1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopInfo.h" 62 #include "llvm/Analysis/LoopIterator.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolution.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/TargetTransformInfo.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/VectorUtils.h" 95 #include <algorithm> 96 #include <map> 97 #include <tuple> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define LV_NAME "loop-vectorize" 103 #define DEBUG_TYPE LV_NAME 104 105 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 106 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 107 108 static cl::opt<unsigned> 109 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 110 cl::desc("Sets the SIMD width. Zero is autoselect.")); 111 112 static cl::opt<unsigned> 113 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden, 114 cl::desc("Sets the vectorization interleave count. " 115 "Zero is autoselect.")); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 /// This enables versioning on the strides of symbolically striding memory 130 /// accesses in code like the following. 131 /// for (i = 0; i < N; ++i) 132 /// A[i * Stride1] += B[i * Stride2] ... 133 /// 134 /// Will be roughly translated to 135 /// if (Stride1 == 1 && Stride2 == 1) { 136 /// for (i = 0; i < N; i+=4) 137 /// A[i:i+3] += ... 138 /// } else 139 /// ... 140 static cl::opt<bool> EnableMemAccessVersioning( 141 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 142 cl::desc("Enable symblic stride memory access versioning")); 143 144 /// We don't unroll loops with a known constant trip count below this number. 145 static const unsigned TinyTripCountUnrollThreshold = 128; 146 147 /// When performing memory disambiguation checks at runtime do not make more 148 /// than this number of comparisons. 149 static const unsigned RuntimeMemoryCheckThreshold = 8; 150 151 /// Maximum simd width. 152 static const unsigned MaxVectorWidth = 64; 153 154 static cl::opt<unsigned> ForceTargetNumScalarRegs( 155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's number of scalar registers.")); 157 158 static cl::opt<unsigned> ForceTargetNumVectorRegs( 159 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of vector registers.")); 161 162 /// Maximum vectorization interleave count. 163 static const unsigned MaxInterleaveFactor = 16; 164 165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's max interleave factor for " 168 "scalar loops.")); 169 170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 172 cl::desc("A flag that overrides the target's max interleave factor for " 173 "vectorized loops.")); 174 175 static cl::opt<unsigned> ForceTargetInstructionCost( 176 "force-target-instruction-cost", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's expected cost for " 178 "an instruction to a single constant value. Mostly " 179 "useful for getting consistent testing.")); 180 181 static cl::opt<unsigned> SmallLoopCost( 182 "small-loop-cost", cl::init(20), cl::Hidden, 183 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 184 185 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 187 cl::desc("Enable the use of the block frequency analysis to access PGO " 188 "heuristics minimizing code growth in cold regions and being more " 189 "aggressive in hot regions.")); 190 191 // Runtime unroll loops for load/store throughput. 192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 194 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 195 196 /// The number of stores in a loop that are allowed to need predication. 197 static cl::opt<unsigned> NumberOfStoresToPredicate( 198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 199 cl::desc("Max number of stores to be predicated behind an if.")); 200 201 static cl::opt<bool> EnableIndVarRegisterHeur( 202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 203 cl::desc("Count the induction variable only once when unrolling")); 204 205 static cl::opt<bool> EnableCondStoresVectorization( 206 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 207 cl::desc("Enable if predication of stores during vectorization.")); 208 209 static cl::opt<unsigned> MaxNestedScalarReductionUF( 210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 211 cl::desc("The maximum unroll factor to use when unrolling a scalar " 212 "reduction in a nested loop.")); 213 214 namespace { 215 216 // Forward declarations. 217 class LoopVectorizationLegality; 218 class LoopVectorizationCostModel; 219 class LoopVectorizeHints; 220 221 /// Optimization analysis message produced during vectorization. Messages inform 222 /// the user why vectorization did not occur. 223 class Report { 224 std::string Message; 225 raw_string_ostream Out; 226 Instruction *Instr; 227 228 public: 229 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 230 Out << "loop not vectorized: "; 231 } 232 233 template <typename A> Report &operator<<(const A &Value) { 234 Out << Value; 235 return *this; 236 } 237 238 Instruction *getInstr() { return Instr; } 239 240 std::string &str() { return Out.str(); } 241 operator Twine() { return Out.str(); } 242 }; 243 244 /// InnerLoopVectorizer vectorizes loops which contain only one basic 245 /// block to a specified vectorization factor (VF). 246 /// This class performs the widening of scalars into vectors, or multiple 247 /// scalars. This class also implements the following features: 248 /// * It inserts an epilogue loop for handling loops that don't have iteration 249 /// counts that are known to be a multiple of the vectorization factor. 250 /// * It handles the code generation for reduction variables. 251 /// * Scalarization (implementation using scalars) of un-vectorizable 252 /// instructions. 253 /// InnerLoopVectorizer does not perform any vectorization-legality 254 /// checks, and relies on the caller to check for the different legality 255 /// aspects. The InnerLoopVectorizer relies on the 256 /// LoopVectorizationLegality class to provide information about the induction 257 /// and reduction variables that were found to a given vectorization factor. 258 class InnerLoopVectorizer { 259 public: 260 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 261 DominatorTree *DT, const DataLayout *DL, 262 const TargetLibraryInfo *TLI, unsigned VecWidth, 263 unsigned UnrollFactor) 264 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 265 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 266 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 267 Legal(nullptr) {} 268 269 // Perform the actual loop widening (vectorization). 270 void vectorize(LoopVectorizationLegality *L) { 271 Legal = L; 272 // Create a new empty loop. Unlink the old loop and connect the new one. 273 createEmptyLoop(); 274 // Widen each instruction in the old loop to a new one in the new loop. 275 // Use the Legality module to find the induction and reduction variables. 276 vectorizeLoop(); 277 // Register the new loop and update the analysis passes. 278 updateAnalysis(); 279 } 280 281 virtual ~InnerLoopVectorizer() {} 282 283 protected: 284 /// A small list of PHINodes. 285 typedef SmallVector<PHINode*, 4> PhiVector; 286 /// When we unroll loops we have multiple vector values for each scalar. 287 /// This data structure holds the unrolled and vectorized values that 288 /// originated from one scalar instruction. 289 typedef SmallVector<Value*, 2> VectorParts; 290 291 // When we if-convert we need create edge masks. We have to cache values so 292 // that we don't end up with exponential recursion/IR. 293 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 294 VectorParts> EdgeMaskCache; 295 296 /// \brief Add code that checks at runtime if the accessed arrays overlap. 297 /// 298 /// Returns a pair of instructions where the first element is the first 299 /// instruction generated in possibly a sequence of instructions and the 300 /// second value is the final comparator value or NULL if no check is needed. 301 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 302 303 /// \brief Add checks for strides that where assumed to be 1. 304 /// 305 /// Returns the last check instruction and the first check instruction in the 306 /// pair as (first, last). 307 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 308 309 /// Create an empty loop, based on the loop ranges of the old loop. 310 void createEmptyLoop(); 311 /// Copy and widen the instructions from the old loop. 312 virtual void vectorizeLoop(); 313 314 /// \brief The Loop exit block may have single value PHI nodes where the 315 /// incoming value is 'Undef'. While vectorizing we only handled real values 316 /// that were defined inside the loop. Here we fix the 'undef case'. 317 /// See PR14725. 318 void fixLCSSAPHIs(); 319 320 /// A helper function that computes the predicate of the block BB, assuming 321 /// that the header block of the loop is set to True. It returns the *entry* 322 /// mask for the block BB. 323 VectorParts createBlockInMask(BasicBlock *BB); 324 /// A helper function that computes the predicate of the edge between SRC 325 /// and DST. 326 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 327 328 /// A helper function to vectorize a single BB within the innermost loop. 329 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 330 331 /// Vectorize a single PHINode in a block. This method handles the induction 332 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 333 /// arbitrary length vectors. 334 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 335 unsigned UF, unsigned VF, PhiVector *PV); 336 337 /// Insert the new loop to the loop hierarchy and pass manager 338 /// and update the analysis passes. 339 void updateAnalysis(); 340 341 /// This instruction is un-vectorizable. Implement it as a sequence 342 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 343 /// scalarized instruction behind an if block predicated on the control 344 /// dependence of the instruction. 345 virtual void scalarizeInstruction(Instruction *Instr, 346 bool IfPredicateStore=false); 347 348 /// Vectorize Load and Store instructions, 349 virtual void vectorizeMemoryInstruction(Instruction *Instr); 350 351 /// Create a broadcast instruction. This method generates a broadcast 352 /// instruction (shuffle) for loop invariant values and for the induction 353 /// value. If this is the induction variable then we extend it to N, N+1, ... 354 /// this is needed because each iteration in the loop corresponds to a SIMD 355 /// element. 356 virtual Value *getBroadcastInstrs(Value *V); 357 358 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 359 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 360 /// The sequence starts at StartIndex. 361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 362 363 /// When we go over instructions in the basic block we rely on previous 364 /// values within the current basic block or on loop invariant values. 365 /// When we widen (vectorize) values we place them in the map. If the values 366 /// are not within the map, they have to be loop invariant, so we simply 367 /// broadcast them into a vector. 368 VectorParts &getVectorValue(Value *V); 369 370 /// Generate a shuffle sequence that will reverse the vector Vec. 371 virtual Value *reverseVector(Value *Vec); 372 373 /// This is a helper class that holds the vectorizer state. It maps scalar 374 /// instructions to vector instructions. When the code is 'unrolled' then 375 /// then a single scalar value is mapped to multiple vector parts. The parts 376 /// are stored in the VectorPart type. 377 struct ValueMap { 378 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 379 /// are mapped. 380 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 381 382 /// \return True if 'Key' is saved in the Value Map. 383 bool has(Value *Key) const { return MapStorage.count(Key); } 384 385 /// Initializes a new entry in the map. Sets all of the vector parts to the 386 /// save value in 'Val'. 387 /// \return A reference to a vector with splat values. 388 VectorParts &splat(Value *Key, Value *Val) { 389 VectorParts &Entry = MapStorage[Key]; 390 Entry.assign(UF, Val); 391 return Entry; 392 } 393 394 ///\return A reference to the value that is stored at 'Key'. 395 VectorParts &get(Value *Key) { 396 VectorParts &Entry = MapStorage[Key]; 397 if (Entry.empty()) 398 Entry.resize(UF); 399 assert(Entry.size() == UF); 400 return Entry; 401 } 402 403 private: 404 /// The unroll factor. Each entry in the map stores this number of vector 405 /// elements. 406 unsigned UF; 407 408 /// Map storage. We use std::map and not DenseMap because insertions to a 409 /// dense map invalidates its iterators. 410 std::map<Value *, VectorParts> MapStorage; 411 }; 412 413 /// The original loop. 414 Loop *OrigLoop; 415 /// Scev analysis to use. 416 ScalarEvolution *SE; 417 /// Loop Info. 418 LoopInfo *LI; 419 /// Dominator Tree. 420 DominatorTree *DT; 421 /// Alias Analysis. 422 AliasAnalysis *AA; 423 /// Data Layout. 424 const DataLayout *DL; 425 /// Target Library Info. 426 const TargetLibraryInfo *TLI; 427 428 /// The vectorization SIMD factor to use. Each vector will have this many 429 /// vector elements. 430 unsigned VF; 431 432 protected: 433 /// The vectorization unroll factor to use. Each scalar is vectorized to this 434 /// many different vector instructions. 435 unsigned UF; 436 437 /// The builder that we use 438 IRBuilder<> Builder; 439 440 // --- Vectorization state --- 441 442 /// The vector-loop preheader. 443 BasicBlock *LoopVectorPreHeader; 444 /// The scalar-loop preheader. 445 BasicBlock *LoopScalarPreHeader; 446 /// Middle Block between the vector and the scalar. 447 BasicBlock *LoopMiddleBlock; 448 ///The ExitBlock of the scalar loop. 449 BasicBlock *LoopExitBlock; 450 ///The vector loop body. 451 SmallVector<BasicBlock *, 4> LoopVectorBody; 452 ///The scalar loop body. 453 BasicBlock *LoopScalarBody; 454 /// A list of all bypass blocks. The first block is the entry of the loop. 455 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 456 457 /// The new Induction variable which was added to the new block. 458 PHINode *Induction; 459 /// The induction variable of the old basic block. 460 PHINode *OldInduction; 461 /// Holds the extended (to the widest induction type) start index. 462 Value *ExtendedIdx; 463 /// Maps scalars to widened vectors. 