1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// Loops with a known constant trip count below this number are vectorized only 118 /// if no scalar iteration overheads are incurred. 119 static cl::opt<unsigned> TinyTripCountVectorThreshold( 120 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 121 cl::desc("Loops with a constant trip count that is smaller than this " 122 "value are vectorized only if no scalar iteration overheads " 123 "are incurred.")); 124 125 static cl::opt<bool> MaximizeBandwidth( 126 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 127 cl::desc("Maximize bandwidth when selecting vectorization factor which " 128 "will be determined by the smallest type in loop.")); 129 130 static cl::opt<bool> EnableInterleavedMemAccesses( 131 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 132 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 133 134 /// Maximum factor for an interleaved memory access. 135 static cl::opt<unsigned> MaxInterleaveGroupFactor( 136 "max-interleave-group-factor", cl::Hidden, 137 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 138 cl::init(8)); 139 140 /// We don't interleave loops with a known constant trip count below this 141 /// number. 142 static const unsigned TinyTripCountInterleaveThreshold = 128; 143 144 static cl::opt<unsigned> ForceTargetNumScalarRegs( 145 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of scalar registers.")); 147 148 static cl::opt<unsigned> ForceTargetNumVectorRegs( 149 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 150 cl::desc("A flag that overrides the target's number of vector registers.")); 151 152 /// Maximum vectorization interleave count. 153 static const unsigned MaxInterleaveFactor = 16; 154 155 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 156 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max interleave factor for " 158 "scalar loops.")); 159 160 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 161 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's max interleave factor for " 163 "vectorized loops.")); 164 165 static cl::opt<unsigned> ForceTargetInstructionCost( 166 "force-target-instruction-cost", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's expected cost for " 168 "an instruction to a single constant value. Mostly " 169 "useful for getting consistent testing.")); 170 171 static cl::opt<unsigned> SmallLoopCost( 172 "small-loop-cost", cl::init(20), cl::Hidden, 173 cl::desc( 174 "The cost of a loop that is considered 'small' by the interleaver.")); 175 176 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 177 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 178 cl::desc("Enable the use of the block frequency analysis to access PGO " 179 "heuristics minimizing code growth in cold regions and being more " 180 "aggressive in hot regions.")); 181 182 // Runtime interleave loops for load/store throughput. 183 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 184 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 185 cl::desc( 186 "Enable runtime interleaving until load/store ports are saturated")); 187 188 /// The number of stores in a loop that are allowed to need predication. 189 static cl::opt<unsigned> NumberOfStoresToPredicate( 190 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 191 cl::desc("Max number of stores to be predicated behind an if.")); 192 193 static cl::opt<bool> EnableIndVarRegisterHeur( 194 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 195 cl::desc("Count the induction variable only once when interleaving")); 196 197 static cl::opt<bool> EnableCondStoresVectorization( 198 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 199 cl::desc("Enable if predication of stores during vectorization.")); 200 201 static cl::opt<unsigned> MaxNestedScalarReductionIC( 202 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 203 cl::desc("The maximum interleave count to use when interleaving a scalar " 204 "reduction in a nested loop.")); 205 206 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 207 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 208 cl::desc("The maximum allowed number of runtime memory checks with a " 209 "vectorize(enable) pragma.")); 210 211 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 212 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed.")); 214 215 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 216 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 217 cl::desc("The maximum number of SCEV checks allowed with a " 218 "vectorize(enable) pragma")); 219 220 /// Create an analysis remark that explains why vectorization failed 221 /// 222 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 223 /// RemarkName is the identifier for the remark. If \p I is passed it is an 224 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 225 /// the location of the remark. \return the remark object that can be 226 /// streamed to. 227 static OptimizationRemarkAnalysis 228 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 229 Instruction *I = nullptr) { 230 Value *CodeRegion = TheLoop->getHeader(); 231 DebugLoc DL = TheLoop->getStartLoc(); 232 233 if (I) { 234 CodeRegion = I->getParent(); 235 // If there is no debug location attached to the instruction, revert back to 236 // using the loop's. 237 if (I->getDebugLoc()) 238 DL = I->getDebugLoc(); 239 } 240 241 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 242 R << "loop not vectorized: "; 243 return R; 244 } 245 246 namespace { 247 248 // Forward declarations. 249 class LoopVectorizeHints; 250 class LoopVectorizationLegality; 251 class LoopVectorizationCostModel; 252 class LoopVectorizationRequirements; 253 254 /// Returns true if the given loop body has a cycle, excluding the loop 255 /// itself. 256 static bool hasCyclesInLoopBody(const Loop &L) { 257 if (!L.empty()) 258 return true; 259 260 for (const auto &SCC : 261 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 262 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 263 if (SCC.size() > 1) { 264 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 265 DEBUG(L.dump()); 266 return true; 267 } 268 } 269 return false; 270 } 271 272 /// A helper function for converting Scalar types to vector types. 273 /// If the incoming type is void, we return void. If the VF is 1, we return 274 /// the scalar type. 275 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 276 if (Scalar->isVoidTy() || VF == 1) 277 return Scalar; 278 return VectorType::get(Scalar, VF); 279 } 280 281 // FIXME: The following helper functions have multiple implementations 282 // in the project. They can be effectively organized in a common Load/Store 283 // utilities unit. 284 285 /// A helper function that returns the pointer operand of a load or store 286 /// instruction. 287 static Value *getPointerOperand(Value *I) { 288 if (auto *LI = dyn_cast<LoadInst>(I)) 289 return LI->getPointerOperand(); 290 if (auto *SI = dyn_cast<StoreInst>(I)) 291 return SI->getPointerOperand(); 292 return nullptr; 293 } 294 295 /// A helper function that returns the type of loaded or stored value. 296 static Type *getMemInstValueType(Value *I) { 297 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 298 "Expected Load or Store instruction"); 299 if (auto *LI = dyn_cast<LoadInst>(I)) 300 return LI->getType(); 301 return cast<StoreInst>(I)->getValueOperand()->getType(); 302 } 303 304 /// A helper function that returns the alignment of load or store instruction. 305 static unsigned getMemInstAlignment(Value *I) { 306 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 307 "Expected Load or Store instruction"); 308 if (auto *LI = dyn_cast<LoadInst>(I)) 309 return LI->getAlignment(); 310 return cast<StoreInst>(I)->getAlignment(); 311 } 312 313 /// A helper function that returns the address space of the pointer operand of 314 /// load or store instruction. 315 static unsigned getMemInstAddressSpace(Value *I) { 316 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 317 "Expected Load or Store instruction"); 318 if (auto *LI = dyn_cast<LoadInst>(I)) 319 return LI->getPointerAddressSpace(); 320 return cast<StoreInst>(I)->getPointerAddressSpace(); 321 } 322 323 /// A helper function that returns true if the given type is irregular. The 324 /// type is irregular if its allocated size doesn't equal the store size of an 325 /// element of the corresponding vector type at the given vectorization factor. 326 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 327 328 // Determine if an array of VF elements of type Ty is "bitcast compatible" 329 // with a <VF x Ty> vector. 330 if (VF > 1) { 331 auto *VectorTy = VectorType::get(Ty, VF); 332 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 333 } 334 335 // If the vectorization factor is one, we just check if an array of type Ty 336 // requires padding between elements. 337 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 338 } 339 340 /// A helper function that returns the reciprocal of the block probability of 341 /// predicated blocks. If we return X, we are assuming the predicated block 342 /// will execute once for for every X iterations of the loop header. 343 /// 344 /// TODO: We should use actual block probability here, if available. Currently, 345 /// we always assume predicated blocks have a 50% chance of executing. 346 static unsigned getReciprocalPredBlockProb() { return 2; } 347 348 /// A helper function that adds a 'fast' flag to floating-point operations. 349 static Value *addFastMathFlag(Value *V) { 350 if (isa<FPMathOperator>(V)) { 351 FastMathFlags Flags; 352 Flags.setUnsafeAlgebra(); 353 cast<Instruction>(V)->setFastMathFlags(Flags); 354 } 355 return V; 356 } 357 358 /// A helper function that returns an integer or floating-point constant with 359 /// value C. 360 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 361 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 362 : ConstantFP::get(Ty, C); 363 } 364 365 /// InnerLoopVectorizer vectorizes loops which contain only one basic 366 /// block to a specified vectorization factor (VF). 367 /// This class performs the widening of scalars into vectors, or multiple 368 /// scalars. This class also implements the following features: 369 /// * It inserts an epilogue loop for handling loops that don't have iteration 370 /// counts that are known to be a multiple of the vectorization factor. 371 /// * It handles the code generation for reduction variables. 372 /// * Scalarization (implementation using scalars) of un-vectorizable 373 /// instructions. 374 /// InnerLoopVectorizer does not perform any vectorization-legality 375 /// checks, and relies on the caller to check for the different legality 376 /// aspects. The InnerLoopVectorizer relies on the 377 /// LoopVectorizationLegality class to provide information about the induction 378 /// and reduction variables that were found to a given vectorization factor. 379 class InnerLoopVectorizer { 380 public: 381 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 382 LoopInfo *LI, DominatorTree *DT, 383 const TargetLibraryInfo *TLI, 384 const TargetTransformInfo *TTI, AssumptionCache *AC, 385 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 386 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 387 LoopVectorizationCostModel *CM) 388 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 389 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 390 Builder(PSE.getSE()->getContext()), Induction(nullptr), 391 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 392 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 393 AddedSafetyChecks(false) {} 394 395 /// Create a new empty loop. Unlink the old loop and connect the new one. 396 void createVectorizedLoopSkeleton(); 397 398 /// Vectorize a single instruction within the innermost loop. 399 void vectorizeInstruction(Instruction &I); 400 401 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 402 void fixVectorizedLoop(); 403 404 // Return true if any runtime check is added. 405 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 406 407 virtual ~InnerLoopVectorizer() {} 408 409 protected: 410 /// A small list of PHINodes. 411 typedef SmallVector<PHINode *, 4> PhiVector; 412 413 /// A type for vectorized values in the new loop. Each value from the 414 /// original loop, when vectorized, is represented by UF vector values in the 415 /// new unrolled loop, where UF is the unroll factor. 416 typedef SmallVector<Value *, 2> VectorParts; 417 418 /// A type for scalarized values in the new loop. Each value from the 419 /// original loop, when scalarized, is represented by UF x VF scalar values 420 /// in the new unrolled loop, where UF is the unroll factor and VF is the 421 /// vectorization factor. 422 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 423 424 // When we if-convert we need to create edge masks. We have to cache values 425 // so that we don't end up with exponential recursion/IR. 426 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 427 EdgeMaskCacheTy; 428 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 429 430 /// Set up the values of the IVs correctly when exiting the vector loop. 431 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 432 Value *CountRoundDown, Value *EndValue, 433 BasicBlock *MiddleBlock); 434 435 /// Create a new induction variable inside L. 436 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 437 Value *Step, Instruction *DL); 438 439 /// Handle all cross-iteration phis in the header. 440 void fixCrossIterationPHIs(); 441 442 /// Fix a first-order recurrence. This is the second phase of vectorizing 443 /// this phi node. 444 void fixFirstOrderRecurrence(PHINode *Phi); 445 446 /// Fix a reduction cross-iteration phi. This is the second phase of 447 /// vectorizing this phi node. 448 void fixReduction(PHINode *Phi); 449 450 /// \brief The Loop exit block may have single value PHI nodes with some 451 /// incoming value. While vectorizing we only handled real values 452 /// that were defined inside the loop and we should have one value for 453 /// each predecessor of its parent basic block. See PR14725. 454 void fixLCSSAPHIs(); 455 456 /// Iteratively sink the scalarized operands of a predicated instruction into 457 /// the block that was created for it. 458 void sinkScalarOperands(Instruction *PredInst); 459 460 /// Predicate conditional instructions that require predication on their 461 /// respective conditions. 462 void predicateInstructions(); 463 464 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 465 /// represented as. 466 void truncateToMinimalBitwidths(); 467 468 /// A helper function that computes the predicate of the block BB, assuming 469 /// that the header block of the loop is set to True. It returns the *entry* 470 /// mask for the block BB. 471 VectorParts createBlockInMask(BasicBlock *BB); 472 /// A helper function that computes the predicate of the edge between SRC 473 /// and DST. 474 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 475 476 /// Vectorize a single PHINode in a block. This method handles the induction 477 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 478 /// arbitrary length vectors. 479 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 480 481 /// Insert the new loop to the loop hierarchy and pass manager 482 /// and update the analysis passes. 483 void updateAnalysis(); 484 485 /// This instruction is un-vectorizable. Implement it as a sequence 486 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 487 /// scalarized instruction behind an if block predicated on the control 488 /// dependence of the instruction. 489 void scalarizeInstruction(Instruction *Instr, bool IfPredicateInstr = false); 490 491 /// Vectorize Load and Store instructions, 492 virtual void vectorizeMemoryInstruction(Instruction *Instr); 493 494 /// Create a broadcast instruction. This method generates a broadcast 495 /// instruction (shuffle) for loop invariant values and for the induction 496 /// value. If this is the induction variable then we extend it to N, N+1, ... 497 /// this is needed because each iteration in the loop corresponds to a SIMD 498 /// element. 499 virtual Value *getBroadcastInstrs(Value *V); 500 501 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 502 /// to each vector element of Val. The sequence starts at StartIndex. 503 /// \p Opcode is relevant for FP induction variable. 504 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 505 Instruction::BinaryOps Opcode = 506 Instruction::BinaryOpsEnd); 507 508 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 509 /// variable on which to base the steps, \p Step is the size of the step, and 510 /// \p EntryVal is the value from the original loop that maps to the steps. 511 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 512 /// can be a truncate instruction). 513 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 514 const InductionDescriptor &ID); 515 516 /// Create a vector induction phi node based on an existing scalar one. \p 517 /// EntryVal is the value from the original loop that maps to the vector phi 518 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 519 /// truncate instruction, instead of widening the original IV, we widen a 520 /// version of the IV truncated to \p EntryVal's type. 521 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 522 Value *Step, Instruction *EntryVal); 523 524 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 525 /// is provided, the integer induction variable will first be truncated to 526 /// the corresponding type. 527 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 528 529 /// Returns true if an instruction \p I should be scalarized instead of 530 /// vectorized for the chosen vectorization factor. 531 bool shouldScalarizeInstruction(Instruction *I) const; 532 533 /// Returns true if we should generate a scalar version of \p IV. 534 bool needsScalarInduction(Instruction *IV) const; 535 536 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 537 /// vector or scalar value on-demand if one is not yet available. When 538 /// vectorizing a loop, we visit the definition of an instruction before its 539 /// uses. When visiting the definition, we either vectorize or scalarize the 540 /// instruction, creating an entry for it in the corresponding map. (In some 541 /// cases, such as induction variables, we will create both vector and scalar 542 /// entries.) Then, as we encounter uses of the definition, we derive values 543 /// for each scalar or vector use unless such a value is already available. 544 /// For example, if we scalarize a definition and one of its uses is vector, 545 /// we build the required vector on-demand with an insertelement sequence 546 /// when visiting the use. Otherwise, if the use is scalar, we can use the 547 /// existing scalar definition. 548 /// 549 /// Return a value in the new loop corresponding to \p V from the original 550 /// loop at unroll index \p Part. If the value has already been vectorized, 551 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 552 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 553 /// a new vector value on-demand by inserting the scalar values into a vector 554 /// with an insertelement sequence. If the value has been neither vectorized 555 /// nor scalarized, it must be loop invariant, so we simply broadcast the 556 /// value into a vector. 557 Value *getOrCreateVectorValue(Value *V, unsigned Part); 558 559 /// Return a value in the new loop corresponding to \p V from the original 560 /// loop at unroll index \p Part and vector index \p Lane. If the value has 561 /// been vectorized but not scalarized, the necessary extractelement 562 /// instruction will be generated. 563 Value *getOrCreateScalarValue(Value *V, unsigned Part, unsigned Lane); 564 565 /// Try to vectorize the interleaved access group that \p Instr belongs to. 566 void vectorizeInterleaveGroup(Instruction *Instr); 567 568 /// Generate a shuffle sequence that will reverse the vector Vec. 569 virtual Value *reverseVector(Value *Vec); 570 571 /// Returns (and creates if needed) the original loop trip count. 572 Value *getOrCreateTripCount(Loop *NewLoop); 573 574 /// Returns (and creates if needed) the trip count of the widened loop. 575 Value *getOrCreateVectorTripCount(Loop *NewLoop); 576 577 /// Emit a bypass check to see if the vector trip count is zero, including if 578 /// it overflows. 579 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 580 /// Emit a bypass check to see if all of the SCEV assumptions we've 581 /// had to make are correct. 582 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 583 /// Emit bypass checks to check any memory assumptions we may have made. 584 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 585 586 /// Add additional metadata to \p To that was not present on \p Orig. 587 /// 588 /// Currently this is used to add the noalias annotations based on the 589 /// inserted memchecks. Use this for instructions that are *cloned* into the 590 /// vector loop. 591 void addNewMetadata(Instruction *To, const Instruction *Orig); 592 593 /// Add metadata from one instruction to another. 594 /// 595 /// This includes both the original MDs from \p From and additional ones (\see 596 /// addNewMetadata). Use this for *newly created* instructions in the vector 597 /// loop. 598 void addMetadata(Instruction *To, Instruction *From); 599 600 /// \brief Similar to the previous function but it adds the metadata to a 601 /// vector of instructions. 602 void addMetadata(ArrayRef<Value *> To, Instruction *From); 603 604 /// \brief Set the debug location in the builder using the debug location in 605 /// the instruction. 606 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 607 608 /// This is a helper class for maintaining vectorization state. It's used for 609 /// mapping values from the original loop to their corresponding values in 610 /// the new loop. Two mappings are maintained: one for vectorized values and 611 /// one for scalarized values. Vectorized values are represented with UF 612 /// vector values in the new loop, and scalarized values are represented with 613 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 614 /// vectorization factors, respectively. 615 /// 616 /// Entries can be added to either map with setVectorValue and setScalarValue, 617 /// which assert that an entry was not already added before. If an entry is to 618 /// replace an existing one, call resetVectorValue. This is currently needed 619 /// to modify the mapped values during "fix-up" operations that occur once the 620 /// first phase of widening is complete. These operations include type 621 /// truncation and the second phase of recurrence widening. 622 /// 623 /// Entries from either map can be retrieved using the getVectorValue and 624 /// getScalarValue functions, which assert that the desired value exists. 625 626 struct ValueMap { 627 628 /// Construct an empty map with the given unroll and vectorization factors. 629 ValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} 630 631 /// \return True if the map has any vector entry for \p Key. 632 bool hasAnyVectorValue(Value *Key) const { 633 return VectorMapStorage.count(Key); 634 } 635 636 /// \return True if the map has a vector entry for \p Key and \p Part. 637 bool hasVectorValue(Value *Key, unsigned Part) const { 638 assert(Part < UF && "Queried Vector Part is too large."); 639 if (!hasAnyVectorValue(Key)) 640 return false; 641 const VectorParts &Entry = VectorMapStorage.find(Key)->second; 642 assert(Entry.size() == UF && "VectorParts has wrong dimensions."); 643 return Entry[Part] != nullptr; 644 } 645 646 /// \return True if the map has any scalar entry for \p Key. 647 bool hasAnyScalarValue(Value *Key) const { 648 return ScalarMapStorage.count(Key); 649 } 650 651 /// \return True if the map has a scalar entry for \p Key, \p Part and 652 /// \p Part. 653 bool hasScalarValue(Value *Key, unsigned Part, unsigned Lane) const { 654 assert(Part < UF && "Queried Scalar Part is too large."); 655 assert(Lane < VF && "Queried Scalar Lane is too large."); 656 if (!hasAnyScalarValue(Key)) 657 return false; 658 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; 659 assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); 660 assert(Entry[Part].size() == VF && "ScalarParts has wrong dimensions."); 661 return Entry[Part][Lane] != nullptr; 662 } 663 664 /// Retrieve the existing vector value that corresponds to \p Key and 665 /// \p Part. 666 Value *getVectorValue(Value *Key, unsigned Part) { 667 assert(hasVectorValue(Key, Part) && "Getting non-existent value."); 668 return VectorMapStorage[Key][Part]; 669 } 670 671 /// Retrieve the existing scalar value that corresponds to \p Key, \p Part 672 /// and \p Lane. 673 Value *getScalarValue(Value *Key, unsigned Part, unsigned Lane) { 674 assert(hasScalarValue(Key, Part, Lane) && "Getting non-existent value."); 675 return ScalarMapStorage[Key][Part][Lane]; 676 } 677 678 /// Set a vector value associated with \p Key and \p Part. Assumes such a 679 /// value is not already set. If it is, use resetVectorValue() instead. 680 void setVectorValue(Value *Key, unsigned Part, Value *Vector) { 681 assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); 682 if (!VectorMapStorage.count(Key)) { 683 VectorParts Entry(UF); 684 VectorMapStorage[Key] = Entry; 685 } 686 VectorMapStorage[Key][Part] = Vector; 687 } 688 689 /// Set a scalar value associated with \p Key for \p Part and \p Lane. 690 /// Assumes such a value is not already set. 691 void setScalarValue(Value *Key, unsigned Part, unsigned Lane, 692 Value *Scalar) { 693 assert(!hasScalarValue(Key, Part, Lane) && "Scalar value already set"); 694 if (!ScalarMapStorage.count(Key)) { 695 ScalarParts Entry(UF); 696 for (unsigned Part = 0; Part < UF; ++Part) 697 Entry[Part].resize(VF, nullptr); 698 // TODO: Consider storing uniform values only per-part, as they occupy 699 // lane 0 only, keeping the other VF-1 redundant entries null. 700 ScalarMapStorage[Key] = Entry; 701 } 702 ScalarMapStorage[Key][Part][Lane] = Scalar; 703 } 704 705 /// Reset the vector value associated with \p Key for the given \p Part. 706 /// This function can be used to update values that have already been 707 /// vectorized. This is the case for "fix-up" operations including type 708 /// truncation and the second phase of recurrence vectorization. 709 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { 710 assert(hasVectorValue(Key, Part) && "Vector value not set for part"); 711 VectorMapStorage[Key][Part] = Vector; 712 } 713 714 private: 715 /// The unroll factor. Each entry in the vector map contains UF vector 716 /// values. 717 unsigned UF; 718 719 /// The vectorization factor. Each entry in the scalar map contains UF x VF 720 /// scalar values. 721 unsigned VF; 722 723 /// The vector and scalar map storage. We use std::map and not DenseMap 724 /// because insertions to DenseMap invalidate its iterators. 725 std::map<Value *, VectorParts> VectorMapStorage; 726 std::map<Value *, ScalarParts> ScalarMapStorage; 727 }; 728 729 /// The original loop. 730 Loop *OrigLoop; 731 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 732 /// dynamic knowledge to simplify SCEV expressions and converts them to a 733 /// more usable form. 734 PredicatedScalarEvolution &PSE; 735 /// Loop Info. 736 LoopInfo *LI; 737 /// Dominator Tree. 738 DominatorTree *DT; 739 /// Alias Analysis. 740 AliasAnalysis *AA; 741 /// Target Library Info. 742 const TargetLibraryInfo *TLI; 743 /// Target Transform Info. 744 const TargetTransformInfo *TTI; 745 /// Assumption Cache. 746 AssumptionCache *AC; 747 /// Interface to emit optimization remarks. 748 OptimizationRemarkEmitter *ORE; 749 750 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 751 /// used. 752 /// 753 /// This is currently only used to add no-alias metadata based on the 754 /// memchecks. The actually versioning is performed manually. 755 std::unique_ptr<LoopVersioning> LVer; 756 757 /// The vectorization SIMD factor to use. Each vector will have this many 758 /// vector elements. 759 unsigned VF; 760 761 protected: 762 /// The vectorization unroll factor to use. Each scalar is vectorized to this 763 /// many different vector instructions. 764 unsigned UF; 765 766 /// The builder that we use 767 IRBuilder<> Builder; 768 769 // --- Vectorization state --- 770 771 /// The vector-loop preheader. 772 BasicBlock *LoopVectorPreHeader; 773 /// The scalar-loop preheader. 774 BasicBlock *LoopScalarPreHeader; 775 /// Middle Block between the vector and the scalar. 776 BasicBlock *LoopMiddleBlock; 777 /// The ExitBlock of the scalar loop. 778 BasicBlock *LoopExitBlock; 779 /// The vector loop body. 780 BasicBlock *LoopVectorBody; 781 /// The scalar loop body. 782 BasicBlock *LoopScalarBody; 783 /// A list of all bypass blocks. The first block is the entry of the loop. 784 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 785 786 /// The new Induction variable which was added to the new block. 787 PHINode *Induction; 788 /// The induction variable of the old basic block. 789 PHINode *OldInduction; 790 791 /// Maps values from the original loop to their corresponding values in the 792 /// vectorized loop. A key value can map to either vector values, scalar 793 /// values or both kinds of values, depending on whether the key was 794 /// vectorized and scalarized. 795 ValueMap VectorLoopValueMap; 796 797 /// Store instructions that should be predicated, as a pair 798 /// <StoreInst, Predicate> 799 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 800 EdgeMaskCacheTy EdgeMaskCache; 801 BlockMaskCacheTy BlockMaskCache; 802 /// Trip count of the original loop. 803 Value *TripCount; 804 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 805 Value *VectorTripCount; 806 807 /// The legality analysis. 808 LoopVectorizationLegality *Legal; 809 810 /// The profitablity analysis. 811 LoopVectorizationCostModel *Cost; 812 813 // Record whether runtime checks are added. 814 bool AddedSafetyChecks; 815 816 // Holds the end values for each induction variable. We save the end values 817 // so we can later fix-up the external users of the induction variables. 818 DenseMap<PHINode *, Value *> IVEndValues; 819 }; 820 821 class InnerLoopUnroller : public InnerLoopVectorizer { 822 public: 823 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 824 LoopInfo *LI, DominatorTree *DT, 825 const TargetLibraryInfo *TLI, 826 const TargetTransformInfo *TTI, AssumptionCache *AC, 827 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 828 LoopVectorizationLegality *LVL, 829 LoopVectorizationCostModel *CM) 830 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 831 UnrollFactor, LVL, CM) {} 832 833 private: 834 void vectorizeMemoryInstruction(Instruction *Instr) override; 835 Value *getBroadcastInstrs(Value *V) override; 836 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 837 Instruction::BinaryOps Opcode = 838 Instruction::BinaryOpsEnd) override; 839 Value *reverseVector(Value *Vec) override; 840 }; 841 842 /// \brief Look for a meaningful debug location on the instruction or it's 843 /// operands. 844 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 845 if (!I) 846 return I; 847 848 DebugLoc Empty; 849 if (I->getDebugLoc() != Empty) 850 return I; 851 852 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 853 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 854 if (OpInst->getDebugLoc() != Empty) 855 return OpInst; 856 } 857 858 return I; 859 } 860 861 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 862 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 863 const DILocation *DIL = Inst->getDebugLoc(); 864 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 865 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 866 else 867 B.SetCurrentDebugLocation(DIL); 868 } else 869 B.SetCurrentDebugLocation(DebugLoc()); 870 } 871 872 #ifndef NDEBUG 873 /// \return string containing a file name and a line # for the given loop. 874 static std::string getDebugLocString(const Loop *L) { 875 std::string Result; 876 if (L) { 877 raw_string_ostream OS(Result); 878 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 879 LoopDbgLoc.print(OS); 880 else 881 // Just print the module name. 882 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 883 OS.flush(); 884 } 885 return Result; 886 } 887 #endif 888 889 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 890 const Instruction *Orig) { 891 // If the loop was versioned with memchecks, add the corresponding no-alias 892 // metadata. 893 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 894 LVer->annotateInstWithNoAlias(To, Orig); 895 } 896 897 void InnerLoopVectorizer::addMetadata(Instruction *To, 898 Instruction *From) { 899 propagateMetadata(To, From); 900 addNewMetadata(To, From); 901 } 902 903 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 904 Instruction *From) { 905 for (Value *V : To) { 906 if (Instruction *I = dyn_cast<Instruction>(V)) 907 addMetadata(I, From); 908 } 909 } 910 911 /// \brief The group of interleaved loads/stores sharing the same stride and 912 /// close to each other. 913 /// 914 /// Each member in this group has an index starting from 0, and the largest 915 /// index should be less than interleaved factor, which is equal to the absolute 916 /// value of the access's stride. 917 /// 918 /// E.g. An interleaved load group of factor 4: 919 /// for (unsigned i = 0; i < 1024; i+=4) { 920 /// a = A[i]; // Member of index 0 921 /// b = A[i+1]; // Member of index 1 922 /// d = A[i+3]; // Member of index 3 923 /// ... 924 /// } 925 /// 926 /// An interleaved store group of factor 4: 927 /// for (unsigned i = 0; i < 1024; i+=4) { 928 /// ... 929 /// A[i] = a; // Member of index 0 930 /// A[i+1] = b; // Member of index 1 931 /// A[i+2] = c; // Member of index 2 932 /// A[i+3] = d; // Member of index 3 933 /// } 934 /// 935 /// Note: the interleaved load group could have gaps (missing members), but 936 /// the interleaved store group doesn't allow gaps. 937 class InterleaveGroup { 938 public: 939 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 940 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 941 assert(Align && "The alignment should be non-zero"); 942 943 Factor = std::abs(Stride); 944 assert(Factor > 1 && "Invalid interleave factor"); 945 946 Reverse = Stride < 0; 947 Members[0] = Instr; 948 } 949 950 bool isReverse() const { return Reverse; } 951 unsigned getFactor() const { return Factor; } 952 unsigned getAlignment() const { return Align; } 953 unsigned getNumMembers() const { return Members.size(); } 954 955 /// \brief Try to insert a new member \p Instr with index \p Index and 956 /// alignment \p NewAlign. The index is related to the leader and it could be 957 /// negative if it is the new leader. 958 /// 959 /// \returns false if the instruction doesn't belong to the group. 960 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 961 assert(NewAlign && "The new member's alignment should be non-zero"); 962 963 int Key = Index + SmallestKey; 964 965 // Skip if there is already a member with the same index. 966 if (Members.count(Key)) 967 return false; 968 969 if (Key > LargestKey) { 970 // The largest index is always less than the interleave factor. 971 if (Index >= static_cast<int>(Factor)) 972 return false; 973 974 LargestKey = Key; 975 } else if (Key < SmallestKey) { 976 // The largest index is always less than the interleave factor. 977 if (LargestKey - Key >= static_cast<int>(Factor)) 978 return false; 979 980 SmallestKey = Key; 981 } 982 983 // It's always safe to select the minimum alignment. 984 Align = std::min(Align, NewAlign); 985 Members[Key] = Instr; 986 return true; 987 } 988 989 /// \brief Get the member with the given index \p Index 990 /// 991 /// \returns nullptr if contains no such member. 992 Instruction *getMember(unsigned Index) const { 993 int Key = SmallestKey + Index; 994 if (!Members.count(Key)) 995 return nullptr; 996 997 return Members.find(Key)->second; 998 } 999 1000 /// \brief Get the index for the given member. Unlike the key in the member 1001 /// map, the index starts from 0. 1002 unsigned getIndex(Instruction *Instr) const { 1003 for (auto I : Members) 1004 if (I.second == Instr) 1005 return I.first - SmallestKey; 1006 1007 llvm_unreachable("InterleaveGroup contains no such member"); 1008 } 1009 1010 Instruction *getInsertPos() const { return InsertPos; } 1011 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 1012 1013 private: 1014 unsigned Factor; // Interleave Factor. 1015 bool Reverse; 1016 unsigned Align; 1017 DenseMap<int, Instruction *> Members; 1018 int SmallestKey; 1019 int LargestKey; 1020 1021 // To avoid breaking dependences, vectorized instructions of an interleave 1022 // group should be inserted at either the first load or the last store in 1023 // program order. 1024 // 1025 // E.g. %even = load i32 // Insert Position 1026 // %add = add i32 %even // Use of %even 1027 // %odd = load i32 1028 // 1029 // store i32 %even 1030 // %odd = add i32 // Def of %odd 1031 // store i32 %odd // Insert Position 1032 Instruction *InsertPos; 1033 }; 1034 1035 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1036 /// 1037 /// Use this class to analyze interleaved accesses only when we can vectorize 1038 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1039 /// on interleaved accesses is unsafe. 1040 /// 1041 /// The analysis collects interleave groups and records the relationships 1042 /// between the member and the group in a map. 1043 class InterleavedAccessInfo { 1044 public: 1045 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1046 DominatorTree *DT, LoopInfo *LI) 1047 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1048 RequiresScalarEpilogue(false) {} 1049 1050 ~InterleavedAccessInfo() { 1051 SmallSet<InterleaveGroup *, 4> DelSet; 1052 // Avoid releasing a pointer twice. 1053 for (auto &I : InterleaveGroupMap) 1054 DelSet.insert(I.second); 1055 for (auto *Ptr : DelSet) 1056 delete Ptr; 1057 } 1058 1059 /// \brief Analyze the interleaved accesses and collect them in interleave 1060 /// groups. Substitute symbolic strides using \p Strides. 1061 void analyzeInterleaving(const ValueToValueMap &Strides); 1062 1063 /// \brief Check if \p Instr belongs to any interleave group. 1064 bool isInterleaved(Instruction *Instr) const { 1065 return InterleaveGroupMap.count(Instr); 1066 } 1067 1068 /// \brief Return the maximum interleave factor of all interleaved groups. 1069 unsigned getMaxInterleaveFactor() const { 1070 unsigned MaxFactor = 1; 1071 for (auto &Entry : InterleaveGroupMap) 1072 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1073 return MaxFactor; 1074 } 1075 1076 /// \brief Get the interleave group that \p Instr belongs to. 1077 /// 1078 /// \returns nullptr if doesn't have such group. 1079 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1080 if (InterleaveGroupMap.count(Instr)) 1081 return InterleaveGroupMap.find(Instr)->second; 1082 return nullptr; 1083 } 1084 1085 /// \brief Returns true if an interleaved group that may access memory 1086 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1087 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1088 1089 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1090 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1091 1092 private: 1093 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1094 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1095 /// The interleaved access analysis can also add new predicates (for example 1096 /// by versioning strides of pointers). 