewLI; 3299 if (CreateGatherScatter) { 3300 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3301 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3302 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3303 nullptr, "wide.masked.gather"); 3304 addMetadata(NewLI, LI); 3305 } else { 3306 // Calculate the pointer for the specific unroll-part. 3307 Value *PartPtr = 3308 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3309 3310 if (Reverse) { 3311 // If the address is consecutive but reversed, then the 3312 // wide load needs to start at the last vector element. 3313 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3314 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3315 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3316 Mask[Part] = reverseVector(Mask[Part]); 3317 } 3318 3319 Value *VecPtr = 3320 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3321 if (isMaskRequired) 3322 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3323 UndefValue::get(DataTy), 3324 "wide.masked.load"); 3325 else 3326 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3327 3328 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3329 addMetadata(NewLI, LI); 3330 if (Reverse) 3331 NewLI = reverseVector(NewLI); 3332 } 3333 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3334 } 3335 } 3336 3337 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3338 const VPIteration &Instance, 3339 bool IfPredicateInstr) { 3340 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3341 3342 setDebugLocFromInst(Builder, Instr); 3343 3344 // Does this instruction return a value ? 3345 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3346 3347 Instruction *Cloned = Instr->clone(); 3348 if (!IsVoidRetTy) 3349 Cloned->setName(Instr->getName() + ".cloned"); 3350 3351 // Replace the operands of the cloned instructions with their scalar 3352 // equivalents in the new loop. 3353 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3354 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3355 Cloned->setOperand(op, NewOp); 3356 } 3357 addNewMetadata(Cloned, Instr); 3358 3359 // Place the cloned scalar in the new loop. 3360 Builder.Insert(Cloned); 3361 3362 // Add the cloned scalar to the scalar map entry. 3363 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3364 3365 // If we just cloned a new assumption, add it the assumption cache. 3366 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3367 if (II->getIntrinsicID() == Intrinsic::assume) 3368 AC->registerAssumption(II); 3369 3370 // End if-block. 3371 if (IfPredicateInstr) 3372 PredicatedInstructions.push_back(Cloned); 3373 } 3374 3375 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3376 Value *End, Value *Step, 3377 Instruction *DL) { 3378 BasicBlock *Header = L->getHeader(); 3379 BasicBlock *Latch = L->getLoopLatch(); 3380 // As we're just creating this loop, it's possible no latch exists 3381 // yet. If so, use the header as this will be a single block loop. 3382 if (!Latch) 3383 Latch = Header; 3384 3385 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3386 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3387 setDebugLocFromInst(Builder, OldInst); 3388 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3389 3390 Builder.SetInsertPoint(Latch->getTerminator()); 3391 setDebugLocFromInst(Builder, OldInst); 3392 3393 // Create i+1 and fill the PHINode. 3394 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3395 Induction->addIncoming(Start, L->getLoopPreheader()); 3396 Induction->addIncoming(Next, Latch); 3397 // Create the compare. 3398 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3399 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3400 3401 // Now we have two terminators. Remove the old one from the block. 3402 Latch->getTerminator()->eraseFromParent(); 3403 3404 return Induction; 3405 } 3406 3407 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3408 if (TripCount) 3409 return TripCount; 3410 3411 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3412 // Find the loop boundaries. 3413 ScalarEvolution *SE = PSE.getSE(); 3414 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3415 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3416 "Invalid loop count"); 3417 3418 Type *IdxTy = Legal->getWidestInductionType(); 3419 3420 // The exit count might have the type of i64 while the phi is i32. This can 3421 // happen if we have an induction variable that is sign extended before the 3422 // compare. The only way that we get a backedge taken count is that the 3423 // induction variable was signed and as such will not overflow. In such a case 3424 // truncation is legal. 3425 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3426 IdxTy->getPrimitiveSizeInBits()) 3427 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3428 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3429 3430 // Get the total trip count from the count by adding 1. 3431 const SCEV *ExitCount = SE->getAddExpr( 3432 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3433 3434 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3435 3436 // Expand the trip count and place the new instructions in the preheader. 3437 // Notice that the pre-header does not change, only the loop body. 3438 SCEVExpander Exp(*SE, DL, "induction"); 3439 3440 // Count holds the overall loop count (N). 3441 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3442 L->getLoopPreheader()->getTerminator()); 3443 3444 if (TripCount->getType()->isPointerTy()) 3445 TripCount = 3446 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3447 L->getLoopPreheader()->getTerminator()); 3448 3449 return TripCount; 3450 } 3451 3452 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3453 if (VectorTripCount) 3454 return VectorTripCount; 3455 3456 Value *TC = getOrCreateTripCount(L); 3457 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3458 3459 // Now we need to generate the expression for the part of the loop that the 3460 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3461 // iterations are not required for correctness, or N - Step, otherwise. Step 3462 // is equal to the vectorization factor (number of SIMD elements) times the 3463 // unroll factor (number of SIMD instructions). 3464 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3465 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3466 3467 // If there is a non-reversed interleaved group that may speculatively access 3468 // memory out-of-bounds, we need to ensure that there will be at least one 3469 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3470 // the trip count, we set the remainder to be equal to the step. If the step 3471 // does not evenly divide the trip count, no adjustment is necessary since 3472 // there will already be scalar iterations. Note that the minimum iterations 3473 // check ensures that N >= Step. 3474 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3475 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3476 R = Builder.CreateSelect(IsZero, Step, R); 3477 } 3478 3479 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3480 3481 return VectorTripCount; 3482 } 3483 3484 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3485 const DataLayout &DL) { 3486 // Verify that V is a vector type with same number of elements as DstVTy. 3487 unsigned VF = DstVTy->getNumElements(); 3488 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3489 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3490 Type *SrcElemTy = SrcVecTy->getElementType(); 3491 Type *DstElemTy = DstVTy->getElementType(); 3492 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3493 "Vector elements must have same size"); 3494 3495 // Do a direct cast if element types are castable. 3496 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3497 return Builder.CreateBitOrPointerCast(V, DstVTy); 3498 } 3499 // V cannot be directly casted to desired vector type. 3500 // May happen when V is a floating point vector but DstVTy is a vector of 3501 // pointers or vice-versa. Handle this using a two-step bitcast using an 3502 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3503 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3504 "Only one type should be a pointer type"); 3505 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3506 "Only one type should be a floating point type"); 3507 Type *IntTy = 3508 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3509 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3510 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3511 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3512 } 3513 3514 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3515 BasicBlock *Bypass) { 3516 Value *Count = getOrCreateTripCount(L); 3517 BasicBlock *BB = L->getLoopPreheader(); 3518 IRBuilder<> Builder(BB->getTerminator()); 3519 3520 // Generate code to check if the loop's trip count is less than VF * UF, or 3521 // equal to it in case a scalar epilogue is required; this implies that the 3522 // vector trip count is zero. This check also covers the case where adding one 3523 // to the backedge-taken count overflowed leading to an incorrect trip count 3524 // of zero. In this case we will also jump to the scalar loop. 3525 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3526 : ICmpInst::ICMP_ULT; 3527 Value *CheckMinIters = Builder.CreateICmp( 3528 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3529 3530 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3531 // Update dominator tree immediately if the generated block is a 3532 // LoopBypassBlock because SCEV expansions to generate loop bypass 3533 // checks may query it before the current function is finished. 3534 DT->addNewBlock(NewBB, BB); 3535 if (L->getParentLoop()) 3536 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3537 ReplaceInstWithInst(BB->getTerminator(), 3538 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3539 LoopBypassBlocks.push_back(BB); 3540 } 3541 3542 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3543 BasicBlock *BB = L->getLoopPreheader(); 3544 3545 // Generate the code to check that the SCEV assumptions that we made. 3546 // We want the new basic block to start at the first instruction in a 3547 // sequence of instructions that form a check. 3548 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3549 "scev.check"); 3550 Value *SCEVCheck = 3551 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3552 3553 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3554 if (C->isZero()) 3555 return; 3556 3557 // Create a new block containing the stride check. 3558 BB->setName("vector.scevcheck"); 3559 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3560 // Update dominator tree immediately if the generated block is a 3561 // LoopBypassBlock because SCEV expansions to generate loop bypass 3562 // checks may query it before the current function is finished. 3563 DT->addNewBlock(NewBB, BB); 3564 if (L->getParentLoop()) 3565 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3566 ReplaceInstWithInst(BB->getTerminator(), 3567 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3568 LoopBypassBlocks.push_back(BB); 3569 AddedSafetyChecks = true; 3570 } 3571 3572 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3573 BasicBlock *BB = L->getLoopPreheader(); 3574 3575 // Generate the code that checks in runtime if arrays overlap. We put the 3576 // checks into a separate block to make the more common case of few elements 3577 // faster. 3578 Instruction *FirstCheckInst; 3579 Instruction *MemRuntimeCheck; 3580 std::tie(FirstCheckInst, MemRuntimeCheck) = 3581 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3582 if (!MemRuntimeCheck) 3583 return; 3584 3585 // Create a new block containing the memory check. 3586 BB->setName("vector.memcheck"); 3587 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3588 // Update dominator tree immediately if the generated block is a 3589 // LoopBypassBlock because SCEV expansions to generate loop bypass 3590 // checks may query it before the current function is finished. 3591 DT->addNewBlock(NewBB, BB); 3592 if (L->getParentLoop()) 3593 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3594 ReplaceInstWithInst(BB->getTerminator(), 3595 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3596 LoopBypassBlocks.push_back(BB); 3597 AddedSafetyChecks = true; 3598 3599 // We currently don't use LoopVersioning for the actual loop cloning but we 3600 // still use it to add the noalias metadata. 3601 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3602 PSE.getSE()); 3603 LVer->prepareNoAliasMetadata(); 3604 } 3605 3606 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3607 /* 3608 In this function we generate a new loop. The new loop will contain 3609 the vectorized instructions while the old loop will continue to run the 3610 scalar remainder. 3611 3612 [ ] <-- loop iteration number check. 3613 / | 3614 / v 3615 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3616 | / | 3617 | / v 3618 || [ ] <-- vector pre header. 3619 |/ | 3620 | v 3621 | [ ] \ 3622 | [ ]_| <-- vector loop. 3623 | | 3624 | v 3625 | -[ ] <--- middle-block. 3626 | / | 3627 | / v 3628 -|- >[ ] <--- new preheader. 3629 | | 3630 | v 3631 | [ ] \ 3632 | [ ]_| <-- old scalar loop to handle remainder. 3633 \ | 3634 \ v 3635 >[ ] <-- exit block. 3636 ... 3637 */ 3638 3639 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3640 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3641 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3642 assert(VectorPH && "Invalid loop structure"); 3643 assert(ExitBlock && "Must have an exit block"); 3644 3645 // Some loops have a single integer induction variable, while other loops 3646 // don't. One example is c++ iterators that often have multiple pointer 3647 // induction variables. In the code below we also support a case where we 3648 // don't have a single induction variable. 3649 // 3650 // We try to obtain an induction variable from the original loop as hard 3651 // as possible. However if we don't find one that: 3652 // - is an integer 3653 // - counts from zero, stepping by one 3654 // - is the size of the widest induction variable type 3655 // then we create a new one. 3656 OldInduction = Legal->getPrimaryInduction(); 3657 Type *IdxTy = Legal->getWidestInductionType(); 3658 3659 // Split the single block loop into the two loop structure described above. 3660 BasicBlock *VecBody = 3661 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3662 BasicBlock *MiddleBlock = 3663 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3664 BasicBlock *ScalarPH = 3665 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3666 3667 // Create and register the new vector loop. 3668 Loop *Lp = LI->AllocateLoop(); 3669 Loop *ParentLoop = OrigLoop->getParentLoop(); 3670 3671 // Insert the new loop into the loop nest and register the new basic blocks 3672 // before calling any utilities such as SCEV that require valid LoopInfo. 3673 if (ParentLoop) { 3674 ParentLoop->addChildLoop(Lp); 3675 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3676 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3677 } else { 3678 LI->addTopLevelLoop(Lp); 3679 } 3680 Lp->addBasicBlockToLoop(VecBody, *LI); 3681 3682 // Find the loop boundaries. 3683 Value *Count = getOrCreateTripCount(Lp); 3684 3685 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3686 3687 // Now, compare the new count to zero. If it is zero skip the vector loop and 3688 // jump to the scalar loop. This check also covers the case where the 3689 // backedge-taken count is uint##_max: adding one to it will overflow leading 3690 // to an incorrect trip count of zero. In this (rare) case we will also jump 3691 // to the scalar loop. 3692 emitMinimumIterationCountCheck(Lp, ScalarPH); 3693 3694 // Generate the code to check any assumptions that we've made for SCEV 3695 // expressions. 3696 emitSCEVChecks(Lp, ScalarPH); 3697 3698 // Generate the code that checks in runtime if arrays overlap. We put the 3699 // checks into a separate block to make the more common case of few elements 3700 // faster. 3701 emitMemRuntimeChecks(Lp, ScalarPH); 3702 3703 // Generate the induction variable. 3704 // The loop step is equal to the vectorization factor (num of SIMD elements) 3705 // times the unroll factor (num of SIMD instructions). 3706 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3707 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3708 Induction = 3709 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3710 getDebugLocFromInstOrOperands(OldInduction)); 3711 3712 // We are going to resume the execution of the scalar loop. 3713 // Go over all of the induction variables that we found and fix the 3714 // PHIs that are left in the scalar version of the loop. 3715 // The starting values of PHI nodes depend on the counter of the last 3716 // iteration in the vectorized loop. 3717 // If we come from a bypass edge then we need to start from the original 3718 // start value. 3719 3720 // This variable saves the new starting index for the scalar loop. It is used 3721 // to test if there are any tail iterations left once the vector loop has 3722 // completed. 3723 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3724 for (auto &InductionEntry : *List) { 3725 PHINode *OrigPhi = InductionEntry.first; 3726 InductionDescriptor II = InductionEntry.second; 3727 3728 // Create phi nodes to merge from the backedge-taken check block. 3729 PHINode *BCResumeVal = PHINode::Create( 3730 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3731 Value *&EndValue = IVEndValues[OrigPhi]; 3732 if (OrigPhi == OldInduction) { 3733 // We know what the end value is. 3734 EndValue = CountRoundDown; 3735 } else { 3736 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3737 Type *StepType = II.getStep()->getType(); 3738 Instruction::CastOps CastOp = 3739 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3740 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3741 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3742 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3743 EndValue->setName("ind.end"); 3744 } 3745 3746 // The new PHI merges the original incoming value, in case of a bypass, 3747 // or the value at the end of the vectorized loop. 3748 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3749 3750 // Fix the scalar body counter (PHI node). 3751 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3752 3753 // The old induction's phi node in the scalar body needs the truncated 3754 // value. 3755 for (BasicBlock *BB : LoopBypassBlocks) 3756 BCResumeVal->addIncoming(II.getStartValue(), BB); 3757 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3758 } 3759 3760 // Add a check in the middle block to see if we have completed 3761 // all of the iterations in the first vector loop. 3762 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3763 Value *CmpN = 3764 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3765 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3766 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3767 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3768 3769 // Get ready to start creating new instructions into the vectorized body. 3770 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3771 3772 // Save the state. 3773 LoopVectorPreHeader = Lp->getLoopPreheader(); 3774 LoopScalarPreHeader = ScalarPH; 3775 LoopMiddleBlock = MiddleBlock; 3776 LoopExitBlock = ExitBlock; 3777 LoopVectorBody = VecBody; 3778 LoopScalarBody = OldBasicBlock; 3779 3780 // Keep all loop hints from the original loop on the vector loop (we'll 3781 // replace the vectorizer-specific hints below). 3782 if (MDNode *LID = OrigLoop->getLoopID()) 3783 Lp->setLoopID(LID); 3784 3785 LoopVectorizeHints Hints(Lp, true, *ORE); 3786 Hints.setAlreadyVectorized(); 3787 3788 return LoopVectorPreHeader; 3789 } 3790 3791 // Fix up external users of the induction variable. At this point, we are 3792 // in LCSSA form, with all external PHIs that use the IV having one input value, 3793 // coming from the remainder loop. We need those PHIs to also have a correct 3794 // value for the IV when arriving directly from the middle block. 3795 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3796 const InductionDescriptor &II, 3797 Value *CountRoundDown, Value *EndValue, 3798 BasicBlock *MiddleBlock) { 3799 // There are two kinds of external IV usages - those that use the value 3800 // computed in the last iteration (the PHI) and those that use the penultimate 3801 // value (the value that feeds into the phi from the loop latch). 3802 // We allow both, but they, obviously, have different values. 3803 3804 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3805 3806 DenseMap<Value *, Value *> MissingVals; 3807 3808 // An external user of the last iteration's value should see the value that 3809 // the remainder loop uses to initialize its own IV. 3810 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3811 for (User *U : PostInc->users()) { 3812 Instruction *UI = cast<Instruction>(U); 3813 if (!OrigLoop->contains(UI)) { 3814 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3815 MissingVals[UI] = EndValue; 3816 } 3817 } 3818 3819 // An external user of the penultimate value need to see EndValue - Step. 3820 // The simplest way to get this is to recompute it from the constituent SCEVs, 3821 // that is Start + (Step * (CRD - 1)). 3822 for (User *U : OrigPhi->users()) { 3823 auto *UI = cast<Instruction>(U); 3824 if (!OrigLoop->contains(UI)) { 3825 const DataLayout &DL = 3826 OrigLoop->getHeader()->getModule()->getDataLayout(); 3827 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3828 3829 IRBuilder<> B(MiddleBlock->getTerminator()); 3830 Value *CountMinusOne = B.CreateSub( 3831 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3832 Value *CMO = 3833 !II.getStep()->getType()->isIntegerTy() 3834 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3835 II.getStep()->getType()) 3836 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3837 CMO->setName("cast.cmo"); 3838 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3839 Escape->setName("ind.escape"); 3840 MissingVals[UI] = Escape; 3841 } 3842 } 3843 3844 for (auto &I : MissingVals) { 3845 PHINode *PHI = cast<PHINode>(I.first); 3846 // One corner case we have to handle is two IVs "chasing" each-other, 3847 // that is %IV2 = phi [...], [ %IV1, %latch ] 3848 // In this case, if IV1 has an external use, we need to avoid adding both 3849 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3850 // don't already have an incoming value for the middle block. 3851 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3852 PHI->addIncoming(I.second, MiddleBlock); 3853 } 3854 } 3855 3856 namespace { 3857 3858 struct CSEDenseMapInfo { 3859 static bool canHandle(const Instruction *I) { 3860 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3861 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3862 } 3863 3864 static inline Instruction *getEmptyKey() { 3865 return DenseMapInfo<Instruction *>::getEmptyKey(); 3866 } 3867 3868 static inline Instruction *getTombstoneKey() { 3869 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3870 } 3871 3872 static unsigned getHashValue(const Instruction *I) { 3873 assert(canHandle(I) && "Unknown instruction!"); 3874 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3875 I->value_op_end())); 3876 } 3877 3878 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3879 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3880 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3881 return LHS == RHS; 3882 return LHS->isIdenticalTo(RHS); 3883 } 3884 }; 3885 3886 } // end anonymous namespace 3887 3888 ///\brief Perform cse of induction variable instructions. 3889 static void cse(BasicBlock *BB) { 3890 // Perform simple cse. 3891 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3892 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3893 Instruction *In = &*I++; 3894 3895 if (!CSEDenseMapInfo::canHandle(In)) 3896 continue; 3897 3898 // Check if we can replace this instruction with any of the 3899 // visited instructions. 3900 if (Instruction *V = CSEMap.lookup(In)) { 3901 In->replaceAllUsesWith(V); 3902 In->eraseFromParent(); 3903 continue; 3904 } 3905 3906 CSEMap[In] = In; 3907 } 3908 } 3909 3910 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3911 /// convenience wrapper for the type-based getScalarizationOverhead API. 3912 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3913 const TargetTransformInfo &TTI) { 3914 if (VF == 1) 3915 return 0; 3916 3917 unsigned Cost = 0; 3918 Type *RetTy = ToVectorTy(I->getType(), VF); 3919 if (!RetTy->isVoidTy() && 3920 (!isa<LoadInst>(I) || 3921 !TTI.supportsEfficientVectorElementLoadStore())) 3922 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3923 3924 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3925 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3926 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3927 } 3928 else if (!isa<StoreInst>(I) || 3929 !TTI.supportsEfficientVectorElementLoadStore()) { 3930 SmallVector<const Value *, 4> Operands(I->operand_values()); 3931 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3932 } 3933 3934 return Cost; 3935 } 3936 3937 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3938 // Return the cost of the instruction, including scalarization overhead if it's 3939 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3940 // i.e. either vector version isn't available, or is too expensive. 3941 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3942 const TargetTransformInfo &TTI, 3943 const TargetLibraryInfo *TLI, 3944 bool &NeedToScalarize) { 3945 Function *F = CI->getCalledFunction(); 3946 StringRef FnName = CI->getCalledFunction()->getName(); 3947 Type *ScalarRetTy = CI->getType(); 3948 SmallVector<Type *, 4> Tys, ScalarTys; 3949 for (auto &ArgOp : CI->arg_operands()) 3950 ScalarTys.push_back(ArgOp->getType()); 3951 3952 // Estimate cost of scalarized vector call. The source operands are assumed 3953 // to be vectors, so we need to extract individual elements from there, 3954 // execute VF scalar calls, and then gather the result into the vector return 3955 // value. 3956 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3957 if (VF == 1) 3958 return ScalarCallCost; 3959 3960 // Compute corresponding vector type for return value and arguments. 3961 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3962 for (Type *ScalarTy : ScalarTys) 3963 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3964 3965 // Compute costs of unpacking argument values for the scalar calls and 3966 // packing the return values to a vector. 3967 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3968 3969 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3970 3971 // If we can't emit a vector call for this function, then the currently found 3972 // cost is the cost we need to return. 