464 ValueMap WidenMap; 465 EdgeMaskCache MaskCache; 466 467 LoopVectorizationLegality *Legal; 468 }; 469 470 class InnerLoopUnroller : public InnerLoopVectorizer { 471 public: 472 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 473 DominatorTree *DT, const DataLayout *DL, 474 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 475 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 476 477 private: 478 void scalarizeInstruction(Instruction *Instr, 479 bool IfPredicateStore = false) override; 480 void vectorizeMemoryInstruction(Instruction *Instr) override; 481 Value *getBroadcastInstrs(Value *V) override; 482 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 483 Value *reverseVector(Value *Vec) override; 484 }; 485 486 /// \brief Look for a meaningful debug location on the instruction or it's 487 /// operands. 488 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 489 if (!I) 490 return I; 491 492 DebugLoc Empty; 493 if (I->getDebugLoc() != Empty) 494 return I; 495 496 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 497 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 498 if (OpInst->getDebugLoc() != Empty) 499 return OpInst; 500 } 501 502 return I; 503 } 504 505 /// \brief Set the debug location in the builder using the debug location in the 506 /// instruction. 507 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 508 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 509 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 510 else 511 B.SetCurrentDebugLocation(DebugLoc()); 512 } 513 514 #ifndef NDEBUG 515 /// \return string containing a file name and a line # for the given loop. 516 static std::string getDebugLocString(const Loop *L) { 517 std::string Result; 518 if (L) { 519 raw_string_ostream OS(Result); 520 const DebugLoc LoopDbgLoc = L->getStartLoc(); 521 if (!LoopDbgLoc.isUnknown()) 522 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 523 else 524 // Just print the module name. 525 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 526 OS.flush(); 527 } 528 return Result; 529 } 530 #endif 531 532 /// \brief Propagate known metadata from one instruction to another. 533 static void propagateMetadata(Instruction *To, const Instruction *From) { 534 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 535 From->getAllMetadataOtherThanDebugLoc(Metadata); 536 537 for (auto M : Metadata) { 538 unsigned Kind = M.first; 539 540 // These are safe to transfer (this is safe for TBAA, even when we 541 // if-convert, because should that metadata have had a control dependency 542 // on the condition, and thus actually aliased with some other 543 // non-speculated memory access when the condition was false, this would be 544 // caught by the runtime overlap checks). 545 if (Kind != LLVMContext::MD_tbaa && 546 Kind != LLVMContext::MD_alias_scope && 547 Kind != LLVMContext::MD_noalias && 548 Kind != LLVMContext::MD_fpmath) 549 continue; 550 551 To->setMetadata(Kind, M.second); 552 } 553 } 554 555 /// \brief Propagate known metadata from one instruction to a vector of others. 556 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 557 for (Value *V : To) 558 if (Instruction *I = dyn_cast<Instruction>(V)) 559 propagateMetadata(I, From); 560 } 561 562 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 563 /// to what vectorization factor. 564 /// This class does not look at the profitability of vectorization, only the 565 /// legality. This class has two main kinds of checks: 566 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 567 /// will change the order of memory accesses in a way that will change the 568 /// correctness of the program. 569 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 570 /// checks for a number of different conditions, such as the availability of a 571 /// single induction variable, that all types are supported and vectorize-able, 572 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 573 /// This class is also used by InnerLoopVectorizer for identifying 574 /// induction variable and the different reduction variables. 575 class LoopVectorizationLegality { 576 public: 577 unsigned NumLoads; 578 unsigned NumStores; 579 unsigned NumPredStores; 580 581 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 582 DominatorTree *DT, TargetLibraryInfo *TLI, 583 AliasAnalysis *AA, Function *F, 584 const TargetTransformInfo *TTI) 585 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 586 DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr), 587 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 588 } 589 590 /// This enum represents the kinds of reductions that we support. 591 enum ReductionKind { 592 RK_NoReduction, ///< Not a reduction. 593 RK_IntegerAdd, ///< Sum of integers. 594 RK_IntegerMult, ///< Product of integers. 595 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 596 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 597 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 598 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 599 RK_FloatAdd, ///< Sum of floats. 600 RK_FloatMult, ///< Product of floats. 601 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 602 }; 603 604 /// This enum represents the kinds of inductions that we support. 605 enum InductionKind { 606 IK_NoInduction, ///< Not an induction variable. 607 IK_IntInduction, ///< Integer induction variable. Step = 1. 608 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 609 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 610 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 611 }; 612 613 // This enum represents the kind of minmax reduction. 614 enum MinMaxReductionKind { 615 MRK_Invalid, 616 MRK_UIntMin, 617 MRK_UIntMax, 618 MRK_SIntMin, 619 MRK_SIntMax, 620 MRK_FloatMin, 621 MRK_FloatMax 622 }; 623 624 /// This struct holds information about reduction variables. 625 struct ReductionDescriptor { 626 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 627 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 628 629 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 630 MinMaxReductionKind MK) 631 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 632 633 // The starting value of the reduction. 634 // It does not have to be zero! 635 TrackingVH<Value> StartValue; 636 // The instruction who's value is used outside the loop. 637 Instruction *LoopExitInstr; 638 // The kind of the reduction. 639 ReductionKind Kind; 640 // If this a min/max reduction the kind of reduction. 641 MinMaxReductionKind MinMaxKind; 642 }; 643 644 /// This POD struct holds information about a potential reduction operation. 645 struct ReductionInstDesc { 646 ReductionInstDesc(bool IsRedux, Instruction *I) : 647 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 648 649 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 650 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 651 652 // Is this instruction a reduction candidate. 653 bool IsReduction; 654 // The last instruction in a min/max pattern (select of the select(icmp()) 655 // pattern), or the current reduction instruction otherwise. 656 Instruction *PatternLastInst; 657 // If this is a min/max pattern the comparison predicate. 658 MinMaxReductionKind MinMaxKind; 659 }; 660 661 /// This struct holds information about the memory runtime legality 662 /// check that a group of pointers do not overlap. 663 struct RuntimePointerCheck { 664 RuntimePointerCheck() : Need(false) {} 665 666 /// Reset the state of the pointer runtime information. 667 void reset() { 668 Need = false; 669 Pointers.clear(); 670 Starts.clear(); 671 Ends.clear(); 672 IsWritePtr.clear(); 673 DependencySetId.clear(); 674 AliasSetId.clear(); 675 } 676 677 /// Insert a pointer and calculate the start and end SCEVs. 678 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 679 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 680 681 /// This flag indicates if we need to add the runtime check. 682 bool Need; 683 /// Holds the pointers that we need to check. 684 SmallVector<TrackingVH<Value>, 2> Pointers; 685 /// Holds the pointer value at the beginning of the loop. 686 SmallVector<const SCEV*, 2> Starts; 687 /// Holds the pointer value at the end of the loop. 688 SmallVector<const SCEV*, 2> Ends; 689 /// Holds the information if this pointer is used for writing to memory. 690 SmallVector<bool, 2> IsWritePtr; 691 /// Holds the id of the set of pointers that could be dependent because of a 692 /// shared underlying object. 693 SmallVector<unsigned, 2> DependencySetId; 694 /// Holds the id of the disjoint alias set to which this pointer belongs. 695 SmallVector<unsigned, 2> AliasSetId; 696 }; 697 698 /// A struct for saving information about induction variables. 699 struct InductionInfo { 700 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 701 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 702 /// Start value. 703 TrackingVH<Value> StartValue; 704 /// Induction kind. 705 InductionKind IK; 706 }; 707 708 /// ReductionList contains the reduction descriptors for all 709 /// of the reductions that were found in the loop. 710 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 711 712 /// InductionList saves induction variables and maps them to the 713 /// induction descriptor. 714 typedef MapVector<PHINode*, InductionInfo> InductionList; 715 716 /// Returns true if it is legal to vectorize this loop. 717 /// This does not mean that it is profitable to vectorize this 718 /// loop, only that it is legal to do so. 719 bool canVectorize(); 720 721 /// Returns the Induction variable. 722 PHINode *getInduction() { return Induction; } 723 724 /// Returns the reduction variables found in the loop. 725 ReductionList *getReductionVars() { return &Reductions; } 726 727 /// Returns the induction variables found in the loop. 728 InductionList *getInductionVars() { return &Inductions; } 729 730 /// Returns the widest induction type. 731 Type *getWidestInductionType() { return WidestIndTy; } 732 733 /// Returns True if V is an induction variable in this loop. 734 bool isInductionVariable(const Value *V); 735 736 /// Return true if the block BB needs to be predicated in order for the loop 737 /// to be vectorized. 738 bool blockNeedsPredication(BasicBlock *BB); 739 740 /// Check if this pointer is consecutive when vectorizing. This happens 741 /// when the last index of the GEP is the induction variable, or that the 742 /// pointer itself is an induction variable. 743 /// This check allows us to vectorize A[idx] into a wide load/store. 744 /// Returns: 745 /// 0 - Stride is unknown or non-consecutive. 746 /// 1 - Address is consecutive. 747 /// -1 - Address is consecutive, and decreasing. 748 int isConsecutivePtr(Value *Ptr); 749 750 /// Returns true if the value V is uniform within the loop. 751 bool isUniform(Value *V); 752 753 /// Returns true if this instruction will remain scalar after vectorization. 754 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 755 756 /// Returns the information that we collected about runtime memory check. 757 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 758 759 /// This function returns the identity element (or neutral element) for 760 /// the operation K. 761 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 762 763 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 764 765 bool hasStride(Value *V) { return StrideSet.count(V); } 766 bool mustCheckStrides() { return !StrideSet.empty(); } 767 SmallPtrSet<Value *, 8>::iterator strides_begin() { 768 return StrideSet.begin(); 769 } 770 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 771 772 /// Returns true if the target machine supports masked store operation 773 /// for the given \p DataType and kind of access to \p Ptr. 774 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 775 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 776 } 777 /// Returns true if the target machine supports masked load operation 778 /// for the given \p DataType and kind of access to \p Ptr. 779 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 780 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 781 } 782 /// Returns true if vector representation of the instruction \p I 783 /// requires mask. 784 bool isMaskRequired(const Instruction* I) { 785 return (MaskedOp.count(I) != 0); 786 } 787 private: 788 /// Check if a single basic block loop is vectorizable. 789 /// At this point we know that this is a loop with a constant trip count 790 /// and we only need to check individual instructions. 791 bool canVectorizeInstrs(); 792 793 /// When we vectorize loops we may change the order in which 794 /// we read and write from memory. This method checks if it is 795 /// legal to vectorize the code, considering only memory constrains. 796 /// Returns true if the loop is vectorizable 797 bool canVectorizeMemory(); 798 799 /// Return true if we can vectorize this loop using the IF-conversion 800 /// transformation. 801 bool canVectorizeWithIfConvert(); 802 803 /// Collect the variables that need to stay uniform after vectorization. 804 void collectLoopUniforms(); 805 806 /// Return true if all of the instructions in the block can be speculatively 807 /// executed. \p SafePtrs is a list of addresses that are known to be legal 808 /// and we know that we can read from them without segfault. 809 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 810 811 /// Returns True, if 'Phi' is the kind of reduction variable for type 812 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 813 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 814 /// Returns a struct describing if the instruction 'I' can be a reduction 815 /// variable of type 'Kind'. If the reduction is a min/max pattern of 816 /// select(icmp()) this function advances the instruction pointer 'I' from the 817 /// compare instruction to the select instruction and stores this pointer in 818 /// 'PatternLastInst' member of the returned struct. 819 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 820 ReductionInstDesc &Desc); 821 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 822 /// pattern corresponding to a min(X, Y) or max(X, Y). 823 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 824 ReductionInstDesc &Prev); 825 /// Returns the induction kind of Phi. This function may return NoInduction 826 /// if the PHI is not an induction variable. 