1097 PredicatedScalarEvolution &PSE; 1098 Loop *TheLoop; 1099 DominatorTree *DT; 1100 LoopInfo *LI; 1101 const LoopAccessInfo *LAI; 1102 1103 /// True if the loop may contain non-reversed interleaved groups with 1104 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1105 /// out-of-bounds by executing at least one scalar epilogue iteration. 1106 bool RequiresScalarEpilogue; 1107 1108 /// Holds the relationships between the members and the interleave group. 1109 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1110 1111 /// Holds dependences among the memory accesses in the loop. It maps a source 1112 /// access to a set of dependent sink accesses. 1113 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1114 1115 /// \brief The descriptor for a strided memory access. 1116 struct StrideDescriptor { 1117 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1118 unsigned Align) 1119 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1120 1121 StrideDescriptor() = default; 1122 1123 // The access's stride. It is negative for a reverse access. 1124 int64_t Stride = 0; 1125 const SCEV *Scev = nullptr; // The scalar expression of this access 1126 uint64_t Size = 0; // The size of the memory object. 1127 unsigned Align = 0; // The alignment of this access. 1128 }; 1129 1130 /// \brief A type for holding instructions and their stride descriptors. 1131 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1132 1133 /// \brief Create a new interleave group with the given instruction \p Instr, 1134 /// stride \p Stride and alignment \p Align. 1135 /// 1136 /// \returns the newly created interleave group. 1137 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1138 unsigned Align) { 1139 assert(!InterleaveGroupMap.count(Instr) && 1140 "Already in an interleaved access group"); 1141 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1142 return InterleaveGroupMap[Instr]; 1143 } 1144 1145 /// \brief Release the group and remove all the relationships. 1146 void releaseGroup(InterleaveGroup *Group) { 1147 for (unsigned i = 0; i < Group->getFactor(); i++) 1148 if (Instruction *Member = Group->getMember(i)) 1149 InterleaveGroupMap.erase(Member); 1150 1151 delete Group; 1152 } 1153 1154 /// \brief Collect all the accesses with a constant stride in program order. 1155 void collectConstStrideAccesses( 1156 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1157 const ValueToValueMap &Strides); 1158 1159 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1160 static bool isStrided(int Stride) { 1161 unsigned Factor = std::abs(Stride); 1162 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1163 } 1164 1165 /// \brief Returns true if \p BB is a predicated block. 1166 bool isPredicated(BasicBlock *BB) const { 1167 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1168 } 1169 1170 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1171 bool areDependencesValid() const { 1172 return LAI && LAI->getDepChecker().getDependences(); 1173 } 1174 1175 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1176 /// necessary, when constructing interleaved groups. 1177 /// 1178 /// \p A must precede \p B in program order. We return false if reordering is 1179 /// not necessary or is prevented because \p A and \p B may be dependent. 1180 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1181 StrideEntry *B) const { 1182 1183 // Code motion for interleaved accesses can potentially hoist strided loads 1184 // and sink strided stores. The code below checks the legality of the 1185 // following two conditions: 1186 // 1187 // 1. Potentially moving a strided load (B) before any store (A) that 1188 // precedes B, or 1189 // 1190 // 2. Potentially moving a strided store (A) after any load or store (B) 1191 // that A precedes. 1192 // 1193 // It's legal to reorder A and B if we know there isn't a dependence from A 1194 // to B. Note that this determination is conservative since some 1195 // dependences could potentially be reordered safely. 1196 1197 // A is potentially the source of a dependence. 1198 auto *Src = A->first; 1199 auto SrcDes = A->second; 1200 1201 // B is potentially the sink of a dependence. 1202 auto *Sink = B->first; 1203 auto SinkDes = B->second; 1204 1205 // Code motion for interleaved accesses can't violate WAR dependences. 1206 // Thus, reordering is legal if the source isn't a write. 1207 if (!Src->mayWriteToMemory()) 1208 return true; 1209 1210 // At least one of the accesses must be strided. 1211 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1212 return true; 1213 1214 // If dependence information is not available from LoopAccessInfo, 1215 // conservatively assume the instructions can't be reordered. 1216 if (!areDependencesValid()) 1217 return false; 1218 1219 // If we know there is a dependence from source to sink, assume the 1220 // instructions can't be reordered. Otherwise, reordering is legal. 1221 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1222 } 1223 1224 /// \brief Collect the dependences from LoopAccessInfo. 1225 /// 1226 /// We process the dependences once during the interleaved access analysis to 1227 /// enable constant-time dependence queries. 1228 void collectDependences() { 1229 if (!areDependencesValid()) 1230 return; 1231 auto *Deps = LAI->getDepChecker().getDependences(); 1232 for (auto Dep : *Deps) 1233 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1234 } 1235 }; 1236 1237 /// Utility class for getting and setting loop vectorizer hints in the form 1238 /// of loop metadata. 1239 /// This class keeps a number of loop annotations locally (as member variables) 1240 /// and can, upon request, write them back as metadata on the loop. It will 1241 /// initially scan the loop for existing metadata, and will update the local 1242 /// values based on information in the loop. 1243 /// We cannot write all values to metadata, as the mere presence of some info, 1244 /// for example 'force', means a decision has been made. So, we need to be 1245 /// careful NOT to add them if the user hasn't specifically asked so. 1246 class LoopVectorizeHints { 1247 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1248 1249 /// Hint - associates name and validation with the hint value. 1250 struct Hint { 1251 const char *Name; 1252 unsigned Value; // This may have to change for non-numeric values. 1253 HintKind Kind; 1254 1255 Hint(const char *Name, unsigned Value, HintKind Kind) 1256 : Name(Name), Value(Value), Kind(Kind) {} 1257 1258 bool validate(unsigned Val) { 1259 switch (Kind) { 1260 case HK_WIDTH: 1261 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1262 case HK_UNROLL: 1263 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1264 case HK_FORCE: 1265 return (Val <= 1); 1266 } 1267 return false; 1268 } 1269 }; 1270 1271 /// Vectorization width. 1272 Hint Width; 1273 /// Vectorization interleave factor. 1274 Hint Interleave; 1275 /// Vectorization forced 1276 Hint Force; 1277 1278 /// Return the loop metadata prefix. 1279 static StringRef Prefix() { return "llvm.loop."; } 1280 1281 /// True if there is any unsafe math in the loop. 1282 bool PotentiallyUnsafe; 1283 1284 public: 1285 enum ForceKind { 1286 FK_Undefined = -1, ///< Not selected. 1287 FK_Disabled = 0, ///< Forcing disabled. 1288 FK_Enabled = 1, ///< Forcing enabled. 1289 }; 1290 1291 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1292 OptimizationRemarkEmitter &ORE) 1293 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1294 HK_WIDTH), 1295 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1296 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1297 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1298 // Populate values with existing loop metadata. 1299 getHintsFromMetadata(); 1300 1301 // force-vector-interleave overrides DisableInterleaving. 1302 if (VectorizerParams::isInterleaveForced()) 1303 Interleave.Value = VectorizerParams::VectorizationInterleave; 1304 1305 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1306 << "LV: Interleaving disabled by the pass manager\n"); 1307 } 1308 1309 /// Mark the loop L as already vectorized by setting the width to 1. 1310 void setAlreadyVectorized() { 1311 Width.Value = Interleave.Value = 1; 1312 Hint Hints[] = {Width, Interleave}; 1313 writeHintsToMetadata(Hints); 1314 } 1315 1316 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1317 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1318 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1319 emitRemarkWithHints(); 1320 return false; 1321 } 1322 1323 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1324 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1325 emitRemarkWithHints(); 1326 return false; 1327 } 1328 1329 if (getWidth() == 1 && getInterleave() == 1) { 1330 // FIXME: Add a separate metadata to indicate when the loop has already 1331 // been vectorized instead of setting width and count to 1. 1332 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1333 // FIXME: Add interleave.disable metadata. This will allow 1334 // vectorize.disable to be used without disabling the pass and errors 1335 // to differentiate between disabled vectorization and a width of 1. 1336 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1337 "AllDisabled", L->getStartLoc(), 1338 L->getHeader()) 1339 << "loop not vectorized: vectorization and interleaving are " 1340 "explicitly disabled, or vectorize width and interleave " 1341 "count are both set to 1"); 1342 return false; 1343 } 1344 1345 return true; 1346 } 1347 1348 /// Dumps all the hint information. 1349 void emitRemarkWithHints() const { 1350 using namespace ore; 1351 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1352 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1353 TheLoop->getStartLoc(), 1354 TheLoop->getHeader()) 1355 << "loop not vectorized: vectorization is explicitly disabled"); 1356 else { 1357 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1358 TheLoop->getStartLoc(), TheLoop->getHeader()); 1359 R << "loop not vectorized"; 1360 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1361 R << " (Force=" << NV("Force", true); 1362 if (Width.Value != 0) 1363 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1364 if (Interleave.Value != 0) 1365 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1366 R << ")"; 1367 } 1368 ORE.emit(R); 1369 } 1370 } 1371 1372 unsigned getWidth() const { return Width.Value; } 1373 unsigned getInterleave() const { return Interleave.Value; } 1374 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1375 1376 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1377 /// pass name to force the frontend to print the diagnostic. 1378 const char *vectorizeAnalysisPassName() const { 1379 if (getWidth() == 1) 1380 return LV_NAME; 1381 if (getForce() == LoopVectorizeHints::FK_Disabled) 1382 return LV_NAME; 1383 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1384 return LV_NAME; 1385 return OptimizationRemarkAnalysis::AlwaysPrint; 1386 } 1387 1388 bool allowReordering() const { 1389 // When enabling loop hints are provided we allow the vectorizer to change 1390 // the order of operations that is given by the scalar loop. This is not 1391 // enabled by default because can be unsafe or inefficient. For example, 1392 // reordering floating-point operations will change the way round-off 1393 // error accumulates in the loop. 1394 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1395 } 1396 1397 bool isPotentiallyUnsafe() const { 1398 // Avoid FP vectorization if the target is unsure about proper support. 1399 // This may be related to the SIMD unit in the target not handling 1400 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1401 // Otherwise, a sequence of vectorized loops, even without reduction, 1402 // could lead to different end results on the destination vectors. 1403 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1404 } 1405 1406 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1407 1408 private: 1409 /// Find hints specified in the loop metadata and update local values. 1410 void getHintsFromMetadata() { 1411 MDNode *LoopID = TheLoop->getLoopID(); 1412 if (!LoopID) 1413 return; 1414 1415 // First operand should refer to the loop id itself. 1416 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1417 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1418 1419 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1420 const MDString *S = nullptr; 1421 SmallVector<Metadata *, 4> Args; 1422 1423 // The expected hint is either a MDString or a MDNode with the first 1424 // operand a MDString. 1425 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1426 if (!MD || MD->getNumOperands() == 0) 1427 continue; 1428 S = dyn_cast<MDString>(MD->getOperand(0)); 1429 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1430 Args.push_back(MD->getOperand(i)); 1431 } else { 1432 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1433 assert(Args.size() == 0 && "too many arguments for MDString"); 1434 } 1435 1436 if (!S) 1437 continue; 1438 1439 // Check if the hint starts with the loop metadata prefix. 1440 StringRef Name = S->getString(); 1441 if (Args.size() == 1) 1442 setHint(Name, Args[0]); 1443 } 1444 } 1445 1446 /// Checks string hint with one operand and set value if valid. 1447 void setHint(StringRef Name, Metadata *Arg) { 1448 if (!Name.startswith(Prefix())) 1449 return; 1450 Name = Name.substr(Prefix().size(), StringRef::npos); 1451 1452 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1453 if (!C) 1454 return; 1455 unsigned Val = C->getZExtValue(); 1456 1457 Hint *Hints[] = {&Width, &Interleave, &Force}; 1458 for (auto H : Hints) { 1459 if (Name == H->Name) { 1460 if (H->validate(Val)) 1461 H->Value = Val; 1462 else 1463 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1464 break; 1465 } 1466 } 1467 } 1468 1469 /// Create a new hint from name / value pair. 1470 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1471 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1472 Metadata *MDs[] = {MDString::get(Context, Name), 1473 ConstantAsMetadata::get( 1474 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1475 return MDNode::get(Context, MDs); 1476 } 1477 1478 /// Matches metadata with hint name. 1479 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1480 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1481 if (!Name) 1482 return false; 1483 1484 for (auto H : HintTypes) 1485 if (Name->getString().endswith(H.Name)) 1486 return true; 1487 return false; 1488 } 1489 1490 /// Sets current hints into loop metadata, keeping other values intact. 1491 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1492 if (HintTypes.size() == 0) 1493 return; 1494 1495 // Reserve the first element to LoopID (see below). 1496 SmallVector<Metadata *, 4> MDs(1); 1497 // If the loop already has metadata, then ignore the existing operands. 1498 MDNode *LoopID = TheLoop->getLoopID(); 1499 if (LoopID) { 1500 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1501 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1502 // If node in update list, ignore old value. 1503 if (!matchesHintMetadataName(Node, HintTypes)) 1504 MDs.push_back(Node); 1505 } 1506 } 1507 1508 // Now, add the missing hints. 1509 for (auto H : HintTypes) 1510 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1511 1512 // Replace current metadata node with new one. 1513 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1514 MDNode *NewLoopID = MDNode::get(Context, MDs); 1515 // Set operand 0 to refer to the loop id itself. 1516 NewLoopID->replaceOperandWith(0, NewLoopID); 1517 1518 TheLoop->setLoopID(NewLoopID); 1519 } 1520 1521 /// The loop these hints belong to. 1522 const Loop *TheLoop; 1523 1524 /// Interface to emit optimization remarks. 1525 OptimizationRemarkEmitter &ORE; 1526 }; 1527 1528 static void emitMissedWarning(Function *F, Loop *L, 1529 const LoopVectorizeHints &LH, 1530 OptimizationRemarkEmitter *ORE) { 1531 LH.emitRemarkWithHints(); 1532 1533 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1534 if (LH.getWidth() != 1) 1535 ORE->emit(DiagnosticInfoOptimizationFailure( 1536 DEBUG_TYPE, "FailedRequestedVectorization", 1537 L->getStartLoc(), L->getHeader()) 1538 << "loop not vectorized: " 1539 << "failed explicitly specified loop vectorization"); 1540 else if (LH.getInterleave() != 1) 1541 ORE->emit(DiagnosticInfoOptimizationFailure( 1542 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1543 L->getHeader()) 1544 << "loop not interleaved: " 1545 << "failed explicitly specified loop interleaving"); 1546 } 1547 } 1548 1549 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1550 /// to what vectorization factor. 1551 /// This class does not look at the profitability of vectorization, only the 1552 /// legality. This class has two main kinds of checks: 1553 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1554 /// will change the order of memory accesses in a way that will change the 1555 /// correctness of the program. 1556 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1557 /// checks for a number of different conditions, such as the availability of a 1558 /// single induction variable, that all types are supported and vectorize-able, 1559 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1560 /// This class is also used by InnerLoopVectorizer for identifying 1561 /// induction variable and the different reduction variables. 1562 class LoopVectorizationLegality { 1563 public: 1564 LoopVectorizationLegality( 1565 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1566 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1567 const TargetTransformInfo *TTI, 1568 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1569 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1570 LoopVectorizeHints *H) 1571 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1572 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1573 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1574 Requirements(R), Hints(H) {} 1575 1576 /// ReductionList contains the reduction descriptors for all 1577 /// of the reductions that were found in the loop. 1578 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1579 1580 /// InductionList saves induction variables and maps them to the 1581 /// induction descriptor. 1582 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1583 1584 /// RecurrenceSet contains the phi nodes that are recurrences other than 1585 /// inductions and reductions. 1586 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1587 1588 /// Returns true if it is legal to vectorize this loop. 1589 /// This does not mean that it is profitable to vectorize this 1590 /// loop, only that it is legal to do so. 1591 bool canVectorize(); 1592 1593 /// Returns the primary induction variable. 1594 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1595 1596 /// Returns the reduction variables found in the loop. 1597 ReductionList *getReductionVars() { return &Reductions; } 1598 1599 /// Returns the induction variables found in the loop. 1600 InductionList *getInductionVars() { return &Inductions; } 1601 1602 /// Return the first-order recurrences found in the loop. 1603 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1604 1605 /// Return the set of instructions to sink to handle first-order recurrences. 1606 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1607 1608 /// Returns the widest induction type. 1609 Type *getWidestInductionType() { return WidestIndTy; } 1610 1611 /// Returns True if V is an induction variable in this loop. 1612 bool isInductionVariable(const Value *V); 1613 1614 /// Returns True if PN is a reduction variable in this loop. 1615 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1616 1617 /// Returns True if Phi is a first-order recurrence in this loop. 1618 bool isFirstOrderRecurrence(const PHINode *Phi); 1619 1620 /// Return true if the block BB needs to be predicated in order for the loop 1621 /// to be vectorized. 1622 bool blockNeedsPredication(BasicBlock *BB); 1623 1624 /// Check if this pointer is consecutive when vectorizing. This happens 1625 /// when the last index of the GEP is the induction variable, or that the 1626 /// pointer itself is an induction variable. 1627 /// This check allows us to vectorize A[idx] into a wide load/store. 1628 /// Returns: 1629 /// 0 - Stride is unknown or non-consecutive. 1630 /// 1 - Address is consecutive. 1631 /// -1 - Address is consecutive, and decreasing. 1632 int isConsecutivePtr(Value *Ptr); 1633 1634 /// Returns true if the value V is uniform within the loop. 1635 bool isUniform(Value *V); 1636 1637 /// Returns the information that we collected about runtime memory check. 1638 const RuntimePointerChecking *getRuntimePointerChecking() const { 1639 return LAI->getRuntimePointerChecking(); 1640 } 1641 1642 const LoopAccessInfo *getLAI() const { return LAI; } 1643 1644 /// \brief Check if \p Instr belongs to any interleaved access group. 1645 bool isAccessInterleaved(Instruction *Instr) { 1646 return InterleaveInfo.isInterleaved(Instr); 1647 } 1648 1649 /// \brief Return the maximum interleave factor of all interleaved groups. 1650 unsigned getMaxInterleaveFactor() const { 1651 return InterleaveInfo.getMaxInterleaveFactor(); 1652 } 1653 1654 /// \brief Get the interleaved access group that \p Instr belongs to. 1655 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1656 return InterleaveInfo.getInterleaveGroup(Instr); 1657 } 1658 1659 /// \brief Returns true if an interleaved group requires a scalar iteration 1660 /// to handle accesses with gaps. 1661 bool requiresScalarEpilogue() const { 1662 return InterleaveInfo.requiresScalarEpilogue(); 1663 } 1664 1665 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1666 1667 bool hasStride(Value *V) { return LAI->hasStride(V); } 1668 1669 /// Returns true if the target machine supports masked store operation 1670 /// for the given \p DataType and kind of access to \p Ptr. 1671 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1672 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1673 } 1674 /// Returns true if the target machine supports masked load operation 1675 /// for the given \p DataType and kind of access to \p Ptr. 1676 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1677 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1678 } 1679 /// Returns true if the target machine supports masked scatter operation 1680 /// for the given \p DataType. 1681 bool isLegalMaskedScatter(Type *DataType) { 1682 return TTI->isLegalMaskedScatter(DataType); 1683 } 1684 /// Returns true if the target machine supports masked gather operation 1685 /// for the given \p DataType. 1686 bool isLegalMaskedGather(Type *DataType) { 1687 return TTI->isLegalMaskedGather(DataType); 1688 } 1689 /// Returns true if the target machine can represent \p V as a masked gather 1690 /// or scatter operation. 1691 bool isLegalGatherOrScatter(Value *V) { 1692 auto *LI = dyn_cast<LoadInst>(V); 1693 auto *SI = dyn_cast<StoreInst>(V); 1694 if (!LI && !SI) 1695 return false; 1696 auto *Ptr = getPointerOperand(V); 1697 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1698 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1699 } 1700 1701 /// Returns true if vector representation of the instruction \p I 1702 /// requires mask. 1703 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1704 unsigned getNumStores() const { return LAI->getNumStores(); } 1705 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1706 unsigned getNumPredStores() const { return NumPredStores; } 1707 1708 /// Returns true if \p I is an instruction that will be scalarized with 1709 /// predication. Such instructions include conditional stores and 1710 /// instructions that may divide by zero. 1711 bool isScalarWithPredication(Instruction *I); 1712 1713 /// Returns true if \p I is a memory instruction with consecutive memory 1714 /// access that can be widened. 1715 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1716 1717 // Returns true if the NoNaN attribute is set on the function. 1718 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1719 1720 private: 1721 /// Check if a single basic block loop is vectorizable. 1722 /// At this point we know that this is a loop with a constant trip count 1723 /// and we only need to check individual instructions. 1724 bool canVectorizeInstrs(); 1725 1726 /// When we vectorize loops we may change the order in which 1727 /// we read and write from memory. This method checks if it is 1728 /// legal to vectorize the code, considering only memory constrains. 1729 /// Returns true if the loop is vectorizable 1730 bool canVectorizeMemory(); 1731 1732 /// Return true if we can vectorize this loop using the IF-conversion 1733 /// transformation. 1734 bool canVectorizeWithIfConvert(); 1735 1736 /// Return true if all of the instructions in the block can be speculatively 1737 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1738 /// and we know that we can read from them without segfault. 1739 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1740 1741 /// Updates the vectorization state by adding \p Phi to the inductions list. 1742 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1743 /// better choice for the main induction than the existing one. 1744 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1745 SmallPtrSetImpl<Value *> &AllowedExit); 1746 1747 /// Create an analysis remark that explains why vectorization failed 1748 /// 1749 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1750 /// an instruction that prevents vectorization. Otherwise the loop is used 1751 /// for the location of the remark. \return the remark object that can be 1752 /// streamed to. 1753 OptimizationRemarkAnalysis 1754 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1755 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1756 RemarkName, TheLoop, I); 1757 } 1758 1759 /// \brief If an access has a symbolic strides, this maps the pointer value to 1760 /// the stride symbol. 1761 const ValueToValueMap *getSymbolicStrides() { 1762 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1763 // it's collected. This happens from canVectorizeWithIfConvert, when the 1764 // pointer is checked to reference consecutive elements suitable for a 1765 // masked access. 1766 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1767 } 1768 1769 unsigned NumPredStores; 1770 1771 /// The loop that we evaluate. 1772 Loop *TheLoop; 1773 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1774 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1775 /// of existing SCEV assumptions. The analysis will also add a minimal set 1776 /// of new predicates if this is required to enable vectorization and 1777 /// unrolling. 1778 PredicatedScalarEvolution &PSE; 1779 /// Target Library Info. 1780 TargetLibraryInfo *TLI; 1781 /// Target Transform Info 1782 const TargetTransformInfo *TTI; 1783 /// Dominator Tree. 1784 DominatorTree *DT; 1785 // LoopAccess analysis. 1786 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1787 // And the loop-accesses info corresponding to this loop. This pointer is 1788 // null until canVectorizeMemory sets it up. 1789 const LoopAccessInfo *LAI; 1790 /// Interface to emit optimization remarks. 1791 OptimizationRemarkEmitter *ORE; 1792 1793 /// The interleave access information contains groups of interleaved accesses 1794 /// with the same stride and close to each other. 1795 InterleavedAccessInfo InterleaveInfo; 1796 1797 // --- vectorization state --- // 1798 1799 /// Holds the primary induction variable. This is the counter of the 1800 /// loop. 1801 PHINode *PrimaryInduction; 1802 /// Holds the reduction variables. 1803 ReductionList Reductions; 1804 /// Holds all of the induction variables that we found in the loop. 1805 /// Notice that inductions don't need to start at zero and that induction 1806 /// variables can be pointers. 1807 InductionList Inductions; 1808 /// Holds the phi nodes that are first-order recurrences. 1809 RecurrenceSet FirstOrderRecurrences; 1810 /// Holds instructions that need to sink past other instructions to handle 1811 /// first-order recurrences. 1812 DenseMap<Instruction *, Instruction *> SinkAfter; 1813 /// Holds the widest induction type encountered. 1814 Type *WidestIndTy; 1815 1816 /// Allowed outside users. This holds the induction and reduction 1817 /// vars which can be accessed from outside the loop. 1818 SmallPtrSet<Value *, 4> AllowedExit; 1819 1820 /// Can we assume the absence of NaNs. 1821 bool HasFunNoNaNAttr; 1822 1823 /// Vectorization requirements that will go through late-evaluation. 1824 LoopVectorizationRequirements *Requirements; 1825 1826 /// Used to emit an analysis of any legality issues. 1827 LoopVectorizeHints *Hints; 1828 1829 /// While vectorizing these instructions we have to generate a 1830 /// call to the appropriate masked intrinsic 1831 SmallPtrSet<const Instruction *, 8> MaskedOp; 1832 }; 1833 1834 /// LoopVectorizationCostModel - estimates the expected speedups due to 1835 /// vectorization. 1836 /// In many cases vectorization is not profitable. This can happen because of 1837 /// a number of reasons. In this class we mainly attempt to predict the 1838 /// expected speedup/slowdowns due to the supported instruction set. We use the 1839 /// TargetTransformInfo to query the different backends for the cost of 1840 /// different operations. 1841 class LoopVectorizationCostModel { 1842 public: 1843 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1844 LoopInfo *LI, LoopVectorizationLegality *Legal, 1845 const TargetTransformInfo &TTI, 1846 const TargetLibraryInfo *TLI, DemandedBits *DB, 1847 AssumptionCache *AC, 1848 OptimizationRemarkEmitter *ORE, const Function *F, 1849 const LoopVectorizeHints *Hints) 1850 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1851 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1852 1853 /// \return An upper bound for the vectorization factor, or None if 1854 /// vectorization should be avoided up front. 1855 Optional<unsigned> computeMaxVF(bool OptForSize); 1856 1857 /// Information about vectorization costs 1858 struct VectorizationFactor { 1859 unsigned Width; // Vector width with best cost 1860 unsigned Cost; // Cost of the loop with that width 1861 }; 1862 /// \return The most profitable vectorization factor and the cost of that VF. 1863 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1864 /// then this vectorization factor will be selected if vectorization is 1865 /// possible. 1866 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1867 1868 /// Setup cost-based decisions for user vectorization factor. 1869 void selectUserVectorizationFactor(unsigned UserVF) { 1870 collectUniformsAndScalars(UserVF); 1871 collectInstsToScalarize(UserVF); 1872 } 1873 1874 /// \return The size (in bits) of the smallest and widest types in the code 1875 /// that needs to be vectorized. We ignore values that remain scalar such as 1876 /// 64 bit loop indices. 1877 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1878 1879 /// \return The desired interleave count. 1880 /// If interleave count has been specified by metadata it will be returned. 1881 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1882 /// are the selected vectorization factor and the cost of the selected VF. 1883 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1884 unsigned LoopCost); 1885 1886 /// Memory access instruction may be vectorized in more than one way. 1887 /// Form of instruction after vectorization depends on cost. 1888 /// This function takes cost-based decisions for Load/Store instructions 1889 /// and collects them in a map. This decisions map is used for building 1890 /// the lists of loop-uniform and loop-scalar instructions. 1891 /// The calculated cost is saved with widening decision in order to 1892 /// avoid redundant calculations. 1893 void setCostBasedWideningDecision(unsigned VF); 1894 1895 /// \brief A struct that represents some properties of the register usage 1896 /// of a loop. 1897 struct RegisterUsage { 1898 /// Holds the number of loop invariant values that are used in the loop. 1899 unsigned LoopInvariantRegs; 1900 /// Holds the maximum number of concurrent live intervals in the loop. 1901 unsigned MaxLocalUsers; 1902 /// Holds the number of instructions in the loop. 1903 unsigned NumInstructions; 1904 }; 1905 1906 /// \return Returns information about the register usages of the loop for the 1907 /// given vectorization factors. 1908 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1909 1910 /// Collect values we want to ignore in the cost model. 1911 void collectValuesToIgnore(); 1912 1913 /// \returns The smallest bitwidth each instruction can be represented with. 1914 /// The vector equivalents of these instructions should be truncated to this 1915 /// type. 1916 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1917 return MinBWs; 1918 } 1919 1920 /// \returns True if it is more profitable to scalarize instruction \p I for 1921 /// vectorization factor \p VF. 1922 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1923 auto Scalars = InstsToScalarize.find(VF); 1924 assert(Scalars != InstsToScalarize.end() && 1925 "VF not yet analyzed for scalarization profitability"); 1926 return Scalars->second.count(I); 1927 } 1928 1929 /// Returns true if \p I is known to be uniform after vectorization. 1930 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1931 if (VF == 1) 1932 return true; 1933 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1934 auto UniformsPerVF = Uniforms.find(VF); 1935 return UniformsPerVF->second.count(I); 1936 } 1937 1938 /// Returns true if \p I is known to be scalar after vectorization. 1939 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1940 if (VF == 1) 1941 return true; 1942 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1943 auto ScalarsPerVF = Scalars.find(VF); 1944 return ScalarsPerVF->second.count(I); 1945 } 1946 1947 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1948 /// for vectorization factor \p VF. 1949 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1950 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1951 !isScalarAfterVectorization(I, VF); 1952 } 1953 1954 /// Decision that was taken during cost calculation for memory instruction. 1955 enum InstWidening { 1956 CM_Unknown, 1957 CM_Widen, 1958 CM_Interleave, 1959 CM_GatherScatter, 1960 CM_Scalarize 1961 }; 1962 1963 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1964 /// instruction \p I and vector width \p VF. 1965 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1966 unsigned Cost) { 1967 assert(VF >= 2 && "Expected VF >=2"); 1968 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1969 } 1970 1971 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1972 /// interleaving group \p Grp and vector width \p VF. 1973 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1974 InstWidening W, unsigned Cost) { 1975 assert(VF >= 2 && "Expected VF >=2"); 1976 /// Broadcast this decicion to all instructions inside the group. 1977 /// But the cost will be assigned to one instruction only. 1978 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1979 if (auto *I = Grp->getMember(i)) { 1980 if (Grp->getInsertPos() == I) 1981 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1982 else 1983 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1984 } 1985 } 1986 } 1987 1988 /// Return the cost model decision for the given instruction \p I and vector 1989 /// width \p VF. Return CM_Unknown if this instruction did not pass 1990 /// through the cost modeling. 1991 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1992 assert(VF >= 2 && "Expected VF >=2"); 1993 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1994 auto Itr = WideningDecisions.find(InstOnVF); 1995 if (Itr == WideningDecisions.end()) 1996 return CM_Unknown; 1997 return Itr->second.first; 1998 } 1999 2000 /// Return the vectorization cost for the given instruction \p I and vector 2001 /// width \p VF. 2002 unsigned getWideningCost(Instruction *I, unsigned VF) { 2003 assert(VF >= 2 && "Expected VF >=2"); 2004 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2005 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2006 return WideningDecisions[InstOnVF].second; 2007 } 2008 2009 /// Return True if instruction \p I is an optimizable truncate whose operand 2010 /// is an induction variable. Such a truncate will be removed by adding a new 2011 /// induction variable with the destination type. 2012 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2013 2014 // If the instruction is not a truncate, return false. 2015 auto *Trunc = dyn_cast<TruncInst>(I); 2016 if (!Trunc) 2017 return false; 2018 2019 // Get the source and destination types of the truncate. 2020 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2021 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2022 2023 // If the truncate is free for the given types, return false. Replacing a 2024 // free truncate with an induction variable would add an induction variable 2025 // update instruction to each iteration of the loop. We exclude from this 2026 // check the primary induction variable since it will need an update 2027 // instruction regardless. 2028 Value *Op = Trunc->getOperand(0); 2029 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2030 return false; 2031 2032 // If the truncated value is not an induction variable, return false. 2033 return Legal->isInductionVariable(Op); 2034 } 2035 2036 private: 2037 /// \return An upper bound for the vectorization factor, larger than zero. 2038 /// One is returned if vectorization should best be avoided due to cost. 2039 unsigned computeFeasibleMaxVF(bool OptForSize); 2040 2041 /// The vectorization cost is a combination of the cost itself and a boolean 2042 /// indicating whether any of the contributing operations will actually 2043 /// operate on 2044 /// vector values after type legalization in the backend. If this latter value 2045 /// is 2046 /// false, then all operations will be scalarized (i.e. no vectorization has 2047 /// actually taken place). 2048 typedef std::pair<unsigned, bool> VectorizationCostTy; 2049 2050 /// Returns the expected execution cost. The unit of the cost does 2051 /// not matter because we use the 'cost' units to compare different 2052 /// vector widths. The cost that is returned is *not* normalized by 2053 /// the factor width. 2054 VectorizationCostTy expectedCost(unsigned VF); 2055 2056 /// Returns the execution time cost of an instruction for a given vector 2057 /// width. Vector width of one means scalar. 2058 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2059 2060 /// The cost-computation logic from getInstructionCost which provides 2061 /// the vector type as an output parameter. 2062 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2063 2064 /// Calculate vectorization cost of memory instruction \p I. 2065 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2066 2067 /// The cost computation for scalarized memory instruction. 2068 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2069 2070 /// The cost computation for interleaving group of memory instructions. 2071 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2072 2073 /// The cost computation for Gather/Scatter instruction. 2074 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2075 2076 /// The cost computation for widening instruction \p I with consecutive 2077 /// memory access. 