3973 NeedToScalarize = true; 3974 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3975 return Cost; 3976 3977 // If the corresponding vector cost is cheaper, return its cost. 3978 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3979 if (VectorCallCost < Cost) { 3980 NeedToScalarize = false; 3981 return VectorCallCost; 3982 } 3983 return Cost; 3984 } 3985 3986 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3987 // factor VF. Return the cost of the instruction, including scalarization 3988 // overhead if it's needed. 3989 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3990 const TargetTransformInfo &TTI, 3991 const TargetLibraryInfo *TLI) { 3992 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3993 assert(ID && "Expected intrinsic call!"); 3994 3995 FastMathFlags FMF; 3996 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3997 FMF = FPMO->getFastMathFlags(); 3998 3999 SmallVector<Value *, 4> Operands(CI->arg_operands()); 4000 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 4001 } 4002 4003 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 4004 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 4005 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 4006 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 4007 } 4008 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 4009 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 4010 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 4011 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 4012 } 4013 4014 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 4015 // For every instruction `I` in MinBWs, truncate the operands, create a 4016 // truncated version of `I` and reextend its result. InstCombine runs 4017 // later and will remove any ext/trunc pairs. 4018 SmallPtrSet<Value *, 4> Erased; 4019 for (const auto &KV : Cost->getMinimalBitwidths()) { 4020 // If the value wasn't vectorized, we must maintain the original scalar 4021 // type. The absence of the value from VectorLoopValueMap indicates that it 4022 // wasn't vectorized. 4023 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4024 continue; 4025 for (unsigned Part = 0; Part < UF; ++Part) { 4026 Value *I = getOrCreateVectorValue(KV.first, Part); 4027 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 4028 continue; 4029 Type *OriginalTy = I->getType(); 4030 Type *ScalarTruncatedTy = 4031 IntegerType::get(OriginalTy->getContext(), KV.second); 4032 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 4033 OriginalTy->getVectorNumElements()); 4034 if (TruncatedTy == OriginalTy) 4035 continue; 4036 4037 IRBuilder<> B(cast<Instruction>(I)); 4038 auto ShrinkOperand = [&](Value *V) -> Value * { 4039 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4040 if (ZI->getSrcTy() == TruncatedTy) 4041 return ZI->getOperand(0); 4042 return B.CreateZExtOrTrunc(V, TruncatedTy); 4043 }; 4044 4045 // The actual instruction modification depends on the instruction type, 4046 // unfortunately. 4047 Value *NewI = nullptr; 4048 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4049 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4050 ShrinkOperand(BO->getOperand(1))); 4051 4052 // Any wrapping introduced by shrinking this operation shouldn't be 4053 // considered undefined behavior. So, we can't unconditionally copy 4054 // arithmetic wrapping flags to NewI. 4055 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4056 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4057 NewI = 4058 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4059 ShrinkOperand(CI->getOperand(1))); 4060 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4061 NewI = B.CreateSelect(SI->getCondition(), 4062 ShrinkOperand(SI->getTrueValue()), 4063 ShrinkOperand(SI->getFalseValue())); 4064 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4065 switch (CI->getOpcode()) { 4066 default: 4067 llvm_unreachable("Unhandled cast!"); 4068 case Instruction::Trunc: 4069 NewI = ShrinkOperand(CI->getOperand(0)); 4070 break; 4071 case Instruction::SExt: 4072 NewI = B.CreateSExtOrTrunc( 4073 CI->getOperand(0), 4074 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4075 break; 4076 case Instruction::ZExt: 4077 NewI = B.CreateZExtOrTrunc( 4078 CI->getOperand(0), 4079 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4080 break; 4081 } 4082 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4083 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 4084 auto *O0 = B.CreateZExtOrTrunc( 4085 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4086 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 4087 auto *O1 = B.CreateZExtOrTrunc( 4088 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4089 4090 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 4091 } else if (isa<LoadInst>(I)) { 4092 // Don't do anything with the operands, just extend the result. 4093 continue; 4094 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4095 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 4096 auto *O0 = B.CreateZExtOrTrunc( 4097 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4098 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4099 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4100 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4101 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 4102 auto *O0 = B.CreateZExtOrTrunc( 4103 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4104 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4105 } else { 4106 llvm_unreachable("Unhandled instruction type!"); 4107 } 4108 4109 // Lastly, extend the result. 4110 NewI->takeName(cast<Instruction>(I)); 4111 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4112 I->replaceAllUsesWith(Res); 4113 cast<Instruction>(I)->eraseFromParent(); 4114 Erased.insert(I); 4115 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 4116 } 4117 } 4118 4119 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4120 for (const auto &KV : Cost->getMinimalBitwidths()) { 4121 // If the value wasn't vectorized, we must maintain the original scalar 4122 // type. The absence of the value from VectorLoopValueMap indicates that it 4123 // wasn't vectorized. 4124 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4125 continue; 4126 for (unsigned Part = 0; Part < UF; ++Part) { 4127 Value *I = getOrCreateVectorValue(KV.first, Part); 4128 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4129 if (Inst && Inst->use_empty()) { 4130 Value *NewI = Inst->getOperand(0); 4131 Inst->eraseFromParent(); 4132 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 4133 } 4134 } 4135 } 4136 } 4137 4138 void InnerLoopVectorizer::fixVectorizedLoop() { 4139 // Insert truncates and extends for any truncated instructions as hints to 4140 // InstCombine. 4141 if (VF > 1) 4142 truncateToMinimalBitwidths(); 4143 4144 // At this point every instruction in the original loop is widened to a 4145 // vector form. Now we need to fix the recurrences in the loop. These PHI 4146 // nodes are currently empty because we did not want to introduce cycles. 4147 // This is the second stage of vectorizing recurrences. 4148 fixCrossIterationPHIs(); 4149 4150 // Update the dominator tree. 4151 // 4152 // FIXME: After creating the structure of the new loop, the dominator tree is 4153 // no longer up-to-date, and it remains that way until we update it 4154 // here. An out-of-date dominator tree is problematic for SCEV, 4155 // because SCEVExpander uses it to guide code generation. The 4156 // vectorizer use SCEVExpanders in several places. Instead, we should 4157 // keep the dominator tree up-to-date as we go. 4158 updateAnalysis(); 4159 4160 // Fix-up external users of the induction variables. 4161 for (auto &Entry : *Legal->getInductionVars()) 4162 fixupIVUsers(Entry.first, Entry.second, 4163 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4164 IVEndValues[Entry.first], LoopMiddleBlock); 4165 4166 fixLCSSAPHIs(); 4167 for (Instruction *PI : PredicatedInstructions) 4168 sinkScalarOperands(&*PI); 4169 4170 // Remove redundant induction instructions. 4171 cse(LoopVectorBody); 4172 } 4173 4174 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4175 // In order to support recurrences we need to be able to vectorize Phi nodes. 4176 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4177 // stage #2: We now need to fix the recurrences by adding incoming edges to 4178 // the currently empty PHI nodes. At this point every instruction in the 4179 // original loop is widened to a vector form so we can use them to construct 4180 // the incoming edges. 4181 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4182 // Handle first-order recurrences and reductions that need to be fixed. 4183 if (Legal->isFirstOrderRecurrence(&Phi)) 4184 fixFirstOrderRecurrence(&Phi); 4185 else if (Legal->isReductionVariable(&Phi)) 4186 fixReduction(&Phi); 4187 } 4188 } 4189 4190 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4191 // This is the second phase of vectorizing first-order recurrences. An 4192 // overview of the transformation is described below. Suppose we have the 4193 // following loop. 4194 // 4195 // for (int i = 0; i < n; ++i) 4196 // b[i] = a[i] - a[i - 1]; 4197 // 4198 // There is a first-order recurrence on "a". For this loop, the shorthand 4199 // scalar IR looks like: 4200 // 4201 // scalar.ph: 4202 // s_init = a[-1] 4203 // br scalar.body 4204 // 4205 // scalar.body: 4206 // i = phi [0, scalar.ph], [i+1, scalar.body] 4207 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4208 // s2 = a[i] 4209 // b[i] = s2 - s1 4210 // br cond, scalar.body, ... 4211 // 4212 // In this example, s1 is a recurrence because it's value depends on the 4213 // previous iteration. In the first phase of vectorization, we created a 4214 // temporary value for s1. We now complete the vectorization and produce the 4215 // shorthand vector IR shown below (for VF = 4, UF = 1). 4216 // 4217 // vector.ph: 4218 // v_init = vector(..., ..., ..., a[-1]) 4219 // br vector.body 4220 // 4221 // vector.body 4222 // i = phi [0, vector.ph], [i+4, vector.body] 4223 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4224 // v2 = a[i, i+1, i+2, i+3]; 4225 // v3 = vector(v1(3), v2(0, 1, 2)) 4226 // b[i, i+1, i+2, i+3] = v2 - v3 4227 // br cond, vector.body, middle.block 4228 // 4229 // middle.block: 4230 // x = v2(3) 4231 // br scalar.ph 4232 // 4233 // scalar.ph: 4234 // s_init = phi [x, middle.block], [a[-1], otherwise] 4235 // br scalar.body 4236 // 4237 // After execution completes the vector loop, we extract the next value of 4238 // the recurrence (x) to use as the initial value in the scalar loop. 4239 4240 // Get the original loop preheader and single loop latch. 4241 auto *Preheader = OrigLoop->getLoopPreheader(); 4242 auto *Latch = OrigLoop->getLoopLatch(); 4243 4244 // Get the initial and previous values of the scalar recurrence. 4245 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4246 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4247 4248 // Create a vector from the initial value. 4249 auto *VectorInit = ScalarInit; 4250 if (VF > 1) { 4251 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4252 VectorInit = Builder.CreateInsertElement( 4253 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4254 Builder.getInt32(VF - 1), "vector.recur.init"); 4255 } 4256 4257 // We constructed a temporary phi node in the first phase of vectorization. 4258 // This phi node will eventually be deleted. 4259 Builder.SetInsertPoint( 4260 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4261 4262 // Create a phi node for the new recurrence. The current value will either be 4263 // the initial value inserted into a vector or loop-varying vector value. 4264 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4265 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4266 4267 // Get the vectorized previous value of the last part UF - 1. It appears last 4268 // among all unrolled iterations, due to the order of their construction. 4269 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4270 4271 // Set the insertion point after the previous value if it is an instruction. 4272 // Note that the previous value may have been constant-folded so it is not 4273 // guaranteed to be an instruction in the vector loop. Also, if the previous 4274 // value is a phi node, we should insert after all the phi nodes to avoid 4275 // breaking basic block verification. 4276 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4277 isa<PHINode>(PreviousLastPart)) 4278 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4279 else 4280 Builder.SetInsertPoint( 4281 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4282 4283 // We will construct a vector for the recurrence by combining the values for 4284 // the current and previous iterations. This is the required shuffle mask. 4285 SmallVector<Constant *, 8> ShuffleMask(VF); 4286 ShuffleMask[0] = Builder.getInt32(VF - 1); 4287 for (unsigned I = 1; I < VF; ++I) 4288 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4289 4290 // The vector from which to take the initial value for the current iteration 4291 // (actual or unrolled). Initially, this is the vector phi node. 4292 Value *Incoming = VecPhi; 4293 4294 // Shuffle the current and previous vector and update the vector parts. 4295 for (unsigned Part = 0; Part < UF; ++Part) { 4296 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4297 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4298 auto *Shuffle = 4299 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4300 ConstantVector::get(ShuffleMask)) 4301 : Incoming; 4302 PhiPart->replaceAllUsesWith(Shuffle); 4303 cast<Instruction>(PhiPart)->eraseFromParent(); 4304 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4305 Incoming = PreviousPart; 4306 } 4307 4308 // Fix the latch value of the new recurrence in the vector loop. 4309 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4310 4311 // Extract the last vector element in the middle block. This will be the 4312 // initial value for the recurrence when jumping to the scalar loop. 4313 auto *ExtractForScalar = Incoming; 4314 if (VF > 1) { 4315 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4316 ExtractForScalar = Builder.CreateExtractElement( 4317 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4318 } 4319 // Extract the second last element in the middle block if the 4320 // Phi is used outside the loop. We need to extract the phi itself 4321 // and not the last element (the phi update in the current iteration). This 4322 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4323 // when the scalar loop is not run at all. 4324 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4325 if (VF > 1) 4326 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4327 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4328 // When loop is unrolled without vectorizing, initialize 4329 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4330 // `Incoming`. This is analogous to the vectorized case above: extracting the 4331 // second last element when VF > 1. 4332 else if (UF > 1) 4333 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4334 4335 // Fix the initial value of the original recurrence in the scalar loop. 4336 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4337 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4338 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4339 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4340 Start->addIncoming(Incoming, BB); 4341 } 4342 4343 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4344 Phi->setName("scalar.recur"); 4345 4346 // Finally, fix users of the recurrence outside the loop. The users will need 4347 // either the last value of the scalar recurrence or the last value of the 4348 // vector recurrence we extracted in the middle block. Since the loop is in 4349 // LCSSA form, we just need to find the phi node for the original scalar 4350 // recurrence in the exit block, and then add an edge for the middle block. 4351 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4352 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4353 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4354 break; 4355 } 4356 } 4357 } 4358 4359 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4360 Constant *Zero = Builder.getInt32(0); 4361 4362 // Get it's reduction variable descriptor. 4363 assert(Legal->isReductionVariable(Phi) && 4364 "Unable to find the reduction variable"); 4365 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4366 4367 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4368 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4369 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4370 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4371 RdxDesc.getMinMaxRecurrenceKind(); 4372 setDebugLocFromInst(Builder, ReductionStartValue); 4373 4374 // We need to generate a reduction vector from the incoming scalar. 4375 // To do so, we need to generate the 'identity' vector and override 4376 // one of the elements with the incoming scalar reduction. We need 4377 // to do it in the vector-loop preheader. 4378 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4379 4380 // This is the vector-clone of the value that leaves the loop. 4381 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4382 4383 // Find the reduction identity variable. Zero for addition, or, xor, 4384 // one for multiplication, -1 for And. 4385 Value *Identity; 4386 Value *VectorStart; 4387 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4388 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4389 // MinMax reduction have the start value as their identify. 4390 if (VF == 1) { 4391 VectorStart = Identity = ReductionStartValue; 4392 } else { 4393 VectorStart = Identity = 4394 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4395 } 4396 } else { 4397 // Handle other reduction kinds: 4398 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4399 RK, VecTy->getScalarType()); 4400 if (VF == 1) { 4401 Identity = Iden; 4402 // This vector is the Identity vector where the first element is the 4403 // incoming scalar reduction. 4404 VectorStart = ReductionStartValue; 4405 } else { 4406 Identity = ConstantVector::getSplat(VF, Iden); 4407 4408 // This vector is the Identity vector where the first element is the 4409 // incoming scalar reduction. 4410 VectorStart = 4411 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4412 } 4413 } 4414 4415 // Fix the vector-loop phi. 4416 4417 // Reductions do not have to start at zero. They can start with 4418 // any loop invariant values. 4419 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4420 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4421 for (unsigned Part = 0; Part < UF; ++Part) { 4422 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4423 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4424 // Make sure to add the reduction stat value only to the 4425 // first unroll part. 4426 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4427 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4428 cast<PHINode>(VecRdxPhi) 4429 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4430 } 4431 4432 // Before each round, move the insertion point right between 4433 // the PHIs and the values we are going to write. 4434 // This allows us to write both PHINodes and the extractelement 4435 // instructions. 4436 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4437 4438 setDebugLocFromInst(Builder, LoopExitInst); 4439 4440 // If the vector reduction can be performed in a smaller type, we truncate 4441 // then extend the loop exit value to enable InstCombine to evaluate the 4442 // entire expression in the smaller type. 4443 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4444 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4445 Builder.SetInsertPoint( 4446 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4447 VectorParts RdxParts(UF); 4448 for (unsigned Part = 0; Part < UF; ++Part) { 4449 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4450 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4451 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4452 : Builder.CreateZExt(Trunc, VecTy); 4453 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4454 UI != RdxParts[Part]->user_end();) 4455 if (*UI != Trunc) { 4456 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4457 RdxParts[Part] = Extnd; 4458 } else { 4459 ++UI; 4460 } 4461 } 4462 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4463 for (unsigned Part = 0; Part < UF; ++Part) { 4464 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4465 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4466 } 4467 } 4468 4469 // Reduce all of the unrolled parts into a single vector. 4470 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4471 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4472 setDebugLocFromInst(Builder, ReducedPartRdx); 4473 for (unsigned Part = 1; Part < UF; ++Part) { 4474 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4475 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4476 // Floating point operations had to be 'fast' to enable the reduction. 4477 ReducedPartRdx = addFastMathFlag( 4478 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4479 ReducedPartRdx, "bin.rdx")); 4480 else 4481 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4482 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4483 } 4484 4485 if (VF > 1) { 4486 bool NoNaN = Legal->hasFunNoNaNAttr(); 4487 ReducedPartRdx = 4488 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4489 // If the reduction can be performed in a smaller type, we need to extend 4490 // the reduction to the wider type before we branch to the original loop. 4491 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4492 ReducedPartRdx = 4493 RdxDesc.isSigned() 4494 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4495 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4496 } 4497 4498 // Create a phi node that merges control-flow from the backedge-taken check 4499 // block and the middle block. 4500 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4501 LoopScalarPreHeader->getTerminator()); 4502 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4503 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4504 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4505 4506 // Now, we need to fix the users of the reduction variable 4507 // inside and outside of the scalar remainder loop. 4508 // We know that the loop is in LCSSA form. We need to update the 4509 // PHI nodes in the exit blocks. 4510 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4511 // All PHINodes need to have a single entry edge, or two if 4512 // we already fixed them. 4513 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4514 4515 // We found a reduction value exit-PHI. Update it with the 4516 // incoming bypass edge. 4517 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4518 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4519 } // end of the LCSSA phi scan. 4520 4521 // Fix the scalar loop reduction variable with the incoming reduction sum 4522 // from the vector body and from the backedge value. 4523 int IncomingEdgeBlockIdx = 4524 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4525 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4526 // Pick the other block. 4527 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4528 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4529 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4530 } 4531 4532 void InnerLoopVectorizer::fixLCSSAPHIs() { 4533 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4534 if (LCSSAPhi.getNumIncomingValues() == 1) { 4535 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4536 "Incoming value isn't loop invariant"); 4537 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4538 } 4539 } 4540 } 4541 4542 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4543 // The basic block and loop containing the predicated instruction. 4544 auto *PredBB = PredInst->getParent(); 4545 auto *VectorLoop = LI->getLoopFor(PredBB); 4546 4547 // Initialize a worklist with the operands of the predicated instruction. 4548 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4549 4550 // Holds instructions that we need to analyze again. An instruction may be 4551 // reanalyzed if we don't yet know if we can sink it or not. 4552 SmallVector<Instruction *, 8> InstsToReanalyze; 4553 4554 // Returns true if a given use occurs in the predicated block. Phi nodes use 4555 // their operands in their corresponding predecessor blocks. 4556 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4557 auto *I = cast<Instruction>(U.getUser()); 4558 BasicBlock *BB = I->getParent(); 4559 if (auto *Phi = dyn_cast<PHINode>(I)) 4560 BB = Phi->getIncomingBlock( 4561 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4562 return BB == PredBB; 4563 }; 4564 4565 // Iteratively sink the scalarized operands of the predicated instruction 4566 // into the block we created for it. When an instruction is sunk, it's 4567 // operands are then added to the worklist. The algorithm ends after one pass 4568 // through the worklist doesn't sink a single instruction. 4569 bool Changed; 4570 do { 4571 // Add the instructions that need to be reanalyzed to the worklist, and 4572 // reset the changed indicator. 4573 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4574 InstsToReanalyze.clear(); 4575 Changed = false; 4576 4577 while (!Worklist.empty()) { 4578 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4579 4580 // We can't sink an instruction if it is a phi node, is already in the 4581 // predicated block, is not in the loop, or may have side effects. 4582 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4583 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4584 continue; 4585 4586 // It's legal to sink the instruction if all its uses occur in the 4587 // predicated block. Otherwise, there's nothing to do yet, and we may 4588 // need to reanalyze the instruction. 4589 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4590 InstsToReanalyze.push_back(I); 4591 continue; 4592 } 4593 4594 // Move the instruction to the beginning of the predicated block, and add 4595 // it's operands to the worklist. 4596 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4597 Worklist.insert(I->op_begin(), I->op_end()); 4598 4599 // The sinking may have enabled other instructions to be sunk, so we will 4600 // need to iterate. 4601 Changed = true; 4602 } 4603 } while (Changed); 4604 } 4605 4606 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4607 unsigned VF) { 4608 assert(PN->getParent() == OrigLoop->getHeader() && 4609 "Non-header phis should have been handled elsewhere"); 4610 4611 PHINode *P = cast<PHINode>(PN); 4612 // In order to support recurrences we need to be able to vectorize Phi nodes. 4613 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4614 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4615 // this value when we vectorize all of the instructions that use the PHI. 4616 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4617 for (unsigned Part = 0; Part < UF; ++Part) { 4618 // This is phase one of vectorizing PHIs. 4619 Type *VecTy = 4620 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4621 Value *EntryPart = PHINode::Create( 4622 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4623 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4624 } 4625 return; 4626 } 4627 4628 setDebugLocFromInst(Builder, P); 4629 4630 // This PHINode must be an induction variable. 