1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// We don't vectorize loops with a known constant trip count below this number. 118 static cl::opt<unsigned> TinyTripCountVectorThreshold( 119 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 120 cl::desc("Don't vectorize loops with a constant " 121 "trip count that is smaller than this " 122 "value.")); 123 124 static cl::opt<bool> MaximizeBandwidth( 125 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 126 cl::desc("Maximize bandwidth when selecting vectorization factor which " 127 "will be determined by the smallest type in loop.")); 128 129 static cl::opt<bool> EnableInterleavedMemAccesses( 130 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 131 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 132 133 /// Maximum factor for an interleaved memory access. 134 static cl::opt<unsigned> MaxInterleaveGroupFactor( 135 "max-interleave-group-factor", cl::Hidden, 136 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 137 cl::init(8)); 138 139 /// We don't interleave loops with a known constant trip count below this 140 /// number. 141 static const unsigned TinyTripCountInterleaveThreshold = 128; 142 143 static cl::opt<unsigned> ForceTargetNumScalarRegs( 144 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of scalar registers.")); 146 147 static cl::opt<unsigned> ForceTargetNumVectorRegs( 148 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of vector registers.")); 150 151 /// Maximum vectorization interleave count. 152 static const unsigned MaxInterleaveFactor = 16; 153 154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 155 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's max interleave factor for " 157 "scalar loops.")); 158 159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 160 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's max interleave factor for " 162 "vectorized loops.")); 163 164 static cl::opt<unsigned> ForceTargetInstructionCost( 165 "force-target-instruction-cost", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's expected cost for " 167 "an instruction to a single constant value. Mostly " 168 "useful for getting consistent testing.")); 169 170 static cl::opt<unsigned> SmallLoopCost( 171 "small-loop-cost", cl::init(20), cl::Hidden, 172 cl::desc( 173 "The cost of a loop that is considered 'small' by the interleaver.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime interleave loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 183 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 184 cl::desc( 185 "Enable runtime interleaving until load/store ports are saturated")); 186 187 /// The number of stores in a loop that are allowed to need predication. 188 static cl::opt<unsigned> NumberOfStoresToPredicate( 189 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 190 cl::desc("Max number of stores to be predicated behind an if.")); 191 192 static cl::opt<bool> EnableIndVarRegisterHeur( 193 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 194 cl::desc("Count the induction variable only once when interleaving")); 195 196 static cl::opt<bool> EnableCondStoresVectorization( 197 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 198 cl::desc("Enable if predication of stores during vectorization.")); 199 200 static cl::opt<unsigned> MaxNestedScalarReductionIC( 201 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 202 cl::desc("The maximum interleave count to use when interleaving a scalar " 203 "reduction in a nested loop.")); 204 205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 206 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 207 cl::desc("The maximum allowed number of runtime memory checks with a " 208 "vectorize(enable) pragma.")); 209 210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 211 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed.")); 213 214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 215 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed with a " 217 "vectorize(enable) pragma")); 218 219 /// Create an analysis remark that explains why vectorization failed 220 /// 221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 222 /// RemarkName is the identifier for the remark. If \p I is passed it is an 223 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 224 /// the location of the remark. \return the remark object that can be 225 /// streamed to. 226 static OptimizationRemarkAnalysis 227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 228 Instruction *I = nullptr) { 229 Value *CodeRegion = TheLoop->getHeader(); 230 DebugLoc DL = TheLoop->getStartLoc(); 231 232 if (I) { 233 CodeRegion = I->getParent(); 234 // If there is no debug location attached to the instruction, revert back to 235 // using the loop's. 236 if (I->getDebugLoc()) 237 DL = I->getDebugLoc(); 238 } 239 240 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 241 R << "loop not vectorized: "; 242 return R; 243 } 244 245 namespace { 246 247 // Forward declarations. 248 class LoopVectorizeHints; 249 class LoopVectorizationLegality; 250 class LoopVectorizationCostModel; 251 class LoopVectorizationRequirements; 252 253 /// Returns true if the given loop body has a cycle, excluding the loop 254 /// itself. 255 static bool hasCyclesInLoopBody(const Loop &L) { 256 if (!L.empty()) 257 return true; 258 259 for (const auto &SCC : 260 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 261 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 262 if (SCC.size() > 1) { 263 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 264 DEBUG(L.dump()); 265 return true; 266 } 267 } 268 return false; 269 } 270 271 /// A helper function for converting Scalar types to vector types. 272 /// If the incoming type is void, we return void. If the VF is 1, we return 273 /// the scalar type. 274 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 275 if (Scalar->isVoidTy() || VF == 1) 276 return Scalar; 277 return VectorType::get(Scalar, VF); 278 } 279 280 // FIXME: The following helper functions have multiple implementations 281 // in the project. They can be effectively organized in a common Load/Store 282 // utilities unit. 283 284 /// A helper function that returns the pointer operand of a load or store 285 /// instruction. 286 static Value *getPointerOperand(Value *I) { 287 if (auto *LI = dyn_cast<LoadInst>(I)) 288 return LI->getPointerOperand(); 289 if (auto *SI = dyn_cast<StoreInst>(I)) 290 return SI->getPointerOperand(); 291 return nullptr; 292 } 293 294 /// A helper function that returns the type of loaded or stored value. 295 static Type *getMemInstValueType(Value *I) { 296 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 297 "Expected Load or Store instruction"); 298 if (auto *LI = dyn_cast<LoadInst>(I)) 299 return LI->getType(); 300 return cast<StoreInst>(I)->getValueOperand()->getType(); 301 } 302 303 /// A helper function that returns the alignment of load or store instruction. 304 static unsigned getMemInstAlignment(Value *I) { 305 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 306 "Expected Load or Store instruction"); 307 if (auto *LI = dyn_cast<LoadInst>(I)) 308 return LI->getAlignment(); 309 return cast<StoreInst>(I)->getAlignment(); 310 } 311 312 /// A helper function that returns the address space of the pointer operand of 313 /// load or store instruction. 314 static unsigned getMemInstAddressSpace(Value *I) { 315 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 316 "Expected Load or Store instruction"); 317 if (auto *LI = dyn_cast<LoadInst>(I)) 318 return LI->getPointerAddressSpace(); 319 return cast<StoreInst>(I)->getPointerAddressSpace(); 320 } 321 322 /// A helper function that returns true if the given type is irregular. The 323 /// type is irregular if its allocated size doesn't equal the store size of an 324 /// element of the corresponding vector type at the given vectorization factor. 325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 326 327 // Determine if an array of VF elements of type Ty is "bitcast compatible" 328 // with a <VF x Ty> vector. 329 if (VF > 1) { 330 auto *VectorTy = VectorType::get(Ty, VF); 331 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 332 } 333 334 // If the vectorization factor is one, we just check if an array of type Ty 335 // requires padding between elements. 336 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 337 } 338 339 /// A helper function that returns the reciprocal of the block probability of 340 /// predicated blocks. If we return X, we are assuming the predicated block 341 /// will execute once for for every X iterations of the loop header. 342 /// 343 /// TODO: We should use actual block probability here, if available. Currently, 344 /// we always assume predicated blocks have a 50% chance of executing. 345 static unsigned getReciprocalPredBlockProb() { return 2; } 346 347 /// A helper function that adds a 'fast' flag to floating-point operations. 348 static Value *addFastMathFlag(Value *V) { 349 if (isa<FPMathOperator>(V)) { 350 FastMathFlags Flags; 351 Flags.setUnsafeAlgebra(); 352 cast<Instruction>(V)->setFastMathFlags(Flags); 353 } 354 return V; 355 } 356 357 /// A helper function that returns an integer or floating-point constant with 358 /// value C. 359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 360 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 361 : ConstantFP::get(Ty, C); 362 } 363 364 /// InnerLoopVectorizer vectorizes loops which contain only one basic 365 /// block to a specified vectorization factor (VF). 366 /// This class performs the widening of scalars into vectors, or multiple 367 /// scalars. This class also implements the following features: 368 /// * It inserts an epilogue loop for handling loops that don't have iteration 369 /// counts that are known to be a multiple of the vectorization factor. 370 /// * It handles the code generation for reduction variables. 371 /// * Scalarization (implementation using scalars) of un-vectorizable 372 /// instructions. 373 /// InnerLoopVectorizer does not perform any vectorization-legality 374 /// checks, and relies on the caller to check for the different legality 375 /// aspects. The InnerLoopVectorizer relies on the 376 /// LoopVectorizationLegality class to provide information about the induction 377 /// and reduction variables that were found to a given vectorization factor. 378 class InnerLoopVectorizer { 379 public: 380 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 381 LoopInfo *LI, DominatorTree *DT, 382 const TargetLibraryInfo *TLI, 383 const TargetTransformInfo *TTI, AssumptionCache *AC, 384 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 385 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 386 LoopVectorizationCostModel *CM) 387 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 388 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 389 Builder(PSE.getSE()->getContext()), Induction(nullptr), 390 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 391 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 392 AddedSafetyChecks(false) {} 393 394 /// Create a new empty loop. Unlink the old loop and connect the new one. 395 void createVectorizedLoopSkeleton(); 396 397 /// Vectorize a single instruction within the innermost loop. 398 void vectorizeInstruction(Instruction &I); 399 400 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 401 void fixVectorizedLoop(); 402 403 // Return true if any runtime check is added. 404 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 405 406 virtual ~InnerLoopVectorizer() {} 407 408 protected: 409 /// A small list of PHINodes. 410 typedef SmallVector<PHINode *, 4> PhiVector; 411 412 /// A type for vectorized values in the new loop. Each value from the 413 /// original loop, when vectorized, is represented by UF vector values in the 414 /// new unrolled loop, where UF is the unroll factor. 415 typedef SmallVector<Value *, 2> VectorParts; 416 417 /// A type for scalarized values in the new loop. Each value from the 418 /// original loop, when scalarized, is represented by UF x VF scalar values 419 /// in the new unrolled loop, where UF is the unroll factor and VF is the 420 /// vectorization factor. 421 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 422 423 // When we if-convert we need to create edge masks. We have to cache values 424 // so that we don't end up with exponential recursion/IR. 425 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 426 EdgeMaskCacheTy; 427 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 428 429 /// Set up the values of the IVs correctly when exiting the vector loop. 430 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 431 Value *CountRoundDown, Value *EndValue, 432 BasicBlock *MiddleBlock); 433 434 /// Create a new induction variable inside L. 435 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 436 Value *Step, Instruction *DL); 437 438 /// Handle all cross-iteration phis in the header. 439 void fixCrossIterationPHIs(); 440 441 /// Fix a first-order recurrence. This is the second phase of vectorizing 442 /// this phi node. 443 void fixFirstOrderRecurrence(PHINode *Phi); 444 445 /// Fix a reduction cross-iteration phi. This is the second phase of 446 /// vectorizing this phi node. 447 void fixReduction(PHINode *Phi); 448 449 /// \brief The Loop exit block may have single value PHI nodes with some 450 /// incoming value. While vectorizing we only handled real values 451 /// that were defined inside the loop and we should have one value for 452 /// each predecessor of its parent basic block. See PR14725. 453 void fixLCSSAPHIs(); 454 455 /// Iteratively sink the scalarized operands of a predicated instruction into 456 /// the block that was created for it. 457 void sinkScalarOperands(Instruction *PredInst); 458 459 /// Predicate conditional instructions that require predication on their 460 /// respective conditions. 461 void predicateInstructions(); 462 463 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 464 /// represented as. 465 void truncateToMinimalBitwidths(); 466 467 /// A helper function that computes the predicate of the block BB, assuming 468 /// that the header block of the loop is set to True. It returns the *entry* 469 /// mask for the block BB. 470 VectorParts createBlockInMask(BasicBlock *BB); 471 /// A helper function that computes the predicate of the edge between SRC 472 /// and DST. 473 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 474 475 /// Vectorize a single PHINode in a block. This method handles the induction 476 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 477 /// arbitrary length vectors. 478 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 479 480 /// Insert the new loop to the loop hierarchy and pass manager 481 /// and update the analysis passes. 482 void updateAnalysis(); 483 484 /// This instruction is un-vectorizable. Implement it as a sequence 485 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 486 /// scalarized instruction behind an if block predicated on the control 487 /// dependence of the instruction. 488 void scalarizeInstruction(Instruction *Instr, bool IfPredicateInstr = false); 489 490 /// Vectorize Load and Store instructions, 491 virtual void vectorizeMemoryInstruction(Instruction *Instr); 492 493 /// Create a broadcast instruction. This method generates a broadcast 494 /// instruction (shuffle) for loop invariant values and for the induction 495 /// value. If this is the induction variable then we extend it to N, N+1, ... 496 /// this is needed because each iteration in the loop corresponds to a SIMD 497 /// element. 498 virtual Value *getBroadcastInstrs(Value *V); 499 500 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 501 /// to each vector element of Val. The sequence starts at StartIndex. 502 /// \p Opcode is relevant for FP induction variable. 503 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 504 Instruction::BinaryOps Opcode = 505 Instruction::BinaryOpsEnd); 506 507 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 508 /// variable on which to base the steps, \p Step is the size of the step, and 509 /// \p EntryVal is the value from the original loop that maps to the steps. 510 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 511 /// can be a truncate instruction). 512 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 513 const InductionDescriptor &ID); 514 515 /// Create a vector induction phi node based on an existing scalar one. \p 516 /// EntryVal is the value from the original loop that maps to the vector phi 517 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 518 /// truncate instruction, instead of widening the original IV, we widen a 519 /// version of the IV truncated to \p EntryVal's type. 520 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 521 Value *Step, Instruction *EntryVal); 522 523 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 524 /// is provided, the integer induction variable will first be truncated to 525 /// the corresponding type. 526 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 527 528 /// Returns true if an instruction \p I should be scalarized instead of 529 /// vectorized for the chosen vectorization factor. 530 bool shouldScalarizeInstruction(Instruction *I) const; 531 532 /// Returns true if we should generate a scalar version of \p IV. 533 bool needsScalarInduction(Instruction *IV) const; 534 535 /// Return a constant reference to the VectorParts corresponding to \p V from 536 /// the original loop. If the value has already been vectorized, the 537 /// corresponding vector entry in VectorLoopValueMap is returned. If, 538 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 539 /// new vector values on-demand by inserting the scalar values into vectors 540 /// with an insertelement sequence. If the value has been neither vectorized 541 /// nor scalarized, it must be loop invariant, so we simply broadcast the 542 /// value into vectors. 543 const VectorParts &getVectorValue(Value *V); 544 545 /// Return a value in the new loop corresponding to \p V from the original 546 /// loop at unroll index \p Part and vector index \p Lane. If the value has 547 /// been vectorized but not scalarized, the necessary extractelement 548 /// instruction will be generated. 549 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 550 551 /// Try to vectorize the interleaved access group that \p Instr belongs to. 552 void vectorizeInterleaveGroup(Instruction *Instr); 553 554 /// Generate a shuffle sequence that will reverse the vector Vec. 555 virtual Value *reverseVector(Value *Vec); 556 557 /// Returns (and creates if needed) the original loop trip count. 558 Value *getOrCreateTripCount(Loop *NewLoop); 559 560 /// Returns (and creates if needed) the trip count of the widened loop. 561 Value *getOrCreateVectorTripCount(Loop *NewLoop); 562 563 /// Emit a bypass check to see if the trip count would overflow, or we 564 /// wouldn't have enough iterations to execute one vector loop. 565 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 566 /// Emit a bypass check to see if the vector trip count is nonzero. 567 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 568 /// Emit a bypass check to see if all of the SCEV assumptions we've 569 /// had to make are correct. 570 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 571 /// Emit bypass checks to check any memory assumptions we may have made. 572 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 573 574 /// Add additional metadata to \p To that was not present on \p Orig. 575 /// 576 /// Currently this is used to add the noalias annotations based on the 577 /// inserted memchecks. Use this for instructions that are *cloned* into the 578 /// vector loop. 579 void addNewMetadata(Instruction *To, const Instruction *Orig); 580 581 /// Add metadata from one instruction to another. 582 /// 583 /// This includes both the original MDs from \p From and additional ones (\see 584 /// addNewMetadata). Use this for *newly created* instructions in the vector 585 /// loop. 586 void addMetadata(Instruction *To, Instruction *From); 587 588 /// \brief Similar to the previous function but it adds the metadata to a 589 /// vector of instructions. 590 void addMetadata(ArrayRef<Value *> To, Instruction *From); 591 592 /// \brief Set the debug location in the builder using the debug location in 593 /// the instruction. 594 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 595 596 /// This is a helper class for maintaining vectorization state. It's used for 597 /// mapping values from the original loop to their corresponding values in 598 /// the new loop. Two mappings are maintained: one for vectorized values and 599 /// one for scalarized values. Vectorized values are represented with UF 600 /// vector values in the new loop, and scalarized values are represented with 601 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 602 /// vectorization factors, respectively. 603 /// 604 /// Entries can be added to either map with initVector and initScalar, which 605 /// initialize and return a constant reference to the new entry. If a 606 /// non-constant reference to a vector entry is required, getVector can be 607 /// used to retrieve a mutable entry. We currently directly modify the mapped 608 /// values during "fix-up" operations that occur once the first phase of 609 /// widening is complete. These operations include type truncation and the 610 /// second phase of recurrence widening. 611 /// 612 /// Otherwise, entries from either map should be accessed using the 613 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 614 /// getVectorValue and getScalarValue coordinate to generate a vector or 615 /// scalar value on-demand if one is not yet available. When vectorizing a 616 /// loop, we visit the definition of an instruction before its uses. When 617 /// visiting the definition, we either vectorize or scalarize the 618 /// instruction, creating an entry for it in the corresponding map. (In some 619 /// cases, such as induction variables, we will create both vector and scalar 620 /// entries.) Then, as we encounter uses of the definition, we derive values 621 /// for each scalar or vector use unless such a value is already available. 622 /// For example, if we scalarize a definition and one of its uses is vector, 623 /// we build the required vector on-demand with an insertelement sequence 624 /// when visiting the use. Otherwise, if the use is scalar, we can use the 625 /// existing scalar definition. 626 struct ValueMap { 627 628 /// Construct an empty map with the given unroll and vectorization factors. 629 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 630 : UF(UnrollFactor), VF(VecWidth) { 631 // The unroll and vectorization factors are only used in asserts builds 632 // to verify map entries are sized appropriately. 633 (void)UF; 634 (void)VF; 635 } 636 637 /// \return True if the map has a vector entry for \p Key. 638 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 639 640 /// \return True if the map has a scalar entry for \p Key. 641 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 642 643 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 644 /// constant reference to the new vector map entry. The given key should 645 /// not already be in the map, and the given VectorParts should be 646 /// correctly sized for the current unroll factor. 647 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 648 assert(!hasVector(Key) && "Vector entry already initialized"); 649 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 650 VectorMapStorage[Key] = Entry; 651 return VectorMapStorage[Key]; 652 } 653 654 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 655 /// constant reference to the new scalar map entry. The given key should 656 /// not already be in the map, and the given ScalarParts should be 657 /// correctly sized for the current unroll and vectorization factors. 658 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 659 assert(!hasScalar(Key) && "Scalar entry already initialized"); 660 assert(Entry.size() == UF && 661 all_of(make_range(Entry.begin(), Entry.end()), 662 [&](const SmallVectorImpl<Value *> &Values) -> bool { 663 return Values.size() == VF; 664 }) && 665 "ScalarParts has wrong dimensions"); 666 ScalarMapStorage[Key] = Entry; 667 return ScalarMapStorage[Key]; 668 } 669 670 /// \return A reference to the vector map entry corresponding to \p Key. 671 /// The key should already be in the map. This function should only be used 672 /// when it's necessary to update values that have already been vectorized. 673 /// This is the case for "fix-up" operations including type truncation and 674 /// the second phase of recurrence vectorization. If a non-const reference 675 /// isn't required, getVectorValue should be used instead. 676 VectorParts &getVector(Value *Key) { 677 assert(hasVector(Key) && "Vector entry not initialized"); 678 return VectorMapStorage.find(Key)->second; 679 } 680 681 /// Retrieve an entry from the vector or scalar maps. The preferred way to 682 /// access an existing mapped entry is with getVectorValue or 683 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 684 /// moved inside ValueMap, we have to declare them as friends. 685 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 686 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 687 unsigned Lane); 688 689 private: 690 /// The unroll factor. Each entry in the vector map contains UF vector 691 /// values. 692 unsigned UF; 693 694 /// The vectorization factor. Each entry in the scalar map contains UF x VF 695 /// scalar values. 696 unsigned VF; 697 698 /// The vector and scalar map storage. We use std::map and not DenseMap 699 /// because insertions to DenseMap invalidate its iterators. 700 std::map<Value *, VectorParts> VectorMapStorage; 701 std::map<Value *, ScalarParts> ScalarMapStorage; 702 }; 703 704 /// The original loop. 705 Loop *OrigLoop; 706 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 707 /// dynamic knowledge to simplify SCEV expressions and converts them to a 708 /// more usable form. 709 PredicatedScalarEvolution &PSE; 710 /// Loop Info. 711 LoopInfo *LI; 712 /// Dominator Tree. 713 DominatorTree *DT; 714 /// Alias Analysis. 715 AliasAnalysis *AA; 716 /// Target Library Info. 717 const TargetLibraryInfo *TLI; 718 /// Target Transform Info. 719 const TargetTransformInfo *TTI; 720 /// Assumption Cache. 721 AssumptionCache *AC; 722 /// Interface to emit optimization remarks. 723 OptimizationRemarkEmitter *ORE; 724 725 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 726 /// used. 727 /// 728 /// This is currently only used to add no-alias metadata based on the 729 /// memchecks. The actually versioning is performed manually. 730 std::unique_ptr<LoopVersioning> LVer; 731 732 /// The vectorization SIMD factor to use. Each vector will have this many 733 /// vector elements. 734 unsigned VF; 735 736 protected: 737 /// The vectorization unroll factor to use. Each scalar is vectorized to this 738 /// many different vector instructions. 739 unsigned UF; 740 741 /// The builder that we use 742 IRBuilder<> Builder; 743 744 // --- Vectorization state --- 745 746 /// The vector-loop preheader. 747 BasicBlock *LoopVectorPreHeader; 748 /// The scalar-loop preheader. 749 BasicBlock *LoopScalarPreHeader; 750 /// Middle Block between the vector and the scalar. 751 BasicBlock *LoopMiddleBlock; 752 /// The ExitBlock of the scalar loop. 753 BasicBlock *LoopExitBlock; 754 /// The vector loop body. 755 BasicBlock *LoopVectorBody; 756 /// The scalar loop body. 757 BasicBlock *LoopScalarBody; 758 /// A list of all bypass blocks. The first block is the entry of the loop. 759 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 760 761 /// The new Induction variable which was added to the new block. 762 PHINode *Induction; 763 /// The induction variable of the old basic block. 764 PHINode *OldInduction; 765 766 /// Maps values from the original loop to their corresponding values in the 767 /// vectorized loop. A key value can map to either vector values, scalar 768 /// values or both kinds of values, depending on whether the key was 769 /// vectorized and scalarized. 770 ValueMap VectorLoopValueMap; 771 772 /// Store instructions that should be predicated, as a pair 773 /// <StoreInst, Predicate> 774 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 775 EdgeMaskCacheTy EdgeMaskCache; 776 BlockMaskCacheTy BlockMaskCache; 777 /// Trip count of the original loop. 778 Value *TripCount; 779 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 780 Value *VectorTripCount; 781 782 /// The legality analysis. 783 LoopVectorizationLegality *Legal; 784 785 /// The profitablity analysis. 786 LoopVectorizationCostModel *Cost; 787 788 // Record whether runtime checks are added. 789 bool AddedSafetyChecks; 790 791 // Holds the end values for each induction variable. We save the end values 792 // so we can later fix-up the external users of the induction variables. 793 DenseMap<PHINode *, Value *> IVEndValues; 794 }; 795 796 class InnerLoopUnroller : public InnerLoopVectorizer { 797 public: 798 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 799 LoopInfo *LI, DominatorTree *DT, 800 const TargetLibraryInfo *TLI, 801 const TargetTransformInfo *TTI, AssumptionCache *AC, 802 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 803 LoopVectorizationLegality *LVL, 804 LoopVectorizationCostModel *CM) 805 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 806 UnrollFactor, LVL, CM) {} 807 808 private: 809 void vectorizeMemoryInstruction(Instruction *Instr) override; 810 Value *getBroadcastInstrs(Value *V) override; 811 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 812 Instruction::BinaryOps Opcode = 813 Instruction::BinaryOpsEnd) override; 814 Value *reverseVector(Value *Vec) override; 815 }; 816 817 /// \brief Look for a meaningful debug location on the instruction or it's 818 /// operands. 819 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 820 if (!I) 821 return I; 822 823 DebugLoc Empty; 824 if (I->getDebugLoc() != Empty) 825 return I; 826 827 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 828 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 829 if (OpInst->getDebugLoc() != Empty) 830 return OpInst; 831 } 832 833 return I; 834 } 835 836 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 837 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 838 const DILocation *DIL = Inst->getDebugLoc(); 839 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 840 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 841 else 842 B.SetCurrentDebugLocation(DIL); 843 } else 844 B.SetCurrentDebugLocation(DebugLoc()); 845 } 846 847 #ifndef NDEBUG 848 /// \return string containing a file name and a line # for the given loop. 849 static std::string getDebugLocString(const Loop *L) { 850 std::string Result; 851 if (L) { 852 raw_string_ostream OS(Result); 853 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 854 LoopDbgLoc.print(OS); 855 else 856 // Just print the module name. 857 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 858 OS.flush(); 859 } 860 return Result; 861 } 862 #endif 863 864 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 865 const Instruction *Orig) { 866 // If the loop was versioned with memchecks, add the corresponding no-alias 867 // metadata. 868 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 869 LVer->annotateInstWithNoAlias(To, Orig); 870 } 871 872 void InnerLoopVectorizer::addMetadata(Instruction *To, 873 Instruction *From) { 874 propagateMetadata(To, From); 875 addNewMetadata(To, From); 876 } 877 878 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 879 Instruction *From) { 880 for (Value *V : To) { 881 if (Instruction *I = dyn_cast<Instruction>(V)) 882 addMetadata(I, From); 883 } 884 } 885 886 /// \brief The group of interleaved loads/stores sharing the same stride and 887 /// close to each other. 888 /// 889 /// Each member in this group has an index starting from 0, and the largest 890 /// index should be less than interleaved factor, which is equal to the absolute 891 /// value of the access's stride. 892 /// 893 /// E.g. An interleaved load group of factor 4: 894 /// for (unsigned i = 0; i < 1024; i+=4) { 895 /// a = A[i]; // Member of index 0 896 /// b = A[i+1]; // Member of index 1 897 /// d = A[i+3]; // Member of index 3 898 /// ... 899 /// } 900 /// 901 /// An interleaved store group of factor 4: 902 /// for (unsigned i = 0; i < 1024; i+=4) { 903 /// ... 904 /// A[i] = a; // Member of index 0 905 /// A[i+1] = b; // Member of index 1 906 /// A[i+2] = c; // Member of index 2 907 /// A[i+3] = d; // Member of index 3 908 /// } 909 /// 910 /// Note: the interleaved load group could have gaps (missing members), but 911 /// the interleaved store group doesn't allow gaps. 912 class InterleaveGroup { 913 public: 914 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 915 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 916 assert(Align && "The alignment should be non-zero"); 917 918 Factor = std::abs(Stride); 919 assert(Factor > 1 && "Invalid interleave factor"); 920 921 Reverse = Stride < 0; 922 Members[0] = Instr; 923 } 924 925 bool isReverse() const { return Reverse; } 926 unsigned getFactor() const { return Factor; } 927 unsigned getAlignment() const { return Align; } 928 unsigned getNumMembers() const { return Members.size(); } 929 930 /// \brief Try to insert a new member \p Instr with index \p Index and 931 /// alignment \p NewAlign. The index is related to the leader and it could be 932 /// negative if it is the new leader. 933 /// 934 /// \returns false if the instruction doesn't belong to the group. 935 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 936 assert(NewAlign && "The new member's alignment should be non-zero"); 937 938 int Key = Index + SmallestKey; 939 940 // Skip if there is already a member with the same index. 941 if (Members.count(Key)) 942 return false; 943 944 if (Key > LargestKey) { 945 // The largest index is always less than the interleave factor. 946 if (Index >= static_cast<int>(Factor)) 947 return false; 948 949 LargestKey = Key; 950 } else if (Key < SmallestKey) { 951 // The largest index is always less than the interleave factor. 952 if (LargestKey - Key >= static_cast<int>(Factor)) 953 return false; 954 955 SmallestKey = Key; 956 } 957 958 // It's always safe to select the minimum alignment. 959 Align = std::min(Align, NewAlign); 960 Members[Key] = Instr; 961 return true; 962 } 963 964 /// \brief Get the member with the given index \p Index 965 /// 966 /// \returns nullptr if contains no such member. 967 Instruction *getMember(unsigned Index) const { 968 int Key = SmallestKey + Index; 969 if (!Members.count(Key)) 970 return nullptr; 971 972 return Members.find(Key)->second; 973 } 974 975 /// \brief Get the index for the given member. Unlike the key in the member 976 /// map, the index starts from 0. 977 unsigned getIndex(Instruction *Instr) const { 978 for (auto I : Members) 979 if (I.second == Instr) 980 return I.first - SmallestKey; 981 982 llvm_unreachable("InterleaveGroup contains no such member"); 983 } 984 985 Instruction *getInsertPos() const { return InsertPos; } 986 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 987 988 private: 989 unsigned Factor; // Interleave Factor. 990 bool Reverse; 991 unsigned Align; 992 DenseMap<int, Instruction *> Members; 993 int SmallestKey; 994 int LargestKey; 995 996 // To avoid breaking dependences, vectorized instructions of an interleave 997 // group should be inserted at either the first load or the last store in 998 // program order. 999 // 1000 // E.g. %even = load i32 // Insert Position 1001 // %add = add i32 %even // Use of %even 1002 // %odd = load i32 1003 // 1004 // store i32 %even 1005 // %odd = add i32 // Def of %odd 1006 // store i32 %odd // Insert Position 1007 Instruction *InsertPos; 1008 }; 1009 1010 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1011 /// 1012 /// Use this class to analyze interleaved accesses only when we can vectorize 1013 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1014 /// on interleaved accesses is unsafe. 1015 /// 1016 /// The analysis collects interleave groups and records the relationships 1017 /// between the member and the group in a map. 1018 class InterleavedAccessInfo { 1019 public: 1020 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1021 DominatorTree *DT, LoopInfo *LI) 1022 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1023 RequiresScalarEpilogue(false) {} 1024 1025 ~InterleavedAccessInfo() { 1026 SmallSet<InterleaveGroup *, 4> DelSet; 1027 // Avoid releasing a pointer twice. 1028 for (auto &I : InterleaveGroupMap) 1029 DelSet.insert(I.second); 1030 for (auto *Ptr : DelSet) 1031 delete Ptr; 1032 } 1033 1034 /// \brief Analyze the interleaved accesses and collect them in interleave 1035 /// groups. Substitute symbolic strides using \p Strides. 1036 void analyzeInterleaving(const ValueToValueMap &Strides); 1037 1038 /// \brief Check if \p Instr belongs to any interleave group. 1039 bool isInterleaved(Instruction *Instr) const { 1040 return InterleaveGroupMap.count(Instr); 1041 } 1042 1043 /// \brief Return the maximum interleave factor of all interleaved groups. 1044 unsigned getMaxInterleaveFactor() const { 1045 unsigned MaxFactor = 1; 1046 for (auto &Entry : InterleaveGroupMap) 1047 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1048 return MaxFactor; 1049 } 1050 1051 /// \brief Get the interleave group that \p Instr belongs to. 1052 /// 1053 /// \returns nullptr if doesn't have such group. 1054 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1055 if (InterleaveGroupMap.count(Instr)) 1056 return InterleaveGroupMap.find(Instr)->second; 1057 return nullptr; 1058 } 1059 1060 /// \brief Returns true if an interleaved group that may access memory 1061 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1062 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1063 1064 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1065 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1066 1067 private: 1068 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1069 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1070 /// The interleaved access analysis can also add new predicates (for example 1071 /// by versioning strides of pointers). 1072 PredicatedScalarEvolution &PSE; 1073 Loop *TheLoop; 1074 DominatorTree *DT; 1075 LoopInfo *LI; 1076 const LoopAccessInfo *LAI; 1077 1078 /// True if the loop may contain non-reversed interleaved groups with 1079 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1080 /// out-of-bounds by executing at least one scalar epilogue iteration. 1081 bool RequiresScalarEpilogue; 1082 1083 /// Holds the relationships between the members and the interleave group. 1084 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1085 1086 /// Holds dependences among the memory accesses in the loop. It maps a source 1087 /// access to a set of dependent sink accesses. 1088 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1089 1090 /// \brief The descriptor for a strided memory access. 1091 struct StrideDescriptor { 1092 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1093 unsigned Align) 1094 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1095 1096 StrideDescriptor() = default; 1097 1098 // The access's stride. It is negative for a reverse access. 