2078 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2079 2080 /// The cost calculation for Load instruction \p I with uniform pointer - 2081 /// scalar load + broadcast. 2082 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2083 2084 /// Returns whether the instruction is a load or store and will be a emitted 2085 /// as a vector operation. 2086 bool isConsecutiveLoadOrStore(Instruction *I); 2087 2088 /// Create an analysis remark that explains why vectorization failed 2089 /// 2090 /// \p RemarkName is the identifier for the remark. \return the remark object 2091 /// that can be streamed to. 2092 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2093 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2094 RemarkName, TheLoop); 2095 } 2096 2097 /// Map of scalar integer values to the smallest bitwidth they can be legally 2098 /// represented as. The vector equivalents of these values should be truncated 2099 /// to this type. 2100 MapVector<Instruction *, uint64_t> MinBWs; 2101 2102 /// A type representing the costs for instructions if they were to be 2103 /// scalarized rather than vectorized. The entries are Instruction-Cost 2104 /// pairs. 2105 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2106 2107 /// A set containing all BasicBlocks that are known to present after 2108 /// vectorization as a predicated block. 2109 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2110 2111 /// A map holding scalar costs for different vectorization factors. The 2112 /// presence of a cost for an instruction in the mapping indicates that the 2113 /// instruction will be scalarized when vectorizing with the associated 2114 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2115 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2116 2117 /// Holds the instructions known to be uniform after vectorization. 2118 /// The data is collected per VF. 2119 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2120 2121 /// Holds the instructions known to be scalar after vectorization. 2122 /// The data is collected per VF. 2123 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2124 2125 /// Holds the instructions (address computations) that are forced to be 2126 /// scalarized. 2127 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2128 2129 /// Returns the expected difference in cost from scalarizing the expression 2130 /// feeding a predicated instruction \p PredInst. The instructions to 2131 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2132 /// non-negative return value implies the expression will be scalarized. 2133 /// Currently, only single-use chains are considered for scalarization. 2134 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2135 unsigned VF); 2136 2137 /// Collects the instructions to scalarize for each predicated instruction in 2138 /// the loop. 2139 void collectInstsToScalarize(unsigned VF); 2140 2141 /// Collect the instructions that are uniform after vectorization. An 2142 /// instruction is uniform if we represent it with a single scalar value in 2143 /// the vectorized loop corresponding to each vector iteration. Examples of 2144 /// uniform instructions include pointer operands of consecutive or 2145 /// interleaved memory accesses. Note that although uniformity implies an 2146 /// instruction will be scalar, the reverse is not true. In general, a 2147 /// scalarized instruction will be represented by VF scalar values in the 2148 /// vectorized loop, each corresponding to an iteration of the original 2149 /// scalar loop. 2150 void collectLoopUniforms(unsigned VF); 2151 2152 /// Collect the instructions that are scalar after vectorization. An 2153 /// instruction is scalar if it is known to be uniform or will be scalarized 2154 /// during vectorization. Non-uniform scalarized instructions will be 2155 /// represented by VF values in the vectorized loop, each corresponding to an 2156 /// iteration of the original scalar loop. 2157 void collectLoopScalars(unsigned VF); 2158 2159 /// Collect Uniform and Scalar values for the given \p VF. 2160 /// The sets depend on CM decision for Load/Store instructions 2161 /// that may be vectorized as interleave, gather-scatter or scalarized. 2162 void collectUniformsAndScalars(unsigned VF) { 2163 // Do the analysis once. 2164 if (VF == 1 || Uniforms.count(VF)) 2165 return; 2166 setCostBasedWideningDecision(VF); 2167 collectLoopUniforms(VF); 2168 collectLoopScalars(VF); 2169 } 2170 2171 /// Keeps cost model vectorization decision and cost for instructions. 2172 /// Right now it is used for memory instructions only. 2173 typedef DenseMap<std::pair<Instruction *, unsigned>, 2174 std::pair<InstWidening, unsigned>> 2175 DecisionList; 2176 2177 DecisionList WideningDecisions; 2178 2179 public: 2180 /// The loop that we evaluate. 2181 Loop *TheLoop; 2182 /// Predicated scalar evolution analysis. 2183 PredicatedScalarEvolution &PSE; 2184 /// Loop Info analysis. 2185 LoopInfo *LI; 2186 /// Vectorization legality. 2187 LoopVectorizationLegality *Legal; 2188 /// Vector target information. 2189 const TargetTransformInfo &TTI; 2190 /// Target Library Info. 2191 const TargetLibraryInfo *TLI; 2192 /// Demanded bits analysis. 2193 DemandedBits *DB; 2194 /// Assumption cache. 2195 AssumptionCache *AC; 2196 /// Interface to emit optimization remarks. 2197 OptimizationRemarkEmitter *ORE; 2198 2199 const Function *TheFunction; 2200 /// Loop Vectorize Hint. 2201 const LoopVectorizeHints *Hints; 2202 /// Values to ignore in the cost model. 2203 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2204 /// Values to ignore in the cost model when VF > 1. 2205 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2206 }; 2207 2208 /// LoopVectorizationPlanner - drives the vectorization process after having 2209 /// passed Legality checks. 2210 class LoopVectorizationPlanner { 2211 public: 2212 LoopVectorizationPlanner(Loop *OrigLoop, LoopInfo *LI, 2213 LoopVectorizationLegality *Legal, 2214 LoopVectorizationCostModel &CM) 2215 : OrigLoop(OrigLoop), LI(LI), Legal(Legal), CM(CM) {} 2216 2217 ~LoopVectorizationPlanner() {} 2218 2219 /// Plan how to best vectorize, return the best VF and its cost. 2220 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2221 unsigned UserVF); 2222 2223 /// Generate the IR code for the vectorized loop. 2224 void executePlan(InnerLoopVectorizer &ILV); 2225 2226 protected: 2227 /// Collect the instructions from the original loop that would be trivially 2228 /// dead in the vectorized loop if generated. 2229 void collectTriviallyDeadInstructions( 2230 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2231 2232 private: 2233 /// The loop that we evaluate. 2234 Loop *OrigLoop; 2235 2236 /// Loop Info analysis. 2237 LoopInfo *LI; 2238 2239 /// The legality analysis. 2240 LoopVectorizationLegality *Legal; 2241 2242 /// The profitablity analysis. 2243 LoopVectorizationCostModel &CM; 2244 }; 2245 2246 /// \brief This holds vectorization requirements that must be verified late in 2247 /// the process. The requirements are set by legalize and costmodel. Once 2248 /// vectorization has been determined to be possible and profitable the 2249 /// requirements can be verified by looking for metadata or compiler options. 2250 /// For example, some loops require FP commutativity which is only allowed if 2251 /// vectorization is explicitly specified or if the fast-math compiler option 2252 /// has been provided. 2253 /// Late evaluation of these requirements allows helpful diagnostics to be 2254 /// composed that tells the user what need to be done to vectorize the loop. For 2255 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2256 /// evaluation should be used only when diagnostics can generated that can be 2257 /// followed by a non-expert user. 2258 class LoopVectorizationRequirements { 2259 public: 2260 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2261 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2262 2263 void addUnsafeAlgebraInst(Instruction *I) { 2264 // First unsafe algebra instruction. 2265 if (!UnsafeAlgebraInst) 2266 UnsafeAlgebraInst = I; 2267 } 2268 2269 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2270 2271 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2272 const char *PassName = Hints.vectorizeAnalysisPassName(); 2273 bool Failed = false; 2274 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2275 ORE.emit( 2276 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2277 UnsafeAlgebraInst->getDebugLoc(), 2278 UnsafeAlgebraInst->getParent()) 2279 << "loop not vectorized: cannot prove it is safe to reorder " 2280 "floating-point operations"); 2281 Failed = true; 2282 } 2283 2284 // Test if runtime memcheck thresholds are exceeded. 2285 bool PragmaThresholdReached = 2286 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2287 bool ThresholdReached = 2288 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2289 if ((ThresholdReached && !Hints.allowReordering()) || 2290 PragmaThresholdReached) { 2291 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2292 L->getStartLoc(), 2293 L->getHeader()) 2294 << "loop not vectorized: cannot prove it is safe to reorder " 2295 "memory operations"); 2296 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2297 Failed = true; 2298 } 2299 2300 return Failed; 2301 } 2302 2303 private: 2304 unsigned NumRuntimePointerChecks; 2305 Instruction *UnsafeAlgebraInst; 2306 2307 /// Interface to emit optimization remarks. 2308 OptimizationRemarkEmitter &ORE; 2309 }; 2310 2311 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2312 if (L.empty()) { 2313 if (!hasCyclesInLoopBody(L)) 2314 V.push_back(&L); 2315 return; 2316 } 2317 for (Loop *InnerL : L) 2318 addAcyclicInnerLoop(*InnerL, V); 2319 } 2320 2321 /// The LoopVectorize Pass. 2322 struct LoopVectorize : public FunctionPass { 2323 /// Pass identification, replacement for typeid 2324 static char ID; 2325 2326 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2327 : FunctionPass(ID) { 2328 Impl.DisableUnrolling = NoUnrolling; 2329 Impl.AlwaysVectorize = AlwaysVectorize; 2330 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2331 } 2332 2333 LoopVectorizePass Impl; 2334 2335 bool runOnFunction(Function &F) override { 2336 if (skipFunction(F)) 2337 return false; 2338 2339 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2340 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2341 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2342 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2343 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2344 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2345 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2346 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2347 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2348 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2349 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2350 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2351 2352 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2353 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2354 2355 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2356 GetLAA, *ORE); 2357 } 2358 2359 void getAnalysisUsage(AnalysisUsage &AU) const override { 2360 AU.addRequired<AssumptionCacheTracker>(); 2361 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2362 AU.addRequired<DominatorTreeWrapperPass>(); 2363 AU.addRequired<LoopInfoWrapperPass>(); 2364 AU.addRequired<ScalarEvolutionWrapperPass>(); 2365 AU.addRequired<TargetTransformInfoWrapperPass>(); 2366 AU.addRequired<AAResultsWrapperPass>(); 2367 AU.addRequired<LoopAccessLegacyAnalysis>(); 2368 AU.addRequired<DemandedBitsWrapperPass>(); 2369 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2370 AU.addPreserved<LoopInfoWrapperPass>(); 2371 AU.addPreserved<DominatorTreeWrapperPass>(); 2372 AU.addPreserved<BasicAAWrapperPass>(); 2373 AU.addPreserved<GlobalsAAWrapperPass>(); 2374 } 2375 }; 2376 2377 } // end anonymous namespace 2378 2379 //===----------------------------------------------------------------------===// 2380 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2381 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2382 //===----------------------------------------------------------------------===// 2383 2384 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2385 // We need to place the broadcast of invariant variables outside the loop. 2386 Instruction *Instr = dyn_cast<Instruction>(V); 2387 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2388 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2389 2390 // Place the code for broadcasting invariant variables in the new preheader. 2391 IRBuilder<>::InsertPointGuard Guard(Builder); 2392 if (Invariant) 2393 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2394 2395 // Broadcast the scalar into all locations in the vector. 2396 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2397 2398 return Shuf; 2399 } 2400 2401 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2402 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2403 Value *Start = II.getStartValue(); 2404 2405 // Construct the initial value of the vector IV in the vector loop preheader 2406 auto CurrIP = Builder.saveIP(); 2407 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2408 if (isa<TruncInst>(EntryVal)) { 2409 assert(Start->getType()->isIntegerTy() && 2410 "Truncation requires an integer type"); 2411 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2412 Step = Builder.CreateTrunc(Step, TruncType); 2413 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2414 } 2415 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2416 Value *SteppedStart = 2417 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2418 2419 // We create vector phi nodes for both integer and floating-point induction 2420 // variables. Here, we determine the kind of arithmetic we will perform. 2421 Instruction::BinaryOps AddOp; 2422 Instruction::BinaryOps MulOp; 2423 if (Step->getType()->isIntegerTy()) { 2424 AddOp = Instruction::Add; 2425 MulOp = Instruction::Mul; 2426 } else { 2427 AddOp = II.getInductionOpcode(); 2428 MulOp = Instruction::FMul; 2429 } 2430 2431 // Multiply the vectorization factor by the step using integer or 2432 // floating-point arithmetic as appropriate. 2433 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2434 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2435 2436 // Create a vector splat to use in the induction update. 2437 // 2438 // FIXME: If the step is non-constant, we create the vector splat with 2439 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2440 // handle a constant vector splat. 2441 Value *SplatVF = isa<Constant>(Mul) 2442 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2443 : Builder.CreateVectorSplat(VF, Mul); 2444 Builder.restoreIP(CurrIP); 2445 2446 // We may need to add the step a number of times, depending on the unroll 2447 // factor. The last of those goes into the PHI. 2448 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2449 &*LoopVectorBody->getFirstInsertionPt()); 2450 Instruction *LastInduction = VecInd; 2451 for (unsigned Part = 0; Part < UF; ++Part) { 2452 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2453 if (isa<TruncInst>(EntryVal)) 2454 addMetadata(LastInduction, EntryVal); 2455 LastInduction = cast<Instruction>(addFastMathFlag( 2456 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2457 } 2458 2459 // Move the last step to the end of the latch block. This ensures consistent 2460 // placement of all induction updates. 2461 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2462 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2463 auto *ICmp = cast<Instruction>(Br->getCondition()); 2464 LastInduction->moveBefore(ICmp); 2465 LastInduction->setName("vec.ind.next"); 2466 2467 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2468 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2469 } 2470 2471 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2472 return Cost->isScalarAfterVectorization(I, VF) || 2473 Cost->isProfitableToScalarize(I, VF); 2474 } 2475 2476 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2477 if (shouldScalarizeInstruction(IV)) 2478 return true; 2479 auto isScalarInst = [&](User *U) -> bool { 2480 auto *I = cast<Instruction>(U); 2481 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2482 }; 2483 return any_of(IV->users(), isScalarInst); 2484 } 2485 2486 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2487 2488 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2489 "Primary induction variable must have an integer type"); 2490 2491 auto II = Legal->getInductionVars()->find(IV); 2492 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2493 2494 auto ID = II->second; 2495 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2496 2497 // The scalar value to broadcast. This will be derived from the canonical 2498 // induction variable. 2499 Value *ScalarIV = nullptr; 2500 2501 // The value from the original loop to which we are mapping the new induction 2502 // variable. 2503 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2504 2505 // True if we have vectorized the induction variable. 2506 auto VectorizedIV = false; 2507 2508 // Determine if we want a scalar version of the induction variable. This is 2509 // true if the induction variable itself is not widened, or if it has at 2510 // least one user in the loop that is not widened. 2511 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2512 2513 // Generate code for the induction step. Note that induction steps are 2514 // required to be loop-invariant 2515 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2516 "Induction step should be loop invariant"); 2517 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2518 Value *Step = nullptr; 2519 if (PSE.getSE()->isSCEVable(IV->getType())) { 2520 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2521 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2522 LoopVectorPreHeader->getTerminator()); 2523 } else { 2524 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2525 } 2526 2527 // Try to create a new independent vector induction variable. If we can't 2528 // create the phi node, we will splat the scalar induction variable in each 2529 // loop iteration. 2530 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2531 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2532 VectorizedIV = true; 2533 } 2534 2535 // If we haven't yet vectorized the induction variable, or if we will create 2536 // a scalar one, we need to define the scalar induction variable and step 2537 // values. If we were given a truncation type, truncate the canonical 2538 // induction variable and step. Otherwise, derive these values from the 2539 // induction descriptor. 2540 if (!VectorizedIV || NeedsScalarIV) { 2541 ScalarIV = Induction; 2542 if (IV != OldInduction) { 2543 ScalarIV = IV->getType()->isIntegerTy() 2544 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2545 : Builder.CreateCast(Instruction::SIToFP, Induction, 2546 IV->getType()); 2547 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2548 ScalarIV->setName("offset.idx"); 2549 } 2550 if (Trunc) { 2551 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2552 assert(Step->getType()->isIntegerTy() && 2553 "Truncation requires an integer step"); 2554 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2555 Step = Builder.CreateTrunc(Step, TruncType); 2556 } 2557 } 2558 2559 // If we haven't yet vectorized the induction variable, splat the scalar 2560 // induction variable, and build the necessary step vectors. 2561 if (!VectorizedIV) { 2562 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2563 for (unsigned Part = 0; Part < UF; ++Part) { 2564 Value *EntryPart = 2565 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2566 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2567 if (Trunc) 2568 addMetadata(EntryPart, Trunc); 2569 } 2570 } 2571 2572 // If an induction variable is only used for counting loop iterations or 2573 // calculating addresses, it doesn't need to be widened. Create scalar steps 2574 // that can be used by instructions we will later scalarize. Note that the 2575 // addition of the scalar steps will not increase the number of instructions 2576 // in the loop in the common case prior to InstCombine. We will be trading 2577 // one vector extract for each scalar step. 2578 if (NeedsScalarIV) 2579 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2580 } 2581 2582 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2583 Instruction::BinaryOps BinOp) { 2584 // Create and check the types. 2585 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2586 int VLen = Val->getType()->getVectorNumElements(); 2587 2588 Type *STy = Val->getType()->getScalarType(); 2589 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2590 "Induction Step must be an integer or FP"); 2591 assert(Step->getType() == STy && "Step has wrong type"); 2592 2593 SmallVector<Constant *, 8> Indices; 2594 2595 if (STy->isIntegerTy()) { 2596 // Create a vector of consecutive numbers from zero to VF. 2597 for (int i = 0; i < VLen; ++i) 2598 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2599 2600 // Add the consecutive indices to the vector value. 2601 Constant *Cv = ConstantVector::get(Indices); 2602 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2603 Step = Builder.CreateVectorSplat(VLen, Step); 2604 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2605 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2606 // which can be found from the original scalar operations. 2607 Step = Builder.CreateMul(Cv, Step); 2608 return Builder.CreateAdd(Val, Step, "induction"); 2609 } 2610 2611 // Floating point induction. 2612 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2613 "Binary Opcode should be specified for FP induction"); 2614 // Create a vector of consecutive numbers from zero to VF. 2615 for (int i = 0; i < VLen; ++i) 2616 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2617 2618 // Add the consecutive indices to the vector value. 2619 Constant *Cv = ConstantVector::get(Indices); 2620 2621 Step = Builder.CreateVectorSplat(VLen, Step); 2622 2623 // Floating point operations had to be 'fast' to enable the induction. 2624 FastMathFlags Flags; 2625 Flags.setUnsafeAlgebra(); 2626 2627 Value *MulOp = Builder.CreateFMul(Cv, Step); 2628 if (isa<Instruction>(MulOp)) 2629 // Have to check, MulOp may be a constant 2630 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2631 2632 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2633 if (isa<Instruction>(BOp)) 2634 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2635 return BOp; 2636 } 2637 2638 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2639 Value *EntryVal, 2640 const InductionDescriptor &ID) { 2641 2642 // We shouldn't have to build scalar steps if we aren't vectorizing. 2643 assert(VF > 1 && "VF should be greater than one"); 2644 2645 // Get the value type and ensure it and the step have the same integer type. 2646 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2647 assert(ScalarIVTy == Step->getType() && 2648 "Val and Step should have the same type"); 2649 2650 // We build scalar steps for both integer and floating-point induction 2651 // variables. Here, we determine the kind of arithmetic we will perform. 2652 Instruction::BinaryOps AddOp; 2653 Instruction::BinaryOps MulOp; 2654 if (ScalarIVTy->isIntegerTy()) { 2655 AddOp = Instruction::Add; 2656 MulOp = Instruction::Mul; 2657 } else { 2658 AddOp = ID.getInductionOpcode(); 2659 MulOp = Instruction::FMul; 2660 } 2661 2662 // Determine the number of scalars we need to generate for each unroll 2663 // iteration. If EntryVal is uniform, we only need to generate the first 2664 // lane. Otherwise, we generate all VF values. 2665 unsigned Lanes = 2666 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2667 2668 // Compute the scalar steps and save the results in VectorLoopValueMap. 2669 for (unsigned Part = 0; Part < UF; ++Part) { 2670 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2671 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2672 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2673 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2674 VectorLoopValueMap.setScalarValue(EntryVal, Part, Lane, Add); 2675 } 2676 } 2677 } 2678 2679 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2680 2681 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2682 ValueToValueMap(); 2683 2684 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2685 if (Stride == 1 || Stride == -1) 2686 return Stride; 2687 return 0; 2688 } 2689 2690 bool LoopVectorizationLegality::isUniform(Value *V) { 2691 return LAI->isUniform(V); 2692 } 2693 2694 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2695 assert(V != Induction && "The new induction variable should not be used."); 2696 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2697 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2698 2699 // If we have a stride that is replaced by one, do it here. 2700 if (Legal->hasStride(V)) 2701 V = ConstantInt::get(V->getType(), 1); 2702 2703 // If we have a vector mapped to this value, return it. 2704 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2705 return VectorLoopValueMap.getVectorValue(V, Part); 2706 2707 // If the value has not been vectorized, check if it has been scalarized 2708 // instead. If it has been scalarized, and we actually need the value in 2709 // vector form, we will construct the vector values on demand. 2710 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2711 2712 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, Part, 0); 2713 2714 // If we've scalarized a value, that value should be an instruction. 2715 auto *I = cast<Instruction>(V); 2716 2717 // If we aren't vectorizing, we can just copy the scalar map values over to 2718 // the vector map. 2719 if (VF == 1) { 2720 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2721 return ScalarValue; 2722 } 2723 2724 // Get the last scalar instruction we generated for V and Part. If the value 2725 // is known to be uniform after vectorization, this corresponds to lane zero 2726 // of the Part unroll iteration. Otherwise, the last instruction is the one 2727 // we created for the last vector lane of the Part unroll iteration. 2728 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2729 auto *LastInst = 2730 cast<Instruction>(VectorLoopValueMap.getScalarValue(V, Part, LastLane)); 2731 2732 // Set the insert point after the last scalarized instruction. This ensures 2733 // the insertelement sequence will directly follow the scalar definitions. 2734 auto OldIP = Builder.saveIP(); 2735 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2736 Builder.SetInsertPoint(&*NewIP); 2737 2738 // However, if we are vectorizing, we need to construct the vector values. 2739 // If the value is known to be uniform after vectorization, we can just 2740 // broadcast the scalar value corresponding to lane zero for each unroll 2741 // iteration. Otherwise, we construct the vector values using insertelement 2742 // instructions. Since the resulting vectors are stored in 2743 // VectorLoopValueMap, we will only generate the insertelements once. 2744 Value *VectorValue = nullptr; 2745 if (Cost->isUniformAfterVectorization(I, VF)) { 2746 VectorValue = getBroadcastInstrs(ScalarValue); 2747 } else { 2748 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2749 for (unsigned Lane = 0; Lane < VF; ++Lane) 2750 VectorValue = Builder.CreateInsertElement( 2751 VectorValue, getOrCreateScalarValue(V, Part, Lane), 2752 Builder.getInt32(Lane)); 2753 } 2754 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2755 Builder.restoreIP(OldIP); 2756 return VectorValue; 2757 } 2758 2759 // If this scalar is unknown, assume that it is a constant or that it is 2760 // loop invariant. Broadcast V and save the value for future uses. 2761 Value *B = getBroadcastInstrs(V); 2762 VectorLoopValueMap.setVectorValue(V, Part, B); 2763 return B; 2764 } 2765 2766 Value *InnerLoopVectorizer::getOrCreateScalarValue(Value *V, unsigned Part, 2767 unsigned Lane) { 2768 2769 // If the value is not an instruction contained in the loop, it should 2770 // already be scalar. 2771 if (OrigLoop->isLoopInvariant(V)) 2772 return V; 2773 2774 assert(Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2775 : true && "Uniform values only have lane zero"); 2776 2777 // If the value from the original loop has not been vectorized, it is 2778 // represented by UF x VF scalar values in the new loop. Return the requested 2779 // scalar value. 2780 if (VectorLoopValueMap.hasScalarValue(V, Part, Lane)) 2781 return VectorLoopValueMap.getScalarValue(V, Part, Lane); 2782 2783 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2784 // for the given unroll part. If this entry is not a vector type (i.e., the 2785 // vectorization factor is one), there is no need to generate an 2786 // extractelement instruction. 2787 auto *U = getOrCreateVectorValue(V, Part); 2788 if (!U->getType()->isVectorTy()) { 2789 assert(VF == 1 && "Value not scalarized has non-vector type"); 2790 return U; 2791 } 2792 2793 // Otherwise, the value from the original loop has been vectorized and is 2794 // represented by UF vector values. Extract and return the requested scalar 2795 // value from the appropriate vector lane. 2796 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2797 } 2798 2799 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2800 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2801 SmallVector<Constant *, 8> ShuffleMask; 2802 for (unsigned i = 0; i < VF; ++i) 2803 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2804 2805 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2806 ConstantVector::get(ShuffleMask), 2807 "reverse"); 2808 } 2809 2810 // Try to vectorize the interleave group that \p Instr belongs to. 2811 // 2812 // E.g. Translate following interleaved load group (factor = 3): 2813 // for (i = 0; i < N; i+=3) { 2814 // R = Pic[i]; // Member of index 0 2815 // G = Pic[i+1]; // Member of index 1 2816 // B = Pic[i+2]; // Member of index 2 2817 // ... // do something to R, G, B 2818 // } 2819 // To: 2820 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2821 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2822 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2823 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2824 // 2825 // Or translate following interleaved store group (factor = 3): 2826 // for (i = 0; i < N; i+=3) { 2827 // ... do something to R, G, B 2828 // Pic[i] = R; // Member of index 0 2829 // Pic[i+1] = G; // Member of index 1 2830 // Pic[i+2] = B; // Member of index 2 2831 // } 2832 // To: 2833 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2834 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2835 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2836 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2837 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2838 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2839 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2840 assert(Group && "Fail to get an interleaved access group."); 2841 2842 // Skip if current instruction is not the insert position. 2843 if (Instr != Group->getInsertPos()) 2844 return; 2845 2846 Value *Ptr = getPointerOperand(Instr); 2847 2848 // Prepare for the vector type of the interleaved load/store. 2849 Type *ScalarTy = getMemInstValueType(Instr); 2850 unsigned InterleaveFactor = Group->getFactor(); 2851 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2852 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2853 2854 // Prepare for the new pointers. 2855 setDebugLocFromInst(Builder, Ptr); 2856 SmallVector<Value *, 2> NewPtrs; 2857 unsigned Index = Group->getIndex(Instr); 2858 2859 // If the group is reverse, adjust the index to refer to the last vector lane 2860 // instead of the first. We adjust the index from the first vector lane, 2861 // rather than directly getting the pointer for lane VF - 1, because the 2862 // pointer operand of the interleaved access is supposed to be uniform. For 2863 // uniform instructions, we're only required to generate a value for the 2864 // first vector lane in each unroll iteration. 2865 if (Group->isReverse()) 2866 Index += (VF - 1) * Group->getFactor(); 2867 2868 for (unsigned Part = 0; Part < UF; Part++) { 2869 Value *NewPtr = getOrCreateScalarValue(Ptr, Part, 0); 2870 2871 // Notice current instruction could be any index. Need to adjust the address 2872 // to the member of index 0. 2873 // 2874 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2875 // b = A[i]; // Member of index 0 2876 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2877 // 2878 // E.g. A[i+1] = a; // Member of index 1 2879 // A[i] = b; // Member of index 0 2880 // A[i+2] = c; // Member of index 2 (Current instruction) 2881 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2882 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2883 2884 // Cast to the vector pointer type. 2885 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2886 } 2887 2888 setDebugLocFromInst(Builder, Instr); 2889 Value *UndefVec = UndefValue::get(VecTy); 2890 2891 // Vectorize the interleaved load group. 2892 if (isa<LoadInst>(Instr)) { 2893 2894 // For each unroll part, create a wide load for the group. 2895 SmallVector<Value *, 2> NewLoads; 2896 for (unsigned Part = 0; Part < UF; Part++) { 2897 auto *NewLoad = Builder.CreateAlignedLoad( 2898 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2899 addMetadata(NewLoad, Instr); 2900 NewLoads.push_back(NewLoad); 2901 } 2902 2903 // For each member in the group, shuffle out the appropriate data from the 2904 // wide loads. 2905 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2906 Instruction *Member = Group->getMember(I); 2907 2908 // Skip the gaps in the group. 2909 if (!Member) 2910 continue; 2911 2912 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2913 for (unsigned Part = 0; Part < UF; Part++) { 2914 Value *StridedVec = Builder.CreateShuffleVector( 2915 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2916 2917 // If this member has different type, cast the result type. 2918 if (Member->getType() != ScalarTy) { 2919 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2920 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2921 } 2922 2923 if (Group->isReverse()) 2924 StridedVec = reverseVector(StridedVec); 2925 2926 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2927 } 2928 } 2929 return; 2930 } 2931 2932 // The sub vector type for current instruction. 2933 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2934 2935 // Vectorize the interleaved store group. 2936 for (unsigned Part = 0; Part < UF; Part++) { 2937 // Collect the stored vector from each member. 2938 SmallVector<Value *, 4> StoredVecs; 2939 for (unsigned i = 0; i < InterleaveFactor; i++) { 2940 // Interleaved store group doesn't allow a gap, so each index has a member 2941 Instruction *Member = Group->getMember(i); 2942 assert(Member && "Fail to get a member from an interleaved store group"); 2943 2944 Value *StoredVec = getOrCreateVectorValue( 2945 cast<StoreInst>(Member)->getValueOperand(), Part); 2946 if (Group->isReverse()) 2947 StoredVec = reverseVector(StoredVec); 2948 2949 // If this member has different type, cast it to an unified type. 2950 if (StoredVec->getType() != SubVT) 2951 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2952 2953 StoredVecs.push_back(StoredVec); 2954 } 2955 2956 // Concatenate all vectors into a wide vector. 2957 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2958 2959 // Interleave the elements in the wide vector. 2960 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2961 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2962 "interleaved.vec"); 2963 2964 Instruction *NewStoreInstr = 2965 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2966 addMetadata(NewStoreInstr, Instr); 2967 } 2968 } 2969 2970 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2971 // Attempt to issue a wide load. 2972 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2973 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2974 2975 assert((LI || SI) && "Invalid Load/Store instruction"); 2976 2977 LoopVectorizationCostModel::InstWidening Decision = 2978 Cost->getWideningDecision(Instr, VF); 2979 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2980 "CM decision should be taken at this point"); 2981 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2982 return vectorizeInterleaveGroup(Instr); 2983 2984 Type *ScalarDataTy = getMemInstValueType(Instr); 2985 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2986 Value *Ptr = getPointerOperand(Instr); 2987 unsigned Alignment = getMemInstAlignment(Instr); 2988 // An alignment of 0 means target abi alignment. We need to use the scalar's 2989 // target abi alignment in such a case. 2990 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2991 if (!Alignment) 2992 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2993 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2994 2995 // Scalarize the memory instruction if necessary. 2996 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2997 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2998 2999 // Determine if the pointer operand of the access is either consecutive or 3000 // reverse consecutive. 3001 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3002 bool Reverse = ConsecutiveStride < 0; 3003 bool CreateGatherScatter = 3004 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3005 3006 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3007 // gather/scatter. Otherwise Decision should have been to Scalarize. 3008 assert((ConsecutiveStride || CreateGatherScatter) && 3009 "The instruction should be scalarized"); 3010 3011 // Handle consecutive loads/stores. 3012 if (ConsecutiveStride) 3013 Ptr = getOrCreateScalarValue(Ptr, 0, 0); 3014 3015 VectorParts Mask = createBlockInMask(Instr->getParent()); 3016 // Handle Stores: 3017 if (SI) { 3018 assert(!Legal->isUniform(SI->getPointerOperand()) && 3019 "We do not allow storing to uniform addresses"); 3020 setDebugLocFromInst(Builder, SI); 3021 3022 for (unsigned Part = 0; Part < UF; ++Part) { 3023 Instruction *NewSI = nullptr; 3024 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3025 if (CreateGatherScatter) { 3026 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3027 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3028 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3029 MaskPart); 3030 } else { 3031 // Calculate the pointer for the specific unroll-part. 3032 Value *PartPtr = 3033 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3034 3035 if (Reverse) { 3036 // If we store to reverse consecutive memory locations, then we need 3037 // to reverse the order of elements in the stored value. 3038 StoredVal = reverseVector(StoredVal); 3039 // We don't want to update the value in the map as it might be used in 3040 // another expression. So don't call resetVectorValue(StoredVal). 3041 3042 // If the address is consecutive but reversed, then the 3043 // wide store needs to start at the last vector element. 