4631 // Make sure that we know about it. 4632 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4633 4634 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4635 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4636 4637 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4638 // which can be found from the original scalar operations. 4639 switch (II.getKind()) { 4640 case InductionDescriptor::IK_NoInduction: 4641 llvm_unreachable("Unknown induction"); 4642 case InductionDescriptor::IK_IntInduction: 4643 case InductionDescriptor::IK_FpInduction: 4644 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4645 case InductionDescriptor::IK_PtrInduction: { 4646 // Handle the pointer induction variable case. 4647 assert(P->getType()->isPointerTy() && "Unexpected type."); 4648 // This is the normalized GEP that starts counting at zero. 4649 Value *PtrInd = Induction; 4650 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4651 // Determine the number of scalars we need to generate for each unroll 4652 // iteration. If the instruction is uniform, we only need to generate the 4653 // first lane. Otherwise, we generate all VF values. 4654 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4655 // These are the scalar results. Notice that we don't generate vector GEPs 4656 // because scalar GEPs result in better code. 4657 for (unsigned Part = 0; Part < UF; ++Part) { 4658 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4659 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4660 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4661 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4662 SclrGep->setName("next.gep"); 4663 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4664 } 4665 } 4666 return; 4667 } 4668 } 4669 } 4670 4671 /// A helper function for checking whether an integer division-related 4672 /// instruction may divide by zero (in which case it must be predicated if 4673 /// executed conditionally in the scalar code). 4674 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4675 /// Non-zero divisors that are non compile-time constants will not be 4676 /// converted into multiplication, so we will still end up scalarizing 4677 /// the division, but can do so w/o predication. 4678 static bool mayDivideByZero(Instruction &I) { 4679 assert((I.getOpcode() == Instruction::UDiv || 4680 I.getOpcode() == Instruction::SDiv || 4681 I.getOpcode() == Instruction::URem || 4682 I.getOpcode() == Instruction::SRem) && 4683 "Unexpected instruction"); 4684 Value *Divisor = I.getOperand(1); 4685 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4686 return !CInt || CInt->isZero(); 4687 } 4688 4689 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4690 switch (I.getOpcode()) { 4691 case Instruction::Br: 4692 case Instruction::PHI: 4693 llvm_unreachable("This instruction is handled by a different recipe."); 4694 case Instruction::GetElementPtr: { 4695 // Construct a vector GEP by widening the operands of the scalar GEP as 4696 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4697 // results in a vector of pointers when at least one operand of the GEP 4698 // is vector-typed. Thus, to keep the representation compact, we only use 4699 // vector-typed operands for loop-varying values. 4700 auto *GEP = cast<GetElementPtrInst>(&I); 4701 4702 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4703 // If we are vectorizing, but the GEP has only loop-invariant operands, 4704 // the GEP we build (by only using vector-typed operands for 4705 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4706 // produce a vector of pointers, we need to either arbitrarily pick an 4707 // operand to broadcast, or broadcast a clone of the original GEP. 4708 // Here, we broadcast a clone of the original. 4709 // 4710 // TODO: If at some point we decide to scalarize instructions having 4711 // loop-invariant operands, this special case will no longer be 4712 // required. We would add the scalarization decision to 4713 // collectLoopScalars() and teach getVectorValue() to broadcast 4714 // the lane-zero scalar value. 4715 auto *Clone = Builder.Insert(GEP->clone()); 4716 for (unsigned Part = 0; Part < UF; ++Part) { 4717 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4718 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4719 addMetadata(EntryPart, GEP); 4720 } 4721 } else { 4722 // If the GEP has at least one loop-varying operand, we are sure to 4723 // produce a vector of pointers. But if we are only unrolling, we want 4724 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4725 // produce with the code below will be scalar (if VF == 1) or vector 4726 // (otherwise). Note that for the unroll-only case, we still maintain 4727 // values in the vector mapping with initVector, as we do for other 4728 // instructions. 4729 for (unsigned Part = 0; Part < UF; ++Part) { 4730 // The pointer operand of the new GEP. If it's loop-invariant, we 4731 // won't broadcast it. 4732 auto *Ptr = 4733 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4734 ? GEP->getPointerOperand() 4735 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4736 4737 // Collect all the indices for the new GEP. If any index is 4738 // loop-invariant, we won't broadcast it. 4739 SmallVector<Value *, 4> Indices; 4740 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4741 if (OrigLoop->isLoopInvariant(U.get())) 4742 Indices.push_back(U.get()); 4743 else 4744 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4745 } 4746 4747 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4748 // but it should be a vector, otherwise. 4749 auto *NewGEP = GEP->isInBounds() 4750 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4751 : Builder.CreateGEP(Ptr, Indices); 4752 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4753 "NewGEP is not a pointer vector"); 4754 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4755 addMetadata(NewGEP, GEP); 4756 } 4757 } 4758 4759 break; 4760 } 4761 case Instruction::UDiv: 4762 case Instruction::SDiv: 4763 case Instruction::SRem: 4764 case Instruction::URem: 4765 case Instruction::Add: 4766 case Instruction::FAdd: 4767 case Instruction::Sub: 4768 case Instruction::FSub: 4769 case Instruction::Mul: 4770 case Instruction::FMul: 4771 case Instruction::FDiv: 4772 case Instruction::FRem: 4773 case Instruction::Shl: 4774 case Instruction::LShr: 4775 case Instruction::AShr: 4776 case Instruction::And: 4777 case Instruction::Or: 4778 case Instruction::Xor: { 4779 // Just widen binops. 4780 auto *BinOp = cast<BinaryOperator>(&I); 4781 setDebugLocFromInst(Builder, BinOp); 4782 4783 for (unsigned Part = 0; Part < UF; ++Part) { 4784 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4785 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4786 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4787 4788 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4789 VecOp->copyIRFlags(BinOp); 4790 4791 // Use this vector value for all users of the original instruction. 4792 VectorLoopValueMap.setVectorValue(&I, Part, V); 4793 addMetadata(V, BinOp); 4794 } 4795 4796 break; 4797 } 4798 case Instruction::Select: { 4799 // Widen selects. 4800 // If the selector is loop invariant we can create a select 4801 // instruction with a scalar condition. Otherwise, use vector-select. 4802 auto *SE = PSE.getSE(); 4803 bool InvariantCond = 4804 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4805 setDebugLocFromInst(Builder, &I); 4806 4807 // The condition can be loop invariant but still defined inside the 4808 // loop. This means that we can't just use the original 'cond' value. 4809 // We have to take the 'vectorized' value and pick the first lane. 4810 // Instcombine will make this a no-op. 4811 4812 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4813 4814 for (unsigned Part = 0; Part < UF; ++Part) { 4815 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4816 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4817 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4818 Value *Sel = 4819 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4820 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4821 addMetadata(Sel, &I); 4822 } 4823 4824 break; 4825 } 4826 4827 case Instruction::ICmp: 4828 case Instruction::FCmp: { 4829 // Widen compares. Generate vector compares. 4830 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4831 auto *Cmp = dyn_cast<CmpInst>(&I); 4832 setDebugLocFromInst(Builder, Cmp); 4833 for (unsigned Part = 0; Part < UF; ++Part) { 4834 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4835 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4836 Value *C = nullptr; 4837 if (FCmp) { 4838 // Propagate fast math flags. 4839 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4840 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4841 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4842 } else { 4843 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4844 } 4845 VectorLoopValueMap.setVectorValue(&I, Part, C); 4846 addMetadata(C, &I); 4847 } 4848 4849 break; 4850 } 4851 4852 case Instruction::ZExt: 4853 case Instruction::SExt: 4854 case Instruction::FPToUI: 4855 case Instruction::FPToSI: 4856 case Instruction::FPExt: 4857 case Instruction::PtrToInt: 4858 case Instruction::IntToPtr: 4859 case Instruction::SIToFP: 4860 case Instruction::UIToFP: 4861 case Instruction::Trunc: 4862 case Instruction::FPTrunc: 4863 case Instruction::BitCast: { 4864 auto *CI = dyn_cast<CastInst>(&I); 4865 setDebugLocFromInst(Builder, CI); 4866 4867 /// Vectorize casts. 4868 Type *DestTy = 4869 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4870 4871 for (unsigned Part = 0; Part < UF; ++Part) { 4872 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4873 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4874 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4875 addMetadata(Cast, &I); 4876 } 4877 break; 4878 } 4879 4880 case Instruction::Call: { 4881 // Ignore dbg intrinsics. 4882 if (isa<DbgInfoIntrinsic>(I)) 4883 break; 4884 setDebugLocFromInst(Builder, &I); 4885 4886 Module *M = I.getParent()->getParent()->getParent(); 4887 auto *CI = cast<CallInst>(&I); 4888 4889 StringRef FnName = CI->getCalledFunction()->getName(); 4890 Function *F = CI->getCalledFunction(); 4891 Type *RetTy = ToVectorTy(CI->getType(), VF); 4892 SmallVector<Type *, 4> Tys; 4893 for (Value *ArgOperand : CI->arg_operands()) 4894 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4895 4896 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4897 4898 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4899 // version of the instruction. 4900 // Is it beneficial to perform intrinsic call compared to lib call? 4901 bool NeedToScalarize; 4902 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4903 bool UseVectorIntrinsic = 4904 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4905 assert((UseVectorIntrinsic || !NeedToScalarize) && 4906 "Instruction should be scalarized elsewhere."); 4907 4908 for (unsigned Part = 0; Part < UF; ++Part) { 4909 SmallVector<Value *, 4> Args; 4910 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4911 Value *Arg = CI->getArgOperand(i); 4912 // Some intrinsics have a scalar argument - don't replace it with a 4913 // vector. 4914 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4915 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4916 Args.push_back(Arg); 4917 } 4918 4919 Function *VectorF; 4920 if (UseVectorIntrinsic) { 4921 // Use vector version of the intrinsic. 4922 Type *TysForDecl[] = {CI->getType()}; 4923 if (VF > 1) 4924 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4925 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4926 } else { 4927 // Use vector version of the library call. 4928 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4929 assert(!VFnName.empty() && "Vector function name is empty."); 4930 VectorF = M->getFunction(VFnName); 4931 if (!VectorF) { 4932 // Generate a declaration 4933 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4934 VectorF = 4935 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4936 VectorF->copyAttributesFrom(F); 4937 } 4938 } 4939 assert(VectorF && "Can't create vector function."); 4940 4941 SmallVector<OperandBundleDef, 1> OpBundles; 4942 CI->getOperandBundlesAsDefs(OpBundles); 4943 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4944 4945 if (isa<FPMathOperator>(V)) 4946 V->copyFastMathFlags(CI); 4947 4948 VectorLoopValueMap.setVectorValue(&I, Part, V); 4949 addMetadata(V, &I); 4950 } 4951 4952 break; 4953 } 4954 4955 default: 4956 // This instruction is not vectorized by simple widening. 4957 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4958 llvm_unreachable("Unhandled instruction!"); 4959 } // end of switch. 4960 } 4961 4962 void InnerLoopVectorizer::updateAnalysis() { 4963 // Forget the original basic block. 4964 PSE.getSE()->forgetLoop(OrigLoop); 4965 4966 // Update the dominator tree information. 4967 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4968 "Entry does not dominate exit."); 4969 4970 DT->addNewBlock(LoopMiddleBlock, 4971 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4972 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4973 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4974 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4975 DEBUG(DT->verifyDomTree()); 4976 } 4977 4978 /// \brief Check whether it is safe to if-convert this phi node. 4979 /// 4980 /// Phi nodes with constant expressions that can trap are not safe to if 4981 /// convert. 4982 static bool canIfConvertPHINodes(BasicBlock *BB) { 4983 for (PHINode &Phi : BB->phis()) { 4984 for (Value *V : Phi.incoming_values()) 4985 if (auto *C = dyn_cast<Constant>(V)) 4986 if (C->canTrap()) 4987 return false; 4988 } 4989 return true; 4990 } 4991 4992 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4993 if (!EnableIfConversion) { 4994 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4995 << "if-conversion is disabled"); 4996 return false; 4997 } 4998 4999 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5000 5001 // A list of pointers that we can safely read and write to. 5002 SmallPtrSet<Value *, 8> SafePointes; 5003 5004 // Collect safe addresses. 5005 for (BasicBlock *BB : TheLoop->blocks()) { 5006 if (blockNeedsPredication(BB)) 5007 continue; 5008 5009 for (Instruction &I : *BB) 5010 if (auto *Ptr = getPointerOperand(&I)) 5011 SafePointes.insert(Ptr); 5012 } 5013 5014 // Collect the blocks that need predication. 5015 BasicBlock *Header = TheLoop->getHeader(); 5016 for (BasicBlock *BB : TheLoop->blocks()) { 5017 // We don't support switch statements inside loops. 5018 if (!isa<BranchInst>(BB->getTerminator())) { 5019 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5020 << "loop contains a switch statement"); 5021 return false; 5022 } 5023 5024 // We must be able to predicate all blocks that need to be predicated. 5025 if (blockNeedsPredication(BB)) { 5026 if (!blockCanBePredicated(BB, SafePointes)) { 5027 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5028 << "control flow cannot be substituted for a select"); 5029 return false; 5030 } 5031 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5032 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5033 << "control flow cannot be substituted for a select"); 5034 return false; 5035 } 5036 } 5037 5038 // We can if-convert this loop. 5039 return true; 5040 } 5041 5042 bool LoopVectorizationLegality::canVectorize() { 5043 // Store the result and return it at the end instead of exiting early, in case 5044 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5045 bool Result = true; 5046 5047 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 5048 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5049 // be canonicalized. 5050 if (!TheLoop->getLoopPreheader()) { 5051 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 5052 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5053 << "loop control flow is not understood by vectorizer"); 5054 if (DoExtraAnalysis) 5055 Result = false; 5056 else 5057 return false; 5058 } 5059 5060 // FIXME: The code is currently dead, since the loop gets sent to 5061 // LoopVectorizationLegality is already an innermost loop. 5062 // 5063 // We can only vectorize innermost loops. 5064 if (!TheLoop->empty()) { 5065 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5066 << "loop is not the innermost loop"); 5067 if (DoExtraAnalysis) 5068 Result = false; 5069 else 5070 return false; 5071 } 5072 5073 // We must have a single backedge. 5074 if (TheLoop->getNumBackEdges() != 1) { 5075 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5076 << "loop control flow is not understood by vectorizer"); 5077 if (DoExtraAnalysis) 5078 Result = false; 5079 else 5080 return false; 5081 } 5082 5083 // We must have a single exiting block. 5084 if (!TheLoop->getExitingBlock()) { 5085 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5086 << "loop control flow is not understood by vectorizer"); 5087 if (DoExtraAnalysis) 5088 Result = false; 5089 else 5090 return false; 5091 } 5092 5093 // We only handle bottom-tested loops, i.e. loop in which the condition is 5094 // checked at the end of each iteration. With that we can assume that all 5095 // instructions in the loop are executed the same number of times. 5096 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5097 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5098 << "loop control flow is not understood by vectorizer"); 5099 if (DoExtraAnalysis) 5100 Result = false; 5101 else 5102 return false; 5103 } 5104 5105 // We need to have a loop header. 5106 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5107 << '\n'); 5108 5109 // Check if we can if-convert non-single-bb loops. 5110 unsigned NumBlocks = TheLoop->getNumBlocks(); 5111 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5112 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5113 if (DoExtraAnalysis) 5114 Result = false; 5115 else 5116 return false; 5117 } 5118 5119 // Check if we can vectorize the instructions and CFG in this loop. 5120 if (!canVectorizeInstrs()) { 5121 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5122 if (DoExtraAnalysis) 5123 Result = false; 5124 else 5125 return false; 5126 } 5127 5128 // Go over each instruction and look at memory deps. 5129 if (!canVectorizeMemory()) { 5130 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5131 if (DoExtraAnalysis) 5132 Result = false; 5133 else 5134 return false; 5135 } 5136 5137 DEBUG(dbgs() << "LV: We can vectorize this loop" 5138 << (LAI->getRuntimePointerChecking()->Need 5139 ? " (with a runtime bound check)" 5140 : "") 5141 << "!\n"); 5142 5143 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5144 5145 // If an override option has been passed in for interleaved accesses, use it. 5146 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5147 UseInterleaved = EnableInterleavedMemAccesses; 5148 5149 // Analyze interleaved memory accesses. 5150 if (UseInterleaved) 5151 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5152 5153 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5154 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5155 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5156 5157 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5158 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5159 << "Too many SCEV assumptions need to be made and checked " 5160 << "at runtime"); 5161 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5162 if (DoExtraAnalysis) 5163 Result = false; 5164 else 5165 return false; 5166 } 5167 5168 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5169 // we can vectorize, and at this point we don't have any other mem analysis 5170 // which may limit our maximum vectorization factor, so just return true with 5171 // no restrictions. 5172 return Result; 5173 } 5174 5175 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5176 if (Ty->isPointerTy()) 5177 return DL.getIntPtrType(Ty); 5178 5179 // It is possible that char's or short's overflow when we ask for the loop's 5180 // trip count, work around this by changing the type size. 5181 if (Ty->getScalarSizeInBits() < 32) 5182 return Type::getInt32Ty(Ty->getContext()); 5183 5184 return Ty; 5185 } 5186 5187 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5188 Ty0 = convertPointerToIntegerType(DL, Ty0); 5189 Ty1 = convertPointerToIntegerType(DL, Ty1); 5190 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5191 return Ty0; 5192 return Ty1; 5193 } 5194 5195 /// \brief Check that the instruction has outside loop users and is not an 5196 /// identified reduction variable. 5197 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5198 SmallPtrSetImpl<Value *> &AllowedExit) { 5199 // Reduction and Induction instructions are allowed to have exit users. All 5200 // other instructions must not have external users. 5201 if (!AllowedExit.count(Inst)) 5202 // Check that all of the users of the loop are inside the BB. 5203 for (User *U : Inst->users()) { 5204 Instruction *UI = cast<Instruction>(U); 5205 // This user may be a reduction exit value. 5206 if (!TheLoop->contains(UI)) { 5207 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5208 return true; 5209 } 5210 } 5211 return false; 5212 } 5213 5214 void LoopVectorizationLegality::addInductionPhi( 5215 PHINode *Phi, const InductionDescriptor &ID, 5216 SmallPtrSetImpl<Value *> &AllowedExit) { 5217 Inductions[Phi] = ID; 5218 5219 // In case this induction also comes with casts that we know we can ignore 5220 // in the vectorized loop body, record them here. All casts could be recorded 5221 // here for ignoring, but suffices to record only the first (as it is the 5222 // only one that may bw used outside the cast sequence). 5223 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5224 if (!Casts.empty()) 5225 InductionCastsToIgnore.insert(*Casts.begin()); 5226 5227 Type *PhiTy = Phi->getType(); 5228 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5229 5230 // Get the widest type. 5231 if (!PhiTy->isFloatingPointTy()) { 5232 if (!WidestIndTy) 5233 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5234 else 5235 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5236 } 5237 5238 // Int inductions are special because we only allow one IV. 5239 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5240 ID.getConstIntStepValue() && 5241 ID.getConstIntStepValue()->isOne() && 5242 isa<Constant>(ID.getStartValue()) && 5243 cast<Constant>(ID.getStartValue())->isNullValue()) { 5244 5245 // Use the phi node with the widest type as induction. Use the last 5246 // one if there are multiple (no good reason for doing this other 5247 // than it is expedient). We've checked that it begins at zero and 5248 // steps by one, so this is a canonical induction variable. 5249 if (!PrimaryInduction || PhiTy == WidestIndTy) 5250 PrimaryInduction = Phi; 5251 } 5252 5253 // Both the PHI node itself, and the "post-increment" value feeding 5254 // back into the PHI node may have external users. 5255 // We can allow those uses, except if the SCEVs we have for them rely 5256 // on predicates that only hold within the loop, since allowing the exit 5257 // currently means re-using this SCEV outside the loop. 5258 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5259 AllowedExit.insert(Phi); 5260 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5261 } 5262 5263 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5264 } 5265 5266 bool LoopVectorizationLegality::canVectorizeInstrs() { 5267 BasicBlock *Header = TheLoop->getHeader(); 5268 5269 // Look for the attribute signaling the absence of NaNs. 5270 Function &F = *Header->getParent(); 5271 HasFunNoNaNAttr = 5272 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5273 5274 // For each block in the loop. 5275 for (BasicBlock *BB : TheLoop->blocks()) { 5276 // Scan the instructions in the block and look for hazards. 5277 for (Instruction &I : *BB) { 5278 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5279 Type *PhiTy = Phi->getType(); 5280 // Check that this PHI type is allowed. 5281 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5282 !PhiTy->isPointerTy()) { 5283 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5284 << "loop control flow is not understood by vectorizer"); 5285 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5286 return false; 5287 } 5288 5289 // If this PHINode is not in the header block, then we know that we 5290 // can convert it to select during if-conversion. No need to check if 5291 // the PHIs in this block are induction or reduction variables. 5292 if (BB != Header) { 5293 // Check that this instruction has no outside users or is an 5294 // identified reduction value with an outside user. 5295 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5296 continue; 5297 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5298 << "value could not be identified as " 5299 "an induction or reduction variable"); 5300 return false; 5301 } 5302 5303 // We only allow if-converted PHIs with exactly two incoming values. 5304 if (Phi->getNumIncomingValues() != 2) { 5305 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5306 << "control flow not understood by vectorizer"); 5307 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5308 return false; 5309 } 5310 5311 RecurrenceDescriptor RedDes; 5312 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 5313 DT)) { 5314 if (RedDes.hasUnsafeAlgebra()) 5315 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5316 AllowedExit.insert(RedDes.getLoopExitInstr()); 5317 Reductions[Phi] = RedDes; 5318 continue; 5319 } 5320 5321 InductionDescriptor ID; 5322 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5323 addInductionPhi(Phi, ID, AllowedExit); 5324 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5325 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5326 continue; 5327 } 5328 5329 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5330 SinkAfter, DT)) { 5331 FirstOrderRecurrences.insert(Phi); 5332 continue; 5333 } 5334 5335 // As a last resort, coerce the PHI to a AddRec expression 5336 // and re-try classifying it a an induction PHI. 5337 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5338 addInductionPhi(Phi, ID, AllowedExit); 5339 continue; 5340 } 5341 5342 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5343 << "value that could not be identified as " 5344 "reduction is used outside the loop"); 5345 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5346 return false; 5347 } // end of PHI handling 5348 5349 // We handle calls that: 5350 // * Are debug info intrinsics. 5351 // * Have a mapping to an IR intrinsic. 5352 // * Have a vector version available. 5353 auto *CI = dyn_cast<CallInst>(&I); 5354 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5355 !isa<DbgInfoIntrinsic>(CI) && 5356 !