1099 int64_t Stride = 0; 1100 const SCEV *Scev = nullptr; // The scalar expression of this access 1101 uint64_t Size = 0; // The size of the memory object. 1102 unsigned Align = 0; // The alignment of this access. 1103 }; 1104 1105 /// \brief A type for holding instructions and their stride descriptors. 1106 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1107 1108 /// \brief Create a new interleave group with the given instruction \p Instr, 1109 /// stride \p Stride and alignment \p Align. 1110 /// 1111 /// \returns the newly created interleave group. 1112 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1113 unsigned Align) { 1114 assert(!InterleaveGroupMap.count(Instr) && 1115 "Already in an interleaved access group"); 1116 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1117 return InterleaveGroupMap[Instr]; 1118 } 1119 1120 /// \brief Release the group and remove all the relationships. 1121 void releaseGroup(InterleaveGroup *Group) { 1122 for (unsigned i = 0; i < Group->getFactor(); i++) 1123 if (Instruction *Member = Group->getMember(i)) 1124 InterleaveGroupMap.erase(Member); 1125 1126 delete Group; 1127 } 1128 1129 /// \brief Collect all the accesses with a constant stride in program order. 1130 void collectConstStrideAccesses( 1131 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1132 const ValueToValueMap &Strides); 1133 1134 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1135 static bool isStrided(int Stride) { 1136 unsigned Factor = std::abs(Stride); 1137 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1138 } 1139 1140 /// \brief Returns true if \p BB is a predicated block. 1141 bool isPredicated(BasicBlock *BB) const { 1142 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1143 } 1144 1145 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1146 bool areDependencesValid() const { 1147 return LAI && LAI->getDepChecker().getDependences(); 1148 } 1149 1150 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1151 /// necessary, when constructing interleaved groups. 1152 /// 1153 /// \p A must precede \p B in program order. We return false if reordering is 1154 /// not necessary or is prevented because \p A and \p B may be dependent. 1155 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1156 StrideEntry *B) const { 1157 1158 // Code motion for interleaved accesses can potentially hoist strided loads 1159 // and sink strided stores. The code below checks the legality of the 1160 // following two conditions: 1161 // 1162 // 1. Potentially moving a strided load (B) before any store (A) that 1163 // precedes B, or 1164 // 1165 // 2. Potentially moving a strided store (A) after any load or store (B) 1166 // that A precedes. 1167 // 1168 // It's legal to reorder A and B if we know there isn't a dependence from A 1169 // to B. Note that this determination is conservative since some 1170 // dependences could potentially be reordered safely. 1171 1172 // A is potentially the source of a dependence. 1173 auto *Src = A->first; 1174 auto SrcDes = A->second; 1175 1176 // B is potentially the sink of a dependence. 1177 auto *Sink = B->first; 1178 auto SinkDes = B->second; 1179 1180 // Code motion for interleaved accesses can't violate WAR dependences. 1181 // Thus, reordering is legal if the source isn't a write. 1182 if (!Src->mayWriteToMemory()) 1183 return true; 1184 1185 // At least one of the accesses must be strided. 1186 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1187 return true; 1188 1189 // If dependence information is not available from LoopAccessInfo, 1190 // conservatively assume the instructions can't be reordered. 1191 if (!areDependencesValid()) 1192 return false; 1193 1194 // If we know there is a dependence from source to sink, assume the 1195 // instructions can't be reordered. Otherwise, reordering is legal. 1196 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1197 } 1198 1199 /// \brief Collect the dependences from LoopAccessInfo. 1200 /// 1201 /// We process the dependences once during the interleaved access analysis to 1202 /// enable constant-time dependence queries. 1203 void collectDependences() { 1204 if (!areDependencesValid()) 1205 return; 1206 auto *Deps = LAI->getDepChecker().getDependences(); 1207 for (auto Dep : *Deps) 1208 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1209 } 1210 }; 1211 1212 /// Utility class for getting and setting loop vectorizer hints in the form 1213 /// of loop metadata. 1214 /// This class keeps a number of loop annotations locally (as member variables) 1215 /// and can, upon request, write them back as metadata on the loop. It will 1216 /// initially scan the loop for existing metadata, and will update the local 1217 /// values based on information in the loop. 1218 /// We cannot write all values to metadata, as the mere presence of some info, 1219 /// for example 'force', means a decision has been made. So, we need to be 1220 /// careful NOT to add them if the user hasn't specifically asked so. 1221 class LoopVectorizeHints { 1222 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1223 1224 /// Hint - associates name and validation with the hint value. 1225 struct Hint { 1226 const char *Name; 1227 unsigned Value; // This may have to change for non-numeric values. 1228 HintKind Kind; 1229 1230 Hint(const char *Name, unsigned Value, HintKind Kind) 1231 : Name(Name), Value(Value), Kind(Kind) {} 1232 1233 bool validate(unsigned Val) { 1234 switch (Kind) { 1235 case HK_WIDTH: 1236 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1237 case HK_UNROLL: 1238 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1239 case HK_FORCE: 1240 return (Val <= 1); 1241 } 1242 return false; 1243 } 1244 }; 1245 1246 /// Vectorization width. 1247 Hint Width; 1248 /// Vectorization interleave factor. 1249 Hint Interleave; 1250 /// Vectorization forced 1251 Hint Force; 1252 1253 /// Return the loop metadata prefix. 1254 static StringRef Prefix() { return "llvm.loop."; } 1255 1256 /// True if there is any unsafe math in the loop. 1257 bool PotentiallyUnsafe; 1258 1259 public: 1260 enum ForceKind { 1261 FK_Undefined = -1, ///< Not selected. 1262 FK_Disabled = 0, ///< Forcing disabled. 1263 FK_Enabled = 1, ///< Forcing enabled. 1264 }; 1265 1266 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1267 OptimizationRemarkEmitter &ORE) 1268 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1269 HK_WIDTH), 1270 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1271 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1272 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1273 // Populate values with existing loop metadata. 1274 getHintsFromMetadata(); 1275 1276 // force-vector-interleave overrides DisableInterleaving. 1277 if (VectorizerParams::isInterleaveForced()) 1278 Interleave.Value = VectorizerParams::VectorizationInterleave; 1279 1280 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1281 << "LV: Interleaving disabled by the pass manager\n"); 1282 } 1283 1284 /// Mark the loop L as already vectorized by setting the width to 1. 1285 void setAlreadyVectorized() { 1286 Width.Value = Interleave.Value = 1; 1287 Hint Hints[] = {Width, Interleave}; 1288 writeHintsToMetadata(Hints); 1289 } 1290 1291 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1292 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1293 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1294 emitRemarkWithHints(); 1295 return false; 1296 } 1297 1298 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1299 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1300 emitRemarkWithHints(); 1301 return false; 1302 } 1303 1304 if (getWidth() == 1 && getInterleave() == 1) { 1305 // FIXME: Add a separate metadata to indicate when the loop has already 1306 // been vectorized instead of setting width and count to 1. 1307 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1308 // FIXME: Add interleave.disable metadata. This will allow 1309 // vectorize.disable to be used without disabling the pass and errors 1310 // to differentiate between disabled vectorization and a width of 1. 1311 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1312 "AllDisabled", L->getStartLoc(), 1313 L->getHeader()) 1314 << "loop not vectorized: vectorization and interleaving are " 1315 "explicitly disabled, or vectorize width and interleave " 1316 "count are both set to 1"); 1317 return false; 1318 } 1319 1320 return true; 1321 } 1322 1323 /// Dumps all the hint information. 1324 void emitRemarkWithHints() const { 1325 using namespace ore; 1326 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1327 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1328 TheLoop->getStartLoc(), 1329 TheLoop->getHeader()) 1330 << "loop not vectorized: vectorization is explicitly disabled"); 1331 else { 1332 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1333 TheLoop->getStartLoc(), TheLoop->getHeader()); 1334 R << "loop not vectorized"; 1335 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1336 R << " (Force=" << NV("Force", true); 1337 if (Width.Value != 0) 1338 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1339 if (Interleave.Value != 0) 1340 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1341 R << ")"; 1342 } 1343 ORE.emit(R); 1344 } 1345 } 1346 1347 unsigned getWidth() const { return Width.Value; } 1348 unsigned getInterleave() const { return Interleave.Value; } 1349 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1350 1351 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1352 /// pass name to force the frontend to print the diagnostic. 1353 const char *vectorizeAnalysisPassName() const { 1354 if (getWidth() == 1) 1355 return LV_NAME; 1356 if (getForce() == LoopVectorizeHints::FK_Disabled) 1357 return LV_NAME; 1358 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1359 return LV_NAME; 1360 return OptimizationRemarkAnalysis::AlwaysPrint; 1361 } 1362 1363 bool allowReordering() const { 1364 // When enabling loop hints are provided we allow the vectorizer to change 1365 // the order of operations that is given by the scalar loop. This is not 1366 // enabled by default because can be unsafe or inefficient. For example, 1367 // reordering floating-point operations will change the way round-off 1368 // error accumulates in the loop. 1369 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1370 } 1371 1372 bool isPotentiallyUnsafe() const { 1373 // Avoid FP vectorization if the target is unsure about proper support. 1374 // This may be related to the SIMD unit in the target not handling 1375 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1376 // Otherwise, a sequence of vectorized loops, even without reduction, 1377 // could lead to different end results on the destination vectors. 1378 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1379 } 1380 1381 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1382 1383 private: 1384 /// Find hints specified in the loop metadata and update local values. 1385 void getHintsFromMetadata() { 1386 MDNode *LoopID = TheLoop->getLoopID(); 1387 if (!LoopID) 1388 return; 1389 1390 // First operand should refer to the loop id itself. 1391 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1392 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1393 1394 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1395 const MDString *S = nullptr; 1396 SmallVector<Metadata *, 4> Args; 1397 1398 // The expected hint is either a MDString or a MDNode with the first 1399 // operand a MDString. 1400 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1401 if (!MD || MD->getNumOperands() == 0) 1402 continue; 1403 S = dyn_cast<MDString>(MD->getOperand(0)); 1404 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1405 Args.push_back(MD->getOperand(i)); 1406 } else { 1407 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1408 assert(Args.size() == 0 && "too many arguments for MDString"); 1409 } 1410 1411 if (!S) 1412 continue; 1413 1414 // Check if the hint starts with the loop metadata prefix. 1415 StringRef Name = S->getString(); 1416 if (Args.size() == 1) 1417 setHint(Name, Args[0]); 1418 } 1419 } 1420 1421 /// Checks string hint with one operand and set value if valid. 1422 void setHint(StringRef Name, Metadata *Arg) { 1423 if (!Name.startswith(Prefix())) 1424 return; 1425 Name = Name.substr(Prefix().size(), StringRef::npos); 1426 1427 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1428 if (!C) 1429 return; 1430 unsigned Val = C->getZExtValue(); 1431 1432 Hint *Hints[] = {&Width, &Interleave, &Force}; 1433 for (auto H : Hints) { 1434 if (Name == H->Name) { 1435 if (H->validate(Val)) 1436 H->Value = Val; 1437 else 1438 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1439 break; 1440 } 1441 } 1442 } 1443 1444 /// Create a new hint from name / value pair. 1445 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1446 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1447 Metadata *MDs[] = {MDString::get(Context, Name), 1448 ConstantAsMetadata::get( 1449 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1450 return MDNode::get(Context, MDs); 1451 } 1452 1453 /// Matches metadata with hint name. 1454 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1455 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1456 if (!Name) 1457 return false; 1458 1459 for (auto H : HintTypes) 1460 if (Name->getString().endswith(H.Name)) 1461 return true; 1462 return false; 1463 } 1464 1465 /// Sets current hints into loop metadata, keeping other values intact. 1466 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1467 if (HintTypes.size() == 0) 1468 return; 1469 1470 // Reserve the first element to LoopID (see below). 1471 SmallVector<Metadata *, 4> MDs(1); 1472 // If the loop already has metadata, then ignore the existing operands. 1473 MDNode *LoopID = TheLoop->getLoopID(); 1474 if (LoopID) { 1475 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1476 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1477 // If node in update list, ignore old value. 1478 if (!matchesHintMetadataName(Node, HintTypes)) 1479 MDs.push_back(Node); 1480 } 1481 } 1482 1483 // Now, add the missing hints. 1484 for (auto H : HintTypes) 1485 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1486 1487 // Replace current metadata node with new one. 1488 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1489 MDNode *NewLoopID = MDNode::get(Context, MDs); 1490 // Set operand 0 to refer to the loop id itself. 1491 NewLoopID->replaceOperandWith(0, NewLoopID); 1492 1493 TheLoop->setLoopID(NewLoopID); 1494 } 1495 1496 /// The loop these hints belong to. 1497 const Loop *TheLoop; 1498 1499 /// Interface to emit optimization remarks. 1500 OptimizationRemarkEmitter &ORE; 1501 }; 1502 1503 static void emitMissedWarning(Function *F, Loop *L, 1504 const LoopVectorizeHints &LH, 1505 OptimizationRemarkEmitter *ORE) { 1506 LH.emitRemarkWithHints(); 1507 1508 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1509 if (LH.getWidth() != 1) 1510 ORE->emit(DiagnosticInfoOptimizationFailure( 1511 DEBUG_TYPE, "FailedRequestedVectorization", 1512 L->getStartLoc(), L->getHeader()) 1513 << "loop not vectorized: " 1514 << "failed explicitly specified loop vectorization"); 1515 else if (LH.getInterleave() != 1) 1516 ORE->emit(DiagnosticInfoOptimizationFailure( 1517 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1518 L->getHeader()) 1519 << "loop not interleaved: " 1520 << "failed explicitly specified loop interleaving"); 1521 } 1522 } 1523 1524 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1525 /// to what vectorization factor. 1526 /// This class does not look at the profitability of vectorization, only the 1527 /// legality. This class has two main kinds of checks: 1528 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1529 /// will change the order of memory accesses in a way that will change the 1530 /// correctness of the program. 1531 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1532 /// checks for a number of different conditions, such as the availability of a 1533 /// single induction variable, that all types are supported and vectorize-able, 1534 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1535 /// This class is also used by InnerLoopVectorizer for identifying 1536 /// induction variable and the different reduction variables. 1537 class LoopVectorizationLegality { 1538 public: 1539 LoopVectorizationLegality( 1540 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1541 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1542 const TargetTransformInfo *TTI, 1543 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1544 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1545 LoopVectorizeHints *H) 1546 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1547 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1548 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1549 Requirements(R), Hints(H) {} 1550 1551 /// ReductionList contains the reduction descriptors for all 1552 /// of the reductions that were found in the loop. 1553 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1554 1555 /// InductionList saves induction variables and maps them to the 1556 /// induction descriptor. 1557 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1558 1559 /// RecurrenceSet contains the phi nodes that are recurrences other than 1560 /// inductions and reductions. 1561 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1562 1563 /// Returns true if it is legal to vectorize this loop. 1564 /// This does not mean that it is profitable to vectorize this 1565 /// loop, only that it is legal to do so. 1566 bool canVectorize(); 1567 1568 /// Returns the primary induction variable. 1569 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1570 1571 /// Returns the reduction variables found in the loop. 1572 ReductionList *getReductionVars() { return &Reductions; } 1573 1574 /// Returns the induction variables found in the loop. 1575 InductionList *getInductionVars() { return &Inductions; } 1576 1577 /// Return the first-order recurrences found in the loop. 1578 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1579 1580 /// Returns the widest induction type. 1581 Type *getWidestInductionType() { return WidestIndTy; } 1582 1583 /// Returns True if V is an induction variable in this loop. 1584 bool isInductionVariable(const Value *V); 1585 1586 /// Returns True if PN is a reduction variable in this loop. 1587 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1588 1589 /// Returns True if Phi is a first-order recurrence in this loop. 1590 bool isFirstOrderRecurrence(const PHINode *Phi); 1591 1592 /// Return true if the block BB needs to be predicated in order for the loop 1593 /// to be vectorized. 1594 bool blockNeedsPredication(BasicBlock *BB); 1595 1596 /// Check if this pointer is consecutive when vectorizing. This happens 1597 /// when the last index of the GEP is the induction variable, or that the 1598 /// pointer itself is an induction variable. 1599 /// This check allows us to vectorize A[idx] into a wide load/store. 1600 /// Returns: 1601 /// 0 - Stride is unknown or non-consecutive. 1602 /// 1 - Address is consecutive. 1603 /// -1 - Address is consecutive, and decreasing. 1604 int isConsecutivePtr(Value *Ptr); 1605 1606 /// Returns true if the value V is uniform within the loop. 1607 bool isUniform(Value *V); 1608 1609 /// Returns the information that we collected about runtime memory check. 1610 const RuntimePointerChecking *getRuntimePointerChecking() const { 1611 return LAI->getRuntimePointerChecking(); 1612 } 1613 1614 const LoopAccessInfo *getLAI() const { return LAI; } 1615 1616 /// \brief Check if \p Instr belongs to any interleaved access group. 1617 bool isAccessInterleaved(Instruction *Instr) { 1618 return InterleaveInfo.isInterleaved(Instr); 1619 } 1620 1621 /// \brief Return the maximum interleave factor of all interleaved groups. 1622 unsigned getMaxInterleaveFactor() const { 1623 return InterleaveInfo.getMaxInterleaveFactor(); 1624 } 1625 1626 /// \brief Get the interleaved access group that \p Instr belongs to. 1627 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1628 return InterleaveInfo.getInterleaveGroup(Instr); 1629 } 1630 1631 /// \brief Returns true if an interleaved group requires a scalar iteration 1632 /// to handle accesses with gaps. 1633 bool requiresScalarEpilogue() const { 1634 return InterleaveInfo.requiresScalarEpilogue(); 1635 } 1636 1637 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1638 1639 bool hasStride(Value *V) { return LAI->hasStride(V); } 1640 1641 /// Returns true if the target machine supports masked store operation 1642 /// for the given \p DataType and kind of access to \p Ptr. 1643 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1644 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1645 } 1646 /// Returns true if the target machine supports masked load operation 1647 /// for the given \p DataType and kind of access to \p Ptr. 1648 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1649 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1650 } 1651 /// Returns true if the target machine supports masked scatter operation 1652 /// for the given \p DataType. 1653 bool isLegalMaskedScatter(Type *DataType) { 1654 return TTI->isLegalMaskedScatter(DataType); 1655 } 1656 /// Returns true if the target machine supports masked gather operation 1657 /// for the given \p DataType. 1658 bool isLegalMaskedGather(Type *DataType) { 1659 return TTI->isLegalMaskedGather(DataType); 1660 } 1661 /// Returns true if the target machine can represent \p V as a masked gather 1662 /// or scatter operation. 1663 bool isLegalGatherOrScatter(Value *V) { 1664 auto *LI = dyn_cast<LoadInst>(V); 1665 auto *SI = dyn_cast<StoreInst>(V); 1666 if (!LI && !SI) 1667 return false; 1668 auto *Ptr = getPointerOperand(V); 1669 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1670 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1671 } 1672 1673 /// Returns true if vector representation of the instruction \p I 1674 /// requires mask. 1675 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1676 unsigned getNumStores() const { return LAI->getNumStores(); } 1677 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1678 unsigned getNumPredStores() const { return NumPredStores; } 1679 1680 /// Returns true if \p I is an instruction that will be scalarized with 1681 /// predication. Such instructions include conditional stores and 1682 /// instructions that may divide by zero. 1683 bool isScalarWithPredication(Instruction *I); 1684 1685 /// Returns true if \p I is a memory instruction with consecutive memory 1686 /// access that can be widened. 1687 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1688 1689 // Returns true if the NoNaN attribute is set on the function. 1690 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1691 1692 private: 1693 /// Check if a single basic block loop is vectorizable. 1694 /// At this point we know that this is a loop with a constant trip count 1695 /// and we only need to check individual instructions. 1696 bool canVectorizeInstrs(); 1697 1698 /// When we vectorize loops we may change the order in which 1699 /// we read and write from memory. This method checks if it is 1700 /// legal to vectorize the code, considering only memory constrains. 1701 /// Returns true if the loop is vectorizable 1702 bool canVectorizeMemory(); 1703 1704 /// Return true if we can vectorize this loop using the IF-conversion 1705 /// transformation. 1706 bool canVectorizeWithIfConvert(); 1707 1708 /// Return true if all of the instructions in the block can be speculatively 1709 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1710 /// and we know that we can read from them without segfault. 1711 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1712 1713 /// Updates the vectorization state by adding \p Phi to the inductions list. 1714 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1715 /// better choice for the main induction than the existing one. 1716 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1717 SmallPtrSetImpl<Value *> &AllowedExit); 1718 1719 /// Create an analysis remark that explains why vectorization failed 1720 /// 1721 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1722 /// an instruction that prevents vectorization. Otherwise the loop is used 1723 /// for the location of the remark. \return the remark object that can be 1724 /// streamed to. 1725 OptimizationRemarkAnalysis 1726 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1727 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1728 RemarkName, TheLoop, I); 1729 } 1730 1731 /// \brief If an access has a symbolic strides, this maps the pointer value to 1732 /// the stride symbol. 1733 const ValueToValueMap *getSymbolicStrides() { 1734 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1735 // it's collected. This happens from canVectorizeWithIfConvert, when the 1736 // pointer is checked to reference consecutive elements suitable for a 1737 // masked access. 1738 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1739 } 1740 1741 unsigned NumPredStores; 1742 1743 /// The loop that we evaluate. 1744 Loop *TheLoop; 1745 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1746 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1747 /// of existing SCEV assumptions. The analysis will also add a minimal set 1748 /// of new predicates if this is required to enable vectorization and 1749 /// unrolling. 1750 PredicatedScalarEvolution &PSE; 1751 /// Target Library Info. 1752 TargetLibraryInfo *TLI; 1753 /// Target Transform Info 1754 const TargetTransformInfo *TTI; 1755 /// Dominator Tree. 1756 DominatorTree *DT; 1757 // LoopAccess analysis. 1758 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1759 // And the loop-accesses info corresponding to this loop. This pointer is 1760 // null until canVectorizeMemory sets it up. 1761 const LoopAccessInfo *LAI; 1762 /// Interface to emit optimization remarks. 1763 OptimizationRemarkEmitter *ORE; 1764 1765 /// The interleave access information contains groups of interleaved accesses 1766 /// with the same stride and close to each other. 1767 InterleavedAccessInfo InterleaveInfo; 1768 1769 // --- vectorization state --- // 1770 1771 /// Holds the primary induction variable. This is the counter of the 1772 /// loop. 1773 PHINode *PrimaryInduction; 1774 /// Holds the reduction variables. 1775 ReductionList Reductions; 1776 /// Holds all of the induction variables that we found in the loop. 1777 /// Notice that inductions don't need to start at zero and that induction 1778 /// variables can be pointers. 1779 InductionList Inductions; 1780 /// Holds the phi nodes that are first-order recurrences. 1781 RecurrenceSet FirstOrderRecurrences; 1782 /// Holds the widest induction type encountered. 1783 Type *WidestIndTy; 1784 1785 /// Allowed outside users. This holds the induction and reduction 1786 /// vars which can be accessed from outside the loop. 1787 SmallPtrSet<Value *, 4> AllowedExit; 1788 1789 /// Can we assume the absence of NaNs. 1790 bool HasFunNoNaNAttr; 1791 1792 /// Vectorization requirements that will go through late-evaluation. 1793 LoopVectorizationRequirements *Requirements; 1794 1795 /// Used to emit an analysis of any legality issues. 1796 LoopVectorizeHints *Hints; 1797 1798 /// While vectorizing these instructions we have to generate a 1799 /// call to the appropriate masked intrinsic 1800 SmallPtrSet<const Instruction *, 8> MaskedOp; 1801 }; 1802 1803 /// LoopVectorizationCostModel - estimates the expected speedups due to 1804 /// vectorization. 1805 /// In many cases vectorization is not profitable. This can happen because of 1806 /// a number of reasons. In this class we mainly attempt to predict the 1807 /// expected speedup/slowdowns due to the supported instruction set. We use the 1808 /// TargetTransformInfo to query the different backends for the cost of 1809 /// different operations. 1810 class LoopVectorizationCostModel { 1811 public: 1812 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1813 LoopInfo *LI, LoopVectorizationLegality *Legal, 1814 const TargetTransformInfo &TTI, 1815 const TargetLibraryInfo *TLI, DemandedBits *DB, 1816 AssumptionCache *AC, 1817 OptimizationRemarkEmitter *ORE, const Function *F, 1818 const LoopVectorizeHints *Hints) 1819 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1820 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1821 1822 /// \return An upper bound for the vectorization factor, or None if 1823 /// vectorization should be avoided up front. 1824 Optional<unsigned> computeMaxVF(bool OptForSize); 1825 1826 /// Information about vectorization costs 1827 struct VectorizationFactor { 1828 unsigned Width; // Vector width with best cost 1829 unsigned Cost; // Cost of the loop with that width 1830 }; 1831 /// \return The most profitable vectorization factor and the cost of that VF. 1832 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1833 /// then this vectorization factor will be selected if vectorization is 1834 /// possible. 1835 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1836 1837 /// Setup cost-based decisions for user vectorization factor. 1838 void selectUserVectorizationFactor(unsigned UserVF) { 1839 collectUniformsAndScalars(UserVF); 1840 collectInstsToScalarize(UserVF); 1841 } 1842 1843 /// \return The size (in bits) of the smallest and widest types in the code 1844 /// that needs to be vectorized. We ignore values that remain scalar such as 1845 /// 64 bit loop indices. 1846 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1847 1848 /// \return The desired interleave count. 1849 /// If interleave count has been specified by metadata it will be returned. 1850 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1851 /// are the selected vectorization factor and the cost of the selected VF. 1852 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1853 unsigned LoopCost); 1854 1855 /// Memory access instruction may be vectorized in more than one way. 1856 /// Form of instruction after vectorization depends on cost. 1857 /// This function takes cost-based decisions for Load/Store instructions 1858 /// and collects them in a map. This decisions map is used for building 1859 /// the lists of loop-uniform and loop-scalar instructions. 1860 /// The calculated cost is saved with widening decision in order to 1861 /// avoid redundant calculations. 1862 void setCostBasedWideningDecision(unsigned VF); 1863 1864 /// \brief A struct that represents some properties of the register usage 1865 /// of a loop. 1866 struct RegisterUsage { 1867 /// Holds the number of loop invariant values that are used in the loop. 1868 unsigned LoopInvariantRegs; 1869 /// Holds the maximum number of concurrent live intervals in the loop. 1870 unsigned MaxLocalUsers; 1871 /// Holds the number of instructions in the loop. 1872 unsigned NumInstructions; 1873 }; 1874 1875 /// \return Returns information about the register usages of the loop for the 1876 /// given vectorization factors. 1877 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1878 1879 /// Collect values we want to ignore in the cost model. 1880 void collectValuesToIgnore(); 1881 1882 /// \returns The smallest bitwidth each instruction can be represented with. 1883 /// The vector equivalents of these instructions should be truncated to this 1884 /// type. 1885 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1886 return MinBWs; 1887 } 1888 1889 /// \returns True if it is more profitable to scalarize instruction \p I for 1890 /// vectorization factor \p VF. 1891 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1892 auto Scalars = InstsToScalarize.find(VF); 1893 assert(Scalars != InstsToScalarize.end() && 1894 "VF not yet analyzed for scalarization profitability"); 1895 return Scalars->second.count(I); 1896 } 1897 1898 /// Returns true if \p I is known to be uniform after vectorization. 1899 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1900 if (VF == 1) 1901 return true; 1902 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1903 auto UniformsPerVF = Uniforms.find(VF); 1904 return UniformsPerVF->second.count(I); 1905 } 1906 1907 /// Returns true if \p I is known to be scalar after vectorization. 1908 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1909 if (VF == 1) 1910 return true; 1911 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1912 auto ScalarsPerVF = Scalars.find(VF); 1913 return ScalarsPerVF->second.count(I); 1914 } 1915 1916 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1917 /// for vectorization factor \p VF. 1918 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1919 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1920 !isScalarAfterVectorization(I, VF); 1921 } 1922 1923 /// Decision that was taken during cost calculation for memory instruction. 1924 enum InstWidening { 1925 CM_Unknown, 1926 CM_Widen, 1927 CM_Interleave, 1928 CM_GatherScatter, 1929 CM_Scalarize 1930 }; 1931 1932 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1933 /// instruction \p I and vector width \p VF. 1934 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1935 unsigned Cost) { 1936 assert(VF >= 2 && "Expected VF >=2"); 1937 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1938 } 1939 1940 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1941 /// interleaving group \p Grp and vector width \p VF. 1942 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1943 InstWidening W, unsigned Cost) { 1944 assert(VF >= 2 && "Expected VF >=2"); 1945 /// Broadcast this decicion to all instructions inside the group. 1946 /// But the cost will be assigned to one instruction only. 1947 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1948 if (auto *I = Grp->getMember(i)) { 1949 if (Grp->getInsertPos() == I) 1950 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1951 else 1952 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1953 } 1954 } 1955 } 1956 1957 /// Return the cost model decision for the given instruction \p I and vector 1958 /// width \p VF. Return CM_Unknown if this instruction did not pass 1959 /// through the cost modeling. 1960 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1961 assert(VF >= 2 && "Expected VF >=2"); 1962 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1963 auto Itr = WideningDecisions.find(InstOnVF); 1964 if (Itr == WideningDecisions.end()) 1965 return CM_Unknown; 1966 return Itr->second.first; 1967 } 1968 1969 /// Return the vectorization cost for the given instruction \p I and vector 1970 /// width \p VF. 1971 unsigned getWideningCost(Instruction *I, unsigned VF) { 1972 assert(VF >= 2 && "Expected VF >=2"); 1973 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1974 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1975 return WideningDecisions[InstOnVF].second; 1976 } 1977 1978 /// Return True if instruction \p I is an optimizable truncate whose operand 1979 /// is an induction variable. Such a truncate will be removed by adding a new 1980 /// induction variable with the destination type. 1981 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1982 1983 // If the instruction is not a truncate, return false. 1984 auto *Trunc = dyn_cast<TruncInst>(I); 1985 if (!Trunc) 1986 return false; 1987 1988 // Get the source and destination types of the truncate. 1989 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1990 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1991 1992 // If the truncate is free for the given types, return false. Replacing a 1993 // free truncate with an induction variable would add an induction variable 1994 // update instruction to each iteration of the loop. We exclude from this 1995 // check the primary induction variable since it will need an update 1996 // instruction regardless. 1997 Value *Op = Trunc->getOperand(0); 1998 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1999 return false; 2000 2001 // If the truncated value is not an induction variable, return false. 2002 return Legal->isInductionVariable(Op); 2003 } 2004 2005 private: 2006 /// \return An upper bound for the vectorization factor, larger than zero. 2007 /// One is returned if vectorization should best be avoided due to cost. 2008 unsigned computeFeasibleMaxVF(bool OptForSize); 2009 2010 /// The vectorization cost is a combination of the cost itself and a boolean 2011 /// indicating whether any of the contributing operations will actually 2012 /// operate on 2013 /// vector values after type legalization in the backend. If this latter value 2014 /// is 2015 /// false, then all operations will be scalarized (i.e. no vectorization has 2016 /// actually taken place). 2017 typedef std::pair<unsigned, bool> VectorizationCostTy; 2018 2019 /// Returns the expected execution cost. The unit of the cost does 2020 /// not matter because we use the 'cost' units to compare different 2021 /// vector widths. The cost that is returned is *not* normalized by 2022 /// the factor width. 2023 VectorizationCostTy expectedCost(unsigned VF); 2024 2025 /// Returns the execution time cost of an instruction for a given vector 2026 /// width. Vector width of one means scalar. 2027 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2028 2029 /// The cost-computation logic from getInstructionCost which provides 2030 /// the vector type as an output parameter. 2031 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2032 2033 /// Calculate vectorization cost of memory instruction \p I. 2034 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2035 2036 /// The cost computation for scalarized memory instruction. 2037 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2038 2039 /// The cost computation for interleaving group of memory instructions. 2040 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2041 2042 /// The cost computation for Gather/Scatter instruction. 2043 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2044 2045 /// The cost computation for widening instruction \p I with consecutive 2046 /// memory access. 2047 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2048 2049 /// The cost calculation for Load instruction \p I with uniform pointer - 2050 /// scalar load + broadcast. 2051 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2052 2053 /// Returns whether the instruction is a load or store and will be a emitted 2054 /// as a vector operation. 2055 bool isConsecutiveLoadOrStore(Instruction *I); 2056 2057 /// Create an analysis remark that explains why vectorization failed 2058 /// 2059 /// \p RemarkName is the identifier for the remark. \return the remark object 2060 /// that can be streamed to. 2061 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2062 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2063 RemarkName, TheLoop); 2064 } 2065 2066 /// Map of scalar integer values to the smallest bitwidth they can be legally 2067 /// represented as. The vector equivalents of these values should be truncated 2068 /// to this type. 2069 MapVector<Instruction *, uint64_t> MinBWs; 2070 2071 /// A type representing the costs for instructions if they were to be 2072 /// scalarized rather than vectorized. The entries are Instruction-Cost 2073 /// pairs. 