3044 PartPtr = 3045 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3046 PartPtr = 3047 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3048 Mask[Part] = reverseVector(Mask[Part]); 3049 } 3050 3051 Value *VecPtr = 3052 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3053 3054 if (Legal->isMaskRequired(SI)) 3055 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3056 Mask[Part]); 3057 else 3058 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3059 } 3060 addMetadata(NewSI, SI); 3061 } 3062 return; 3063 } 3064 3065 // Handle loads. 3066 assert(LI && "Must have a load instruction"); 3067 setDebugLocFromInst(Builder, LI); 3068 for (unsigned Part = 0; Part < UF; ++Part) { 3069 Value *NewLI; 3070 if (CreateGatherScatter) { 3071 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3072 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3073 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3074 nullptr, "wide.masked.gather"); 3075 addMetadata(NewLI, LI); 3076 } else { 3077 // Calculate the pointer for the specific unroll-part. 3078 Value *PartPtr = 3079 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3080 3081 if (Reverse) { 3082 // If the address is consecutive but reversed, then the 3083 // wide load needs to start at the last vector element. 3084 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3085 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3086 Mask[Part] = reverseVector(Mask[Part]); 3087 } 3088 3089 Value *VecPtr = 3090 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3091 if (Legal->isMaskRequired(LI)) 3092 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3093 UndefValue::get(DataTy), 3094 "wide.masked.load"); 3095 else 3096 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3097 3098 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3099 addMetadata(NewLI, LI); 3100 if (Reverse) 3101 NewLI = reverseVector(NewLI); 3102 } 3103 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3104 } 3105 } 3106 3107 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3108 bool IfPredicateInstr) { 3109 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3110 DEBUG(dbgs() << "LV: Scalarizing" 3111 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3112 << '\n'); 3113 // Holds vector parameters or scalars, in case of uniform vals. 3114 SmallVector<VectorParts, 4> Params; 3115 3116 setDebugLocFromInst(Builder, Instr); 3117 3118 // Does this instruction return a value ? 3119 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3120 3121 VectorParts Cond; 3122 if (IfPredicateInstr) 3123 Cond = createBlockInMask(Instr->getParent()); 3124 3125 // Determine the number of scalars we need to generate for each unroll 3126 // iteration. If the instruction is uniform, we only need to generate the 3127 // first lane. Otherwise, we generate all VF values. 3128 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3129 3130 // For each vector unroll 'part': 3131 for (unsigned Part = 0; Part < UF; ++Part) { 3132 // For each scalar that we create: 3133 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3134 3135 // Start if-block. 3136 Value *Cmp = nullptr; 3137 if (IfPredicateInstr) { 3138 Cmp = Cond[Part]; 3139 if (Cmp->getType()->isVectorTy()) 3140 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3141 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3142 ConstantInt::get(Cmp->getType(), 1)); 3143 } 3144 3145 Instruction *Cloned = Instr->clone(); 3146 if (!IsVoidRetTy) 3147 Cloned->setName(Instr->getName() + ".cloned"); 3148 3149 // Replace the operands of the cloned instructions with their scalar 3150 // equivalents in the new loop. 3151 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3152 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Part, Lane); 3153 Cloned->setOperand(op, NewOp); 3154 } 3155 addNewMetadata(Cloned, Instr); 3156 3157 // Place the cloned scalar in the new loop. 3158 Builder.Insert(Cloned); 3159 3160 // Add the cloned scalar to the scalar map entry. 3161 VectorLoopValueMap.setScalarValue(Instr, Part, Lane, Cloned); 3162 3163 // If we just cloned a new assumption, add it the assumption cache. 3164 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3165 if (II->getIntrinsicID() == Intrinsic::assume) 3166 AC->registerAssumption(II); 3167 3168 // End if-block. 3169 if (IfPredicateInstr) 3170 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3171 } 3172 } 3173 } 3174 3175 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3176 Value *End, Value *Step, 3177 Instruction *DL) { 3178 BasicBlock *Header = L->getHeader(); 3179 BasicBlock *Latch = L->getLoopLatch(); 3180 // As we're just creating this loop, it's possible no latch exists 3181 // yet. If so, use the header as this will be a single block loop. 3182 if (!Latch) 3183 Latch = Header; 3184 3185 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3186 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3187 setDebugLocFromInst(Builder, OldInst); 3188 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3189 3190 Builder.SetInsertPoint(Latch->getTerminator()); 3191 setDebugLocFromInst(Builder, OldInst); 3192 3193 // Create i+1 and fill the PHINode. 3194 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3195 Induction->addIncoming(Start, L->getLoopPreheader()); 3196 Induction->addIncoming(Next, Latch); 3197 // Create the compare. 3198 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3199 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3200 3201 // Now we have two terminators. Remove the old one from the block. 3202 Latch->getTerminator()->eraseFromParent(); 3203 3204 return Induction; 3205 } 3206 3207 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3208 if (TripCount) 3209 return TripCount; 3210 3211 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3212 // Find the loop boundaries. 3213 ScalarEvolution *SE = PSE.getSE(); 3214 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3215 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3216 "Invalid loop count"); 3217 3218 Type *IdxTy = Legal->getWidestInductionType(); 3219 3220 // The exit count might have the type of i64 while the phi is i32. This can 3221 // happen if we have an induction variable that is sign extended before the 3222 // compare. The only way that we get a backedge taken count is that the 3223 // induction variable was signed and as such will not overflow. In such a case 3224 // truncation is legal. 3225 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3226 IdxTy->getPrimitiveSizeInBits()) 3227 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3228 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3229 3230 // Get the total trip count from the count by adding 1. 3231 const SCEV *ExitCount = SE->getAddExpr( 3232 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3233 3234 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3235 3236 // Expand the trip count and place the new instructions in the preheader. 3237 // Notice that the pre-header does not change, only the loop body. 3238 SCEVExpander Exp(*SE, DL, "induction"); 3239 3240 // Count holds the overall loop count (N). 3241 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3242 L->getLoopPreheader()->getTerminator()); 3243 3244 if (TripCount->getType()->isPointerTy()) 3245 TripCount = 3246 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3247 L->getLoopPreheader()->getTerminator()); 3248 3249 return TripCount; 3250 } 3251 3252 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3253 if (VectorTripCount) 3254 return VectorTripCount; 3255 3256 Value *TC = getOrCreateTripCount(L); 3257 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3258 3259 // Now we need to generate the expression for the part of the loop that the 3260 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3261 // iterations are not required for correctness, or N - Step, otherwise. Step 3262 // is equal to the vectorization factor (number of SIMD elements) times the 3263 // unroll factor (number of SIMD instructions). 3264 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3265 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3266 3267 // If there is a non-reversed interleaved group that may speculatively access 3268 // memory out-of-bounds, we need to ensure that there will be at least one 3269 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3270 // the trip count, we set the remainder to be equal to the step. If the step 3271 // does not evenly divide the trip count, no adjustment is necessary since 3272 // there will already be scalar iterations. Note that the minimum iterations 3273 // check ensures that N >= Step. 3274 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3275 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3276 R = Builder.CreateSelect(IsZero, Step, R); 3277 } 3278 3279 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3280 3281 return VectorTripCount; 3282 } 3283 3284 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3285 BasicBlock *Bypass) { 3286 Value *Count = getOrCreateTripCount(L); 3287 BasicBlock *BB = L->getLoopPreheader(); 3288 IRBuilder<> Builder(BB->getTerminator()); 3289 3290 // Generate code to check if the loop's trip count is less than VF * UF, or 3291 // equal to it in case a scalar epilogue is required; this implies that the 3292 // vector trip count is zero. This check also covers the case where adding one 3293 // to the backedge-taken count overflowed leading to an incorrect trip count 3294 // of zero. In this case we will also jump to the scalar loop. 3295 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3296 : ICmpInst::ICMP_ULT; 3297 Value *CheckMinIters = Builder.CreateICmp( 3298 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3299 3300 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3301 // Update dominator tree immediately if the generated block is a 3302 // LoopBypassBlock because SCEV expansions to generate loop bypass 3303 // checks may query it before the current function is finished. 3304 DT->addNewBlock(NewBB, BB); 3305 if (L->getParentLoop()) 3306 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3307 ReplaceInstWithInst(BB->getTerminator(), 3308 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3309 LoopBypassBlocks.push_back(BB); 3310 } 3311 3312 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3313 BasicBlock *BB = L->getLoopPreheader(); 3314 3315 // Generate the code to check that the SCEV assumptions that we made. 3316 // We want the new basic block to start at the first instruction in a 3317 // sequence of instructions that form a check. 3318 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3319 "scev.check"); 3320 Value *SCEVCheck = 3321 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3322 3323 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3324 if (C->isZero()) 3325 return; 3326 3327 // Create a new block containing the stride check. 3328 BB->setName("vector.scevcheck"); 3329 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3330 // Update dominator tree immediately if the generated block is a 3331 // LoopBypassBlock because SCEV expansions to generate loop bypass 3332 // checks may query it before the current function is finished. 3333 DT->addNewBlock(NewBB, BB); 3334 if (L->getParentLoop()) 3335 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3336 ReplaceInstWithInst(BB->getTerminator(), 3337 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3338 LoopBypassBlocks.push_back(BB); 3339 AddedSafetyChecks = true; 3340 } 3341 3342 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3343 BasicBlock *BB = L->getLoopPreheader(); 3344 3345 // Generate the code that checks in runtime if arrays overlap. We put the 3346 // checks into a separate block to make the more common case of few elements 3347 // faster. 3348 Instruction *FirstCheckInst; 3349 Instruction *MemRuntimeCheck; 3350 std::tie(FirstCheckInst, MemRuntimeCheck) = 3351 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3352 if (!MemRuntimeCheck) 3353 return; 3354 3355 // Create a new block containing the memory check. 3356 BB->setName("vector.memcheck"); 3357 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3358 // Update dominator tree immediately if the generated block is a 3359 // LoopBypassBlock because SCEV expansions to generate loop bypass 3360 // checks may query it before the current function is finished. 3361 DT->addNewBlock(NewBB, BB); 3362 if (L->getParentLoop()) 3363 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3364 ReplaceInstWithInst(BB->getTerminator(), 3365 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3366 LoopBypassBlocks.push_back(BB); 3367 AddedSafetyChecks = true; 3368 3369 // We currently don't use LoopVersioning for the actual loop cloning but we 3370 // still use it to add the noalias metadata. 3371 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3372 PSE.getSE()); 3373 LVer->prepareNoAliasMetadata(); 3374 } 3375 3376 void InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3377 /* 3378 In this function we generate a new loop. The new loop will contain 3379 the vectorized instructions while the old loop will continue to run the 3380 scalar remainder. 3381 3382 [ ] <-- loop iteration number check. 3383 / | 3384 / v 3385 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3386 | / | 3387 | / v 3388 || [ ] <-- vector pre header. 3389 |/ | 3390 | v 3391 | [ ] \ 3392 | [ ]_| <-- vector loop. 3393 | | 3394 | v 3395 | -[ ] <--- middle-block. 3396 | / | 3397 | / v 3398 -|- >[ ] <--- new preheader. 3399 | | 3400 | v 3401 | [ ] \ 3402 | [ ]_| <-- old scalar loop to handle remainder. 3403 \ | 3404 \ v 3405 >[ ] <-- exit block. 3406 ... 3407 */ 3408 3409 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3410 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3411 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3412 assert(VectorPH && "Invalid loop structure"); 3413 assert(ExitBlock && "Must have an exit block"); 3414 3415 // Some loops have a single integer induction variable, while other loops 3416 // don't. One example is c++ iterators that often have multiple pointer 3417 // induction variables. In the code below we also support a case where we 3418 // don't have a single induction variable. 3419 // 3420 // We try to obtain an induction variable from the original loop as hard 3421 // as possible. However if we don't find one that: 3422 // - is an integer 3423 // - counts from zero, stepping by one 3424 // - is the size of the widest induction variable type 3425 // then we create a new one. 3426 OldInduction = Legal->getPrimaryInduction(); 3427 Type *IdxTy = Legal->getWidestInductionType(); 3428 3429 // Split the single block loop into the two loop structure described above. 3430 BasicBlock *VecBody = 3431 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3432 BasicBlock *MiddleBlock = 3433 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3434 BasicBlock *ScalarPH = 3435 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3436 3437 // Create and register the new vector loop. 3438 Loop *Lp = new Loop(); 3439 Loop *ParentLoop = OrigLoop->getParentLoop(); 3440 3441 // Insert the new loop into the loop nest and register the new basic blocks 3442 // before calling any utilities such as SCEV that require valid LoopInfo. 3443 if (ParentLoop) { 3444 ParentLoop->addChildLoop(Lp); 3445 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3446 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3447 } else { 3448 LI->addTopLevelLoop(Lp); 3449 } 3450 Lp->addBasicBlockToLoop(VecBody, *LI); 3451 3452 // Find the loop boundaries. 3453 Value *Count = getOrCreateTripCount(Lp); 3454 3455 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3456 3457 // Now, compare the new count to zero. If it is zero skip the vector loop and 3458 // jump to the scalar loop. This check also covers the case where the 3459 // backedge-taken count is uint##_max: adding one to it will overflow leading 3460 // to an incorrect trip count of zero. In this (rare) case we will also jump 3461 // to the scalar loop. 3462 emitMinimumIterationCountCheck(Lp, ScalarPH); 3463 3464 // Generate the code to check any assumptions that we've made for SCEV 3465 // expressions. 3466 emitSCEVChecks(Lp, ScalarPH); 3467 3468 // Generate the code that checks in runtime if arrays overlap. We put the 3469 // checks into a separate block to make the more common case of few elements 3470 // faster. 3471 emitMemRuntimeChecks(Lp, ScalarPH); 3472 3473 // Generate the induction variable. 3474 // The loop step is equal to the vectorization factor (num of SIMD elements) 3475 // times the unroll factor (num of SIMD instructions). 3476 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3477 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3478 Induction = 3479 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3480 getDebugLocFromInstOrOperands(OldInduction)); 3481 3482 // We are going to resume the execution of the scalar loop. 3483 // Go over all of the induction variables that we found and fix the 3484 // PHIs that are left in the scalar version of the loop. 3485 // The starting values of PHI nodes depend on the counter of the last 3486 // iteration in the vectorized loop. 3487 // If we come from a bypass edge then we need to start from the original 3488 // start value. 3489 3490 // This variable saves the new starting index for the scalar loop. It is used 3491 // to test if there are any tail iterations left once the vector loop has 3492 // completed. 3493 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3494 for (auto &InductionEntry : *List) { 3495 PHINode *OrigPhi = InductionEntry.first; 3496 InductionDescriptor II = InductionEntry.second; 3497 3498 // Create phi nodes to merge from the backedge-taken check block. 3499 PHINode *BCResumeVal = PHINode::Create( 3500 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3501 Value *&EndValue = IVEndValues[OrigPhi]; 3502 if (OrigPhi == OldInduction) { 3503 // We know what the end value is. 3504 EndValue = CountRoundDown; 3505 } else { 3506 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3507 Type *StepType = II.getStep()->getType(); 3508 Instruction::CastOps CastOp = 3509 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3510 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3511 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3512 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3513 EndValue->setName("ind.end"); 3514 } 3515 3516 // The new PHI merges the original incoming value, in case of a bypass, 3517 // or the value at the end of the vectorized loop. 3518 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3519 3520 // Fix the scalar body counter (PHI node). 3521 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3522 3523 // The old induction's phi node in the scalar body needs the truncated 3524 // value. 3525 for (BasicBlock *BB : LoopBypassBlocks) 3526 BCResumeVal->addIncoming(II.getStartValue(), BB); 3527 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3528 } 3529 3530 // Add a check in the middle block to see if we have completed 3531 // all of the iterations in the first vector loop. 3532 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3533 Value *CmpN = 3534 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3535 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3536 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3537 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3538 3539 // Get ready to start creating new instructions into the vectorized body. 3540 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3541 3542 // Save the state. 3543 LoopVectorPreHeader = Lp->getLoopPreheader(); 3544 LoopScalarPreHeader = ScalarPH; 3545 LoopMiddleBlock = MiddleBlock; 3546 LoopExitBlock = ExitBlock; 3547 LoopVectorBody = VecBody; 3548 LoopScalarBody = OldBasicBlock; 3549 3550 // Keep all loop hints from the original loop on the vector loop (we'll 3551 // replace the vectorizer-specific hints below). 3552 if (MDNode *LID = OrigLoop->getLoopID()) 3553 Lp->setLoopID(LID); 3554 3555 LoopVectorizeHints Hints(Lp, true, *ORE); 3556 Hints.setAlreadyVectorized(); 3557 } 3558 3559 // Fix up external users of the induction variable. At this point, we are 3560 // in LCSSA form, with all external PHIs that use the IV having one input value, 3561 // coming from the remainder loop. We need those PHIs to also have a correct 3562 // value for the IV when arriving directly from the middle block. 3563 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3564 const InductionDescriptor &II, 3565 Value *CountRoundDown, Value *EndValue, 3566 BasicBlock *MiddleBlock) { 3567 // There are two kinds of external IV usages - those that use the value 3568 // computed in the last iteration (the PHI) and those that use the penultimate 3569 // value (the value that feeds into the phi from the loop latch). 3570 // We allow both, but they, obviously, have different values. 3571 3572 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3573 3574 DenseMap<Value *, Value *> MissingVals; 3575 3576 // An external user of the last iteration's value should see the value that 3577 // the remainder loop uses to initialize its own IV. 3578 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3579 for (User *U : PostInc->users()) { 3580 Instruction *UI = cast<Instruction>(U); 3581 if (!OrigLoop->contains(UI)) { 3582 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3583 MissingVals[UI] = EndValue; 3584 } 3585 } 3586 3587 // An external user of the penultimate value need to see EndValue - Step. 3588 // The simplest way to get this is to recompute it from the constituent SCEVs, 3589 // that is Start + (Step * (CRD - 1)). 3590 for (User *U : OrigPhi->users()) { 3591 auto *UI = cast<Instruction>(U); 3592 if (!OrigLoop->contains(UI)) { 3593 const DataLayout &DL = 3594 OrigLoop->getHeader()->getModule()->getDataLayout(); 3595 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3596 3597 IRBuilder<> B(MiddleBlock->getTerminator()); 3598 Value *CountMinusOne = B.CreateSub( 3599 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3600 Value *CMO = 3601 !II.getStep()->getType()->isIntegerTy() 3602 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3603 II.getStep()->getType()) 3604 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3605 CMO->setName("cast.cmo"); 3606 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3607 Escape->setName("ind.escape"); 3608 MissingVals[UI] = Escape; 3609 } 3610 } 3611 3612 for (auto &I : MissingVals) { 3613 PHINode *PHI = cast<PHINode>(I.first); 3614 // One corner case we have to handle is two IVs "chasing" each-other, 3615 // that is %IV2 = phi [...], [ %IV1, %latch ] 3616 // In this case, if IV1 has an external use, we need to avoid adding both 3617 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3618 // don't already have an incoming value for the middle block. 3619 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3620 PHI->addIncoming(I.second, MiddleBlock); 3621 } 3622 } 3623 3624 namespace { 3625 struct CSEDenseMapInfo { 3626 static bool canHandle(const Instruction *I) { 3627 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3628 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3629 } 3630 static inline Instruction *getEmptyKey() { 3631 return DenseMapInfo<Instruction *>::getEmptyKey(); 3632 } 3633 static inline Instruction *getTombstoneKey() { 3634 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3635 } 3636 static unsigned getHashValue(const Instruction *I) { 3637 assert(canHandle(I) && "Unknown instruction!"); 3638 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3639 I->value_op_end())); 3640 } 3641 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3642 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3643 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3644 return LHS == RHS; 3645 return LHS->isIdenticalTo(RHS); 3646 } 3647 }; 3648 } 3649 3650 ///\brief Perform cse of induction variable instructions. 3651 static void cse(BasicBlock *BB) { 3652 // Perform simple cse. 3653 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3654 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3655 Instruction *In = &*I++; 3656 3657 if (!CSEDenseMapInfo::canHandle(In)) 3658 continue; 3659 3660 // Check if we can replace this instruction with any of the 3661 // visited instructions. 3662 if (Instruction *V = CSEMap.lookup(In)) { 3663 In->replaceAllUsesWith(V); 3664 In->eraseFromParent(); 3665 continue; 3666 } 3667 3668 CSEMap[In] = In; 3669 } 3670 } 3671 3672 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3673 /// convenience wrapper for the type-based getScalarizationOverhead API. 3674 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3675 const TargetTransformInfo &TTI) { 3676 if (VF == 1) 3677 return 0; 3678 3679 unsigned Cost = 0; 3680 Type *RetTy = ToVectorTy(I->getType(), VF); 3681 if (!RetTy->isVoidTy() && 3682 (!isa<LoadInst>(I) || 3683 !TTI.supportsEfficientVectorElementLoadStore())) 3684 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3685 3686 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3687 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3688 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3689 } 3690 else if (!isa<StoreInst>(I) || 3691 !TTI.supportsEfficientVectorElementLoadStore()) { 3692 SmallVector<const Value *, 4> Operands(I->operand_values()); 3693 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3694 } 3695 3696 return Cost; 3697 } 3698 3699 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3700 // Return the cost of the instruction, including scalarization overhead if it's 3701 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3702 // i.e. either vector version isn't available, or is too expensive. 3703 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3704 const TargetTransformInfo &TTI, 3705 const TargetLibraryInfo *TLI, 3706 bool &NeedToScalarize) { 3707 Function *F = CI->getCalledFunction(); 3708 StringRef FnName = CI->getCalledFunction()->getName(); 3709 Type *ScalarRetTy = CI->getType(); 3710 SmallVector<Type *, 4> Tys, ScalarTys; 3711 for (auto &ArgOp : CI->arg_operands()) 3712 ScalarTys.push_back(ArgOp->getType()); 3713 3714 // Estimate cost of scalarized vector call. The source operands are assumed 3715 // to be vectors, so we need to extract individual elements from there, 3716 // execute VF scalar calls, and then gather the result into the vector return 3717 // value. 3718 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3719 if (VF == 1) 3720 return ScalarCallCost; 3721 3722 // Compute corresponding vector type for return value and arguments. 3723 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3724 for (Type *ScalarTy : ScalarTys) 3725 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3726 3727 // Compute costs of unpacking argument values for the scalar calls and 3728 // packing the return values to a vector. 3729 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3730 3731 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3732 3733 // If we can't emit a vector call for this function, then the currently found 3734 // cost is the cost we need to return. 3735 NeedToScalarize = true; 3736 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3737 return Cost; 3738 3739 // If the corresponding vector cost is cheaper, return its cost. 3740 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3741 if (VectorCallCost < Cost) { 3742 NeedToScalarize = false; 3743 return VectorCallCost; 3744 } 3745 return Cost; 3746 } 3747 3748 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3749 // factor VF. Return the cost of the instruction, including scalarization 3750 // overhead if it's needed. 3751 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3752 const TargetTransformInfo &TTI, 3753 const TargetLibraryInfo *TLI) { 3754 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3755 assert(ID && "Expected intrinsic call!"); 3756 3757 FastMathFlags FMF; 3758 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3759 FMF = FPMO->getFastMathFlags(); 3760 3761 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3762 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3763 } 3764 3765 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3766 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3767 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3768 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3769 } 3770 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3771 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3772 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3773 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3774 } 3775 3776 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3777 // For every instruction `I` in MinBWs, truncate the operands, create a 3778 // truncated version of `I` and reextend its result. InstCombine runs 3779 // later and will remove any ext/trunc pairs. 3780 // 3781 SmallPtrSet<Value *, 4> Erased; 3782 for (const auto &KV : Cost->getMinimalBitwidths()) { 3783 // If the value wasn't vectorized, we must maintain the original scalar 3784 // type. The absence of the value from VectorLoopValueMap indicates that it 3785 // wasn't vectorized. 3786 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3787 continue; 3788 for (unsigned Part = 0; Part < UF; ++Part) { 3789 Value *I = getOrCreateVectorValue(KV.first, Part); 3790 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3791 continue; 3792 Type *OriginalTy = I->getType(); 3793 Type *ScalarTruncatedTy = 3794 IntegerType::get(OriginalTy->getContext(), KV.second); 3795 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3796 OriginalTy->getVectorNumElements()); 3797 if (TruncatedTy == OriginalTy) 3798 continue; 3799 3800 IRBuilder<> B(cast<Instruction>(I)); 3801 auto ShrinkOperand = [&](Value *V) -> Value * { 3802 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3803 if (ZI->getSrcTy() == TruncatedTy) 3804 return ZI->getOperand(0); 3805 return B.CreateZExtOrTrunc(V, TruncatedTy); 3806 }; 3807 3808 // The actual instruction modification depends on the instruction type, 3809 // unfortunately. 3810 Value *NewI = nullptr; 3811 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3812 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3813 ShrinkOperand(BO->getOperand(1))); 3814 3815 // Any wrapping introduced by shrinking this operation shouldn't be 3816 // considered undefined behavior. So, we can't unconditionally copy 3817 // arithmetic wrapping flags to NewI. 3818 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3819 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3820 NewI = 3821 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3822 ShrinkOperand(CI->getOperand(1))); 3823 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3824 NewI = B.CreateSelect(SI->getCondition(), 3825 ShrinkOperand(SI->getTrueValue()), 3826 ShrinkOperand(SI->getFalseValue())); 3827 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3828 switch (CI->getOpcode()) { 3829 default: 3830 llvm_unreachable("Unhandled cast!"); 3831 case Instruction::Trunc: 3832 NewI = ShrinkOperand(CI->getOperand(0)); 3833 break; 3834 case Instruction::SExt: 3835 NewI = B.CreateSExtOrTrunc( 3836 CI->getOperand(0), 3837 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3838 break; 3839 case Instruction::ZExt: 3840 NewI = B.CreateZExtOrTrunc( 3841 CI->getOperand(0), 3842 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3843 break; 3844 } 3845 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3846 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3847 auto *O0 = B.CreateZExtOrTrunc( 3848 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3849 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3850 auto *O1 = B.CreateZExtOrTrunc( 3851 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3852 3853 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3854 } else if (isa<LoadInst>(I)) { 3855 // Don't do anything with the operands, just extend the result. 3856 continue; 3857 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3858 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3859 auto *O0 = B.CreateZExtOrTrunc( 3860 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3861 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3862 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3863 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3864 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3865 auto *O0 = B.CreateZExtOrTrunc( 3866 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3867 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3868 } else { 3869 llvm_unreachable("Unhandled instruction type!"); 3870 } 3871 3872 // Lastly, extend the result. 3873 NewI->takeName(cast<Instruction>(I)); 3874 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3875 I->replaceAllUsesWith(Res); 3876 cast<Instruction>(I)->eraseFromParent(); 3877 Erased.insert(I); 3878 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3879 } 3880 } 3881 3882 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3883 for (const auto &KV : Cost->getMinimalBitwidths()) { 3884 // If the value wasn't vectorized, we must maintain the original scalar 3885 // type. The absence of the value from VectorLoopValueMap indicates that it 3886 // wasn't vectorized. 3887 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3888 continue; 3889 for (unsigned Part = 0; Part < UF; ++Part) { 3890 Value *I = getOrCreateVectorValue(KV.first, Part); 3891 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3892 if (Inst && Inst->use_empty()) { 3893 Value *NewI = Inst->getOperand(0); 3894 Inst->eraseFromParent(); 3895 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3896 } 3897 } 3898 } 3899 } 3900 3901 void InnerLoopVectorizer::fixVectorizedLoop() { 3902 // Insert truncates and extends for any truncated instructions as hints to 3903 // InstCombine. 3904 if (VF > 1) 3905 truncateToMinimalBitwidths(); 3906 3907 // At this point every instruction in the original loop is widened to a 3908 // vector form. Now we need to fix the recurrences in the loop. These PHI 3909 // nodes are currently empty because we did not want to introduce cycles. 3910 // This is the second stage of vectorizing recurrences. 3911 fixCrossIterationPHIs(); 3912 3913 // Update the dominator tree. 3914 // 3915 // FIXME: After creating the structure of the new loop, the dominator tree is 3916 // no longer up-to-date, and it remains that way until we update it 3917 // here. An out-of-date dominator tree is problematic for SCEV, 3918 // because SCEVExpander uses it to guide code generation. The 3919 // vectorizer use SCEVExpanders in several places. Instead, we should 3920 // keep the dominator tree up-to-date as we go. 3921 updateAnalysis(); 3922 3923 // Fix-up external users of the induction variables. 3924 for (auto &Entry : *Legal->getInductionVars()) 3925 fixupIVUsers(Entry.first, Entry.second, 3926 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3927 IVEndValues[Entry.first], LoopMiddleBlock); 3928 3929 fixLCSSAPHIs(); 3930 predicateInstructions(); 3931 3932 // Remove redundant induction instructions. 3933 cse(LoopVectorBody); 3934 } 3935 3936 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3937 // In order to support recurrences we need to be able to vectorize Phi nodes. 3938 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3939 // stage #2: We now need to fix the recurrences by adding incoming edges to 3940 // the currently empty PHI nodes. At this point every instruction in the 3941 // original loop is widened to a vector form so we can use them to construct 3942 // the incoming edges. 3943 for (Instruction &I : *OrigLoop->getHeader()) { 3944 PHINode *Phi = dyn_cast<PHINode>(&I); 3945 if (!Phi) 3946 break; 3947 // Handle first-order recurrences and reductions that need to be fixed. 3948 if (Legal->isFirstOrderRecurrence(Phi)) 3949 fixFirstOrderRecurrence(Phi); 3950 else if (Legal->isReductionVariable(Phi)) 3951 fixReduction(Phi); 3952 } 3953 } 3954 3955 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3956 3957 // This is the second phase of vectorizing first-order recurrences. An 3958 // overview of the transformation is described below. Suppose we have the 3959 // following loop. 3960 // 3961 // for (int i = 0; i < n; ++i) 3962 // b[i] = a[i] - a[i - 1]; 3963 // 3964 // There is a first-order recurrence on "a". For this loop, the shorthand 3965 // scalar IR looks like: 3966 // 3967 // scalar.ph: 3968 // s_init = a[-1] 3969 // br scalar.body 3970 // 3971 // scalar.body: 3972 // i = phi [0, scalar.ph], [i+1, scalar.body] 3973 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3974 // s2 = a[i] 3975 // b[i] = s2 - s1 3976 // br cond, scalar.body, ... 3977 // 3978 // In this example, s1 is a recurrence because it's value depends on the 3979 // previous iteration. In the first phase of vectorization, we created a 3980 // temporary value for s1. We now complete the vectorization and produce the 3981 // shorthand vector IR shown below (for VF = 4, UF = 1). 3982 // 3983 // vector.ph: 3984 // v_init = vector(..., ..., ..., a[-1]) 3985 // br vector.body 3986 // 3987 // vector.body 3988 // i = phi [0, vector.ph], [i+4, vector.body] 3989 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3990 // v2 = a[i, i+1, i+2, i+3]; 3991 // v3 = vector(v1(3), v2(0, 1, 2)) 3992 // b[i, i+1, i+2, i+3] = v2 - v3 3993 // br cond, vector.body, middle.block 3994 // 3995 // middle.block: 3996 // x = v2(3) 3997 // br scalar.ph 3998 // 3999 // scalar.ph: 4000 // s_init = phi [x, middle.block], [a[-1], otherwise] 4001 // br scalar.body 4002 // 4003 // After execution completes the vector loop, we extract the next value of 4004 // the recurrence (x) to use as the initial value in the scalar loop. 4005 4006 // Get the original loop preheader and single loop latch. 4007 auto *Preheader = OrigLoop->getLoopPreheader(); 4008 auto *Latch = OrigLoop->getLoopLatch(); 4009 4010 // Get the initial and previous values of the scalar recurrence. 4011 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4012 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4013 4014 // Create a vector from the initial value. 4015 auto *VectorInit = ScalarInit; 4016 if (VF > 1) { 4017 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4018 VectorInit = Builder.CreateInsertElement( 4019 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4020 Builder.getInt32(VF - 1), "vector.recur.init"); 4021 } 4022 4023 // We constructed a temporary phi node in the first phase of vectorization. 4024 // This phi node will eventually be deleted. 4025 Builder.SetInsertPoint( 4026 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4027 4028 // Create a phi node for the new recurrence. The current value will either be 4029 // the initial value inserted into a vector or loop-varying vector value. 4030 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4031 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4032 4033 // Get the vectorized previous value of the last part UF - 1. It appears last 4034 // among all unrolled iterations, due to the order of their construction. 4035 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4036 4037 // Set the insertion point after the previous value if it is an instruction. 4038 // Note that the previous value may have been constant-folded so it is not 4039 // guaranteed to be an instruction in the vector loop. Also, if the previous 4040 // value is a phi node, we should insert after all the phi nodes to avoid 4041 // breaking basic block verification. 