(CI->getCalledFunction() && TLI && 5357 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5358 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5359 << "call instruction cannot be vectorized"); 5360 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5361 return false; 5362 } 5363 5364 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5365 // second argument is the same (i.e. loop invariant) 5366 if (CI && hasVectorInstrinsicScalarOpd( 5367 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5368 auto *SE = PSE.getSE(); 5369 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5370 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5371 << "intrinsic instruction cannot be vectorized"); 5372 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5373 return false; 5374 } 5375 } 5376 5377 // Check that the instruction return type is vectorizable. 5378 // Also, we can't vectorize extractelement instructions. 5379 if ((!VectorType::isValidElementType(I.getType()) && 5380 !I.getType()->isVoidTy()) || 5381 isa<ExtractElementInst>(I)) { 5382 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5383 << "instruction return type cannot be vectorized"); 5384 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5385 return false; 5386 } 5387 5388 // Check that the stored type is vectorizable. 5389 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5390 Type *T = ST->getValueOperand()->getType(); 5391 if (!VectorType::isValidElementType(T)) { 5392 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5393 << "store instruction cannot be vectorized"); 5394 return false; 5395 } 5396 5397 // FP instructions can allow unsafe algebra, thus vectorizable by 5398 // non-IEEE-754 compliant SIMD units. 5399 // This applies to floating-point math operations and calls, not memory 5400 // operations, shuffles, or casts, as they don't change precision or 5401 // semantics. 5402 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5403 !I.isFast()) { 5404 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5405 Hints->setPotentiallyUnsafe(); 5406 } 5407 5408 // Reduction instructions are allowed to have exit users. 5409 // All other instructions must not have external users. 5410 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5411 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5412 << "value cannot be used outside the loop"); 5413 return false; 5414 } 5415 } // next instr. 5416 } 5417 5418 if (!PrimaryInduction) { 5419 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5420 if (Inductions.empty()) { 5421 ORE->emit(createMissedAnalysis("NoInductionVariable") 5422 << "loop induction variable could not be identified"); 5423 return false; 5424 } 5425 } 5426 5427 // Now we know the widest induction type, check if our found induction 5428 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5429 // will create another. 5430 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5431 PrimaryInduction = nullptr; 5432 5433 return true; 5434 } 5435 5436 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5437 // We should not collect Scalars more than once per VF. Right now, this 5438 // function is called from collectUniformsAndScalars(), which already does 5439 // this check. Collecting Scalars for VF=1 does not make any sense. 5440 assert(VF >= 2 && !Scalars.count(VF) && 5441 "This function should not be visited twice for the same VF"); 5442 5443 SmallSetVector<Instruction *, 8> Worklist; 5444 5445 // These sets are used to seed the analysis with pointers used by memory 5446 // accesses that will remain scalar. 5447 SmallSetVector<Instruction *, 8> ScalarPtrs; 5448 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5449 5450 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5451 // The pointer operands of loads and stores will be scalar as long as the 5452 // memory access is not a gather or scatter operation. The value operand of a 5453 // store will remain scalar if the store is scalarized. 5454 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5455 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5456 assert(WideningDecision != CM_Unknown && 5457 "Widening decision should be ready at this moment"); 5458 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5459 if (Ptr == Store->getValueOperand()) 5460 return WideningDecision == CM_Scalarize; 5461 assert(Ptr == getPointerOperand(MemAccess) && 5462 "Ptr is neither a value or pointer operand"); 5463 return WideningDecision != CM_GatherScatter; 5464 }; 5465 5466 // A helper that returns true if the given value is a bitcast or 5467 // getelementptr instruction contained in the loop. 5468 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5469 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5470 isa<GetElementPtrInst>(V)) && 5471 !TheLoop->isLoopInvariant(V); 5472 }; 5473 5474 // A helper that evaluates a memory access's use of a pointer. If the use 5475 // will be a scalar use, and the pointer is only used by memory accesses, we 5476 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5477 // PossibleNonScalarPtrs. 5478 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5479 // We only care about bitcast and getelementptr instructions contained in 5480 // the loop. 5481 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5482 return; 5483 5484 // If the pointer has already been identified as scalar (e.g., if it was 5485 // also identified as uniform), there's nothing to do. 5486 auto *I = cast<Instruction>(Ptr); 5487 if (Worklist.count(I)) 5488 return; 5489 5490 // If the use of the pointer will be a scalar use, and all users of the 5491 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5492 // place the pointer in PossibleNonScalarPtrs. 5493 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5494 return isa<LoadInst>(U) || isa<StoreInst>(U); 5495 })) 5496 ScalarPtrs.insert(I); 5497 else 5498 PossibleNonScalarPtrs.insert(I); 5499 }; 5500 5501 // We seed the scalars analysis with three classes of instructions: (1) 5502 // instructions marked uniform-after-vectorization, (2) bitcast and 5503 // getelementptr instructions used by memory accesses requiring a scalar use, 5504 // and (3) pointer induction variables and their update instructions (we 5505 // currently only scalarize these). 5506 // 5507 // (1) Add to the worklist all instructions that have been identified as 5508 // uniform-after-vectorization. 5509 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5510 5511 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5512 // memory accesses requiring a scalar use. The pointer operands of loads and 5513 // stores will be scalar as long as the memory accesses is not a gather or 5514 // scatter operation. The value operand of a store will remain scalar if the 5515 // store is scalarized. 5516 for (auto *BB : TheLoop->blocks()) 5517 for (auto &I : *BB) { 5518 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5519 evaluatePtrUse(Load, Load->getPointerOperand()); 5520 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5521 evaluatePtrUse(Store, Store->getPointerOperand()); 5522 evaluatePtrUse(Store, Store->getValueOperand()); 5523 } 5524 } 5525 for (auto *I : ScalarPtrs) 5526 if (!PossibleNonScalarPtrs.count(I)) { 5527 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5528 Worklist.insert(I); 5529 } 5530 5531 // (3) Add to the worklist all pointer induction variables and their update 5532 // instructions. 5533 // 5534 // TODO: Once we are able to vectorize pointer induction variables we should 5535 // no longer insert them into the worklist here. 5536 auto *Latch = TheLoop->getLoopLatch(); 5537 for (auto &Induction : *Legal->getInductionVars()) { 5538 auto *Ind = Induction.first; 5539 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5540 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5541 continue; 5542 Worklist.insert(Ind); 5543 Worklist.insert(IndUpdate); 5544 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5545 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5546 } 5547 5548 // Insert the forced scalars. 5549 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5550 // induction variable when the PHI user is scalarized. 5551 if (ForcedScalars.count(VF)) 5552 for (auto *I : ForcedScalars.find(VF)->second) 5553 Worklist.insert(I); 5554 5555 // Expand the worklist by looking through any bitcasts and getelementptr 5556 // instructions we've already identified as scalar. This is similar to the 5557 // expansion step in collectLoopUniforms(); however, here we're only 5558 // expanding to include additional bitcasts and getelementptr instructions. 5559 unsigned Idx = 0; 5560 while (Idx != Worklist.size()) { 5561 Instruction *Dst = Worklist[Idx++]; 5562 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5563 continue; 5564 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5565 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5566 auto *J = cast<Instruction>(U); 5567 return !TheLoop->contains(J) || Worklist.count(J) || 5568 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5569 isScalarUse(J, Src)); 5570 })) { 5571 Worklist.insert(Src); 5572 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5573 } 5574 } 5575 5576 // An induction variable will remain scalar if all users of the induction 5577 // variable and induction variable update remain scalar. 5578 for (auto &Induction : *Legal->getInductionVars()) { 5579 auto *Ind = Induction.first; 5580 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5581 5582 // We already considered pointer induction variables, so there's no reason 5583 // to look at their users again. 5584 // 5585 // TODO: Once we are able to vectorize pointer induction variables we 5586 // should no longer skip over them here. 5587 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5588 continue; 5589 5590 // Determine if all users of the induction variable are scalar after 5591 // vectorization. 5592 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5593 auto *I = cast<Instruction>(U); 5594 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5595 }); 5596 if (!ScalarInd) 5597 continue; 5598 5599 // Determine if all users of the induction variable update instruction are 5600 // scalar after vectorization. 5601 auto ScalarIndUpdate = 5602 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5603 auto *I = cast<Instruction>(U); 5604 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5605 }); 5606 if (!ScalarIndUpdate) 5607 continue; 5608 5609 // The induction variable and its update instruction will remain scalar. 5610 Worklist.insert(Ind); 5611 Worklist.insert(IndUpdate); 5612 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5613 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5614 } 5615 5616 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5617 } 5618 5619 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5620 if (!blockNeedsPredication(I->getParent())) 5621 return false; 5622 switch(I->getOpcode()) { 5623 default: 5624 break; 5625 case Instruction::Store: 5626 return !isMaskRequired(I); 5627 case Instruction::UDiv: 5628 case Instruction::SDiv: 5629 case Instruction::SRem: 5630 case Instruction::URem: 5631 return mayDivideByZero(*I); 5632 } 5633 return false; 5634 } 5635 5636 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5637 unsigned VF) { 5638 // Get and ensure we have a valid memory instruction. 5639 LoadInst *LI = dyn_cast<LoadInst>(I); 5640 StoreInst *SI = dyn_cast<StoreInst>(I); 5641 assert((LI || SI) && "Invalid memory instruction"); 5642 5643 auto *Ptr = getPointerOperand(I); 5644 5645 // In order to be widened, the pointer should be consecutive, first of all. 5646 if (!isConsecutivePtr(Ptr)) 5647 return false; 5648 5649 // If the instruction is a store located in a predicated block, it will be 5650 // scalarized. 5651 if (isScalarWithPredication(I)) 5652 return false; 5653 5654 // If the instruction's allocated size doesn't equal it's type size, it 5655 // requires padding and will be scalarized. 5656 auto &DL = I->getModule()->getDataLayout(); 5657 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5658 if (hasIrregularType(ScalarTy, DL, VF)) 5659 return false; 5660 5661 return true; 5662 } 5663 5664 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5665 // We should not collect Uniforms more than once per VF. Right now, 5666 // this function is called from collectUniformsAndScalars(), which 5667 // already does this check. Collecting Uniforms for VF=1 does not make any 5668 // sense. 5669 5670 assert(VF >= 2 && !Uniforms.count(VF) && 5671 "This function should not be visited twice for the same VF"); 5672 5673 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5674 // not analyze again. Uniforms.count(VF) will return 1. 5675 Uniforms[VF].clear(); 5676 5677 // We now know that the loop is vectorizable! 5678 // Collect instructions inside the loop that will remain uniform after 5679 // vectorization. 5680 5681 // Global values, params and instructions outside of current loop are out of 5682 // scope. 5683 auto isOutOfScope = [&](Value *V) -> bool { 5684 Instruction *I = dyn_cast<Instruction>(V); 5685 return (!I || !TheLoop->contains(I)); 5686 }; 5687 5688 SetVector<Instruction *> Worklist; 5689 BasicBlock *Latch = TheLoop->getLoopLatch(); 5690 5691 // Start with the conditional branch. If the branch condition is an 5692 // instruction contained in the loop that is only used by the branch, it is 5693 // uniform. 5694 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5695 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5696 Worklist.insert(Cmp); 5697 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5698 } 5699 5700 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5701 // are pointers that are treated like consecutive pointers during 5702 // vectorization. The pointer operands of interleaved accesses are an 5703 // example. 5704 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5705 5706 // Holds pointer operands of instructions that are possibly non-uniform. 5707 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5708 5709 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5710 InstWidening WideningDecision = getWideningDecision(I, VF); 5711 assert(WideningDecision != CM_Unknown && 5712 "Widening decision should be ready at this moment"); 5713 5714 return (WideningDecision == CM_Widen || 5715 WideningDecision == CM_Widen_Reverse || 5716 WideningDecision == CM_Interleave); 5717 }; 5718 // Iterate over the instructions in the loop, and collect all 5719 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5720 // that a consecutive-like pointer operand will be scalarized, we collect it 5721 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5722 // getelementptr instruction can be used by both vectorized and scalarized 5723 // memory instructions. For example, if a loop loads and stores from the same 5724 // location, but the store is conditional, the store will be scalarized, and 5725 // the getelementptr won't remain uniform. 5726 for (auto *BB : TheLoop->blocks()) 5727 for (auto &I : *BB) { 5728 // If there's no pointer operand, there's nothing to do. 5729 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5730 if (!Ptr) 5731 continue; 5732 5733 // True if all users of Ptr are memory accesses that have Ptr as their 5734 // pointer operand. 5735 auto UsersAreMemAccesses = 5736 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5737 return getPointerOperand(U) == Ptr; 5738 }); 5739 5740 // Ensure the memory instruction will not be scalarized or used by 5741 // gather/scatter, making its pointer operand non-uniform. If the pointer 5742 // operand is used by any instruction other than a memory access, we 5743 // conservatively assume the pointer operand may be non-uniform. 5744 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5745 PossibleNonUniformPtrs.insert(Ptr); 5746 5747 // If the memory instruction will be vectorized and its pointer operand 5748 // is consecutive-like, or interleaving - the pointer operand should 5749 // remain uniform. 5750 else 5751 ConsecutiveLikePtrs.insert(Ptr); 5752 } 5753 5754 // Add to the Worklist all consecutive and consecutive-like pointers that 5755 // aren't also identified as possibly non-uniform. 5756 for (auto *V : ConsecutiveLikePtrs) 5757 if (!PossibleNonUniformPtrs.count(V)) { 5758 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5759 Worklist.insert(V); 5760 } 5761 5762 // Expand Worklist in topological order: whenever a new instruction 5763 // is added , its users should be either already inside Worklist, or 5764 // out of scope. It ensures a uniform instruction will only be used 5765 // by uniform instructions or out of scope instructions. 5766 unsigned idx = 0; 5767 while (idx != Worklist.size()) { 5768 Instruction *I = Worklist[idx++]; 5769 5770 for (auto OV : I->operand_values()) { 5771 if (isOutOfScope(OV)) 5772 continue; 5773 auto *OI = cast<Instruction>(OV); 5774 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5775 auto *J = cast<Instruction>(U); 5776 return !TheLoop->contains(J) || Worklist.count(J) || 5777 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5778 })) { 5779 Worklist.insert(OI); 5780 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5781 } 5782 } 5783 } 5784 5785 // Returns true if Ptr is the pointer operand of a memory access instruction 5786 // I, and I is known to not require scalarization. 5787 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5788 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5789 }; 5790 5791 // For an instruction to be added into Worklist above, all its users inside 5792 // the loop should also be in Worklist. However, this condition cannot be 5793 // true for phi nodes that form a cyclic dependence. We must process phi 5794 // nodes separately. An induction variable will remain uniform if all users 5795 // of the induction variable and induction variable update remain uniform. 5796 // The code below handles both pointer and non-pointer induction variables. 5797 for (auto &Induction : *Legal->getInductionVars()) { 5798 auto *Ind = Induction.first; 5799 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5800 5801 // Determine if all users of the induction variable are uniform after 5802 // vectorization. 5803 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5804 auto *I = cast<Instruction>(U); 5805 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5806 isVectorizedMemAccessUse(I, Ind); 5807 }); 5808 if (!UniformInd) 5809 continue; 5810 5811 // Determine if all users of the induction variable update instruction are 5812 // uniform after vectorization. 5813 auto UniformIndUpdate = 5814 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5815 auto *I = cast<Instruction>(U); 5816 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5817 isVectorizedMemAccessUse(I, IndUpdate); 5818 }); 5819 if (!UniformIndUpdate) 5820 continue; 5821 5822 // The induction variable and its update instruction will remain uniform. 5823 Worklist.insert(Ind); 5824 Worklist.insert(IndUpdate); 5825 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5826 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5827 } 5828 5829 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5830 } 5831 5832 bool LoopVectorizationLegality::canVectorizeMemory() { 5833 LAI = &(*GetLAA)(*TheLoop); 5834 InterleaveInfo.setLAI(LAI); 5835 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5836 if (LAR) { 5837 ORE->emit([&]() { 5838 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5839 "loop not vectorized: ", *LAR); 5840 }); 5841 } 5842 if (!LAI->canVectorizeMemory()) 5843 return false; 5844 5845 if (LAI->hasStoreToLoopInvariantAddress()) { 5846 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5847 << "write to a loop invariant address could not be vectorized"); 5848 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5849 return false; 5850 } 5851 5852 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5853 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5854 5855 return true; 5856 } 5857 5858 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5859 Value *In0 = const_cast<Value *>(V); 5860 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5861 if (!PN) 5862 return false; 5863 5864 return Inductions.count(PN); 5865 } 5866 5867 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5868 auto *Inst = dyn_cast<Instruction>(V); 5869 return (Inst && InductionCastsToIgnore.count(Inst)); 5870 } 5871 5872 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5873 return isInductionPhi(V) || isCastedInductionVariable(V); 5874 } 5875 5876 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5877 return FirstOrderRecurrences.count(Phi); 5878 } 5879 5880 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5881 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5882 } 5883 5884 bool LoopVectorizationLegality::blockCanBePredicated( 5885 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5886 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5887 5888 for (Instruction &I : *BB) { 5889 // Check that we don't have a constant expression that can trap as operand. 5890 for (Value *Operand : I.operands()) { 5891 if (auto *C = dyn_cast<Constant>(Operand)) 5892 if (C->canTrap()) 5893 return false; 5894 } 5895 // We might be able to hoist the load. 5896 if (I.mayReadFromMemory()) { 5897 auto *LI = dyn_cast<LoadInst>(&I); 5898 if (!LI) 5899 return false; 5900 if (!SafePtrs.count(LI->getPointerOperand())) { 5901 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5902 isLegalMaskedGather(LI->getType())) { 5903 MaskedOp.insert(LI); 5904 continue; 5905 } 5906 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5907 if (IsAnnotatedParallel) 5908 continue; 5909 return false; 5910 } 5911 } 5912 5913 if (I.mayWriteToMemory()) { 5914 auto *SI = dyn_cast<StoreInst>(&I); 5915 // We only support predication of stores in basic blocks with one 5916 // predecessor. 5917 if (!SI) 5918 return false; 5919 5920 // Build a masked store if it is legal for the target. 5921 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5922 SI->getPointerOperand()) || 5923 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5924 MaskedOp.insert(SI); 5925 continue; 5926 } 5927 5928 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5929 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5930 5931 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5932 !isSinglePredecessor) 5933 return false; 5934 } 5935 if (I.mayThrow()) 5936 return false; 5937 } 5938 5939 return true; 5940 } 5941 5942 void InterleavedAccessInfo::collectConstStrideAccesses( 5943 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5944 const ValueToValueMap &Strides) { 5945 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5946 5947 // Since it's desired that the load/store instructions be maintained in 5948 // "program order" for the interleaved access analysis, we have to visit the 5949 // blocks in the loop in reverse postorder (i.e., in a topological order). 5950 // Such an ordering will ensure that any load/store that may be executed 5951 // before a second load/store will precede the second load/store in 5952 // AccessStrideInfo. 5953 LoopBlocksDFS DFS(TheLoop); 5954 DFS.perform(LI); 5955 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5956 for (auto &I : *BB) { 5957 auto *LI = dyn_cast<LoadInst>(&I); 5958 auto *SI = dyn_cast<StoreInst>(&I); 5959 if (!LI && !SI) 5960 continue; 5961 5962 Value *Ptr = getPointerOperand(&I); 5963 // We don't check wrapping here because we don't know yet if Ptr will be 5964 // part of a full group or a group with gaps. Checking wrapping for all 5965 // pointers (even those that end up in groups with no gaps) will be overly 5966 // conservative. For full groups, wrapping should be ok since if we would 5967 // wrap around the address space we would do a memory access at nullptr 5968 // even without the transformation. The wrapping checks are therefore 5969 // deferred until after we've formed the interleaved groups. 5970 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5971 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5972 5973 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5974 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5975 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5976 5977 // An alignment of 0 means target ABI alignment. 5978 unsigned Align = getMemInstAlignment(&I); 5979 if (!Align) 5980 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5981 5982 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5983 } 5984 } 5985 5986 // Analyze interleaved accesses and collect them into interleaved load and 5987 // store groups. 5988 // 5989 // When generating code for an interleaved load group, we effectively hoist all 5990 // loads in the group to the location of the first load in program order. When 5991 // generating code for an interleaved store group, we sink all stores to the 5992 // location of the last store. This code motion can change the order of load 5993 // and store instructions and may break dependences. 5994 // 5995 // The code generation strategy mentioned above ensures that we won't violate 5996 // any write-after-read (WAR) dependences. 5997 // 5998 // E.g., for the WAR dependence: a = A[i]; // (1) 5999 // A[i] = b; // (2) 6000 // 6001 // The store group of (2) is always inserted at or below (2), and the load 6002 // group of (1) is always inserted at or above (1). Thus, the instructions will 6003 // never be reordered. All other dependences are checked to ensure the 6004 // correctness of the instruction reordering. 6005 // 6006 // The algorithm visits all memory accesses in the loop in bottom-up program 6007 // order. Program order is established by traversing the blocks in the loop in 6008 // reverse postorder when collecting the accesses. 6009 // 6010 // We visit the memory accesses in bottom-up order because it can simplify the 6011 // construction of store groups in the presence of write-after-write (WAW) 6012 // dependences. 6013 // 6014 // E.g., for the WAW dependence: A[i] = a; // (1) 6015 // A[i] = b; // (2) 6016 // A[i + 1] = c; // (3) 6017 // 6018 // We will first create a store group with (3) and (2). (1) can't be added to 6019 // this group because it and (2) are dependent. However, (1) can be grouped 6020 // with other accesses that may precede it in program order. Note that a 6021 // bottom-up order does not imply that WAW dependences should not be checked. 6022 void InterleavedAccessInfo::analyzeInterleaving( 6023 const ValueToValueMap &Strides) { 6024 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6025 6026 // Holds all accesses with a constant stride. 6027 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6028 collectConstStrideAccesses(AccessStrideInfo, Strides); 6029 6030 if (AccessStrideInfo.empty()) 6031 return; 6032 6033 // Collect the dependences in the loop. 6034 collectDependences(); 6035 6036 // Holds all interleaved store groups temporarily. 6037 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6038 // Holds all interleaved load groups temporarily. 