2074 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2075 2076 /// A set containing all BasicBlocks that are known to present after 2077 /// vectorization as a predicated block. 2078 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2079 2080 /// A map holding scalar costs for different vectorization factors. The 2081 /// presence of a cost for an instruction in the mapping indicates that the 2082 /// instruction will be scalarized when vectorizing with the associated 2083 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2084 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2085 2086 /// Holds the instructions known to be uniform after vectorization. 2087 /// The data is collected per VF. 2088 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2089 2090 /// Holds the instructions known to be scalar after vectorization. 2091 /// The data is collected per VF. 2092 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2093 2094 /// Holds the instructions (address computations) that are forced to be 2095 /// scalarized. 2096 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2097 2098 /// Returns the expected difference in cost from scalarizing the expression 2099 /// feeding a predicated instruction \p PredInst. The instructions to 2100 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2101 /// non-negative return value implies the expression will be scalarized. 2102 /// Currently, only single-use chains are considered for scalarization. 2103 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2104 unsigned VF); 2105 2106 /// Collects the instructions to scalarize for each predicated instruction in 2107 /// the loop. 2108 void collectInstsToScalarize(unsigned VF); 2109 2110 /// Collect the instructions that are uniform after vectorization. An 2111 /// instruction is uniform if we represent it with a single scalar value in 2112 /// the vectorized loop corresponding to each vector iteration. Examples of 2113 /// uniform instructions include pointer operands of consecutive or 2114 /// interleaved memory accesses. Note that although uniformity implies an 2115 /// instruction will be scalar, the reverse is not true. In general, a 2116 /// scalarized instruction will be represented by VF scalar values in the 2117 /// vectorized loop, each corresponding to an iteration of the original 2118 /// scalar loop. 2119 void collectLoopUniforms(unsigned VF); 2120 2121 /// Collect the instructions that are scalar after vectorization. An 2122 /// instruction is scalar if it is known to be uniform or will be scalarized 2123 /// during vectorization. Non-uniform scalarized instructions will be 2124 /// represented by VF values in the vectorized loop, each corresponding to an 2125 /// iteration of the original scalar loop. 2126 void collectLoopScalars(unsigned VF); 2127 2128 /// Collect Uniform and Scalar values for the given \p VF. 2129 /// The sets depend on CM decision for Load/Store instructions 2130 /// that may be vectorized as interleave, gather-scatter or scalarized. 2131 void collectUniformsAndScalars(unsigned VF) { 2132 // Do the analysis once. 2133 if (VF == 1 || Uniforms.count(VF)) 2134 return; 2135 setCostBasedWideningDecision(VF); 2136 collectLoopUniforms(VF); 2137 collectLoopScalars(VF); 2138 } 2139 2140 /// Keeps cost model vectorization decision and cost for instructions. 2141 /// Right now it is used for memory instructions only. 2142 typedef DenseMap<std::pair<Instruction *, unsigned>, 2143 std::pair<InstWidening, unsigned>> 2144 DecisionList; 2145 2146 DecisionList WideningDecisions; 2147 2148 public: 2149 /// The loop that we evaluate. 2150 Loop *TheLoop; 2151 /// Predicated scalar evolution analysis. 2152 PredicatedScalarEvolution &PSE; 2153 /// Loop Info analysis. 2154 LoopInfo *LI; 2155 /// Vectorization legality. 2156 LoopVectorizationLegality *Legal; 2157 /// Vector target information. 2158 const TargetTransformInfo &TTI; 2159 /// Target Library Info. 2160 const TargetLibraryInfo *TLI; 2161 /// Demanded bits analysis. 2162 DemandedBits *DB; 2163 /// Assumption cache. 2164 AssumptionCache *AC; 2165 /// Interface to emit optimization remarks. 2166 OptimizationRemarkEmitter *ORE; 2167 2168 const Function *TheFunction; 2169 /// Loop Vectorize Hint. 2170 const LoopVectorizeHints *Hints; 2171 /// Values to ignore in the cost model. 2172 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2173 /// Values to ignore in the cost model when VF > 1. 2174 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2175 }; 2176 2177 /// LoopVectorizationPlanner - drives the vectorization process after having 2178 /// passed Legality checks. 2179 class LoopVectorizationPlanner { 2180 public: 2181 LoopVectorizationPlanner(Loop *OrigLoop, LoopInfo *LI, 2182 LoopVectorizationLegality *Legal, 2183 LoopVectorizationCostModel &CM) 2184 : OrigLoop(OrigLoop), LI(LI), Legal(Legal), CM(CM) {} 2185 2186 ~LoopVectorizationPlanner() {} 2187 2188 /// Plan how to best vectorize, return the best VF and its cost. 2189 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2190 unsigned UserVF); 2191 2192 /// Generate the IR code for the vectorized loop. 2193 void executePlan(InnerLoopVectorizer &ILV); 2194 2195 protected: 2196 /// Collect the instructions from the original loop that would be trivially 2197 /// dead in the vectorized loop if generated. 2198 void collectTriviallyDeadInstructions( 2199 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2200 2201 private: 2202 /// The loop that we evaluate. 2203 Loop *OrigLoop; 2204 2205 /// Loop Info analysis. 2206 LoopInfo *LI; 2207 2208 /// The legality analysis. 2209 LoopVectorizationLegality *Legal; 2210 2211 /// The profitablity analysis. 2212 LoopVectorizationCostModel &CM; 2213 }; 2214 2215 /// \brief This holds vectorization requirements that must be verified late in 2216 /// the process. The requirements are set by legalize and costmodel. Once 2217 /// vectorization has been determined to be possible and profitable the 2218 /// requirements can be verified by looking for metadata or compiler options. 2219 /// For example, some loops require FP commutativity which is only allowed if 2220 /// vectorization is explicitly specified or if the fast-math compiler option 2221 /// has been provided. 2222 /// Late evaluation of these requirements allows helpful diagnostics to be 2223 /// composed that tells the user what need to be done to vectorize the loop. For 2224 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2225 /// evaluation should be used only when diagnostics can generated that can be 2226 /// followed by a non-expert user. 2227 class LoopVectorizationRequirements { 2228 public: 2229 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2230 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2231 2232 void addUnsafeAlgebraInst(Instruction *I) { 2233 // First unsafe algebra instruction. 2234 if (!UnsafeAlgebraInst) 2235 UnsafeAlgebraInst = I; 2236 } 2237 2238 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2239 2240 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2241 const char *PassName = Hints.vectorizeAnalysisPassName(); 2242 bool Failed = false; 2243 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2244 ORE.emit( 2245 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2246 UnsafeAlgebraInst->getDebugLoc(), 2247 UnsafeAlgebraInst->getParent()) 2248 << "loop not vectorized: cannot prove it is safe to reorder " 2249 "floating-point operations"); 2250 Failed = true; 2251 } 2252 2253 // Test if runtime memcheck thresholds are exceeded. 2254 bool PragmaThresholdReached = 2255 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2256 bool ThresholdReached = 2257 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2258 if ((ThresholdReached && !Hints.allowReordering()) || 2259 PragmaThresholdReached) { 2260 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2261 L->getStartLoc(), 2262 L->getHeader()) 2263 << "loop not vectorized: cannot prove it is safe to reorder " 2264 "memory operations"); 2265 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2266 Failed = true; 2267 } 2268 2269 return Failed; 2270 } 2271 2272 private: 2273 unsigned NumRuntimePointerChecks; 2274 Instruction *UnsafeAlgebraInst; 2275 2276 /// Interface to emit optimization remarks. 2277 OptimizationRemarkEmitter &ORE; 2278 }; 2279 2280 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2281 if (L.empty()) { 2282 if (!hasCyclesInLoopBody(L)) 2283 V.push_back(&L); 2284 return; 2285 } 2286 for (Loop *InnerL : L) 2287 addAcyclicInnerLoop(*InnerL, V); 2288 } 2289 2290 /// The LoopVectorize Pass. 2291 struct LoopVectorize : public FunctionPass { 2292 /// Pass identification, replacement for typeid 2293 static char ID; 2294 2295 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2296 : FunctionPass(ID) { 2297 Impl.DisableUnrolling = NoUnrolling; 2298 Impl.AlwaysVectorize = AlwaysVectorize; 2299 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2300 } 2301 2302 LoopVectorizePass Impl; 2303 2304 bool runOnFunction(Function &F) override { 2305 if (skipFunction(F)) 2306 return false; 2307 2308 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2309 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2310 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2311 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2312 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2313 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2314 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2315 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2316 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2317 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2318 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2319 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2320 2321 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2322 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2323 2324 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2325 GetLAA, *ORE); 2326 } 2327 2328 void getAnalysisUsage(AnalysisUsage &AU) const override { 2329 AU.addRequired<AssumptionCacheTracker>(); 2330 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2331 AU.addRequired<DominatorTreeWrapperPass>(); 2332 AU.addRequired<LoopInfoWrapperPass>(); 2333 AU.addRequired<ScalarEvolutionWrapperPass>(); 2334 AU.addRequired<TargetTransformInfoWrapperPass>(); 2335 AU.addRequired<AAResultsWrapperPass>(); 2336 AU.addRequired<LoopAccessLegacyAnalysis>(); 2337 AU.addRequired<DemandedBitsWrapperPass>(); 2338 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2339 AU.addPreserved<LoopInfoWrapperPass>(); 2340 AU.addPreserved<DominatorTreeWrapperPass>(); 2341 AU.addPreserved<BasicAAWrapperPass>(); 2342 AU.addPreserved<GlobalsAAWrapperPass>(); 2343 } 2344 }; 2345 2346 } // end anonymous namespace 2347 2348 //===----------------------------------------------------------------------===// 2349 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2350 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2351 //===----------------------------------------------------------------------===// 2352 2353 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2354 // We need to place the broadcast of invariant variables outside the loop. 2355 Instruction *Instr = dyn_cast<Instruction>(V); 2356 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2357 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2358 2359 // Place the code for broadcasting invariant variables in the new preheader. 2360 IRBuilder<>::InsertPointGuard Guard(Builder); 2361 if (Invariant) 2362 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2363 2364 // Broadcast the scalar into all locations in the vector. 2365 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2366 2367 return Shuf; 2368 } 2369 2370 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2371 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2372 Value *Start = II.getStartValue(); 2373 2374 // Construct the initial value of the vector IV in the vector loop preheader 2375 auto CurrIP = Builder.saveIP(); 2376 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2377 if (isa<TruncInst>(EntryVal)) { 2378 assert(Start->getType()->isIntegerTy() && 2379 "Truncation requires an integer type"); 2380 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2381 Step = Builder.CreateTrunc(Step, TruncType); 2382 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2383 } 2384 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2385 Value *SteppedStart = 2386 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2387 2388 // We create vector phi nodes for both integer and floating-point induction 2389 // variables. Here, we determine the kind of arithmetic we will perform. 2390 Instruction::BinaryOps AddOp; 2391 Instruction::BinaryOps MulOp; 2392 if (Step->getType()->isIntegerTy()) { 2393 AddOp = Instruction::Add; 2394 MulOp = Instruction::Mul; 2395 } else { 2396 AddOp = II.getInductionOpcode(); 2397 MulOp = Instruction::FMul; 2398 } 2399 2400 // Multiply the vectorization factor by the step using integer or 2401 // floating-point arithmetic as appropriate. 2402 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2403 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2404 2405 // Create a vector splat to use in the induction update. 2406 // 2407 // FIXME: If the step is non-constant, we create the vector splat with 2408 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2409 // handle a constant vector splat. 2410 Value *SplatVF = isa<Constant>(Mul) 2411 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2412 : Builder.CreateVectorSplat(VF, Mul); 2413 Builder.restoreIP(CurrIP); 2414 2415 // We may need to add the step a number of times, depending on the unroll 2416 // factor. The last of those goes into the PHI. 2417 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2418 &*LoopVectorBody->getFirstInsertionPt()); 2419 Instruction *LastInduction = VecInd; 2420 VectorParts Entry(UF); 2421 for (unsigned Part = 0; Part < UF; ++Part) { 2422 Entry[Part] = LastInduction; 2423 LastInduction = cast<Instruction>(addFastMathFlag( 2424 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2425 } 2426 VectorLoopValueMap.initVector(EntryVal, Entry); 2427 if (isa<TruncInst>(EntryVal)) 2428 addMetadata(Entry, EntryVal); 2429 2430 // Move the last step to the end of the latch block. This ensures consistent 2431 // placement of all induction updates. 2432 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2433 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2434 auto *ICmp = cast<Instruction>(Br->getCondition()); 2435 LastInduction->moveBefore(ICmp); 2436 LastInduction->setName("vec.ind.next"); 2437 2438 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2439 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2440 } 2441 2442 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2443 return Cost->isScalarAfterVectorization(I, VF) || 2444 Cost->isProfitableToScalarize(I, VF); 2445 } 2446 2447 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2448 if (shouldScalarizeInstruction(IV)) 2449 return true; 2450 auto isScalarInst = [&](User *U) -> bool { 2451 auto *I = cast<Instruction>(U); 2452 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2453 }; 2454 return any_of(IV->users(), isScalarInst); 2455 } 2456 2457 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2458 2459 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2460 "Primary induction variable must have an integer type"); 2461 2462 auto II = Legal->getInductionVars()->find(IV); 2463 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2464 2465 auto ID = II->second; 2466 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2467 2468 // The scalar value to broadcast. This will be derived from the canonical 2469 // induction variable. 2470 Value *ScalarIV = nullptr; 2471 2472 // The value from the original loop to which we are mapping the new induction 2473 // variable. 2474 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2475 2476 // True if we have vectorized the induction variable. 2477 auto VectorizedIV = false; 2478 2479 // Determine if we want a scalar version of the induction variable. This is 2480 // true if the induction variable itself is not widened, or if it has at 2481 // least one user in the loop that is not widened. 2482 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2483 2484 // Generate code for the induction step. Note that induction steps are 2485 // required to be loop-invariant 2486 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2487 "Induction step should be loop invariant"); 2488 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2489 Value *Step = nullptr; 2490 if (PSE.getSE()->isSCEVable(IV->getType())) { 2491 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2492 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2493 LoopVectorPreHeader->getTerminator()); 2494 } else { 2495 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2496 } 2497 2498 // Try to create a new independent vector induction variable. If we can't 2499 // create the phi node, we will splat the scalar induction variable in each 2500 // loop iteration. 2501 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2502 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2503 VectorizedIV = true; 2504 } 2505 2506 // If we haven't yet vectorized the induction variable, or if we will create 2507 // a scalar one, we need to define the scalar induction variable and step 2508 // values. If we were given a truncation type, truncate the canonical 2509 // induction variable and step. Otherwise, derive these values from the 2510 // induction descriptor. 2511 if (!VectorizedIV || NeedsScalarIV) { 2512 ScalarIV = Induction; 2513 if (IV != OldInduction) { 2514 ScalarIV = IV->getType()->isIntegerTy() 2515 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2516 : Builder.CreateCast(Instruction::SIToFP, Induction, 2517 IV->getType()); 2518 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2519 ScalarIV->setName("offset.idx"); 2520 } 2521 if (Trunc) { 2522 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2523 assert(Step->getType()->isIntegerTy() && 2524 "Truncation requires an integer step"); 2525 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2526 Step = Builder.CreateTrunc(Step, TruncType); 2527 } 2528 } 2529 2530 // If we haven't yet vectorized the induction variable, splat the scalar 2531 // induction variable, and build the necessary step vectors. 2532 if (!VectorizedIV) { 2533 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2534 VectorParts Entry(UF); 2535 for (unsigned Part = 0; Part < UF; ++Part) 2536 Entry[Part] = 2537 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2538 VectorLoopValueMap.initVector(EntryVal, Entry); 2539 if (Trunc) 2540 addMetadata(Entry, Trunc); 2541 } 2542 2543 // If an induction variable is only used for counting loop iterations or 2544 // calculating addresses, it doesn't need to be widened. Create scalar steps 2545 // that can be used by instructions we will later scalarize. Note that the 2546 // addition of the scalar steps will not increase the number of instructions 2547 // in the loop in the common case prior to InstCombine. We will be trading 2548 // one vector extract for each scalar step. 2549 if (NeedsScalarIV) 2550 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2551 } 2552 2553 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2554 Instruction::BinaryOps BinOp) { 2555 // Create and check the types. 2556 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2557 int VLen = Val->getType()->getVectorNumElements(); 2558 2559 Type *STy = Val->getType()->getScalarType(); 2560 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2561 "Induction Step must be an integer or FP"); 2562 assert(Step->getType() == STy && "Step has wrong type"); 2563 2564 SmallVector<Constant *, 8> Indices; 2565 2566 if (STy->isIntegerTy()) { 2567 // Create a vector of consecutive numbers from zero to VF. 2568 for (int i = 0; i < VLen; ++i) 2569 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2570 2571 // Add the consecutive indices to the vector value. 2572 Constant *Cv = ConstantVector::get(Indices); 2573 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2574 Step = Builder.CreateVectorSplat(VLen, Step); 2575 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2576 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2577 // which can be found from the original scalar operations. 2578 Step = Builder.CreateMul(Cv, Step); 2579 return Builder.CreateAdd(Val, Step, "induction"); 2580 } 2581 2582 // Floating point induction. 2583 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2584 "Binary Opcode should be specified for FP induction"); 2585 // Create a vector of consecutive numbers from zero to VF. 2586 for (int i = 0; i < VLen; ++i) 2587 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2588 2589 // Add the consecutive indices to the vector value. 2590 Constant *Cv = ConstantVector::get(Indices); 2591 2592 Step = Builder.CreateVectorSplat(VLen, Step); 2593 2594 // Floating point operations had to be 'fast' to enable the induction. 2595 FastMathFlags Flags; 2596 Flags.setUnsafeAlgebra(); 2597 2598 Value *MulOp = Builder.CreateFMul(Cv, Step); 2599 if (isa<Instruction>(MulOp)) 2600 // Have to check, MulOp may be a constant 2601 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2602 2603 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2604 if (isa<Instruction>(BOp)) 2605 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2606 return BOp; 2607 } 2608 2609 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2610 Value *EntryVal, 2611 const InductionDescriptor &ID) { 2612 2613 // We shouldn't have to build scalar steps if we aren't vectorizing. 2614 assert(VF > 1 && "VF should be greater than one"); 2615 2616 // Get the value type and ensure it and the step have the same integer type. 2617 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2618 assert(ScalarIVTy == Step->getType() && 2619 "Val and Step should have the same type"); 2620 2621 // We build scalar steps for both integer and floating-point induction 2622 // variables. Here, we determine the kind of arithmetic we will perform. 2623 Instruction::BinaryOps AddOp; 2624 Instruction::BinaryOps MulOp; 2625 if (ScalarIVTy->isIntegerTy()) { 2626 AddOp = Instruction::Add; 2627 MulOp = Instruction::Mul; 2628 } else { 2629 AddOp = ID.getInductionOpcode(); 2630 MulOp = Instruction::FMul; 2631 } 2632 2633 // Determine the number of scalars we need to generate for each unroll 2634 // iteration. If EntryVal is uniform, we only need to generate the first 2635 // lane. Otherwise, we generate all VF values. 2636 unsigned Lanes = 2637 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2638 2639 // Compute the scalar steps and save the results in VectorLoopValueMap. 2640 ScalarParts Entry(UF); 2641 for (unsigned Part = 0; Part < UF; ++Part) { 2642 Entry[Part].resize(VF); 2643 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2644 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2645 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2646 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2647 Entry[Part][Lane] = Add; 2648 } 2649 } 2650 VectorLoopValueMap.initScalar(EntryVal, Entry); 2651 } 2652 2653 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2654 2655 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2656 ValueToValueMap(); 2657 2658 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2659 if (Stride == 1 || Stride == -1) 2660 return Stride; 2661 return 0; 2662 } 2663 2664 bool LoopVectorizationLegality::isUniform(Value *V) { 2665 return LAI->isUniform(V); 2666 } 2667 2668 const InnerLoopVectorizer::VectorParts & 2669 InnerLoopVectorizer::getVectorValue(Value *V) { 2670 assert(V != Induction && "The new induction variable should not be used."); 2671 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2672 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2673 2674 // If we have a stride that is replaced by one, do it here. 2675 if (Legal->hasStride(V)) 2676 V = ConstantInt::get(V->getType(), 1); 2677 2678 // If we have this scalar in the map, return it. 2679 if (VectorLoopValueMap.hasVector(V)) 2680 return VectorLoopValueMap.VectorMapStorage[V]; 2681 2682 // If the value has not been vectorized, check if it has been scalarized 2683 // instead. If it has been scalarized, and we actually need the value in 2684 // vector form, we will construct the vector values on demand. 2685 if (VectorLoopValueMap.hasScalar(V)) { 2686 2687 // Initialize a new vector map entry. 2688 VectorParts Entry(UF); 2689 2690 // If we've scalarized a value, that value should be an instruction. 2691 auto *I = cast<Instruction>(V); 2692 2693 // If we aren't vectorizing, we can just copy the scalar map values over to 2694 // the vector map. 2695 if (VF == 1) { 2696 for (unsigned Part = 0; Part < UF; ++Part) 2697 Entry[Part] = getScalarValue(V, Part, 0); 2698 return VectorLoopValueMap.initVector(V, Entry); 2699 } 2700 2701 // Get the last scalar instruction we generated for V. If the value is 2702 // known to be uniform after vectorization, this corresponds to lane zero 2703 // of the last unroll iteration. Otherwise, the last instruction is the one 2704 // we created for the last vector lane of the last unroll iteration. 2705 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2706 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2707 2708 // Set the insert point after the last scalarized instruction. This ensures 2709 // the insertelement sequence will directly follow the scalar definitions. 2710 auto OldIP = Builder.saveIP(); 2711 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2712 Builder.SetInsertPoint(&*NewIP); 2713 2714 // However, if we are vectorizing, we need to construct the vector values. 2715 // If the value is known to be uniform after vectorization, we can just 2716 // broadcast the scalar value corresponding to lane zero for each unroll 2717 // iteration. Otherwise, we construct the vector values using insertelement 2718 // instructions. Since the resulting vectors are stored in 2719 // VectorLoopValueMap, we will only generate the insertelements once. 2720 for (unsigned Part = 0; Part < UF; ++Part) { 2721 Value *VectorValue = nullptr; 2722 if (Cost->isUniformAfterVectorization(I, VF)) { 2723 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2724 } else { 2725 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2726 for (unsigned Lane = 0; Lane < VF; ++Lane) 2727 VectorValue = Builder.CreateInsertElement( 2728 VectorValue, getScalarValue(V, Part, Lane), 2729 Builder.getInt32(Lane)); 2730 } 2731 Entry[Part] = VectorValue; 2732 } 2733 Builder.restoreIP(OldIP); 2734 return VectorLoopValueMap.initVector(V, Entry); 2735 } 2736 2737 // If this scalar is unknown, assume that it is a constant or that it is 2738 // loop invariant. Broadcast V and save the value for future uses. 2739 Value *B = getBroadcastInstrs(V); 2740 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2741 } 2742 2743 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2744 unsigned Lane) { 2745 2746 // If the value is not an instruction contained in the loop, it should 2747 // already be scalar. 2748 if (OrigLoop->isLoopInvariant(V)) 2749 return V; 2750 2751 assert(Lane > 0 ? 2752 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2753 : true && "Uniform values only have lane zero"); 2754 2755 // If the value from the original loop has not been vectorized, it is 2756 // represented by UF x VF scalar values in the new loop. Return the requested 2757 // scalar value. 2758 if (VectorLoopValueMap.hasScalar(V)) 2759 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2760 2761 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2762 // for the given unroll part. If this entry is not a vector type (i.e., the 2763 // vectorization factor is one), there is no need to generate an 2764 // extractelement instruction. 2765 auto *U = getVectorValue(V)[Part]; 2766 if (!U->getType()->isVectorTy()) { 2767 assert(VF == 1 && "Value not scalarized has non-vector type"); 2768 return U; 2769 } 2770 2771 // Otherwise, the value from the original loop has been vectorized and is 2772 // represented by UF vector values. Extract and return the requested scalar 2773 // value from the appropriate vector lane. 2774 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2775 } 2776 2777 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2778 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2779 SmallVector<Constant *, 8> ShuffleMask; 2780 for (unsigned i = 0; i < VF; ++i) 2781 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2782 2783 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2784 ConstantVector::get(ShuffleMask), 2785 "reverse"); 2786 } 2787 2788 // Try to vectorize the interleave group that \p Instr belongs to. 2789 // 2790 // E.g. Translate following interleaved load group (factor = 3): 2791 // for (i = 0; i < N; i+=3) { 2792 // R = Pic[i]; // Member of index 0 2793 // G = Pic[i+1]; // Member of index 1 2794 // B = Pic[i+2]; // Member of index 2 2795 // ... // do something to R, G, B 2796 // } 2797 // To: 2798 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2799 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2800 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2801 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2802 // 2803 // Or translate following interleaved store group (factor = 3): 2804 // for (i = 0; i < N; i+=3) { 2805 // ... do something to R, G, B 2806 // Pic[i] = R; // Member of index 0 2807 // Pic[i+1] = G; // Member of index 1 2808 // Pic[i+2] = B; // Member of index 2 2809 // } 2810 // To: 2811 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2812 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2813 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2814 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2815 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2816 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2817 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2818 assert(Group && "Fail to get an interleaved access group."); 2819 2820 // Skip if current instruction is not the insert position. 2821 if (Instr != Group->getInsertPos()) 2822 return; 2823 2824 Value *Ptr = getPointerOperand(Instr); 2825 2826 // Prepare for the vector type of the interleaved load/store. 2827 Type *ScalarTy = getMemInstValueType(Instr); 2828 unsigned InterleaveFactor = Group->getFactor(); 2829 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2830 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2831 2832 // Prepare for the new pointers. 2833 setDebugLocFromInst(Builder, Ptr); 2834 SmallVector<Value *, 2> NewPtrs; 2835 unsigned Index = Group->getIndex(Instr); 2836 2837 // If the group is reverse, adjust the index to refer to the last vector lane 2838 // instead of the first. We adjust the index from the first vector lane, 2839 // rather than directly getting the pointer for lane VF - 1, because the 2840 // pointer operand of the interleaved access is supposed to be uniform. For 2841 // uniform instructions, we're only required to generate a value for the 2842 // first vector lane in each unroll iteration. 2843 if (Group->isReverse()) 2844 Index += (VF - 1) * Group->getFactor(); 2845 2846 for (unsigned Part = 0; Part < UF; Part++) { 2847 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2848 2849 // Notice current instruction could be any index. Need to adjust the address 2850 // to the member of index 0. 2851 // 2852 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2853 // b = A[i]; // Member of index 0 2854 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2855 // 2856 // E.g. A[i+1] = a; // Member of index 1 2857 // A[i] = b; // Member of index 0 2858 // A[i+2] = c; // Member of index 2 (Current instruction) 2859 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2860 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2861 2862 // Cast to the vector pointer type. 2863 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2864 } 2865 2866 setDebugLocFromInst(Builder, Instr); 2867 Value *UndefVec = UndefValue::get(VecTy); 2868 2869 // Vectorize the interleaved load group. 2870 if (isa<LoadInst>(Instr)) { 2871 2872 // For each unroll part, create a wide load for the group. 2873 SmallVector<Value *, 2> NewLoads; 2874 for (unsigned Part = 0; Part < UF; Part++) { 2875 auto *NewLoad = Builder.CreateAlignedLoad( 2876 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2877 addMetadata(NewLoad, Instr); 2878 NewLoads.push_back(NewLoad); 2879 } 2880 2881 // For each member in the group, shuffle out the appropriate data from the 2882 // wide loads. 2883 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2884 Instruction *Member = Group->getMember(I); 2885 2886 // Skip the gaps in the group. 2887 if (!Member) 2888 continue; 2889 2890 VectorParts Entry(UF); 2891 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2892 for (unsigned Part = 0; Part < UF; Part++) { 2893 Value *StridedVec = Builder.CreateShuffleVector( 2894 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2895 2896 // If this member has different type, cast the result type. 2897 if (Member->getType() != ScalarTy) { 2898 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2899 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2900 } 2901 2902 Entry[Part] = 2903 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2904 } 2905 VectorLoopValueMap.initVector(Member, Entry); 2906 } 2907 return; 2908 } 2909 2910 // The sub vector type for current instruction. 2911 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2912 2913 // Vectorize the interleaved store group. 2914 for (unsigned Part = 0; Part < UF; Part++) { 2915 // Collect the stored vector from each member. 2916 SmallVector<Value *, 4> StoredVecs; 2917 for (unsigned i = 0; i < InterleaveFactor; i++) { 2918 // Interleaved store group doesn't allow a gap, so each index has a member 2919 Instruction *Member = Group->getMember(i); 2920 assert(Member && "Fail to get a member from an interleaved store group"); 2921 2922 Value *StoredVec = 2923 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2924 if (Group->isReverse()) 2925 StoredVec = reverseVector(StoredVec); 2926 2927 // If this member has different type, cast it to an unified type. 2928 if (StoredVec->getType() != SubVT) 2929 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2930 2931 StoredVecs.push_back(StoredVec); 2932 } 2933 2934 // Concatenate all vectors into a wide vector. 2935 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2936 2937 // Interleave the elements in the wide vector. 2938 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2939 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2940 "interleaved.vec"); 2941 2942 Instruction *NewStoreInstr = 2943 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2944 addMetadata(NewStoreInstr, Instr); 2945 } 2946 } 2947 2948 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2949 // Attempt to issue a wide load. 2950 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2951 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2952 2953 assert((LI || SI) && "Invalid Load/Store instruction"); 2954 2955 LoopVectorizationCostModel::InstWidening Decision = 2956 Cost->getWideningDecision(Instr, VF); 2957 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2958 "CM decision should be taken at this point"); 2959 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2960 return vectorizeInterleaveGroup(Instr); 2961 2962 Type *ScalarDataTy = getMemInstValueType(Instr); 2963 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2964 Value *Ptr = getPointerOperand(Instr); 2965 unsigned Alignment = getMemInstAlignment(Instr); 2966 // An alignment of 0 means target abi alignment. We need to use the scalar's 2967 // target abi alignment in such a case. 2968 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2969 if (!Alignment) 2970 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2971 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2972 2973 // Scalarize the memory instruction if necessary. 2974 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2975 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2976 2977 // Determine if the pointer operand of the access is either consecutive or 2978 // reverse consecutive. 2979 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2980 bool Reverse = ConsecutiveStride < 0; 2981 bool CreateGatherScatter = 2982 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2983 2984 VectorParts VectorGep; 2985 2986 // Handle consecutive loads/stores. 2987 if (ConsecutiveStride) { 2988 Ptr = getScalarValue(Ptr, 0, 0); 2989 } else { 2990 // At this point we should vector version of GEP for Gather or Scatter 2991 assert(CreateGatherScatter && "The instruction should be scalarized"); 2992 VectorGep = getVectorValue(Ptr); 2993 } 2994 2995 VectorParts Mask = createBlockInMask(Instr->getParent()); 2996 // Handle Stores: 2997 if (SI) { 2998 assert(!Legal->isUniform(SI->getPointerOperand()) && 2999 "We do not allow storing to uniform addresses"); 3000 setDebugLocFromInst(Builder, SI); 3001 // We don't want to update the value in the map as it might be used in 3002 // another expression. So don't use a reference type for "StoredVal". 3003 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 3004 3005 for (unsigned Part = 0; Part < UF; ++Part) { 3006 Instruction *NewSI = nullptr; 3007 if (CreateGatherScatter) { 3008 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3009 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 3010 Alignment, MaskPart); 3011 } else { 3012 // Calculate the pointer for the specific unroll-part. 3013 Value *PartPtr = 3014 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3015 3016 if (Reverse) { 3017 // If we store to reverse consecutive memory locations, then we need 3018 // to reverse the order of elements in the stored value. 3019 StoredVal[Part] = reverseVector(StoredVal[Part]); 3020 // If the address is consecutive but reversed, then the 3021 // wide store needs to start at the last vector element. 3022 PartPtr = 3023 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3024 PartPtr = 3025 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3026 Mask[Part] = reverseVector(Mask[Part]); 3027 } 3028 3029 Value *VecPtr = 3030 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3031 3032 if (Legal->isMaskRequired(SI)) 3033 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3034 Mask[Part]); 3035 else 3036 NewSI = 3037 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3038 } 3039 addMetadata(NewSI, SI); 3040 } 3041 return; 3042 } 3043 3044 // Handle loads. 3045 assert(LI && "Must have a load instruction"); 3046 setDebugLocFromInst(Builder, LI); 3047 VectorParts Entry(UF); 3048 for (unsigned Part = 0; Part < UF; ++Part) { 3049 Instruction *NewLI; 3050 if (CreateGatherScatter) { 3051 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3052 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3053 nullptr, "wide.masked.gather"); 3054 Entry[Part] = NewLI; 3055 } else { 3056 // Calculate the pointer for the specific unroll-part. 3057 Value *PartPtr = 3058 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3059 3060 if (Reverse) { 3061 // If the address is consecutive but reversed, then the 3062 // wide load needs to start at the last vector element. 