827 InductionKind isInductionVariable(PHINode *Phi); 828 829 /// \brief Collect memory access with loop invariant strides. 830 /// 831 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 832 /// invariant. 833 void collectStridedAccess(Value *LoadOrStoreInst); 834 835 /// Report an analysis message to assist the user in diagnosing loops that are 836 /// not vectorized. 837 void emitAnalysis(Report &Message) { 838 DebugLoc DL = TheLoop->getStartLoc(); 839 if (Instruction *I = Message.getInstr()) 840 DL = I->getDebugLoc(); 841 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 842 *TheFunction, DL, Message.str()); 843 } 844 845 /// The loop that we evaluate. 846 Loop *TheLoop; 847 /// Scev analysis. 848 ScalarEvolution *SE; 849 /// DataLayout analysis. 850 const DataLayout *DL; 851 /// Dominators. 852 DominatorTree *DT; 853 /// Target Library Info. 854 TargetLibraryInfo *TLI; 855 /// Alias analysis. 856 AliasAnalysis *AA; 857 /// Parent function 858 Function *TheFunction; 859 /// Target Transform Info 860 const TargetTransformInfo *TTI; 861 862 // --- vectorization state --- // 863 864 /// Holds the integer induction variable. This is the counter of the 865 /// loop. 866 PHINode *Induction; 867 /// Holds the reduction variables. 868 ReductionList Reductions; 869 /// Holds all of the induction variables that we found in the loop. 870 /// Notice that inductions don't need to start at zero and that induction 871 /// variables can be pointers. 872 InductionList Inductions; 873 /// Holds the widest induction type encountered. 874 Type *WidestIndTy; 875 876 /// Allowed outside users. This holds the reduction 877 /// vars which can be accessed from outside the loop. 878 SmallPtrSet<Value*, 4> AllowedExit; 879 /// This set holds the variables which are known to be uniform after 880 /// vectorization. 881 SmallPtrSet<Instruction*, 4> Uniforms; 882 /// We need to check that all of the pointers in this list are disjoint 883 /// at runtime. 884 RuntimePointerCheck PtrRtCheck; 885 /// Can we assume the absence of NaNs. 886 bool HasFunNoNaNAttr; 887 888 unsigned MaxSafeDepDistBytes; 889 890 ValueToValueMap Strides; 891 SmallPtrSet<Value *, 8> StrideSet; 892 893 /// While vectorizing these instructions we have to generate a 894 /// call to the appropriate masked intrinsic 895 SmallPtrSet<const Instruction*, 8> MaskedOp; 896 }; 897 898 /// LoopVectorizationCostModel - estimates the expected speedups due to 899 /// vectorization. 900 /// In many cases vectorization is not profitable. This can happen because of 901 /// a number of reasons. In this class we mainly attempt to predict the 902 /// expected speedup/slowdowns due to the supported instruction set. We use the 903 /// TargetTransformInfo to query the different backends for the cost of 904 /// different operations. 905 class LoopVectorizationCostModel { 906 public: 907 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 908 LoopVectorizationLegality *Legal, 909 const TargetTransformInfo &TTI, 910 const DataLayout *DL, const TargetLibraryInfo *TLI, 911 AssumptionCache *AC, const Function *F, 912 const LoopVectorizeHints *Hints) 913 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 914 TheFunction(F), Hints(Hints) { 915 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 916 } 917 918 /// Information about vectorization costs 919 struct VectorizationFactor { 920 unsigned Width; // Vector width with best cost 921 unsigned Cost; // Cost of the loop with that width 922 }; 923 /// \return The most profitable vectorization factor and the cost of that VF. 924 /// This method checks every power of two up to VF. If UserVF is not ZERO 925 /// then this vectorization factor will be selected if vectorization is 926 /// possible. 927 VectorizationFactor selectVectorizationFactor(bool OptForSize); 928 929 /// \return The size (in bits) of the widest type in the code that 930 /// needs to be vectorized. We ignore values that remain scalar such as 931 /// 64 bit loop indices. 932 unsigned getWidestType(); 933 934 /// \return The most profitable unroll factor. 935 /// If UserUF is non-zero then this method finds the best unroll-factor 936 /// based on register pressure and other parameters. 937 /// VF and LoopCost are the selected vectorization factor and the cost of the 938 /// selected VF. 939 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 940 941 /// \brief A struct that represents some properties of the register usage 942 /// of a loop. 943 struct RegisterUsage { 944 /// Holds the number of loop invariant values that are used in the loop. 945 unsigned LoopInvariantRegs; 946 /// Holds the maximum number of concurrent live intervals in the loop. 947 unsigned MaxLocalUsers; 948 /// Holds the number of instructions in the loop. 949 unsigned NumInstructions; 950 }; 951 952 /// \return information about the register usage of the loop. 953 RegisterUsage calculateRegisterUsage(); 954 955 private: 956 /// Returns the expected execution cost. The unit of the cost does 957 /// not matter because we use the 'cost' units to compare different 958 /// vector widths. The cost that is returned is *not* normalized by 959 /// the factor width. 960 unsigned expectedCost(unsigned VF); 961 962 /// Returns the execution time cost of an instruction for a given vector 963 /// width. Vector width of one means scalar. 964 unsigned getInstructionCost(Instruction *I, unsigned VF); 965 966 /// A helper function for converting Scalar types to vector types. 967 /// If the incoming type is void, we return void. If the VF is 1, we return 968 /// the scalar type. 969 static Type* ToVectorTy(Type *Scalar, unsigned VF); 970 971 /// Returns whether the instruction is a load or store and will be a emitted 972 /// as a vector operation. 973 bool isConsecutiveLoadOrStore(Instruction *I); 974 975 /// Report an analysis message to assist the user in diagnosing loops that are 976 /// not vectorized. 977 void emitAnalysis(Report &Message) { 978 DebugLoc DL = TheLoop->getStartLoc(); 979 if (Instruction *I = Message.getInstr()) 980 DL = I->getDebugLoc(); 981 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 982 *TheFunction, DL, Message.str()); 983 } 984 985 /// Values used only by @llvm.assume calls. 986 SmallPtrSet<const Value *, 32> EphValues; 987 988 /// The loop that we evaluate. 989 Loop *TheLoop; 990 /// Scev analysis. 991 ScalarEvolution *SE; 992 /// Loop Info analysis. 993 LoopInfo *LI; 994 /// Vectorization legality. 995 LoopVectorizationLegality *Legal; 996 /// Vector target information. 997 const TargetTransformInfo &TTI; 998 /// Target data layout information. 999 const DataLayout *DL; 1000 /// Target Library Info. 1001 const TargetLibraryInfo *TLI; 1002 const Function *TheFunction; 1003 // Loop Vectorize Hint. 1004 const LoopVectorizeHints *Hints; 1005 }; 1006 1007 /// Utility class for getting and setting loop vectorizer hints in the form 1008 /// of loop metadata. 1009 /// This class keeps a number of loop annotations locally (as member variables) 1010 /// and can, upon request, write them back as metadata on the loop. It will 1011 /// initially scan the loop for existing metadata, and will update the local 1012 /// values based on information in the loop. 1013 /// We cannot write all values to metadata, as the mere presence of some info, 1014 /// for example 'force', means a decision has been made. So, we need to be 1015 /// careful NOT to add them if the user hasn't specifically asked so. 1016 class LoopVectorizeHints { 1017 enum HintKind { 1018 HK_WIDTH, 1019 HK_UNROLL, 1020 HK_FORCE 1021 }; 1022 1023 /// Hint - associates name and validation with the hint value. 1024 struct Hint { 1025 const char * Name; 1026 unsigned Value; // This may have to change for non-numeric values. 1027 HintKind Kind; 1028 1029 Hint(const char * Name, unsigned Value, HintKind Kind) 1030 : Name(Name), Value(Value), Kind(Kind) { } 1031 1032 bool validate(unsigned Val) { 1033 switch (Kind) { 1034 case HK_WIDTH: 1035 return isPowerOf2_32(Val) && Val <= MaxVectorWidth; 1036 case HK_UNROLL: 1037 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1038 case HK_FORCE: 1039 return (Val <= 1); 1040 } 1041 return false; 1042 } 1043 }; 1044 1045 /// Vectorization width. 1046 Hint Width; 1047 /// Vectorization interleave factor. 1048 Hint Interleave; 1049 /// Vectorization forced 1050 Hint Force; 1051 1052 /// Return the loop metadata prefix. 1053 static StringRef Prefix() { return "llvm.loop."; } 1054 1055 public: 1056 enum ForceKind { 1057 FK_Undefined = -1, ///< Not selected. 1058 FK_Disabled = 0, ///< Forcing disabled. 1059 FK_Enabled = 1, ///< Forcing enabled. 1060 }; 1061 1062 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1063 : Width("vectorize.width", VectorizationFactor, HK_WIDTH), 1064 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1065 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1066 TheLoop(L) { 1067 // Populate values with existing loop metadata. 1068 getHintsFromMetadata(); 1069 1070 // force-vector-interleave overrides DisableInterleaving. 1071 if (VectorizationInterleave.getNumOccurrences() > 0) 1072 Interleave.Value = VectorizationInterleave; 1073 1074 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1075 << "LV: Interleaving disabled by the pass manager\n"); 1076 } 1077 1078 /// Mark the loop L as already vectorized by setting the width to 1. 1079 void setAlreadyVectorized() { 1080 Width.Value = Interleave.Value = 1; 1081 Hint Hints[] = {Width, Interleave}; 1082 writeHintsToMetadata(Hints); 1083 } 1084 1085 /// Dumps all the hint information. 1086 std::string emitRemark() const { 1087 Report R; 1088 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1089 R << "vectorization is explicitly disabled"; 1090 else { 1091 R << "use -Rpass-analysis=loop-vectorize for more info"; 1092 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1093 R << " (Force=true"; 1094 if (Width.Value != 0) 1095 R << ", Vector Width=" << Width.Value; 1096 if (Interleave.Value != 0) 1097 R << ", Interleave Count=" << Interleave.Value; 1098 R << ")"; 1099 } 1100 } 1101 1102 return R.str(); 1103 } 1104 1105 unsigned getWidth() const { return Width.Value; } 1106 unsigned getInterleave() const { return Interleave.Value; } 1107 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1108 1109 private: 1110 /// Find hints specified in the loop metadata and update local values. 1111 void getHintsFromMetadata() { 1112 MDNode *LoopID = TheLoop->getLoopID(); 1113 if (!LoopID) 1114 return; 1115 1116 // First operand should refer to the loop id itself. 1117 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1118 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1119 1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1121 const MDString *S = nullptr; 1122 SmallVector<Metadata *, 4> Args; 1123 1124 // The expected hint is either a MDString or a MDNode with the first 1125 // operand a MDString. 1126 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1127 if (!MD || MD->getNumOperands() == 0) 1128 continue; 1129 S = dyn_cast<MDString>(MD->getOperand(0)); 1130 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1131 Args.push_back(MD->getOperand(i)); 1132 } else { 1133 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1134 assert(Args.size() == 0 && "too many arguments for MDString"); 1135 } 1136 1137 if (!S) 1138 continue; 1139 1140 // Check if the hint starts with the loop metadata prefix. 1141 StringRef Name = S->getString(); 1142 if (Args.size() == 1) 1143 setHint(Name, Args[0]); 1144 } 1145 } 1146 1147 /// Checks string hint with one operand and set value if valid. 1148 void setHint(StringRef Name, Metadata *Arg) { 1149 if (!Name.startswith(Prefix())) 1150 return; 1151 Name = Name.substr(Prefix().size(), StringRef::npos); 1152 1153 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1154 if (!C) return; 1155 unsigned Val = C->getZExtValue(); 1156 1157 Hint *Hints[] = {&Width, &Interleave, &Force}; 1158 for (auto H : Hints) { 1159 if (Name == H->Name) { 1160 if (H->validate(Val)) 1161 H->Value = Val; 1162 else 1163 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1164 break; 1165 } 1166 } 1167 } 1168 1169 /// Create a new hint from name / value pair. 1170 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1171 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1172 Metadata *MDs[] = {MDString::get(Context, Name), 1173 ConstantAsMetadata::get( 1174 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1175 return MDNode::get(Context, MDs); 1176 } 1177 1178 /// Matches metadata with hint name. 1179 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1180 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1181 if (!Name) 1182 return false; 1183 1184 for (auto H : HintTypes) 1185 if (Name->getString().endswith(H.Name)) 1186 return true; 1187 return false; 1188 } 1189 1190 /// Sets current hints into loop metadata, keeping other values intact. 1191 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1192 if (HintTypes.size() == 0) 1193 return; 1194 1195 // Reserve the first element to LoopID (see below). 1196 SmallVector<Metadata *, 4> MDs(1); 1197 // If the loop already has metadata, then ignore the existing operands. 1198 MDNode *LoopID = TheLoop->getLoopID(); 1199 if (LoopID) { 1200 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1201 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1202 // If node in update list, ignore old value. 1203 if (!matchesHintMetadataName(Node, HintTypes)) 1204 MDs.push_back(Node); 1205 } 1206 } 1207 1208 // Now, add the missing hints. 1209 for (auto H : HintTypes) 1210 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1211 1212 // Replace current metadata node with new one. 1213 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1214 MDNode *NewLoopID = MDNode::get(Context, MDs); 1215 // Set operand 0 to refer to the loop id itself. 