6039 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6040 6041 // Search in bottom-up program order for pairs of accesses (A and B) that can 6042 // form interleaved load or store groups. In the algorithm below, access A 6043 // precedes access B in program order. We initialize a group for B in the 6044 // outer loop of the algorithm, and then in the inner loop, we attempt to 6045 // insert each A into B's group if: 6046 // 6047 // 1. A and B have the same stride, 6048 // 2. A and B have the same memory object size, and 6049 // 3. A belongs in B's group according to its distance from B. 6050 // 6051 // Special care is taken to ensure group formation will not break any 6052 // dependences. 6053 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6054 BI != E; ++BI) { 6055 Instruction *B = BI->first; 6056 StrideDescriptor DesB = BI->second; 6057 6058 // Initialize a group for B if it has an allowable stride. Even if we don't 6059 // create a group for B, we continue with the bottom-up algorithm to ensure 6060 // we don't break any of B's dependences. 6061 InterleaveGroup *Group = nullptr; 6062 if (isStrided(DesB.Stride)) { 6063 Group = getInterleaveGroup(B); 6064 if (!Group) { 6065 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6066 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6067 } 6068 if (B->mayWriteToMemory()) 6069 StoreGroups.insert(Group); 6070 else 6071 LoadGroups.insert(Group); 6072 } 6073 6074 for (auto AI = std::next(BI); AI != E; ++AI) { 6075 Instruction *A = AI->first; 6076 StrideDescriptor DesA = AI->second; 6077 6078 // Our code motion strategy implies that we can't have dependences 6079 // between accesses in an interleaved group and other accesses located 6080 // between the first and last member of the group. Note that this also 6081 // means that a group can't have more than one member at a given offset. 6082 // The accesses in a group can have dependences with other accesses, but 6083 // we must ensure we don't extend the boundaries of the group such that 6084 // we encompass those dependent accesses. 6085 // 6086 // For example, assume we have the sequence of accesses shown below in a 6087 // stride-2 loop: 6088 // 6089 // (1, 2) is a group | A[i] = a; // (1) 6090 // | A[i-1] = b; // (2) | 6091 // A[i-3] = c; // (3) 6092 // A[i] = d; // (4) | (2, 4) is not a group 6093 // 6094 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6095 // but not with (4). If we did, the dependent access (3) would be within 6096 // the boundaries of the (2, 4) group. 6097 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6098 // If a dependence exists and A is already in a group, we know that A 6099 // must be a store since A precedes B and WAR dependences are allowed. 6100 // Thus, A would be sunk below B. We release A's group to prevent this 6101 // illegal code motion. A will then be free to form another group with 6102 // instructions that precede it. 6103 if (isInterleaved(A)) { 6104 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6105 StoreGroups.remove(StoreGroup); 6106 releaseGroup(StoreGroup); 6107 } 6108 6109 // If a dependence exists and A is not already in a group (or it was 6110 // and we just released it), B might be hoisted above A (if B is a 6111 // load) or another store might be sunk below A (if B is a store). In 6112 // either case, we can't add additional instructions to B's group. B 6113 // will only form a group with instructions that it precedes. 6114 break; 6115 } 6116 6117 // At this point, we've checked for illegal code motion. If either A or B 6118 // isn't strided, there's nothing left to do. 6119 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6120 continue; 6121 6122 // Ignore A if it's already in a group or isn't the same kind of memory 6123 // operation as B. 6124 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6125 continue; 6126 6127 // Check rules 1 and 2. Ignore A if its stride or size is different from 6128 // that of B. 6129 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6130 continue; 6131 6132 // Ignore A if the memory object of A and B don't belong to the same 6133 // address space 6134 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6135 continue; 6136 6137 // Calculate the distance from A to B. 6138 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6139 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6140 if (!DistToB) 6141 continue; 6142 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6143 6144 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6145 // size. 6146 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6147 continue; 6148 6149 // Ignore A if either A or B is in a predicated block. Although we 6150 // currently prevent group formation for predicated accesses, we may be 6151 // able to relax this limitation in the future once we handle more 6152 // complicated blocks. 6153 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6154 continue; 6155 6156 // The index of A is the index of B plus A's distance to B in multiples 6157 // of the size. 6158 int IndexA = 6159 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6160 6161 // Try to insert A into B's group. 6162 if (Group->insertMember(A, IndexA, DesA.Align)) { 6163 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6164 << " into the interleave group with" << *B << '\n'); 6165 InterleaveGroupMap[A] = Group; 6166 6167 // Set the first load in program order as the insert position. 6168 if (A->mayReadFromMemory()) 6169 Group->setInsertPos(A); 6170 } 6171 } // Iteration over A accesses. 6172 } // Iteration over B accesses. 6173 6174 // Remove interleaved store groups with gaps. 6175 for (InterleaveGroup *Group : StoreGroups) 6176 if (Group->getNumMembers() != Group->getFactor()) { 6177 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 6178 "to gaps.\n"); 6179 releaseGroup(Group); 6180 } 6181 // Remove interleaved groups with gaps (currently only loads) whose memory 6182 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6183 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6184 // not check wrapping (see documentation there). 6185 // FORNOW we use Assume=false; 6186 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6187 // of runtime SCEV assumptions checks (thereby potentially failing to 6188 // vectorize altogether). 6189 // Additional optional optimizations: 6190 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6191 // wrap then we can deduce that all pointers in the group don't wrap. 6192 // This means that we can forcefully peel the loop in order to only have to 6193 // check the first pointer for no-wrap. When we'll change to use Assume=true 6194 // we'll only need at most one runtime check per interleaved group. 6195 for (InterleaveGroup *Group : LoadGroups) { 6196 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6197 // load would wrap around the address space we would do a memory access at 6198 // nullptr even without the transformation. 6199 if (Group->getNumMembers() == Group->getFactor()) 6200 continue; 6201 6202 // Case 2: If first and last members of the group don't wrap this implies 6203 // that all the pointers in the group don't wrap. 6204 // So we check only group member 0 (which is always guaranteed to exist), 6205 // and group member Factor - 1; If the latter doesn't exist we rely on 6206 // peeling (if it is a non-reveresed accsess -- see Case 3). 6207 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6208 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6209 /*ShouldCheckWrap=*/true)) { 6210 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6211 "first group member potentially pointer-wrapping.\n"); 6212 releaseGroup(Group); 6213 continue; 6214 } 6215 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6216 if (LastMember) { 6217 Value *LastMemberPtr = getPointerOperand(LastMember); 6218 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6219 /*ShouldCheckWrap=*/true)) { 6220 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6221 "last group member potentially pointer-wrapping.\n"); 6222 releaseGroup(Group); 6223 } 6224 } else { 6225 // Case 3: A non-reversed interleaved load group with gaps: We need 6226 // to execute at least one scalar epilogue iteration. This will ensure 6227 // we don't speculatively access memory out-of-bounds. We only need 6228 // to look for a member at index factor - 1, since every group must have 6229 // a member at index zero. 6230 if (Group->isReverse()) { 6231 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6232 "a reverse access with gaps.\n"); 6233 releaseGroup(Group); 6234 continue; 6235 } 6236 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6237 RequiresScalarEpilogue = true; 6238 } 6239 } 6240 } 6241 6242 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6243 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6244 ORE->emit(createMissedAnalysis("ConditionalStore") 6245 << "store that is conditionally executed prevents vectorization"); 6246 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6247 return None; 6248 } 6249 6250 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6251 // TODO: It may by useful to do since it's still likely to be dynamically 6252 // uniform if the target can skip. 6253 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6254 6255 ORE->emit( 6256 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6257 << "runtime pointer checks needed. Not enabled for divergent target"); 6258 6259 return None; 6260 } 6261 6262 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6263 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6264 return computeFeasibleMaxVF(OptForSize, TC); 6265 6266 if (Legal->getRuntimePointerChecking()->Need) { 6267 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6268 << "runtime pointer checks needed. Enable vectorization of this " 6269 "loop with '#pragma clang loop vectorize(enable)' when " 6270 "compiling with -Os/-Oz"); 6271 DEBUG(dbgs() 6272 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6273 return None; 6274 } 6275 6276 // If we optimize the program for size, avoid creating the tail loop. 6277 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6278 6279 // If we don't know the precise trip count, don't try to vectorize. 6280 if (TC < 2) { 6281 ORE->emit( 6282 createMissedAnalysis("UnknownLoopCountComplexCFG") 6283 << "unable to calculate the loop count due to complex control flow"); 6284 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6285 return None; 6286 } 6287 6288 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6289 6290 if (TC % MaxVF != 0) { 6291 // If the trip count that we found modulo the vectorization factor is not 6292 // zero then we require a tail. 6293 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6294 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6295 // smaller MaxVF that does not require a scalar epilog. 6296 6297 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6298 << "cannot optimize for size and vectorize at the " 6299 "same time. Enable vectorization of this loop " 6300 "with '#pragma clang loop vectorize(enable)' " 6301 "when compiling with -Os/-Oz"); 6302 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6303 return None; 6304 } 6305 6306 return MaxVF; 6307 } 6308 6309 unsigned 6310 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6311 unsigned ConstTripCount) { 6312 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6313 unsigned SmallestType, WidestType; 6314 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6315 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6316 6317 // Get the maximum safe dependence distance in bits computed by LAA. 6318 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6319 // the memory accesses that is most restrictive (involved in the smallest 6320 // dependence distance). 6321 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6322 6323 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6324 6325 unsigned MaxVectorSize = WidestRegister / WidestType; 6326 6327 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6328 << WidestType << " bits.\n"); 6329 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6330 << " bits.\n"); 6331 6332 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6333 " into one vector!"); 6334 if (MaxVectorSize == 0) { 6335 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6336 MaxVectorSize = 1; 6337 return MaxVectorSize; 6338 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6339 isPowerOf2_32(ConstTripCount)) { 6340 // We need to clamp the VF to be the ConstTripCount. There is no point in 6341 // choosing a higher viable VF as done in the loop below. 6342 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6343 << ConstTripCount << "\n"); 6344 MaxVectorSize = ConstTripCount; 6345 return MaxVectorSize; 6346 } 6347 6348 unsigned MaxVF = MaxVectorSize; 6349 if (MaximizeBandwidth && !OptForSize) { 6350 // Collect all viable vectorization factors larger than the default MaxVF 6351 // (i.e. MaxVectorSize). 6352 SmallVector<unsigned, 8> VFs; 6353 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6354 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6355 VFs.push_back(VS); 6356 6357 // For each VF calculate its register usage. 6358 auto RUs = calculateRegisterUsage(VFs); 6359 6360 // Select the largest VF which doesn't require more registers than existing 6361 // ones. 6362 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6363 for (int i = RUs.size() - 1; i >= 0; --i) { 6364 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6365 MaxVF = VFs[i]; 6366 break; 6367 } 6368 } 6369 } 6370 return MaxVF; 6371 } 6372 6373 LoopVectorizationCostModel::VectorizationFactor 6374 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6375 float Cost = expectedCost(1).first; 6376 #ifndef NDEBUG 6377 const float ScalarCost = Cost; 6378 #endif /* NDEBUG */ 6379 unsigned Width = 1; 6380 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6381 6382 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6383 // Ignore scalar width, because the user explicitly wants vectorization. 6384 if (ForceVectorization && MaxVF > 1) { 6385 Width = 2; 6386 Cost = expectedCost(Width).first / (float)Width; 6387 } 6388 6389 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6390 // Notice that the vector loop needs to be executed less times, so 6391 // we need to divide the cost of the vector loops by the width of 6392 // the vector elements. 6393 VectorizationCostTy C = expectedCost(i); 6394 float VectorCost = C.first / (float)i; 6395 DEBUG(dbgs() << "LV: Vector loop of width " << i 6396 << " costs: " << (int)VectorCost << ".\n"); 6397 if (!C.second && !ForceVectorization) { 6398 DEBUG( 6399 dbgs() << "LV: Not considering vector loop of width " << i 6400 << " because it will not generate any vector instructions.\n"); 6401 continue; 6402 } 6403 if (VectorCost < Cost) { 6404 Cost = VectorCost; 6405 Width = i; 6406 } 6407 } 6408 6409 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6410 << "LV: Vectorization seems to be not beneficial, " 6411 << "but was forced by a user.\n"); 6412 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6413 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6414 return Factor; 6415 } 6416 6417 std::pair<unsigned, unsigned> 6418 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6419 unsigned MinWidth = -1U; 6420 unsigned MaxWidth = 8; 6421 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6422 6423 // For each block. 6424 for (BasicBlock *BB : TheLoop->blocks()) { 6425 // For each instruction in the loop. 6426 for (Instruction &I : *BB) { 6427 Type *T = I.getType(); 6428 6429 // Skip ignored values. 6430 if (ValuesToIgnore.count(&I)) 6431 continue; 6432 6433 // Only examine Loads, Stores and PHINodes. 6434 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6435 continue; 6436 6437 // Examine PHI nodes that are reduction variables. Update the type to 6438 // account for the recurrence type. 6439 if (auto *PN = dyn_cast<PHINode>(&I)) { 6440 if (!Legal->isReductionVariable(PN)) 6441 continue; 6442 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6443 T = RdxDesc.getRecurrenceType(); 6444 } 6445 6446 // Examine the stored values. 6447 if (auto *ST = dyn_cast<StoreInst>(&I)) 6448 T = ST->getValueOperand()->getType(); 6449 6450 // Ignore loaded pointer types and stored pointer types that are not 6451 // vectorizable. 6452 // 6453 // FIXME: The check here attempts to predict whether a load or store will 6454 // be vectorized. We only know this for certain after a VF has 6455 // been selected. Here, we assume that if an access can be 6456 // vectorized, it will be. We should also look at extending this 6457 // optimization to non-pointer types. 6458 // 6459 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6460 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6461 continue; 6462 6463 MinWidth = std::min(MinWidth, 6464 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6465 MaxWidth = std::max(MaxWidth, 6466 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6467 } 6468 } 6469 6470 return {MinWidth, MaxWidth}; 6471 } 6472 6473 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6474 unsigned VF, 6475 unsigned LoopCost) { 6476 // -- The interleave heuristics -- 6477 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6478 // There are many micro-architectural considerations that we can't predict 6479 // at this level. For example, frontend pressure (on decode or fetch) due to 6480 // code size, or the number and capabilities of the execution ports. 6481 // 6482 // We use the following heuristics to select the interleave count: 6483 // 1. If the code has reductions, then we interleave to break the cross 6484 // iteration dependency. 6485 // 2. If the loop is really small, then we interleave to reduce the loop 6486 // overhead. 6487 // 3. We don't interleave if we think that we will spill registers to memory 6488 // due to the increased register pressure. 6489 6490 // When we optimize for size, we don't interleave. 6491 if (OptForSize) 6492 return 1; 6493 6494 // We used the distance for the interleave count. 6495 if (Legal->getMaxSafeDepDistBytes() != -1U) 6496 return 1; 6497 6498 // Do not interleave loops with a relatively small trip count. 6499 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6500 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6501 return 1; 6502 6503 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6504 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6505 << " registers\n"); 6506 6507 if (VF == 1) { 6508 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6509 TargetNumRegisters = ForceTargetNumScalarRegs; 6510 } else { 6511 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6512 TargetNumRegisters = ForceTargetNumVectorRegs; 6513 } 6514 6515 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6516 // We divide by these constants so assume that we have at least one 6517 // instruction that uses at least one register. 6518 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6519 R.NumInstructions = std::max(R.NumInstructions, 1U); 6520 6521 // We calculate the interleave count using the following formula. 6522 // Subtract the number of loop invariants from the number of available 6523 // registers. These registers are used by all of the interleaved instances. 6524 // Next, divide the remaining registers by the number of registers that is 6525 // required by the loop, in order to estimate how many parallel instances 6526 // fit without causing spills. All of this is rounded down if necessary to be 6527 // a power of two. We want power of two interleave count to simplify any 6528 // addressing operations or alignment considerations. 6529 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6530 R.MaxLocalUsers); 6531 6532 // Don't count the induction variable as interleaved. 6533 if (EnableIndVarRegisterHeur) 6534 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6535 std::max(1U, (R.MaxLocalUsers - 1))); 6536 6537 // Clamp the interleave ranges to reasonable counts. 6538 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6539 6540 // Check if the user has overridden the max. 6541 if (VF == 1) { 6542 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6543 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6544 } else { 6545 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6546 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6547 } 6548 6549 // If we did not calculate the cost for VF (because the user selected the VF) 6550 // then we calculate the cost of VF here. 6551 if (LoopCost == 0) 6552 LoopCost = expectedCost(VF).first; 6553 6554 // Clamp the calculated IC to be between the 1 and the max interleave count 6555 // that the target allows. 6556 if (IC > MaxInterleaveCount) 6557 IC = MaxInterleaveCount; 6558 else if (IC < 1) 6559 IC = 1; 6560 6561 // Interleave if we vectorized this loop and there is a reduction that could 6562 // benefit from interleaving. 6563 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6564 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6565 return IC; 6566 } 6567 6568 // Note that if we've already vectorized the loop we will have done the 6569 // runtime check and so interleaving won't require further checks. 6570 bool InterleavingRequiresRuntimePointerCheck = 6571 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6572 6573 // We want to interleave small loops in order to reduce the loop overhead and 6574 // potentially expose ILP opportunities. 6575 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6576 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6577 // We assume that the cost overhead is 1 and we use the cost model 6578 // to estimate the cost of the loop and interleave until the cost of the 6579 // loop overhead is about 5% of the cost of the loop. 6580 unsigned SmallIC = 6581 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6582 6583 // Interleave until store/load ports (estimated by max interleave count) are 6584 // saturated. 6585 unsigned NumStores = Legal->getNumStores(); 6586 unsigned NumLoads = Legal->getNumLoads(); 6587 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6588 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6589 6590 // If we have a scalar reduction (vector reductions are already dealt with 6591 // by this point), we can increase the critical path length if the loop 6592 // we're interleaving is inside another loop. Limit, by default to 2, so the 6593 // critical path only gets increased by one reduction operation. 6594 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6595 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6596 SmallIC = std::min(SmallIC, F); 6597 StoresIC = std::min(StoresIC, F); 6598 LoadsIC = std::min(LoadsIC, F); 6599 } 6600 6601 if (EnableLoadStoreRuntimeInterleave && 6602 std::max(StoresIC, LoadsIC) > SmallIC) { 6603 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6604 return std::max(StoresIC, LoadsIC); 6605 } 6606 6607 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6608 return SmallIC; 6609 } 6610 6611 // Interleave if this is a large loop (small loops are already dealt with by 6612 // this point) that could benefit from interleaving. 6613 bool HasReductions = !Legal->getReductionVars()->empty(); 6614 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6615 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6616 return IC; 6617 } 6618 6619 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6620 return 1; 6621 } 6622 6623 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6624 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6625 // This function calculates the register usage by measuring the highest number 6626 // of values that are alive at a single location. Obviously, this is a very 6627 // rough estimation. We scan the loop in a topological order in order and 6628 // assign a number to each instruction. We use RPO to ensure that defs are 6629 // met before their users. We assume that each instruction that has in-loop 6630 // users starts an interval. We record every time that an in-loop value is 6631 // used, so we have a list of the first and last occurrences of each 6632 // instruction. Next, we transpose this data structure into a multi map that 6633 // holds the list of intervals that *end* at a specific location. This multi 6634 // map allows us to perform a linear search. We scan the instructions linearly 6635 // and record each time that a new interval starts, by placing it in a set. 6636 // If we find this value in the multi-map then we remove it from the set. 6637 // The max register usage is the maximum size of the set. 6638 // We also search for instructions that are defined outside the loop, but are 6639 // used inside the loop. We need this number separately from the max-interval 6640 // usage number because when we unroll, loop-invariant values do not take 6641 // more register. 6642 LoopBlocksDFS DFS(TheLoop); 6643 DFS.perform(LI); 6644 6645 RegisterUsage RU; 6646 RU.NumInstructions = 0; 6647 6648 // Each 'key' in the map opens a new interval. The values 6649 // of the map are the index of the 'last seen' usage of the 6650 // instruction that is the key. 6651 using IntervalMap = DenseMap<Instruction *, unsigned>; 6652 6653 // Maps instruction to its index. 6654 DenseMap<unsigned, Instruction *> IdxToInstr; 6655 // Marks the end of each interval. 6656 IntervalMap EndPoint; 6657 // Saves the list of instruction indices that are used in the loop. 6658 SmallSet<Instruction *, 8> Ends; 6659 // Saves the list of values that are used in the loop but are 6660 // defined outside the loop, such as arguments and constants. 6661 SmallPtrSet<Value *, 8> LoopInvariants; 6662 6663 unsigned Index = 0; 6664 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6665 RU.NumInstructions += BB->size(); 6666 for (Instruction &I : *BB) { 6667 IdxToInstr[Index++] = &I; 6668 6669 // Save the end location of each USE. 6670 for (Value *U : I.operands()) { 6671 auto *Instr = dyn_cast<Instruction>(U); 6672 6673 // Ignore non-instruction values such as arguments, constants, etc. 6674 if (!Instr) 6675 continue; 6676 6677 // If this instruction is outside the loop then record it and continue. 6678 if (!TheLoop->contains(Instr)) { 6679 LoopInvariants.insert(Instr); 6680 continue; 6681 } 6682 6683 // Overwrite previous end points. 6684 EndPoint[Instr] = Index; 6685 Ends.insert(Instr); 6686 } 6687 } 6688 } 6689 6690 // Saves the list of intervals that end with the index in 'key'. 6691 using InstrList = SmallVector<Instruction *, 2>; 6692 DenseMap<unsigned, InstrList> TransposeEnds; 6693 6694 // Transpose the EndPoints to a list of values that end at each index. 6695 for (auto &Interval : EndPoint) 6696 TransposeEnds[Interval.second].push_back(Interval.first); 6697 6698 SmallSet<Instruction *, 8> OpenIntervals; 6699 6700 // Get the size of the widest register. 