4042 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4043 isa<PHINode>(PreviousLastPart)) 4044 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4045 else 4046 Builder.SetInsertPoint( 4047 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4048 4049 // We will construct a vector for the recurrence by combining the values for 4050 // the current and previous iterations. This is the required shuffle mask. 4051 SmallVector<Constant *, 8> ShuffleMask(VF); 4052 ShuffleMask[0] = Builder.getInt32(VF - 1); 4053 for (unsigned I = 1; I < VF; ++I) 4054 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4055 4056 // The vector from which to take the initial value for the current iteration 4057 // (actual or unrolled). Initially, this is the vector phi node. 4058 Value *Incoming = VecPhi; 4059 4060 // Shuffle the current and previous vector and update the vector parts. 4061 for (unsigned Part = 0; Part < UF; ++Part) { 4062 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4063 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4064 auto *Shuffle = 4065 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4066 ConstantVector::get(ShuffleMask)) 4067 : Incoming; 4068 PhiPart->replaceAllUsesWith(Shuffle); 4069 cast<Instruction>(PhiPart)->eraseFromParent(); 4070 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4071 Incoming = PreviousPart; 4072 } 4073 4074 // Fix the latch value of the new recurrence in the vector loop. 4075 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4076 4077 // Extract the last vector element in the middle block. This will be the 4078 // initial value for the recurrence when jumping to the scalar loop. 4079 auto *ExtractForScalar = Incoming; 4080 if (VF > 1) { 4081 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4082 ExtractForScalar = Builder.CreateExtractElement( 4083 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4084 } 4085 // Extract the second last element in the middle block if the 4086 // Phi is used outside the loop. We need to extract the phi itself 4087 // and not the last element (the phi update in the current iteration). This 4088 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4089 // when the scalar loop is not run at all. 4090 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4091 if (VF > 1) 4092 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4093 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4094 // When loop is unrolled without vectorizing, initialize 4095 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4096 // `Incoming`. This is analogous to the vectorized case above: extracting the 4097 // second last element when VF > 1. 4098 else if (UF > 1) 4099 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4100 4101 // Fix the initial value of the original recurrence in the scalar loop. 4102 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4103 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4104 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4105 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4106 Start->addIncoming(Incoming, BB); 4107 } 4108 4109 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4110 Phi->setName("scalar.recur"); 4111 4112 // Finally, fix users of the recurrence outside the loop. The users will need 4113 // either the last value of the scalar recurrence or the last value of the 4114 // vector recurrence we extracted in the middle block. Since the loop is in 4115 // LCSSA form, we just need to find the phi node for the original scalar 4116 // recurrence in the exit block, and then add an edge for the middle block. 4117 for (auto &I : *LoopExitBlock) { 4118 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4119 if (!LCSSAPhi) 4120 break; 4121 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4122 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4123 break; 4124 } 4125 } 4126 } 4127 4128 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4129 Constant *Zero = Builder.getInt32(0); 4130 4131 // Get it's reduction variable descriptor. 4132 assert(Legal->isReductionVariable(Phi) && 4133 "Unable to find the reduction variable"); 4134 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4135 4136 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4137 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4138 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4139 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4140 RdxDesc.getMinMaxRecurrenceKind(); 4141 setDebugLocFromInst(Builder, ReductionStartValue); 4142 4143 // We need to generate a reduction vector from the incoming scalar. 4144 // To do so, we need to generate the 'identity' vector and override 4145 // one of the elements with the incoming scalar reduction. We need 4146 // to do it in the vector-loop preheader. 4147 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4148 4149 // This is the vector-clone of the value that leaves the loop. 4150 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4151 4152 // Find the reduction identity variable. Zero for addition, or, xor, 4153 // one for multiplication, -1 for And. 4154 Value *Identity; 4155 Value *VectorStart; 4156 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4157 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4158 // MinMax reduction have the start value as their identify. 4159 if (VF == 1) { 4160 VectorStart = Identity = ReductionStartValue; 4161 } else { 4162 VectorStart = Identity = 4163 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4164 } 4165 } else { 4166 // Handle other reduction kinds: 4167 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4168 RK, VecTy->getScalarType()); 4169 if (VF == 1) { 4170 Identity = Iden; 4171 // This vector is the Identity vector where the first element is the 4172 // incoming scalar reduction. 4173 VectorStart = ReductionStartValue; 4174 } else { 4175 Identity = ConstantVector::getSplat(VF, Iden); 4176 4177 // This vector is the Identity vector where the first element is the 4178 // incoming scalar reduction. 4179 VectorStart = 4180 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4181 } 4182 } 4183 4184 // Fix the vector-loop phi. 4185 4186 // Reductions do not have to start at zero. They can start with 4187 // any loop invariant values. 4188 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4189 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4190 for (unsigned Part = 0; Part < UF; ++Part) { 4191 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4192 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4193 // Make sure to add the reduction stat value only to the 4194 // first unroll part. 4195 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4196 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4197 cast<PHINode>(VecRdxPhi) 4198 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4199 } 4200 4201 // Before each round, move the insertion point right between 4202 // the PHIs and the values we are going to write. 4203 // This allows us to write both PHINodes and the extractelement 4204 // instructions. 4205 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4206 4207 setDebugLocFromInst(Builder, LoopExitInst); 4208 4209 // If the vector reduction can be performed in a smaller type, we truncate 4210 // then extend the loop exit value to enable InstCombine to evaluate the 4211 // entire expression in the smaller type. 4212 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4213 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4214 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4215 VectorParts RdxParts(UF); 4216 for (unsigned Part = 0; Part < UF; ++Part) { 4217 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4218 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4219 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4220 : Builder.CreateZExt(Trunc, VecTy); 4221 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4222 UI != RdxParts[Part]->user_end();) 4223 if (*UI != Trunc) { 4224 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4225 RdxParts[Part] = Extnd; 4226 } else { 4227 ++UI; 4228 } 4229 } 4230 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4231 for (unsigned Part = 0; Part < UF; ++Part) { 4232 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4233 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4234 } 4235 } 4236 4237 // Reduce all of the unrolled parts into a single vector. 4238 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4239 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4240 setDebugLocFromInst(Builder, ReducedPartRdx); 4241 for (unsigned Part = 1; Part < UF; ++Part) { 4242 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4243 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4244 // Floating point operations had to be 'fast' to enable the reduction. 4245 ReducedPartRdx = addFastMathFlag( 4246 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4247 ReducedPartRdx, "bin.rdx")); 4248 else 4249 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4250 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4251 } 4252 4253 if (VF > 1) { 4254 bool NoNaN = Legal->hasFunNoNaNAttr(); 4255 ReducedPartRdx = 4256 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4257 // If the reduction can be performed in a smaller type, we need to extend 4258 // the reduction to the wider type before we branch to the original loop. 4259 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4260 ReducedPartRdx = 4261 RdxDesc.isSigned() 4262 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4263 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4264 } 4265 4266 // Create a phi node that merges control-flow from the backedge-taken check 4267 // block and the middle block. 4268 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4269 LoopScalarPreHeader->getTerminator()); 4270 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4271 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4272 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4273 4274 // Now, we need to fix the users of the reduction variable 4275 // inside and outside of the scalar remainder loop. 4276 // We know that the loop is in LCSSA form. We need to update the 4277 // PHI nodes in the exit blocks. 4278 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4279 LEE = LoopExitBlock->end(); 4280 LEI != LEE; ++LEI) { 4281 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4282 if (!LCSSAPhi) 4283 break; 4284 4285 // All PHINodes need to have a single entry edge, or two if 4286 // we already fixed them. 4287 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4288 4289 // We found a reduction value exit-PHI. Update it with the 4290 // incoming bypass edge. 4291 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4292 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4293 } // end of the LCSSA phi scan. 4294 4295 // Fix the scalar loop reduction variable with the incoming reduction sum 4296 // from the vector body and from the backedge value. 4297 int IncomingEdgeBlockIdx = 4298 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4299 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4300 // Pick the other block. 4301 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4302 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4303 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4304 } 4305 4306 void InnerLoopVectorizer::fixLCSSAPHIs() { 4307 for (Instruction &LEI : *LoopExitBlock) { 4308 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4309 if (!LCSSAPhi) 4310 break; 4311 if (LCSSAPhi->getNumIncomingValues() == 1) { 4312 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4313 "Incoming value isn't loop invariant"); 4314 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4315 } 4316 } 4317 } 4318 4319 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4320 4321 // The basic block and loop containing the predicated instruction. 4322 auto *PredBB = PredInst->getParent(); 4323 auto *VectorLoop = LI->getLoopFor(PredBB); 4324 4325 // Initialize a worklist with the operands of the predicated instruction. 4326 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4327 4328 // Holds instructions that we need to analyze again. An instruction may be 4329 // reanalyzed if we don't yet know if we can sink it or not. 4330 SmallVector<Instruction *, 8> InstsToReanalyze; 4331 4332 // Returns true if a given use occurs in the predicated block. Phi nodes use 4333 // their operands in their corresponding predecessor blocks. 4334 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4335 auto *I = cast<Instruction>(U.getUser()); 4336 BasicBlock *BB = I->getParent(); 4337 if (auto *Phi = dyn_cast<PHINode>(I)) 4338 BB = Phi->getIncomingBlock( 4339 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4340 return BB == PredBB; 4341 }; 4342 4343 // Iteratively sink the scalarized operands of the predicated instruction 4344 // into the block we created for it. When an instruction is sunk, it's 4345 // operands are then added to the worklist. The algorithm ends after one pass 4346 // through the worklist doesn't sink a single instruction. 4347 bool Changed; 4348 do { 4349 4350 // Add the instructions that need to be reanalyzed to the worklist, and 4351 // reset the changed indicator. 4352 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4353 InstsToReanalyze.clear(); 4354 Changed = false; 4355 4356 while (!Worklist.empty()) { 4357 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4358 4359 // We can't sink an instruction if it is a phi node, is already in the 4360 // predicated block, is not in the loop, or may have side effects. 4361 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4362 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4363 continue; 4364 4365 // It's legal to sink the instruction if all its uses occur in the 4366 // predicated block. Otherwise, there's nothing to do yet, and we may 4367 // need to reanalyze the instruction. 4368 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4369 InstsToReanalyze.push_back(I); 4370 continue; 4371 } 4372 4373 // Move the instruction to the beginning of the predicated block, and add 4374 // it's operands to the worklist. 4375 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4376 Worklist.insert(I->op_begin(), I->op_end()); 4377 4378 // The sinking may have enabled other instructions to be sunk, so we will 4379 // need to iterate. 4380 Changed = true; 4381 } 4382 } while (Changed); 4383 } 4384 4385 void InnerLoopVectorizer::predicateInstructions() { 4386 4387 // For each instruction I marked for predication on value C, split I into its 4388 // own basic block to form an if-then construct over C. Since I may be fed by 4389 // an extractelement instruction or other scalar operand, we try to 4390 // iteratively sink its scalar operands into the predicated block. If I feeds 4391 // an insertelement instruction, we try to move this instruction into the 4392 // predicated block as well. For non-void types, a phi node will be created 4393 // for the resulting value (either vector or scalar). 4394 // 4395 // So for some predicated instruction, e.g. the conditional sdiv in: 4396 // 4397 // for.body: 4398 // ... 4399 // %add = add nsw i32 %mul, %0 4400 // %cmp5 = icmp sgt i32 %2, 7 4401 // br i1 %cmp5, label %if.then, label %if.end 4402 // 4403 // if.then: 4404 // %div = sdiv i32 %0, %1 4405 // br label %if.end 4406 // 4407 // if.end: 4408 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4409 // 4410 // the sdiv at this point is scalarized and if-converted using a select. 4411 // The inactive elements in the vector are not used, but the predicated 4412 // instruction is still executed for all vector elements, essentially: 4413 // 4414 // vector.body: 4415 // ... 4416 // %17 = add nsw <2 x i32> %16, %wide.load 4417 // %29 = extractelement <2 x i32> %wide.load, i32 0 4418 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4419 // %31 = sdiv i32 %29, %30 4420 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4421 // %35 = extractelement <2 x i32> %wide.load, i32 1 4422 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4423 // %37 = sdiv i32 %35, %36 4424 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4425 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4426 // 4427 // Predication will now re-introduce the original control flow to avoid false 4428 // side-effects by the sdiv instructions on the inactive elements, yielding 4429 // (after cleanup): 4430 // 4431 // vector.body: 4432 // ... 4433 // %5 = add nsw <2 x i32> %4, %wide.load 4434 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4435 // %9 = extractelement <2 x i1> %8, i32 0 4436 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4437 // 4438 // pred.sdiv.if: 4439 // %10 = extractelement <2 x i32> %wide.load, i32 0 4440 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4441 // %12 = sdiv i32 %10, %11 4442 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4443 // br label %pred.sdiv.continue 4444 // 4445 // pred.sdiv.continue: 4446 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4447 // %15 = extractelement <2 x i1> %8, i32 1 4448 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4449 // 4450 // pred.sdiv.if54: 4451 // %16 = extractelement <2 x i32> %wide.load, i32 1 4452 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4453 // %18 = sdiv i32 %16, %17 4454 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4455 // br label %pred.sdiv.continue55 4456 // 4457 // pred.sdiv.continue55: 4458 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4459 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4460 4461 for (auto KV : PredicatedInstructions) { 4462 BasicBlock::iterator I(KV.first); 4463 BasicBlock *Head = I->getParent(); 4464 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4465 /*BranchWeights=*/nullptr, DT, LI); 4466 I->moveBefore(T); 4467 sinkScalarOperands(&*I); 4468 4469 BasicBlock *PredicatedBlock = I->getParent(); 4470 Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName(); 4471 PredicatedBlock->setName(BBNamePrefix + ".if"); 4472 PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue"); 4473 4474 // If the instruction is non-void create a Phi node at reconvergence point. 4475 if (!I->getType()->isVoidTy()) { 4476 Value *IncomingTrue = nullptr; 4477 Value *IncomingFalse = nullptr; 4478 4479 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4480 // If the predicated instruction is feeding an insert-element, move it 4481 // into the Then block; Phi node will be created for the vector. 4482 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4483 IEI->moveBefore(T); 4484 IncomingTrue = IEI; // the new vector with the inserted element. 4485 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4486 } else { 4487 // Phi node will be created for the scalar predicated instruction. 4488 IncomingTrue = &*I; 4489 IncomingFalse = UndefValue::get(I->getType()); 4490 } 4491 4492 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4493 assert(PostDom && "Then block has multiple successors"); 4494 PHINode *Phi = 4495 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4496 IncomingTrue->replaceAllUsesWith(Phi); 4497 Phi->addIncoming(IncomingFalse, Head); 4498 Phi->addIncoming(IncomingTrue, I->getParent()); 4499 } 4500 } 4501 4502 DEBUG(DT->verifyDomTree()); 4503 } 4504 4505 InnerLoopVectorizer::VectorParts 4506 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4507 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4508 4509 // Look for cached value. 4510 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4511 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4512 if (ECEntryIt != EdgeMaskCache.end()) 4513 return ECEntryIt->second; 4514 4515 VectorParts SrcMask = createBlockInMask(Src); 4516 4517 // The terminator has to be a branch inst! 4518 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4519 assert(BI && "Unexpected terminator found"); 4520 4521 if (BI->isConditional()) { 4522 4523 VectorParts EdgeMask(UF); 4524 for (unsigned Part = 0; Part < UF; ++Part) { 4525 auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part); 4526 if (BI->getSuccessor(0) != Dst) 4527 EdgeMaskPart = Builder.CreateNot(EdgeMaskPart); 4528 4529 EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]); 4530 EdgeMask[Part] = EdgeMaskPart; 4531 } 4532 4533 EdgeMaskCache[Edge] = EdgeMask; 4534 return EdgeMask; 4535 } 4536 4537 EdgeMaskCache[Edge] = SrcMask; 4538 return SrcMask; 4539 } 4540 4541 InnerLoopVectorizer::VectorParts 4542 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4543 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4544 4545 // Look for cached value. 4546 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4547 if (BCEntryIt != BlockMaskCache.end()) 4548 return BCEntryIt->second; 4549 4550 VectorParts BlockMask(UF); 4551 4552 // Loop incoming mask is all-one. 4553 if (OrigLoop->getHeader() == BB) { 4554 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4555 for (unsigned Part = 0; Part < UF; ++Part) 4556 BlockMask[Part] = getOrCreateVectorValue(C, Part); 4557 BlockMaskCache[BB] = BlockMask; 4558 return BlockMask; 4559 } 4560 4561 // This is the block mask. We OR all incoming edges, and with zero. 4562 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4563 for (unsigned Part = 0; Part < UF; ++Part) 4564 BlockMask[Part] = getOrCreateVectorValue(Zero, Part); 4565 4566 // For each pred: 4567 for (pred_iterator It = pred_begin(BB), E = pred_end(BB); It != E; ++It) { 4568 VectorParts EM = createEdgeMask(*It, BB); 4569 for (unsigned Part = 0; Part < UF; ++Part) 4570 BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EM[Part]); 4571 } 4572 4573 BlockMaskCache[BB] = BlockMask; 4574 return BlockMask; 4575 } 4576 4577 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4578 unsigned VF) { 4579 PHINode *P = cast<PHINode>(PN); 4580 // In order to support recurrences we need to be able to vectorize Phi nodes. 4581 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4582 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4583 // this value when we vectorize all of the instructions that use the PHI. 4584 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4585 for (unsigned Part = 0; Part < UF; ++Part) { 4586 // This is phase one of vectorizing PHIs. 4587 Type *VecTy = 4588 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4589 Value *EntryPart = PHINode::Create( 4590 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4591 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4592 } 4593 return; 4594 } 4595 4596 setDebugLocFromInst(Builder, P); 4597 // Check for PHI nodes that are lowered to vector selects. 4598 if (P->getParent() != OrigLoop->getHeader()) { 4599 // We know that all PHIs in non-header blocks are converted into 4600 // selects, so we don't have to worry about the insertion order and we 4601 // can just use the builder. 4602 // At this point we generate the predication tree. There may be 4603 // duplications since this is a simple recursive scan, but future 4604 // optimizations will clean it up. 4605 4606 unsigned NumIncoming = P->getNumIncomingValues(); 4607 4608 // Generate a sequence of selects of the form: 4609 // SELECT(Mask3, In3, 4610 // SELECT(Mask2, In2, 4611 // ( ...))) 4612 VectorParts Entry(UF); 4613 for (unsigned In = 0; In < NumIncoming; In++) { 4614 VectorParts Cond = 4615 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4616 4617 for (unsigned Part = 0; Part < UF; ++Part) { 4618 Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part); 4619 // We might have single edge PHIs (blocks) - use an identity 4620 // 'select' for the first PHI operand. 4621 if (In == 0) 4622 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, In0); 4623 else 4624 // Select between the current value and the previous incoming edge 4625 // based on the incoming mask. 4626 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part], 4627 "predphi"); 4628 } 4629 } 4630 for (unsigned Part = 0; Part < UF; ++Part) 4631 VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]); 4632 return; 4633 } 4634 4635 // This PHINode must be an induction variable. 4636 // Make sure that we know about it. 4637 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4638 4639 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4640 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4641 4642 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4643 // which can be found from the original scalar operations. 4644 switch (II.getKind()) { 4645 case InductionDescriptor::IK_NoInduction: 4646 llvm_unreachable("Unknown induction"); 4647 case InductionDescriptor::IK_IntInduction: 4648 case InductionDescriptor::IK_FpInduction: 4649 return widenIntOrFpInduction(P); 4650 case InductionDescriptor::IK_PtrInduction: { 4651 // Handle the pointer induction variable case. 4652 assert(P->getType()->isPointerTy() && "Unexpected type."); 4653 // This is the normalized GEP that starts counting at zero. 4654 Value *PtrInd = Induction; 4655 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4656 // Determine the number of scalars we need to generate for each unroll 4657 // iteration. If the instruction is uniform, we only need to generate the 4658 // first lane. Otherwise, we generate all VF values. 4659 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4660 // These are the scalar results. Notice that we don't generate vector GEPs 4661 // because scalar GEPs result in better code. 4662 for (unsigned Part = 0; Part < UF; ++Part) { 4663 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4664 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4665 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4666 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4667 SclrGep->setName("next.gep"); 4668 VectorLoopValueMap.setScalarValue(P, Part, Lane, SclrGep); 4669 } 4670 } 4671 return; 4672 } 4673 } 4674 } 4675 4676 /// A helper function for checking whether an integer division-related 4677 /// instruction may divide by zero (in which case it must be predicated if 4678 /// executed conditionally in the scalar code). 4679 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4680 /// Non-zero divisors that are non compile-time constants will not be 4681 /// converted into multiplication, so we will still end up scalarizing 4682 /// the division, but can do so w/o predication. 4683 static bool mayDivideByZero(Instruction &I) { 4684 assert((I.getOpcode() == Instruction::UDiv || 4685 I.getOpcode() == Instruction::SDiv || 4686 I.getOpcode() == Instruction::URem || 4687 I.getOpcode() == Instruction::SRem) && 4688 "Unexpected instruction"); 4689 Value *Divisor = I.getOperand(1); 4690 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4691 return !CInt || CInt->isZero(); 4692 } 4693 4694 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4695 // Scalarize instructions that should remain scalar after vectorization. 4696 if (VF > 1 && 4697 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4698 shouldScalarizeInstruction(&I)) { 4699 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4700 return; 4701 } 4702 4703 switch (I.getOpcode()) { 4704 case Instruction::Br: 4705 // Nothing to do for PHIs and BR, since we already took care of the 4706 // loop control flow instructions. 4707 break; 4708 case Instruction::PHI: { 4709 // Vectorize PHINodes. 4710 widenPHIInstruction(&I, UF, VF); 4711 break; 4712 } // End of PHI. 4713 case Instruction::GetElementPtr: { 4714 // Construct a vector GEP by widening the operands of the scalar GEP as 4715 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4716 // results in a vector of pointers when at least one operand of the GEP 4717 // is vector-typed. Thus, to keep the representation compact, we only use 4718 // vector-typed operands for loop-varying values. 4719 auto *GEP = cast<GetElementPtrInst>(&I); 4720 4721 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4722 // If we are vectorizing, but the GEP has only loop-invariant operands, 4723 // the GEP we build (by only using vector-typed operands for 4724 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4725 // produce a vector of pointers, we need to either arbitrarily pick an 4726 // operand to broadcast, or broadcast a clone of the original GEP. 4727 // Here, we broadcast a clone of the original. 4728 // 4729 // TODO: If at some point we decide to scalarize instructions having 4730 // loop-invariant operands, this special case will no longer be 4731 // required. We would add the scalarization decision to 4732 // collectLoopScalars() and teach getVectorValue() to broadcast 4733 // the lane-zero scalar value. 4734 auto *Clone = Builder.Insert(GEP->clone()); 4735 for (unsigned Part = 0; Part < UF; ++Part) { 4736 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4737 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4738 addMetadata(EntryPart, GEP); 4739 } 4740 } else { 4741 // If the GEP has at least one loop-varying operand, we are sure to 4742 // produce a vector of pointers. But if we are only unrolling, we want 4743 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4744 // produce with the code below will be scalar (if VF == 1) or vector 4745 // (otherwise). Note that for the unroll-only case, we still maintain 4746 // values in the vector mapping with initVector, as we do for other 4747 // instructions. 4748 for (unsigned Part = 0; Part < UF; ++Part) { 4749 4750 // The pointer operand of the new GEP. If it's loop-invariant, we 4751 // won't broadcast it. 4752 auto *Ptr = 4753 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4754 ? GEP->getPointerOperand() 4755 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4756 4757 // Collect all the indices for the new GEP. If any index is 4758 // loop-invariant, we won't broadcast it. 4759 SmallVector<Value *, 4> Indices; 4760 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4761 if (OrigLoop->isLoopInvariant(U.get())) 4762 Indices.push_back(U.get()); 4763 else 4764 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4765 } 4766 4767 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4768 // but it should be a vector, otherwise. 4769 auto *NewGEP = GEP->isInBounds() 4770 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4771 : Builder.CreateGEP(Ptr, Indices); 4772 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4773 "NewGEP is not a pointer vector"); 4774 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4775 addMetadata(NewGEP, GEP); 4776 } 4777 } 4778 4779 break; 4780 } 4781 case Instruction::UDiv: 4782 case Instruction::SDiv: 4783 case Instruction::SRem: 4784 case Instruction::URem: 4785 // Scalarize with predication if this instruction may divide by zero and 4786 // block execution is conditional, otherwise fallthrough. 4787 if (Legal->isScalarWithPredication(&I)) { 4788 scalarizeInstruction(&I, true); 4789 break; 4790 } 4791 LLVM_FALLTHROUGH; 4792 case Instruction::Add: 4793 case Instruction::FAdd: 4794 case Instruction::Sub: 4795 case Instruction::FSub: 4796 case Instruction::Mul: 4797 case Instruction::FMul: 4798 case Instruction::FDiv: 4799 case Instruction::FRem: 4800 case Instruction::Shl: 4801 case Instruction::LShr: 4802 case Instruction::AShr: 4803 case Instruction::And: 4804 case Instruction::Or: 4805 case Instruction::Xor: { 4806 // Just widen binops. 4807 auto *BinOp = cast<BinaryOperator>(&I); 4808 setDebugLocFromInst(Builder, BinOp); 4809 4810 for (unsigned Part = 0; Part < UF; ++Part) { 4811 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4812 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4813 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4814 4815 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4816 VecOp->copyIRFlags(BinOp); 4817 4818 // Use this vector value for all users of the original instruction. 4819 VectorLoopValueMap.setVectorValue(&I, Part, V); 4820 addMetadata(V, BinOp); 4821 } 4822 4823 break; 4824 } 4825 case Instruction::Select: { 4826 // Widen selects. 4827 // If the selector is loop invariant we can create a select 4828 // instruction with a scalar condition. Otherwise, use vector-select. 4829 auto *SE = PSE.getSE(); 4830 bool InvariantCond = 4831 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4832 setDebugLocFromInst(Builder, &I); 4833 4834 // The condition can be loop invariant but still defined inside the 4835 // loop. This means that we can't just use the original 'cond' value. 4836 // We have to take the 'vectorized' value and pick the first lane. 4837 // Instcombine will make this a no-op. 4838 4839 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), 0, 0); 4840 4841 for (unsigned Part = 0; Part < UF; ++Part) { 4842 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4843 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4844 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4845 Value *Sel = 4846 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4847 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4848 addMetadata(Sel, &I); 4849 } 4850 4851 break; 4852 } 4853 4854 case Instruction::ICmp: 4855 case Instruction::FCmp: { 4856 // Widen compares. Generate vector compares. 4857 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4858 auto *Cmp = dyn_cast<CmpInst>(&I); 4859 setDebugLocFromInst(Builder, Cmp); 4860 for (unsigned Part = 0; Part < UF; ++Part) { 4861 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4862 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4863 Value *C = nullptr; 4864 if (FCmp) { 4865 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4866 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4867 } else { 4868 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4869 } 4870 VectorLoopValueMap.setVectorValue(&I, Part, C); 4871 addMetadata(C, &I); 4872 } 4873 4874 break; 4875 } 4876 4877 case Instruction::Store: 4878 case Instruction::Load: 4879 vectorizeMemoryInstruction(&I); 4880 break; 4881 case Instruction::ZExt: 4882 case Instruction::SExt: 4883 case Instruction::FPToUI: 4884 case Instruction::FPToSI: 4885 case Instruction::FPExt: 4886 case Instruction::PtrToInt: 4887 case Instruction::IntToPtr: 4888 case Instruction::SIToFP: 4889 case Instruction::UIToFP: 4890 case Instruction::Trunc: 4891 case Instruction::FPTrunc: 4892 case Instruction::BitCast: { 4893 auto *CI = dyn_cast<CastInst>(&I); 4894 setDebugLocFromInst(Builder, CI); 4895 4896 // Optimize the special case where the source is a constant integer 4897 // induction variable. Notice that we can only optimize the 'trunc' case 4898 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4899 // (c) other casts depend on pointer size. 4900 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4901 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4902 cast<TruncInst>(CI)); 4903 break; 4904 } 4905 4906 /// Vectorize casts. 4907 Type *DestTy = 4908 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4909 4910 for (unsigned Part = 0; Part < UF; ++Part) { 4911 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4912 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4913 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4914 addMetadata(Cast, &I); 4915 } 4916 break; 4917 } 4918 4919 case Instruction::Call: { 4920 // Ignore dbg intrinsics. 4921 if (isa<DbgInfoIntrinsic>(I)) 4922 break; 4923 setDebugLocFromInst(Builder, &I); 4924 4925 Module *M = I.getParent()->getParent()->getParent(); 4926 auto *CI = cast<CallInst>(&I); 4927 4928 StringRef FnName = CI->getCalledFunction()->getName(); 4929 Function *F = CI->getCalledFunction(); 4930 Type *RetTy = ToVectorTy(CI->getType(), VF); 4931 SmallVector<Type *, 4> Tys; 4932 for (Value *ArgOperand : CI->arg_operands()) 4933 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4934 4935 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4936 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4937 ID == Intrinsic::lifetime_start)) { 4938 scalarizeInstruction(&I); 4939 break; 4940 } 4941 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4942 // version of the instruction. 4943 // Is it beneficial to perform intrinsic call compared to lib call? 4944 bool NeedToScalarize; 4945 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4946 bool UseVectorIntrinsic = 4947 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4948 if (!UseVectorIntrinsic && NeedToScalarize) { 4949 scalarizeInstruction(&I); 4950 break; 4951 } 4952 4953 for (unsigned Part = 0; Part < UF; ++Part) { 4954 SmallVector<Value *, 4> Args; 4955 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4956 Value *Arg = CI->getArgOperand(i); 4957 // Some intrinsics have a scalar argument - don't replace it with a 4958 // vector. 4959 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4960 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4961 Args.push_back(Arg); 4962 } 4963 4964 Function *VectorF; 4965 if (UseVectorIntrinsic) { 4966 // Use vector version of the intrinsic. 4967 Type *TysForDecl[] = {CI->getType()}; 4968 if (VF > 1) 4969 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4970 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4971 } else { 4972 // Use vector version of the library call. 4973 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4974 assert(!VFnName.empty() && "Vector function name is empty."); 4975 VectorF = M->getFunction(VFnName); 4976 if (!VectorF) { 4977 // Generate a declaration 4978 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4979 VectorF = 4980 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4981 VectorF->copyAttributesFrom(F); 4982 } 4983 } 4984 assert(VectorF && "Can't create vector function."); 4985 4986 SmallVector<OperandBundleDef, 1> OpBundles; 4987 CI->getOperandBundlesAsDefs(OpBundles); 4988 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4989 4990 if (isa<FPMathOperator>(V)) 4991 V->copyFastMathFlags(CI); 4992 4993 VectorLoopValueMap.setVectorValue(&I, Part, V); 4994 addMetadata(V, &I); 4995 } 4996 4997 break; 4998 } 4999 5000 default: 5001 // All other instructions are unsupported. Scalarize them. 5002 scalarizeInstruction(&I); 5003 break; 5004 } // end of switch. 5005 } 5006 5007 void InnerLoopVectorizer::updateAnalysis() { 5008 // Forget the original basic block. 5009 PSE.getSE()->forgetLoop(OrigLoop); 5010 5011 // Update the dominator tree information. 5012 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5013 "Entry does not dominate exit."); 5014 5015 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5016 LoopVectorPreHeader); 5017 DT->addNewBlock(LoopMiddleBlock, 5018 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5019 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5020 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5021 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5022 5023 DEBUG(DT->verifyDomTree()); 5024 } 5025 5026 /// \brief Check whether it is safe to if-convert this phi node. 5027 /// 5028 /// Phi nodes with constant expressions that can trap are not safe to if 5029 /// convert. 5030 static bool canIfConvertPHINodes(BasicBlock *BB) { 5031 for (Instruction &I : *BB) { 5032 auto *Phi = dyn_cast<PHINode>(&I); 5033 if (!Phi) 5034 return true; 5035 for (Value *V : Phi->incoming_values()) 5036 if (auto *C = dyn_cast<Constant>(V)) 5037 if (C->canTrap()) 5038 return false; 5039 } 5040 return true; 5041 } 5042 5043 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5044 if (!EnableIfConversion) { 5045 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5046 << "if-conversion is disabled"); 5047 return false; 5048 } 5049 5050 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5051 5052 // A list of pointers that we can safely read and write to. 5053 SmallPtrSet<Value *, 8> SafePointes; 5054 5055 // Collect safe addresses. 