3063 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3064 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3065 Mask[Part] = reverseVector(Mask[Part]); 3066 } 3067 3068 Value *VecPtr = 3069 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3070 if (Legal->isMaskRequired(LI)) 3071 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3072 UndefValue::get(DataTy), 3073 "wide.masked.load"); 3074 else 3075 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3076 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3077 } 3078 addMetadata(NewLI, LI); 3079 } 3080 VectorLoopValueMap.initVector(Instr, Entry); 3081 } 3082 3083 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3084 bool IfPredicateInstr) { 3085 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3086 DEBUG(dbgs() << "LV: Scalarizing" 3087 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3088 << '\n'); 3089 // Holds vector parameters or scalars, in case of uniform vals. 3090 SmallVector<VectorParts, 4> Params; 3091 3092 setDebugLocFromInst(Builder, Instr); 3093 3094 // Does this instruction return a value ? 3095 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3096 3097 // Initialize a new scalar map entry. 3098 ScalarParts Entry(UF); 3099 3100 VectorParts Cond; 3101 if (IfPredicateInstr) 3102 Cond = createBlockInMask(Instr->getParent()); 3103 3104 // Determine the number of scalars we need to generate for each unroll 3105 // iteration. If the instruction is uniform, we only need to generate the 3106 // first lane. Otherwise, we generate all VF values. 3107 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3108 3109 // For each vector unroll 'part': 3110 for (unsigned Part = 0; Part < UF; ++Part) { 3111 Entry[Part].resize(VF); 3112 // For each scalar that we create: 3113 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3114 3115 // Start if-block. 3116 Value *Cmp = nullptr; 3117 if (IfPredicateInstr) { 3118 Cmp = Cond[Part]; 3119 if (Cmp->getType()->isVectorTy()) 3120 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3121 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3122 ConstantInt::get(Cmp->getType(), 1)); 3123 } 3124 3125 Instruction *Cloned = Instr->clone(); 3126 if (!IsVoidRetTy) 3127 Cloned->setName(Instr->getName() + ".cloned"); 3128 3129 // Replace the operands of the cloned instructions with their scalar 3130 // equivalents in the new loop. 3131 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3132 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3133 Cloned->setOperand(op, NewOp); 3134 } 3135 addNewMetadata(Cloned, Instr); 3136 3137 // Place the cloned scalar in the new loop. 3138 Builder.Insert(Cloned); 3139 3140 // Add the cloned scalar to the scalar map entry. 3141 Entry[Part][Lane] = Cloned; 3142 3143 // If we just cloned a new assumption, add it the assumption cache. 3144 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3145 if (II->getIntrinsicID() == Intrinsic::assume) 3146 AC->registerAssumption(II); 3147 3148 // End if-block. 3149 if (IfPredicateInstr) 3150 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3151 } 3152 } 3153 VectorLoopValueMap.initScalar(Instr, Entry); 3154 } 3155 3156 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3157 Value *End, Value *Step, 3158 Instruction *DL) { 3159 BasicBlock *Header = L->getHeader(); 3160 BasicBlock *Latch = L->getLoopLatch(); 3161 // As we're just creating this loop, it's possible no latch exists 3162 // yet. If so, use the header as this will be a single block loop. 3163 if (!Latch) 3164 Latch = Header; 3165 3166 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3167 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3168 setDebugLocFromInst(Builder, OldInst); 3169 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3170 3171 Builder.SetInsertPoint(Latch->getTerminator()); 3172 setDebugLocFromInst(Builder, OldInst); 3173 3174 // Create i+1 and fill the PHINode. 3175 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3176 Induction->addIncoming(Start, L->getLoopPreheader()); 3177 Induction->addIncoming(Next, Latch); 3178 // Create the compare. 3179 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3180 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3181 3182 // Now we have two terminators. Remove the old one from the block. 3183 Latch->getTerminator()->eraseFromParent(); 3184 3185 return Induction; 3186 } 3187 3188 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3189 if (TripCount) 3190 return TripCount; 3191 3192 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3193 // Find the loop boundaries. 3194 ScalarEvolution *SE = PSE.getSE(); 3195 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3196 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3197 "Invalid loop count"); 3198 3199 Type *IdxTy = Legal->getWidestInductionType(); 3200 3201 // The exit count might have the type of i64 while the phi is i32. This can 3202 // happen if we have an induction variable that is sign extended before the 3203 // compare. The only way that we get a backedge taken count is that the 3204 // induction variable was signed and as such will not overflow. In such a case 3205 // truncation is legal. 3206 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3207 IdxTy->getPrimitiveSizeInBits()) 3208 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3209 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3210 3211 // Get the total trip count from the count by adding 1. 3212 const SCEV *ExitCount = SE->getAddExpr( 3213 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3214 3215 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3216 3217 // Expand the trip count and place the new instructions in the preheader. 3218 // Notice that the pre-header does not change, only the loop body. 3219 SCEVExpander Exp(*SE, DL, "induction"); 3220 3221 // Count holds the overall loop count (N). 3222 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3223 L->getLoopPreheader()->getTerminator()); 3224 3225 if (TripCount->getType()->isPointerTy()) 3226 TripCount = 3227 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3228 L->getLoopPreheader()->getTerminator()); 3229 3230 return TripCount; 3231 } 3232 3233 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3234 if (VectorTripCount) 3235 return VectorTripCount; 3236 3237 Value *TC = getOrCreateTripCount(L); 3238 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3239 3240 // Now we need to generate the expression for the part of the loop that the 3241 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3242 // iterations are not required for correctness, or N - Step, otherwise. Step 3243 // is equal to the vectorization factor (number of SIMD elements) times the 3244 // unroll factor (number of SIMD instructions). 3245 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3246 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3247 3248 // If there is a non-reversed interleaved group that may speculatively access 3249 // memory out-of-bounds, we need to ensure that there will be at least one 3250 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3251 // the trip count, we set the remainder to be equal to the step. If the step 3252 // does not evenly divide the trip count, no adjustment is necessary since 3253 // there will already be scalar iterations. Note that the minimum iterations 3254 // check ensures that N >= Step. 3255 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3256 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3257 R = Builder.CreateSelect(IsZero, Step, R); 3258 } 3259 3260 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3261 3262 return VectorTripCount; 3263 } 3264 3265 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3266 BasicBlock *Bypass) { 3267 Value *Count = getOrCreateTripCount(L); 3268 BasicBlock *BB = L->getLoopPreheader(); 3269 IRBuilder<> Builder(BB->getTerminator()); 3270 3271 // Generate code to check that the loop's trip count that we computed by 3272 // adding one to the backedge-taken count will not overflow. 3273 Value *CheckMinIters = Builder.CreateICmpULT( 3274 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3275 3276 BasicBlock *NewBB = 3277 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3278 // Update dominator tree immediately if the generated block is a 3279 // LoopBypassBlock because SCEV expansions to generate loop bypass 3280 // checks may query it before the current function is finished. 3281 DT->addNewBlock(NewBB, BB); 3282 if (L->getParentLoop()) 3283 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3284 ReplaceInstWithInst(BB->getTerminator(), 3285 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3286 LoopBypassBlocks.push_back(BB); 3287 } 3288 3289 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3290 BasicBlock *Bypass) { 3291 Value *TC = getOrCreateVectorTripCount(L); 3292 BasicBlock *BB = L->getLoopPreheader(); 3293 IRBuilder<> Builder(BB->getTerminator()); 3294 3295 // Now, compare the new count to zero. If it is zero skip the vector loop and 3296 // jump to the scalar loop. 3297 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3298 "cmp.zero"); 3299 3300 // Generate code to check that the loop's trip count that we computed by 3301 // adding one to the backedge-taken count will not overflow. 3302 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3303 // Update dominator tree immediately if the generated block is a 3304 // LoopBypassBlock because SCEV expansions to generate loop bypass 3305 // checks may query it before the current function is finished. 3306 DT->addNewBlock(NewBB, BB); 3307 if (L->getParentLoop()) 3308 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3309 ReplaceInstWithInst(BB->getTerminator(), 3310 BranchInst::Create(Bypass, NewBB, Cmp)); 3311 LoopBypassBlocks.push_back(BB); 3312 } 3313 3314 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3315 BasicBlock *BB = L->getLoopPreheader(); 3316 3317 // Generate the code to check that the SCEV assumptions that we made. 3318 // We want the new basic block to start at the first instruction in a 3319 // sequence of instructions that form a check. 3320 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3321 "scev.check"); 3322 Value *SCEVCheck = 3323 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3324 3325 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3326 if (C->isZero()) 3327 return; 3328 3329 // Create a new block containing the stride check. 3330 BB->setName("vector.scevcheck"); 3331 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3332 // Update dominator tree immediately if the generated block is a 3333 // LoopBypassBlock because SCEV expansions to generate loop bypass 3334 // checks may query it before the current function is finished. 3335 DT->addNewBlock(NewBB, BB); 3336 if (L->getParentLoop()) 3337 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3338 ReplaceInstWithInst(BB->getTerminator(), 3339 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3340 LoopBypassBlocks.push_back(BB); 3341 AddedSafetyChecks = true; 3342 } 3343 3344 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3345 BasicBlock *BB = L->getLoopPreheader(); 3346 3347 // Generate the code that checks in runtime if arrays overlap. We put the 3348 // checks into a separate block to make the more common case of few elements 3349 // faster. 3350 Instruction *FirstCheckInst; 3351 Instruction *MemRuntimeCheck; 3352 std::tie(FirstCheckInst, MemRuntimeCheck) = 3353 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3354 if (!MemRuntimeCheck) 3355 return; 3356 3357 // Create a new block containing the memory check. 3358 BB->setName("vector.memcheck"); 3359 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3360 // Update dominator tree immediately if the generated block is a 3361 // LoopBypassBlock because SCEV expansions to generate loop bypass 3362 // checks may query it before the current function is finished. 3363 DT->addNewBlock(NewBB, BB); 3364 if (L->getParentLoop()) 3365 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3366 ReplaceInstWithInst(BB->getTerminator(), 3367 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3368 LoopBypassBlocks.push_back(BB); 3369 AddedSafetyChecks = true; 3370 3371 // We currently don't use LoopVersioning for the actual loop cloning but we 3372 // still use it to add the noalias metadata. 3373 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3374 PSE.getSE()); 3375 LVer->prepareNoAliasMetadata(); 3376 } 3377 3378 void InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3379 /* 3380 In this function we generate a new loop. The new loop will contain 3381 the vectorized instructions while the old loop will continue to run the 3382 scalar remainder. 3383 3384 [ ] <-- loop iteration number check. 3385 / | 3386 / v 3387 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3388 | / | 3389 | / v 3390 || [ ] <-- vector pre header. 3391 |/ | 3392 | v 3393 | [ ] \ 3394 | [ ]_| <-- vector loop. 3395 | | 3396 | v 3397 | -[ ] <--- middle-block. 3398 | / | 3399 | / v 3400 -|- >[ ] <--- new preheader. 3401 | | 3402 | v 3403 | [ ] \ 3404 | [ ]_| <-- old scalar loop to handle remainder. 3405 \ | 3406 \ v 3407 >[ ] <-- exit block. 3408 ... 3409 */ 3410 3411 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3412 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3413 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3414 assert(VectorPH && "Invalid loop structure"); 3415 assert(ExitBlock && "Must have an exit block"); 3416 3417 // Some loops have a single integer induction variable, while other loops 3418 // don't. One example is c++ iterators that often have multiple pointer 3419 // induction variables. In the code below we also support a case where we 3420 // don't have a single induction variable. 3421 // 3422 // We try to obtain an induction variable from the original loop as hard 3423 // as possible. However if we don't find one that: 3424 // - is an integer 3425 // - counts from zero, stepping by one 3426 // - is the size of the widest induction variable type 3427 // then we create a new one. 3428 OldInduction = Legal->getPrimaryInduction(); 3429 Type *IdxTy = Legal->getWidestInductionType(); 3430 3431 // Split the single block loop into the two loop structure described above. 3432 BasicBlock *VecBody = 3433 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3434 BasicBlock *MiddleBlock = 3435 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3436 BasicBlock *ScalarPH = 3437 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3438 3439 // Create and register the new vector loop. 3440 Loop *Lp = new Loop(); 3441 Loop *ParentLoop = OrigLoop->getParentLoop(); 3442 3443 // Insert the new loop into the loop nest and register the new basic blocks 3444 // before calling any utilities such as SCEV that require valid LoopInfo. 3445 if (ParentLoop) { 3446 ParentLoop->addChildLoop(Lp); 3447 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3448 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3449 } else { 3450 LI->addTopLevelLoop(Lp); 3451 } 3452 Lp->addBasicBlockToLoop(VecBody, *LI); 3453 3454 // Find the loop boundaries. 3455 Value *Count = getOrCreateTripCount(Lp); 3456 3457 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3458 3459 // We need to test whether the backedge-taken count is uint##_max. Adding one 3460 // to it will cause overflow and an incorrect loop trip count in the vector 3461 // body. In case of overflow we want to directly jump to the scalar remainder 3462 // loop. 3463 emitMinimumIterationCountCheck(Lp, ScalarPH); 3464 // Now, compare the new count to zero. If it is zero skip the vector loop and 3465 // jump to the scalar loop. 3466 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3467 // Generate the code to check any assumptions that we've made for SCEV 3468 // expressions. 3469 emitSCEVChecks(Lp, ScalarPH); 3470 3471 // Generate the code that checks in runtime if arrays overlap. We put the 3472 // checks into a separate block to make the more common case of few elements 3473 // faster. 3474 emitMemRuntimeChecks(Lp, ScalarPH); 3475 3476 // Generate the induction variable. 3477 // The loop step is equal to the vectorization factor (num of SIMD elements) 3478 // times the unroll factor (num of SIMD instructions). 3479 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3480 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3481 Induction = 3482 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3483 getDebugLocFromInstOrOperands(OldInduction)); 3484 3485 // We are going to resume the execution of the scalar loop. 3486 // Go over all of the induction variables that we found and fix the 3487 // PHIs that are left in the scalar version of the loop. 3488 // The starting values of PHI nodes depend on the counter of the last 3489 // iteration in the vectorized loop. 3490 // If we come from a bypass edge then we need to start from the original 3491 // start value. 3492 3493 // This variable saves the new starting index for the scalar loop. It is used 3494 // to test if there are any tail iterations left once the vector loop has 3495 // completed. 3496 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3497 for (auto &InductionEntry : *List) { 3498 PHINode *OrigPhi = InductionEntry.first; 3499 InductionDescriptor II = InductionEntry.second; 3500 3501 // Create phi nodes to merge from the backedge-taken check block. 3502 PHINode *BCResumeVal = PHINode::Create( 3503 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3504 Value *&EndValue = IVEndValues[OrigPhi]; 3505 if (OrigPhi == OldInduction) { 3506 // We know what the end value is. 3507 EndValue = CountRoundDown; 3508 } else { 3509 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3510 Type *StepType = II.getStep()->getType(); 3511 Instruction::CastOps CastOp = 3512 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3513 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3514 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3515 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3516 EndValue->setName("ind.end"); 3517 } 3518 3519 // The new PHI merges the original incoming value, in case of a bypass, 3520 // or the value at the end of the vectorized loop. 3521 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3522 3523 // Fix the scalar body counter (PHI node). 3524 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3525 3526 // The old induction's phi node in the scalar body needs the truncated 3527 // value. 3528 for (BasicBlock *BB : LoopBypassBlocks) 3529 BCResumeVal->addIncoming(II.getStartValue(), BB); 3530 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3531 } 3532 3533 // Add a check in the middle block to see if we have completed 3534 // all of the iterations in the first vector loop. 3535 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3536 Value *CmpN = 3537 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3538 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3539 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3540 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3541 3542 // Get ready to start creating new instructions into the vectorized body. 3543 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3544 3545 // Save the state. 3546 LoopVectorPreHeader = Lp->getLoopPreheader(); 3547 LoopScalarPreHeader = ScalarPH; 3548 LoopMiddleBlock = MiddleBlock; 3549 LoopExitBlock = ExitBlock; 3550 LoopVectorBody = VecBody; 3551 LoopScalarBody = OldBasicBlock; 3552 3553 // Keep all loop hints from the original loop on the vector loop (we'll 3554 // replace the vectorizer-specific hints below). 3555 if (MDNode *LID = OrigLoop->getLoopID()) 3556 Lp->setLoopID(LID); 3557 3558 LoopVectorizeHints Hints(Lp, true, *ORE); 3559 Hints.setAlreadyVectorized(); 3560 } 3561 3562 // Fix up external users of the induction variable. At this point, we are 3563 // in LCSSA form, with all external PHIs that use the IV having one input value, 3564 // coming from the remainder loop. We need those PHIs to also have a correct 3565 // value for the IV when arriving directly from the middle block. 3566 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3567 const InductionDescriptor &II, 3568 Value *CountRoundDown, Value *EndValue, 3569 BasicBlock *MiddleBlock) { 3570 // There are two kinds of external IV usages - those that use the value 3571 // computed in the last iteration (the PHI) and those that use the penultimate 3572 // value (the value that feeds into the phi from the loop latch). 3573 // We allow both, but they, obviously, have different values. 3574 3575 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3576 3577 DenseMap<Value *, Value *> MissingVals; 3578 3579 // An external user of the last iteration's value should see the value that 3580 // the remainder loop uses to initialize its own IV. 3581 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3582 for (User *U : PostInc->users()) { 3583 Instruction *UI = cast<Instruction>(U); 3584 if (!OrigLoop->contains(UI)) { 3585 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3586 MissingVals[UI] = EndValue; 3587 } 3588 } 3589 3590 // An external user of the penultimate value need to see EndValue - Step. 3591 // The simplest way to get this is to recompute it from the constituent SCEVs, 3592 // that is Start + (Step * (CRD - 1)). 3593 for (User *U : OrigPhi->users()) { 3594 auto *UI = cast<Instruction>(U); 3595 if (!OrigLoop->contains(UI)) { 3596 const DataLayout &DL = 3597 OrigLoop->getHeader()->getModule()->getDataLayout(); 3598 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3599 3600 IRBuilder<> B(MiddleBlock->getTerminator()); 3601 Value *CountMinusOne = B.CreateSub( 3602 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3603 Value *CMO = 3604 !II.getStep()->getType()->isIntegerTy() 3605 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3606 II.getStep()->getType()) 3607 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3608 CMO->setName("cast.cmo"); 3609 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3610 Escape->setName("ind.escape"); 3611 MissingVals[UI] = Escape; 3612 } 3613 } 3614 3615 for (auto &I : MissingVals) { 3616 PHINode *PHI = cast<PHINode>(I.first); 3617 // One corner case we have to handle is two IVs "chasing" each-other, 3618 // that is %IV2 = phi [...], [ %IV1, %latch ] 3619 // In this case, if IV1 has an external use, we need to avoid adding both 3620 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3621 // don't already have an incoming value for the middle block. 3622 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3623 PHI->addIncoming(I.second, MiddleBlock); 3624 } 3625 } 3626 3627 namespace { 3628 struct CSEDenseMapInfo { 3629 static bool canHandle(const Instruction *I) { 3630 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3631 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3632 } 3633 static inline Instruction *getEmptyKey() { 3634 return DenseMapInfo<Instruction *>::getEmptyKey(); 3635 } 3636 static inline Instruction *getTombstoneKey() { 3637 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3638 } 3639 static unsigned getHashValue(const Instruction *I) { 3640 assert(canHandle(I) && "Unknown instruction!"); 3641 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3642 I->value_op_end())); 3643 } 3644 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3645 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3646 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3647 return LHS == RHS; 3648 return LHS->isIdenticalTo(RHS); 3649 } 3650 }; 3651 } 3652 3653 ///\brief Perform cse of induction variable instructions. 3654 static void cse(BasicBlock *BB) { 3655 // Perform simple cse. 3656 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3657 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3658 Instruction *In = &*I++; 3659 3660 if (!CSEDenseMapInfo::canHandle(In)) 3661 continue; 3662 3663 // Check if we can replace this instruction with any of the 3664 // visited instructions. 3665 if (Instruction *V = CSEMap.lookup(In)) { 3666 In->replaceAllUsesWith(V); 3667 In->eraseFromParent(); 3668 continue; 3669 } 3670 3671 CSEMap[In] = In; 3672 } 3673 } 3674 3675 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3676 /// convenience wrapper for the type-based getScalarizationOverhead API. 3677 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3678 const TargetTransformInfo &TTI) { 3679 if (VF == 1) 3680 return 0; 3681 3682 unsigned Cost = 0; 3683 Type *RetTy = ToVectorTy(I->getType(), VF); 3684 if (!RetTy->isVoidTy() && 3685 (!isa<LoadInst>(I) || 3686 !TTI.supportsEfficientVectorElementLoadStore())) 3687 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3688 3689 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3690 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3691 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3692 } 3693 else if (!isa<StoreInst>(I) || 3694 !TTI.supportsEfficientVectorElementLoadStore()) { 3695 SmallVector<const Value *, 4> Operands(I->operand_values()); 3696 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3697 } 3698 3699 return Cost; 3700 } 3701 3702 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3703 // Return the cost of the instruction, including scalarization overhead if it's 3704 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3705 // i.e. either vector version isn't available, or is too expensive. 3706 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3707 const TargetTransformInfo &TTI, 3708 const TargetLibraryInfo *TLI, 3709 bool &NeedToScalarize) { 3710 Function *F = CI->getCalledFunction(); 3711 StringRef FnName = CI->getCalledFunction()->getName(); 3712 Type *ScalarRetTy = CI->getType(); 3713 SmallVector<Type *, 4> Tys, ScalarTys; 3714 for (auto &ArgOp : CI->arg_operands()) 3715 ScalarTys.push_back(ArgOp->getType()); 3716 3717 // Estimate cost of scalarized vector call. The source operands are assumed 3718 // to be vectors, so we need to extract individual elements from there, 3719 // execute VF scalar calls, and then gather the result into the vector return 3720 // value. 3721 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3722 if (VF == 1) 3723 return ScalarCallCost; 3724 3725 // Compute corresponding vector type for return value and arguments. 3726 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3727 for (Type *ScalarTy : ScalarTys) 3728 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3729 3730 // Compute costs of unpacking argument values for the scalar calls and 3731 // packing the return values to a vector. 3732 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3733 3734 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3735 3736 // If we can't emit a vector call for this function, then the currently found 3737 // cost is the cost we need to return. 3738 NeedToScalarize = true; 3739 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3740 return Cost; 3741 3742 // If the corresponding vector cost is cheaper, return its cost. 3743 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3744 if (VectorCallCost < Cost) { 3745 NeedToScalarize = false; 3746 return VectorCallCost; 3747 } 3748 return Cost; 3749 } 3750 3751 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3752 // factor VF. Return the cost of the instruction, including scalarization 3753 // overhead if it's needed. 3754 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3755 const TargetTransformInfo &TTI, 3756 const TargetLibraryInfo *TLI) { 3757 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3758 assert(ID && "Expected intrinsic call!"); 3759 3760 FastMathFlags FMF; 3761 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3762 FMF = FPMO->getFastMathFlags(); 3763 3764 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3765 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3766 } 3767 3768 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3769 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3770 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3771 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3772 } 3773 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3774 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3775 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3776 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3777 } 3778 3779 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3780 // For every instruction `I` in MinBWs, truncate the operands, create a 3781 // truncated version of `I` and reextend its result. InstCombine runs 3782 // later and will remove any ext/trunc pairs. 3783 // 3784 SmallPtrSet<Value *, 4> Erased; 3785 for (const auto &KV : Cost->getMinimalBitwidths()) { 3786 // If the value wasn't vectorized, we must maintain the original scalar 3787 // type. The absence of the value from VectorLoopValueMap indicates that it 3788 // wasn't vectorized. 3789 if (!VectorLoopValueMap.hasVector(KV.first)) 3790 continue; 3791 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3792 for (Value *&I : Parts) { 3793 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3794 continue; 3795 Type *OriginalTy = I->getType(); 3796 Type *ScalarTruncatedTy = 3797 IntegerType::get(OriginalTy->getContext(), KV.second); 3798 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3799 OriginalTy->getVectorNumElements()); 3800 if (TruncatedTy == OriginalTy) 3801 continue; 3802 3803 IRBuilder<> B(cast<Instruction>(I)); 3804 auto ShrinkOperand = [&](Value *V) -> Value * { 3805 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3806 if (ZI->getSrcTy() == TruncatedTy) 3807 return ZI->getOperand(0); 3808 return B.CreateZExtOrTrunc(V, TruncatedTy); 3809 }; 3810 3811 // The actual instruction modification depends on the instruction type, 3812 // unfortunately. 3813 Value *NewI = nullptr; 3814 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3815 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3816 ShrinkOperand(BO->getOperand(1))); 3817 3818 // Any wrapping introduced by shrinking this operation shouldn't be 3819 // considered undefined behavior. So, we can't unconditionally copy 3820 // arithmetic wrapping flags to NewI. 3821 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3822 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3823 NewI = 3824 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3825 ShrinkOperand(CI->getOperand(1))); 3826 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3827 NewI = B.CreateSelect(SI->getCondition(), 3828 ShrinkOperand(SI->getTrueValue()), 3829 ShrinkOperand(SI->getFalseValue())); 3830 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3831 switch (CI->getOpcode()) { 3832 default: 3833 llvm_unreachable("Unhandled cast!"); 3834 case Instruction::Trunc: 3835 NewI = ShrinkOperand(CI->getOperand(0)); 3836 break; 3837 case Instruction::SExt: 3838 NewI = B.CreateSExtOrTrunc( 3839 CI->getOperand(0), 3840 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3841 break; 3842 case Instruction::ZExt: 3843 NewI = B.CreateZExtOrTrunc( 3844 CI->getOperand(0), 3845 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3846 break; 3847 } 3848 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3849 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3850 auto *O0 = B.CreateZExtOrTrunc( 3851 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3852 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3853 auto *O1 = B.CreateZExtOrTrunc( 3854 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3855 3856 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3857 } else if (isa<LoadInst>(I)) { 3858 // Don't do anything with the operands, just extend the result. 3859 continue; 3860 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3861 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3862 auto *O0 = B.CreateZExtOrTrunc( 3863 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3864 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3865 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3866 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3867 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3868 auto *O0 = B.CreateZExtOrTrunc( 3869 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3870 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3871 } else { 3872 llvm_unreachable("Unhandled instruction type!"); 3873 } 3874 3875 // Lastly, extend the result. 3876 NewI->takeName(cast<Instruction>(I)); 3877 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3878 I->replaceAllUsesWith(Res); 3879 cast<Instruction>(I)->eraseFromParent(); 3880 Erased.insert(I); 3881 I = Res; 3882 } 3883 } 3884 3885 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3886 for (const auto &KV : Cost->getMinimalBitwidths()) { 3887 // If the value wasn't vectorized, we must maintain the original scalar 3888 // type. The absence of the value from VectorLoopValueMap indicates that it 3889 // wasn't vectorized. 3890 if (!VectorLoopValueMap.hasVector(KV.first)) 3891 continue; 3892 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3893 for (Value *&I : Parts) { 3894 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3895 if (Inst && Inst->use_empty()) { 3896 Value *NewI = Inst->getOperand(0); 3897 Inst->eraseFromParent(); 3898 I = NewI; 3899 } 3900 } 3901 } 3902 } 3903 3904 void InnerLoopVectorizer::fixVectorizedLoop() { 3905 // Insert truncates and extends for any truncated instructions as hints to 3906 // InstCombine. 3907 if (VF > 1) 3908 truncateToMinimalBitwidths(); 3909 3910 // At this point every instruction in the original loop is widened to a 3911 // vector form. Now we need to fix the recurrences in the loop. These PHI 3912 // nodes are currently empty because we did not want to introduce cycles. 3913 // This is the second stage of vectorizing recurrences. 3914 fixCrossIterationPHIs(); 3915 3916 // Update the dominator tree. 3917 // 3918 // FIXME: After creating the structure of the new loop, the dominator tree is 3919 // no longer up-to-date, and it remains that way until we update it 3920 // here. An out-of-date dominator tree is problematic for SCEV, 3921 // because SCEVExpander uses it to guide code generation. The 3922 // vectorizer use SCEVExpanders in several places. Instead, we should 3923 // keep the dominator tree up-to-date as we go. 3924 updateAnalysis(); 3925 3926 // Fix-up external users of the induction variables. 3927 for (auto &Entry : *Legal->getInductionVars()) 3928 fixupIVUsers(Entry.first, Entry.second, 3929 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3930 IVEndValues[Entry.first], LoopMiddleBlock); 3931 3932 fixLCSSAPHIs(); 3933 predicateInstructions(); 3934 3935 // Remove redundant induction instructions. 3936 cse(LoopVectorBody); 3937 } 3938 3939 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3940 // In order to support recurrences we need to be able to vectorize Phi nodes. 3941 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3942 // stage #2: We now need to fix the recurrences by adding incoming edges to 3943 // the currently empty PHI nodes. At this point every instruction in the 3944 // original loop is widened to a vector form so we can use them to construct 3945 // the incoming edges. 3946 for (Instruction &I : *OrigLoop->getHeader()) { 3947 PHINode *Phi = dyn_cast<PHINode>(&I); 3948 if (!Phi) 3949 break; 3950 // Handle first-order recurrences and reductions that need to be fixed. 3951 if (Legal->isFirstOrderRecurrence(Phi)) 3952 fixFirstOrderRecurrence(Phi); 3953 else if (Legal->isReductionVariable(Phi)) 3954 fixReduction(Phi); 3955 } 3956 } 3957 3958 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3959 3960 // This is the second phase of vectorizing first-order recurrences. An 3961 // overview of the transformation is described below. Suppose we have the 3962 // following loop. 3963 // 3964 // for (int i = 0; i < n; ++i) 3965 // b[i] = a[i] - a[i - 1]; 3966 // 3967 // There is a first-order recurrence on "a". For this loop, the shorthand 3968 // scalar IR looks like: 3969 // 3970 // scalar.ph: 3971 // s_init = a[-1] 3972 // br scalar.body 3973 // 3974 // scalar.body: 3975 // i = phi [0, scalar.ph], [i+1, scalar.body] 3976 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3977 // s2 = a[i] 3978 // b[i] = s2 - s1 3979 // br cond, scalar.body, ... 3980 // 3981 // In this example, s1 is a recurrence because it's value depends on the 3982 // previous iteration. In the first phase of vectorization, we created a 3983 // temporary value for s1. We now complete the vectorization and produce the 3984 // shorthand vector IR shown below (for VF = 4, UF = 1). 3985 // 3986 // vector.ph: 3987 // v_init = vector(..., ..., ..., a[-1]) 3988 // br vector.body 3989 // 3990 // vector.body 3991 // i = phi [0, vector.ph], [i+4, vector.body] 3992 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3993 // v2 = a[i, i+1, i+2, i+3]; 3994 // v3 = vector(v1(3), v2(0, 1, 2)) 3995 // b[i, i+1, i+2, i+3] = v2 - v3 3996 // br cond, vector.body, middle.block 3997 // 3998 // middle.block: 3999 // x = v2(3) 4000 // br scalar.ph 4001 // 4002 // scalar.ph: 4003 // s_init = phi [x, middle.block], [a[-1], otherwise] 4004 // br scalar.body 4005 // 4006 // After execution completes the vector loop, we extract the next value of 4007 // the recurrence (x) to use as the initial value in the scalar loop. 4008 4009 // Get the original loop preheader and single loop latch. 4010 auto *Preheader = OrigLoop->getLoopPreheader(); 4011 auto *Latch = OrigLoop->getLoopLatch(); 4012 4013 // Get the initial and previous values of the scalar recurrence. 4014 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4015 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4016 4017 // Create a vector from the initial value. 4018 auto *VectorInit = ScalarInit; 4019 if (VF > 1) { 4020 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4021 VectorInit = Builder.CreateInsertElement( 4022 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4023 Builder.getInt32(VF - 1), "vector.recur.init"); 4024 } 4025 4026 // We constructed a temporary phi node in the first phase of vectorization. 4027 // This phi node will eventually be deleted. 4028 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4029 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4030 4031 // Create a phi node for the new recurrence. The current value will either be 4032 // the initial value inserted into a vector or loop-varying vector value. 4033 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4034 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4035 4036 // Get the vectorized previous value. 4037 auto &PreviousParts = getVectorValue(Previous); 4038 4039 // Set the insertion point after the previous value if it is an instruction. 4040 // Note that the previous value may have been constant-folded so it is not 4041 // guaranteed to be an instruction in the vector loop. Also, if the previous 4042 // value is a phi node, we should insert after all the phi nodes to avoid 4043 // breaking basic block verification. 