6701 unsigned MaxSafeDepDist = -1U; 6702 if (Legal->getMaxSafeDepDistBytes() != -1U) 6703 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6704 unsigned WidestRegister = 6705 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6706 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6707 6708 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6709 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6710 6711 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6712 6713 // A lambda that gets the register usage for the given type and VF. 6714 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6715 if (Ty->isTokenTy()) 6716 return 0U; 6717 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6718 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6719 }; 6720 6721 for (unsigned int i = 0; i < Index; ++i) { 6722 Instruction *I = IdxToInstr[i]; 6723 6724 // Remove all of the instructions that end at this location. 6725 InstrList &List = TransposeEnds[i]; 6726 for (Instruction *ToRemove : List) 6727 OpenIntervals.erase(ToRemove); 6728 6729 // Ignore instructions that are never used within the loop. 6730 if (!Ends.count(I)) 6731 continue; 6732 6733 // Skip ignored values. 6734 if (ValuesToIgnore.count(I)) 6735 continue; 6736 6737 // For each VF find the maximum usage of registers. 6738 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6739 if (VFs[j] == 1) { 6740 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6741 continue; 6742 } 6743 collectUniformsAndScalars(VFs[j]); 6744 // Count the number of live intervals. 6745 unsigned RegUsage = 0; 6746 for (auto Inst : OpenIntervals) { 6747 // Skip ignored values for VF > 1. 6748 if (VecValuesToIgnore.count(Inst) || 6749 isScalarAfterVectorization(Inst, VFs[j])) 6750 continue; 6751 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6752 } 6753 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6754 } 6755 6756 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6757 << OpenIntervals.size() << '\n'); 6758 6759 // Add the current instruction to the list of open intervals. 6760 OpenIntervals.insert(I); 6761 } 6762 6763 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6764 unsigned Invariant = 0; 6765 if (VFs[i] == 1) 6766 Invariant = LoopInvariants.size(); 6767 else { 6768 for (auto Inst : LoopInvariants) 6769 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6770 } 6771 6772 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6773 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6774 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6775 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6776 6777 RU.LoopInvariantRegs = Invariant; 6778 RU.MaxLocalUsers = MaxUsages[i]; 6779 RUs[i] = RU; 6780 } 6781 6782 return RUs; 6783 } 6784 6785 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6786 // If we aren't vectorizing the loop, or if we've already collected the 6787 // instructions to scalarize, there's nothing to do. Collection may already 6788 // have occurred if we have a user-selected VF and are now computing the 6789 // expected cost for interleaving. 6790 if (VF < 2 || InstsToScalarize.count(VF)) 6791 return; 6792 6793 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6794 // not profitable to scalarize any instructions, the presence of VF in the 6795 // map will indicate that we've analyzed it already. 6796 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6797 6798 // Find all the instructions that are scalar with predication in the loop and 6799 // determine if it would be better to not if-convert the blocks they are in. 6800 // If so, we also record the instructions to scalarize. 6801 for (BasicBlock *BB : TheLoop->blocks()) { 6802 if (!Legal->blockNeedsPredication(BB)) 6803 continue; 6804 for (Instruction &I : *BB) 6805 if (Legal->isScalarWithPredication(&I)) { 6806 ScalarCostsTy ScalarCosts; 6807 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6808 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6809 6810 // Remember that BB will remain after vectorization. 6811 PredicatedBBsAfterVectorization.insert(BB); 6812 } 6813 } 6814 } 6815 6816 int LoopVectorizationCostModel::computePredInstDiscount( 6817 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6818 unsigned VF) { 6819 assert(!isUniformAfterVectorization(PredInst, VF) && 6820 "Instruction marked uniform-after-vectorization will be predicated"); 6821 6822 // Initialize the discount to zero, meaning that the scalar version and the 6823 // vector version cost the same. 6824 int Discount = 0; 6825 6826 // Holds instructions to analyze. The instructions we visit are mapped in 6827 // ScalarCosts. Those instructions are the ones that would be scalarized if 6828 // we find that the scalar version costs less. 6829 SmallVector<Instruction *, 8> Worklist; 6830 6831 // Returns true if the given instruction can be scalarized. 6832 auto canBeScalarized = [&](Instruction *I) -> bool { 6833 // We only attempt to scalarize instructions forming a single-use chain 6834 // from the original predicated block that would otherwise be vectorized. 6835 // Although not strictly necessary, we give up on instructions we know will 6836 // already be scalar to avoid traversing chains that are unlikely to be 6837 // beneficial. 6838 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6839 isScalarAfterVectorization(I, VF)) 6840 return false; 6841 6842 // If the instruction is scalar with predication, it will be analyzed 6843 // separately. We ignore it within the context of PredInst. 6844 if (Legal->isScalarWithPredication(I)) 6845 return false; 6846 6847 // If any of the instruction's operands are uniform after vectorization, 6848 // the instruction cannot be scalarized. This prevents, for example, a 6849 // masked load from being scalarized. 6850 // 6851 // We assume we will only emit a value for lane zero of an instruction 6852 // marked uniform after vectorization, rather than VF identical values. 6853 // Thus, if we scalarize an instruction that uses a uniform, we would 6854 // create uses of values corresponding to the lanes we aren't emitting code 6855 // for. This behavior can be changed by allowing getScalarValue to clone 6856 // the lane zero values for uniforms rather than asserting. 6857 for (Use &U : I->operands()) 6858 if (auto *J = dyn_cast<Instruction>(U.get())) 6859 if (isUniformAfterVectorization(J, VF)) 6860 return false; 6861 6862 // Otherwise, we can scalarize the instruction. 6863 return true; 6864 }; 6865 6866 // Returns true if an operand that cannot be scalarized must be extracted 6867 // from a vector. We will account for this scalarization overhead below. Note 6868 // that the non-void predicated instructions are placed in their own blocks, 6869 // and their return values are inserted into vectors. Thus, an extract would 6870 // still be required. 6871 auto needsExtract = [&](Instruction *I) -> bool { 6872 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6873 }; 6874 6875 // Compute the expected cost discount from scalarizing the entire expression 6876 // feeding the predicated instruction. We currently only consider expressions 6877 // that are single-use instruction chains. 6878 Worklist.push_back(PredInst); 6879 while (!Worklist.empty()) { 6880 Instruction *I = Worklist.pop_back_val(); 6881 6882 // If we've already analyzed the instruction, there's nothing to do. 6883 if (ScalarCosts.count(I)) 6884 continue; 6885 6886 // Compute the cost of the vector instruction. Note that this cost already 6887 // includes the scalarization overhead of the predicated instruction. 6888 unsigned VectorCost = getInstructionCost(I, VF).first; 6889 6890 // Compute the cost of the scalarized instruction. This cost is the cost of 6891 // the instruction as if it wasn't if-converted and instead remained in the 6892 // predicated block. We will scale this cost by block probability after 6893 // computing the scalarization overhead. 6894 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6895 6896 // Compute the scalarization overhead of needed insertelement instructions 6897 // and phi nodes. 6898 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6899 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6900 true, false); 6901 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6902 } 6903 6904 // Compute the scalarization overhead of needed extractelement 6905 // instructions. For each of the instruction's operands, if the operand can 6906 // be scalarized, add it to the worklist; otherwise, account for the 6907 // overhead. 6908 for (Use &U : I->operands()) 6909 if (auto *J = dyn_cast<Instruction>(U.get())) { 6910 assert(VectorType::isValidElementType(J->getType()) && 6911 "Instruction has non-scalar type"); 6912 if (canBeScalarized(J)) 6913 Worklist.push_back(J); 6914 else if (needsExtract(J)) 6915 ScalarCost += TTI.getScalarizationOverhead( 6916 ToVectorTy(J->getType(),VF), false, true); 6917 } 6918 6919 // Scale the total scalar cost by block probability. 6920 ScalarCost /= getReciprocalPredBlockProb(); 6921 6922 // Compute the discount. A non-negative discount means the vector version 6923 // of the instruction costs more, and scalarizing would be beneficial. 6924 Discount += VectorCost - ScalarCost; 6925 ScalarCosts[I] = ScalarCost; 6926 } 6927 6928 return Discount; 6929 } 6930 6931 LoopVectorizationCostModel::VectorizationCostTy 6932 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6933 VectorizationCostTy Cost; 6934 6935 // For each block. 6936 for (BasicBlock *BB : TheLoop->blocks()) { 6937 VectorizationCostTy BlockCost; 6938 6939 // For each instruction in the old loop. 6940 for (Instruction &I : *BB) { 6941 // Skip dbg intrinsics. 6942 if (isa<DbgInfoIntrinsic>(I)) 6943 continue; 6944 6945 // Skip ignored values. 6946 if (ValuesToIgnore.count(&I) || 6947 (VF > 1 && VecValuesToIgnore.count(&I))) 6948 continue; 6949 6950 VectorizationCostTy C = getInstructionCost(&I, VF); 6951 6952 // Check if we should override the cost. 6953 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6954 C.first = ForceTargetInstructionCost; 6955 6956 BlockCost.first += C.first; 6957 BlockCost.second |= C.second; 6958 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6959 << VF << " For instruction: " << I << '\n'); 6960 } 6961 6962 // If we are vectorizing a predicated block, it will have been 6963 // if-converted. This means that the block's instructions (aside from 6964 // stores and instructions that may divide by zero) will now be 6965 // unconditionally executed. For the scalar case, we may not always execute 6966 // the predicated block. Thus, scale the block's cost by the probability of 6967 // executing it. 6968 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6969 BlockCost.first /= getReciprocalPredBlockProb(); 6970 6971 Cost.first += BlockCost.first; 6972 Cost.second |= BlockCost.second; 6973 } 6974 6975 return Cost; 6976 } 6977 6978 /// \brief Gets Address Access SCEV after verifying that the access pattern 6979 /// is loop invariant except the induction variable dependence. 6980 /// 6981 /// This SCEV can be sent to the Target in order to estimate the address 6982 /// calculation cost. 6983 static const SCEV *getAddressAccessSCEV( 6984 Value *Ptr, 6985 LoopVectorizationLegality *Legal, 6986 PredicatedScalarEvolution &PSE, 6987 const Loop *TheLoop) { 6988 6989 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6990 if (!Gep) 6991 return nullptr; 6992 6993 // We are looking for a gep with all loop invariant indices except for one 6994 // which should be an induction variable. 6995 auto SE = PSE.getSE(); 6996 unsigned NumOperands = Gep->getNumOperands(); 6997 for (unsigned i = 1; i < NumOperands; ++i) { 6998 Value *Opd = Gep->getOperand(i); 6999 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7000 !Legal->isInductionVariable(Opd)) 7001 return nullptr; 7002 } 7003 7004 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7005 return PSE.getSCEV(Ptr); 7006 } 7007 7008 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7009 return Legal->hasStride(I->getOperand(0)) || 7010 Legal->hasStride(I->getOperand(1)); 7011 } 7012 7013 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7014 unsigned VF) { 7015 Type *ValTy = getMemInstValueType(I); 7016 auto SE = PSE.getSE(); 7017 7018 unsigned Alignment = getMemInstAlignment(I); 7019 unsigned AS = getMemInstAddressSpace(I); 7020 Value *Ptr = getPointerOperand(I); 7021 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7022 7023 // Figure out whether the access is strided and get the stride value 7024 // if it's known in compile time 7025 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7026 7027 // Get the cost of the scalar memory instruction and address computation. 7028 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7029 7030 Cost += VF * 7031 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7032 AS, I); 7033 7034 // Get the overhead of the extractelement and insertelement instructions 7035 // we might create due to scalarization. 7036 Cost += getScalarizationOverhead(I, VF, TTI); 7037 7038 // If we have a predicated store, it may not be executed for each vector 7039 // lane. Scale the cost by the probability of executing the predicated 7040 // block. 7041 if (Legal->isScalarWithPredication(I)) 7042 Cost /= getReciprocalPredBlockProb(); 7043 7044 return Cost; 7045 } 7046 7047 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7048 unsigned VF) { 7049 Type *ValTy = getMemInstValueType(I); 7050 Type *VectorTy = ToVectorTy(ValTy, VF); 7051 unsigned Alignment = getMemInstAlignment(I); 7052 Value *Ptr = getPointerOperand(I); 7053 unsigned AS = getMemInstAddressSpace(I); 7054 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7055 7056 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7057 "Stride should be 1 or -1 for consecutive memory access"); 7058 unsigned Cost = 0; 7059 if (Legal->isMaskRequired(I)) 7060 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7061 else 7062 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7063 7064 bool Reverse = ConsecutiveStride < 0; 7065 if (Reverse) 7066 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7067 return Cost; 7068 } 7069 7070 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7071 unsigned VF) { 7072 LoadInst *LI = cast<LoadInst>(I); 7073 Type *ValTy = LI->getType(); 7074 Type *VectorTy = ToVectorTy(ValTy, VF); 7075 unsigned Alignment = LI->getAlignment(); 7076 unsigned AS = LI->getPointerAddressSpace(); 7077 7078 return TTI.getAddressComputationCost(ValTy) + 7079 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7080 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7081 } 7082 7083 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7084 unsigned VF) { 7085 Type *ValTy = getMemInstValueType(I); 7086 Type *VectorTy = ToVectorTy(ValTy, VF); 7087 unsigned Alignment = getMemInstAlignment(I); 7088 Value *Ptr = getPointerOperand(I); 7089 7090 return TTI.getAddressComputationCost(VectorTy) + 7091 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7092 Legal->isMaskRequired(I), Alignment); 7093 } 7094 7095 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7096 unsigned VF) { 7097 Type *ValTy = getMemInstValueType(I); 7098 Type *VectorTy = ToVectorTy(ValTy, VF); 7099 unsigned AS = getMemInstAddressSpace(I); 7100 7101 auto Group = Legal->getInterleavedAccessGroup(I); 7102 assert(Group && "Fail to get an interleaved access group."); 7103 7104 unsigned InterleaveFactor = Group->getFactor(); 7105 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7106 7107 // Holds the indices of existing members in an interleaved load group. 7108 // An interleaved store group doesn't need this as it doesn't allow gaps. 7109 SmallVector<unsigned, 4> Indices; 7110 if (isa<LoadInst>(I)) { 7111 for (unsigned i = 0; i < InterleaveFactor; i++) 7112 if (Group->getMember(i)) 7113 Indices.push_back(i); 7114 } 7115 7116 // Calculate the cost of the whole interleaved group. 7117 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7118 Group->getFactor(), Indices, 7119 Group->getAlignment(), AS); 7120 7121 if (Group->isReverse()) 7122 Cost += Group->getNumMembers() * 7123 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7124 return Cost; 7125 } 7126 7127 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7128 unsigned VF) { 7129 // Calculate scalar cost only. Vectorization cost should be ready at this 7130 // moment. 7131 if (VF == 1) { 7132 Type *ValTy = getMemInstValueType(I); 7133 unsigned Alignment = getMemInstAlignment(I); 7134 unsigned AS = getMemInstAddressSpace(I); 7135 7136 return TTI.getAddressComputationCost(ValTy) + 7137 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7138 } 7139 return getWideningCost(I, VF); 7140 } 7141 7142 LoopVectorizationCostModel::VectorizationCostTy 7143 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7144 // If we know that this instruction will remain uniform, check the cost of 7145 // the scalar version. 7146 if (isUniformAfterVectorization(I, VF)) 7147 VF = 1; 7148 7149 if (VF > 1 && isProfitableToScalarize(I, VF)) 7150 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7151 7152 // Forced scalars do not have any scalarization overhead. 7153 if (VF > 1 && ForcedScalars.count(VF) && 7154 ForcedScalars.find(VF)->second.count(I)) 7155 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7156 7157 Type *VectorTy; 7158 unsigned C = getInstructionCost(I, VF, VectorTy); 7159 7160 bool TypeNotScalarized = 7161 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7162 return VectorizationCostTy(C, TypeNotScalarized); 7163 } 7164 7165 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7166 if (VF == 1) 7167 return; 7168 for (BasicBlock *BB : TheLoop->blocks()) { 7169 // For each instruction in the old loop. 7170 for (Instruction &I : *BB) { 7171 Value *Ptr = getPointerOperand(&I); 7172 if (!Ptr) 7173 continue; 7174 7175 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7176 // Scalar load + broadcast 7177 unsigned Cost = getUniformMemOpCost(&I, VF); 7178 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7179 continue; 7180 } 7181 7182 // We assume that widening is the best solution when possible. 7183 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7184 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7185 int ConsecutiveStride = Legal->isConsecutivePtr(getPointerOperand(&I)); 7186 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7187 "Expected consecutive stride."); 7188 InstWidening Decision = 7189 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7190 setWideningDecision(&I, VF, Decision, Cost); 7191 continue; 7192 } 7193 7194 // Choose between Interleaving, Gather/Scatter or Scalarization. 7195 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7196 unsigned NumAccesses = 1; 7197 if (Legal->isAccessInterleaved(&I)) { 7198 auto Group = Legal->getInterleavedAccessGroup(&I); 7199 assert(Group && "Fail to get an interleaved access group."); 7200 7201 // Make one decision for the whole group. 7202 if (getWideningDecision(&I, VF) != CM_Unknown) 7203 continue; 7204 7205 NumAccesses = Group->getNumMembers(); 7206 InterleaveCost = getInterleaveGroupCost(&I, VF); 7207 } 7208 7209 unsigned GatherScatterCost = 7210 Legal->isLegalGatherOrScatter(&I) 7211 ? getGatherScatterCost(&I, VF) * NumAccesses 7212 : std::numeric_limits<unsigned>::max(); 7213 7214 unsigned ScalarizationCost = 7215 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7216 7217 // Choose better solution for the current VF, 7218 // write down this decision and use it during vectorization. 7219 unsigned Cost; 7220 InstWidening Decision; 7221 if (InterleaveCost <= GatherScatterCost && 7222 InterleaveCost < ScalarizationCost) { 7223 Decision = CM_Interleave; 7224 Cost = InterleaveCost; 7225 } else if (GatherScatterCost < ScalarizationCost) { 7226 Decision = CM_GatherScatter; 7227 Cost = GatherScatterCost; 7228 } else { 7229 Decision = CM_Scalarize; 7230 Cost = ScalarizationCost; 7231 } 7232 // If the instructions belongs to an interleave group, the whole group 7233 // receives the same decision. The whole group receives the cost, but 7234 // the cost will actually be assigned to one instruction. 7235 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7236 setWideningDecision(Group, VF, Decision, Cost); 7237 else 7238 setWideningDecision(&I, VF, Decision, Cost); 7239 } 7240 } 7241 7242 // Make sure that any load of address and any other address computation 7243 // remains scalar unless there is gather/scatter support. This avoids 7244 // inevitable extracts into address registers, and also has the benefit of 7245 // activating LSR more, since that pass can't optimize vectorized 7246 // addresses. 7247 if (TTI.prefersVectorizedAddressing()) 7248 return; 7249 7250 // Start with all scalar pointer uses. 7251 SmallPtrSet<Instruction *, 8> AddrDefs; 7252 for (BasicBlock *BB : TheLoop->blocks()) 7253 for (Instruction &I : *BB) { 7254 Instruction *PtrDef = 7255 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7256 if (PtrDef && TheLoop->contains(PtrDef) && 7257 getWideningDecision(&I, VF) != CM_GatherScatter) 7258 AddrDefs.insert(PtrDef); 7259 } 7260 7261 // Add all instructions used to generate the addresses. 7262 SmallVector<Instruction *, 4> Worklist; 7263 for (auto *I : AddrDefs) 7264 Worklist.push_back(I); 7265 while (!Worklist.empty()) { 7266 Instruction *I = Worklist.pop_back_val(); 7267 for (auto &Op : I->operands()) 7268 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7269 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7270 AddrDefs.insert(InstOp).second) 7271 Worklist.push_back(InstOp); 7272 } 7273 7274 for (auto *I : AddrDefs) { 7275 if (isa<LoadInst>(I)) { 7276 // Setting the desired widening decision should ideally be handled in 7277 // by cost functions, but since this involves the task of finding out 7278 // if the loaded register is involved in an address computation, it is 7279 // instead changed here when we know this is the case. 7280 InstWidening Decision = getWideningDecision(I, VF); 7281 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7282 // Scalarize a widened load of address. 7283 setWideningDecision(I, VF, CM_Scalarize, 7284 (VF * getMemoryInstructionCost(I, 1))); 7285 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7286 // Scalarize an interleave group of address loads. 7287 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7288 if (Instruction *Member = Group->getMember(I)) 7289 setWideningDecision(Member, VF, CM_Scalarize, 7290 (VF * getMemoryInstructionCost(Member, 1))); 7291 } 7292 } 7293 } else 7294 // Make sure I gets scalarized and a cost estimate without 7295 // scalarization overhead. 7296 ForcedScalars[VF].insert(I); 7297 } 7298 } 7299 7300 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7301 unsigned VF, 7302 Type *&VectorTy) { 7303 Type *RetTy = I->getType(); 7304 if (canTruncateToMinimalBitwidth(I, VF)) 7305 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7306 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7307 auto SE = PSE.getSE(); 7308 7309 // TODO: We need to estimate the cost of intrinsic calls. 7310 switch (I->getOpcode()) { 7311 case Instruction::GetElementPtr: 7312 // We mark this instruction as zero-cost because the cost of GEPs in 7313 // vectorized code depends on whether the corresponding memory instruction 7314 // is scalarized or not. Therefore, we handle GEPs with the memory 7315 // instruction cost. 7316 return 0; 7317 case Instruction::Br: { 7318 // In cases of scalarized and predicated instructions, there will be VF 7319 // predicated blocks in the vectorized loop. Each branch around these 7320 // blocks requires also an extract of its vector compare i1 element. 7321 bool ScalarPredicatedBB = false; 7322 BranchInst *BI = cast<BranchInst>(I); 7323 if (VF > 1 && BI->isConditional() && 7324 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7325 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7326 ScalarPredicatedBB = true; 7327 7328 if (ScalarPredicatedBB) { 7329 // Return cost for branches around scalarized and predicated blocks. 7330 Type *Vec_i1Ty = 7331 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7332 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7333 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7334 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7335 // The back-edge branch will remain, as will all scalar branches. 7336 return TTI.getCFInstrCost(Instruction::Br); 7337 else 7338 // This branch will be eliminated by if-conversion. 7339 return 0; 7340 // Note: We currently assume zero cost for an unconditional branch inside 7341 // a predicated block since it will become a fall-through, although we 7342 // may decide in the future to call TTI for all branches. 7343 } 7344 case Instruction::PHI: { 7345 auto *Phi = cast<PHINode>(I); 7346 7347 // First-order recurrences are replaced by vector shuffles inside the loop. 7348 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7349 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7350 VectorTy, VF - 1, VectorTy); 7351 7352 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7353 // converted into select instructions. We require N - 1 selects per phi 7354 // node, where N is the number of incoming values. 7355 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7356 return (Phi->getNumIncomingValues() - 1) * 7357 TTI.getCmpSelInstrCost( 7358 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7359 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7360 7361 return TTI.getCFInstrCost(Instruction::PHI); 7362 } 7363 case Instruction::UDiv: 7364 case Instruction::SDiv: 7365 case Instruction::URem: 7366 case Instruction::SRem: 7367 // If we have a predicated instruction, it may not be executed for each 7368 // vector lane. Get the scalarization cost and scale this amount by the 7369 // probability of executing the predicated block. If the instruction is not 7370 // predicated, we fall through to the next case. 7371 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7372 unsigned Cost = 0; 7373 7374 // These instructions have a non-void type, so account for the phi nodes 7375 // that we will create. This cost is likely to be zero. The phi node 7376 // cost, if any, should be scaled by the block probability because it 7377 // models a copy at the end of each predicated block. 7378 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7379 7380 // The cost of the non-predicated instruction. 7381 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7382 7383 // The cost of insertelement and extractelement instructions needed for 7384 // scalarization. 7385 Cost += getScalarizationOverhead(I, VF, TTI); 7386 7387 // Scale the cost by the probability of executing the predicated blocks. 7388 // This assumes the predicated block for each vector lane is equally 7389 // likely. 7390 return Cost / getReciprocalPredBlockProb(); 7391 } 7392 LLVM_FALLTHROUGH; 7393 case Instruction::Add: 7394 case Instruction::FAdd: 7395 case Instruction::Sub: 7396 case Instruction::FSub: 7397 case Instruction::Mul: 7398 case Instruction::FMul: 7399 case Instruction::FDiv: 7400 case Instruction::FRem: 7401 case Instruction::Shl: 7402 case Instruction::LShr: 7403 case Instruction::AShr: 7404 case Instruction::And: 7405 case Instruction::Or: 7406 case Instruction::Xor: { 7407 // Since we will replace the stride by 1 the multiplication should go away. 7408 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7409 return 0; 7410 // Certain instructions can be cheaper to vectorize if they have a constant 7411 // second vector operand. One example of this are shifts on x86. 