1216 NewLoopID->replaceOperandWith(0, NewLoopID); 1217 1218 TheLoop->setLoopID(NewLoopID); 1219 } 1220 1221 /// The loop these hints belong to. 1222 const Loop *TheLoop; 1223 }; 1224 1225 static void emitMissedWarning(Function *F, Loop *L, 1226 const LoopVectorizeHints &LH) { 1227 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1228 L->getStartLoc(), LH.emitRemark()); 1229 1230 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1231 if (LH.getWidth() != 1) 1232 emitLoopVectorizeWarning( 1233 F->getContext(), *F, L->getStartLoc(), 1234 "failed explicitly specified loop vectorization"); 1235 else if (LH.getInterleave() != 1) 1236 emitLoopInterleaveWarning( 1237 F->getContext(), *F, L->getStartLoc(), 1238 "failed explicitly specified loop interleaving"); 1239 } 1240 } 1241 1242 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1243 if (L.empty()) 1244 return V.push_back(&L); 1245 1246 for (Loop *InnerL : L) 1247 addInnerLoop(*InnerL, V); 1248 } 1249 1250 /// The LoopVectorize Pass. 1251 struct LoopVectorize : public FunctionPass { 1252 /// Pass identification, replacement for typeid 1253 static char ID; 1254 1255 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1256 : FunctionPass(ID), 1257 DisableUnrolling(NoUnrolling), 1258 AlwaysVectorize(AlwaysVectorize) { 1259 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1260 } 1261 1262 ScalarEvolution *SE; 1263 const DataLayout *DL; 1264 LoopInfo *LI; 1265 TargetTransformInfo *TTI; 1266 DominatorTree *DT; 1267 BlockFrequencyInfo *BFI; 1268 TargetLibraryInfo *TLI; 1269 AliasAnalysis *AA; 1270 AssumptionCache *AC; 1271 bool DisableUnrolling; 1272 bool AlwaysVectorize; 1273 1274 BlockFrequency ColdEntryFreq; 1275 1276 bool runOnFunction(Function &F) override { 1277 SE = &getAnalysis<ScalarEvolution>(); 1278 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1279 DL = DLP ? &DLP->getDataLayout() : nullptr; 1280 LI = &getAnalysis<LoopInfo>(); 1281 TTI = &getAnalysis<TargetTransformInfo>(); 1282 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1283 BFI = &getAnalysis<BlockFrequencyInfo>(); 1284 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1285 AA = &getAnalysis<AliasAnalysis>(); 1286 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1287 1288 // Compute some weights outside of the loop over the loops. Compute this 1289 // using a BranchProbability to re-use its scaling math. 1290 const BranchProbability ColdProb(1, 5); // 20% 1291 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1292 1293 // If the target claims to have no vector registers don't attempt 1294 // vectorization. 1295 if (!TTI->getNumberOfRegisters(true)) 1296 return false; 1297 1298 if (!DL) { 1299 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1300 << ": Missing data layout\n"); 1301 return false; 1302 } 1303 1304 // Build up a worklist of inner-loops to vectorize. This is necessary as 1305 // the act of vectorizing or partially unrolling a loop creates new loops 1306 // and can invalidate iterators across the loops. 1307 SmallVector<Loop *, 8> Worklist; 1308 1309 for (Loop *L : *LI) 1310 addInnerLoop(*L, Worklist); 1311 1312 LoopsAnalyzed += Worklist.size(); 1313 1314 // Now walk the identified inner loops. 1315 bool Changed = false; 1316 while (!Worklist.empty()) 1317 Changed |= processLoop(Worklist.pop_back_val()); 1318 1319 // Process each loop nest in the function. 1320 return Changed; 1321 } 1322 1323 bool processLoop(Loop *L) { 1324 assert(L->empty() && "Only process inner loops."); 1325 1326 #ifndef NDEBUG 1327 const std::string DebugLocStr = getDebugLocString(L); 1328 #endif /* NDEBUG */ 1329 1330 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1331 << L->getHeader()->getParent()->getName() << "\" from " 1332 << DebugLocStr << "\n"); 1333 1334 LoopVectorizeHints Hints(L, DisableUnrolling); 1335 1336 DEBUG(dbgs() << "LV: Loop hints:" 1337 << " force=" 1338 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1339 ? "disabled" 1340 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1341 ? "enabled" 1342 : "?")) << " width=" << Hints.getWidth() 1343 << " unroll=" << Hints.getInterleave() << "\n"); 1344 1345 // Function containing loop 1346 Function *F = L->getHeader()->getParent(); 1347 1348 // Looking at the diagnostic output is the only way to determine if a loop 1349 // was vectorized (other than looking at the IR or machine code), so it 1350 // is important to generate an optimization remark for each loop. Most of 1351 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1352 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1353 // less verbose reporting vectorized loops and unvectorized loops that may 1354 // benefit from vectorization, respectively. 1355 1356 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1357 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1358 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1359 L->getStartLoc(), Hints.emitRemark()); 1360 return false; 1361 } 1362 1363 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1364 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1365 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1366 L->getStartLoc(), Hints.emitRemark()); 1367 return false; 1368 } 1369 1370 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1371 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1372 emitOptimizationRemarkAnalysis( 1373 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1374 "loop not vectorized: vector width and interleave count are " 1375 "explicitly set to 1"); 1376 return false; 1377 } 1378 1379 // Check the loop for a trip count threshold: 1380 // do not vectorize loops with a tiny trip count. 1381 const unsigned TC = SE->getSmallConstantTripCount(L); 1382 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1383 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1384 << "This loop is not worth vectorizing."); 1385 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1386 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1387 else { 1388 DEBUG(dbgs() << "\n"); 1389 emitOptimizationRemarkAnalysis( 1390 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1391 "vectorization is not beneficial and is not explicitly forced"); 1392 return false; 1393 } 1394 } 1395 1396 // Check if it is legal to vectorize the loop. 1397 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI); 1398 if (!LVL.canVectorize()) { 1399 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1400 emitMissedWarning(F, L, Hints); 1401 return false; 1402 } 1403 1404 // Use the cost model. 1405 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F, 1406 &Hints); 1407 1408 // Check the function attributes to find out if this function should be 1409 // optimized for size. 1410 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1411 F->hasFnAttribute(Attribute::OptimizeForSize); 1412 1413 // Compute the weighted frequency of this loop being executed and see if it 1414 // is less than 20% of the function entry baseline frequency. Note that we 1415 // always have a canonical loop here because we think we *can* vectoriez. 1416 // FIXME: This is hidden behind a flag due to pervasive problems with 1417 // exactly what block frequency models. 1418 if (LoopVectorizeWithBlockFrequency) { 1419 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1420 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1421 LoopEntryFreq < ColdEntryFreq) 1422 OptForSize = true; 1423 } 1424 1425 // Check the function attributes to see if implicit floats are allowed.a 1426 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1427 // an integer loop and the vector instructions selected are purely integer 1428 // vector instructions? 1429 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1430 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1431 "attribute is used.\n"); 1432 emitOptimizationRemarkAnalysis( 1433 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1434 "loop not vectorized due to NoImplicitFloat attribute"); 1435 emitMissedWarning(F, L, Hints); 1436 return false; 1437 } 1438 1439 // Select the optimal vectorization factor. 1440 const LoopVectorizationCostModel::VectorizationFactor VF = 1441 CM.selectVectorizationFactor(OptForSize); 1442 1443 // Select the unroll factor. 1444 const unsigned UF = 1445 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1446 1447 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1448 << DebugLocStr << '\n'); 1449 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1450 1451 if (VF.Width == 1) { 1452 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1453 1454 if (UF == 1) { 1455 emitOptimizationRemarkAnalysis( 1456 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1457 "not beneficial to vectorize and user disabled interleaving"); 1458 return false; 1459 } 1460 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1461 1462 // Report the unrolling decision. 1463 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1464 Twine("unrolled with interleaving factor " + 1465 Twine(UF) + 1466 " (vectorization not beneficial)")); 1467 1468 // We decided not to vectorize, but we may want to unroll. 1469 1470 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1471 Unroller.vectorize(&LVL); 1472 } else { 1473 // If we decided that it is *legal* to vectorize the loop then do it. 1474 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1475 LB.vectorize(&LVL); 1476 ++LoopsVectorized; 1477 1478 // Report the vectorization decision. 1479 emitOptimizationRemark( 1480 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1481 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1482 ", unrolling interleave factor: " + Twine(UF) + ")"); 1483 } 1484 1485 // Mark the loop as already vectorized to avoid vectorizing again. 1486 Hints.setAlreadyVectorized(); 1487 1488 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1489 return true; 1490 } 1491 1492 void getAnalysisUsage(AnalysisUsage &AU) const override { 1493 AU.addRequired<AssumptionCacheTracker>(); 1494 AU.addRequiredID(LoopSimplifyID); 1495 AU.addRequiredID(LCSSAID); 1496 AU.addRequired<BlockFrequencyInfo>(); 1497 AU.addRequired<DominatorTreeWrapperPass>(); 1498 AU.addRequired<LoopInfo>(); 1499 AU.addRequired<ScalarEvolution>(); 1500 AU.addRequired<TargetTransformInfo>(); 1501 AU.addRequired<AliasAnalysis>(); 1502 AU.addPreserved<LoopInfo>(); 1503 AU.addPreserved<DominatorTreeWrapperPass>(); 1504 AU.addPreserved<AliasAnalysis>(); 1505 } 1506 1507 }; 1508 1509 } // end anonymous namespace 1510 1511 //===----------------------------------------------------------------------===// 1512 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1513 // LoopVectorizationCostModel. 1514 //===----------------------------------------------------------------------===// 1515 1516 static Value *stripIntegerCast(Value *V) { 1517 if (CastInst *CI = dyn_cast<CastInst>(V)) 1518 if (CI->getOperand(0)->getType()->isIntegerTy()) 1519 return CI->getOperand(0); 1520 return V; 1521 } 1522 1523 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1524 /// 1525 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1526 /// \p Ptr. 1527 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1528 ValueToValueMap &PtrToStride, 1529 Value *Ptr, Value *OrigPtr = nullptr) { 1530 1531 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1532 1533 // If there is an entry in the map return the SCEV of the pointer with the 1534 // symbolic stride replaced by one. 1535 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1536 if (SI != PtrToStride.end()) { 1537 Value *StrideVal = SI->second; 1538 1539 // Strip casts. 1540 StrideVal = stripIntegerCast(StrideVal); 1541 1542 // Replace symbolic stride by one. 1543 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1544 ValueToValueMap RewriteMap; 1545 RewriteMap[StrideVal] = One; 1546 1547 const SCEV *ByOne = 1548 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1549 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1550 << "\n"); 1551 return ByOne; 1552 } 1553 1554 // Otherwise, just return the SCEV of the original pointer. 1555 return SE->getSCEV(Ptr); 1556 } 1557 1558 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1559 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1560 unsigned ASId, ValueToValueMap &Strides) { 1561 // Get the stride replaced scev. 1562 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1563 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1564 assert(AR && "Invalid addrec expression"); 1565 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1566 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1567 Pointers.push_back(Ptr); 1568 Starts.push_back(AR->getStart()); 1569 Ends.push_back(ScEnd); 1570 IsWritePtr.push_back(WritePtr); 1571 DependencySetId.push_back(DepSetId); 1572 AliasSetId.push_back(ASId); 1573 } 1574 1575 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1576 // We need to place the broadcast of invariant variables outside the loop. 1577 Instruction *Instr = dyn_cast<Instruction>(V); 1578 bool NewInstr = 1579 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1580 Instr->getParent()) != LoopVectorBody.end()); 1581 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1582 1583 // Place the code for broadcasting invariant variables in the new preheader. 1584 IRBuilder<>::InsertPointGuard Guard(Builder); 1585 if (Invariant) 1586 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1587 1588 // Broadcast the scalar into all locations in the vector. 1589 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1590 1591 return Shuf; 1592 } 1593 1594 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1595 bool Negate) { 1596 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1597 assert(Val->getType()->getScalarType()->isIntegerTy() && 1598 "Elem must be an integer"); 1599 // Create the types. 1600 Type *ITy = Val->getType()->getScalarType(); 1601 VectorType *Ty = cast<VectorType>(Val->getType()); 1602 int VLen = Ty->getNumElements(); 1603 SmallVector<Constant*, 8> Indices; 1604 1605 // Create a vector of consecutive numbers from zero to VF. 1606 for (int i = 0; i < VLen; ++i) { 1607 int64_t Idx = Negate ? (-i) : i; 1608 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1609 } 1610 1611 // Add the consecutive indices to the vector value. 1612 Constant *Cv = ConstantVector::get(Indices); 1613 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1614 return Builder.CreateAdd(Val, Cv, "induction"); 1615 } 1616 1617 /// \brief Find the operand of the GEP that should be checked for consecutive 1618 /// stores. This ignores trailing indices that have no effect on the final 1619 /// pointer. 1620 static unsigned getGEPInductionOperand(const DataLayout *DL, 1621 const GetElementPtrInst *Gep) { 1622 unsigned LastOperand = Gep->getNumOperands() - 1; 1623 unsigned GEPAllocSize = DL->getTypeAllocSize( 1624 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1625 1626 // Walk backwards and try to peel off zeros. 