5056 for (BasicBlock *BB : TheLoop->blocks()) { 5057 if (blockNeedsPredication(BB)) 5058 continue; 5059 5060 for (Instruction &I : *BB) 5061 if (auto *Ptr = getPointerOperand(&I)) 5062 SafePointes.insert(Ptr); 5063 } 5064 5065 // Collect the blocks that need predication. 5066 BasicBlock *Header = TheLoop->getHeader(); 5067 for (BasicBlock *BB : TheLoop->blocks()) { 5068 // We don't support switch statements inside loops. 5069 if (!isa<BranchInst>(BB->getTerminator())) { 5070 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5071 << "loop contains a switch statement"); 5072 return false; 5073 } 5074 5075 // We must be able to predicate all blocks that need to be predicated. 5076 if (blockNeedsPredication(BB)) { 5077 if (!blockCanBePredicated(BB, SafePointes)) { 5078 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5079 << "control flow cannot be substituted for a select"); 5080 return false; 5081 } 5082 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5083 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5084 << "control flow cannot be substituted for a select"); 5085 return false; 5086 } 5087 } 5088 5089 // We can if-convert this loop. 5090 return true; 5091 } 5092 5093 bool LoopVectorizationLegality::canVectorize() { 5094 // Store the result and return it at the end instead of exiting early, in case 5095 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5096 bool Result = true; 5097 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5098 // be canonicalized. 5099 if (!TheLoop->getLoopPreheader()) { 5100 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5101 << "loop control flow is not understood by vectorizer"); 5102 if (ORE->allowExtraAnalysis()) 5103 Result = false; 5104 else 5105 return false; 5106 } 5107 5108 // FIXME: The code is currently dead, since the loop gets sent to 5109 // LoopVectorizationLegality is already an innermost loop. 5110 // 5111 // We can only vectorize innermost loops. 5112 if (!TheLoop->empty()) { 5113 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5114 << "loop is not the innermost loop"); 5115 if (ORE->allowExtraAnalysis()) 5116 Result = false; 5117 else 5118 return false; 5119 } 5120 5121 // We must have a single backedge. 5122 if (TheLoop->getNumBackEdges() != 1) { 5123 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5124 << "loop control flow is not understood by vectorizer"); 5125 if (ORE->allowExtraAnalysis()) 5126 Result = false; 5127 else 5128 return false; 5129 } 5130 5131 // We must have a single exiting block. 5132 if (!TheLoop->getExitingBlock()) { 5133 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5134 << "loop control flow is not understood by vectorizer"); 5135 if (ORE->allowExtraAnalysis()) 5136 Result = false; 5137 else 5138 return false; 5139 } 5140 5141 // We only handle bottom-tested loops, i.e. loop in which the condition is 5142 // checked at the end of each iteration. With that we can assume that all 5143 // instructions in the loop are executed the same number of times. 5144 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5145 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5146 << "loop control flow is not understood by vectorizer"); 5147 if (ORE->allowExtraAnalysis()) 5148 Result = false; 5149 else 5150 return false; 5151 } 5152 5153 // We need to have a loop header. 5154 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5155 << '\n'); 5156 5157 // Check if we can if-convert non-single-bb loops. 5158 unsigned NumBlocks = TheLoop->getNumBlocks(); 5159 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5160 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5161 if (ORE->allowExtraAnalysis()) 5162 Result = false; 5163 else 5164 return false; 5165 } 5166 5167 // Check if we can vectorize the instructions and CFG in this loop. 5168 if (!canVectorizeInstrs()) { 5169 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5170 if (ORE->allowExtraAnalysis()) 5171 Result = false; 5172 else 5173 return false; 5174 } 5175 5176 // Go over each instruction and look at memory deps. 5177 if (!canVectorizeMemory()) { 5178 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5179 if (ORE->allowExtraAnalysis()) 5180 Result = false; 5181 else 5182 return false; 5183 } 5184 5185 DEBUG(dbgs() << "LV: We can vectorize this loop" 5186 << (LAI->getRuntimePointerChecking()->Need 5187 ? " (with a runtime bound check)" 5188 : "") 5189 << "!\n"); 5190 5191 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5192 5193 // If an override option has been passed in for interleaved accesses, use it. 5194 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5195 UseInterleaved = EnableInterleavedMemAccesses; 5196 5197 // Analyze interleaved memory accesses. 5198 if (UseInterleaved) 5199 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5200 5201 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5202 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5203 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5204 5205 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5206 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5207 << "Too many SCEV assumptions need to be made and checked " 5208 << "at runtime"); 5209 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5210 if (ORE->allowExtraAnalysis()) 5211 Result = false; 5212 else 5213 return false; 5214 } 5215 5216 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5217 // we can vectorize, and at this point we don't have any other mem analysis 5218 // which may limit our maximum vectorization factor, so just return true with 5219 // no restrictions. 5220 return Result; 5221 } 5222 5223 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5224 if (Ty->isPointerTy()) 5225 return DL.getIntPtrType(Ty); 5226 5227 // It is possible that char's or short's overflow when we ask for the loop's 5228 // trip count, work around this by changing the type size. 5229 if (Ty->getScalarSizeInBits() < 32) 5230 return Type::getInt32Ty(Ty->getContext()); 5231 5232 return Ty; 5233 } 5234 5235 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5236 Ty0 = convertPointerToIntegerType(DL, Ty0); 5237 Ty1 = convertPointerToIntegerType(DL, Ty1); 5238 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5239 return Ty0; 5240 return Ty1; 5241 } 5242 5243 /// \brief Check that the instruction has outside loop users and is not an 5244 /// identified reduction variable. 5245 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5246 SmallPtrSetImpl<Value *> &AllowedExit) { 5247 // Reduction and Induction instructions are allowed to have exit users. All 5248 // other instructions must not have external users. 5249 if (!AllowedExit.count(Inst)) 5250 // Check that all of the users of the loop are inside the BB. 5251 for (User *U : Inst->users()) { 5252 Instruction *UI = cast<Instruction>(U); 5253 // This user may be a reduction exit value. 5254 if (!TheLoop->contains(UI)) { 5255 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5256 return true; 5257 } 5258 } 5259 return false; 5260 } 5261 5262 void LoopVectorizationLegality::addInductionPhi( 5263 PHINode *Phi, const InductionDescriptor &ID, 5264 SmallPtrSetImpl<Value *> &AllowedExit) { 5265 Inductions[Phi] = ID; 5266 Type *PhiTy = Phi->getType(); 5267 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5268 5269 // Get the widest type. 5270 if (!PhiTy->isFloatingPointTy()) { 5271 if (!WidestIndTy) 5272 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5273 else 5274 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5275 } 5276 5277 // Int inductions are special because we only allow one IV. 5278 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5279 ID.getConstIntStepValue() && 5280 ID.getConstIntStepValue()->isOne() && 5281 isa<Constant>(ID.getStartValue()) && 5282 cast<Constant>(ID.getStartValue())->isNullValue()) { 5283 5284 // Use the phi node with the widest type as induction. Use the last 5285 // one if there are multiple (no good reason for doing this other 5286 // than it is expedient). We've checked that it begins at zero and 5287 // steps by one, so this is a canonical induction variable. 5288 if (!PrimaryInduction || PhiTy == WidestIndTy) 5289 PrimaryInduction = Phi; 5290 } 5291 5292 // Both the PHI node itself, and the "post-increment" value feeding 5293 // back into the PHI node may have external users. 5294 // We can allow those uses, except if the SCEVs we have for them rely 5295 // on predicates that only hold within the loop, since allowing the exit 5296 // currently means re-using this SCEV outside the loop. 5297 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5298 AllowedExit.insert(Phi); 5299 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5300 } 5301 5302 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5303 return; 5304 } 5305 5306 bool LoopVectorizationLegality::canVectorizeInstrs() { 5307 BasicBlock *Header = TheLoop->getHeader(); 5308 5309 // Look for the attribute signaling the absence of NaNs. 5310 Function &F = *Header->getParent(); 5311 HasFunNoNaNAttr = 5312 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5313 5314 // For each block in the loop. 5315 for (BasicBlock *BB : TheLoop->blocks()) { 5316 // Scan the instructions in the block and look for hazards. 5317 for (Instruction &I : *BB) { 5318 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5319 Type *PhiTy = Phi->getType(); 5320 // Check that this PHI type is allowed. 5321 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5322 !PhiTy->isPointerTy()) { 5323 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5324 << "loop control flow is not understood by vectorizer"); 5325 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5326 return false; 5327 } 5328 5329 // If this PHINode is not in the header block, then we know that we 5330 // can convert it to select during if-conversion. No need to check if 5331 // the PHIs in this block are induction or reduction variables. 5332 if (BB != Header) { 5333 // Check that this instruction has no outside users or is an 5334 // identified reduction value with an outside user. 5335 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5336 continue; 5337 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5338 << "value could not be identified as " 5339 "an induction or reduction variable"); 5340 return false; 5341 } 5342 5343 // We only allow if-converted PHIs with exactly two incoming values. 5344 if (Phi->getNumIncomingValues() != 2) { 5345 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5346 << "control flow not understood by vectorizer"); 5347 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5348 return false; 5349 } 5350 5351 RecurrenceDescriptor RedDes; 5352 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5353 if (RedDes.hasUnsafeAlgebra()) 5354 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5355 AllowedExit.insert(RedDes.getLoopExitInstr()); 5356 Reductions[Phi] = RedDes; 5357 continue; 5358 } 5359 5360 InductionDescriptor ID; 5361 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5362 addInductionPhi(Phi, ID, AllowedExit); 5363 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5364 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5365 continue; 5366 } 5367 5368 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5369 SinkAfter, DT)) { 5370 FirstOrderRecurrences.insert(Phi); 5371 continue; 5372 } 5373 5374 // As a last resort, coerce the PHI to a AddRec expression 5375 // and re-try classifying it a an induction PHI. 5376 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5377 addInductionPhi(Phi, ID, AllowedExit); 5378 continue; 5379 } 5380 5381 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5382 << "value that could not be identified as " 5383 "reduction is used outside the loop"); 5384 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5385 return false; 5386 } // end of PHI handling 5387 5388 // We handle calls that: 5389 // * Are debug info intrinsics. 5390 // * Have a mapping to an IR intrinsic. 5391 // * Have a vector version available. 5392 auto *CI = dyn_cast<CallInst>(&I); 5393 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5394 !isa<DbgInfoIntrinsic>(CI) && 5395 !(CI->getCalledFunction() && TLI && 5396 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5397 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5398 << "call instruction cannot be vectorized"); 5399 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5400 return false; 5401 } 5402 5403 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5404 // second argument is the same (i.e. loop invariant) 5405 if (CI && hasVectorInstrinsicScalarOpd( 5406 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5407 auto *SE = PSE.getSE(); 5408 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5409 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5410 << "intrinsic instruction cannot be vectorized"); 5411 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5412 return false; 5413 } 5414 } 5415 5416 // Check that the instruction return type is vectorizable. 5417 // Also, we can't vectorize extractelement instructions. 5418 if ((!VectorType::isValidElementType(I.getType()) && 5419 !I.getType()->isVoidTy()) || 5420 isa<ExtractElementInst>(I)) { 5421 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5422 << "instruction return type cannot be vectorized"); 5423 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5424 return false; 5425 } 5426 5427 // Check that the stored type is vectorizable. 5428 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5429 Type *T = ST->getValueOperand()->getType(); 5430 if (!VectorType::isValidElementType(T)) { 5431 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5432 << "store instruction cannot be vectorized"); 5433 return false; 5434 } 5435 5436 // FP instructions can allow unsafe algebra, thus vectorizable by 5437 // non-IEEE-754 compliant SIMD units. 5438 // This applies to floating-point math operations and calls, not memory 5439 // operations, shuffles, or casts, as they don't change precision or 5440 // semantics. 5441 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5442 !I.hasUnsafeAlgebra()) { 5443 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5444 Hints->setPotentiallyUnsafe(); 5445 } 5446 5447 // Reduction instructions are allowed to have exit users. 5448 // All other instructions must not have external users. 5449 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5450 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5451 << "value cannot be used outside the loop"); 5452 return false; 5453 } 5454 5455 } // next instr. 5456 } 5457 5458 if (!PrimaryInduction) { 5459 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5460 if (Inductions.empty()) { 5461 ORE->emit(createMissedAnalysis("NoInductionVariable") 5462 << "loop induction variable could not be identified"); 5463 return false; 5464 } 5465 } 5466 5467 // Now we know the widest induction type, check if our found induction 5468 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5469 // will create another. 5470 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5471 PrimaryInduction = nullptr; 5472 5473 return true; 5474 } 5475 5476 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5477 5478 // We should not collect Scalars more than once per VF. Right now, this 5479 // function is called from collectUniformsAndScalars(), which already does 5480 // this check. Collecting Scalars for VF=1 does not make any sense. 5481 assert(VF >= 2 && !Scalars.count(VF) && 5482 "This function should not be visited twice for the same VF"); 5483 5484 SmallSetVector<Instruction *, 8> Worklist; 5485 5486 // These sets are used to seed the analysis with pointers used by memory 5487 // accesses that will remain scalar. 5488 SmallSetVector<Instruction *, 8> ScalarPtrs; 5489 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5490 5491 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5492 // The pointer operands of loads and stores will be scalar as long as the 5493 // memory access is not a gather or scatter operation. The value operand of a 5494 // store will remain scalar if the store is scalarized. 5495 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5496 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5497 assert(WideningDecision != CM_Unknown && 5498 "Widening decision should be ready at this moment"); 5499 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5500 if (Ptr == Store->getValueOperand()) 5501 return WideningDecision == CM_Scalarize; 5502 assert(Ptr == getPointerOperand(MemAccess) && 5503 "Ptr is neither a value or pointer operand"); 5504 return WideningDecision != CM_GatherScatter; 5505 }; 5506 5507 // A helper that returns true if the given value is a bitcast or 5508 // getelementptr instruction contained in the loop. 5509 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5510 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5511 isa<GetElementPtrInst>(V)) && 5512 !TheLoop->isLoopInvariant(V); 5513 }; 5514 5515 // A helper that evaluates a memory access's use of a pointer. If the use 5516 // will be a scalar use, and the pointer is only used by memory accesses, we 5517 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5518 // PossibleNonScalarPtrs. 5519 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5520 5521 // We only care about bitcast and getelementptr instructions contained in 5522 // the loop. 5523 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5524 return; 5525 5526 // If the pointer has already been identified as scalar (e.g., if it was 5527 // also identified as uniform), there's nothing to do. 5528 auto *I = cast<Instruction>(Ptr); 5529 if (Worklist.count(I)) 5530 return; 5531 5532 // If the use of the pointer will be a scalar use, and all users of the 5533 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5534 // place the pointer in PossibleNonScalarPtrs. 5535 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5536 return isa<LoadInst>(U) || isa<StoreInst>(U); 5537 })) 5538 ScalarPtrs.insert(I); 5539 else 5540 PossibleNonScalarPtrs.insert(I); 5541 }; 5542 5543 // We seed the scalars analysis with three classes of instructions: (1) 5544 // instructions marked uniform-after-vectorization, (2) bitcast and 5545 // getelementptr instructions used by memory accesses requiring a scalar use, 5546 // and (3) pointer induction variables and their update instructions (we 5547 // currently only scalarize these). 5548 // 5549 // (1) Add to the worklist all instructions that have been identified as 5550 // uniform-after-vectorization. 5551 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5552 5553 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5554 // memory accesses requiring a scalar use. The pointer operands of loads and 5555 // stores will be scalar as long as the memory accesses is not a gather or 5556 // scatter operation. The value operand of a store will remain scalar if the 5557 // store is scalarized. 5558 for (auto *BB : TheLoop->blocks()) 5559 for (auto &I : *BB) { 5560 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5561 evaluatePtrUse(Load, Load->getPointerOperand()); 5562 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5563 evaluatePtrUse(Store, Store->getPointerOperand()); 5564 evaluatePtrUse(Store, Store->getValueOperand()); 5565 } 5566 } 5567 for (auto *I : ScalarPtrs) 5568 if (!PossibleNonScalarPtrs.count(I)) { 5569 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5570 Worklist.insert(I); 5571 } 5572 5573 // (3) Add to the worklist all pointer induction variables and their update 5574 // instructions. 5575 // 5576 // TODO: Once we are able to vectorize pointer induction variables we should 5577 // no longer insert them into the worklist here. 5578 auto *Latch = TheLoop->getLoopLatch(); 5579 for (auto &Induction : *Legal->getInductionVars()) { 5580 auto *Ind = Induction.first; 5581 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5582 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5583 continue; 5584 Worklist.insert(Ind); 5585 Worklist.insert(IndUpdate); 5586 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5587 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5588 } 5589 5590 // Insert the forced scalars. 5591 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5592 // induction variable when the PHI user is scalarized. 5593 if (ForcedScalars.count(VF)) 5594 for (auto *I : ForcedScalars.find(VF)->second) 5595 Worklist.insert(I); 5596 5597 // Expand the worklist by looking through any bitcasts and getelementptr 5598 // instructions we've already identified as scalar. This is similar to the 5599 // expansion step in collectLoopUniforms(); however, here we're only 5600 // expanding to include additional bitcasts and getelementptr instructions. 5601 unsigned Idx = 0; 5602 while (Idx != Worklist.size()) { 5603 Instruction *Dst = Worklist[Idx++]; 5604 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5605 continue; 5606 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5607 if (all_of(Src->users(), [&](User *U) -> bool { 5608 auto *J = cast<Instruction>(U); 5609 return !TheLoop->contains(J) || Worklist.count(J) || 5610 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5611 isScalarUse(J, Src)); 5612 })) { 5613 Worklist.insert(Src); 5614 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5615 } 5616 } 5617 5618 // An induction variable will remain scalar if all users of the induction 5619 // variable and induction variable update remain scalar. 5620 for (auto &Induction : *Legal->getInductionVars()) { 5621 auto *Ind = Induction.first; 5622 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5623 5624 // We already considered pointer induction variables, so there's no reason 5625 // to look at their users again. 5626 // 5627 // TODO: Once we are able to vectorize pointer induction variables we 5628 // should no longer skip over them here. 5629 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5630 continue; 5631 5632 // Determine if all users of the induction variable are scalar after 5633 // vectorization. 5634 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5635 auto *I = cast<Instruction>(U); 5636 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5637 }); 5638 if (!ScalarInd) 5639 continue; 5640 5641 // Determine if all users of the induction variable update instruction are 5642 // scalar after vectorization. 5643 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5644 auto *I = cast<Instruction>(U); 5645 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5646 }); 5647 if (!ScalarIndUpdate) 5648 continue; 5649 5650 // The induction variable and its update instruction will remain scalar. 5651 Worklist.insert(Ind); 5652 Worklist.insert(IndUpdate); 5653 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5654 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5655 } 5656 5657 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5658 } 5659 5660 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5661 if (!blockNeedsPredication(I->getParent())) 5662 return false; 5663 switch(I->getOpcode()) { 5664 default: 5665 break; 5666 case Instruction::Store: 5667 return !isMaskRequired(I); 5668 case Instruction::UDiv: 5669 case Instruction::SDiv: 5670 case Instruction::SRem: 5671 case Instruction::URem: 5672 return mayDivideByZero(*I); 5673 } 5674 return false; 5675 } 5676 5677 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5678 unsigned VF) { 5679 // Get and ensure we have a valid memory instruction. 5680 LoadInst *LI = dyn_cast<LoadInst>(I); 5681 StoreInst *SI = dyn_cast<StoreInst>(I); 5682 assert((LI || SI) && "Invalid memory instruction"); 5683 5684 auto *Ptr = getPointerOperand(I); 5685 5686 // In order to be widened, the pointer should be consecutive, first of all. 5687 if (!isConsecutivePtr(Ptr)) 5688 return false; 5689 5690 // If the instruction is a store located in a predicated block, it will be 5691 // scalarized. 5692 if (isScalarWithPredication(I)) 5693 return false; 5694 5695 // If the instruction's allocated size doesn't equal it's type size, it 5696 // requires padding and will be scalarized. 5697 auto &DL = I->getModule()->getDataLayout(); 5698 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5699 if (hasIrregularType(ScalarTy, DL, VF)) 5700 return false; 5701 5702 return true; 5703 } 5704 5705 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5706 5707 // We should not collect Uniforms more than once per VF. Right now, 5708 // this function is called from collectUniformsAndScalars(), which 5709 // already does this check. Collecting Uniforms for VF=1 does not make any 5710 // sense. 5711 5712 assert(VF >= 2 && !Uniforms.count(VF) && 5713 "This function should not be visited twice for the same VF"); 5714 5715 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5716 // not analyze again. Uniforms.count(VF) will return 1. 5717 Uniforms[VF].clear(); 5718 5719 // We now know that the loop is vectorizable! 5720 // Collect instructions inside the loop that will remain uniform after 5721 // vectorization. 5722 5723 // Global values, params and instructions outside of current loop are out of 5724 // scope. 5725 auto isOutOfScope = [&](Value *V) -> bool { 5726 Instruction *I = dyn_cast<Instruction>(V); 5727 return (!I || !TheLoop->contains(I)); 5728 }; 5729 5730 SetVector<Instruction *> Worklist; 5731 BasicBlock *Latch = TheLoop->getLoopLatch(); 5732 5733 // Start with the conditional branch. If the branch condition is an 5734 // instruction contained in the loop that is only used by the branch, it is 5735 // uniform. 5736 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5737 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5738 Worklist.insert(Cmp); 5739 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5740 } 5741 5742 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5743 // are pointers that are treated like consecutive pointers during 5744 // vectorization. The pointer operands of interleaved accesses are an 5745 // example. 5746 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5747 5748 // Holds pointer operands of instructions that are possibly non-uniform. 5749 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5750 5751 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5752 InstWidening WideningDecision = getWideningDecision(I, VF); 5753 assert(WideningDecision != CM_Unknown && 5754 "Widening decision should be ready at this moment"); 5755 5756 return (WideningDecision == CM_Widen || 5757 WideningDecision == CM_Interleave); 5758 }; 5759 // Iterate over the instructions in the loop, and collect all 5760 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5761 // that a consecutive-like pointer operand will be scalarized, we collect it 5762 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5763 // getelementptr instruction can be used by both vectorized and scalarized 5764 // memory instructions. For example, if a loop loads and stores from the same 5765 // location, but the store is conditional, the store will be scalarized, and 5766 // the getelementptr won't remain uniform. 5767 for (auto *BB : TheLoop->blocks()) 5768 for (auto &I : *BB) { 5769 5770 // If there's no pointer operand, there's nothing to do. 5771 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5772 if (!Ptr) 5773 continue; 5774 5775 // True if all users of Ptr are memory accesses that have Ptr as their 5776 // pointer operand. 5777 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5778 return getPointerOperand(U) == Ptr; 5779 }); 5780 5781 // Ensure the memory instruction will not be scalarized or used by 5782 // gather/scatter, making its pointer operand non-uniform. If the pointer 5783 // operand is used by any instruction other than a memory access, we 5784 // conservatively assume the pointer operand may be non-uniform. 5785 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5786 PossibleNonUniformPtrs.insert(Ptr); 5787 5788 // If the memory instruction will be vectorized and its pointer operand 5789 // is consecutive-like, or interleaving - the pointer operand should 5790 // remain uniform. 5791 else 5792 ConsecutiveLikePtrs.insert(Ptr); 5793 } 5794 5795 // Add to the Worklist all consecutive and consecutive-like pointers that 5796 // aren't also identified as possibly non-uniform. 5797 for (auto *V : ConsecutiveLikePtrs) 5798 if (!PossibleNonUniformPtrs.count(V)) { 5799 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5800 Worklist.insert(V); 5801 } 5802 5803 // Expand Worklist in topological order: whenever a new instruction 5804 // is added , its users should be either already inside Worklist, or 5805 // out of scope. It ensures a uniform instruction will only be used 5806 // by uniform instructions or out of scope instructions. 5807 unsigned idx = 0; 5808 while (idx != Worklist.size()) { 5809 Instruction *I = Worklist[idx++]; 5810 5811 for (auto OV : I->operand_values()) { 5812 if (isOutOfScope(OV)) 5813 continue; 5814 auto *OI = cast<Instruction>(OV); 5815 if (all_of(OI->users(), [&](User *U) -> bool { 5816 auto *J = cast<Instruction>(U); 5817 return !TheLoop->contains(J) || Worklist.count(J) || 5818 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5819 })) { 5820 Worklist.insert(OI); 5821 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5822 } 5823 } 5824 } 5825 5826 // Returns true if Ptr is the pointer operand of a memory access instruction 5827 // I, and I is known to not require scalarization. 5828 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5829 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5830 }; 5831 5832 // For an instruction to be added into Worklist above, all its users inside 5833 // the loop should also be in Worklist. However, this condition cannot be 5834 // true for phi nodes that form a cyclic dependence. We must process phi 5835 // nodes separately. An induction variable will remain uniform if all users 5836 // of the induction variable and induction variable update remain uniform. 5837 // The code below handles both pointer and non-pointer induction variables. 5838 for (auto &Induction : *Legal->getInductionVars()) { 5839 auto *Ind = Induction.first; 5840 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5841 5842 // Determine if all users of the induction variable are uniform after 5843 // vectorization. 5844 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5845 auto *I = cast<Instruction>(U); 5846 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5847 isVectorizedMemAccessUse(I, Ind); 5848 }); 5849 if (!UniformInd) 5850 continue; 5851 5852 // Determine if all users of the induction variable update instruction are 5853 // uniform after vectorization. 5854 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5855 auto *I = cast<Instruction>(U); 5856 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5857 isVectorizedMemAccessUse(I, IndUpdate); 5858 }); 5859 if (!UniformIndUpdate) 5860 continue; 5861 5862 // The induction variable and its update instruction will remain uniform. 5863 Worklist.insert(Ind); 5864 Worklist.insert(IndUpdate); 5865 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5866 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5867 } 5868 5869 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5870 } 5871 5872 bool LoopVectorizationLegality::canVectorizeMemory() { 5873 LAI = &(*GetLAA)(*TheLoop); 5874 InterleaveInfo.setLAI(LAI); 5875 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5876 if (LAR) { 5877 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5878 "loop not vectorized: ", *LAR); 5879 ORE->emit(VR); 5880 } 5881 if (!LAI->canVectorizeMemory()) 5882 return false; 5883 5884 if (LAI->hasStoreToLoopInvariantAddress()) { 5885 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5886 << "write to a loop invariant address could not be vectorized"); 5887 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5888 return false; 5889 } 5890 5891 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5892 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5893 5894 return true; 5895 } 5896 5897 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5898 Value *In0 = const_cast<Value *>(V); 5899 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5900 if (!PN) 5901 return false; 5902 5903 return Inductions.count(PN); 5904 } 5905 5906 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5907 return FirstOrderRecurrences.count(Phi); 5908 } 5909 5910 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5911 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5912 } 5913 5914 bool LoopVectorizationLegality::blockCanBePredicated( 5915 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5916 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5917 5918 for (Instruction &I : *BB) { 5919 // Check that we don't have a constant expression that can trap as operand. 5920 for (Value *Operand : I.operands()) { 5921 if (auto *C = dyn_cast<Constant>(Operand)) 5922 if (C->canTrap()) 5923 return false; 5924 } 5925 // We might be able to hoist the load. 5926 if (I.mayReadFromMemory()) { 5927 auto *LI = dyn_cast<LoadInst>(&I); 5928 if (!LI) 5929 return false; 5930 if (!SafePtrs.count(LI->getPointerOperand())) { 5931 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5932 isLegalMaskedGather(LI->getType())) { 5933 MaskedOp.insert(LI); 5934 continue; 5935 } 5936 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5937 if (IsAnnotatedParallel) 5938 continue; 5939 return false; 5940 } 5941 } 5942 5943 if (I.mayWriteToMemory()) { 5944 auto *SI = dyn_cast<StoreInst>(&I); 5945 // We only support predication of stores in basic blocks with one 5946 // predecessor. 5947 if (!SI) 5948 return false; 5949 5950 // Build a masked store if it is legal for the target. 5951 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5952 SI->getPointerOperand()) || 5953 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5954 MaskedOp.insert(SI); 5955 continue; 5956 } 5957 5958 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5959 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5960 5961 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5962 !isSinglePredecessor) 5963 return false; 5964 } 5965 if (I.mayThrow()) 5966 return false; 5967 } 5968 5969 return true; 5970 } 5971 5972 void InterleavedAccessInfo::collectConstStrideAccesses( 5973 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5974 const ValueToValueMap &Strides) { 5975 5976 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5977 5978 // Since it's desired that the load/store instructions be maintained in 5979 // "program order" for the interleaved access analysis, we have to visit the 5980 // blocks in the loop in reverse postorder (i.e., in a topological order). 5981 // Such an ordering will ensure that any load/store that may be executed 5982 // before a second load/store will precede the second load/store in 5983 // AccessStrideInfo. 5984 LoopBlocksDFS DFS(TheLoop); 5985 DFS.perform(LI); 5986 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5987 for (auto &I : *BB) { 5988 auto *LI = dyn_cast<LoadInst>(&I); 5989 auto *SI = dyn_cast<StoreInst>(&I); 5990 if (!LI && !SI) 5991 continue; 5992 5993 Value *Ptr = getPointerOperand(&I); 5994 // We don't check wrapping here because we don't know yet if Ptr will be 5995 // part of a full group or a group with gaps. Checking wrapping for all 5996 // pointers (even those that end up in groups with no gaps) will be overly 5997 // conservative. For full groups, wrapping should be ok since if we would 5998 // wrap around the address space we would do a memory access at nullptr 5999 // even without the transformation. The wrapping checks are therefore 6000 // deferred until after we've formed the interleaved groups. 6001 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 6002 /*Assume=*/true, /*ShouldCheckWrap=*/false); 6003 6004 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 6005 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6006 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6007 6008 // An alignment of 0 means target ABI alignment. 6009 unsigned Align = getMemInstAlignment(&I); 6010 if (!Align) 6011 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6012 6013 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6014 } 6015 } 6016 6017 // Analyze interleaved accesses and collect them into interleaved load and 6018 // store groups. 6019 // 6020 // When generating code for an interleaved load group, we effectively hoist all 6021 // loads in the group to the location of the first load in program order. When 6022 // generating code for an interleaved store group, we sink all stores to the 6023 // location of the last store. This code motion can change the order of load 6024 // and store instructions and may break dependences. 6025 // 6026 // The code generation strategy mentioned above ensures that we won't violate 6027 // any write-after-read (WAR) dependences. 6028 // 6029 // E.g., for the WAR dependence: a = A[i]; // (1) 6030 // A[i] = b; // (2) 6031 // 6032 // The store group of (2) is always inserted at or below (2), and the load 6033 // group of (1) is always inserted at or above (1). Thus, the instructions will 6034 // never be reordered. All other dependences are checked to ensure the 6035 // correctness of the instruction reordering. 6036 // 6037 // The algorithm visits all memory accesses in the loop in bottom-up program 6038 // order. Program order is established by traversing the blocks in the loop in 6039 // reverse postorder when collecting the accesses. 6040 // 6041 // We visit the memory accesses in bottom-up order because it can simplify the 6042 // construction of store groups in the presence of write-after-write (WAW) 6043 // dependences. 6044 // 6045 // E.g., for the WAW dependence: A[i] = a; // (1) 6046 // A[i] = b; // (2) 6047 // A[i + 1] = c; // (3) 6048 // 6049 // We will first create a store group with (3) and (2). (1) can't be added to 6050 // this group because it and (2) are dependent. However, (1) can be grouped 6051 // with other accesses that may precede it in program order. Note that a 6052 // bottom-up order does not imply that WAW dependences should not be checked. 6053 void InterleavedAccessInfo::analyzeInterleaving( 6054 const ValueToValueMap &Strides) { 6055 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6056 6057 // Holds all accesses with a constant stride. 6058 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6059 collectConstStrideAccesses(AccessStrideInfo, Strides); 6060 6061 if (AccessStrideInfo.empty()) 6062 return; 6063 6064 // Collect the dependences in the loop. 6065 collectDependences(); 6066 6067 // Holds all interleaved store groups temporarily. 6068 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6069 // Holds all interleaved load groups temporarily. 6070 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6071 6072 // Search in bottom-up program order for pairs of accesses (A and B) that can 6073 // form interleaved load or store groups. In the algorithm below, access A 6074 // precedes access B in program order. We initialize a group for B in the 6075 // outer loop of the algorithm, and then in the inner loop, we attempt to 6076 // insert each A into B's group if: 6077 // 6078 // 1. A and B have the same stride, 6079 // 2. A and B have the same memory object size, and 6080 // 3. A belongs in B's group according to its distance from B. 6081 // 6082 // Special care is taken to ensure group formation will not break any 6083 // dependences. 