7412 TargetTransformInfo::OperandValueKind Op1VK = 7413 TargetTransformInfo::OK_AnyValue; 7414 TargetTransformInfo::OperandValueKind Op2VK = 7415 TargetTransformInfo::OK_AnyValue; 7416 TargetTransformInfo::OperandValueProperties Op1VP = 7417 TargetTransformInfo::OP_None; 7418 TargetTransformInfo::OperandValueProperties Op2VP = 7419 TargetTransformInfo::OP_None; 7420 Value *Op2 = I->getOperand(1); 7421 7422 // Check for a splat or for a non uniform vector of constants. 7423 if (isa<ConstantInt>(Op2)) { 7424 ConstantInt *CInt = cast<ConstantInt>(Op2); 7425 if (CInt && CInt->getValue().isPowerOf2()) 7426 Op2VP = TargetTransformInfo::OP_PowerOf2; 7427 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7428 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7429 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7430 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7431 if (SplatValue) { 7432 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7433 if (CInt && CInt->getValue().isPowerOf2()) 7434 Op2VP = TargetTransformInfo::OP_PowerOf2; 7435 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7436 } 7437 } else if (Legal->isUniform(Op2)) { 7438 Op2VK = TargetTransformInfo::OK_UniformValue; 7439 } 7440 SmallVector<const Value *, 4> Operands(I->operand_values()); 7441 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7442 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7443 Op2VK, Op1VP, Op2VP, Operands); 7444 } 7445 case Instruction::Select: { 7446 SelectInst *SI = cast<SelectInst>(I); 7447 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7448 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7449 Type *CondTy = SI->getCondition()->getType(); 7450 if (!ScalarCond) 7451 CondTy = VectorType::get(CondTy, VF); 7452 7453 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7454 } 7455 case Instruction::ICmp: 7456 case Instruction::FCmp: { 7457 Type *ValTy = I->getOperand(0)->getType(); 7458 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7459 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7460 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7461 VectorTy = ToVectorTy(ValTy, VF); 7462 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7463 } 7464 case Instruction::Store: 7465 case Instruction::Load: { 7466 unsigned Width = VF; 7467 if (Width > 1) { 7468 InstWidening Decision = getWideningDecision(I, Width); 7469 assert(Decision != CM_Unknown && 7470 "CM decision should be taken at this point"); 7471 if (Decision == CM_Scalarize) 7472 Width = 1; 7473 } 7474 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7475 return getMemoryInstructionCost(I, VF); 7476 } 7477 case Instruction::ZExt: 7478 case Instruction::SExt: 7479 case Instruction::FPToUI: 7480 case Instruction::FPToSI: 7481 case Instruction::FPExt: 7482 case Instruction::PtrToInt: 7483 case Instruction::IntToPtr: 7484 case Instruction::SIToFP: 7485 case Instruction::UIToFP: 7486 case Instruction::Trunc: 7487 case Instruction::FPTrunc: 7488 case Instruction::BitCast: { 7489 // We optimize the truncation of induction variables having constant 7490 // integer steps. The cost of these truncations is the same as the scalar 7491 // operation. 7492 if (isOptimizableIVTruncate(I, VF)) { 7493 auto *Trunc = cast<TruncInst>(I); 7494 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7495 Trunc->getSrcTy(), Trunc); 7496 } 7497 7498 Type *SrcScalarTy = I->getOperand(0)->getType(); 7499 Type *SrcVecTy = 7500 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7501 if (canTruncateToMinimalBitwidth(I, VF)) { 7502 // This cast is going to be shrunk. This may remove the cast or it might 7503 // turn it into slightly different cast. For example, if MinBW == 16, 7504 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7505 // 7506 // Calculate the modified src and dest types. 7507 Type *MinVecTy = VectorTy; 7508 if (I->getOpcode() == Instruction::Trunc) { 7509 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7510 VectorTy = 7511 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7512 } else if (I->getOpcode() == Instruction::ZExt || 7513 I->getOpcode() == Instruction::SExt) { 7514 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7515 VectorTy = 7516 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7517 } 7518 } 7519 7520 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7521 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7522 } 7523 case Instruction::Call: { 7524 bool NeedToScalarize; 7525 CallInst *CI = cast<CallInst>(I); 7526 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7527 if (getVectorIntrinsicIDForCall(CI, TLI)) 7528 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7529 return CallCost; 7530 } 7531 default: 7532 // The cost of executing VF copies of the scalar instruction. This opcode 7533 // is unknown. Assume that it is the same as 'mul'. 7534 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7535 getScalarizationOverhead(I, VF, TTI); 7536 } // end of switch. 7537 } 7538 7539 char LoopVectorize::ID = 0; 7540 7541 static const char lv_name[] = "Loop Vectorization"; 7542 7543 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7544 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7545 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7546 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7547 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7548 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7549 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7550 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7551 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7552 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7553 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7554 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7555 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7556 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7557 7558 namespace llvm { 7559 7560 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7561 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7562 } 7563 7564 } // end namespace llvm 7565 7566 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7567 // Check if the pointer operand of a load or store instruction is 7568 // consecutive. 7569 if (auto *Ptr = getPointerOperand(Inst)) 7570 return Legal->isConsecutivePtr(Ptr); 7571 return false; 7572 } 7573 7574 void LoopVectorizationCostModel::collectValuesToIgnore() { 7575 // Ignore ephemeral values. 7576 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7577 7578 // Ignore type-promoting instructions we identified during reduction 7579 // detection. 7580 for (auto &Reduction : *Legal->getReductionVars()) { 7581 RecurrenceDescriptor &RedDes = Reduction.second; 7582 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7583 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7584 } 7585 // Ignore type-casting instructions we identified during induction 7586 // detection. 7587 for (auto &Induction : *Legal->getInductionVars()) { 7588 InductionDescriptor &IndDes = Induction.second; 7589 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7590 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7591 } 7592 } 7593 7594 LoopVectorizationCostModel::VectorizationFactor 7595 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7596 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7597 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7598 0U}; 7599 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7600 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7601 return NoVectorization; 7602 7603 if (UserVF) { 7604 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7605 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7606 // Collect the instructions (and their associated costs) that will be more 7607 // profitable to scalarize. 7608 CM.selectUserVectorizationFactor(UserVF); 7609 buildVPlans(UserVF, UserVF); 7610 DEBUG(printPlans(dbgs())); 7611 return {UserVF, 0}; 7612 } 7613 7614 unsigned MaxVF = MaybeMaxVF.getValue(); 7615 assert(MaxVF != 0 && "MaxVF is zero."); 7616 7617 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7618 // Collect Uniform and Scalar instructions after vectorization with VF. 7619 CM.collectUniformsAndScalars(VF); 7620 7621 // Collect the instructions (and their associated costs) that will be more 7622 // profitable to scalarize. 7623 if (VF > 1) 7624 CM.collectInstsToScalarize(VF); 7625 } 7626 7627 buildVPlans(1, MaxVF); 7628 DEBUG(printPlans(dbgs())); 7629 if (MaxVF == 1) 7630 return NoVectorization; 7631 7632 // Select the optimal vectorization factor. 7633 return CM.selectVectorizationFactor(MaxVF); 7634 } 7635 7636 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7637 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7638 BestVF = VF; 7639 BestUF = UF; 7640 7641 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7642 return !Plan->hasVF(VF); 7643 }); 7644 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7645 } 7646 7647 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7648 DominatorTree *DT) { 7649 // Perform the actual loop transformation. 7650 7651 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7652 VPCallbackILV CallbackILV(ILV); 7653 7654 VPTransformState State{BestVF, BestUF, LI, 7655 DT, ILV.Builder, ILV.VectorLoopValueMap, 7656 &ILV, CallbackILV}; 7657 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7658 7659 //===------------------------------------------------===// 7660 // 7661 // Notice: any optimization or new instruction that go 7662 // into the code below should also be implemented in 7663 // the cost-model. 7664 // 7665 //===------------------------------------------------===// 7666 7667 // 2. Copy and widen instructions from the old loop into the new loop. 7668 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7669 VPlans.front()->execute(&State); 7670 7671 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7672 // predication, updating analyses. 7673 ILV.fixVectorizedLoop(); 7674 } 7675 7676 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7677 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7678 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7679 7680 // We create new control-flow for the vectorized loop, so the original 7681 // condition will be dead after vectorization if it's only used by the 7682 // branch. 7683 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7684 if (Cmp && Cmp->hasOneUse()) 7685 DeadInstructions.insert(Cmp); 7686 7687 // We create new "steps" for induction variable updates to which the original 7688 // induction variables map. An original update instruction will be dead if 7689 // all its users except the induction variable are dead. 7690 for (auto &Induction : *Legal->getInductionVars()) { 7691 PHINode *Ind = Induction.first; 7692 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7693 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7694 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7695 })) 7696 DeadInstructions.insert(IndUpdate); 7697 7698 // We record as "Dead" also the type-casting instructions we had identified 7699 // during induction analysis. We don't need any handling for them in the 7700 // vectorized loop because we have proven that, under a proper runtime 7701 // test guarding the vectorized loop, the value of the phi, and the casted 7702 // value of the phi, are the same. The last instruction in this casting chain 7703 // will get its scalar/vector/widened def from the scalar/vector/widened def 7704 // of the respective phi node. Any other casts in the induction def-use chain 7705 // have no other uses outside the phi update chain, and will be ignored. 7706 InductionDescriptor &IndDes = Induction.second; 7707 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7708 DeadInstructions.insert(Casts.begin(), Casts.end()); 7709 } 7710 } 7711 7712 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7713 7714 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7715 7716 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7717 Instruction::BinaryOps BinOp) { 7718 // When unrolling and the VF is 1, we only need to add a simple scalar. 7719 Type *Ty = Val->getType(); 7720 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7721 7722 if (Ty->isFloatingPointTy()) { 7723 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7724 7725 // Floating point operations had to be 'fast' to enable the unrolling. 7726 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7727 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7728 } 7729 Constant *C = ConstantInt::get(Ty, StartIdx); 7730 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7731 } 7732 7733 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7734 SmallVector<Metadata *, 4> MDs; 7735 // Reserve first location for self reference to the LoopID metadata node. 7736 MDs.push_back(nullptr); 7737 bool IsUnrollMetadata = false; 7738 MDNode *LoopID = L->getLoopID(); 7739 if (LoopID) { 7740 // First find existing loop unrolling disable metadata. 7741 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7742 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7743 if (MD) { 7744 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7745 IsUnrollMetadata = 7746 S && S->getString().startswith("llvm.loop.unroll.disable"); 7747 } 7748 MDs.push_back(LoopID->getOperand(i)); 7749 } 7750 } 7751 7752 if (!IsUnrollMetadata) { 7753 // Add runtime unroll disable metadata. 7754 LLVMContext &Context = L->getHeader()->getContext(); 7755 SmallVector<Metadata *, 1> DisableOperands; 7756 DisableOperands.push_back( 7757 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7758 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7759 MDs.push_back(DisableNode); 7760 MDNode *NewLoopID = MDNode::get(Context, MDs); 7761 // Set operand 0 to refer to the loop id itself. 7762 NewLoopID->replaceOperandWith(0, NewLoopID); 7763 L->setLoopID(NewLoopID); 7764 } 7765 } 7766 7767 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7768 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7769 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7770 bool PredicateAtRangeStart = Predicate(Range.Start); 7771 7772 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7773 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7774 Range.End = TmpVF; 7775 break; 7776 } 7777 7778 return PredicateAtRangeStart; 7779 } 7780 7781 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7782 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7783 /// of VF's starting at a given VF and extending it as much as possible. Each 7784 /// vectorization decision can potentially shorten this sub-range during 7785 /// buildVPlan(). 7786 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7787 7788 // Collect conditions feeding internal conditional branches; they need to be 7789 // represented in VPlan for it to model masking. 7790 SmallPtrSet<Value *, 1> NeedDef; 7791 7792 auto *Latch = OrigLoop->getLoopLatch(); 7793 for (BasicBlock *BB : OrigLoop->blocks()) { 7794 if (BB == Latch) 7795 continue; 7796 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7797 if (Branch && Branch->isConditional()) 7798 NeedDef.insert(Branch->getCondition()); 7799 } 7800 7801 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7802 VFRange SubRange = {VF, MaxVF + 1}; 7803 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7804 VF = SubRange.End; 7805 } 7806 } 7807 7808 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7809 BasicBlock *Dst, 7810 VPlanPtr &Plan) { 7811 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7812 7813 // Look for cached value. 7814 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7815 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7816 if (ECEntryIt != EdgeMaskCache.end()) 7817 return ECEntryIt->second; 7818 7819 VPValue *SrcMask = createBlockInMask(Src, Plan); 7820 7821 // The terminator has to be a branch inst! 7822 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7823 assert(BI && "Unexpected terminator found"); 7824 7825 if (!BI->isConditional()) 7826 return EdgeMaskCache[Edge] = SrcMask; 7827 7828 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7829 assert(EdgeMask && "No Edge Mask found for condition"); 7830 7831 if (BI->getSuccessor(0) != Dst) 7832 EdgeMask = Builder.createNot(EdgeMask); 7833 7834 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7835 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7836 7837 return EdgeMaskCache[Edge] = EdgeMask; 7838 } 7839 7840 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7841 VPlanPtr &Plan) { 7842 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7843 7844 // Look for cached value. 7845 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7846 if (BCEntryIt != BlockMaskCache.end()) 7847 return BCEntryIt->second; 7848 7849 // All-one mask is modelled as no-mask following the convention for masked 7850 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7851 VPValue *BlockMask = nullptr; 7852 7853 // Loop incoming mask is all-one. 7854 if (OrigLoop->getHeader() == BB) 7855 return BlockMaskCache[BB] = BlockMask; 7856 7857 // This is the block mask. We OR all incoming edges. 7858 for (auto *Predecessor : predecessors(BB)) { 7859 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7860 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7861 return BlockMaskCache[BB] = EdgeMask; 7862 7863 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7864 BlockMask = EdgeMask; 7865 continue; 7866 } 7867 7868 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7869 } 7870 7871 return BlockMaskCache[BB] = BlockMask; 7872 } 7873 7874 VPInterleaveRecipe * 7875 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7876 VFRange &Range) { 7877 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7878 if (!IG) 7879 return nullptr; 7880 7881 // Now check if IG is relevant for VF's in the given range. 7882 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7883 return [=](unsigned VF) -> bool { 7884 return (VF >= 2 && // Query is illegal for VF == 1 7885 CM.getWideningDecision(I, VF) == 7886 LoopVectorizationCostModel::CM_Interleave); 7887 }; 7888 }; 7889 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7890 return nullptr; 7891 7892 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7893 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7894 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7895 assert(I == IG->getInsertPos() && 7896 "Generating a recipe for an adjunct member of an interleave group"); 7897 7898 return new VPInterleaveRecipe(IG); 7899 } 7900 7901 VPWidenMemoryInstructionRecipe * 7902 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7903 VPlanPtr &Plan) { 7904 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7905 return nullptr; 7906 7907 auto willWiden = [&](unsigned VF) -> bool { 7908 if (VF == 1) 7909 return false; 7910 if (CM.isScalarAfterVectorization(I, VF) || 7911 CM.isProfitableToScalarize(I, VF)) 7912 return false; 7913 LoopVectorizationCostModel::InstWidening Decision = 7914 CM.getWideningDecision(I, VF); 7915 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7916 "CM decision should be taken at this point."); 7917 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7918 "Interleave memory opportunity should be caught earlier."); 7919 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7920 }; 7921 7922 if (!getDecisionAndClampRange(willWiden, Range)) 7923 return nullptr; 7924 7925 VPValue *Mask = nullptr; 7926 if (Legal->isMaskRequired(I)) 7927 Mask = createBlockInMask(I->getParent(), Plan); 7928 7929 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7930 } 7931 7932 VPWidenIntOrFpInductionRecipe * 7933 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7934 VFRange &Range) { 7935 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7936 // Check if this is an integer or fp induction. If so, build the recipe that 7937 // produces its scalar and vector values. 7938 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7939 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7940 II.getKind() == InductionDescriptor::IK_FpInduction) 7941 return new VPWidenIntOrFpInductionRecipe(Phi); 7942 7943 return nullptr; 7944 } 7945 7946 // Optimize the special case where the source is a constant integer 7947 // induction variable. Notice that we can only optimize the 'trunc' case 7948 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7949 // (c) other casts depend on pointer size. 7950 7951 // Determine whether \p K is a truncation based on an induction variable that 7952 // can be optimized. 7953 auto isOptimizableIVTruncate = 7954 [&](Instruction *K) -> std::function<bool(unsigned)> { 7955 return 7956 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7957 }; 7958 7959 if (isa<TruncInst>(I) && 7960 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7961 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7962 cast<TruncInst>(I)); 7963 return nullptr; 7964 } 7965 7966 VPBlendRecipe * 7967 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7968 PHINode *Phi = dyn_cast<PHINode>(I); 7969 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7970 return nullptr; 7971 7972 // We know that all PHIs in non-header blocks are converted into selects, so 7973 // we don't have to worry about the insertion order and we can just use the 7974 // builder. At this point we generate the predication tree. There may be 7975 // duplications since this is a simple recursive scan, but future 7976 // optimizations will clean it up. 7977 7978 SmallVector<VPValue *, 2> Masks; 7979 unsigned NumIncoming = Phi->getNumIncomingValues(); 7980 for (unsigned In = 0; In < NumIncoming; In++) { 7981 VPValue *EdgeMask = 7982 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7983 assert((EdgeMask || NumIncoming == 1) && 7984 "Multiple predecessors with one having a full mask"); 7985 if (EdgeMask) 7986 Masks.push_back(EdgeMask); 7987 } 7988 return new VPBlendRecipe(Phi, Masks); 7989 } 7990 7991 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7992 VFRange &Range) { 7993 if (Legal->isScalarWithPredication(I)) 7994 return false; 7995 7996 auto IsVectorizableOpcode = [](unsigned Opcode) { 7997 switch (Opcode) { 7998 case Instruction::Add: 7999 case Instruction::And: 8000 case Instruction::AShr: 8001 case Instruction::BitCast: 8002 case Instruction::Br: 8003 case Instruction::Call: 8004 case Instruction::FAdd: 8005 case Instruction::FCmp: 8006 case Instruction::FDiv: 8007 case Instruction::FMul: 8008 case Instruction::FPExt: 8009 case Instruction::FPToSI: 8010 case Instruction::FPToUI: 8011 case Instruction::FPTrunc: 8012 case Instruction::FRem: 8013 case Instruction::FSub: 8014 case Instruction::GetElementPtr: 8015 case Instruction::ICmp: 8016 case Instruction::IntToPtr: 8017 case Instruction::Load: 8018 case Instruction::LShr: 8019 case Instruction::Mul: 8020 case Instruction::Or: 8021 case Instruction::PHI: 8022 case Instruction::PtrToInt: 8023 case Instruction::SDiv: 8024 case Instruction::Select: 8025 case Instruction::SExt: 8026 case Instruction::Shl: 8027 case Instruction::SIToFP: 8028 case Instruction::SRem: 8029 case Instruction::Store: 8030 case Instruction::Sub: 8031 case Instruction::Trunc: 8032 case Instruction::UDiv: 8033 case Instruction::UIToFP: 8034 case Instruction::URem: 8035 case Instruction::Xor: 8036 case Instruction::ZExt: 8037 return true; 8038 } 8039 return false; 8040 }; 8041 8042 if (!IsVectorizableOpcode(I->getOpcode())) 8043 return false; 8044 8045 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8046 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8047 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8048 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 8049 return false; 8050 } 8051 8052 auto willWiden = [&](unsigned VF) -> bool { 8053 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8054 CM.isProfitableToScalarize(I, VF))) 8055 return false; 8056 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8057 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8058 // The following case may be scalarized depending on the VF. 8059 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8060 // version of the instruction. 8061 // Is it beneficial to perform intrinsic call compared to lib call? 8062 bool NeedToScalarize; 8063 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8064 bool UseVectorIntrinsic = 8065 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8066 return UseVectorIntrinsic || !NeedToScalarize; 8067 } 8068 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8069 assert(CM.getWideningDecision(I, VF) == 8070 LoopVectorizationCostModel::CM_Scalarize && 8071 "Memory widening decisions should have been taken care by now"); 8072 return false; 8073 } 8074 return true; 8075 }; 8076 8077 if (!getDecisionAndClampRange(willWiden, Range)) 8078 return false; 8079 8080 // Success: widen this instruction. We optimize the common case where 8081 // consecutive instructions can be represented by a single recipe. 8082 if (!VPBB->empty()) { 8083 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 8084 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8085 return true; 8086 } 8087 8088 VPBB->appendRecipe(new VPWidenRecipe(I)); 8089 return true; 8090 } 8091 8092 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8093 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8094 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8095 VPlanPtr &Plan) { 8096 bool IsUniform = getDecisionAndClampRange( 8097 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8098 Range); 8099 8100 bool IsPredicated = Legal->isScalarWithPredication(I); 8101 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8102 8103 // Find if I uses a predicated instruction. If so, it will use its scalar 8104 // value. Avoid hoisting the insert-element which packs the scalar value into 8105 // a vector value, as that happens iff all users use the vector value. 8106 for (auto &Op : I->operands()) 8107 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8108 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8109 PredInst2Recipe[PredInst]->setAlsoPack(false); 8110 8111 // Finalize the recipe for Instr, first if it is not predicated. 8112 if (!IsPredicated) { 8113 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8114 VPBB->appendRecipe(Recipe); 8115 return VPBB; 8116 } 8117 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8118 assert(VPBB->getSuccessors().empty() && 8119 "VPBB has successors when handling predicated replication."); 8120 // Record predicated instructions for above packing optimizations. 8121 PredInst2Recipe[I] = Recipe; 8122 VPBlockBase *Region = 8123 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 8124 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8125 } 8126 8127 VPRegionBlock * 8128 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8129 VPRecipeBase *PredRecipe, 8130 VPlanPtr &Plan) { 8131 // Instructions marked for predication are replicated and placed under an 8132 // if-then construct to prevent side-effects. 