1627 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1628 // Find the type we're currently indexing into. 1629 gep_type_iterator GEPTI = gep_type_begin(Gep); 1630 std::advance(GEPTI, LastOperand - 1); 1631 1632 // If it's a type with the same allocation size as the result of the GEP we 1633 // can peel off the zero index. 1634 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1635 break; 1636 --LastOperand; 1637 } 1638 1639 return LastOperand; 1640 } 1641 1642 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1643 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1644 // Make sure that the pointer does not point to structs. 1645 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1646 return 0; 1647 1648 // If this value is a pointer induction variable we know it is consecutive. 1649 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1650 if (Phi && Inductions.count(Phi)) { 1651 InductionInfo II = Inductions[Phi]; 1652 if (IK_PtrInduction == II.IK) 1653 return 1; 1654 else if (IK_ReversePtrInduction == II.IK) 1655 return -1; 1656 } 1657 1658 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1659 if (!Gep) 1660 return 0; 1661 1662 unsigned NumOperands = Gep->getNumOperands(); 1663 Value *GpPtr = Gep->getPointerOperand(); 1664 // If this GEP value is a consecutive pointer induction variable and all of 1665 // the indices are constant then we know it is consecutive. We can 1666 Phi = dyn_cast<PHINode>(GpPtr); 1667 if (Phi && Inductions.count(Phi)) { 1668 1669 // Make sure that the pointer does not point to structs. 1670 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1671 if (GepPtrType->getElementType()->isAggregateType()) 1672 return 0; 1673 1674 // Make sure that all of the index operands are loop invariant. 1675 for (unsigned i = 1; i < NumOperands; ++i) 1676 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1677 return 0; 1678 1679 InductionInfo II = Inductions[Phi]; 1680 if (IK_PtrInduction == II.IK) 1681 return 1; 1682 else if (IK_ReversePtrInduction == II.IK) 1683 return -1; 1684 } 1685 1686 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1687 1688 // Check that all of the gep indices are uniform except for our induction 1689 // operand. 1690 for (unsigned i = 0; i != NumOperands; ++i) 1691 if (i != InductionOperand && 1692 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1693 return 0; 1694 1695 // We can emit wide load/stores only if the last non-zero index is the 1696 // induction variable. 1697 const SCEV *Last = nullptr; 1698 if (!Strides.count(Gep)) 1699 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1700 else { 1701 // Because of the multiplication by a stride we can have a s/zext cast. 1702 // We are going to replace this stride by 1 so the cast is safe to ignore. 1703 // 1704 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1705 // %0 = trunc i64 %indvars.iv to i32 1706 // %mul = mul i32 %0, %Stride1 1707 // %idxprom = zext i32 %mul to i64 << Safe cast. 1708 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1709 // 1710 Last = replaceSymbolicStrideSCEV(SE, Strides, 1711 Gep->getOperand(InductionOperand), Gep); 1712 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1713 Last = 1714 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1715 ? C->getOperand() 1716 : Last; 1717 } 1718 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1719 const SCEV *Step = AR->getStepRecurrence(*SE); 1720 1721 // The memory is consecutive because the last index is consecutive 1722 // and all other indices are loop invariant. 1723 if (Step->isOne()) 1724 return 1; 1725 if (Step->isAllOnesValue()) 1726 return -1; 1727 } 1728 1729 return 0; 1730 } 1731 1732 bool LoopVectorizationLegality::isUniform(Value *V) { 1733 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1734 } 1735 1736 InnerLoopVectorizer::VectorParts& 1737 InnerLoopVectorizer::getVectorValue(Value *V) { 1738 assert(V != Induction && "The new induction variable should not be used."); 1739 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1740 1741 // If we have a stride that is replaced by one, do it here. 1742 if (Legal->hasStride(V)) 1743 V = ConstantInt::get(V->getType(), 1); 1744 1745 // If we have this scalar in the map, return it. 1746 if (WidenMap.has(V)) 1747 return WidenMap.get(V); 1748 1749 // If this scalar is unknown, assume that it is a constant or that it is 1750 // loop invariant. Broadcast V and save the value for future uses. 1751 Value *B = getBroadcastInstrs(V); 1752 return WidenMap.splat(V, B); 1753 } 1754 1755 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1756 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1757 SmallVector<Constant*, 8> ShuffleMask; 1758 for (unsigned i = 0; i < VF; ++i) 1759 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1760 1761 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1762 ConstantVector::get(ShuffleMask), 1763 "reverse"); 1764 } 1765 1766 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1767 // Attempt to issue a wide load. 1768 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1769 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1770 1771 assert((LI || SI) && "Invalid Load/Store instruction"); 1772 1773 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1774 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1775 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1776 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1777 // An alignment of 0 means target abi alignment. We need to use the scalar's 1778 // target abi alignment in such a case. 1779 if (!Alignment) 1780 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1781 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1782 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1783 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1784 1785 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1786 !Legal->isMaskRequired(SI)) 1787 return scalarizeInstruction(Instr, true); 1788 1789 if (ScalarAllocatedSize != VectorElementSize) 1790 return scalarizeInstruction(Instr); 1791 1792 // If the pointer is loop invariant or if it is non-consecutive, 1793 // scalarize the load. 1794 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1795 bool Reverse = ConsecutiveStride < 0; 1796 bool UniformLoad = LI && Legal->isUniform(Ptr); 1797 if (!ConsecutiveStride || UniformLoad) 1798 return scalarizeInstruction(Instr); 1799 1800 Constant *Zero = Builder.getInt32(0); 1801 VectorParts &Entry = WidenMap.get(Instr); 1802 1803 // Handle consecutive loads/stores. 1804 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1805 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1806 setDebugLocFromInst(Builder, Gep); 1807 Value *PtrOperand = Gep->getPointerOperand(); 1808 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1809 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1810 1811 // Create the new GEP with the new induction variable. 1812 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1813 Gep2->setOperand(0, FirstBasePtr); 1814 Gep2->setName("gep.indvar.base"); 1815 Ptr = Builder.Insert(Gep2); 1816 } else if (Gep) { 1817 setDebugLocFromInst(Builder, Gep); 1818 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1819 OrigLoop) && "Base ptr must be invariant"); 1820 1821 // The last index does not have to be the induction. It can be 1822 // consecutive and be a function of the index. For example A[I+1]; 1823 unsigned NumOperands = Gep->getNumOperands(); 1824 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1825 // Create the new GEP with the new induction variable. 1826 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1827 1828 for (unsigned i = 0; i < NumOperands; ++i) { 1829 Value *GepOperand = Gep->getOperand(i); 1830 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1831 1832 // Update last index or loop invariant instruction anchored in loop. 1833 if (i == InductionOperand || 1834 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1835 assert((i == InductionOperand || 1836 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1837 "Must be last index or loop invariant"); 1838 1839 VectorParts &GEPParts = getVectorValue(GepOperand); 1840 Value *Index = GEPParts[0]; 1841 Index = Builder.CreateExtractElement(Index, Zero); 1842 Gep2->setOperand(i, Index); 1843 Gep2->setName("gep.indvar.idx"); 1844 } 1845 } 1846 Ptr = Builder.Insert(Gep2); 1847 } else { 1848 // Use the induction element ptr. 1849 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1850 setDebugLocFromInst(Builder, Ptr); 1851 VectorParts &PtrVal = getVectorValue(Ptr); 1852 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1853 } 1854 1855 VectorParts Mask = createBlockInMask(Instr->getParent()); 1856 // Handle Stores: 1857 if (SI) { 1858 assert(!Legal->isUniform(SI->getPointerOperand()) && 1859 "We do not allow storing to uniform addresses"); 1860 setDebugLocFromInst(Builder, SI); 1861 // We don't want to update the value in the map as it might be used in 1862 // another expression. So don't use a reference type for "StoredVal". 1863 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1864 1865 for (unsigned Part = 0; Part < UF; ++Part) { 1866 // Calculate the pointer for the specific unroll-part. 1867 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1868 1869 if (Reverse) { 1870 // If we store to reverse consecutive memory locations then we need 1871 // to reverse the order of elements in the stored value. 1872 StoredVal[Part] = reverseVector(StoredVal[Part]); 1873 // If the address is consecutive but reversed, then the 1874 // wide store needs to start at the last vector element. 1875 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1876 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1877 Mask[Part] = reverseVector(Mask[Part]); 1878 } 1879 1880 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1881 DataTy->getPointerTo(AddressSpace)); 1882 1883 Instruction *NewSI; 1884 if (Legal->isMaskRequired(SI)) 1885 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1886 Mask[Part]); 1887 else 1888 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1889 propagateMetadata(NewSI, SI); 1890 } 1891 return; 1892 } 1893 1894 // Handle loads. 1895 assert(LI && "Must have a load instruction"); 1896 setDebugLocFromInst(Builder, LI); 1897 for (unsigned Part = 0; Part < UF; ++Part) { 1898 // Calculate the pointer for the specific unroll-part. 1899 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1900 1901 if (Reverse) { 1902 // If the address is consecutive but reversed, then the 1903 // wide load needs to start at the last vector element. 1904 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1905 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1906 Mask[Part] = reverseVector(Mask[Part]); 1907 } 1908 1909 Instruction* NewLI; 1910 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1911 DataTy->getPointerTo(AddressSpace)); 1912 if (Legal->isMaskRequired(LI)) 1913 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1914 UndefValue::get(DataTy), 1915 "wide.masked.load"); 1916 else 1917 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1918 propagateMetadata(NewLI, LI); 1919 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1920 } 1921 } 1922 1923 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1924 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1925 // Holds vector parameters or scalars, in case of uniform vals. 1926 SmallVector<VectorParts, 4> Params; 1927 1928 setDebugLocFromInst(Builder, Instr); 1929 1930 // Find all of the vectorized parameters. 1931 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1932 Value *SrcOp = Instr->getOperand(op); 1933 1934 // If we are accessing the old induction variable, use the new one. 1935 if (SrcOp == OldInduction) { 1936 Params.push_back(getVectorValue(SrcOp)); 1937 continue; 1938 } 1939 1940 // Try using previously calculated values. 1941 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1942 1943 // If the src is an instruction that appeared earlier in the basic block 1944 // then it should already be vectorized. 1945 if (SrcInst && OrigLoop->contains(SrcInst)) { 1946 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1947 // The parameter is a vector value from earlier. 1948 Params.push_back(WidenMap.get(SrcInst)); 1949 } else { 1950 // The parameter is a scalar from outside the loop. Maybe even a constant. 1951 VectorParts Scalars; 1952 Scalars.append(UF, SrcOp); 1953 Params.push_back(Scalars); 1954 } 1955 } 1956 1957 assert(Params.size() == Instr->getNumOperands() && 1958 "Invalid number of operands"); 1959 1960 // Does this instruction return a value ? 1961 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1962 1963 Value *UndefVec = IsVoidRetTy ? nullptr : 1964 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1965 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1966 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1967 1968 Instruction *InsertPt = Builder.GetInsertPoint(); 1969 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1970 BasicBlock *CondBlock = nullptr; 1971 1972 VectorParts Cond; 1973 Loop *VectorLp = nullptr; 1974 if (IfPredicateStore) { 1975 assert(Instr->getParent()->getSinglePredecessor() && 1976 "Only support single predecessor blocks"); 1977 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1978 Instr->getParent()); 1979 VectorLp = LI->getLoopFor(IfBlock); 1980 assert(VectorLp && "Must have a loop for this block"); 1981 } 1982 1983 // For each vector unroll 'part': 1984 for (unsigned Part = 0; Part < UF; ++Part) { 1985 // For each scalar that we create: 1986 for (unsigned Width = 0; Width < VF; ++Width) { 1987 1988 // Start if-block. 1989 Value *Cmp = nullptr; 1990 if (IfPredicateStore) { 1991 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1992 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1993 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1994 LoopVectorBody.push_back(CondBlock); 1995 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1996 // Update Builder with newly created basic block. 1997 Builder.SetInsertPoint(InsertPt); 1998 } 1999 2000 Instruction *Cloned = Instr->clone(); 2001 if (!IsVoidRetTy) 2002 Cloned->setName(Instr->getName() + ".cloned"); 2003 // Replace the operands of the cloned instructions with extracted scalars. 