4044 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1]) || 4045 isa<PHINode>(PreviousParts[UF - 1])) 4046 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4047 else 4048 Builder.SetInsertPoint( 4049 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4050 4051 // We will construct a vector for the recurrence by combining the values for 4052 // the current and previous iterations. This is the required shuffle mask. 4053 SmallVector<Constant *, 8> ShuffleMask(VF); 4054 ShuffleMask[0] = Builder.getInt32(VF - 1); 4055 for (unsigned I = 1; I < VF; ++I) 4056 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4057 4058 // The vector from which to take the initial value for the current iteration 4059 // (actual or unrolled). Initially, this is the vector phi node. 4060 Value *Incoming = VecPhi; 4061 4062 // Shuffle the current and previous vector and update the vector parts. 4063 for (unsigned Part = 0; Part < UF; ++Part) { 4064 auto *Shuffle = 4065 VF > 1 4066 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4067 ConstantVector::get(ShuffleMask)) 4068 : Incoming; 4069 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4070 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4071 PhiParts[Part] = Shuffle; 4072 Incoming = PreviousParts[Part]; 4073 } 4074 4075 // Fix the latch value of the new recurrence in the vector loop. 4076 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4077 4078 // Extract the last vector element in the middle block. This will be the 4079 // initial value for the recurrence when jumping to the scalar loop. 4080 auto *ExtractForScalar = Incoming; 4081 if (VF > 1) { 4082 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4083 ExtractForScalar = Builder.CreateExtractElement( 4084 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4085 } 4086 // Extract the second last element in the middle block if the 4087 // Phi is used outside the loop. We need to extract the phi itself 4088 // and not the last element (the phi update in the current iteration). This 4089 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4090 // when the scalar loop is not run at all. 4091 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4092 if (VF > 1) 4093 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4094 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4095 // When loop is unrolled without vectorizing, initialize 4096 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4097 // `Incoming`. This is analogous to the vectorized case above: extracting the 4098 // second last element when VF > 1. 4099 else if (UF > 1) 4100 ExtractForPhiUsedOutsideLoop = PreviousParts[UF - 2]; 4101 4102 // Fix the initial value of the original recurrence in the scalar loop. 4103 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4104 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4105 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4106 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4107 Start->addIncoming(Incoming, BB); 4108 } 4109 4110 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4111 Phi->setName("scalar.recur"); 4112 4113 // Finally, fix users of the recurrence outside the loop. The users will need 4114 // either the last value of the scalar recurrence or the last value of the 4115 // vector recurrence we extracted in the middle block. Since the loop is in 4116 // LCSSA form, we just need to find the phi node for the original scalar 4117 // recurrence in the exit block, and then add an edge for the middle block. 4118 for (auto &I : *LoopExitBlock) { 4119 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4120 if (!LCSSAPhi) 4121 break; 4122 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4123 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4124 break; 4125 } 4126 } 4127 } 4128 4129 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4130 Constant *Zero = Builder.getInt32(0); 4131 4132 // Get it's reduction variable descriptor. 4133 assert(Legal->isReductionVariable(Phi) && 4134 "Unable to find the reduction variable"); 4135 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4136 4137 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4138 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4139 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4140 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4141 RdxDesc.getMinMaxRecurrenceKind(); 4142 setDebugLocFromInst(Builder, ReductionStartValue); 4143 4144 // We need to generate a reduction vector from the incoming scalar. 4145 // To do so, we need to generate the 'identity' vector and override 4146 // one of the elements with the incoming scalar reduction. We need 4147 // to do it in the vector-loop preheader. 4148 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4149 4150 // This is the vector-clone of the value that leaves the loop. 4151 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 4152 Type *VecTy = VectorExit[0]->getType(); 4153 4154 // Find the reduction identity variable. Zero for addition, or, xor, 4155 // one for multiplication, -1 for And. 4156 Value *Identity; 4157 Value *VectorStart; 4158 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4159 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4160 // MinMax reduction have the start value as their identify. 4161 if (VF == 1) { 4162 VectorStart = Identity = ReductionStartValue; 4163 } else { 4164 VectorStart = Identity = 4165 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4166 } 4167 } else { 4168 // Handle other reduction kinds: 4169 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4170 RK, VecTy->getScalarType()); 4171 if (VF == 1) { 4172 Identity = Iden; 4173 // This vector is the Identity vector where the first element is the 4174 // incoming scalar reduction. 4175 VectorStart = ReductionStartValue; 4176 } else { 4177 Identity = ConstantVector::getSplat(VF, Iden); 4178 4179 // This vector is the Identity vector where the first element is the 4180 // incoming scalar reduction. 4181 VectorStart = 4182 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4183 } 4184 } 4185 4186 // Fix the vector-loop phi. 4187 4188 // Reductions do not have to start at zero. They can start with 4189 // any loop invariant values. 4190 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4191 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4192 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4193 const VectorParts &Val = getVectorValue(LoopVal); 4194 for (unsigned part = 0; part < UF; ++part) { 4195 // Make sure to add the reduction stat value only to the 4196 // first unroll part. 4197 Value *StartVal = (part == 0) ? VectorStart : Identity; 4198 cast<PHINode>(VecRdxPhi[part]) 4199 ->addIncoming(StartVal, LoopVectorPreHeader); 4200 cast<PHINode>(VecRdxPhi[part]) 4201 ->addIncoming(Val[part], LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4202 } 4203 4204 // Before each round, move the insertion point right between 4205 // the PHIs and the values we are going to write. 4206 // This allows us to write both PHINodes and the extractelement 4207 // instructions. 4208 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4209 4210 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4211 setDebugLocFromInst(Builder, LoopExitInst); 4212 4213 // If the vector reduction can be performed in a smaller type, we truncate 4214 // then extend the loop exit value to enable InstCombine to evaluate the 4215 // entire expression in the smaller type. 4216 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4217 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4218 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4219 for (unsigned part = 0; part < UF; ++part) { 4220 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4221 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4222 : Builder.CreateZExt(Trunc, VecTy); 4223 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4224 UI != RdxParts[part]->user_end();) 4225 if (*UI != Trunc) { 4226 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4227 RdxParts[part] = Extnd; 4228 } else { 4229 ++UI; 4230 } 4231 } 4232 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4233 for (unsigned part = 0; part < UF; ++part) 4234 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4235 } 4236 4237 // Reduce all of the unrolled parts into a single vector. 4238 Value *ReducedPartRdx = RdxParts[0]; 4239 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4240 setDebugLocFromInst(Builder, ReducedPartRdx); 4241 for (unsigned part = 1; part < UF; ++part) { 4242 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4243 // Floating point operations had to be 'fast' to enable the reduction. 4244 ReducedPartRdx = addFastMathFlag( 4245 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4246 ReducedPartRdx, "bin.rdx")); 4247 else 4248 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4249 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4250 } 4251 4252 if (VF > 1) { 4253 bool NoNaN = Legal->hasFunNoNaNAttr(); 4254 ReducedPartRdx = 4255 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4256 // If the reduction can be performed in a smaller type, we need to extend 4257 // the reduction to the wider type before we branch to the original loop. 4258 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4259 ReducedPartRdx = 4260 RdxDesc.isSigned() 4261 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4262 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4263 } 4264 4265 // Create a phi node that merges control-flow from the backedge-taken check 4266 // block and the middle block. 4267 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4268 LoopScalarPreHeader->getTerminator()); 4269 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4270 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4271 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4272 4273 // Now, we need to fix the users of the reduction variable 4274 // inside and outside of the scalar remainder loop. 4275 // We know that the loop is in LCSSA form. We need to update the 4276 // PHI nodes in the exit blocks. 4277 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4278 LEE = LoopExitBlock->end(); 4279 LEI != LEE; ++LEI) { 4280 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4281 if (!LCSSAPhi) 4282 break; 4283 4284 // All PHINodes need to have a single entry edge, or two if 4285 // we already fixed them. 4286 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4287 4288 // We found a reduction value exit-PHI. Update it with the 4289 // incoming bypass edge. 4290 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4291 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4292 } // end of the LCSSA phi scan. 4293 4294 // Fix the scalar loop reduction variable with the incoming reduction sum 4295 // from the vector body and from the backedge value. 4296 int IncomingEdgeBlockIdx = 4297 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4298 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4299 // Pick the other block. 4300 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4301 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4302 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4303 } 4304 4305 void InnerLoopVectorizer::fixLCSSAPHIs() { 4306 for (Instruction &LEI : *LoopExitBlock) { 4307 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4308 if (!LCSSAPhi) 4309 break; 4310 if (LCSSAPhi->getNumIncomingValues() == 1) { 4311 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4312 "Incoming value isn't loop invariant"); 4313 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4314 } 4315 } 4316 } 4317 4318 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4319 4320 // The basic block and loop containing the predicated instruction. 4321 auto *PredBB = PredInst->getParent(); 4322 auto *VectorLoop = LI->getLoopFor(PredBB); 4323 4324 // Initialize a worklist with the operands of the predicated instruction. 4325 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4326 4327 // Holds instructions that we need to analyze again. An instruction may be 4328 // reanalyzed if we don't yet know if we can sink it or not. 4329 SmallVector<Instruction *, 8> InstsToReanalyze; 4330 4331 // Returns true if a given use occurs in the predicated block. Phi nodes use 4332 // their operands in their corresponding predecessor blocks. 4333 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4334 auto *I = cast<Instruction>(U.getUser()); 4335 BasicBlock *BB = I->getParent(); 4336 if (auto *Phi = dyn_cast<PHINode>(I)) 4337 BB = Phi->getIncomingBlock( 4338 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4339 return BB == PredBB; 4340 }; 4341 4342 // Iteratively sink the scalarized operands of the predicated instruction 4343 // into the block we created for it. When an instruction is sunk, it's 4344 // operands are then added to the worklist. The algorithm ends after one pass 4345 // through the worklist doesn't sink a single instruction. 4346 bool Changed; 4347 do { 4348 4349 // Add the instructions that need to be reanalyzed to the worklist, and 4350 // reset the changed indicator. 4351 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4352 InstsToReanalyze.clear(); 4353 Changed = false; 4354 4355 while (!Worklist.empty()) { 4356 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4357 4358 // We can't sink an instruction if it is a phi node, is already in the 4359 // predicated block, is not in the loop, or may have side effects. 4360 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4361 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4362 continue; 4363 4364 // It's legal to sink the instruction if all its uses occur in the 4365 // predicated block. Otherwise, there's nothing to do yet, and we may 4366 // need to reanalyze the instruction. 4367 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4368 InstsToReanalyze.push_back(I); 4369 continue; 4370 } 4371 4372 // Move the instruction to the beginning of the predicated block, and add 4373 // it's operands to the worklist. 4374 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4375 Worklist.insert(I->op_begin(), I->op_end()); 4376 4377 // The sinking may have enabled other instructions to be sunk, so we will 4378 // need to iterate. 4379 Changed = true; 4380 } 4381 } while (Changed); 4382 } 4383 4384 void InnerLoopVectorizer::predicateInstructions() { 4385 4386 // For each instruction I marked for predication on value C, split I into its 4387 // own basic block to form an if-then construct over C. Since I may be fed by 4388 // an extractelement instruction or other scalar operand, we try to 4389 // iteratively sink its scalar operands into the predicated block. If I feeds 4390 // an insertelement instruction, we try to move this instruction into the 4391 // predicated block as well. For non-void types, a phi node will be created 4392 // for the resulting value (either vector or scalar). 4393 // 4394 // So for some predicated instruction, e.g. the conditional sdiv in: 4395 // 4396 // for.body: 4397 // ... 4398 // %add = add nsw i32 %mul, %0 4399 // %cmp5 = icmp sgt i32 %2, 7 4400 // br i1 %cmp5, label %if.then, label %if.end 4401 // 4402 // if.then: 4403 // %div = sdiv i32 %0, %1 4404 // br label %if.end 4405 // 4406 // if.end: 4407 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4408 // 4409 // the sdiv at this point is scalarized and if-converted using a select. 4410 // The inactive elements in the vector are not used, but the predicated 4411 // instruction is still executed for all vector elements, essentially: 4412 // 4413 // vector.body: 4414 // ... 4415 // %17 = add nsw <2 x i32> %16, %wide.load 4416 // %29 = extractelement <2 x i32> %wide.load, i32 0 4417 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4418 // %31 = sdiv i32 %29, %30 4419 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4420 // %35 = extractelement <2 x i32> %wide.load, i32 1 4421 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4422 // %37 = sdiv i32 %35, %36 4423 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4424 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4425 // 4426 // Predication will now re-introduce the original control flow to avoid false 4427 // side-effects by the sdiv instructions on the inactive elements, yielding 4428 // (after cleanup): 4429 // 4430 // vector.body: 4431 // ... 4432 // %5 = add nsw <2 x i32> %4, %wide.load 4433 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4434 // %9 = extractelement <2 x i1> %8, i32 0 4435 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4436 // 4437 // pred.sdiv.if: 4438 // %10 = extractelement <2 x i32> %wide.load, i32 0 4439 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4440 // %12 = sdiv i32 %10, %11 4441 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4442 // br label %pred.sdiv.continue 4443 // 4444 // pred.sdiv.continue: 4445 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4446 // %15 = extractelement <2 x i1> %8, i32 1 4447 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4448 // 4449 // pred.sdiv.if54: 4450 // %16 = extractelement <2 x i32> %wide.load, i32 1 4451 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4452 // %18 = sdiv i32 %16, %17 4453 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4454 // br label %pred.sdiv.continue55 4455 // 4456 // pred.sdiv.continue55: 4457 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4458 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4459 4460 for (auto KV : PredicatedInstructions) { 4461 BasicBlock::iterator I(KV.first); 4462 BasicBlock *Head = I->getParent(); 4463 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4464 /*BranchWeights=*/nullptr, DT, LI); 4465 I->moveBefore(T); 4466 sinkScalarOperands(&*I); 4467 4468 BasicBlock *PredicatedBlock = I->getParent(); 4469 Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName(); 4470 PredicatedBlock->setName(BBNamePrefix + ".if"); 4471 PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue"); 4472 4473 // If the instruction is non-void create a Phi node at reconvergence point. 4474 if (!I->getType()->isVoidTy()) { 4475 Value *IncomingTrue = nullptr; 4476 Value *IncomingFalse = nullptr; 4477 4478 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4479 // If the predicated instruction is feeding an insert-element, move it 4480 // into the Then block; Phi node will be created for the vector. 4481 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4482 IEI->moveBefore(T); 4483 IncomingTrue = IEI; // the new vector with the inserted element. 4484 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4485 } else { 4486 // Phi node will be created for the scalar predicated instruction. 4487 IncomingTrue = &*I; 4488 IncomingFalse = UndefValue::get(I->getType()); 4489 } 4490 4491 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4492 assert(PostDom && "Then block has multiple successors"); 4493 PHINode *Phi = 4494 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4495 IncomingTrue->replaceAllUsesWith(Phi); 4496 Phi->addIncoming(IncomingFalse, Head); 4497 Phi->addIncoming(IncomingTrue, I->getParent()); 4498 } 4499 } 4500 4501 DEBUG(DT->verifyDomTree()); 4502 } 4503 4504 InnerLoopVectorizer::VectorParts 4505 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4506 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4507 4508 // Look for cached value. 4509 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4510 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4511 if (ECEntryIt != EdgeMaskCache.end()) 4512 return ECEntryIt->second; 4513 4514 VectorParts SrcMask = createBlockInMask(Src); 4515 4516 // The terminator has to be a branch inst! 4517 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4518 assert(BI && "Unexpected terminator found"); 4519 4520 if (BI->isConditional()) { 4521 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4522 4523 if (BI->getSuccessor(0) != Dst) 4524 for (unsigned part = 0; part < UF; ++part) 4525 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4526 4527 for (unsigned part = 0; part < UF; ++part) 4528 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4529 4530 EdgeMaskCache[Edge] = EdgeMask; 4531 return EdgeMask; 4532 } 4533 4534 EdgeMaskCache[Edge] = SrcMask; 4535 return SrcMask; 4536 } 4537 4538 InnerLoopVectorizer::VectorParts 4539 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4540 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4541 4542 // Look for cached value. 4543 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4544 if (BCEntryIt != BlockMaskCache.end()) 4545 return BCEntryIt->second; 4546 4547 // Loop incoming mask is all-one. 4548 if (OrigLoop->getHeader() == BB) { 4549 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4550 const VectorParts &BlockMask = getVectorValue(C); 4551 BlockMaskCache[BB] = BlockMask; 4552 return BlockMask; 4553 } 4554 4555 // This is the block mask. We OR all incoming edges, and with zero. 4556 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4557 VectorParts BlockMask = getVectorValue(Zero); 4558 4559 // For each pred: 4560 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4561 VectorParts EM = createEdgeMask(*it, BB); 4562 for (unsigned part = 0; part < UF; ++part) 4563 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4564 } 4565 4566 BlockMaskCache[BB] = BlockMask; 4567 return BlockMask; 4568 } 4569 4570 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4571 unsigned VF) { 4572 PHINode *P = cast<PHINode>(PN); 4573 // In order to support recurrences we need to be able to vectorize Phi nodes. 4574 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4575 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4576 // this value when we vectorize all of the instructions that use the PHI. 4577 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4578 VectorParts Entry(UF); 4579 for (unsigned part = 0; part < UF; ++part) { 4580 // This is phase one of vectorizing PHIs. 4581 Type *VecTy = 4582 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4583 Entry[part] = PHINode::Create( 4584 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4585 } 4586 VectorLoopValueMap.initVector(P, Entry); 4587 return; 4588 } 4589 4590 setDebugLocFromInst(Builder, P); 4591 // Check for PHI nodes that are lowered to vector selects. 4592 if (P->getParent() != OrigLoop->getHeader()) { 4593 // We know that all PHIs in non-header blocks are converted into 4594 // selects, so we don't have to worry about the insertion order and we 4595 // can just use the builder. 4596 // At this point we generate the predication tree. There may be 4597 // duplications since this is a simple recursive scan, but future 4598 // optimizations will clean it up. 4599 4600 unsigned NumIncoming = P->getNumIncomingValues(); 4601 4602 // Generate a sequence of selects of the form: 4603 // SELECT(Mask3, In3, 4604 // SELECT(Mask2, In2, 4605 // ( ...))) 4606 VectorParts Entry(UF); 4607 for (unsigned In = 0; In < NumIncoming; In++) { 4608 VectorParts Cond = 4609 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4610 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4611 4612 for (unsigned part = 0; part < UF; ++part) { 4613 // We might have single edge PHIs (blocks) - use an identity 4614 // 'select' for the first PHI operand. 4615 if (In == 0) 4616 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4617 else 4618 // Select between the current value and the previous incoming edge 4619 // based on the incoming mask. 4620 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4621 "predphi"); 4622 } 4623 } 4624 VectorLoopValueMap.initVector(P, Entry); 4625 return; 4626 } 4627 4628 // This PHINode must be an induction variable. 4629 // Make sure that we know about it. 4630 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4631 4632 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4633 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4634 4635 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4636 // which can be found from the original scalar operations. 4637 switch (II.getKind()) { 4638 case InductionDescriptor::IK_NoInduction: 4639 llvm_unreachable("Unknown induction"); 4640 case InductionDescriptor::IK_IntInduction: 4641 case InductionDescriptor::IK_FpInduction: 4642 return widenIntOrFpInduction(P); 4643 case InductionDescriptor::IK_PtrInduction: { 4644 // Handle the pointer induction variable case. 4645 assert(P->getType()->isPointerTy() && "Unexpected type."); 4646 // This is the normalized GEP that starts counting at zero. 4647 Value *PtrInd = Induction; 4648 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4649 // Determine the number of scalars we need to generate for each unroll 4650 // iteration. If the instruction is uniform, we only need to generate the 4651 // first lane. Otherwise, we generate all VF values. 4652 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4653 // These are the scalar results. Notice that we don't generate vector GEPs 4654 // because scalar GEPs result in better code. 4655 ScalarParts Entry(UF); 4656 for (unsigned Part = 0; Part < UF; ++Part) { 4657 Entry[Part].resize(VF); 4658 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4659 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4660 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4661 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4662 SclrGep->setName("next.gep"); 4663 Entry[Part][Lane] = SclrGep; 4664 } 4665 } 4666 VectorLoopValueMap.initScalar(P, Entry); 4667 return; 4668 } 4669 } 4670 } 4671 4672 /// A helper function for checking whether an integer division-related 4673 /// instruction may divide by zero (in which case it must be predicated if 4674 /// executed conditionally in the scalar code). 4675 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4676 /// Non-zero divisors that are non compile-time constants will not be 4677 /// converted into multiplication, so we will still end up scalarizing 4678 /// the division, but can do so w/o predication. 4679 static bool mayDivideByZero(Instruction &I) { 4680 assert((I.getOpcode() == Instruction::UDiv || 4681 I.getOpcode() == Instruction::SDiv || 4682 I.getOpcode() == Instruction::URem || 4683 I.getOpcode() == Instruction::SRem) && 4684 "Unexpected instruction"); 4685 Value *Divisor = I.getOperand(1); 4686 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4687 return !CInt || CInt->isZero(); 4688 } 4689 4690 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4691 // Scalarize instructions that should remain scalar after vectorization. 4692 if (VF > 1 && 4693 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4694 shouldScalarizeInstruction(&I)) { 4695 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4696 return; 4697 } 4698 4699 switch (I.getOpcode()) { 4700 case Instruction::Br: 4701 // Nothing to do for PHIs and BR, since we already took care of the 4702 // loop control flow instructions. 4703 break; 4704 case Instruction::PHI: { 4705 // Vectorize PHINodes. 4706 widenPHIInstruction(&I, UF, VF); 4707 break; 4708 } // End of PHI. 4709 case Instruction::GetElementPtr: { 4710 // Construct a vector GEP by widening the operands of the scalar GEP as 4711 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4712 // results in a vector of pointers when at least one operand of the GEP 4713 // is vector-typed. Thus, to keep the representation compact, we only use 4714 // vector-typed operands for loop-varying values. 4715 auto *GEP = cast<GetElementPtrInst>(&I); 4716 VectorParts Entry(UF); 4717 4718 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4719 // If we are vectorizing, but the GEP has only loop-invariant operands, 4720 // the GEP we build (by only using vector-typed operands for 4721 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4722 // produce a vector of pointers, we need to either arbitrarily pick an 4723 // operand to broadcast, or broadcast a clone of the original GEP. 4724 // Here, we broadcast a clone of the original. 4725 // 4726 // TODO: If at some point we decide to scalarize instructions having 4727 // loop-invariant operands, this special case will no longer be 4728 // required. We would add the scalarization decision to 4729 // collectLoopScalars() and teach getVectorValue() to broadcast 4730 // the lane-zero scalar value. 4731 auto *Clone = Builder.Insert(GEP->clone()); 4732 for (unsigned Part = 0; Part < UF; ++Part) 4733 Entry[Part] = Builder.CreateVectorSplat(VF, Clone); 4734 } else { 4735 // If the GEP has at least one loop-varying operand, we are sure to 4736 // produce a vector of pointers. But if we are only unrolling, we want 4737 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4738 // produce with the code below will be scalar (if VF == 1) or vector 4739 // (otherwise). Note that for the unroll-only case, we still maintain 4740 // values in the vector mapping with initVector, as we do for other 4741 // instructions. 4742 for (unsigned Part = 0; Part < UF; ++Part) { 4743 4744 // The pointer operand of the new GEP. If it's loop-invariant, we 4745 // won't broadcast it. 4746 auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4747 ? GEP->getPointerOperand() 4748 : getVectorValue(GEP->getPointerOperand())[Part]; 4749 4750 // Collect all the indices for the new GEP. If any index is 4751 // loop-invariant, we won't broadcast it. 4752 SmallVector<Value *, 4> Indices; 4753 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4754 if (OrigLoop->isLoopInvariant(U.get())) 4755 Indices.push_back(U.get()); 4756 else 4757 Indices.push_back(getVectorValue(U.get())[Part]); 4758 } 4759 4760 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4761 // but it should be a vector, otherwise. 4762 auto *NewGEP = GEP->isInBounds() 4763 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4764 : Builder.CreateGEP(Ptr, Indices); 4765 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4766 "NewGEP is not a pointer vector"); 4767 Entry[Part] = NewGEP; 4768 } 4769 } 4770 4771 VectorLoopValueMap.initVector(&I, Entry); 4772 addMetadata(Entry, GEP); 4773 break; 4774 } 4775 case Instruction::UDiv: 4776 case Instruction::SDiv: 4777 case Instruction::SRem: 4778 case Instruction::URem: 4779 // Scalarize with predication if this instruction may divide by zero and 4780 // block execution is conditional, otherwise fallthrough. 4781 if (Legal->isScalarWithPredication(&I)) { 4782 scalarizeInstruction(&I, true); 4783 break; 4784 } 4785 LLVM_FALLTHROUGH; 4786 case Instruction::Add: 4787 case Instruction::FAdd: 4788 case Instruction::Sub: 4789 case Instruction::FSub: 4790 case Instruction::Mul: 4791 case Instruction::FMul: 4792 case Instruction::FDiv: 4793 case Instruction::FRem: 4794 case Instruction::Shl: 4795 case Instruction::LShr: 4796 case Instruction::AShr: 4797 case Instruction::And: 4798 case Instruction::Or: 4799 case Instruction::Xor: { 4800 // Just widen binops. 4801 auto *BinOp = cast<BinaryOperator>(&I); 4802 setDebugLocFromInst(Builder, BinOp); 4803 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4804 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4805 4806 // Use this vector value for all users of the original instruction. 4807 VectorParts Entry(UF); 4808 for (unsigned Part = 0; Part < UF; ++Part) { 4809 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4810 4811 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4812 VecOp->copyIRFlags(BinOp); 4813 4814 Entry[Part] = V; 4815 } 4816 4817 VectorLoopValueMap.initVector(&I, Entry); 4818 addMetadata(Entry, BinOp); 4819 break; 4820 } 4821 case Instruction::Select: { 4822 // Widen selects. 4823 // If the selector is loop invariant we can create a select 4824 // instruction with a scalar condition. Otherwise, use vector-select. 4825 auto *SE = PSE.getSE(); 4826 bool InvariantCond = 4827 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4828 setDebugLocFromInst(Builder, &I); 4829 4830 // The condition can be loop invariant but still defined inside the 4831 // loop. This means that we can't just use the original 'cond' value. 4832 // We have to take the 'vectorized' value and pick the first lane. 4833 // Instcombine will make this a no-op. 4834 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4835 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4836 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4837 4838 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4839 4840 VectorParts Entry(UF); 4841 for (unsigned Part = 0; Part < UF; ++Part) { 4842 Entry[Part] = Builder.CreateSelect( 4843 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4844 } 4845 4846 VectorLoopValueMap.initVector(&I, Entry); 4847 addMetadata(Entry, &I); 4848 break; 4849 } 4850 4851 case Instruction::ICmp: 4852 case Instruction::FCmp: { 4853 // Widen compares. Generate vector compares. 4854 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4855 auto *Cmp = dyn_cast<CmpInst>(&I); 4856 setDebugLocFromInst(Builder, Cmp); 4857 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4858 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4859 VectorParts Entry(UF); 4860 for (unsigned Part = 0; Part < UF; ++Part) { 4861 Value *C = nullptr; 4862 if (FCmp) { 4863 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4864 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4865 } else { 4866 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4867 } 4868 Entry[Part] = C; 4869 } 4870 4871 VectorLoopValueMap.initVector(&I, Entry); 4872 addMetadata(Entry, &I); 4873 break; 4874 } 4875 4876 case Instruction::Store: 4877 case Instruction::Load: 4878 vectorizeMemoryInstruction(&I); 4879 break; 4880 case Instruction::ZExt: 4881 case Instruction::SExt: 4882 case Instruction::FPToUI: 4883 case Instruction::FPToSI: 4884 case Instruction::FPExt: 4885 case Instruction::PtrToInt: 4886 case Instruction::IntToPtr: 4887 case Instruction::SIToFP: 4888 case Instruction::UIToFP: 4889 case Instruction::Trunc: 4890 case Instruction::FPTrunc: 4891 case Instruction::BitCast: { 4892 auto *CI = dyn_cast<CastInst>(&I); 4893 setDebugLocFromInst(Builder, CI); 4894 4895 // Optimize the special case where the source is a constant integer 4896 // induction variable. Notice that we can only optimize the 'trunc' case 4897 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4898 // (c) other casts depend on pointer size. 4899 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4900 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4901 cast<TruncInst>(CI)); 4902 break; 4903 } 4904 4905 /// Vectorize casts. 4906 Type *DestTy = 4907 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4908 4909 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4910 VectorParts Entry(UF); 4911 for (unsigned Part = 0; Part < UF; ++Part) 4912 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4913 VectorLoopValueMap.initVector(&I, Entry); 4914 addMetadata(Entry, &I); 4915 break; 4916 } 4917 4918 case Instruction::Call: { 4919 // Ignore dbg intrinsics. 4920 if (isa<DbgInfoIntrinsic>(I)) 4921 break; 4922 setDebugLocFromInst(Builder, &I); 4923 4924 Module *M = I.getParent()->getParent()->getParent(); 4925 auto *CI = cast<CallInst>(&I); 4926 4927 StringRef FnName = CI->getCalledFunction()->getName(); 4928 Function *F = CI->getCalledFunction(); 4929 Type *RetTy = ToVectorTy(CI->getType(), VF); 4930 SmallVector<Type *, 4> Tys; 4931 for (Value *ArgOperand : CI->arg_operands()) 4932 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4933 4934 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4935 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4936 ID == Intrinsic::lifetime_start)) { 4937 scalarizeInstruction(&I); 4938 break; 4939 } 4940 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4941 // version of the instruction. 4942 // Is it beneficial to perform intrinsic call compared to lib call? 4943 bool NeedToScalarize; 4944 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4945 bool UseVectorIntrinsic = 4946 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4947 if (!UseVectorIntrinsic && NeedToScalarize) { 4948 scalarizeInstruction(&I); 4949 break; 4950 } 4951 4952 VectorParts Entry(UF); 4953 for (unsigned Part = 0; Part < UF; ++Part) { 4954 SmallVector<Value *, 4> Args; 4955 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4956 Value *Arg = CI->getArgOperand(i); 4957 // Some intrinsics have a scalar argument - don't replace it with a 4958 // vector. 4959 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4960 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4961 Arg = VectorArg[Part]; 4962 } 4963 Args.push_back(Arg); 4964 } 4965 4966 Function *VectorF; 4967 if (UseVectorIntrinsic) { 4968 // Use vector version of the intrinsic. 4969 Type *TysForDecl[] = {CI->getType()}; 4970 if (VF > 1) 4971 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4972 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4973 } else { 4974 // Use vector version of the library call. 4975 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4976 assert(!VFnName.empty() && "Vector function name is empty."); 4977 VectorF = M->getFunction(VFnName); 4978 if (!VectorF) { 4979 // Generate a declaration 4980 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4981 VectorF = 4982 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4983 VectorF->copyAttributesFrom(F); 4984 } 4985 } 4986 assert(VectorF && "Can't create vector function."); 4987 4988 SmallVector<OperandBundleDef, 1> OpBundles; 4989 CI->getOperandBundlesAsDefs(OpBundles); 4990 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4991 4992 if (isa<FPMathOperator>(V)) 4993 V->copyFastMathFlags(CI); 4994 4995 Entry[Part] = V; 4996 } 4997 4998 VectorLoopValueMap.initVector(&I, Entry); 4999 addMetadata(Entry, &I); 5000 break; 5001 } 5002 5003 default: 5004 // All other instructions are unsupported. Scalarize them. 5005 scalarizeInstruction(&I); 5006 break; 5007 } // end of switch. 5008 } 5009 5010 void InnerLoopVectorizer::updateAnalysis() { 5011 // Forget the original basic block. 5012 PSE.getSE()->forgetLoop(OrigLoop); 5013 5014 // Update the dominator tree information. 5015 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5016 "Entry does not dominate exit."); 5017 5018 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5019 LoopVectorPreHeader); 5020 DT->addNewBlock(LoopMiddleBlock, 5021 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5022 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5023 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5024 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5025 5026 DEBUG(DT->verifyDomTree()); 5027 } 5028 5029 /// \brief Check whether it is safe to if-convert this phi node. 5030 /// 5031 /// Phi nodes with constant expressions that can trap are not safe to if 5032 /// convert. 5033 static bool canIfConvertPHINodes(BasicBlock *BB) { 5034 for (Instruction &I : *BB) { 5035 auto *Phi = dyn_cast<PHINode>(&I); 5036 if (!Phi) 5037 return true; 5038 for (Value *V : Phi->incoming_values()) 5039 if (auto *C = dyn_cast<Constant>(V)) 5040 if (C->canTrap()) 5041 return false; 5042 } 5043 return true; 5044 } 5045 5046 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5047 if (!EnableIfConversion) { 5048 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5049 << "if-conversion is disabled"); 5050 return false; 5051 } 5052 5053 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5054 5055 // A list of pointers that we can safely read and write to. 5056 SmallPtrSet<Value *, 8> SafePointes; 5057 5058 // Collect safe addresses. 