6084 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6085 BI != E; ++BI) { 6086 Instruction *B = BI->first; 6087 StrideDescriptor DesB = BI->second; 6088 6089 // Initialize a group for B if it has an allowable stride. Even if we don't 6090 // create a group for B, we continue with the bottom-up algorithm to ensure 6091 // we don't break any of B's dependences. 6092 InterleaveGroup *Group = nullptr; 6093 if (isStrided(DesB.Stride)) { 6094 Group = getInterleaveGroup(B); 6095 if (!Group) { 6096 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6097 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6098 } 6099 if (B->mayWriteToMemory()) 6100 StoreGroups.insert(Group); 6101 else 6102 LoadGroups.insert(Group); 6103 } 6104 6105 for (auto AI = std::next(BI); AI != E; ++AI) { 6106 Instruction *A = AI->first; 6107 StrideDescriptor DesA = AI->second; 6108 6109 // Our code motion strategy implies that we can't have dependences 6110 // between accesses in an interleaved group and other accesses located 6111 // between the first and last member of the group. Note that this also 6112 // means that a group can't have more than one member at a given offset. 6113 // The accesses in a group can have dependences with other accesses, but 6114 // we must ensure we don't extend the boundaries of the group such that 6115 // we encompass those dependent accesses. 6116 // 6117 // For example, assume we have the sequence of accesses shown below in a 6118 // stride-2 loop: 6119 // 6120 // (1, 2) is a group | A[i] = a; // (1) 6121 // | A[i-1] = b; // (2) | 6122 // A[i-3] = c; // (3) 6123 // A[i] = d; // (4) | (2, 4) is not a group 6124 // 6125 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6126 // but not with (4). If we did, the dependent access (3) would be within 6127 // the boundaries of the (2, 4) group. 6128 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6129 6130 // If a dependence exists and A is already in a group, we know that A 6131 // must be a store since A precedes B and WAR dependences are allowed. 6132 // Thus, A would be sunk below B. We release A's group to prevent this 6133 // illegal code motion. A will then be free to form another group with 6134 // instructions that precede it. 6135 if (isInterleaved(A)) { 6136 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6137 StoreGroups.remove(StoreGroup); 6138 releaseGroup(StoreGroup); 6139 } 6140 6141 // If a dependence exists and A is not already in a group (or it was 6142 // and we just released it), B might be hoisted above A (if B is a 6143 // load) or another store might be sunk below A (if B is a store). In 6144 // either case, we can't add additional instructions to B's group. B 6145 // will only form a group with instructions that it precedes. 6146 break; 6147 } 6148 6149 // At this point, we've checked for illegal code motion. If either A or B 6150 // isn't strided, there's nothing left to do. 6151 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6152 continue; 6153 6154 // Ignore A if it's already in a group or isn't the same kind of memory 6155 // operation as B. 6156 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6157 continue; 6158 6159 // Check rules 1 and 2. Ignore A if its stride or size is different from 6160 // that of B. 6161 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6162 continue; 6163 6164 // Ignore A if the memory object of A and B don't belong to the same 6165 // address space 6166 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6167 continue; 6168 6169 // Calculate the distance from A to B. 6170 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6171 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6172 if (!DistToB) 6173 continue; 6174 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6175 6176 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6177 // size. 6178 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6179 continue; 6180 6181 // Ignore A if either A or B is in a predicated block. Although we 6182 // currently prevent group formation for predicated accesses, we may be 6183 // able to relax this limitation in the future once we handle more 6184 // complicated blocks. 6185 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6186 continue; 6187 6188 // The index of A is the index of B plus A's distance to B in multiples 6189 // of the size. 6190 int IndexA = 6191 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6192 6193 // Try to insert A into B's group. 6194 if (Group->insertMember(A, IndexA, DesA.Align)) { 6195 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6196 << " into the interleave group with" << *B << '\n'); 6197 InterleaveGroupMap[A] = Group; 6198 6199 // Set the first load in program order as the insert position. 6200 if (A->mayReadFromMemory()) 6201 Group->setInsertPos(A); 6202 } 6203 } // Iteration over A accesses. 6204 } // Iteration over B accesses. 6205 6206 // Remove interleaved store groups with gaps. 6207 for (InterleaveGroup *Group : StoreGroups) 6208 if (Group->getNumMembers() != Group->getFactor()) 6209 releaseGroup(Group); 6210 6211 // Remove interleaved groups with gaps (currently only loads) whose memory 6212 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6213 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6214 // not check wrapping (see documentation there). 6215 // FORNOW we use Assume=false; 6216 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6217 // of runtime SCEV assumptions checks (thereby potentially failing to 6218 // vectorize altogether). 6219 // Additional optional optimizations: 6220 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6221 // wrap then we can deduce that all pointers in the group don't wrap. 6222 // This means that we can forcefully peel the loop in order to only have to 6223 // check the first pointer for no-wrap. When we'll change to use Assume=true 6224 // we'll only need at most one runtime check per interleaved group. 6225 // 6226 for (InterleaveGroup *Group : LoadGroups) { 6227 6228 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6229 // load would wrap around the address space we would do a memory access at 6230 // nullptr even without the transformation. 6231 if (Group->getNumMembers() == Group->getFactor()) 6232 continue; 6233 6234 // Case 2: If first and last members of the group don't wrap this implies 6235 // that all the pointers in the group don't wrap. 6236 // So we check only group member 0 (which is always guaranteed to exist), 6237 // and group member Factor - 1; If the latter doesn't exist we rely on 6238 // peeling (if it is a non-reveresed accsess -- see Case 3). 6239 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6240 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6241 /*ShouldCheckWrap=*/true)) { 6242 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6243 "first group member potentially pointer-wrapping.\n"); 6244 releaseGroup(Group); 6245 continue; 6246 } 6247 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6248 if (LastMember) { 6249 Value *LastMemberPtr = getPointerOperand(LastMember); 6250 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6251 /*ShouldCheckWrap=*/true)) { 6252 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6253 "last group member potentially pointer-wrapping.\n"); 6254 releaseGroup(Group); 6255 } 6256 } else { 6257 // Case 3: A non-reversed interleaved load group with gaps: We need 6258 // to execute at least one scalar epilogue iteration. This will ensure 6259 // we don't speculatively access memory out-of-bounds. We only need 6260 // to look for a member at index factor - 1, since every group must have 6261 // a member at index zero. 6262 if (Group->isReverse()) { 6263 releaseGroup(Group); 6264 continue; 6265 } 6266 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6267 RequiresScalarEpilogue = true; 6268 } 6269 } 6270 } 6271 6272 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6273 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6274 ORE->emit(createMissedAnalysis("ConditionalStore") 6275 << "store that is conditionally executed prevents vectorization"); 6276 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6277 return None; 6278 } 6279 6280 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6281 return computeFeasibleMaxVF(OptForSize); 6282 6283 if (Legal->getRuntimePointerChecking()->Need) { 6284 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6285 << "runtime pointer checks needed. Enable vectorization of this " 6286 "loop with '#pragma clang loop vectorize(enable)' when " 6287 "compiling with -Os/-Oz"); 6288 DEBUG(dbgs() 6289 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6290 return None; 6291 } 6292 6293 // If we optimize the program for size, avoid creating the tail loop. 6294 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6295 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6296 6297 // If we don't know the precise trip count, don't try to vectorize. 6298 if (TC < 2) { 6299 ORE->emit( 6300 createMissedAnalysis("UnknownLoopCountComplexCFG") 6301 << "unable to calculate the loop count due to complex control flow"); 6302 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6303 return None; 6304 } 6305 6306 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6307 6308 if (TC % MaxVF != 0) { 6309 // If the trip count that we found modulo the vectorization factor is not 6310 // zero then we require a tail. 6311 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6312 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6313 // smaller MaxVF that does not require a scalar epilog. 6314 6315 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6316 << "cannot optimize for size and vectorize at the " 6317 "same time. Enable vectorization of this loop " 6318 "with '#pragma clang loop vectorize(enable)' " 6319 "when compiling with -Os/-Oz"); 6320 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6321 return None; 6322 } 6323 6324 return MaxVF; 6325 } 6326 6327 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6328 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6329 unsigned SmallestType, WidestType; 6330 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6331 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6332 unsigned MaxSafeDepDist = -1U; 6333 6334 // Get the maximum safe dependence distance in bits computed by LAA. If the 6335 // loop contains any interleaved accesses, we divide the dependence distance 6336 // by the maximum interleave factor of all interleaved groups. Note that 6337 // although the division ensures correctness, this is a fairly conservative 6338 // computation because the maximum distance computed by LAA may not involve 6339 // any of the interleaved accesses. 6340 if (Legal->getMaxSafeDepDistBytes() != -1U) 6341 MaxSafeDepDist = 6342 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6343 6344 WidestRegister = 6345 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6346 unsigned MaxVectorSize = WidestRegister / WidestType; 6347 6348 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6349 << WidestType << " bits.\n"); 6350 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6351 << " bits.\n"); 6352 6353 if (MaxVectorSize == 0) { 6354 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6355 MaxVectorSize = 1; 6356 } 6357 6358 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6359 " into one vector!"); 6360 6361 unsigned MaxVF = MaxVectorSize; 6362 if (MaximizeBandwidth && !OptForSize) { 6363 // Collect all viable vectorization factors. 6364 SmallVector<unsigned, 8> VFs; 6365 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6366 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6367 VFs.push_back(VS); 6368 6369 // For each VF calculate its register usage. 6370 auto RUs = calculateRegisterUsage(VFs); 6371 6372 // Select the largest VF which doesn't require more registers than existing 6373 // ones. 6374 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6375 for (int i = RUs.size() - 1; i >= 0; --i) { 6376 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6377 MaxVF = VFs[i]; 6378 break; 6379 } 6380 } 6381 } 6382 return MaxVF; 6383 } 6384 6385 LoopVectorizationCostModel::VectorizationFactor 6386 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6387 float Cost = expectedCost(1).first; 6388 #ifndef NDEBUG 6389 const float ScalarCost = Cost; 6390 #endif /* NDEBUG */ 6391 unsigned Width = 1; 6392 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6393 6394 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6395 // Ignore scalar width, because the user explicitly wants vectorization. 6396 if (ForceVectorization && MaxVF > 1) { 6397 Width = 2; 6398 Cost = expectedCost(Width).first / (float)Width; 6399 } 6400 6401 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6402 // Notice that the vector loop needs to be executed less times, so 6403 // we need to divide the cost of the vector loops by the width of 6404 // the vector elements. 6405 VectorizationCostTy C = expectedCost(i); 6406 float VectorCost = C.first / (float)i; 6407 DEBUG(dbgs() << "LV: Vector loop of width " << i 6408 << " costs: " << (int)VectorCost << ".\n"); 6409 if (!C.second && !ForceVectorization) { 6410 DEBUG( 6411 dbgs() << "LV: Not considering vector loop of width " << i 6412 << " because it will not generate any vector instructions.\n"); 6413 continue; 6414 } 6415 if (VectorCost < Cost) { 6416 Cost = VectorCost; 6417 Width = i; 6418 } 6419 } 6420 6421 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6422 << "LV: Vectorization seems to be not beneficial, " 6423 << "but was forced by a user.\n"); 6424 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6425 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6426 return Factor; 6427 } 6428 6429 std::pair<unsigned, unsigned> 6430 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6431 unsigned MinWidth = -1U; 6432 unsigned MaxWidth = 8; 6433 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6434 6435 // For each block. 6436 for (BasicBlock *BB : TheLoop->blocks()) { 6437 // For each instruction in the loop. 6438 for (Instruction &I : *BB) { 6439 Type *T = I.getType(); 6440 6441 // Skip ignored values. 6442 if (ValuesToIgnore.count(&I)) 6443 continue; 6444 6445 // Only examine Loads, Stores and PHINodes. 6446 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6447 continue; 6448 6449 // Examine PHI nodes that are reduction variables. Update the type to 6450 // account for the recurrence type. 6451 if (auto *PN = dyn_cast<PHINode>(&I)) { 6452 if (!Legal->isReductionVariable(PN)) 6453 continue; 6454 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6455 T = RdxDesc.getRecurrenceType(); 6456 } 6457 6458 // Examine the stored values. 6459 if (auto *ST = dyn_cast<StoreInst>(&I)) 6460 T = ST->getValueOperand()->getType(); 6461 6462 // Ignore loaded pointer types and stored pointer types that are not 6463 // vectorizable. 6464 // 6465 // FIXME: The check here attempts to predict whether a load or store will 6466 // be vectorized. We only know this for certain after a VF has 6467 // been selected. Here, we assume that if an access can be 6468 // vectorized, it will be. We should also look at extending this 6469 // optimization to non-pointer types. 6470 // 6471 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6472 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6473 continue; 6474 6475 MinWidth = std::min(MinWidth, 6476 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6477 MaxWidth = std::max(MaxWidth, 6478 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6479 } 6480 } 6481 6482 return {MinWidth, MaxWidth}; 6483 } 6484 6485 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6486 unsigned VF, 6487 unsigned LoopCost) { 6488 6489 // -- The interleave heuristics -- 6490 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6491 // There are many micro-architectural considerations that we can't predict 6492 // at this level. For example, frontend pressure (on decode or fetch) due to 6493 // code size, or the number and capabilities of the execution ports. 6494 // 6495 // We use the following heuristics to select the interleave count: 6496 // 1. If the code has reductions, then we interleave to break the cross 6497 // iteration dependency. 6498 // 2. If the loop is really small, then we interleave to reduce the loop 6499 // overhead. 6500 // 3. We don't interleave if we think that we will spill registers to memory 6501 // due to the increased register pressure. 6502 6503 // When we optimize for size, we don't interleave. 6504 if (OptForSize) 6505 return 1; 6506 6507 // We used the distance for the interleave count. 6508 if (Legal->getMaxSafeDepDistBytes() != -1U) 6509 return 1; 6510 6511 // Do not interleave loops with a relatively small trip count. 6512 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6513 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6514 return 1; 6515 6516 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6517 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6518 << " registers\n"); 6519 6520 if (VF == 1) { 6521 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6522 TargetNumRegisters = ForceTargetNumScalarRegs; 6523 } else { 6524 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6525 TargetNumRegisters = ForceTargetNumVectorRegs; 6526 } 6527 6528 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6529 // We divide by these constants so assume that we have at least one 6530 // instruction that uses at least one register. 6531 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6532 R.NumInstructions = std::max(R.NumInstructions, 1U); 6533 6534 // We calculate the interleave count using the following formula. 6535 // Subtract the number of loop invariants from the number of available 6536 // registers. These registers are used by all of the interleaved instances. 6537 // Next, divide the remaining registers by the number of registers that is 6538 // required by the loop, in order to estimate how many parallel instances 6539 // fit without causing spills. All of this is rounded down if necessary to be 6540 // a power of two. We want power of two interleave count to simplify any 6541 // addressing operations or alignment considerations. 6542 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6543 R.MaxLocalUsers); 6544 6545 // Don't count the induction variable as interleaved. 6546 if (EnableIndVarRegisterHeur) 6547 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6548 std::max(1U, (R.MaxLocalUsers - 1))); 6549 6550 // Clamp the interleave ranges to reasonable counts. 6551 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6552 6553 // Check if the user has overridden the max. 6554 if (VF == 1) { 6555 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6556 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6557 } else { 6558 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6559 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6560 } 6561 6562 // If we did not calculate the cost for VF (because the user selected the VF) 6563 // then we calculate the cost of VF here. 6564 if (LoopCost == 0) 6565 LoopCost = expectedCost(VF).first; 6566 6567 // Clamp the calculated IC to be between the 1 and the max interleave count 6568 // that the target allows. 6569 if (IC > MaxInterleaveCount) 6570 IC = MaxInterleaveCount; 6571 else if (IC < 1) 6572 IC = 1; 6573 6574 // Interleave if we vectorized this loop and there is a reduction that could 6575 // benefit from interleaving. 6576 if (VF > 1 && Legal->getReductionVars()->size()) { 6577 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6578 return IC; 6579 } 6580 6581 // Note that if we've already vectorized the loop we will have done the 6582 // runtime check and so interleaving won't require further checks. 6583 bool InterleavingRequiresRuntimePointerCheck = 6584 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6585 6586 // We want to interleave small loops in order to reduce the loop overhead and 6587 // potentially expose ILP opportunities. 6588 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6589 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6590 // We assume that the cost overhead is 1 and we use the cost model 6591 // to estimate the cost of the loop and interleave until the cost of the 6592 // loop overhead is about 5% of the cost of the loop. 6593 unsigned SmallIC = 6594 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6595 6596 // Interleave until store/load ports (estimated by max interleave count) are 6597 // saturated. 6598 unsigned NumStores = Legal->getNumStores(); 6599 unsigned NumLoads = Legal->getNumLoads(); 6600 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6601 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6602 6603 // If we have a scalar reduction (vector reductions are already dealt with 6604 // by this point), we can increase the critical path length if the loop 6605 // we're interleaving is inside another loop. Limit, by default to 2, so the 6606 // critical path only gets increased by one reduction operation. 6607 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6608 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6609 SmallIC = std::min(SmallIC, F); 6610 StoresIC = std::min(StoresIC, F); 6611 LoadsIC = std::min(LoadsIC, F); 6612 } 6613 6614 if (EnableLoadStoreRuntimeInterleave && 6615 std::max(StoresIC, LoadsIC) > SmallIC) { 6616 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6617 return std::max(StoresIC, LoadsIC); 6618 } 6619 6620 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6621 return SmallIC; 6622 } 6623 6624 // Interleave if this is a large loop (small loops are already dealt with by 6625 // this point) that could benefit from interleaving. 6626 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6627 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6628 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6629 return IC; 6630 } 6631 6632 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6633 return 1; 6634 } 6635 6636 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6637 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6638 // This function calculates the register usage by measuring the highest number 6639 // of values that are alive at a single location. Obviously, this is a very 6640 // rough estimation. We scan the loop in a topological order in order and 6641 // assign a number to each instruction. We use RPO to ensure that defs are 6642 // met before their users. We assume that each instruction that has in-loop 6643 // users starts an interval. We record every time that an in-loop value is 6644 // used, so we have a list of the first and last occurrences of each 6645 // instruction. Next, we transpose this data structure into a multi map that 6646 // holds the list of intervals that *end* at a specific location. This multi 6647 // map allows us to perform a linear search. We scan the instructions linearly 6648 // and record each time that a new interval starts, by placing it in a set. 6649 // If we find this value in the multi-map then we remove it from the set. 6650 // The max register usage is the maximum size of the set. 6651 // We also search for instructions that are defined outside the loop, but are 6652 // used inside the loop. We need this number separately from the max-interval 6653 // usage number because when we unroll, loop-invariant values do not take 6654 // more register. 6655 LoopBlocksDFS DFS(TheLoop); 6656 DFS.perform(LI); 6657 6658 RegisterUsage RU; 6659 RU.NumInstructions = 0; 6660 6661 // Each 'key' in the map opens a new interval. The values 6662 // of the map are the index of the 'last seen' usage of the 6663 // instruction that is the key. 6664 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6665 // Maps instruction to its index. 6666 DenseMap<unsigned, Instruction *> IdxToInstr; 6667 // Marks the end of each interval. 6668 IntervalMap EndPoint; 6669 // Saves the list of instruction indices that are used in the loop. 6670 SmallSet<Instruction *, 8> Ends; 6671 // Saves the list of values that are used in the loop but are 6672 // defined outside the loop, such as arguments and constants. 6673 SmallPtrSet<Value *, 8> LoopInvariants; 6674 6675 unsigned Index = 0; 6676 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6677 RU.NumInstructions += BB->size(); 6678 for (Instruction &I : *BB) { 6679 IdxToInstr[Index++] = &I; 6680 6681 // Save the end location of each USE. 6682 for (Value *U : I.operands()) { 6683 auto *Instr = dyn_cast<Instruction>(U); 6684 6685 // Ignore non-instruction values such as arguments, constants, etc. 6686 if (!Instr) 6687 continue; 6688 6689 // If this instruction is outside the loop then record it and continue. 6690 if (!TheLoop->contains(Instr)) { 6691 LoopInvariants.insert(Instr); 6692 continue; 6693 } 6694 6695 // Overwrite previous end points. 6696 EndPoint[Instr] = Index; 6697 Ends.insert(Instr); 6698 } 6699 } 6700 } 6701 6702 // Saves the list of intervals that end with the index in 'key'. 6703 typedef SmallVector<Instruction *, 2> InstrList; 6704 DenseMap<unsigned, InstrList> TransposeEnds; 6705 6706 // Transpose the EndPoints to a list of values that end at each index. 6707 for (auto &Interval : EndPoint) 6708 TransposeEnds[Interval.second].push_back(Interval.first); 6709 6710 SmallSet<Instruction *, 8> OpenIntervals; 6711 6712 // Get the size of the widest register. 6713 unsigned MaxSafeDepDist = -1U; 6714 if (Legal->getMaxSafeDepDistBytes() != -1U) 6715 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6716 unsigned WidestRegister = 6717 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6718 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6719 6720 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6721 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6722 6723 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6724 6725 // A lambda that gets the register usage for the given type and VF. 6726 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6727 if (Ty->isTokenTy()) 6728 return 0U; 6729 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6730 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6731 }; 6732 6733 for (unsigned int i = 0; i < Index; ++i) { 6734 Instruction *I = IdxToInstr[i]; 6735 6736 // Remove all of the instructions that end at this location. 6737 InstrList &List = TransposeEnds[i]; 6738 for (Instruction *ToRemove : List) 6739 OpenIntervals.erase(ToRemove); 6740 6741 // Ignore instructions that are never used within the loop. 6742 if (!Ends.count(I)) 6743 continue; 6744 6745 // Skip ignored values. 6746 if (ValuesToIgnore.count(I)) 6747 continue; 6748 6749 // For each VF find the maximum usage of registers. 6750 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6751 if (VFs[j] == 1) { 6752 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6753 continue; 6754 } 6755 collectUniformsAndScalars(VFs[j]); 6756 // Count the number of live intervals. 6757 unsigned RegUsage = 0; 6758 for (auto Inst : OpenIntervals) { 6759 // Skip ignored values for VF > 1. 6760 if (VecValuesToIgnore.count(Inst) || 6761 isScalarAfterVectorization(Inst, VFs[j])) 6762 continue; 6763 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6764 } 6765 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6766 } 6767 6768 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6769 << OpenIntervals.size() << '\n'); 6770 6771 // Add the current instruction to the list of open intervals. 6772 OpenIntervals.insert(I); 6773 } 6774 6775 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6776 unsigned Invariant = 0; 6777 if (VFs[i] == 1) 6778 Invariant = LoopInvariants.size(); 6779 else { 6780 for (auto Inst : LoopInvariants) 6781 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6782 } 6783 6784 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6785 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6786 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6787 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6788 6789 RU.LoopInvariantRegs = Invariant; 6790 RU.MaxLocalUsers = MaxUsages[i]; 6791 RUs[i] = RU; 6792 } 6793 6794 return RUs; 6795 } 6796 6797 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6798 6799 // If we aren't vectorizing the loop, or if we've already collected the 6800 // instructions to scalarize, there's nothing to do. Collection may already 6801 // have occurred if we have a user-selected VF and are now computing the 6802 // expected cost for interleaving. 6803 if (VF < 2 || InstsToScalarize.count(VF)) 6804 return; 6805 6806 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6807 // not profitable to scalarize any instructions, the presence of VF in the 6808 // map will indicate that we've analyzed it already. 6809 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6810 6811 // Find all the instructions that are scalar with predication in the loop and 6812 // determine if it would be better to not if-convert the blocks they are in. 6813 // If so, we also record the instructions to scalarize. 6814 for (BasicBlock *BB : TheLoop->blocks()) { 6815 if (!Legal->blockNeedsPredication(BB)) 6816 continue; 6817 for (Instruction &I : *BB) 6818 if (Legal->isScalarWithPredication(&I)) { 6819 ScalarCostsTy ScalarCosts; 6820 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6821 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6822 6823 // Remember that BB will remain after vectorization. 6824 PredicatedBBsAfterVectorization.insert(BB); 6825 } 6826 } 6827 } 6828 6829 int LoopVectorizationCostModel::computePredInstDiscount( 6830 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6831 unsigned VF) { 6832 6833 assert(!isUniformAfterVectorization(PredInst, VF) && 6834 "Instruction marked uniform-after-vectorization will be predicated"); 6835 6836 // Initialize the discount to zero, meaning that the scalar version and the 6837 // vector version cost the same. 6838 int Discount = 0; 6839 6840 // Holds instructions to analyze. The instructions we visit are mapped in 6841 // ScalarCosts. Those instructions are the ones that would be scalarized if 6842 // we find that the scalar version costs less. 6843 SmallVector<Instruction *, 8> Worklist; 6844 6845 // Returns true if the given instruction can be scalarized. 6846 auto canBeScalarized = [&](Instruction *I) -> bool { 6847 6848 // We only attempt to scalarize instructions forming a single-use chain 6849 // from the original predicated block that would otherwise be vectorized. 6850 // Although not strictly necessary, we give up on instructions we know will 6851 // already be scalar to avoid traversing chains that are unlikely to be 6852 // beneficial. 6853 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6854 isScalarAfterVectorization(I, VF)) 6855 return false; 6856 6857 // If the instruction is scalar with predication, it will be analyzed 6858 // separately. We ignore it within the context of PredInst. 6859 if (Legal->isScalarWithPredication(I)) 6860 return false; 6861 6862 // If any of the instruction's operands are uniform after vectorization, 6863 // the instruction cannot be scalarized. This prevents, for example, a 6864 // masked load from being scalarized. 6865 // 6866 // We assume we will only emit a value for lane zero of an instruction 6867 // marked uniform after vectorization, rather than VF identical values. 6868 // Thus, if we scalarize an instruction that uses a uniform, we would 6869 // create uses of values corresponding to the lanes we aren't emitting code 6870 // for. This behavior can be changed by allowing getScalarValue to clone 6871 // the lane zero values for uniforms rather than asserting. 6872 for (Use &U : I->operands()) 6873 if (auto *J = dyn_cast<Instruction>(U.get())) 6874 if (isUniformAfterVectorization(J, VF)) 6875 return false; 6876 6877 // Otherwise, we can scalarize the instruction. 6878 return true; 6879 }; 6880 6881 // Returns true if an operand that cannot be scalarized must be extracted 6882 // from a vector. We will account for this scalarization overhead below. Note 6883 // that the non-void predicated instructions are placed in their own blocks, 6884 // and their return values are inserted into vectors. Thus, an extract would 6885 // still be required. 6886 auto needsExtract = [&](Instruction *I) -> bool { 6887 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6888 }; 6889 6890 // Compute the expected cost discount from scalarizing the entire expression 6891 // feeding the predicated instruction. We currently only consider expressions 6892 // that are single-use instruction chains. 6893 Worklist.push_back(PredInst); 6894 while (!Worklist.empty()) { 6895 Instruction *I = Worklist.pop_back_val(); 6896 6897 // If we've already analyzed the instruction, there's nothing to do. 6898 if (ScalarCosts.count(I)) 6899 continue; 6900 6901 // Compute the cost of the vector instruction. Note that this cost already 6902 // includes the scalarization overhead of the predicated instruction. 6903 unsigned VectorCost = getInstructionCost(I, VF).first; 6904 6905 // Compute the cost of the scalarized instruction. This cost is the cost of 6906 // the instruction as if it wasn't if-converted and instead remained in the 6907 // predicated block. We will scale this cost by block probability after 6908 // computing the scalarization overhead. 6909 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6910 6911 // Compute the scalarization overhead of needed insertelement instructions 6912 // and phi nodes. 6913 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6914 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6915 true, false); 6916 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6917 } 6918 6919 // Compute the scalarization overhead of needed extractelement 6920 // instructions. For each of the instruction's operands, if the operand can 6921 // be scalarized, add it to the worklist; otherwise, account for the 6922 // overhead. 6923 for (Use &U : I->operands()) 6924 if (auto *J = dyn_cast<Instruction>(U.get())) { 6925 assert(VectorType::isValidElementType(J->getType()) && 6926 "Instruction has non-scalar type"); 6927 if (canBeScalarized(J)) 6928 Worklist.push_back(J); 6929 else if (needsExtract(J)) 6930 ScalarCost += TTI.getScalarizationOverhead( 6931 ToVectorTy(J->getType(),VF), false, true); 6932 } 6933 6934 // Scale the total scalar cost by block probability. 6935 ScalarCost /= getReciprocalPredBlockProb(); 6936 6937 // Compute the discount. A non-negative discount means the vector version 6938 // of the instruction costs more, and scalarizing would be beneficial. 6939 Discount += VectorCost - ScalarCost; 6940 ScalarCosts[I] = ScalarCost; 6941 } 6942 6943 return Discount; 6944 } 6945 6946 LoopVectorizationCostModel::VectorizationCostTy 6947 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6948 VectorizationCostTy Cost; 6949 6950 // Collect Uniform and Scalar instructions after vectorization with VF. 6951 collectUniformsAndScalars(VF); 6952 6953 // Collect the instructions (and their associated costs) that will be more 6954 // profitable to scalarize. 6955 collectInstsToScalarize(VF); 6956 6957 // For each block. 6958 for (BasicBlock *BB : TheLoop->blocks()) { 6959 VectorizationCostTy BlockCost; 6960 6961 // For each instruction in the old loop. 6962 for (Instruction &I : *BB) { 6963 // Skip dbg intrinsics. 6964 if (isa<DbgInfoIntrinsic>(I)) 6965 continue; 6966 6967 // Skip ignored values. 6968 if (ValuesToIgnore.count(&I)) 6969 continue; 6970 6971 VectorizationCostTy C = getInstructionCost(&I, VF); 6972 6973 // Check if we should override the cost. 6974 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6975 C.first = ForceTargetInstructionCost; 6976 6977 BlockCost.first += C.first; 6978 BlockCost.second |= C.second; 6979 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6980 << VF << " For instruction: " << I << '\n'); 6981 } 6982 6983 // If we are vectorizing a predicated block, it will have been 6984 // if-converted. This means that the block's instructions (aside from 6985 // stores and instructions that may divide by zero) will now be 6986 // unconditionally executed. For the scalar case, we may not always execute 6987 // the predicated block. Thus, scale the block's cost by the probability of 6988 // executing it. 6989 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6990 BlockCost.first /= getReciprocalPredBlockProb(); 6991 6992 Cost.first += BlockCost.first; 6993 Cost.second |= BlockCost.second; 6994 } 6995 6996 return Cost; 6997 } 6998 6999 /// \brief Gets Address Access SCEV after verifying that the access pattern 7000 /// is loop invariant except the induction variable dependence. 7001 /// 7002 /// This SCEV can be sent to the Target in order to estimate the address 7003 /// calculation cost. 7004 static const SCEV *getAddressAccessSCEV( 7005 Value *Ptr, 7006 LoopVectorizationLegality *Legal, 7007 ScalarEvolution *SE, 7008 const Loop *TheLoop) { 7009 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7010 if (!Gep) 7011 return nullptr; 7012 7013 // We are looking for a gep with all loop invariant indices except for one 7014 // which should be an induction variable. 7015 unsigned NumOperands = Gep->getNumOperands(); 7016 for (unsigned i = 1; i < NumOperands; ++i) { 7017 Value *Opd = Gep->getOperand(i); 7018 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7019 !Legal->isInductionVariable(Opd)) 7020 return nullptr; 7021 } 7022 7023 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7024 return SE->getSCEV(Ptr); 7025 } 7026 7027 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7028 return Legal->hasStride(I->getOperand(0)) || 7029 Legal->hasStride(I->getOperand(1)); 7030 } 7031 7032 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7033 unsigned VF) { 7034 Type *ValTy = getMemInstValueType(I); 7035 auto SE = PSE.getSE(); 7036 7037 unsigned Alignment = getMemInstAlignment(I); 7038 unsigned AS = getMemInstAddressSpace(I); 7039 Value *Ptr = getPointerOperand(I); 7040 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7041 7042 // Figure out whether the access is strided and get the stride value 7043 // if it's known in compile time 7044 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7045 7046 // Get the cost of the scalar memory instruction and address computation. 7047 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7048 7049 Cost += VF * 7050 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7051 AS, I); 7052 7053 // Get the overhead of the extractelement and insertelement instructions 7054 // we might create due to scalarization. 7055 Cost += getScalarizationOverhead(I, VF, TTI); 7056 7057 // If we have a predicated store, it may not be executed for each vector 7058 // lane. Scale the cost by the probability of executing the predicated 7059 // block. 