2004 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2005 Value *Op = Params[op][Part]; 2006 // Param is a vector. Need to extract the right lane. 2007 if (Op->getType()->isVectorTy()) 2008 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2009 Cloned->setOperand(op, Op); 2010 } 2011 2012 // Place the cloned scalar in the new loop. 2013 Builder.Insert(Cloned); 2014 2015 // If the original scalar returns a value we need to place it in a vector 2016 // so that future users will be able to use it. 2017 if (!IsVoidRetTy) 2018 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2019 Builder.getInt32(Width)); 2020 // End if-block. 2021 if (IfPredicateStore) { 2022 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2023 LoopVectorBody.push_back(NewIfBlock); 2024 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 2025 Builder.SetInsertPoint(InsertPt); 2026 Instruction *OldBr = IfBlock->getTerminator(); 2027 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2028 OldBr->eraseFromParent(); 2029 IfBlock = NewIfBlock; 2030 } 2031 } 2032 } 2033 } 2034 2035 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2036 Instruction *Loc) { 2037 if (FirstInst) 2038 return FirstInst; 2039 if (Instruction *I = dyn_cast<Instruction>(V)) 2040 return I->getParent() == Loc->getParent() ? I : nullptr; 2041 return nullptr; 2042 } 2043 2044 std::pair<Instruction *, Instruction *> 2045 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2046 Instruction *tnullptr = nullptr; 2047 if (!Legal->mustCheckStrides()) 2048 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2049 2050 IRBuilder<> ChkBuilder(Loc); 2051 2052 // Emit checks. 2053 Value *Check = nullptr; 2054 Instruction *FirstInst = nullptr; 2055 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2056 SE = Legal->strides_end(); 2057 SI != SE; ++SI) { 2058 Value *Ptr = stripIntegerCast(*SI); 2059 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2060 "stride.chk"); 2061 // Store the first instruction we create. 2062 FirstInst = getFirstInst(FirstInst, C, Loc); 2063 if (Check) 2064 Check = ChkBuilder.CreateOr(Check, C); 2065 else 2066 Check = C; 2067 } 2068 2069 // We have to do this trickery because the IRBuilder might fold the check to a 2070 // constant expression in which case there is no Instruction anchored in a 2071 // the block. 2072 LLVMContext &Ctx = Loc->getContext(); 2073 Instruction *TheCheck = 2074 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2075 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2076 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2077 2078 return std::make_pair(FirstInst, TheCheck); 2079 } 2080 2081 std::pair<Instruction *, Instruction *> 2082 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 2083 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 2084 Legal->getRuntimePointerCheck(); 2085 2086 Instruction *tnullptr = nullptr; 2087 if (!PtrRtCheck->Need) 2088 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2089 2090 unsigned NumPointers = PtrRtCheck->Pointers.size(); 2091 SmallVector<TrackingVH<Value> , 2> Starts; 2092 SmallVector<TrackingVH<Value> , 2> Ends; 2093 2094 LLVMContext &Ctx = Loc->getContext(); 2095 SCEVExpander Exp(*SE, "induction"); 2096 Instruction *FirstInst = nullptr; 2097 2098 for (unsigned i = 0; i < NumPointers; ++i) { 2099 Value *Ptr = PtrRtCheck->Pointers[i]; 2100 const SCEV *Sc = SE->getSCEV(Ptr); 2101 2102 if (SE->isLoopInvariant(Sc, OrigLoop)) { 2103 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 2104 *Ptr <<"\n"); 2105 Starts.push_back(Ptr); 2106 Ends.push_back(Ptr); 2107 } else { 2108 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 2109 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2110 2111 // Use this type for pointer arithmetic. 2112 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2113 2114 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2115 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2116 Starts.push_back(Start); 2117 Ends.push_back(End); 2118 } 2119 } 2120 2121 IRBuilder<> ChkBuilder(Loc); 2122 // Our instructions might fold to a constant. 2123 Value *MemoryRuntimeCheck = nullptr; 2124 for (unsigned i = 0; i < NumPointers; ++i) { 2125 for (unsigned j = i+1; j < NumPointers; ++j) { 2126 // No need to check if two readonly pointers intersect. 2127 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2128 continue; 2129 2130 // Only need to check pointers between two different dependency sets. 2131 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2132 continue; 2133 // Only need to check pointers in the same alias set. 2134 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2135 continue; 2136 2137 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2138 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2139 2140 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2141 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2142 "Trying to bounds check pointers with different address spaces"); 2143 2144 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2145 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2146 2147 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2148 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2149 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2150 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2151 2152 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2153 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2154 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2155 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2156 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2157 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2158 if (MemoryRuntimeCheck) { 2159 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2160 "conflict.rdx"); 2161 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2162 } 2163 MemoryRuntimeCheck = IsConflict; 2164 } 2165 } 2166 2167 // We have to do this trickery because the IRBuilder might fold the check to a 2168 // constant expression in which case there is no Instruction anchored in a 2169 // the block. 2170 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2171 ConstantInt::getTrue(Ctx)); 2172 ChkBuilder.Insert(Check, "memcheck.conflict"); 2173 FirstInst = getFirstInst(FirstInst, Check, Loc); 2174 return std::make_pair(FirstInst, Check); 2175 } 2176 2177 void InnerLoopVectorizer::createEmptyLoop() { 2178 /* 2179 In this function we generate a new loop. The new loop will contain 2180 the vectorized instructions while the old loop will continue to run the 2181 scalar remainder. 2182 2183 [ ] <-- Back-edge taken count overflow check. 2184 / | 2185 / v 2186 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2187 | / | 2188 | / v 2189 || [ ] <-- vector pre header. 2190 || | 2191 || v 2192 || [ ] \ 2193 || [ ]_| <-- vector loop. 2194 || | 2195 | \ v 2196 | >[ ] <--- middle-block. 2197 | / | 2198 | / v 2199 -|- >[ ] <--- new preheader. 2200 | | 2201 | v 2202 | [ ] \ 2203 | [ ]_| <-- old scalar loop to handle remainder. 2204 \ | 2205 \ v 2206 >[ ] <-- exit block. 2207 ... 2208 */ 2209 2210 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2211 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2212 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2213 assert(BypassBlock && "Invalid loop structure"); 2214 assert(ExitBlock && "Must have an exit block"); 2215 2216 // Some loops have a single integer induction variable, while other loops 2217 // don't. One example is c++ iterators that often have multiple pointer 2218 // induction variables. In the code below we also support a case where we 2219 // don't have a single induction variable. 2220 OldInduction = Legal->getInduction(); 2221 Type *IdxTy = Legal->getWidestInductionType(); 2222 2223 // Find the loop boundaries. 2224 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2225 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2226 2227 // The exit count might have the type of i64 while the phi is i32. This can 2228 // happen if we have an induction variable that is sign extended before the 2229 // compare. The only way that we get a backedge taken count is that the 2230 // induction variable was signed and as such will not overflow. In such a case 2231 // truncation is legal. 2232 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2233 IdxTy->getPrimitiveSizeInBits()) 2234 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2235 2236 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2237 // Get the total trip count from the count by adding 1. 2238 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2239 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2240 2241 // Expand the trip count and place the new instructions in the preheader. 2242 // Notice that the pre-header does not change, only the loop body. 2243 SCEVExpander Exp(*SE, "induction"); 2244 2245 // We need to test whether the backedge-taken count is uint##_max. Adding one 2246 // to it will cause overflow and an incorrect loop trip count in the vector 2247 // body. In case of overflow we want to directly jump to the scalar remainder 2248 // loop. 2249 Value *BackedgeCount = 2250 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2251 BypassBlock->getTerminator()); 2252 if (BackedgeCount->getType()->isPointerTy()) 2253 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2254 "backedge.ptrcnt.to.int", 2255 BypassBlock->getTerminator()); 2256 Instruction *CheckBCOverflow = 2257 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2258 Constant::getAllOnesValue(BackedgeCount->getType()), 2259 "backedge.overflow", BypassBlock->getTerminator()); 2260 2261 // The loop index does not have to start at Zero. Find the original start 2262 // value from the induction PHI node. If we don't have an induction variable 2263 // then we know that it starts at zero. 2264 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2265 Value *StartIdx = ExtendedIdx = OldInduction ? 2266 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2267 IdxTy): 2268 ConstantInt::get(IdxTy, 0); 2269 2270 // We need an instruction to anchor the overflow check on. StartIdx needs to 2271 // be defined before the overflow check branch. Because the scalar preheader 2272 // is going to merge the start index and so the overflow branch block needs to 2273 // contain a definition of the start index. 2274 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2275 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2276 BypassBlock->getTerminator()); 2277 2278 // Count holds the overall loop count (N). 2279 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2280 BypassBlock->getTerminator()); 2281 2282 LoopBypassBlocks.push_back(BypassBlock); 2283 2284 // Split the single block loop into the two loop structure described above. 2285 BasicBlock *VectorPH = 2286 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2287 BasicBlock *VecBody = 2288 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2289 BasicBlock *MiddleBlock = 2290 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2291 BasicBlock *ScalarPH = 2292 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2293 2294 // Create and register the new vector loop. 2295 Loop* Lp = new Loop(); 2296 Loop *ParentLoop = OrigLoop->getParentLoop(); 2297 2298 // Insert the new loop into the loop nest and register the new basic blocks 2299 // before calling any utilities such as SCEV that require valid LoopInfo. 2300 if (ParentLoop) { 2301 ParentLoop->addChildLoop(Lp); 2302 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2303 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2304 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2305 } else { 2306 LI->addTopLevelLoop(Lp); 2307 } 2308 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2309 2310 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2311 // inside the loop. 2312 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2313 2314 // Generate the induction variable. 2315 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2316 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2317 // The loop step is equal to the vectorization factor (num of SIMD elements) 2318 // times the unroll factor (num of SIMD instructions). 2319 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2320 2321 // This is the IR builder that we use to add all of the logic for bypassing 2322 // the new vector loop. 2323 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2324 setDebugLocFromInst(BypassBuilder, 2325 getDebugLocFromInstOrOperands(OldInduction)); 2326 2327 // We may need to extend the index in case there is a type mismatch. 2328 // We know that the count starts at zero and does not overflow. 2329 if (Count->getType() != IdxTy) { 2330 // The exit count can be of pointer type. Convert it to the correct 2331 // integer type. 2332 if (ExitCount->getType()->isPointerTy()) 2333 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2334 else 2335 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2336 } 2337 2338 // Add the start index to the loop count to get the new end index. 2339 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2340 2341 // Now we need to generate the expression for N - (N % VF), which is 2342 // the part that the vectorized body will execute. 2343 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2344 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2345 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2346 "end.idx.rnd.down"); 2347 2348 // Now, compare the new count to zero. If it is zero skip the vector loop and 2349 // jump to the scalar loop. 2350 Value *Cmp = 2351 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2352 2353 BasicBlock *LastBypassBlock = BypassBlock; 2354 2355 // Generate code to check that the loops trip count that we computed by adding 2356 // one to the backedge-taken count will not overflow. 2357 { 2358 auto PastOverflowCheck = 2359 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2360 BasicBlock *CheckBlock = 2361 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2362 if (ParentLoop) 2363 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2364 LoopBypassBlocks.push_back(CheckBlock); 2365 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2366 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2367 OldTerm->eraseFromParent(); 2368 LastBypassBlock = CheckBlock; 2369 } 2370 2371 // Generate the code to check that the strides we assumed to be one are really 2372 // one. We want the new basic block to start at the first instruction in a 2373 // sequence of instructions that form a check. 