5059 for (BasicBlock *BB : TheLoop->blocks()) { 5060 if (blockNeedsPredication(BB)) 5061 continue; 5062 5063 for (Instruction &I : *BB) 5064 if (auto *Ptr = getPointerOperand(&I)) 5065 SafePointes.insert(Ptr); 5066 } 5067 5068 // Collect the blocks that need predication. 5069 BasicBlock *Header = TheLoop->getHeader(); 5070 for (BasicBlock *BB : TheLoop->blocks()) { 5071 // We don't support switch statements inside loops. 5072 if (!isa<BranchInst>(BB->getTerminator())) { 5073 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5074 << "loop contains a switch statement"); 5075 return false; 5076 } 5077 5078 // We must be able to predicate all blocks that need to be predicated. 5079 if (blockNeedsPredication(BB)) { 5080 if (!blockCanBePredicated(BB, SafePointes)) { 5081 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5082 << "control flow cannot be substituted for a select"); 5083 return false; 5084 } 5085 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5086 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5087 << "control flow cannot be substituted for a select"); 5088 return false; 5089 } 5090 } 5091 5092 // We can if-convert this loop. 5093 return true; 5094 } 5095 5096 bool LoopVectorizationLegality::canVectorize() { 5097 // Store the result and return it at the end instead of exiting early, in case 5098 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5099 bool Result = true; 5100 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5101 // be canonicalized. 5102 if (!TheLoop->getLoopPreheader()) { 5103 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5104 << "loop control flow is not understood by vectorizer"); 5105 if (ORE->allowExtraAnalysis()) 5106 Result = false; 5107 else 5108 return false; 5109 } 5110 5111 // FIXME: The code is currently dead, since the loop gets sent to 5112 // LoopVectorizationLegality is already an innermost loop. 5113 // 5114 // We can only vectorize innermost loops. 5115 if (!TheLoop->empty()) { 5116 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5117 << "loop is not the innermost loop"); 5118 if (ORE->allowExtraAnalysis()) 5119 Result = false; 5120 else 5121 return false; 5122 } 5123 5124 // We must have a single backedge. 5125 if (TheLoop->getNumBackEdges() != 1) { 5126 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5127 << "loop control flow is not understood by vectorizer"); 5128 if (ORE->allowExtraAnalysis()) 5129 Result = false; 5130 else 5131 return false; 5132 } 5133 5134 // We must have a single exiting block. 5135 if (!TheLoop->getExitingBlock()) { 5136 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5137 << "loop control flow is not understood by vectorizer"); 5138 if (ORE->allowExtraAnalysis()) 5139 Result = false; 5140 else 5141 return false; 5142 } 5143 5144 // We only handle bottom-tested loops, i.e. loop in which the condition is 5145 // checked at the end of each iteration. With that we can assume that all 5146 // instructions in the loop are executed the same number of times. 5147 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5148 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5149 << "loop control flow is not understood by vectorizer"); 5150 if (ORE->allowExtraAnalysis()) 5151 Result = false; 5152 else 5153 return false; 5154 } 5155 5156 // We need to have a loop header. 5157 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5158 << '\n'); 5159 5160 // Check if we can if-convert non-single-bb loops. 5161 unsigned NumBlocks = TheLoop->getNumBlocks(); 5162 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5163 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5164 if (ORE->allowExtraAnalysis()) 5165 Result = false; 5166 else 5167 return false; 5168 } 5169 5170 // Check if we can vectorize the instructions and CFG in this loop. 5171 if (!canVectorizeInstrs()) { 5172 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5173 if (ORE->allowExtraAnalysis()) 5174 Result = false; 5175 else 5176 return false; 5177 } 5178 5179 // Go over each instruction and look at memory deps. 5180 if (!canVectorizeMemory()) { 5181 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5182 if (ORE->allowExtraAnalysis()) 5183 Result = false; 5184 else 5185 return false; 5186 } 5187 5188 DEBUG(dbgs() << "LV: We can vectorize this loop" 5189 << (LAI->getRuntimePointerChecking()->Need 5190 ? " (with a runtime bound check)" 5191 : "") 5192 << "!\n"); 5193 5194 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5195 5196 // If an override option has been passed in for interleaved accesses, use it. 5197 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5198 UseInterleaved = EnableInterleavedMemAccesses; 5199 5200 // Analyze interleaved memory accesses. 5201 if (UseInterleaved) 5202 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5203 5204 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5205 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5206 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5207 5208 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5209 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5210 << "Too many SCEV assumptions need to be made and checked " 5211 << "at runtime"); 5212 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5213 if (ORE->allowExtraAnalysis()) 5214 Result = false; 5215 else 5216 return false; 5217 } 5218 5219 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5220 // we can vectorize, and at this point we don't have any other mem analysis 5221 // which may limit our maximum vectorization factor, so just return true with 5222 // no restrictions. 5223 return Result; 5224 } 5225 5226 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5227 if (Ty->isPointerTy()) 5228 return DL.getIntPtrType(Ty); 5229 5230 // It is possible that char's or short's overflow when we ask for the loop's 5231 // trip count, work around this by changing the type size. 5232 if (Ty->getScalarSizeInBits() < 32) 5233 return Type::getInt32Ty(Ty->getContext()); 5234 5235 return Ty; 5236 } 5237 5238 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5239 Ty0 = convertPointerToIntegerType(DL, Ty0); 5240 Ty1 = convertPointerToIntegerType(DL, Ty1); 5241 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5242 return Ty0; 5243 return Ty1; 5244 } 5245 5246 /// \brief Check that the instruction has outside loop users and is not an 5247 /// identified reduction variable. 5248 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5249 SmallPtrSetImpl<Value *> &AllowedExit) { 5250 // Reduction and Induction instructions are allowed to have exit users. All 5251 // other instructions must not have external users. 5252 if (!AllowedExit.count(Inst)) 5253 // Check that all of the users of the loop are inside the BB. 5254 for (User *U : Inst->users()) { 5255 Instruction *UI = cast<Instruction>(U); 5256 // This user may be a reduction exit value. 5257 if (!TheLoop->contains(UI)) { 5258 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5259 return true; 5260 } 5261 } 5262 return false; 5263 } 5264 5265 void LoopVectorizationLegality::addInductionPhi( 5266 PHINode *Phi, const InductionDescriptor &ID, 5267 SmallPtrSetImpl<Value *> &AllowedExit) { 5268 Inductions[Phi] = ID; 5269 Type *PhiTy = Phi->getType(); 5270 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5271 5272 // Get the widest type. 5273 if (!PhiTy->isFloatingPointTy()) { 5274 if (!WidestIndTy) 5275 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5276 else 5277 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5278 } 5279 5280 // Int inductions are special because we only allow one IV. 5281 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5282 ID.getConstIntStepValue() && 5283 ID.getConstIntStepValue()->isOne() && 5284 isa<Constant>(ID.getStartValue()) && 5285 cast<Constant>(ID.getStartValue())->isNullValue()) { 5286 5287 // Use the phi node with the widest type as induction. Use the last 5288 // one if there are multiple (no good reason for doing this other 5289 // than it is expedient). We've checked that it begins at zero and 5290 // steps by one, so this is a canonical induction variable. 5291 if (!PrimaryInduction || PhiTy == WidestIndTy) 5292 PrimaryInduction = Phi; 5293 } 5294 5295 // Both the PHI node itself, and the "post-increment" value feeding 5296 // back into the PHI node may have external users. 5297 AllowedExit.insert(Phi); 5298 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5299 5300 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5301 return; 5302 } 5303 5304 bool LoopVectorizationLegality::canVectorizeInstrs() { 5305 BasicBlock *Header = TheLoop->getHeader(); 5306 5307 // Look for the attribute signaling the absence of NaNs. 5308 Function &F = *Header->getParent(); 5309 HasFunNoNaNAttr = 5310 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5311 5312 // For each block in the loop. 5313 for (BasicBlock *BB : TheLoop->blocks()) { 5314 // Scan the instructions in the block and look for hazards. 5315 for (Instruction &I : *BB) { 5316 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5317 Type *PhiTy = Phi->getType(); 5318 // Check that this PHI type is allowed. 5319 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5320 !PhiTy->isPointerTy()) { 5321 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5322 << "loop control flow is not understood by vectorizer"); 5323 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5324 return false; 5325 } 5326 5327 // If this PHINode is not in the header block, then we know that we 5328 // can convert it to select during if-conversion. No need to check if 5329 // the PHIs in this block are induction or reduction variables. 5330 if (BB != Header) { 5331 // Check that this instruction has no outside users or is an 5332 // identified reduction value with an outside user. 5333 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5334 continue; 5335 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5336 << "value could not be identified as " 5337 "an induction or reduction variable"); 5338 return false; 5339 } 5340 5341 // We only allow if-converted PHIs with exactly two incoming values. 5342 if (Phi->getNumIncomingValues() != 2) { 5343 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5344 << "control flow not understood by vectorizer"); 5345 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5346 return false; 5347 } 5348 5349 RecurrenceDescriptor RedDes; 5350 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5351 if (RedDes.hasUnsafeAlgebra()) 5352 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5353 AllowedExit.insert(RedDes.getLoopExitInstr()); 5354 Reductions[Phi] = RedDes; 5355 continue; 5356 } 5357 5358 InductionDescriptor ID; 5359 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5360 addInductionPhi(Phi, ID, AllowedExit); 5361 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5362 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5363 continue; 5364 } 5365 5366 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5367 FirstOrderRecurrences.insert(Phi); 5368 continue; 5369 } 5370 5371 // As a last resort, coerce the PHI to a AddRec expression 5372 // and re-try classifying it a an induction PHI. 5373 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5374 addInductionPhi(Phi, ID, AllowedExit); 5375 continue; 5376 } 5377 5378 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5379 << "value that could not be identified as " 5380 "reduction is used outside the loop"); 5381 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5382 return false; 5383 } // end of PHI handling 5384 5385 // We handle calls that: 5386 // * Are debug info intrinsics. 5387 // * Have a mapping to an IR intrinsic. 5388 // * Have a vector version available. 5389 auto *CI = dyn_cast<CallInst>(&I); 5390 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5391 !isa<DbgInfoIntrinsic>(CI) && 5392 !(CI->getCalledFunction() && TLI && 5393 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5394 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5395 << "call instruction cannot be vectorized"); 5396 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5397 return false; 5398 } 5399 5400 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5401 // second argument is the same (i.e. loop invariant) 5402 if (CI && hasVectorInstrinsicScalarOpd( 5403 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5404 auto *SE = PSE.getSE(); 5405 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5406 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5407 << "intrinsic instruction cannot be vectorized"); 5408 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5409 return false; 5410 } 5411 } 5412 5413 // Check that the instruction return type is vectorizable. 5414 // Also, we can't vectorize extractelement instructions. 5415 if ((!VectorType::isValidElementType(I.getType()) && 5416 !I.getType()->isVoidTy()) || 5417 isa<ExtractElementInst>(I)) { 5418 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5419 << "instruction return type cannot be vectorized"); 5420 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5421 return false; 5422 } 5423 5424 // Check that the stored type is vectorizable. 5425 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5426 Type *T = ST->getValueOperand()->getType(); 5427 if (!VectorType::isValidElementType(T)) { 5428 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5429 << "store instruction cannot be vectorized"); 5430 return false; 5431 } 5432 5433 // FP instructions can allow unsafe algebra, thus vectorizable by 5434 // non-IEEE-754 compliant SIMD units. 5435 // This applies to floating-point math operations and calls, not memory 5436 // operations, shuffles, or casts, as they don't change precision or 5437 // semantics. 5438 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5439 !I.hasUnsafeAlgebra()) { 5440 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5441 Hints->setPotentiallyUnsafe(); 5442 } 5443 5444 // Reduction instructions are allowed to have exit users. 5445 // All other instructions must not have external users. 5446 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5447 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5448 << "value cannot be used outside the loop"); 5449 return false; 5450 } 5451 5452 } // next instr. 5453 } 5454 5455 if (!PrimaryInduction) { 5456 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5457 if (Inductions.empty()) { 5458 ORE->emit(createMissedAnalysis("NoInductionVariable") 5459 << "loop induction variable could not be identified"); 5460 return false; 5461 } 5462 } 5463 5464 // Now we know the widest induction type, check if our found induction 5465 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5466 // will create another. 5467 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5468 PrimaryInduction = nullptr; 5469 5470 return true; 5471 } 5472 5473 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5474 5475 // We should not collect Scalars more than once per VF. Right now, this 5476 // function is called from collectUniformsAndScalars(), which already does 5477 // this check. Collecting Scalars for VF=1 does not make any sense. 5478 assert(VF >= 2 && !Scalars.count(VF) && 5479 "This function should not be visited twice for the same VF"); 5480 5481 SmallSetVector<Instruction *, 8> Worklist; 5482 5483 // These sets are used to seed the analysis with pointers used by memory 5484 // accesses that will remain scalar. 5485 SmallSetVector<Instruction *, 8> ScalarPtrs; 5486 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5487 5488 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5489 // The pointer operands of loads and stores will be scalar as long as the 5490 // memory access is not a gather or scatter operation. The value operand of a 5491 // store will remain scalar if the store is scalarized. 5492 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5493 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5494 assert(WideningDecision != CM_Unknown && 5495 "Widening decision should be ready at this moment"); 5496 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5497 if (Ptr == Store->getValueOperand()) 5498 return WideningDecision == CM_Scalarize; 5499 assert(Ptr == getPointerOperand(MemAccess) && 5500 "Ptr is neither a value or pointer operand"); 5501 return WideningDecision != CM_GatherScatter; 5502 }; 5503 5504 // A helper that returns true if the given value is a bitcast or 5505 // getelementptr instruction contained in the loop. 5506 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5507 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5508 isa<GetElementPtrInst>(V)) && 5509 !TheLoop->isLoopInvariant(V); 5510 }; 5511 5512 // A helper that evaluates a memory access's use of a pointer. If the use 5513 // will be a scalar use, and the pointer is only used by memory accesses, we 5514 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5515 // PossibleNonScalarPtrs. 5516 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5517 5518 // We only care about bitcast and getelementptr instructions contained in 5519 // the loop. 5520 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5521 return; 5522 5523 // If the pointer has already been identified as scalar (e.g., if it was 5524 // also identified as uniform), there's nothing to do. 5525 auto *I = cast<Instruction>(Ptr); 5526 if (Worklist.count(I)) 5527 return; 5528 5529 // If the use of the pointer will be a scalar use, and all users of the 5530 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5531 // place the pointer in PossibleNonScalarPtrs. 5532 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5533 return isa<LoadInst>(U) || isa<StoreInst>(U); 5534 })) 5535 ScalarPtrs.insert(I); 5536 else 5537 PossibleNonScalarPtrs.insert(I); 5538 }; 5539 5540 // We seed the scalars analysis with three classes of instructions: (1) 5541 // instructions marked uniform-after-vectorization, (2) bitcast and 5542 // getelementptr instructions used by memory accesses requiring a scalar use, 5543 // and (3) pointer induction variables and their update instructions (we 5544 // currently only scalarize these). 5545 // 5546 // (1) Add to the worklist all instructions that have been identified as 5547 // uniform-after-vectorization. 5548 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5549 5550 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5551 // memory accesses requiring a scalar use. The pointer operands of loads and 5552 // stores will be scalar as long as the memory accesses is not a gather or 5553 // scatter operation. The value operand of a store will remain scalar if the 5554 // store is scalarized. 5555 for (auto *BB : TheLoop->blocks()) 5556 for (auto &I : *BB) { 5557 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5558 evaluatePtrUse(Load, Load->getPointerOperand()); 5559 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5560 evaluatePtrUse(Store, Store->getPointerOperand()); 5561 evaluatePtrUse(Store, Store->getValueOperand()); 5562 } 5563 } 5564 for (auto *I : ScalarPtrs) 5565 if (!PossibleNonScalarPtrs.count(I)) { 5566 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5567 Worklist.insert(I); 5568 } 5569 5570 // (3) Add to the worklist all pointer induction variables and their update 5571 // instructions. 5572 // 5573 // TODO: Once we are able to vectorize pointer induction variables we should 5574 // no longer insert them into the worklist here. 5575 auto *Latch = TheLoop->getLoopLatch(); 5576 for (auto &Induction : *Legal->getInductionVars()) { 5577 auto *Ind = Induction.first; 5578 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5579 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5580 continue; 5581 Worklist.insert(Ind); 5582 Worklist.insert(IndUpdate); 5583 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5584 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5585 } 5586 5587 // Insert the forced scalars. 5588 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5589 // induction variable when the PHI user is scalarized. 5590 if (ForcedScalars.count(VF)) 5591 for (auto *I : ForcedScalars.find(VF)->second) 5592 Worklist.insert(I); 5593 5594 // Expand the worklist by looking through any bitcasts and getelementptr 5595 // instructions we've already identified as scalar. This is similar to the 5596 // expansion step in collectLoopUniforms(); however, here we're only 5597 // expanding to include additional bitcasts and getelementptr instructions. 5598 unsigned Idx = 0; 5599 while (Idx != Worklist.size()) { 5600 Instruction *Dst = Worklist[Idx++]; 5601 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5602 continue; 5603 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5604 if (all_of(Src->users(), [&](User *U) -> bool { 5605 auto *J = cast<Instruction>(U); 5606 return !TheLoop->contains(J) || Worklist.count(J) || 5607 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5608 isScalarUse(J, Src)); 5609 })) { 5610 Worklist.insert(Src); 5611 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5612 } 5613 } 5614 5615 // An induction variable will remain scalar if all users of the induction 5616 // variable and induction variable update remain scalar. 5617 for (auto &Induction : *Legal->getInductionVars()) { 5618 auto *Ind = Induction.first; 5619 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5620 5621 // We already considered pointer induction variables, so there's no reason 5622 // to look at their users again. 5623 // 5624 // TODO: Once we are able to vectorize pointer induction variables we 5625 // should no longer skip over them here. 5626 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5627 continue; 5628 5629 // Determine if all users of the induction variable are scalar after 5630 // vectorization. 5631 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5632 auto *I = cast<Instruction>(U); 5633 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5634 }); 5635 if (!ScalarInd) 5636 continue; 5637 5638 // Determine if all users of the induction variable update instruction are 5639 // scalar after vectorization. 5640 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5641 auto *I = cast<Instruction>(U); 5642 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5643 }); 5644 if (!ScalarIndUpdate) 5645 continue; 5646 5647 // The induction variable and its update instruction will remain scalar. 5648 Worklist.insert(Ind); 5649 Worklist.insert(IndUpdate); 5650 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5651 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5652 } 5653 5654 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5655 } 5656 5657 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5658 if (!blockNeedsPredication(I->getParent())) 5659 return false; 5660 switch(I->getOpcode()) { 5661 default: 5662 break; 5663 case Instruction::Store: 5664 return !isMaskRequired(I); 5665 case Instruction::UDiv: 5666 case Instruction::SDiv: 5667 case Instruction::SRem: 5668 case Instruction::URem: 5669 return mayDivideByZero(*I); 5670 } 5671 return false; 5672 } 5673 5674 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5675 unsigned VF) { 5676 // Get and ensure we have a valid memory instruction. 5677 LoadInst *LI = dyn_cast<LoadInst>(I); 5678 StoreInst *SI = dyn_cast<StoreInst>(I); 5679 assert((LI || SI) && "Invalid memory instruction"); 5680 5681 auto *Ptr = getPointerOperand(I); 5682 5683 // In order to be widened, the pointer should be consecutive, first of all. 5684 if (!isConsecutivePtr(Ptr)) 5685 return false; 5686 5687 // If the instruction is a store located in a predicated block, it will be 5688 // scalarized. 5689 if (isScalarWithPredication(I)) 5690 return false; 5691 5692 // If the instruction's allocated size doesn't equal it's type size, it 5693 // requires padding and will be scalarized. 5694 auto &DL = I->getModule()->getDataLayout(); 5695 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5696 if (hasIrregularType(ScalarTy, DL, VF)) 5697 return false; 5698 5699 return true; 5700 } 5701 5702 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5703 5704 // We should not collect Uniforms more than once per VF. Right now, 5705 // this function is called from collectUniformsAndScalars(), which 5706 // already does this check. Collecting Uniforms for VF=1 does not make any 5707 // sense. 5708 5709 assert(VF >= 2 && !Uniforms.count(VF) && 5710 "This function should not be visited twice for the same VF"); 5711 5712 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5713 // not analyze again. Uniforms.count(VF) will return 1. 5714 Uniforms[VF].clear(); 5715 5716 // We now know that the loop is vectorizable! 5717 // Collect instructions inside the loop that will remain uniform after 5718 // vectorization. 5719 5720 // Global values, params and instructions outside of current loop are out of 5721 // scope. 5722 auto isOutOfScope = [&](Value *V) -> bool { 5723 Instruction *I = dyn_cast<Instruction>(V); 5724 return (!I || !TheLoop->contains(I)); 5725 }; 5726 5727 SetVector<Instruction *> Worklist; 5728 BasicBlock *Latch = TheLoop->getLoopLatch(); 5729 5730 // Start with the conditional branch. If the branch condition is an 5731 // instruction contained in the loop that is only used by the branch, it is 5732 // uniform. 5733 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5734 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5735 Worklist.insert(Cmp); 5736 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5737 } 5738 5739 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5740 // are pointers that are treated like consecutive pointers during 5741 // vectorization. The pointer operands of interleaved accesses are an 5742 // example. 5743 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5744 5745 // Holds pointer operands of instructions that are possibly non-uniform. 5746 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5747 5748 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5749 InstWidening WideningDecision = getWideningDecision(I, VF); 5750 assert(WideningDecision != CM_Unknown && 5751 "Widening decision should be ready at this moment"); 5752 5753 return (WideningDecision == CM_Widen || 5754 WideningDecision == CM_Interleave); 5755 }; 5756 // Iterate over the instructions in the loop, and collect all 5757 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5758 // that a consecutive-like pointer operand will be scalarized, we collect it 5759 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5760 // getelementptr instruction can be used by both vectorized and scalarized 5761 // memory instructions. For example, if a loop loads and stores from the same 5762 // location, but the store is conditional, the store will be scalarized, and 5763 // the getelementptr won't remain uniform. 5764 for (auto *BB : TheLoop->blocks()) 5765 for (auto &I : *BB) { 5766 5767 // If there's no pointer operand, there's nothing to do. 5768 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5769 if (!Ptr) 5770 continue; 5771 5772 // True if all users of Ptr are memory accesses that have Ptr as their 5773 // pointer operand. 5774 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5775 return getPointerOperand(U) == Ptr; 5776 }); 5777 5778 // Ensure the memory instruction will not be scalarized or used by 5779 // gather/scatter, making its pointer operand non-uniform. If the pointer 5780 // operand is used by any instruction other than a memory access, we 5781 // conservatively assume the pointer operand may be non-uniform. 5782 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5783 PossibleNonUniformPtrs.insert(Ptr); 5784 5785 // If the memory instruction will be vectorized and its pointer operand 5786 // is consecutive-like, or interleaving - the pointer operand should 5787 // remain uniform. 5788 else 5789 ConsecutiveLikePtrs.insert(Ptr); 5790 } 5791 5792 // Add to the Worklist all consecutive and consecutive-like pointers that 5793 // aren't also identified as possibly non-uniform. 5794 for (auto *V : ConsecutiveLikePtrs) 5795 if (!PossibleNonUniformPtrs.count(V)) { 5796 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5797 Worklist.insert(V); 5798 } 5799 5800 // Expand Worklist in topological order: whenever a new instruction 5801 // is added , its users should be either already inside Worklist, or 5802 // out of scope. It ensures a uniform instruction will only be used 5803 // by uniform instructions or out of scope instructions. 5804 unsigned idx = 0; 5805 while (idx != Worklist.size()) { 5806 Instruction *I = Worklist[idx++]; 5807 5808 for (auto OV : I->operand_values()) { 5809 if (isOutOfScope(OV)) 5810 continue; 5811 auto *OI = cast<Instruction>(OV); 5812 if (all_of(OI->users(), [&](User *U) -> bool { 5813 auto *J = cast<Instruction>(U); 5814 return !TheLoop->contains(J) || Worklist.count(J) || 5815 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5816 })) { 5817 Worklist.insert(OI); 5818 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5819 } 5820 } 5821 } 5822 5823 // Returns true if Ptr is the pointer operand of a memory access instruction 5824 // I, and I is known to not require scalarization. 5825 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5826 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5827 }; 5828 5829 // For an instruction to be added into Worklist above, all its users inside 5830 // the loop should also be in Worklist. However, this condition cannot be 5831 // true for phi nodes that form a cyclic dependence. We must process phi 5832 // nodes separately. An induction variable will remain uniform if all users 5833 // of the induction variable and induction variable update remain uniform. 5834 // The code below handles both pointer and non-pointer induction variables. 5835 for (auto &Induction : *Legal->getInductionVars()) { 5836 auto *Ind = Induction.first; 5837 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5838 5839 // Determine if all users of the induction variable are uniform after 5840 // vectorization. 5841 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5842 auto *I = cast<Instruction>(U); 5843 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5844 isVectorizedMemAccessUse(I, Ind); 5845 }); 5846 if (!UniformInd) 5847 continue; 5848 5849 // Determine if all users of the induction variable update instruction are 5850 // uniform after vectorization. 5851 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5852 auto *I = cast<Instruction>(U); 5853 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5854 isVectorizedMemAccessUse(I, IndUpdate); 5855 }); 5856 if (!UniformIndUpdate) 5857 continue; 5858 5859 // The induction variable and its update instruction will remain uniform. 5860 Worklist.insert(Ind); 5861 Worklist.insert(IndUpdate); 5862 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5863 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5864 } 5865 5866 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5867 } 5868 5869 bool LoopVectorizationLegality::canVectorizeMemory() { 5870 LAI = &(*GetLAA)(*TheLoop); 5871 InterleaveInfo.setLAI(LAI); 5872 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5873 if (LAR) { 5874 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5875 "loop not vectorized: ", *LAR); 5876 ORE->emit(VR); 5877 } 5878 if (!LAI->canVectorizeMemory()) 5879 return false; 5880 5881 if (LAI->hasStoreToLoopInvariantAddress()) { 5882 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5883 << "write to a loop invariant address could not be vectorized"); 5884 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5885 return false; 5886 } 5887 5888 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5889 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5890 5891 return true; 5892 } 5893 5894 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5895 Value *In0 = const_cast<Value *>(V); 5896 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5897 if (!PN) 5898 return false; 5899 5900 return Inductions.count(PN); 5901 } 5902 5903 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5904 return FirstOrderRecurrences.count(Phi); 5905 } 5906 5907 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5908 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5909 } 5910 5911 bool LoopVectorizationLegality::blockCanBePredicated( 5912 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5913 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5914 5915 for (Instruction &I : *BB) { 5916 // Check that we don't have a constant expression that can trap as operand. 5917 for (Value *Operand : I.operands()) { 5918 if (auto *C = dyn_cast<Constant>(Operand)) 5919 if (C->canTrap()) 5920 return false; 5921 } 5922 // We might be able to hoist the load. 5923 if (I.mayReadFromMemory()) { 5924 auto *LI = dyn_cast<LoadInst>(&I); 5925 if (!LI) 5926 return false; 5927 if (!SafePtrs.count(LI->getPointerOperand())) { 5928 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5929 isLegalMaskedGather(LI->getType())) { 5930 MaskedOp.insert(LI); 5931 continue; 5932 } 5933 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5934 if (IsAnnotatedParallel) 5935 continue; 5936 return false; 5937 } 5938 } 5939 5940 if (I.mayWriteToMemory()) { 5941 auto *SI = dyn_cast<StoreInst>(&I); 5942 // We only support predication of stores in basic blocks with one 5943 // predecessor. 5944 if (!SI) 5945 return false; 5946 5947 // Build a masked store if it is legal for the target. 5948 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5949 SI->getPointerOperand()) || 5950 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5951 MaskedOp.insert(SI); 5952 continue; 5953 } 5954 5955 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5956 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5957 5958 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5959 !isSinglePredecessor) 5960 return false; 5961 } 5962 if (I.mayThrow()) 5963 return false; 5964 } 5965 5966 return true; 5967 } 5968 5969 void InterleavedAccessInfo::collectConstStrideAccesses( 5970 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5971 const ValueToValueMap &Strides) { 5972 5973 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5974 5975 // Since it's desired that the load/store instructions be maintained in 5976 // "program order" for the interleaved access analysis, we have to visit the 5977 // blocks in the loop in reverse postorder (i.e., in a topological order). 5978 // Such an ordering will ensure that any load/store that may be executed 5979 // before a second load/store will precede the second load/store in 5980 // AccessStrideInfo. 5981 LoopBlocksDFS DFS(TheLoop); 5982 DFS.perform(LI); 5983 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5984 for (auto &I : *BB) { 5985 auto *LI = dyn_cast<LoadInst>(&I); 5986 auto *SI = dyn_cast<StoreInst>(&I); 5987 if (!LI && !SI) 5988 continue; 5989 5990 Value *Ptr = getPointerOperand(&I); 5991 // We don't check wrapping here because we don't know yet if Ptr will be 5992 // part of a full group or a group with gaps. Checking wrapping for all 5993 // pointers (even those that end up in groups with no gaps) will be overly 5994 // conservative. For full groups, wrapping should be ok since if we would 5995 // wrap around the address space we would do a memory access at nullptr 5996 // even without the transformation. The wrapping checks are therefore 5997 // deferred until after we've formed the interleaved groups. 5998 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5999 /*Assume=*/true, /*ShouldCheckWrap=*/false); 6000 6001 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 6002 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6003 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6004 6005 // An alignment of 0 means target ABI alignment. 6006 unsigned Align = getMemInstAlignment(&I); 6007 if (!Align) 6008 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6009 6010 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6011 } 6012 } 6013 6014 // Analyze interleaved accesses and collect them into interleaved load and 6015 // store groups. 6016 // 6017 // When generating code for an interleaved load group, we effectively hoist all 6018 // loads in the group to the location of the first load in program order. When 6019 // generating code for an interleaved store group, we sink all stores to the 6020 // location of the last store. This code motion can change the order of load 6021 // and store instructions and may break dependences. 6022 // 6023 // The code generation strategy mentioned above ensures that we won't violate 6024 // any write-after-read (WAR) dependences. 6025 // 6026 // E.g., for the WAR dependence: a = A[i]; // (1) 6027 // A[i] = b; // (2) 6028 // 6029 // The store group of (2) is always inserted at or below (2), and the load 6030 // group of (1) is always inserted at or above (1). Thus, the instructions will 6031 // never be reordered. All other dependences are checked to ensure the 6032 // correctness of the instruction reordering. 6033 // 6034 // The algorithm visits all memory accesses in the loop in bottom-up program 6035 // order. Program order is established by traversing the blocks in the loop in 6036 // reverse postorder when collecting the accesses. 6037 // 6038 // We visit the memory accesses in bottom-up order because it can simplify the 6039 // construction of store groups in the presence of write-after-write (WAW) 6040 // dependences. 6041 // 6042 // E.g., for the WAW dependence: A[i] = a; // (1) 6043 // A[i] = b; // (2) 6044 // A[i + 1] = c; // (3) 6045 // 6046 // We will first create a store group with (3) and (2). (1) can't be added to 6047 // this group because it and (2) are dependent. However, (1) can be grouped 6048 // with other accesses that may precede it in program order. Note that a 6049 // bottom-up order does not imply that WAW dependences should not be checked. 6050 void InterleavedAccessInfo::analyzeInterleaving( 6051 const ValueToValueMap &Strides) { 6052 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6053 6054 // Holds all accesses with a constant stride. 6055 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6056 collectConstStrideAccesses(AccessStrideInfo, Strides); 6057 6058 if (AccessStrideInfo.empty()) 6059 return; 6060 6061 // Collect the dependences in the loop. 6062 collectDependences(); 6063 6064 // Holds all interleaved store groups temporarily. 6065 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6066 // Holds all interleaved load groups temporarily. 6067 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6068 6069 // Search in bottom-up program order for pairs of accesses (A and B) that can 6070 // form interleaved load or store groups. In the algorithm below, access A 6071 // precedes access B in program order. We initialize a group for B in the 6072 // outer loop of the algorithm, and then in the inner loop, we attempt to 6073 // insert each A into B's group if: 6074 // 6075 // 1. A and B have the same stride, 6076 // 2. A and B have the same memory object size, and 6077 // 3. A belongs in B's group according to its distance from B. 6078 // 6079 // Special care is taken to ensure group formation will not break any 6080 // dependences. 6081 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6082 BI != E; ++BI) { 6083 Instruction *B = BI->first; 6084 StrideDescriptor DesB = BI->second; 6085 6086 // Initialize a group for B if it has an allowable stride. Even if we don't 6087 // create a group for B, we continue with the bottom-up algorithm to ensure 6088 // we don't break any of B's dependences. 