7060 if (Legal->isScalarWithPredication(I)) 7061 Cost /= getReciprocalPredBlockProb(); 7062 7063 return Cost; 7064 } 7065 7066 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7067 unsigned VF) { 7068 Type *ValTy = getMemInstValueType(I); 7069 Type *VectorTy = ToVectorTy(ValTy, VF); 7070 unsigned Alignment = getMemInstAlignment(I); 7071 Value *Ptr = getPointerOperand(I); 7072 unsigned AS = getMemInstAddressSpace(I); 7073 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7074 7075 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7076 "Stride should be 1 or -1 for consecutive memory access"); 7077 unsigned Cost = 0; 7078 if (Legal->isMaskRequired(I)) 7079 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7080 else 7081 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7082 7083 bool Reverse = ConsecutiveStride < 0; 7084 if (Reverse) 7085 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7086 return Cost; 7087 } 7088 7089 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7090 unsigned VF) { 7091 LoadInst *LI = cast<LoadInst>(I); 7092 Type *ValTy = LI->getType(); 7093 Type *VectorTy = ToVectorTy(ValTy, VF); 7094 unsigned Alignment = LI->getAlignment(); 7095 unsigned AS = LI->getPointerAddressSpace(); 7096 7097 return TTI.getAddressComputationCost(ValTy) + 7098 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7099 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7100 } 7101 7102 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7103 unsigned VF) { 7104 Type *ValTy = getMemInstValueType(I); 7105 Type *VectorTy = ToVectorTy(ValTy, VF); 7106 unsigned Alignment = getMemInstAlignment(I); 7107 Value *Ptr = getPointerOperand(I); 7108 7109 return TTI.getAddressComputationCost(VectorTy) + 7110 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7111 Legal->isMaskRequired(I), Alignment); 7112 } 7113 7114 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7115 unsigned VF) { 7116 Type *ValTy = getMemInstValueType(I); 7117 Type *VectorTy = ToVectorTy(ValTy, VF); 7118 unsigned AS = getMemInstAddressSpace(I); 7119 7120 auto Group = Legal->getInterleavedAccessGroup(I); 7121 assert(Group && "Fail to get an interleaved access group."); 7122 7123 unsigned InterleaveFactor = Group->getFactor(); 7124 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7125 7126 // Holds the indices of existing members in an interleaved load group. 7127 // An interleaved store group doesn't need this as it doesn't allow gaps. 7128 SmallVector<unsigned, 4> Indices; 7129 if (isa<LoadInst>(I)) { 7130 for (unsigned i = 0; i < InterleaveFactor; i++) 7131 if (Group->getMember(i)) 7132 Indices.push_back(i); 7133 } 7134 7135 // Calculate the cost of the whole interleaved group. 7136 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7137 Group->getFactor(), Indices, 7138 Group->getAlignment(), AS); 7139 7140 if (Group->isReverse()) 7141 Cost += Group->getNumMembers() * 7142 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7143 return Cost; 7144 } 7145 7146 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7147 unsigned VF) { 7148 7149 // Calculate scalar cost only. Vectorization cost should be ready at this 7150 // moment. 7151 if (VF == 1) { 7152 Type *ValTy = getMemInstValueType(I); 7153 unsigned Alignment = getMemInstAlignment(I); 7154 unsigned AS = getMemInstAddressSpace(I); 7155 7156 return TTI.getAddressComputationCost(ValTy) + 7157 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7158 } 7159 return getWideningCost(I, VF); 7160 } 7161 7162 LoopVectorizationCostModel::VectorizationCostTy 7163 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7164 // If we know that this instruction will remain uniform, check the cost of 7165 // the scalar version. 7166 if (isUniformAfterVectorization(I, VF)) 7167 VF = 1; 7168 7169 if (VF > 1 && isProfitableToScalarize(I, VF)) 7170 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7171 7172 // Forced scalars do not have any scalarization overhead. 7173 if (VF > 1 && ForcedScalars.count(VF) && 7174 ForcedScalars.find(VF)->second.count(I)) 7175 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7176 7177 Type *VectorTy; 7178 unsigned C = getInstructionCost(I, VF, VectorTy); 7179 7180 bool TypeNotScalarized = 7181 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7182 return VectorizationCostTy(C, TypeNotScalarized); 7183 } 7184 7185 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7186 if (VF == 1) 7187 return; 7188 for (BasicBlock *BB : TheLoop->blocks()) { 7189 // For each instruction in the old loop. 7190 for (Instruction &I : *BB) { 7191 Value *Ptr = getPointerOperand(&I); 7192 if (!Ptr) 7193 continue; 7194 7195 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7196 // Scalar load + broadcast 7197 unsigned Cost = getUniformMemOpCost(&I, VF); 7198 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7199 continue; 7200 } 7201 7202 // We assume that widening is the best solution when possible. 7203 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7204 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7205 setWideningDecision(&I, VF, CM_Widen, Cost); 7206 continue; 7207 } 7208 7209 // Choose between Interleaving, Gather/Scatter or Scalarization. 7210 unsigned InterleaveCost = UINT_MAX; 7211 unsigned NumAccesses = 1; 7212 if (Legal->isAccessInterleaved(&I)) { 7213 auto Group = Legal->getInterleavedAccessGroup(&I); 7214 assert(Group && "Fail to get an interleaved access group."); 7215 7216 // Make one decision for the whole group. 7217 if (getWideningDecision(&I, VF) != CM_Unknown) 7218 continue; 7219 7220 NumAccesses = Group->getNumMembers(); 7221 InterleaveCost = getInterleaveGroupCost(&I, VF); 7222 } 7223 7224 unsigned GatherScatterCost = 7225 Legal->isLegalGatherOrScatter(&I) 7226 ? getGatherScatterCost(&I, VF) * NumAccesses 7227 : UINT_MAX; 7228 7229 unsigned ScalarizationCost = 7230 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7231 7232 // Choose better solution for the current VF, 7233 // write down this decision and use it during vectorization. 7234 unsigned Cost; 7235 InstWidening Decision; 7236 if (InterleaveCost <= GatherScatterCost && 7237 InterleaveCost < ScalarizationCost) { 7238 Decision = CM_Interleave; 7239 Cost = InterleaveCost; 7240 } else if (GatherScatterCost < ScalarizationCost) { 7241 Decision = CM_GatherScatter; 7242 Cost = GatherScatterCost; 7243 } else { 7244 Decision = CM_Scalarize; 7245 Cost = ScalarizationCost; 7246 } 7247 // If the instructions belongs to an interleave group, the whole group 7248 // receives the same decision. The whole group receives the cost, but 7249 // the cost will actually be assigned to one instruction. 7250 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7251 setWideningDecision(Group, VF, Decision, Cost); 7252 else 7253 setWideningDecision(&I, VF, Decision, Cost); 7254 } 7255 } 7256 7257 // Make sure that any load of address and any other address computation 7258 // remains scalar unless there is gather/scatter support. This avoids 7259 // inevitable extracts into address registers, and also has the benefit of 7260 // activating LSR more, since that pass can't optimize vectorized 7261 // addresses. 7262 if (TTI.prefersVectorizedAddressing()) 7263 return; 7264 7265 // Start with all scalar pointer uses. 7266 SmallPtrSet<Instruction *, 8> AddrDefs; 7267 for (BasicBlock *BB : TheLoop->blocks()) 7268 for (Instruction &I : *BB) { 7269 Instruction *PtrDef = 7270 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7271 if (PtrDef && TheLoop->contains(PtrDef) && 7272 getWideningDecision(&I, VF) != CM_GatherScatter) 7273 AddrDefs.insert(PtrDef); 7274 } 7275 7276 // Add all instructions used to generate the addresses. 7277 SmallVector<Instruction *, 4> Worklist; 7278 for (auto *I : AddrDefs) 7279 Worklist.push_back(I); 7280 while (!Worklist.empty()) { 7281 Instruction *I = Worklist.pop_back_val(); 7282 for (auto &Op : I->operands()) 7283 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7284 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7285 AddrDefs.insert(InstOp).second == true) 7286 Worklist.push_back(InstOp); 7287 } 7288 7289 for (auto *I : AddrDefs) { 7290 if (isa<LoadInst>(I)) { 7291 // Setting the desired widening decision should ideally be handled in 7292 // by cost functions, but since this involves the task of finding out 7293 // if the loaded register is involved in an address computation, it is 7294 // instead changed here when we know this is the case. 7295 if (getWideningDecision(I, VF) == CM_Widen) 7296 // Scalarize a widened load of address. 7297 setWideningDecision(I, VF, CM_Scalarize, 7298 (VF * getMemoryInstructionCost(I, 1))); 7299 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7300 // Scalarize an interleave group of address loads. 7301 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7302 if (Instruction *Member = Group->getMember(I)) 7303 setWideningDecision(Member, VF, CM_Scalarize, 7304 (VF * getMemoryInstructionCost(Member, 1))); 7305 } 7306 } 7307 } else 7308 // Make sure I gets scalarized and a cost estimate without 7309 // scalarization overhead. 7310 ForcedScalars[VF].insert(I); 7311 } 7312 } 7313 7314 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7315 unsigned VF, 7316 Type *&VectorTy) { 7317 Type *RetTy = I->getType(); 7318 if (canTruncateToMinimalBitwidth(I, VF)) 7319 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7320 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7321 auto SE = PSE.getSE(); 7322 7323 // TODO: We need to estimate the cost of intrinsic calls. 7324 switch (I->getOpcode()) { 7325 case Instruction::GetElementPtr: 7326 // We mark this instruction as zero-cost because the cost of GEPs in 7327 // vectorized code depends on whether the corresponding memory instruction 7328 // is scalarized or not. Therefore, we handle GEPs with the memory 7329 // instruction cost. 7330 return 0; 7331 case Instruction::Br: { 7332 // In cases of scalarized and predicated instructions, there will be VF 7333 // predicated blocks in the vectorized loop. Each branch around these 7334 // blocks requires also an extract of its vector compare i1 element. 7335 bool ScalarPredicatedBB = false; 7336 BranchInst *BI = cast<BranchInst>(I); 7337 if (VF > 1 && BI->isConditional() && 7338 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7339 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7340 ScalarPredicatedBB = true; 7341 7342 if (ScalarPredicatedBB) { 7343 // Return cost for branches around scalarized and predicated blocks. 7344 Type *Vec_i1Ty = 7345 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7346 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7347 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7348 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7349 // The back-edge branch will remain, as will all scalar branches. 7350 return TTI.getCFInstrCost(Instruction::Br); 7351 else 7352 // This branch will be eliminated by if-conversion. 7353 return 0; 7354 // Note: We currently assume zero cost for an unconditional branch inside 7355 // a predicated block since it will become a fall-through, although we 7356 // may decide in the future to call TTI for all branches. 7357 } 7358 case Instruction::PHI: { 7359 auto *Phi = cast<PHINode>(I); 7360 7361 // First-order recurrences are replaced by vector shuffles inside the loop. 7362 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7363 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7364 VectorTy, VF - 1, VectorTy); 7365 7366 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7367 // converted into select instructions. We require N - 1 selects per phi 7368 // node, where N is the number of incoming values. 7369 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7370 return (Phi->getNumIncomingValues() - 1) * 7371 TTI.getCmpSelInstrCost( 7372 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7373 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7374 7375 return TTI.getCFInstrCost(Instruction::PHI); 7376 } 7377 case Instruction::UDiv: 7378 case Instruction::SDiv: 7379 case Instruction::URem: 7380 case Instruction::SRem: 7381 // If we have a predicated instruction, it may not be executed for each 7382 // vector lane. Get the scalarization cost and scale this amount by the 7383 // probability of executing the predicated block. If the instruction is not 7384 // predicated, we fall through to the next case. 7385 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7386 unsigned Cost = 0; 7387 7388 // These instructions have a non-void type, so account for the phi nodes 7389 // that we will create. This cost is likely to be zero. The phi node 7390 // cost, if any, should be scaled by the block probability because it 7391 // models a copy at the end of each predicated block. 7392 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7393 7394 // The cost of the non-predicated instruction. 7395 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7396 7397 // The cost of insertelement and extractelement instructions needed for 7398 // scalarization. 7399 Cost += getScalarizationOverhead(I, VF, TTI); 7400 7401 // Scale the cost by the probability of executing the predicated blocks. 7402 // This assumes the predicated block for each vector lane is equally 7403 // likely. 7404 return Cost / getReciprocalPredBlockProb(); 7405 } 7406 LLVM_FALLTHROUGH; 7407 case Instruction::Add: 7408 case Instruction::FAdd: 7409 case Instruction::Sub: 7410 case Instruction::FSub: 7411 case Instruction::Mul: 7412 case Instruction::FMul: 7413 case Instruction::FDiv: 7414 case Instruction::FRem: 7415 case Instruction::Shl: 7416 case Instruction::LShr: 7417 case Instruction::AShr: 7418 case Instruction::And: 7419 case Instruction::Or: 7420 case Instruction::Xor: { 7421 // Since we will replace the stride by 1 the multiplication should go away. 7422 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7423 return 0; 7424 // Certain instructions can be cheaper to vectorize if they have a constant 7425 // second vector operand. One example of this are shifts on x86. 7426 TargetTransformInfo::OperandValueKind Op1VK = 7427 TargetTransformInfo::OK_AnyValue; 7428 TargetTransformInfo::OperandValueKind Op2VK = 7429 TargetTransformInfo::OK_AnyValue; 7430 TargetTransformInfo::OperandValueProperties Op1VP = 7431 TargetTransformInfo::OP_None; 7432 TargetTransformInfo::OperandValueProperties Op2VP = 7433 TargetTransformInfo::OP_None; 7434 Value *Op2 = I->getOperand(1); 7435 7436 // Check for a splat or for a non uniform vector of constants. 7437 if (isa<ConstantInt>(Op2)) { 7438 ConstantInt *CInt = cast<ConstantInt>(Op2); 7439 if (CInt && CInt->getValue().isPowerOf2()) 7440 Op2VP = TargetTransformInfo::OP_PowerOf2; 7441 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7442 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7443 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7444 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7445 if (SplatValue) { 7446 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7447 if (CInt && CInt->getValue().isPowerOf2()) 7448 Op2VP = TargetTransformInfo::OP_PowerOf2; 7449 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7450 } 7451 } else if (Legal->isUniform(Op2)) { 7452 Op2VK = TargetTransformInfo::OK_UniformValue; 7453 } 7454 SmallVector<const Value *, 4> Operands(I->operand_values()); 7455 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7456 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7457 Op2VK, Op1VP, Op2VP, Operands); 7458 } 7459 case Instruction::Select: { 7460 SelectInst *SI = cast<SelectInst>(I); 7461 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7462 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7463 Type *CondTy = SI->getCondition()->getType(); 7464 if (!ScalarCond) 7465 CondTy = VectorType::get(CondTy, VF); 7466 7467 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7468 } 7469 case Instruction::ICmp: 7470 case Instruction::FCmp: { 7471 Type *ValTy = I->getOperand(0)->getType(); 7472 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7473 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7474 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7475 VectorTy = ToVectorTy(ValTy, VF); 7476 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7477 } 7478 case Instruction::Store: 7479 case Instruction::Load: { 7480 unsigned Width = VF; 7481 if (Width > 1) { 7482 InstWidening Decision = getWideningDecision(I, Width); 7483 assert(Decision != CM_Unknown && 7484 "CM decision should be taken at this point"); 7485 if (Decision == CM_Scalarize) 7486 Width = 1; 7487 } 7488 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7489 return getMemoryInstructionCost(I, VF); 7490 } 7491 case Instruction::ZExt: 7492 case Instruction::SExt: 7493 case Instruction::FPToUI: 7494 case Instruction::FPToSI: 7495 case Instruction::FPExt: 7496 case Instruction::PtrToInt: 7497 case Instruction::IntToPtr: 7498 case Instruction::SIToFP: 7499 case Instruction::UIToFP: 7500 case Instruction::Trunc: 7501 case Instruction::FPTrunc: 7502 case Instruction::BitCast: { 7503 // We optimize the truncation of induction variables having constant 7504 // integer steps. The cost of these truncations is the same as the scalar 7505 // operation. 7506 if (isOptimizableIVTruncate(I, VF)) { 7507 auto *Trunc = cast<TruncInst>(I); 7508 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7509 Trunc->getSrcTy(), Trunc); 7510 } 7511 7512 Type *SrcScalarTy = I->getOperand(0)->getType(); 7513 Type *SrcVecTy = 7514 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7515 if (canTruncateToMinimalBitwidth(I, VF)) { 7516 // This cast is going to be shrunk. This may remove the cast or it might 7517 // turn it into slightly different cast. For example, if MinBW == 16, 7518 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7519 // 7520 // Calculate the modified src and dest types. 7521 Type *MinVecTy = VectorTy; 7522 if (I->getOpcode() == Instruction::Trunc) { 7523 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7524 VectorTy = 7525 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7526 } else if (I->getOpcode() == Instruction::ZExt || 7527 I->getOpcode() == Instruction::SExt) { 7528 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7529 VectorTy = 7530 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7531 } 7532 } 7533 7534 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7535 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7536 } 7537 case Instruction::Call: { 7538 bool NeedToScalarize; 7539 CallInst *CI = cast<CallInst>(I); 7540 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7541 if (getVectorIntrinsicIDForCall(CI, TLI)) 7542 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7543 return CallCost; 7544 } 7545 default: 7546 // The cost of executing VF copies of the scalar instruction. This opcode 7547 // is unknown. Assume that it is the same as 'mul'. 7548 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7549 getScalarizationOverhead(I, VF, TTI); 7550 } // end of switch. 7551 } 7552 7553 char LoopVectorize::ID = 0; 7554 static const char lv_name[] = "Loop Vectorization"; 7555 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7556 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7557 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7558 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7559 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7560 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7561 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7562 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7563 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7564 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7565 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7566 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7567 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7568 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7569 7570 namespace llvm { 7571 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7572 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7573 } 7574 } 7575 7576 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7577 7578 // Check if the pointer operand of a load or store instruction is 7579 // consecutive. 7580 if (auto *Ptr = getPointerOperand(Inst)) 7581 return Legal->isConsecutivePtr(Ptr); 7582 return false; 7583 } 7584 7585 void LoopVectorizationCostModel::collectValuesToIgnore() { 7586 // Ignore ephemeral values. 7587 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7588 7589 // Ignore type-promoting instructions we identified during reduction 7590 // detection. 7591 for (auto &Reduction : *Legal->getReductionVars()) { 7592 RecurrenceDescriptor &RedDes = Reduction.second; 7593 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7594 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7595 } 7596 } 7597 7598 LoopVectorizationCostModel::VectorizationFactor 7599 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7600 7601 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7602 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7603 0U}; 7604 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7605 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7606 return NoVectorization; 7607 7608 if (UserVF) { 7609 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7610 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7611 // Collect the instructions (and their associated costs) that will be more 7612 // profitable to scalarize. 7613 CM.selectUserVectorizationFactor(UserVF); 7614 return {UserVF, 0}; 7615 } 7616 7617 unsigned MaxVF = MaybeMaxVF.getValue(); 7618 assert(MaxVF != 0 && "MaxVF is zero."); 7619 if (MaxVF == 1) 7620 return NoVectorization; 7621 7622 // Select the optimal vectorization factor. 7623 return CM.selectVectorizationFactor(MaxVF); 7624 } 7625 7626 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV) { 7627 // Perform the actual loop transformation. 7628 7629 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7630 ILV.createVectorizedLoopSkeleton(); 7631 7632 //===------------------------------------------------===// 7633 // 7634 // Notice: any optimization or new instruction that go 7635 // into the code below should also be implemented in 7636 // the cost-model. 7637 // 7638 //===------------------------------------------------===// 7639 7640 // 2. Copy and widen instructions from the old loop into the new loop. 7641 7642 // Move instructions to handle first-order recurrences. 7643 DenseMap<Instruction *, Instruction *> SinkAfter = Legal->getSinkAfter(); 7644 for (auto &Entry : SinkAfter) { 7645 Entry.first->removeFromParent(); 7646 Entry.first->insertAfter(Entry.second); 7647 DEBUG(dbgs() << "Sinking" << *Entry.first << " after" << *Entry.second 7648 << " to vectorize a 1st order recurrence.\n"); 7649 } 7650 7651 // Collect instructions from the original loop that will become trivially dead 7652 // in the vectorized loop. We don't need to vectorize these instructions. For 7653 // example, original induction update instructions can become dead because we 7654 // separately emit induction "steps" when generating code for the new loop. 7655 // Similarly, we create a new latch condition when setting up the structure 7656 // of the new loop, so the old one can become dead. 7657 SmallPtrSet<Instruction *, 4> DeadInstructions; 7658 collectTriviallyDeadInstructions(DeadInstructions); 7659 7660 // Scan the loop in a topological order to ensure that defs are vectorized 7661 // before users. 7662 LoopBlocksDFS DFS(OrigLoop); 7663 DFS.perform(LI); 7664 7665 // Vectorize all instructions in the original loop that will not become 7666 // trivially dead when vectorized. 7667 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 7668 for (Instruction &I : *BB) 7669 if (!DeadInstructions.count(&I)) 7670 ILV.vectorizeInstruction(I); 7671 7672 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7673 // predication, updating analyses. 7674 ILV.fixVectorizedLoop(); 7675 } 7676 7677 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7678 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7679 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7680 7681 // We create new control-flow for the vectorized loop, so the original 7682 // condition will be dead after vectorization if it's only used by the 7683 // branch. 7684 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7685 if (Cmp && Cmp->hasOneUse()) 7686 DeadInstructions.insert(Cmp); 7687 7688 // We create new "steps" for induction variable updates to which the original 7689 // induction variables map. An original update instruction will be dead if 7690 // all its users except the induction variable are dead. 7691 for (auto &Induction : *Legal->getInductionVars()) { 7692 PHINode *Ind = Induction.first; 7693 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7694 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7695 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7696 })) 7697 DeadInstructions.insert(IndUpdate); 7698 } 7699 } 7700 7701 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7702 auto *SI = dyn_cast<StoreInst>(Instr); 7703 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7704 7705 return scalarizeInstruction(Instr, IfPredicateInstr); 7706 } 7707 7708 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7709 7710 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7711 7712 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7713 Instruction::BinaryOps BinOp) { 7714 // When unrolling and the VF is 1, we only need to add a simple scalar. 7715 Type *Ty = Val->getType(); 7716 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7717 7718 if (Ty->isFloatingPointTy()) { 7719 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7720 7721 // Floating point operations had to be 'fast' to enable the unrolling. 7722 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7723 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7724 } 7725 Constant *C = ConstantInt::get(Ty, StartIdx); 7726 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7727 } 7728 7729 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7730 SmallVector<Metadata *, 4> MDs; 7731 // Reserve first location for self reference to the LoopID metadata node. 7732 MDs.push_back(nullptr); 7733 bool IsUnrollMetadata = false; 7734 MDNode *LoopID = L->getLoopID(); 7735 if (LoopID) { 7736 // First find existing loop unrolling disable metadata. 7737 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7738 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7739 if (MD) { 7740 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7741 IsUnrollMetadata = 7742 S && S->getString().startswith("llvm.loop.unroll.disable"); 7743 } 7744 MDs.push_back(LoopID->getOperand(i)); 7745 } 7746 } 7747 7748 if (!IsUnrollMetadata) { 7749 // Add runtime unroll disable metadata. 7750 LLVMContext &Context = L->getHeader()->getContext(); 7751 SmallVector<Metadata *, 1> DisableOperands; 7752 DisableOperands.push_back( 7753 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7754 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7755 MDs.push_back(DisableNode); 7756 MDNode *NewLoopID = MDNode::get(Context, MDs); 7757 // Set operand 0 to refer to the loop id itself. 7758 NewLoopID->replaceOperandWith(0, NewLoopID); 7759 L->setLoopID(NewLoopID); 7760 } 7761 } 7762 7763 bool LoopVectorizePass::processLoop(Loop *L) { 7764 assert(L->empty() && "Only process inner loops."); 7765 7766 #ifndef NDEBUG 7767 const std::string DebugLocStr = getDebugLocString(L); 7768 #endif /* NDEBUG */ 7769 7770 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7771 << L->getHeader()->getParent()->getName() << "\" from " 7772 << DebugLocStr << "\n"); 7773 7774 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7775 7776 DEBUG(dbgs() << "LV: Loop hints:" 7777 << " force=" 7778 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7779 ? "disabled" 7780 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7781 ? "enabled" 7782 : "?")) 7783 << " width=" << Hints.getWidth() 7784 << " unroll=" << Hints.getInterleave() << "\n"); 7785 7786 // Function containing loop 7787 Function *F = L->getHeader()->getParent(); 7788 7789 // Looking at the diagnostic output is the only way to determine if a loop 7790 // was vectorized (other than looking at the IR or machine code), so it 7791 // is important to generate an optimization remark for each loop. Most of 7792 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7793 // generated as OptimizationRemark and OptimizationRemarkMissed are 7794 // less verbose reporting vectorized loops and unvectorized loops that may 7795 // benefit from vectorization, respectively. 7796 7797 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7798 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7799 return false; 7800 } 7801 7802 PredicatedScalarEvolution PSE(*SE, *L); 7803 7804 // Check if it is legal to vectorize the loop. 7805 LoopVectorizationRequirements Requirements(*ORE); 7806 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7807 &Requirements, &Hints); 7808 if (!LVL.canVectorize()) { 7809 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7810 emitMissedWarning(F, L, Hints, ORE); 7811 return false; 7812 } 7813 7814 // Check the function attributes to find out if this function should be 7815 // optimized for size. 7816 bool OptForSize = 7817 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7818 7819 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7820 // count by optimizing for size, to minimize overheads. 7821 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7822 bool HasExpectedTC = (ExpectedTC > 0); 7823 7824 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7825 auto EstimatedTC = getLoopEstimatedTripCount(L); 7826 if (EstimatedTC) { 7827 ExpectedTC = *EstimatedTC; 7828 HasExpectedTC = true; 7829 } 7830 } 7831 7832 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7833 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7834 << "This loop is worth vectorizing only if no scalar " 7835 << "iteration overheads are incurred."); 7836 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7837 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7838 else { 7839 DEBUG(dbgs() << "\n"); 7840 // Loops with a very small trip count are considered for vectorization 7841 // under OptForSize, thereby making sure the cost of their loop body is 7842 // dominant, free of runtime guards and scalar iteration overheads. 7843 OptForSize = true; 7844 } 7845 } 7846 7847 // Check the function attributes to see if implicit floats are allowed. 7848 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7849 // an integer loop and the vector instructions selected are purely integer 7850 // vector instructions? 7851 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7852 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7853 "attribute is used.\n"); 7854 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7855 "NoImplicitFloat", L) 7856 << "loop not vectorized due to NoImplicitFloat attribute"); 7857 emitMissedWarning(F, L, Hints, ORE); 7858 return false; 7859 } 7860 7861 // Check if the target supports potentially unsafe FP vectorization. 7862 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7863 // for the target we're vectorizing for, to make sure none of the 7864 // additional fp-math flags can help. 7865 if (Hints.isPotentiallyUnsafe() && 7866 TTI->isFPVectorizationPotentiallyUnsafe()) { 7867 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7868 ORE->emit( 7869 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7870 << "loop not vectorized due to unsafe FP support."); 7871 emitMissedWarning(F, L, Hints, ORE); 7872 return false; 7873 } 7874 7875 // Use the cost model. 7876 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7877 &Hints); 7878 CM.collectValuesToIgnore(); 7879 7880 // Use the planner for vectorization. 7881 LoopVectorizationPlanner LVP(L, LI, &LVL, CM); 7882 7883 // Get user vectorization factor. 7884 unsigned UserVF = Hints.getWidth(); 7885 7886 // Plan how to best vectorize, return the best VF and its cost. 7887 LoopVectorizationCostModel::VectorizationFactor VF = 7888 LVP.plan(OptForSize, UserVF); 7889 7890 // Select the interleave count. 7891 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7892 7893 // Get user interleave count. 7894 unsigned UserIC = Hints.getInterleave(); 7895 7896 // Identify the diagnostic messages that should be produced. 7897 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7898 bool VectorizeLoop = true, InterleaveLoop = true; 7899 if (Requirements.doesNotMeet(F, L, Hints)) { 7900 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7901 "requirements.\n"); 7902 emitMissedWarning(F, L, Hints, ORE); 7903 return false; 7904 } 7905 7906 if (VF.Width == 1) { 7907 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7908 VecDiagMsg = std::make_pair( 7909 "VectorizationNotBeneficial", 7910 "the cost-model indicates that vectorization is not beneficial"); 7911 VectorizeLoop = false; 7912 } 7913 7914 if (IC == 1 && UserIC <= 1) { 7915 // Tell the user interleaving is not beneficial. 7916 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7917 IntDiagMsg = std::make_pair( 7918 "InterleavingNotBeneficial", 7919 "the cost-model indicates that interleaving is not beneficial"); 7920 InterleaveLoop = false; 7921 if (UserIC == 1) { 7922 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7923 IntDiagMsg.second += 7924 " and is explicitly disabled or interleave count is set to 1"; 7925 } 7926 } else if (IC > 1 && UserIC == 1) { 7927 // Tell the user interleaving is beneficial, but it explicitly disabled. 7928 DEBUG(dbgs() 7929 << "LV: Interleaving is beneficial but is explicitly disabled."); 7930 IntDiagMsg = std::make_pair( 7931 "InterleavingBeneficialButDisabled", 7932 "the cost-model indicates that interleaving is beneficial " 7933 "but is explicitly disabled or interleave count is set to 1"); 7934 InterleaveLoop = false; 7935 } 7936 7937 // Override IC if user provided an interleave count. 7938 IC = UserIC > 0 ? UserIC : IC; 7939 7940 // Emit diagnostic messages, if any. 7941 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7942 if (!VectorizeLoop && !InterleaveLoop) { 7943 // Do not vectorize or interleaving the loop. 7944 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7945 L->getStartLoc(), L->getHeader()) 7946 << VecDiagMsg.second); 7947 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7948 L->getStartLoc(), L->getHeader()) 7949 << IntDiagMsg.second); 7950 return false; 7951 } else if (!VectorizeLoop && InterleaveLoop) { 7952 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7953 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7954 L->getStartLoc(), L->getHeader()) 7955 << VecDiagMsg.second); 7956 } else if (VectorizeLoop && !InterleaveLoop) { 7957 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7958 << DebugLocStr << '\n'); 7959 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7960 L->getStartLoc(), L->getHeader()) 7961 << IntDiagMsg.second); 7962 } else if (VectorizeLoop && InterleaveLoop) { 7963 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7964 << DebugLocStr << '\n'); 7965 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7966 } 7967 7968 using namespace ore; 7969 if (!VectorizeLoop) { 7970 assert(IC > 1 && "interleave count should not be 1 or 0"); 7971 // If we decided that it is not legal to vectorize the loop, then 7972 // interleave it. 7973 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7974 &CM); 7975 LVP.executePlan(Unroller); 7976 7977 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7978 L->getHeader()) 7979 << "interleaved loop (interleaved count: " 7980 << NV("InterleaveCount", IC) << ")"); 7981 } else { 7982 // If we decided that it is *legal* to vectorize the loop, then do it. 7983 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7984 &LVL, &CM); 7985 LVP.executePlan(LB); 7986 ++LoopsVectorized; 7987 7988 // Add metadata to disable runtime unrolling a scalar loop when there are 7989 // no runtime checks about strides and memory. A scalar loop that is 7990 // rarely used is not worth unrolling. 7991 if (!LB.areSafetyChecksAdded()) 7992 AddRuntimeUnrollDisableMetaData(L); 7993 7994 // Report the vectorization decision. 7995 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7996 L->getHeader()) 7997 << "vectorized loop (vectorization width: " 7998 << NV("VectorizationFactor", VF.Width) 7999 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 8000 } 8001 8002 // Mark the loop as already vectorized to avoid vectorizing again. 8003 Hints.setAlreadyVectorized(); 8004 8005 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8006 return true; 8007 } 8008 8009 bool LoopVectorizePass::runImpl( 8010 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8011 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8012 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8013 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8014 OptimizationRemarkEmitter &ORE_) { 8015 8016 SE = &SE_; 8017 LI = &LI_; 8018 TTI = &TTI_; 8019 DT = &DT_; 8020 BFI = &BFI_; 8021 TLI = TLI_; 8022 AA = &AA_; 8023 AC = &AC_; 8024 GetLAA = &GetLAA_; 8025 DB = &DB_; 8026 ORE = &ORE_; 8027 8028 // Don't attempt if 8029 // 1. the target claims to have no vector registers, and 8030 // 2. interleaving won't help ILP. 8031 // 8032 // The second condition is necessary because, even if the target has no 8033 // vector registers, loop vectorization may still enable scalar 8034 // interleaving. 8035 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8036 return false; 8037 8038 bool Changed = false; 8039 8040 // The vectorizer requires loops to be in simplified form. 8041 // Since simplification may add new inner loops, it has to run before the 8042 // legality and profitability checks. This means running the loop vectorizer 8043 // will simplify all loops, regardless of whether anything end up being 8044 // vectorized. 8045 for (auto &L : *LI) 8046 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8047 8048 // Build up a worklist of inner-loops to vectorize. This is necessary as 8049 // the act of vectorizing or partially unrolling a loop creates new loops 8050 // and can invalidate iterators across the loops. 8051 SmallVector<Loop *, 8> Worklist; 8052 8053 for (Loop *L : *LI) 8054 addAcyclicInnerLoop(*L, Worklist); 8055 8056 LoopsAnalyzed += Worklist.size(); 8057 8058 // Now walk the identified inner loops. 8059 while (!Worklist.empty()) { 8060 Loop *L = Worklist.pop_back_val(); 8061 8062 // For the inner loops we actually process, form LCSSA to simplify the 8063 // transform. 8064 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8065 8066 Changed |= processLoop(L); 8067 } 8068 8069 // Process each loop nest in the function. 8070 return Changed; 8071 8072 } 8073 8074 8075 PreservedAnalyses LoopVectorizePass::run(Function &F, 8076 FunctionAnalysisManager &AM) { 8077 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8078 auto &LI = AM.getResult<LoopAnalysis>(F); 8079 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8080 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8081 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8082 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8083 auto &AA = AM.getResult<AAManager>(F); 8084 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8085 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8086 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8087 8088 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8089 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8090 [&](Loop &L) -> const LoopAccessInfo & { 8091 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8092 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8093 }; 8094 bool Changed = 8095 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8096 if (!Changed) 8097 return PreservedAnalyses::all(); 8098 PreservedAnalyses PA; 8099 PA.preserve<LoopAnalysis>(); 8100 PA.preserve<DominatorTreeAnalysis>(); 8101 PA.preserve<BasicAA>(); 8102 PA.preserve<GlobalsAA>(); 8103 return PA; 8104 } 8105