2374 Instruction *StrideCheck; 2375 Instruction *FirstCheckInst; 2376 std::tie(FirstCheckInst, StrideCheck) = 2377 addStrideCheck(LastBypassBlock->getTerminator()); 2378 if (StrideCheck) { 2379 // Create a new block containing the stride check. 2380 BasicBlock *CheckBlock = 2381 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2382 if (ParentLoop) 2383 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2384 LoopBypassBlocks.push_back(CheckBlock); 2385 2386 // Replace the branch into the memory check block with a conditional branch 2387 // for the "few elements case". 2388 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2389 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2390 OldTerm->eraseFromParent(); 2391 2392 Cmp = StrideCheck; 2393 LastBypassBlock = CheckBlock; 2394 } 2395 2396 // Generate the code that checks in runtime if arrays overlap. We put the 2397 // checks into a separate block to make the more common case of few elements 2398 // faster. 2399 Instruction *MemRuntimeCheck; 2400 std::tie(FirstCheckInst, MemRuntimeCheck) = 2401 addRuntimeCheck(LastBypassBlock->getTerminator()); 2402 if (MemRuntimeCheck) { 2403 // Create a new block containing the memory check. 2404 BasicBlock *CheckBlock = 2405 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2406 if (ParentLoop) 2407 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2408 LoopBypassBlocks.push_back(CheckBlock); 2409 2410 // Replace the branch into the memory check block with a conditional branch 2411 // for the "few elements case". 2412 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2413 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2414 OldTerm->eraseFromParent(); 2415 2416 Cmp = MemRuntimeCheck; 2417 LastBypassBlock = CheckBlock; 2418 } 2419 2420 LastBypassBlock->getTerminator()->eraseFromParent(); 2421 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2422 LastBypassBlock); 2423 2424 // We are going to resume the execution of the scalar loop. 2425 // Go over all of the induction variables that we found and fix the 2426 // PHIs that are left in the scalar version of the loop. 2427 // The starting values of PHI nodes depend on the counter of the last 2428 // iteration in the vectorized loop. 2429 // If we come from a bypass edge then we need to start from the original 2430 // start value. 2431 2432 // This variable saves the new starting index for the scalar loop. 2433 PHINode *ResumeIndex = nullptr; 2434 LoopVectorizationLegality::InductionList::iterator I, E; 2435 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2436 // Set builder to point to last bypass block. 2437 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2438 for (I = List->begin(), E = List->end(); I != E; ++I) { 2439 PHINode *OrigPhi = I->first; 2440 LoopVectorizationLegality::InductionInfo II = I->second; 2441 2442 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2443 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2444 MiddleBlock->getTerminator()); 2445 // We might have extended the type of the induction variable but we need a 2446 // truncated version for the scalar loop. 2447 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2448 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2449 MiddleBlock->getTerminator()) : nullptr; 2450 2451 // Create phi nodes to merge from the backedge-taken check block. 2452 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2453 ScalarPH->getTerminator()); 2454 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2455 2456 PHINode *BCTruncResumeVal = nullptr; 2457 if (OrigPhi == OldInduction) { 2458 BCTruncResumeVal = 2459 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2460 ScalarPH->getTerminator()); 2461 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2462 } 2463 2464 Value *EndValue = nullptr; 2465 switch (II.IK) { 2466 case LoopVectorizationLegality::IK_NoInduction: 2467 llvm_unreachable("Unknown induction"); 2468 case LoopVectorizationLegality::IK_IntInduction: { 2469 // Handle the integer induction counter. 2470 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2471 2472 // We have the canonical induction variable. 2473 if (OrigPhi == OldInduction) { 2474 // Create a truncated version of the resume value for the scalar loop, 2475 // we might have promoted the type to a larger width. 2476 EndValue = 2477 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2478 // The new PHI merges the original incoming value, in case of a bypass, 2479 // or the value at the end of the vectorized loop. 2480 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2481 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2482 TruncResumeVal->addIncoming(EndValue, VecBody); 2483 2484 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2485 2486 // We know what the end value is. 2487 EndValue = IdxEndRoundDown; 2488 // We also know which PHI node holds it. 2489 ResumeIndex = ResumeVal; 2490 break; 2491 } 2492 2493 // Not the canonical induction variable - add the vector loop count to the 2494 // start value. 2495 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2496 II.StartValue->getType(), 2497 "cast.crd"); 2498 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2499 break; 2500 } 2501 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2502 // Convert the CountRoundDown variable to the PHI size. 2503 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2504 II.StartValue->getType(), 2505 "cast.crd"); 2506 // Handle reverse integer induction counter. 2507 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2508 break; 2509 } 2510 case LoopVectorizationLegality::IK_PtrInduction: { 2511 // For pointer induction variables, calculate the offset using 2512 // the end index. 2513 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2514 "ptr.ind.end"); 2515 break; 2516 } 2517 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2518 // The value at the end of the loop for the reverse pointer is calculated 2519 // by creating a GEP with a negative index starting from the start value. 2520 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2521 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2522 "rev.ind.end"); 2523 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2524 "rev.ptr.ind.end"); 2525 break; 2526 } 2527 }// end of case 2528 2529 // The new PHI merges the original incoming value, in case of a bypass, 2530 // or the value at the end of the vectorized loop. 2531 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2532 if (OrigPhi == OldInduction) 2533 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2534 else 2535 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2536 } 2537 ResumeVal->addIncoming(EndValue, VecBody); 2538 2539 // Fix the scalar body counter (PHI node). 2540 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2541 2542 // The old induction's phi node in the scalar body needs the truncated 2543 // value. 2544 if (OrigPhi == OldInduction) { 2545 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2546 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2547 } else { 2548 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2549 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2550 } 2551 } 2552 2553 // If we are generating a new induction variable then we also need to 2554 // generate the code that calculates the exit value. This value is not 2555 // simply the end of the counter because we may skip the vectorized body 2556 // in case of a runtime check. 2557 if (!OldInduction){ 2558 assert(!ResumeIndex && "Unexpected resume value found"); 2559 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2560 MiddleBlock->getTerminator()); 2561 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2562 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2563 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2564 } 2565 2566 // Make sure that we found the index where scalar loop needs to continue. 2567 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2568 "Invalid resume Index"); 2569 2570 // Add a check in the middle block to see if we have completed 2571 // all of the iterations in the first vector loop. 2572 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2573 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2574 ResumeIndex, "cmp.n", 2575 MiddleBlock->getTerminator()); 2576 2577 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2578 // Remove the old terminator. 2579 MiddleBlock->getTerminator()->eraseFromParent(); 2580 2581 // Create i+1 and fill the PHINode. 2582 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2583 Induction->addIncoming(StartIdx, VectorPH); 2584 Induction->addIncoming(NextIdx, VecBody); 2585 // Create the compare. 2586 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2587 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2588 2589 // Now we have two terminators. Remove the old one from the block. 2590 VecBody->getTerminator()->eraseFromParent(); 2591 2592 // Get ready to start creating new instructions into the vectorized body. 2593 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2594 2595 // Save the state. 2596 LoopVectorPreHeader = VectorPH; 2597 LoopScalarPreHeader = ScalarPH; 2598 LoopMiddleBlock = MiddleBlock; 2599 LoopExitBlock = ExitBlock; 2600 LoopVectorBody.push_back(VecBody); 2601 LoopScalarBody = OldBasicBlock; 2602 2603 LoopVectorizeHints Hints(Lp, true); 2604 Hints.setAlreadyVectorized(); 2605 } 2606 2607 /// This function returns the identity element (or neutral element) for 2608 /// the operation K. 2609 Constant* 2610 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2611 switch (K) { 2612 case RK_IntegerXor: 2613 case RK_IntegerAdd: 2614 case RK_IntegerOr: 2615 // Adding, Xoring, Oring zero to a number does not change it. 2616 return ConstantInt::get(Tp, 0); 2617 case RK_IntegerMult: 2618 // Multiplying a number by 1 does not change it. 2619 return ConstantInt::get(Tp, 1); 2620 case RK_IntegerAnd: 2621 // AND-ing a number with an all-1 value does not change it. 2622 return ConstantInt::get(Tp, -1, true); 2623 case RK_FloatMult: 2624 // Multiplying a number by 1 does not change it. 2625 return ConstantFP::get(Tp, 1.0L); 2626 case RK_FloatAdd: 2627 // Adding zero to a number does not change it. 2628 return ConstantFP::get(Tp, 0.0L); 2629 default: 2630 llvm_unreachable("Unknown reduction kind"); 2631 } 2632 } 2633 2634 /// This function translates the reduction kind to an LLVM binary operator. 2635 static unsigned 2636 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2637 switch (Kind) { 2638 case LoopVectorizationLegality::RK_IntegerAdd: 2639 return Instruction::Add; 2640 case LoopVectorizationLegality::RK_IntegerMult: 2641 return Instruction::Mul; 2642 case LoopVectorizationLegality::RK_IntegerOr: 2643 return Instruction::Or; 2644 case LoopVectorizationLegality::RK_IntegerAnd: 2645 return Instruction::And; 2646 case LoopVectorizationLegality::RK_IntegerXor: 2647 return Instruction::Xor; 2648 case LoopVectorizationLegality::RK_FloatMult: 2649 return Instruction::FMul; 2650 case LoopVectorizationLegality::RK_FloatAdd: 2651 return Instruction::FAdd; 2652 case LoopVectorizationLegality::RK_IntegerMinMax: 2653 return Instruction::ICmp; 2654 case LoopVectorizationLegality::RK_FloatMinMax: 2655 return Instruction::FCmp; 2656 default: 2657 llvm_unreachable("Unknown reduction operation"); 2658 } 2659 } 2660 2661 Value *createMinMaxOp(IRBuilder<> &Builder, 2662 LoopVectorizationLegality::MinMaxReductionKind RK, 2663 Value *Left, 2664 Value *Right) { 2665 CmpInst::Predicate P = CmpInst::ICMP_NE; 2666 switch (RK) { 2667 default: 2668 llvm_unreachable("Unknown min/max reduction kind"); 2669 case LoopVectorizationLegality::MRK_UIntMin: 2670 P = CmpInst::ICMP_ULT; 2671 break; 2672 case LoopVectorizationLegality::MRK_UIntMax: 2673 P = CmpInst::ICMP_UGT; 2674 break; 2675 case LoopVectorizationLegality::MRK_SIntMin: 2676 P = CmpInst::ICMP_SLT; 2677 break; 2678 case LoopVectorizationLegality::MRK_SIntMax: 2679 P = CmpInst::ICMP_SGT; 2680 break; 2681 case LoopVectorizationLegality::MRK_FloatMin: 2682 P = CmpInst::FCMP_OLT; 2683 break; 2684 case LoopVectorizationLegality::MRK_FloatMax: 2685 P = CmpInst::FCMP_OGT; 2686 break; 2687 } 2688 2689 Value *Cmp; 2690 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2691 RK == LoopVectorizationLegality::MRK_FloatMax) 2692 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2693 else 2694 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2695 2696 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2697 return Select; 2698 } 2699 2700 namespace { 2701 struct CSEDenseMapInfo { 2702 static bool canHandle(Instruction *I) { 2703 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2704 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2705 } 2706 static inline Instruction *getEmptyKey() { 2707 return DenseMapInfo<Instruction *>::getEmptyKey(); 2708 } 2709 static inline Instruction *getTombstoneKey() { 2710 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2711 } 2712 static unsigned getHashValue(Instruction *I) { 2713 assert(canHandle(I) && "Unknown instruction!"); 2714 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2715 I->value_op_end())); 2716 } 2717 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2718 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2719 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2720 return LHS == RHS; 2721 return LHS->isIdenticalTo(RHS); 2722 } 2723 }; 2724 } 2725 2726 /// \brief Check whether this block is a predicated block. 2727 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2728 /// = ...; " blocks. We start with one vectorized basic block. For every 2729 /// conditional block we split this vectorized block. Therefore, every second 2730 /// block will be a predicated one. 2731 static bool isPredicatedBlock(unsigned BlockNum) { 2732 return BlockNum % 2; 2733 } 2734 2735 ///\brief Perform cse of induction variable instructions. 