6089 InterleaveGroup *Group = nullptr; 6090 if (isStrided(DesB.Stride)) { 6091 Group = getInterleaveGroup(B); 6092 if (!Group) { 6093 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6094 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6095 } 6096 if (B->mayWriteToMemory()) 6097 StoreGroups.insert(Group); 6098 else 6099 LoadGroups.insert(Group); 6100 } 6101 6102 for (auto AI = std::next(BI); AI != E; ++AI) { 6103 Instruction *A = AI->first; 6104 StrideDescriptor DesA = AI->second; 6105 6106 // Our code motion strategy implies that we can't have dependences 6107 // between accesses in an interleaved group and other accesses located 6108 // between the first and last member of the group. Note that this also 6109 // means that a group can't have more than one member at a given offset. 6110 // The accesses in a group can have dependences with other accesses, but 6111 // we must ensure we don't extend the boundaries of the group such that 6112 // we encompass those dependent accesses. 6113 // 6114 // For example, assume we have the sequence of accesses shown below in a 6115 // stride-2 loop: 6116 // 6117 // (1, 2) is a group | A[i] = a; // (1) 6118 // | A[i-1] = b; // (2) | 6119 // A[i-3] = c; // (3) 6120 // A[i] = d; // (4) | (2, 4) is not a group 6121 // 6122 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6123 // but not with (4). If we did, the dependent access (3) would be within 6124 // the boundaries of the (2, 4) group. 6125 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6126 6127 // If a dependence exists and A is already in a group, we know that A 6128 // must be a store since A precedes B and WAR dependences are allowed. 6129 // Thus, A would be sunk below B. We release A's group to prevent this 6130 // illegal code motion. A will then be free to form another group with 6131 // instructions that precede it. 6132 if (isInterleaved(A)) { 6133 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6134 StoreGroups.remove(StoreGroup); 6135 releaseGroup(StoreGroup); 6136 } 6137 6138 // If a dependence exists and A is not already in a group (or it was 6139 // and we just released it), B might be hoisted above A (if B is a 6140 // load) or another store might be sunk below A (if B is a store). In 6141 // either case, we can't add additional instructions to B's group. B 6142 // will only form a group with instructions that it precedes. 6143 break; 6144 } 6145 6146 // At this point, we've checked for illegal code motion. If either A or B 6147 // isn't strided, there's nothing left to do. 6148 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6149 continue; 6150 6151 // Ignore A if it's already in a group or isn't the same kind of memory 6152 // operation as B. 6153 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6154 continue; 6155 6156 // Check rules 1 and 2. Ignore A if its stride or size is different from 6157 // that of B. 6158 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6159 continue; 6160 6161 // Ignore A if the memory object of A and B don't belong to the same 6162 // address space 6163 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6164 continue; 6165 6166 // Calculate the distance from A to B. 6167 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6168 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6169 if (!DistToB) 6170 continue; 6171 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6172 6173 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6174 // size. 6175 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6176 continue; 6177 6178 // Ignore A if either A or B is in a predicated block. Although we 6179 // currently prevent group formation for predicated accesses, we may be 6180 // able to relax this limitation in the future once we handle more 6181 // complicated blocks. 6182 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6183 continue; 6184 6185 // The index of A is the index of B plus A's distance to B in multiples 6186 // of the size. 6187 int IndexA = 6188 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6189 6190 // Try to insert A into B's group. 6191 if (Group->insertMember(A, IndexA, DesA.Align)) { 6192 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6193 << " into the interleave group with" << *B << '\n'); 6194 InterleaveGroupMap[A] = Group; 6195 6196 // Set the first load in program order as the insert position. 6197 if (A->mayReadFromMemory()) 6198 Group->setInsertPos(A); 6199 } 6200 } // Iteration over A accesses. 6201 } // Iteration over B accesses. 6202 6203 // Remove interleaved store groups with gaps. 6204 for (InterleaveGroup *Group : StoreGroups) 6205 if (Group->getNumMembers() != Group->getFactor()) 6206 releaseGroup(Group); 6207 6208 // Remove interleaved groups with gaps (currently only loads) whose memory 6209 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6210 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6211 // not check wrapping (see documentation there). 6212 // FORNOW we use Assume=false; 6213 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6214 // of runtime SCEV assumptions checks (thereby potentially failing to 6215 // vectorize altogether). 6216 // Additional optional optimizations: 6217 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6218 // wrap then we can deduce that all pointers in the group don't wrap. 6219 // This means that we can forcefully peel the loop in order to only have to 6220 // check the first pointer for no-wrap. When we'll change to use Assume=true 6221 // we'll only need at most one runtime check per interleaved group. 6222 // 6223 for (InterleaveGroup *Group : LoadGroups) { 6224 6225 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6226 // load would wrap around the address space we would do a memory access at 6227 // nullptr even without the transformation. 6228 if (Group->getNumMembers() == Group->getFactor()) 6229 continue; 6230 6231 // Case 2: If first and last members of the group don't wrap this implies 6232 // that all the pointers in the group don't wrap. 6233 // So we check only group member 0 (which is always guaranteed to exist), 6234 // and group member Factor - 1; If the latter doesn't exist we rely on 6235 // peeling (if it is a non-reveresed accsess -- see Case 3). 6236 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6237 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6238 /*ShouldCheckWrap=*/true)) { 6239 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6240 "first group member potentially pointer-wrapping.\n"); 6241 releaseGroup(Group); 6242 continue; 6243 } 6244 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6245 if (LastMember) { 6246 Value *LastMemberPtr = getPointerOperand(LastMember); 6247 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6248 /*ShouldCheckWrap=*/true)) { 6249 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6250 "last group member potentially pointer-wrapping.\n"); 6251 releaseGroup(Group); 6252 } 6253 } else { 6254 // Case 3: A non-reversed interleaved load group with gaps: We need 6255 // to execute at least one scalar epilogue iteration. This will ensure 6256 // we don't speculatively access memory out-of-bounds. We only need 6257 // to look for a member at index factor - 1, since every group must have 6258 // a member at index zero. 6259 if (Group->isReverse()) { 6260 releaseGroup(Group); 6261 continue; 6262 } 6263 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6264 RequiresScalarEpilogue = true; 6265 } 6266 } 6267 } 6268 6269 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6270 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6271 ORE->emit(createMissedAnalysis("ConditionalStore") 6272 << "store that is conditionally executed prevents vectorization"); 6273 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6274 return None; 6275 } 6276 6277 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6278 return computeFeasibleMaxVF(OptForSize); 6279 6280 if (Legal->getRuntimePointerChecking()->Need) { 6281 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6282 << "runtime pointer checks needed. Enable vectorization of this " 6283 "loop with '#pragma clang loop vectorize(enable)' when " 6284 "compiling with -Os/-Oz"); 6285 DEBUG(dbgs() 6286 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6287 return None; 6288 } 6289 6290 // If we optimize the program for size, avoid creating the tail loop. 6291 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6292 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6293 6294 // If we don't know the precise trip count, don't try to vectorize. 6295 if (TC < 2) { 6296 ORE->emit( 6297 createMissedAnalysis("UnknownLoopCountComplexCFG") 6298 << "unable to calculate the loop count due to complex control flow"); 6299 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6300 return None; 6301 } 6302 6303 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6304 6305 if (TC % MaxVF != 0) { 6306 // If the trip count that we found modulo the vectorization factor is not 6307 // zero then we require a tail. 6308 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6309 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6310 // smaller MaxVF that does not require a scalar epilog. 6311 6312 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6313 << "cannot optimize for size and vectorize at the " 6314 "same time. Enable vectorization of this loop " 6315 "with '#pragma clang loop vectorize(enable)' " 6316 "when compiling with -Os/-Oz"); 6317 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6318 return None; 6319 } 6320 6321 return MaxVF; 6322 } 6323 6324 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6325 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6326 unsigned SmallestType, WidestType; 6327 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6328 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6329 unsigned MaxSafeDepDist = -1U; 6330 6331 // Get the maximum safe dependence distance in bits computed by LAA. If the 6332 // loop contains any interleaved accesses, we divide the dependence distance 6333 // by the maximum interleave factor of all interleaved groups. Note that 6334 // although the division ensures correctness, this is a fairly conservative 6335 // computation because the maximum distance computed by LAA may not involve 6336 // any of the interleaved accesses. 6337 if (Legal->getMaxSafeDepDistBytes() != -1U) 6338 MaxSafeDepDist = 6339 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6340 6341 WidestRegister = 6342 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6343 unsigned MaxVectorSize = WidestRegister / WidestType; 6344 6345 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6346 << WidestType << " bits.\n"); 6347 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6348 << " bits.\n"); 6349 6350 if (MaxVectorSize == 0) { 6351 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6352 MaxVectorSize = 1; 6353 } 6354 6355 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6356 " into one vector!"); 6357 6358 unsigned MaxVF = MaxVectorSize; 6359 if (MaximizeBandwidth && !OptForSize) { 6360 // Collect all viable vectorization factors. 6361 SmallVector<unsigned, 8> VFs; 6362 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6363 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6364 VFs.push_back(VS); 6365 6366 // For each VF calculate its register usage. 6367 auto RUs = calculateRegisterUsage(VFs); 6368 6369 // Select the largest VF which doesn't require more registers than existing 6370 // ones. 6371 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6372 for (int i = RUs.size() - 1; i >= 0; --i) { 6373 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6374 MaxVF = VFs[i]; 6375 break; 6376 } 6377 } 6378 } 6379 return MaxVF; 6380 } 6381 6382 LoopVectorizationCostModel::VectorizationFactor 6383 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6384 float Cost = expectedCost(1).first; 6385 #ifndef NDEBUG 6386 const float ScalarCost = Cost; 6387 #endif /* NDEBUG */ 6388 unsigned Width = 1; 6389 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6390 6391 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6392 // Ignore scalar width, because the user explicitly wants vectorization. 6393 if (ForceVectorization && MaxVF > 1) { 6394 Width = 2; 6395 Cost = expectedCost(Width).first / (float)Width; 6396 } 6397 6398 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6399 // Notice that the vector loop needs to be executed less times, so 6400 // we need to divide the cost of the vector loops by the width of 6401 // the vector elements. 6402 VectorizationCostTy C = expectedCost(i); 6403 float VectorCost = C.first / (float)i; 6404 DEBUG(dbgs() << "LV: Vector loop of width " << i 6405 << " costs: " << (int)VectorCost << ".\n"); 6406 if (!C.second && !ForceVectorization) { 6407 DEBUG( 6408 dbgs() << "LV: Not considering vector loop of width " << i 6409 << " because it will not generate any vector instructions.\n"); 6410 continue; 6411 } 6412 if (VectorCost < Cost) { 6413 Cost = VectorCost; 6414 Width = i; 6415 } 6416 } 6417 6418 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6419 << "LV: Vectorization seems to be not beneficial, " 6420 << "but was forced by a user.\n"); 6421 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6422 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6423 return Factor; 6424 } 6425 6426 std::pair<unsigned, unsigned> 6427 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6428 unsigned MinWidth = -1U; 6429 unsigned MaxWidth = 8; 6430 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6431 6432 // For each block. 6433 for (BasicBlock *BB : TheLoop->blocks()) { 6434 // For each instruction in the loop. 6435 for (Instruction &I : *BB) { 6436 Type *T = I.getType(); 6437 6438 // Skip ignored values. 6439 if (ValuesToIgnore.count(&I)) 6440 continue; 6441 6442 // Only examine Loads, Stores and PHINodes. 6443 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6444 continue; 6445 6446 // Examine PHI nodes that are reduction variables. Update the type to 6447 // account for the recurrence type. 6448 if (auto *PN = dyn_cast<PHINode>(&I)) { 6449 if (!Legal->isReductionVariable(PN)) 6450 continue; 6451 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6452 T = RdxDesc.getRecurrenceType(); 6453 } 6454 6455 // Examine the stored values. 6456 if (auto *ST = dyn_cast<StoreInst>(&I)) 6457 T = ST->getValueOperand()->getType(); 6458 6459 // Ignore loaded pointer types and stored pointer types that are not 6460 // vectorizable. 6461 // 6462 // FIXME: The check here attempts to predict whether a load or store will 6463 // be vectorized. We only know this for certain after a VF has 6464 // been selected. Here, we assume that if an access can be 6465 // vectorized, it will be. We should also look at extending this 6466 // optimization to non-pointer types. 6467 // 6468 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6469 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6470 continue; 6471 6472 MinWidth = std::min(MinWidth, 6473 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6474 MaxWidth = std::max(MaxWidth, 6475 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6476 } 6477 } 6478 6479 return {MinWidth, MaxWidth}; 6480 } 6481 6482 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6483 unsigned VF, 6484 unsigned LoopCost) { 6485 6486 // -- The interleave heuristics -- 6487 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6488 // There are many micro-architectural considerations that we can't predict 6489 // at this level. For example, frontend pressure (on decode or fetch) due to 6490 // code size, or the number and capabilities of the execution ports. 6491 // 6492 // We use the following heuristics to select the interleave count: 6493 // 1. If the code has reductions, then we interleave to break the cross 6494 // iteration dependency. 6495 // 2. If the loop is really small, then we interleave to reduce the loop 6496 // overhead. 6497 // 3. We don't interleave if we think that we will spill registers to memory 6498 // due to the increased register pressure. 6499 6500 // When we optimize for size, we don't interleave. 6501 if (OptForSize) 6502 return 1; 6503 6504 // We used the distance for the interleave count. 6505 if (Legal->getMaxSafeDepDistBytes() != -1U) 6506 return 1; 6507 6508 // Do not interleave loops with a relatively small trip count. 6509 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6510 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6511 return 1; 6512 6513 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6514 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6515 << " registers\n"); 6516 6517 if (VF == 1) { 6518 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6519 TargetNumRegisters = ForceTargetNumScalarRegs; 6520 } else { 6521 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6522 TargetNumRegisters = ForceTargetNumVectorRegs; 6523 } 6524 6525 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6526 // We divide by these constants so assume that we have at least one 6527 // instruction that uses at least one register. 6528 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6529 R.NumInstructions = std::max(R.NumInstructions, 1U); 6530 6531 // We calculate the interleave count using the following formula. 6532 // Subtract the number of loop invariants from the number of available 6533 // registers. These registers are used by all of the interleaved instances. 6534 // Next, divide the remaining registers by the number of registers that is 6535 // required by the loop, in order to estimate how many parallel instances 6536 // fit without causing spills. All of this is rounded down if necessary to be 6537 // a power of two. We want power of two interleave count to simplify any 6538 // addressing operations or alignment considerations. 6539 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6540 R.MaxLocalUsers); 6541 6542 // Don't count the induction variable as interleaved. 6543 if (EnableIndVarRegisterHeur) 6544 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6545 std::max(1U, (R.MaxLocalUsers - 1))); 6546 6547 // Clamp the interleave ranges to reasonable counts. 6548 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6549 6550 // Check if the user has overridden the max. 6551 if (VF == 1) { 6552 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6553 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6554 } else { 6555 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6556 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6557 } 6558 6559 // If we did not calculate the cost for VF (because the user selected the VF) 6560 // then we calculate the cost of VF here. 6561 if (LoopCost == 0) 6562 LoopCost = expectedCost(VF).first; 6563 6564 // Clamp the calculated IC to be between the 1 and the max interleave count 6565 // that the target allows. 6566 if (IC > MaxInterleaveCount) 6567 IC = MaxInterleaveCount; 6568 else if (IC < 1) 6569 IC = 1; 6570 6571 // Interleave if we vectorized this loop and there is a reduction that could 6572 // benefit from interleaving. 6573 if (VF > 1 && Legal->getReductionVars()->size()) { 6574 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6575 return IC; 6576 } 6577 6578 // Note that if we've already vectorized the loop we will have done the 6579 // runtime check and so interleaving won't require further checks. 6580 bool InterleavingRequiresRuntimePointerCheck = 6581 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6582 6583 // We want to interleave small loops in order to reduce the loop overhead and 6584 // potentially expose ILP opportunities. 6585 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6586 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6587 // We assume that the cost overhead is 1 and we use the cost model 6588 // to estimate the cost of the loop and interleave until the cost of the 6589 // loop overhead is about 5% of the cost of the loop. 6590 unsigned SmallIC = 6591 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6592 6593 // Interleave until store/load ports (estimated by max interleave count) are 6594 // saturated. 6595 unsigned NumStores = Legal->getNumStores(); 6596 unsigned NumLoads = Legal->getNumLoads(); 6597 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6598 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6599 6600 // If we have a scalar reduction (vector reductions are already dealt with 6601 // by this point), we can increase the critical path length if the loop 6602 // we're interleaving is inside another loop. Limit, by default to 2, so the 6603 // critical path only gets increased by one reduction operation. 6604 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6605 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6606 SmallIC = std::min(SmallIC, F); 6607 StoresIC = std::min(StoresIC, F); 6608 LoadsIC = std::min(LoadsIC, F); 6609 } 6610 6611 if (EnableLoadStoreRuntimeInterleave && 6612 std::max(StoresIC, LoadsIC) > SmallIC) { 6613 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6614 return std::max(StoresIC, LoadsIC); 6615 } 6616 6617 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6618 return SmallIC; 6619 } 6620 6621 // Interleave if this is a large loop (small loops are already dealt with by 6622 // this point) that could benefit from interleaving. 6623 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6624 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6625 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6626 return IC; 6627 } 6628 6629 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6630 return 1; 6631 } 6632 6633 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6634 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6635 // This function calculates the register usage by measuring the highest number 6636 // of values that are alive at a single location. Obviously, this is a very 6637 // rough estimation. We scan the loop in a topological order in order and 6638 // assign a number to each instruction. We use RPO to ensure that defs are 6639 // met before their users. We assume that each instruction that has in-loop 6640 // users starts an interval. We record every time that an in-loop value is 6641 // used, so we have a list of the first and last occurrences of each 6642 // instruction. Next, we transpose this data structure into a multi map that 6643 // holds the list of intervals that *end* at a specific location. This multi 6644 // map allows us to perform a linear search. We scan the instructions linearly 6645 // and record each time that a new interval starts, by placing it in a set. 6646 // If we find this value in the multi-map then we remove it from the set. 6647 // The max register usage is the maximum size of the set. 6648 // We also search for instructions that are defined outside the loop, but are 6649 // used inside the loop. We need this number separately from the max-interval 6650 // usage number because when we unroll, loop-invariant values do not take 6651 // more register. 6652 LoopBlocksDFS DFS(TheLoop); 6653 DFS.perform(LI); 6654 6655 RegisterUsage RU; 6656 RU.NumInstructions = 0; 6657 6658 // Each 'key' in the map opens a new interval. The values 6659 // of the map are the index of the 'last seen' usage of the 6660 // instruction that is the key. 6661 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6662 // Maps instruction to its index. 6663 DenseMap<unsigned, Instruction *> IdxToInstr; 6664 // Marks the end of each interval. 6665 IntervalMap EndPoint; 6666 // Saves the list of instruction indices that are used in the loop. 6667 SmallSet<Instruction *, 8> Ends; 6668 // Saves the list of values that are used in the loop but are 6669 // defined outside the loop, such as arguments and constants. 6670 SmallPtrSet<Value *, 8> LoopInvariants; 6671 6672 unsigned Index = 0; 6673 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6674 RU.NumInstructions += BB->size(); 6675 for (Instruction &I : *BB) { 6676 IdxToInstr[Index++] = &I; 6677 6678 // Save the end location of each USE. 6679 for (Value *U : I.operands()) { 6680 auto *Instr = dyn_cast<Instruction>(U); 6681 6682 // Ignore non-instruction values such as arguments, constants, etc. 6683 if (!Instr) 6684 continue; 6685 6686 // If this instruction is outside the loop then record it and continue. 6687 if (!TheLoop->contains(Instr)) { 6688 LoopInvariants.insert(Instr); 6689 continue; 6690 } 6691 6692 // Overwrite previous end points. 6693 EndPoint[Instr] = Index; 6694 Ends.insert(Instr); 6695 } 6696 } 6697 } 6698 6699 // Saves the list of intervals that end with the index in 'key'. 6700 typedef SmallVector<Instruction *, 2> InstrList; 6701 DenseMap<unsigned, InstrList> TransposeEnds; 6702 6703 // Transpose the EndPoints to a list of values that end at each index. 6704 for (auto &Interval : EndPoint) 6705 TransposeEnds[Interval.second].push_back(Interval.first); 6706 6707 SmallSet<Instruction *, 8> OpenIntervals; 6708 6709 // Get the size of the widest register. 6710 unsigned MaxSafeDepDist = -1U; 6711 if (Legal->getMaxSafeDepDistBytes() != -1U) 6712 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6713 unsigned WidestRegister = 6714 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6715 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6716 6717 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6718 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6719 6720 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6721 6722 // A lambda that gets the register usage for the given type and VF. 6723 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6724 if (Ty->isTokenTy()) 6725 return 0U; 6726 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6727 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6728 }; 6729 6730 for (unsigned int i = 0; i < Index; ++i) { 6731 Instruction *I = IdxToInstr[i]; 6732 6733 // Remove all of the instructions that end at this location. 6734 InstrList &List = TransposeEnds[i]; 6735 for (Instruction *ToRemove : List) 6736 OpenIntervals.erase(ToRemove); 6737 6738 // Ignore instructions that are never used within the loop. 6739 if (!Ends.count(I)) 6740 continue; 6741 6742 // Skip ignored values. 6743 if (ValuesToIgnore.count(I)) 6744 continue; 6745 6746 // For each VF find the maximum usage of registers. 6747 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6748 if (VFs[j] == 1) { 6749 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6750 continue; 6751 } 6752 collectUniformsAndScalars(VFs[j]); 6753 // Count the number of live intervals. 6754 unsigned RegUsage = 0; 6755 for (auto Inst : OpenIntervals) { 6756 // Skip ignored values for VF > 1. 6757 if (VecValuesToIgnore.count(Inst) || 6758 isScalarAfterVectorization(Inst, VFs[j])) 6759 continue; 6760 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6761 } 6762 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6763 } 6764 6765 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6766 << OpenIntervals.size() << '\n'); 6767 6768 // Add the current instruction to the list of open intervals. 6769 OpenIntervals.insert(I); 6770 } 6771 6772 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6773 unsigned Invariant = 0; 6774 if (VFs[i] == 1) 6775 Invariant = LoopInvariants.size(); 6776 else { 6777 for (auto Inst : LoopInvariants) 6778 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6779 } 6780 6781 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6782 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6783 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6784 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6785 6786 RU.LoopInvariantRegs = Invariant; 6787 RU.MaxLocalUsers = MaxUsages[i]; 6788 RUs[i] = RU; 6789 } 6790 6791 return RUs; 6792 } 6793 6794 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6795 6796 // If we aren't vectorizing the loop, or if we've already collected the 6797 // instructions to scalarize, there's nothing to do. Collection may already 6798 // have occurred if we have a user-selected VF and are now computing the 6799 // expected cost for interleaving. 6800 if (VF < 2 || InstsToScalarize.count(VF)) 6801 return; 6802 6803 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6804 // not profitable to scalarize any instructions, the presence of VF in the 6805 // map will indicate that we've analyzed it already. 6806 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6807 6808 // Find all the instructions that are scalar with predication in the loop and 6809 // determine if it would be better to not if-convert the blocks they are in. 6810 // If so, we also record the instructions to scalarize. 6811 for (BasicBlock *BB : TheLoop->blocks()) { 6812 if (!Legal->blockNeedsPredication(BB)) 6813 continue; 6814 for (Instruction &I : *BB) 6815 if (Legal->isScalarWithPredication(&I)) { 6816 ScalarCostsTy ScalarCosts; 6817 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6818 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6819 6820 // Remember that BB will remain after vectorization. 6821 PredicatedBBsAfterVectorization.insert(BB); 6822 } 6823 } 6824 } 6825 6826 int LoopVectorizationCostModel::computePredInstDiscount( 6827 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6828 unsigned VF) { 6829 6830 assert(!isUniformAfterVectorization(PredInst, VF) && 6831 "Instruction marked uniform-after-vectorization will be predicated"); 6832 6833 // Initialize the discount to zero, meaning that the scalar version and the 6834 // vector version cost the same. 6835 int Discount = 0; 6836 6837 // Holds instructions to analyze. The instructions we visit are mapped in 6838 // ScalarCosts. Those instructions are the ones that would be scalarized if 6839 // we find that the scalar version costs less. 6840 SmallVector<Instruction *, 8> Worklist; 6841 6842 // Returns true if the given instruction can be scalarized. 6843 auto canBeScalarized = [&](Instruction *I) -> bool { 6844 6845 // We only attempt to scalarize instructions forming a single-use chain 6846 // from the original predicated block that would otherwise be vectorized. 6847 // Although not strictly necessary, we give up on instructions we know will 6848 // already be scalar to avoid traversing chains that are unlikely to be 6849 // beneficial. 6850 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6851 isScalarAfterVectorization(I, VF)) 6852 return false; 6853 6854 // If the instruction is scalar with predication, it will be analyzed 6855 // separately. We ignore it within the context of PredInst. 6856 if (Legal->isScalarWithPredication(I)) 6857 return false; 6858 6859 // If any of the instruction's operands are uniform after vectorization, 6860 // the instruction cannot be scalarized. This prevents, for example, a 6861 // masked load from being scalarized. 6862 // 6863 // We assume we will only emit a value for lane zero of an instruction 6864 // marked uniform after vectorization, rather than VF identical values. 6865 // Thus, if we scalarize an instruction that uses a uniform, we would 6866 // create uses of values corresponding to the lanes we aren't emitting code 6867 // for. This behavior can be changed by allowing getScalarValue to clone 6868 // the lane zero values for uniforms rather than asserting. 6869 for (Use &U : I->operands()) 6870 if (auto *J = dyn_cast<Instruction>(U.get())) 6871 if (isUniformAfterVectorization(J, VF)) 6872 return false; 6873 6874 // Otherwise, we can scalarize the instruction. 6875 return true; 6876 }; 6877 6878 // Returns true if an operand that cannot be scalarized must be extracted 6879 // from a vector. We will account for this scalarization overhead below. Note 6880 // that the non-void predicated instructions are placed in their own blocks, 6881 // and their return values are inserted into vectors. Thus, an extract would 6882 // still be required. 6883 auto needsExtract = [&](Instruction *I) -> bool { 6884 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6885 }; 6886 6887 // Compute the expected cost discount from scalarizing the entire expression 6888 // feeding the predicated instruction. We currently only consider expressions 6889 // that are single-use instruction chains. 6890 Worklist.push_back(PredInst); 6891 while (!Worklist.empty()) { 6892 Instruction *I = Worklist.pop_back_val(); 6893 6894 // If we've already analyzed the instruction, there's nothing to do. 6895 if (ScalarCosts.count(I)) 6896 continue; 6897 6898 // Compute the cost of the vector instruction. Note that this cost already 6899 // includes the scalarization overhead of the predicated instruction. 6900 unsigned VectorCost = getInstructionCost(I, VF).first; 6901 6902 // Compute the cost of the scalarized instruction. This cost is the cost of 6903 // the instruction as if it wasn't if-converted and instead remained in the 6904 // predicated block. We will scale this cost by block probability after 6905 // computing the scalarization overhead. 6906 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6907 6908 // Compute the scalarization overhead of needed insertelement instructions 6909 // and phi nodes. 6910 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6911 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6912 true, false); 6913 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6914 } 6915 6916 // Compute the scalarization overhead of needed extractelement 6917 // instructions. For each of the instruction's operands, if the operand can 6918 // be scalarized, add it to the worklist; otherwise, account for the 6919 // overhead. 6920 for (Use &U : I->operands()) 6921 if (auto *J = dyn_cast<Instruction>(U.get())) { 6922 assert(VectorType::isValidElementType(J->getType()) && 6923 "Instruction has non-scalar type"); 6924 if (canBeScalarized(J)) 6925 Worklist.push_back(J); 6926 else if (needsExtract(J)) 6927 ScalarCost += TTI.getScalarizationOverhead( 6928 ToVectorTy(J->getType(),VF), false, true); 6929 } 6930 6931 // Scale the total scalar cost by block probability. 6932 ScalarCost /= getReciprocalPredBlockProb(); 6933 6934 // Compute the discount. A non-negative discount means the vector version 6935 // of the instruction costs more, and scalarizing would be beneficial. 6936 Discount += VectorCost - ScalarCost; 6937 ScalarCosts[I] = ScalarCost; 6938 } 6939 6940 return Discount; 6941 } 6942 6943 LoopVectorizationCostModel::VectorizationCostTy 6944 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6945 VectorizationCostTy Cost; 6946 6947 // Collect Uniform and Scalar instructions after vectorization with VF. 6948 collectUniformsAndScalars(VF); 6949 6950 // Collect the instructions (and their associated costs) that will be more 6951 // profitable to scalarize. 6952 collectInstsToScalarize(VF); 6953 6954 // For each block. 6955 for (BasicBlock *BB : TheLoop->blocks()) { 6956 VectorizationCostTy BlockCost; 6957 6958 // For each instruction in the old loop. 6959 for (Instruction &I : *BB) { 6960 // Skip dbg intrinsics. 6961 if (isa<DbgInfoIntrinsic>(I)) 6962 continue; 6963 6964 // Skip ignored values. 6965 if (ValuesToIgnore.count(&I)) 6966 continue; 6967 6968 VectorizationCostTy C = getInstructionCost(&I, VF); 6969 6970 // Check if we should override the cost. 6971 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6972 C.first = ForceTargetInstructionCost; 6973 6974 BlockCost.first += C.first; 6975 BlockCost.second |= C.second; 6976 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6977 << VF << " For instruction: " << I << '\n'); 6978 } 6979 6980 // If we are vectorizing a predicated block, it will have been 6981 // if-converted. This means that the block's instructions (aside from 6982 // stores and instructions that may divide by zero) will now be 6983 // unconditionally executed. For the scalar case, we may not always execute 6984 // the predicated block. Thus, scale the block's cost by the probability of 6985 // executing it. 6986 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6987 BlockCost.first /= getReciprocalPredBlockProb(); 6988 6989 Cost.first += BlockCost.first; 6990 Cost.second |= BlockCost.second; 6991 } 6992 6993 return Cost; 6994 } 6995 6996 /// \brief Gets Address Access SCEV after verifying that the access pattern 6997 /// is loop invariant except the induction variable dependence. 6998 /// 6999 /// This SCEV can be sent to the Target in order to estimate the address 7000 /// calculation cost. 7001 static const SCEV *getAddressAccessSCEV( 7002 Value *Ptr, 7003 LoopVectorizationLegality *Legal, 7004 ScalarEvolution *SE, 7005 const Loop *TheLoop) { 7006 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7007 if (!Gep) 7008 return nullptr; 7009 7010 // We are looking for a gep with all loop invariant indices except for one 7011 // which should be an induction variable. 7012 unsigned NumOperands = Gep->getNumOperands(); 7013 for (unsigned i = 1; i < NumOperands; ++i) { 7014 Value *Opd = Gep->getOperand(i); 7015 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7016 !Legal->isInductionVariable(Opd)) 7017 return nullptr; 7018 } 7019 7020 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7021 return SE->getSCEV(Ptr); 7022 } 7023 7024 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7025 return Legal->hasStride(I->getOperand(0)) || 7026 Legal->hasStride(I->getOperand(1)); 7027 } 7028 7029 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7030 unsigned VF) { 7031 Type *ValTy = getMemInstValueType(I); 7032 auto SE = PSE.getSE(); 7033 7034 unsigned Alignment = getMemInstAlignment(I); 7035 unsigned AS = getMemInstAddressSpace(I); 7036 Value *Ptr = getPointerOperand(I); 7037 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7038 7039 // Figure out whether the access is strided and get the stride value 7040 // if it's known in compile time 7041 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7042 7043 // Get the cost of the scalar memory instruction and address computation. 7044 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7045 7046 Cost += VF * 7047 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7048 AS, I); 7049 7050 // Get the overhead of the extractelement and insertelement instructions 7051 // we might create due to scalarization. 7052 Cost += getScalarizationOverhead(I, VF, TTI); 7053 7054 // If we have a predicated store, it may not be executed for each vector 7055 // lane. Scale the cost by the probability of executing the predicated 7056 // block. 