8133 8134 // Generate recipes to compute the block mask for this region. 8135 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8136 8137 // Build the triangular if-then region. 8138 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8139 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8140 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8141 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8142 auto *PHIRecipe = 8143 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8144 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8145 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8146 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8147 8148 // Note: first set Entry as region entry and then connect successors starting 8149 // from it in order, to propagate the "parent" of each VPBasicBlock. 8150 Entry->setTwoSuccessors(Pred, Exit); 8151 Pred->setOneSuccessor(Exit); 8152 8153 return Region; 8154 } 8155 8156 LoopVectorizationPlanner::VPlanPtr 8157 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 8158 const SmallPtrSetImpl<Value *> &NeedDef) { 8159 EdgeMaskCache.clear(); 8160 BlockMaskCache.clear(); 8161 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8162 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8163 8164 // Collect instructions from the original loop that will become trivially dead 8165 // in the vectorized loop. We don't need to vectorize these instructions. For 8166 // example, original induction update instructions can become dead because we 8167 // separately emit induction "steps" when generating code for the new loop. 8168 // Similarly, we create a new latch condition when setting up the structure 8169 // of the new loop, so the old one can become dead. 8170 SmallPtrSet<Instruction *, 4> DeadInstructions; 8171 collectTriviallyDeadInstructions(DeadInstructions); 8172 8173 // Hold a mapping from predicated instructions to their recipes, in order to 8174 // fix their AlsoPack behavior if a user is determined to replicate and use a 8175 // scalar instead of vector value. 8176 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8177 8178 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8179 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8180 auto Plan = llvm::make_unique<VPlan>(VPBB); 8181 8182 // Represent values that will have defs inside VPlan. 8183 for (Value *V : NeedDef) 8184 Plan->addVPValue(V); 8185 8186 // Scan the body of the loop in a topological order to visit each basic block 8187 // after having visited its predecessor basic blocks. 8188 LoopBlocksDFS DFS(OrigLoop); 8189 DFS.perform(LI); 8190 8191 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8192 // Relevant instructions from basic block BB will be grouped into VPRecipe 8193 // ingredients and fill a new VPBasicBlock. 8194 unsigned VPBBsForBB = 0; 8195 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8196 VPBB->setOneSuccessor(FirstVPBBForBB); 8197 VPBB = FirstVPBBForBB; 8198 Builder.setInsertPoint(VPBB); 8199 8200 std::vector<Instruction *> Ingredients; 8201 8202 // Organize the ingredients to vectorize from current basic block in the 8203 // right order. 8204 for (Instruction &I : *BB) { 8205 Instruction *Instr = &I; 8206 8207 // First filter out irrelevant instructions, to ensure no recipes are 8208 // built for them. 8209 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8210 DeadInstructions.count(Instr)) 8211 continue; 8212 8213 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8214 // member of the IG, do not construct any Recipe for it. 8215 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8216 if (IG && Instr != IG->getInsertPos() && 8217 Range.Start >= 2 && // Query is illegal for VF == 1 8218 CM.getWideningDecision(Instr, Range.Start) == 8219 LoopVectorizationCostModel::CM_Interleave) { 8220 if (SinkAfterInverse.count(Instr)) 8221 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8222 continue; 8223 } 8224 8225 // Move instructions to handle first-order recurrences, step 1: avoid 8226 // handling this instruction until after we've handled the instruction it 8227 // should follow. 8228 auto SAIt = SinkAfter.find(Instr); 8229 if (SAIt != SinkAfter.end()) { 8230 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8231 << " to vectorize a 1st order recurrence.\n"); 8232 SinkAfterInverse[SAIt->second] = Instr; 8233 continue; 8234 } 8235 8236 Ingredients.push_back(Instr); 8237 8238 // Move instructions to handle first-order recurrences, step 2: push the 8239 // instruction to be sunk at its insertion point. 8240 auto SAInvIt = SinkAfterInverse.find(Instr); 8241 if (SAInvIt != SinkAfterInverse.end()) 8242 Ingredients.push_back(SAInvIt->second); 8243 } 8244 8245 // Introduce each ingredient into VPlan. 8246 for (Instruction *Instr : Ingredients) { 8247 VPRecipeBase *Recipe = nullptr; 8248 8249 // Check if Instr should belong to an interleave memory recipe, or already 8250 // does. In the latter case Instr is irrelevant. 8251 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8252 VPBB->appendRecipe(Recipe); 8253 continue; 8254 } 8255 8256 // Check if Instr is a memory operation that should be widened. 8257 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8258 VPBB->appendRecipe(Recipe); 8259 continue; 8260 } 8261 8262 // Check if Instr should form some PHI recipe. 8263 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8264 VPBB->appendRecipe(Recipe); 8265 continue; 8266 } 8267 if ((Recipe = tryToBlend(Instr, Plan))) { 8268 VPBB->appendRecipe(Recipe); 8269 continue; 8270 } 8271 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8272 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8273 continue; 8274 } 8275 8276 // Check if Instr is to be widened by a general VPWidenRecipe, after 8277 // having first checked for specific widening recipes that deal with 8278 // Interleave Groups, Inductions and Phi nodes. 8279 if (tryToWiden(Instr, VPBB, Range)) 8280 continue; 8281 8282 // Otherwise, if all widening options failed, Instruction is to be 8283 // replicated. This may create a successor for VPBB. 8284 VPBasicBlock *NextVPBB = 8285 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8286 if (NextVPBB != VPBB) { 8287 VPBB = NextVPBB; 8288 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8289 : ""); 8290 } 8291 } 8292 } 8293 8294 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8295 // may also be empty, such as the last one VPBB, reflecting original 8296 // basic-blocks with no recipes. 8297 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8298 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8299 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8300 PreEntry->disconnectSuccessor(Entry); 8301 delete PreEntry; 8302 8303 std::string PlanName; 8304 raw_string_ostream RSO(PlanName); 8305 unsigned VF = Range.Start; 8306 Plan->addVF(VF); 8307 RSO << "Initial VPlan for VF={" << VF; 8308 for (VF *= 2; VF < Range.End; VF *= 2) { 8309 Plan->addVF(VF); 8310 RSO << "," << VF; 8311 } 8312 RSO << "},UF>=1"; 8313 RSO.flush(); 8314 Plan->setName(PlanName); 8315 8316 return Plan; 8317 } 8318 8319 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8320 O << " +\n" 8321 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8322 IG->getInsertPos()->printAsOperand(O, false); 8323 O << "\\l\""; 8324 for (unsigned i = 0; i < IG->getFactor(); ++i) 8325 if (Instruction *I = IG->getMember(i)) 8326 O << " +\n" 8327 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8328 } 8329 8330 void VPWidenRecipe::execute(VPTransformState &State) { 8331 for (auto &Instr : make_range(Begin, End)) 8332 State.ILV->widenInstruction(Instr); 8333 } 8334 8335 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8336 assert(!State.Instance && "Int or FP induction being replicated."); 8337 State.ILV->widenIntOrFpInduction(IV, Trunc); 8338 } 8339 8340 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8341 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8342 } 8343 8344 void VPBlendRecipe::execute(VPTransformState &State) { 8345 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8346 // We know that all PHIs in non-header blocks are converted into 8347 // selects, so we don't have to worry about the insertion order and we 8348 // can just use the builder. 8349 // At this point we generate the predication tree. There may be 8350 // duplications since this is a simple recursive scan, but future 8351 // optimizations will clean it up. 8352 8353 unsigned NumIncoming = Phi->getNumIncomingValues(); 8354 8355 assert((User || NumIncoming == 1) && 8356 "Multiple predecessors with predecessors having a full mask"); 8357 // Generate a sequence of selects of the form: 8358 // SELECT(Mask3, In3, 8359 // SELECT(Mask2, In2, 8360 // ( ...))) 8361 InnerLoopVectorizer::VectorParts Entry(State.UF); 8362 for (unsigned In = 0; In < NumIncoming; ++In) { 8363 for (unsigned Part = 0; Part < State.UF; ++Part) { 8364 // We might have single edge PHIs (blocks) - use an identity 8365 // 'select' for the first PHI operand. 8366 Value *In0 = 8367 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8368 if (In == 0) 8369 Entry[Part] = In0; // Initialize with the first incoming value. 8370 else { 8371 // Select between the current value and the previous incoming edge 8372 // based on the incoming mask. 8373 Value *Cond = State.get(User->getOperand(In), Part); 8374 Entry[Part] = 8375 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8376 } 8377 } 8378 } 8379 for (unsigned Part = 0; Part < State.UF; ++Part) 8380 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8381 } 8382 8383 void VPInterleaveRecipe::execute(VPTransformState &State) { 8384 assert(!State.Instance && "Interleave group being replicated."); 8385 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8386 } 8387 8388 void VPReplicateRecipe::execute(VPTransformState &State) { 8389 if (State.Instance) { // Generate a single instance. 8390 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8391 // Insert scalar instance packing it into a vector. 8392 if (AlsoPack && State.VF > 1) { 8393 // If we're constructing lane 0, initialize to start from undef. 8394 if (State.Instance->Lane == 0) { 8395 Value *Undef = 8396 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8397 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8398 } 8399 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8400 } 8401 return; 8402 } 8403 8404 // Generate scalar instances for all VF lanes of all UF parts, unless the 8405 // instruction is uniform inwhich case generate only the first lane for each 8406 // of the UF parts. 8407 unsigned EndLane = IsUniform ? 1 : State.VF; 8408 for (unsigned Part = 0; Part < State.UF; ++Part) 8409 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8410 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8411 } 8412 8413 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8414 assert(State.Instance && "Branch on Mask works only on single instance."); 8415 8416 unsigned Part = State.Instance->Part; 8417 unsigned Lane = State.Instance->Lane; 8418 8419 Value *ConditionBit = nullptr; 8420 if (!User) // Block in mask is all-one. 8421 ConditionBit = State.Builder.getTrue(); 8422 else { 8423 VPValue *BlockInMask = User->getOperand(0); 8424 ConditionBit = State.get(BlockInMask, Part); 8425 if (ConditionBit->getType()->isVectorTy()) 8426 ConditionBit = State.Builder.CreateExtractElement( 8427 ConditionBit, State.Builder.getInt32(Lane)); 8428 } 8429 8430 // Replace the temporary unreachable terminator with a new conditional branch, 8431 // whose two destinations will be set later when they are created. 8432 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8433 assert(isa<UnreachableInst>(CurrentTerminator) && 8434 "Expected to replace unreachable terminator with conditional branch."); 8435 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8436 CondBr->setSuccessor(0, nullptr); 8437 ReplaceInstWithInst(CurrentTerminator, CondBr); 8438 } 8439 8440 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8441 assert(State.Instance && "Predicated instruction PHI works per instance."); 8442 Instruction *ScalarPredInst = cast<Instruction>( 8443 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8444 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8445 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8446 assert(PredicatingBB && "Predicated block has no single predecessor."); 8447 8448 // By current pack/unpack logic we need to generate only a single phi node: if 8449 // a vector value for the predicated instruction exists at this point it means 8450 // the instruction has vector users only, and a phi for the vector value is 8451 // needed. In this case the recipe of the predicated instruction is marked to 8452 // also do that packing, thereby "hoisting" the insert-element sequence. 8453 // Otherwise, a phi node for the scalar value is needed. 8454 unsigned Part = State.Instance->Part; 8455 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8456 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8457 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8458 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8459 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8460 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8461 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8462 } else { 8463 Type *PredInstType = PredInst->getType(); 8464 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8465 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8466 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8467 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8468 } 8469 } 8470 8471 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8472 if (!User) 8473 return State.ILV->vectorizeMemoryInstruction(&Instr); 8474 8475 // Last (and currently only) operand is a mask. 8476 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8477 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8478 for (unsigned Part = 0; Part < State.UF; ++Part) 8479 MaskValues[Part] = State.get(Mask, Part); 8480 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8481 } 8482 8483 bool LoopVectorizePass::processLoop(Loop *L) { 8484 assert(L->empty() && "Only process inner loops."); 8485 8486 #ifndef NDEBUG 8487 const std::string DebugLocStr = getDebugLocString(L); 8488 #endif /* NDEBUG */ 8489 8490 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8491 << L->getHeader()->getParent()->getName() << "\" from " 8492 << DebugLocStr << "\n"); 8493 8494 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8495 8496 DEBUG(dbgs() << "LV: Loop hints:" 8497 << " force=" 8498 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8499 ? "disabled" 8500 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8501 ? "enabled" 8502 : "?")) 8503 << " width=" << Hints.getWidth() 8504 << " unroll=" << Hints.getInterleave() << "\n"); 8505 8506 // Function containing loop 8507 Function *F = L->getHeader()->getParent(); 8508 8509 // Looking at the diagnostic output is the only way to determine if a loop 8510 // was vectorized (other than looking at the IR or machine code), so it 8511 // is important to generate an optimization remark for each loop. Most of 8512 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8513 // generated as OptimizationRemark and OptimizationRemarkMissed are 8514 // less verbose reporting vectorized loops and unvectorized loops that may 8515 // benefit from vectorization, respectively. 8516 8517 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8518 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8519 return false; 8520 } 8521 8522 PredicatedScalarEvolution PSE(*SE, *L); 8523 8524 // Check if it is legal to vectorize the loop. 8525 LoopVectorizationRequirements Requirements(*ORE); 8526 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8527 &Requirements, &Hints, DB, AC); 8528 if (!LVL.canVectorize()) { 8529 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8530 emitMissedWarning(F, L, Hints, ORE); 8531 return false; 8532 } 8533 8534 // Check the function attributes to find out if this function should be 8535 // optimized for size. 8536 bool OptForSize = 8537 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8538 8539 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8540 // count by optimizing for size, to minimize overheads. 8541 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8542 bool HasExpectedTC = (ExpectedTC > 0); 8543 8544 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8545 auto EstimatedTC = getLoopEstimatedTripCount(L); 8546 if (EstimatedTC) { 8547 ExpectedTC = *EstimatedTC; 8548 HasExpectedTC = true; 8549 } 8550 } 8551 8552 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8553 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8554 << "This loop is worth vectorizing only if no scalar " 8555 << "iteration overheads are incurred."); 8556 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8557 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8558 else { 8559 DEBUG(dbgs() << "\n"); 8560 // Loops with a very small trip count are considered for vectorization 8561 // under OptForSize, thereby making sure the cost of their loop body is 8562 // dominant, free of runtime guards and scalar iteration overheads. 8563 OptForSize = true; 8564 } 8565 } 8566 8567 // Check the function attributes to see if implicit floats are allowed. 8568 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8569 // an integer loop and the vector instructions selected are purely integer 8570 // vector instructions? 8571 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8572 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8573 "attribute is used.\n"); 8574 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8575 "NoImplicitFloat", L) 8576 << "loop not vectorized due to NoImplicitFloat attribute"); 8577 emitMissedWarning(F, L, Hints, ORE); 8578 return false; 8579 } 8580 8581 // Check if the target supports potentially unsafe FP vectorization. 8582 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8583 // for the target we're vectorizing for, to make sure none of the 8584 // additional fp-math flags can help. 8585 if (Hints.isPotentiallyUnsafe() && 8586 TTI->isFPVectorizationPotentiallyUnsafe()) { 8587 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8588 ORE->emit( 8589 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8590 << "loop not vectorized due to unsafe FP support."); 8591 emitMissedWarning(F, L, Hints, ORE); 8592 return false; 8593 } 8594 8595 // Use the cost model. 8596 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8597 &Hints); 8598 CM.collectValuesToIgnore(); 8599 8600 // Use the planner for vectorization. 8601 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8602 8603 // Get user vectorization factor. 8604 unsigned UserVF = Hints.getWidth(); 8605 8606 // Plan how to best vectorize, return the best VF and its cost. 8607 LoopVectorizationCostModel::VectorizationFactor VF = 8608 LVP.plan(OptForSize, UserVF); 8609 8610 // Select the interleave count. 8611 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8612 8613 // Get user interleave count. 8614 unsigned UserIC = Hints.getInterleave(); 8615 8616 // Identify the diagnostic messages that should be produced. 8617 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8618 bool VectorizeLoop = true, InterleaveLoop = true; 8619 if (Requirements.doesNotMeet(F, L, Hints)) { 8620 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8621 "requirements.\n"); 8622 emitMissedWarning(F, L, Hints, ORE); 8623 return false; 8624 } 8625 8626 if (VF.Width == 1) { 8627 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8628 VecDiagMsg = std::make_pair( 8629 "VectorizationNotBeneficial", 8630 "the cost-model indicates that vectorization is not beneficial"); 8631 VectorizeLoop = false; 8632 } 8633 8634 if (IC == 1 && UserIC <= 1) { 8635 // Tell the user interleaving is not beneficial. 8636 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8637 IntDiagMsg = std::make_pair( 8638 "InterleavingNotBeneficial", 8639 "the cost-model indicates that interleaving is not beneficial"); 8640 InterleaveLoop = false; 8641 if (UserIC == 1) { 8642 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8643 IntDiagMsg.second += 8644 " and is explicitly disabled or interleave count is set to 1"; 8645 } 8646 } else if (IC > 1 && UserIC == 1) { 8647 // Tell the user interleaving is beneficial, but it explicitly disabled. 8648 DEBUG(dbgs() 8649 << "LV: Interleaving is beneficial but is explicitly disabled."); 8650 IntDiagMsg = std::make_pair( 8651 "InterleavingBeneficialButDisabled", 8652 "the cost-model indicates that interleaving is beneficial " 8653 "but is explicitly disabled or interleave count is set to 1"); 8654 InterleaveLoop = false; 8655 } 8656 8657 // Override IC if user provided an interleave count. 8658 IC = UserIC > 0 ? UserIC : IC; 8659 8660 // Emit diagnostic messages, if any. 8661 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8662 if (!VectorizeLoop && !InterleaveLoop) { 8663 // Do not vectorize or interleaving the loop. 8664 ORE->emit([&]() { 8665 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8666 L->getStartLoc(), L->getHeader()) 8667 << VecDiagMsg.second; 8668 }); 8669 ORE->emit([&]() { 8670 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8671 L->getStartLoc(), L->getHeader()) 8672 << IntDiagMsg.second; 8673 }); 8674 return false; 8675 } else if (!VectorizeLoop && InterleaveLoop) { 8676 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8677 ORE->emit([&]() { 8678 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8679 L->getStartLoc(), L->getHeader()) 8680 << VecDiagMsg.second; 8681 }); 8682 } else if (VectorizeLoop && !InterleaveLoop) { 8683 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8684 << DebugLocStr << '\n'); 8685 ORE->emit([&]() { 8686 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8687 L->getStartLoc(), L->getHeader()) 8688 << IntDiagMsg.second; 8689 }); 8690 } else if (VectorizeLoop && InterleaveLoop) { 8691 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8692 << DebugLocStr << '\n'); 8693 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8694 } 8695 8696 LVP.setBestPlan(VF.Width, IC); 8697 8698 using namespace ore; 8699 8700 if (!VectorizeLoop) { 8701 assert(IC > 1 && "interleave count should not be 1 or 0"); 8702 // If we decided that it is not legal to vectorize the loop, then 8703 // interleave it. 8704 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8705 &CM); 8706 LVP.executePlan(Unroller, DT); 8707 8708 ORE->emit([&]() { 8709 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8710 L->getHeader()) 8711 << "interleaved loop (interleaved count: " 8712 << NV("InterleaveCount", IC) << ")"; 8713 }); 8714 } else { 8715 // If we decided that it is *legal* to vectorize the loop, then do it. 8716 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8717 &LVL, &CM); 8718 LVP.executePlan(LB, DT); 8719 ++LoopsVectorized; 8720 8721 // Add metadata to disable runtime unrolling a scalar loop when there are 8722 // no runtime checks about strides and memory. A scalar loop that is 8723 // rarely used is not worth unrolling. 8724 if (!LB.areSafetyChecksAdded()) 8725 AddRuntimeUnrollDisableMetaData(L); 8726 8727 // Report the vectorization decision. 8728 ORE->emit([&]() { 8729 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8730 L->getHeader()) 8731 << "vectorized loop (vectorization width: " 8732 << NV("VectorizationFactor", VF.Width) 8733 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8734 }); 8735 } 8736 8737 // Mark the loop as already vectorized to avoid vectorizing again. 8738 Hints.setAlreadyVectorized(); 8739 8740 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8741 return true; 8742 } 8743 8744 bool LoopVectorizePass::runImpl( 8745 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8746 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8747 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8748 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8749 OptimizationRemarkEmitter &ORE_) { 8750 SE = &SE_; 8751 LI = &LI_; 8752 TTI = &TTI_; 8753 DT = &DT_; 8754 BFI = &BFI_; 8755 TLI = TLI_; 8756 AA = &AA_; 8757 AC = &AC_; 8758 GetLAA = &GetLAA_; 8759 DB = &DB_; 8760 ORE = &ORE_; 8761 8762 // Don't attempt if 8763 // 1. the target claims to have no vector registers, and 8764 // 2. interleaving won't help ILP. 8765 // 8766 // The second condition is necessary because, even if the target has no 8767 // vector registers, loop vectorization may still enable scalar 8768 // interleaving. 8769 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8770 return false; 8771 8772 bool Changed = false; 8773 8774 // The vectorizer requires loops to be in simplified form. 8775 // Since simplification may add new inner loops, it has to run before the 8776 // legality and profitability checks. This means running the loop vectorizer 8777 // will simplify all loops, regardless of whether anything end up being 8778 // vectorized. 8779 for (auto &L : *LI) 8780 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8781 8782 // Build up a worklist of inner-loops to vectorize. This is necessary as 8783 // the act of vectorizing or partially unrolling a loop creates new loops 8784 // and can invalidate iterators across the loops. 8785 SmallVector<Loop *, 8> Worklist; 8786 8787 for (Loop *L : *LI) 8788 addAcyclicInnerLoop(*L, Worklist); 8789 8790 LoopsAnalyzed += Worklist.size(); 8791 8792 // Now walk the identified inner loops. 8793 while (!Worklist.empty()) { 8794 Loop *L = Worklist.pop_back_val(); 8795 8796 // For the inner loops we actually process, form LCSSA to simplify the 8797 // transform. 8798 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8799 8800 Changed |= processLoop(L); 8801 } 8802 8803 // Process each loop nest in the function. 8804 return Changed; 8805 } 8806 8807 PreservedAnalyses LoopVectorizePass::run(Function &F, 8808 FunctionAnalysisManager &AM) { 8809 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8810 auto &LI = AM.getResult<LoopAnalysis>(F); 8811 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8812 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8813 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8814 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8815 auto &AA = AM.getResult<AAManager>(F); 8816 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8817 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8818 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8819 8820 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8821 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8822 [&](Loop &L) -> const LoopAccessInfo & { 8823 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8824 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8825 }; 8826 bool Changed = 8827 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8828 if (!Changed) 8829 return PreservedAnalyses::all(); 8830 PreservedAnalyses PA; 8831 PA.preserve<LoopAnalysis>(); 8832 PA.preserve<DominatorTreeAnalysis>(); 8833 PA.preserve<BasicAA>(); 8834 PA.preserve<GlobalsAA>(); 8835 return PA; 8836 } 8837