7057 if (Legal->isScalarWithPredication(I)) 7058 Cost /= getReciprocalPredBlockProb(); 7059 7060 return Cost; 7061 } 7062 7063 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7064 unsigned VF) { 7065 Type *ValTy = getMemInstValueType(I); 7066 Type *VectorTy = ToVectorTy(ValTy, VF); 7067 unsigned Alignment = getMemInstAlignment(I); 7068 Value *Ptr = getPointerOperand(I); 7069 unsigned AS = getMemInstAddressSpace(I); 7070 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7071 7072 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7073 "Stride should be 1 or -1 for consecutive memory access"); 7074 unsigned Cost = 0; 7075 if (Legal->isMaskRequired(I)) 7076 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7077 else 7078 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7079 7080 bool Reverse = ConsecutiveStride < 0; 7081 if (Reverse) 7082 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7083 return Cost; 7084 } 7085 7086 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7087 unsigned VF) { 7088 LoadInst *LI = cast<LoadInst>(I); 7089 Type *ValTy = LI->getType(); 7090 Type *VectorTy = ToVectorTy(ValTy, VF); 7091 unsigned Alignment = LI->getAlignment(); 7092 unsigned AS = LI->getPointerAddressSpace(); 7093 7094 return TTI.getAddressComputationCost(ValTy) + 7095 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7096 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7097 } 7098 7099 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7100 unsigned VF) { 7101 Type *ValTy = getMemInstValueType(I); 7102 Type *VectorTy = ToVectorTy(ValTy, VF); 7103 unsigned Alignment = getMemInstAlignment(I); 7104 Value *Ptr = getPointerOperand(I); 7105 7106 return TTI.getAddressComputationCost(VectorTy) + 7107 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7108 Legal->isMaskRequired(I), Alignment); 7109 } 7110 7111 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7112 unsigned VF) { 7113 Type *ValTy = getMemInstValueType(I); 7114 Type *VectorTy = ToVectorTy(ValTy, VF); 7115 unsigned AS = getMemInstAddressSpace(I); 7116 7117 auto Group = Legal->getInterleavedAccessGroup(I); 7118 assert(Group && "Fail to get an interleaved access group."); 7119 7120 unsigned InterleaveFactor = Group->getFactor(); 7121 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7122 7123 // Holds the indices of existing members in an interleaved load group. 7124 // An interleaved store group doesn't need this as it doesn't allow gaps. 7125 SmallVector<unsigned, 4> Indices; 7126 if (isa<LoadInst>(I)) { 7127 for (unsigned i = 0; i < InterleaveFactor; i++) 7128 if (Group->getMember(i)) 7129 Indices.push_back(i); 7130 } 7131 7132 // Calculate the cost of the whole interleaved group. 7133 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7134 Group->getFactor(), Indices, 7135 Group->getAlignment(), AS); 7136 7137 if (Group->isReverse()) 7138 Cost += Group->getNumMembers() * 7139 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7140 return Cost; 7141 } 7142 7143 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7144 unsigned VF) { 7145 7146 // Calculate scalar cost only. Vectorization cost should be ready at this 7147 // moment. 7148 if (VF == 1) { 7149 Type *ValTy = getMemInstValueType(I); 7150 unsigned Alignment = getMemInstAlignment(I); 7151 unsigned AS = getMemInstAddressSpace(I); 7152 7153 return TTI.getAddressComputationCost(ValTy) + 7154 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7155 } 7156 return getWideningCost(I, VF); 7157 } 7158 7159 LoopVectorizationCostModel::VectorizationCostTy 7160 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7161 // If we know that this instruction will remain uniform, check the cost of 7162 // the scalar version. 7163 if (isUniformAfterVectorization(I, VF)) 7164 VF = 1; 7165 7166 if (VF > 1 && isProfitableToScalarize(I, VF)) 7167 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7168 7169 // Forced scalars do not have any scalarization overhead. 7170 if (VF > 1 && ForcedScalars.count(VF) && 7171 ForcedScalars.find(VF)->second.count(I)) 7172 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7173 7174 Type *VectorTy; 7175 unsigned C = getInstructionCost(I, VF, VectorTy); 7176 7177 bool TypeNotScalarized = 7178 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7179 return VectorizationCostTy(C, TypeNotScalarized); 7180 } 7181 7182 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7183 if (VF == 1) 7184 return; 7185 for (BasicBlock *BB : TheLoop->blocks()) { 7186 // For each instruction in the old loop. 7187 for (Instruction &I : *BB) { 7188 Value *Ptr = getPointerOperand(&I); 7189 if (!Ptr) 7190 continue; 7191 7192 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7193 // Scalar load + broadcast 7194 unsigned Cost = getUniformMemOpCost(&I, VF); 7195 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7196 continue; 7197 } 7198 7199 // We assume that widening is the best solution when possible. 7200 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7201 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7202 setWideningDecision(&I, VF, CM_Widen, Cost); 7203 continue; 7204 } 7205 7206 // Choose between Interleaving, Gather/Scatter or Scalarization. 7207 unsigned InterleaveCost = UINT_MAX; 7208 unsigned NumAccesses = 1; 7209 if (Legal->isAccessInterleaved(&I)) { 7210 auto Group = Legal->getInterleavedAccessGroup(&I); 7211 assert(Group && "Fail to get an interleaved access group."); 7212 7213 // Make one decision for the whole group. 7214 if (getWideningDecision(&I, VF) != CM_Unknown) 7215 continue; 7216 7217 NumAccesses = Group->getNumMembers(); 7218 InterleaveCost = getInterleaveGroupCost(&I, VF); 7219 } 7220 7221 unsigned GatherScatterCost = 7222 Legal->isLegalGatherOrScatter(&I) 7223 ? getGatherScatterCost(&I, VF) * NumAccesses 7224 : UINT_MAX; 7225 7226 unsigned ScalarizationCost = 7227 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7228 7229 // Choose better solution for the current VF, 7230 // write down this decision and use it during vectorization. 7231 unsigned Cost; 7232 InstWidening Decision; 7233 if (InterleaveCost <= GatherScatterCost && 7234 InterleaveCost < ScalarizationCost) { 7235 Decision = CM_Interleave; 7236 Cost = InterleaveCost; 7237 } else if (GatherScatterCost < ScalarizationCost) { 7238 Decision = CM_GatherScatter; 7239 Cost = GatherScatterCost; 7240 } else { 7241 Decision = CM_Scalarize; 7242 Cost = ScalarizationCost; 7243 } 7244 // If the instructions belongs to an interleave group, the whole group 7245 // receives the same decision. The whole group receives the cost, but 7246 // the cost will actually be assigned to one instruction. 7247 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7248 setWideningDecision(Group, VF, Decision, Cost); 7249 else 7250 setWideningDecision(&I, VF, Decision, Cost); 7251 } 7252 } 7253 7254 // Make sure that any load of address and any other address computation 7255 // remains scalar unless there is gather/scatter support. This avoids 7256 // inevitable extracts into address registers, and also has the benefit of 7257 // activating LSR more, since that pass can't optimize vectorized 7258 // addresses. 7259 if (TTI.prefersVectorizedAddressing()) 7260 return; 7261 7262 // Start with all scalar pointer uses. 7263 SmallPtrSet<Instruction *, 8> AddrDefs; 7264 for (BasicBlock *BB : TheLoop->blocks()) 7265 for (Instruction &I : *BB) { 7266 Instruction *PtrDef = 7267 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7268 if (PtrDef && TheLoop->contains(PtrDef) && 7269 getWideningDecision(&I, VF) != CM_GatherScatter) 7270 AddrDefs.insert(PtrDef); 7271 } 7272 7273 // Add all instructions used to generate the addresses. 7274 SmallVector<Instruction *, 4> Worklist; 7275 for (auto *I : AddrDefs) 7276 Worklist.push_back(I); 7277 while (!Worklist.empty()) { 7278 Instruction *I = Worklist.pop_back_val(); 7279 for (auto &Op : I->operands()) 7280 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7281 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7282 AddrDefs.insert(InstOp).second == true) 7283 Worklist.push_back(InstOp); 7284 } 7285 7286 for (auto *I : AddrDefs) { 7287 if (isa<LoadInst>(I)) { 7288 // Setting the desired widening decision should ideally be handled in 7289 // by cost functions, but since this involves the task of finding out 7290 // if the loaded register is involved in an address computation, it is 7291 // instead changed here when we know this is the case. 7292 if (getWideningDecision(I, VF) == CM_Widen) 7293 // Scalarize a widened load of address. 7294 setWideningDecision(I, VF, CM_Scalarize, 7295 (VF * getMemoryInstructionCost(I, 1))); 7296 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7297 // Scalarize an interleave group of address loads. 7298 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7299 if (Instruction *Member = Group->getMember(I)) 7300 setWideningDecision(Member, VF, CM_Scalarize, 7301 (VF * getMemoryInstructionCost(Member, 1))); 7302 } 7303 } 7304 } else 7305 // Make sure I gets scalarized and a cost estimate without 7306 // scalarization overhead. 7307 ForcedScalars[VF].insert(I); 7308 } 7309 } 7310 7311 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7312 unsigned VF, 7313 Type *&VectorTy) { 7314 Type *RetTy = I->getType(); 7315 if (canTruncateToMinimalBitwidth(I, VF)) 7316 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7317 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7318 auto SE = PSE.getSE(); 7319 7320 // TODO: We need to estimate the cost of intrinsic calls. 7321 switch (I->getOpcode()) { 7322 case Instruction::GetElementPtr: 7323 // We mark this instruction as zero-cost because the cost of GEPs in 7324 // vectorized code depends on whether the corresponding memory instruction 7325 // is scalarized or not. Therefore, we handle GEPs with the memory 7326 // instruction cost. 7327 return 0; 7328 case Instruction::Br: { 7329 // In cases of scalarized and predicated instructions, there will be VF 7330 // predicated blocks in the vectorized loop. Each branch around these 7331 // blocks requires also an extract of its vector compare i1 element. 7332 bool ScalarPredicatedBB = false; 7333 BranchInst *BI = cast<BranchInst>(I); 7334 if (VF > 1 && BI->isConditional() && 7335 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7336 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7337 ScalarPredicatedBB = true; 7338 7339 if (ScalarPredicatedBB) { 7340 // Return cost for branches around scalarized and predicated blocks. 7341 Type *Vec_i1Ty = 7342 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7343 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7344 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7345 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7346 // The back-edge branch will remain, as will all scalar branches. 7347 return TTI.getCFInstrCost(Instruction::Br); 7348 else 7349 // This branch will be eliminated by if-conversion. 7350 return 0; 7351 // Note: We currently assume zero cost for an unconditional branch inside 7352 // a predicated block since it will become a fall-through, although we 7353 // may decide in the future to call TTI for all branches. 7354 } 7355 case Instruction::PHI: { 7356 auto *Phi = cast<PHINode>(I); 7357 7358 // First-order recurrences are replaced by vector shuffles inside the loop. 7359 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7360 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7361 VectorTy, VF - 1, VectorTy); 7362 7363 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7364 // converted into select instructions. We require N - 1 selects per phi 7365 // node, where N is the number of incoming values. 7366 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7367 return (Phi->getNumIncomingValues() - 1) * 7368 TTI.getCmpSelInstrCost( 7369 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7370 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7371 7372 return TTI.getCFInstrCost(Instruction::PHI); 7373 } 7374 case Instruction::UDiv: 7375 case Instruction::SDiv: 7376 case Instruction::URem: 7377 case Instruction::SRem: 7378 // If we have a predicated instruction, it may not be executed for each 7379 // vector lane. Get the scalarization cost and scale this amount by the 7380 // probability of executing the predicated block. If the instruction is not 7381 // predicated, we fall through to the next case. 7382 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7383 unsigned Cost = 0; 7384 7385 // These instructions have a non-void type, so account for the phi nodes 7386 // that we will create. This cost is likely to be zero. The phi node 7387 // cost, if any, should be scaled by the block probability because it 7388 // models a copy at the end of each predicated block. 7389 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7390 7391 // The cost of the non-predicated instruction. 7392 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7393 7394 // The cost of insertelement and extractelement instructions needed for 7395 // scalarization. 7396 Cost += getScalarizationOverhead(I, VF, TTI); 7397 7398 // Scale the cost by the probability of executing the predicated blocks. 7399 // This assumes the predicated block for each vector lane is equally 7400 // likely. 7401 return Cost / getReciprocalPredBlockProb(); 7402 } 7403 LLVM_FALLTHROUGH; 7404 case Instruction::Add: 7405 case Instruction::FAdd: 7406 case Instruction::Sub: 7407 case Instruction::FSub: 7408 case Instruction::Mul: 7409 case Instruction::FMul: 7410 case Instruction::FDiv: 7411 case Instruction::FRem: 7412 case Instruction::Shl: 7413 case Instruction::LShr: 7414 case Instruction::AShr: 7415 case Instruction::And: 7416 case Instruction::Or: 7417 case Instruction::Xor: { 7418 // Since we will replace the stride by 1 the multiplication should go away. 7419 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7420 return 0; 7421 // Certain instructions can be cheaper to vectorize if they have a constant 7422 // second vector operand. One example of this are shifts on x86. 7423 TargetTransformInfo::OperandValueKind Op1VK = 7424 TargetTransformInfo::OK_AnyValue; 7425 TargetTransformInfo::OperandValueKind Op2VK = 7426 TargetTransformInfo::OK_AnyValue; 7427 TargetTransformInfo::OperandValueProperties Op1VP = 7428 TargetTransformInfo::OP_None; 7429 TargetTransformInfo::OperandValueProperties Op2VP = 7430 TargetTransformInfo::OP_None; 7431 Value *Op2 = I->getOperand(1); 7432 7433 // Check for a splat or for a non uniform vector of constants. 7434 if (isa<ConstantInt>(Op2)) { 7435 ConstantInt *CInt = cast<ConstantInt>(Op2); 7436 if (CInt && CInt->getValue().isPowerOf2()) 7437 Op2VP = TargetTransformInfo::OP_PowerOf2; 7438 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7439 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7440 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7441 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7442 if (SplatValue) { 7443 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7444 if (CInt && CInt->getValue().isPowerOf2()) 7445 Op2VP = TargetTransformInfo::OP_PowerOf2; 7446 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7447 } 7448 } else if (Legal->isUniform(Op2)) { 7449 Op2VK = TargetTransformInfo::OK_UniformValue; 7450 } 7451 SmallVector<const Value *, 4> Operands(I->operand_values()); 7452 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7453 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7454 Op2VK, Op1VP, Op2VP, Operands); 7455 } 7456 case Instruction::Select: { 7457 SelectInst *SI = cast<SelectInst>(I); 7458 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7459 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7460 Type *CondTy = SI->getCondition()->getType(); 7461 if (!ScalarCond) 7462 CondTy = VectorType::get(CondTy, VF); 7463 7464 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7465 } 7466 case Instruction::ICmp: 7467 case Instruction::FCmp: { 7468 Type *ValTy = I->getOperand(0)->getType(); 7469 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7470 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7471 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7472 VectorTy = ToVectorTy(ValTy, VF); 7473 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7474 } 7475 case Instruction::Store: 7476 case Instruction::Load: { 7477 unsigned Width = VF; 7478 if (Width > 1) { 7479 InstWidening Decision = getWideningDecision(I, Width); 7480 assert(Decision != CM_Unknown && 7481 "CM decision should be taken at this point"); 7482 if (Decision == CM_Scalarize) 7483 Width = 1; 7484 } 7485 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7486 return getMemoryInstructionCost(I, VF); 7487 } 7488 case Instruction::ZExt: 7489 case Instruction::SExt: 7490 case Instruction::FPToUI: 7491 case Instruction::FPToSI: 7492 case Instruction::FPExt: 7493 case Instruction::PtrToInt: 7494 case Instruction::IntToPtr: 7495 case Instruction::SIToFP: 7496 case Instruction::UIToFP: 7497 case Instruction::Trunc: 7498 case Instruction::FPTrunc: 7499 case Instruction::BitCast: { 7500 // We optimize the truncation of induction variables having constant 7501 // integer steps. The cost of these truncations is the same as the scalar 7502 // operation. 7503 if (isOptimizableIVTruncate(I, VF)) { 7504 auto *Trunc = cast<TruncInst>(I); 7505 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7506 Trunc->getSrcTy(), Trunc); 7507 } 7508 7509 Type *SrcScalarTy = I->getOperand(0)->getType(); 7510 Type *SrcVecTy = 7511 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7512 if (canTruncateToMinimalBitwidth(I, VF)) { 7513 // This cast is going to be shrunk. This may remove the cast or it might 7514 // turn it into slightly different cast. For example, if MinBW == 16, 7515 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7516 // 7517 // Calculate the modified src and dest types. 7518 Type *MinVecTy = VectorTy; 7519 if (I->getOpcode() == Instruction::Trunc) { 7520 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7521 VectorTy = 7522 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7523 } else if (I->getOpcode() == Instruction::ZExt || 7524 I->getOpcode() == Instruction::SExt) { 7525 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7526 VectorTy = 7527 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7528 } 7529 } 7530 7531 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7532 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7533 } 7534 case Instruction::Call: { 7535 bool NeedToScalarize; 7536 CallInst *CI = cast<CallInst>(I); 7537 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7538 if (getVectorIntrinsicIDForCall(CI, TLI)) 7539 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7540 return CallCost; 7541 } 7542 default: 7543 // The cost of executing VF copies of the scalar instruction. This opcode 7544 // is unknown. Assume that it is the same as 'mul'. 7545 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7546 getScalarizationOverhead(I, VF, TTI); 7547 } // end of switch. 7548 } 7549 7550 char LoopVectorize::ID = 0; 7551 static const char lv_name[] = "Loop Vectorization"; 7552 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7553 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7554 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7555 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7556 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7557 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7558 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7559 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7560 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7561 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7562 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7563 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7564 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7565 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7566 7567 namespace llvm { 7568 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7569 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7570 } 7571 } 7572 7573 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7574 7575 // Check if the pointer operand of a load or store instruction is 7576 // consecutive. 7577 if (auto *Ptr = getPointerOperand(Inst)) 7578 return Legal->isConsecutivePtr(Ptr); 7579 return false; 7580 } 7581 7582 void LoopVectorizationCostModel::collectValuesToIgnore() { 7583 // Ignore ephemeral values. 7584 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7585 7586 // Ignore type-promoting instructions we identified during reduction 7587 // detection. 7588 for (auto &Reduction : *Legal->getReductionVars()) { 7589 RecurrenceDescriptor &RedDes = Reduction.second; 7590 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7591 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7592 } 7593 } 7594 7595 LoopVectorizationCostModel::VectorizationFactor 7596 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7597 7598 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7599 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7600 0U}; 7601 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7602 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7603 return NoVectorization; 7604 7605 if (UserVF) { 7606 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7607 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7608 // Collect the instructions (and their associated costs) that will be more 7609 // profitable to scalarize. 7610 CM.selectUserVectorizationFactor(UserVF); 7611 return {UserVF, 0}; 7612 } 7613 7614 unsigned MaxVF = MaybeMaxVF.getValue(); 7615 assert(MaxVF != 0 && "MaxVF is zero."); 7616 if (MaxVF == 1) 7617 return NoVectorization; 7618 7619 // Select the optimal vectorization factor. 7620 return CM.selectVectorizationFactor(MaxVF); 7621 } 7622 7623 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV) { 7624 // Perform the actual loop transformation. 7625 7626 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7627 ILV.createVectorizedLoopSkeleton(); 7628 7629 //===------------------------------------------------===// 7630 // 7631 // Notice: any optimization or new instruction that go 7632 // into the code below should also be implemented in 7633 // the cost-model. 7634 // 7635 //===------------------------------------------------===// 7636 7637 // 2. Copy and widen instructions from the old loop into the new loop. 7638 7639 // Collect instructions from the original loop that will become trivially dead 7640 // in the vectorized loop. We don't need to vectorize these instructions. For 7641 // example, original induction update instructions can become dead because we 7642 // separately emit induction "steps" when generating code for the new loop. 7643 // Similarly, we create a new latch condition when setting up the structure 7644 // of the new loop, so the old one can become dead. 7645 SmallPtrSet<Instruction *, 4> DeadInstructions; 7646 collectTriviallyDeadInstructions(DeadInstructions); 7647 7648 // Scan the loop in a topological order to ensure that defs are vectorized 7649 // before users. 7650 LoopBlocksDFS DFS(OrigLoop); 7651 DFS.perform(LI); 7652 7653 // Vectorize all instructions in the original loop that will not become 7654 // trivially dead when vectorized. 7655 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 7656 for (Instruction &I : *BB) 7657 if (!DeadInstructions.count(&I)) 7658 ILV.vectorizeInstruction(I); 7659 7660 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7661 // predication, updating analyses. 7662 ILV.fixVectorizedLoop(); 7663 } 7664 7665 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7666 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7667 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7668 7669 // We create new control-flow for the vectorized loop, so the original 7670 // condition will be dead after vectorization if it's only used by the 7671 // branch. 7672 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7673 if (Cmp && Cmp->hasOneUse()) 7674 DeadInstructions.insert(Cmp); 7675 7676 // We create new "steps" for induction variable updates to which the original 7677 // induction variables map. An original update instruction will be dead if 7678 // all its users except the induction variable are dead. 7679 for (auto &Induction : *Legal->getInductionVars()) { 7680 PHINode *Ind = Induction.first; 7681 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7682 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7683 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7684 })) 7685 DeadInstructions.insert(IndUpdate); 7686 } 7687 } 7688 7689 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7690 auto *SI = dyn_cast<StoreInst>(Instr); 7691 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7692 7693 return scalarizeInstruction(Instr, IfPredicateInstr); 7694 } 7695 7696 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7697 7698 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7699 7700 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7701 Instruction::BinaryOps BinOp) { 7702 // When unrolling and the VF is 1, we only need to add a simple scalar. 7703 Type *Ty = Val->getType(); 7704 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7705 7706 if (Ty->isFloatingPointTy()) { 7707 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7708 7709 // Floating point operations had to be 'fast' to enable the unrolling. 7710 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7711 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7712 } 7713 Constant *C = ConstantInt::get(Ty, StartIdx); 7714 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7715 } 7716 7717 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7718 SmallVector<Metadata *, 4> MDs; 7719 // Reserve first location for self reference to the LoopID metadata node. 7720 MDs.push_back(nullptr); 7721 bool IsUnrollMetadata = false; 7722 MDNode *LoopID = L->getLoopID(); 7723 if (LoopID) { 7724 // First find existing loop unrolling disable metadata. 7725 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7726 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7727 if (MD) { 7728 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7729 IsUnrollMetadata = 7730 S && S->getString().startswith("llvm.loop.unroll.disable"); 7731 } 7732 MDs.push_back(LoopID->getOperand(i)); 7733 } 7734 } 7735 7736 if (!IsUnrollMetadata) { 7737 // Add runtime unroll disable metadata. 7738 LLVMContext &Context = L->getHeader()->getContext(); 7739 SmallVector<Metadata *, 1> DisableOperands; 7740 DisableOperands.push_back( 7741 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7742 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7743 MDs.push_back(DisableNode); 7744 MDNode *NewLoopID = MDNode::get(Context, MDs); 7745 // Set operand 0 to refer to the loop id itself. 7746 NewLoopID->replaceOperandWith(0, NewLoopID); 7747 L->setLoopID(NewLoopID); 7748 } 7749 } 7750 7751 bool LoopVectorizePass::processLoop(Loop *L) { 7752 assert(L->empty() && "Only process inner loops."); 7753 7754 #ifndef NDEBUG 7755 const std::string DebugLocStr = getDebugLocString(L); 7756 #endif /* NDEBUG */ 7757 7758 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7759 << L->getHeader()->getParent()->getName() << "\" from " 7760 << DebugLocStr << "\n"); 7761 7762 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7763 7764 DEBUG(dbgs() << "LV: Loop hints:" 7765 << " force=" 7766 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7767 ? "disabled" 7768 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7769 ? "enabled" 7770 : "?")) 7771 << " width=" << Hints.getWidth() 7772 << " unroll=" << Hints.getInterleave() << "\n"); 7773 7774 // Function containing loop 7775 Function *F = L->getHeader()->getParent(); 7776 7777 // Looking at the diagnostic output is the only way to determine if a loop 7778 // was vectorized (other than looking at the IR or machine code), so it 7779 // is important to generate an optimization remark for each loop. Most of 7780 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7781 // generated as OptimizationRemark and OptimizationRemarkMissed are 7782 // less verbose reporting vectorized loops and unvectorized loops that may 7783 // benefit from vectorization, respectively. 7784 7785 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7786 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7787 return false; 7788 } 7789 7790 // Check the loop for a trip count threshold: 7791 // do not vectorize loops with a tiny trip count. 7792 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7793 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7794 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7795 << "This loop is not worth vectorizing."); 7796 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7797 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7798 else { 7799 DEBUG(dbgs() << "\n"); 7800 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7801 "NotBeneficial", L) 7802 << "vectorization is not beneficial " 7803 "and is not explicitly forced"); 7804 return false; 7805 } 7806 } 7807 7808 PredicatedScalarEvolution PSE(*SE, *L); 7809 7810 // Check if it is legal to vectorize the loop. 7811 LoopVectorizationRequirements Requirements(*ORE); 7812 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7813 &Requirements, &Hints); 7814 if (!LVL.canVectorize()) { 7815 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7816 emitMissedWarning(F, L, Hints, ORE); 7817 return false; 7818 } 7819 7820 // Check the function attributes to find out if this function should be 7821 // optimized for size. 7822 bool OptForSize = 7823 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7824 7825 // Compute the weighted frequency of this loop being executed and see if it 7826 // is less than 20% of the function entry baseline frequency. Note that we 7827 // always have a canonical loop here because we think we *can* vectorize. 7828 // FIXME: This is hidden behind a flag due to pervasive problems with 7829 // exactly what block frequency models. 7830 if (LoopVectorizeWithBlockFrequency) { 7831 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7832 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7833 LoopEntryFreq < ColdEntryFreq) 7834 OptForSize = true; 7835 } 7836 7837 // Check the function attributes to see if implicit floats are allowed. 7838 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7839 // an integer loop and the vector instructions selected are purely integer 7840 // vector instructions? 7841 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7842 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7843 "attribute is used.\n"); 7844 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7845 "NoImplicitFloat", L) 7846 << "loop not vectorized due to NoImplicitFloat attribute"); 7847 emitMissedWarning(F, L, Hints, ORE); 7848 return false; 7849 } 7850 7851 // Check if the target supports potentially unsafe FP vectorization. 7852 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7853 // for the target we're vectorizing for, to make sure none of the 7854 // additional fp-math flags can help. 7855 if (Hints.isPotentiallyUnsafe() && 7856 TTI->isFPVectorizationPotentiallyUnsafe()) { 7857 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7858 ORE->emit( 7859 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7860 << "loop not vectorized due to unsafe FP support."); 7861 emitMissedWarning(F, L, Hints, ORE); 7862 return false; 7863 } 7864 7865 // Use the cost model. 7866 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7867 &Hints); 7868 CM.collectValuesToIgnore(); 7869 7870 // Use the planner for vectorization. 7871 LoopVectorizationPlanner LVP(L, LI, &LVL, CM); 7872 7873 // Get user vectorization factor. 7874 unsigned UserVF = Hints.getWidth(); 7875 7876 // Plan how to best vectorize, return the best VF and its cost. 7877 LoopVectorizationCostModel::VectorizationFactor VF = 7878 LVP.plan(OptForSize, UserVF); 7879 7880 // Select the interleave count. 7881 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7882 7883 // Get user interleave count. 7884 unsigned UserIC = Hints.getInterleave(); 7885 7886 // Identify the diagnostic messages that should be produced. 7887 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7888 bool VectorizeLoop = true, InterleaveLoop = true; 7889 if (Requirements.doesNotMeet(F, L, Hints)) { 7890 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7891 "requirements.\n"); 7892 emitMissedWarning(F, L, Hints, ORE); 7893 return false; 7894 } 7895 7896 if (VF.Width == 1) { 7897 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7898 VecDiagMsg = std::make_pair( 7899 "VectorizationNotBeneficial", 7900 "the cost-model indicates that vectorization is not beneficial"); 7901 VectorizeLoop = false; 7902 } 7903 7904 if (IC == 1 && UserIC <= 1) { 7905 // Tell the user interleaving is not beneficial. 7906 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7907 IntDiagMsg = std::make_pair( 7908 "InterleavingNotBeneficial", 7909 "the cost-model indicates that interleaving is not beneficial"); 7910 InterleaveLoop = false; 7911 if (UserIC == 1) { 7912 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7913 IntDiagMsg.second += 7914 " and is explicitly disabled or interleave count is set to 1"; 7915 } 7916 } else if (IC > 1 && UserIC == 1) { 7917 // Tell the user interleaving is beneficial, but it explicitly disabled. 7918 DEBUG(dbgs() 7919 << "LV: Interleaving is beneficial but is explicitly disabled."); 7920 IntDiagMsg = std::make_pair( 7921 "InterleavingBeneficialButDisabled", 7922 "the cost-model indicates that interleaving is beneficial " 7923 "but is explicitly disabled or interleave count is set to 1"); 7924 InterleaveLoop = false; 7925 } 7926 7927 // Override IC if user provided an interleave count. 7928 IC = UserIC > 0 ? UserIC : IC; 7929 7930 // Emit diagnostic messages, if any. 7931 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7932 if (!VectorizeLoop && !InterleaveLoop) { 7933 // Do not vectorize or interleaving the loop. 7934 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7935 L->getStartLoc(), L->getHeader()) 7936 << VecDiagMsg.second); 7937 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7938 L->getStartLoc(), L->getHeader()) 7939 << IntDiagMsg.second); 7940 return false; 7941 } else if (!VectorizeLoop && InterleaveLoop) { 7942 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7943 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7944 L->getStartLoc(), L->getHeader()) 7945 << VecDiagMsg.second); 7946 } else if (VectorizeLoop && !InterleaveLoop) { 7947 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7948 << DebugLocStr << '\n'); 7949 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7950 L->getStartLoc(), L->getHeader()) 7951 << IntDiagMsg.second); 7952 } else if (VectorizeLoop && InterleaveLoop) { 7953 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7954 << DebugLocStr << '\n'); 7955 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7956 } 7957 7958 using namespace ore; 7959 if (!VectorizeLoop) { 7960 assert(IC > 1 && "interleave count should not be 1 or 0"); 7961 // If we decided that it is not legal to vectorize the loop, then 7962 // interleave it. 7963 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7964 &CM); 7965 LVP.executePlan(Unroller); 7966 7967 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7968 L->getHeader()) 7969 << "interleaved loop (interleaved count: " 7970 << NV("InterleaveCount", IC) << ")"); 7971 } else { 7972 // If we decided that it is *legal* to vectorize the loop, then do it. 7973 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7974 &LVL, &CM); 7975 LVP.executePlan(LB); 7976 ++LoopsVectorized; 7977 7978 // Add metadata to disable runtime unrolling a scalar loop when there are 7979 // no runtime checks about strides and memory. A scalar loop that is 7980 // rarely used is not worth unrolling. 7981 if (!LB.areSafetyChecksAdded()) 7982 AddRuntimeUnrollDisableMetaData(L); 7983 7984 // Report the vectorization decision. 7985 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7986 L->getHeader()) 7987 << "vectorized loop (vectorization width: " 7988 << NV("VectorizationFactor", VF.Width) 7989 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7990 } 7991 7992 // Mark the loop as already vectorized to avoid vectorizing again. 7993 Hints.setAlreadyVectorized(); 7994 7995 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7996 return true; 7997 } 7998 7999 bool LoopVectorizePass::runImpl( 8000 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8001 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8002 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8003 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8004 OptimizationRemarkEmitter &ORE_) { 8005 8006 SE = &SE_; 8007 LI = &LI_; 8008 TTI = &TTI_; 8009 DT = &DT_; 8010 BFI = &BFI_; 8011 TLI = TLI_; 8012 AA = &AA_; 8013 AC = &AC_; 8014 GetLAA = &GetLAA_; 8015 DB = &DB_; 8016 ORE = &ORE_; 8017 8018 // Compute some weights outside of the loop over the loops. Compute this 8019 // using a BranchProbability to re-use its scaling math. 8020 const BranchProbability ColdProb(1, 5); // 20% 8021 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 8022 8023 // Don't attempt if 8024 // 1. the target claims to have no vector registers, and 8025 // 2. interleaving won't help ILP. 8026 // 8027 // The second condition is necessary because, even if the target has no 8028 // vector registers, loop vectorization may still enable scalar 8029 // interleaving. 8030 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8031 return false; 8032 8033 bool Changed = false; 8034 8035 // The vectorizer requires loops to be in simplified form. 8036 // Since simplification may add new inner loops, it has to run before the 8037 // legality and profitability checks. This means running the loop vectorizer 8038 // will simplify all loops, regardless of whether anything end up being 8039 // vectorized. 8040 for (auto &L : *LI) 8041 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8042 8043 // Build up a worklist of inner-loops to vectorize. This is necessary as 8044 // the act of vectorizing or partially unrolling a loop creates new loops 8045 // and can invalidate iterators across the loops. 8046 SmallVector<Loop *, 8> Worklist; 8047 8048 for (Loop *L : *LI) 8049 addAcyclicInnerLoop(*L, Worklist); 8050 8051 LoopsAnalyzed += Worklist.size(); 8052 8053 // Now walk the identified inner loops. 8054 while (!Worklist.empty()) { 8055 Loop *L = Worklist.pop_back_val(); 8056 8057 // For the inner loops we actually process, form LCSSA to simplify the 8058 // transform. 8059 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8060 8061 Changed |= processLoop(L); 8062 } 8063 8064 // Process each loop nest in the function. 8065 return Changed; 8066 8067 } 8068 8069 8070 PreservedAnalyses LoopVectorizePass::run(Function &F, 8071 FunctionAnalysisManager &AM) { 8072 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8073 auto &LI = AM.getResult<LoopAnalysis>(F); 8074 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8075 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8076 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8077 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8078 auto &AA = AM.getResult<AAManager>(F); 8079 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8080 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8081 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8082 8083 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8084 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8085 [&](Loop &L) -> const LoopAccessInfo & { 8086 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8087 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8088 }; 8089 bool Changed = 8090 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8091 if (!Changed) 8092 return PreservedAnalyses::all(); 8093 PreservedAnalyses PA; 8094 PA.preserve<LoopAnalysis>(); 8095 PA.preserve<DominatorTreeAnalysis>(); 8096 PA.preserve<BasicAA>(); 8097 PA.preserve<GlobalsAA>(); 8098 return PA; 8099 } 8100