2736 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2737 // Perform simple cse. 2738 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2739 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2740 BasicBlock *BB = BBs[i]; 2741 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2742 Instruction *In = I++; 2743 2744 if (!CSEDenseMapInfo::canHandle(In)) 2745 continue; 2746 2747 // Check if we can replace this instruction with any of the 2748 // visited instructions. 2749 if (Instruction *V = CSEMap.lookup(In)) { 2750 In->replaceAllUsesWith(V); 2751 In->eraseFromParent(); 2752 continue; 2753 } 2754 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2755 // ...;" blocks for predicated stores. Every second block is a predicated 2756 // block. 2757 if (isPredicatedBlock(i)) 2758 continue; 2759 2760 CSEMap[In] = In; 2761 } 2762 } 2763 } 2764 2765 /// \brief Adds a 'fast' flag to floating point operations. 2766 static Value *addFastMathFlag(Value *V) { 2767 if (isa<FPMathOperator>(V)){ 2768 FastMathFlags Flags; 2769 Flags.setUnsafeAlgebra(); 2770 cast<Instruction>(V)->setFastMathFlags(Flags); 2771 } 2772 return V; 2773 } 2774 2775 void InnerLoopVectorizer::vectorizeLoop() { 2776 //===------------------------------------------------===// 2777 // 2778 // Notice: any optimization or new instruction that go 2779 // into the code below should be also be implemented in 2780 // the cost-model. 2781 // 2782 //===------------------------------------------------===// 2783 Constant *Zero = Builder.getInt32(0); 2784 2785 // In order to support reduction variables we need to be able to vectorize 2786 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2787 // stages. First, we create a new vector PHI node with no incoming edges. 2788 // We use this value when we vectorize all of the instructions that use the 2789 // PHI. Next, after all of the instructions in the block are complete we 2790 // add the new incoming edges to the PHI. At this point all of the 2791 // instructions in the basic block are vectorized, so we can use them to 2792 // construct the PHI. 2793 PhiVector RdxPHIsToFix; 2794 2795 // Scan the loop in a topological order to ensure that defs are vectorized 2796 // before users. 2797 LoopBlocksDFS DFS(OrigLoop); 2798 DFS.perform(LI); 2799 2800 // Vectorize all of the blocks in the original loop. 2801 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2802 be = DFS.endRPO(); bb != be; ++bb) 2803 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2804 2805 // At this point every instruction in the original loop is widened to 2806 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2807 // that we vectorized. The PHI nodes are currently empty because we did 2808 // not want to introduce cycles. Notice that the remaining PHI nodes 2809 // that we need to fix are reduction variables. 2810 2811 // Create the 'reduced' values for each of the induction vars. 2812 // The reduced values are the vector values that we scalarize and combine 2813 // after the loop is finished. 2814 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2815 it != e; ++it) { 2816 PHINode *RdxPhi = *it; 2817 assert(RdxPhi && "Unable to recover vectorized PHI"); 2818 2819 // Find the reduction variable descriptor. 2820 assert(Legal->getReductionVars()->count(RdxPhi) && 2821 "Unable to find the reduction variable"); 2822 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2823 (*Legal->getReductionVars())[RdxPhi]; 2824 2825 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2826 2827 // We need to generate a reduction vector from the incoming scalar. 2828 // To do so, we need to generate the 'identity' vector and override 2829 // one of the elements with the incoming scalar reduction. We need 2830 // to do it in the vector-loop preheader. 2831 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2832 2833 // This is the vector-clone of the value that leaves the loop. 2834 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2835 Type *VecTy = VectorExit[0]->getType(); 2836 2837 // Find the reduction identity variable. Zero for addition, or, xor, 2838 // one for multiplication, -1 for And. 2839 Value *Identity; 2840 Value *VectorStart; 2841 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2842 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2843 // MinMax reduction have the start value as their identify. 2844 if (VF == 1) { 2845 VectorStart = Identity = RdxDesc.StartValue; 2846 } else { 2847 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2848 RdxDesc.StartValue, 2849 "minmax.ident"); 2850 } 2851 } else { 2852 // Handle other reduction kinds: 2853 Constant *Iden = 2854 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2855 VecTy->getScalarType()); 2856 if (VF == 1) { 2857 Identity = Iden; 2858 // This vector is the Identity vector where the first element is the 2859 // incoming scalar reduction. 2860 VectorStart = RdxDesc.StartValue; 2861 } else { 2862 Identity = ConstantVector::getSplat(VF, Iden); 2863 2864 // This vector is the Identity vector where the first element is the 2865 // incoming scalar reduction. 2866 VectorStart = Builder.CreateInsertElement(Identity, 2867 RdxDesc.StartValue, Zero); 2868 } 2869 } 2870 2871 // Fix the vector-loop phi. 2872 2873 // Reductions do not have to start at zero. They can start with 2874 // any loop invariant values. 2875 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2876 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2877 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2878 VectorParts &Val = getVectorValue(LoopVal); 2879 for (unsigned part = 0; part < UF; ++part) { 2880 // Make sure to add the reduction stat value only to the 2881 // first unroll part. 2882 Value *StartVal = (part == 0) ? VectorStart : Identity; 2883 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2884 LoopVectorPreHeader); 2885 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2886 LoopVectorBody.back()); 2887 } 2888 2889 // Before each round, move the insertion point right between 2890 // the PHIs and the values we are going to write. 2891 // This allows us to write both PHINodes and the extractelement 2892 // instructions. 2893 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2894 2895 VectorParts RdxParts; 2896 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2897 for (unsigned part = 0; part < UF; ++part) { 2898 // This PHINode contains the vectorized reduction variable, or 2899 // the initial value vector, if we bypass the vector loop. 2900 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2901 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2902 Value *StartVal = (part == 0) ? VectorStart : Identity; 2903 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2904 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2905 NewPhi->addIncoming(RdxExitVal[part], 2906 LoopVectorBody.back()); 2907 RdxParts.push_back(NewPhi); 2908 } 2909 2910 // Reduce all of the unrolled parts into a single vector. 2911 Value *ReducedPartRdx = RdxParts[0]; 2912 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2913 setDebugLocFromInst(Builder, ReducedPartRdx); 2914 for (unsigned part = 1; part < UF; ++part) { 2915 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2916 // Floating point operations had to be 'fast' to enable the reduction. 2917 ReducedPartRdx = addFastMathFlag( 2918 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2919 ReducedPartRdx, "bin.rdx")); 2920 else 2921 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2922 ReducedPartRdx, RdxParts[part]); 2923 } 2924 2925 if (VF > 1) { 2926 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2927 // and vector ops, reducing the set of values being computed by half each 2928 // round. 2929 assert(isPowerOf2_32(VF) && 2930 "Reduction emission only supported for pow2 vectors!"); 2931 Value *TmpVec = ReducedPartRdx; 2932 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2933 for (unsigned i = VF; i != 1; i >>= 1) { 2934 // Move the upper half of the vector to the lower half. 2935 for (unsigned j = 0; j != i/2; ++j) 2936 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2937 2938 // Fill the rest of the mask with undef. 2939 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2940 UndefValue::get(Builder.getInt32Ty())); 2941 2942 Value *Shuf = 2943 Builder.CreateShuffleVector(TmpVec, 2944 UndefValue::get(TmpVec->getType()), 2945 ConstantVector::get(ShuffleMask), 2946 "rdx.shuf"); 2947 2948 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2949 // Floating point operations had to be 'fast' to enable the reduction. 2950 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2951 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2952 else 2953 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2954 } 2955 2956 // The result is in the first element of the vector. 2957 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2958 Builder.getInt32(0)); 2959 } 2960 2961 // Create a phi node that merges control-flow from the backedge-taken check 2962 // block and the middle block. 2963 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2964 LoopScalarPreHeader->getTerminator()); 2965 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2966 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2967 2968 // Now, we need to fix the users of the reduction variable 2969 // inside and outside of the scalar remainder loop. 2970 // We know that the loop is in LCSSA form. We need to update the 2971 // PHI nodes in the exit blocks. 2972 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2973 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2974 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2975 if (!LCSSAPhi) break; 2976 2977 // All PHINodes need to have a single entry edge, or two if 2978 // we already fixed them. 2979 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2980 2981 // We found our reduction value exit-PHI. Update it with the 2982 // incoming bypass edge. 2983 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2984 // Add an edge coming from the bypass. 2985 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2986 break; 2987 } 2988 }// end of the LCSSA phi scan. 2989 2990 // Fix the scalar loop reduction variable with the incoming reduction sum 2991 // from the vector body and from the backedge value. 2992 int IncomingEdgeBlockIdx = 2993 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2994 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2995 // Pick the other block. 2996 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2997 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2998 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2999 }// end of for each redux variable. 3000 3001 fixLCSSAPHIs(); 3002 3003 // Remove redundant induction instructions. 3004 cse(LoopVectorBody); 3005 } 3006 3007 void InnerLoopVectorizer::fixLCSSAPHIs() { 3008 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3009 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3010 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3011 if (!LCSSAPhi) break; 3012 if (LCSSAPhi->getNumIncomingValues() == 1) 3013 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3014 LoopMiddleBlock); 3015 } 3016 } 3017 3018 InnerLoopVectorizer::VectorParts 3019 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3020 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3021 "Invalid edge"); 3022 3023 // Look for cached value. 3024 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3025 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3026 if (ECEntryIt != MaskCache.end()) 3027 return ECEntryIt->second; 3028 3029 VectorParts SrcMask = createBlockInMask(Src); 3030 3031 // The terminator has to be a branch inst! 3032 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3033 assert(BI && "Unexpected terminator found"); 3034 3035 if (BI->isConditional()) { 3036 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3037 3038 if (BI->getSuccessor(0) != Dst) 3039 for (unsigned part = 0; part < UF; ++part) 3040 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3041 3042 for (unsigned part = 0; part < UF; ++part) 3043 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3044 3045 MaskCache[Edge] = EdgeMask; 3046 return EdgeMask; 3047 } 3048 3049 MaskCache[Edge] = SrcMask; 3050 return SrcMask; 3051 } 3052 3053 InnerLoopVectorizer::VectorParts 3054 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3055 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3056 3057 // Loop incoming mask is all-one. 3058 if (OrigLoop->getHeader() == BB) { 3059 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3060 return getVectorValue(C); 3061 } 3062 3063 // This is the block mask. We OR all incoming edges, and with zero. 3064 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3065 VectorParts BlockMask = getVectorValue(Zero); 3066 3067 // For each pred: 3068 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3069 VectorParts EM = createEdgeMask(*it, BB); 3070 for (unsigned part = 0; part < UF; ++part) 3071 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3072 } 3073 3074 return BlockMask; 3075 } 3076 3077 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3078 InnerLoopVectorizer::VectorParts &Entry, 3079 unsigned UF, unsigned VF, PhiVector *PV) { 3080 PHINode* P = cast<PHINode>(PN); 3081 // Handle reduction variables: 3082 if (Legal->getReductionVars()->count(P)) { 3083 for (unsigned part = 0; part < UF; ++part) { 3084 // This is phase one of vectorizing PHIs. 3085 Type *VecTy = (VF == 1) ? PN->getType() : 3086 VectorType::get(PN->getType(), VF); 3087 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3088 LoopVectorBody.back()-> getFirstInsertionPt()); 3089 } 3090 PV->push_back(P); 3091 return; 3092 } 3093 3094 setDebugLocFromInst(Builder, P); 3095 // Check for PHI nodes that are lowered to vector selects. 3096 if (P->getParent() != OrigLoop->getHeader()) { 3097 // We know that all PHIs in non-header blocks are converted into 3098 // selects, so we don't have to worry about the insertion order and we 3099 // can just use the builder. 3100 // At this point we generate the predication tree. There may be 3101 // duplications since this is a simple recursive scan, but future 3102 // optimizations will clean it up. 3103 3104 unsigned NumIncoming = P->getNumIncomingValues(); 3105 3106 // Generate a sequence of selects of the form: 3107 // SELECT(Mask3, In3, 3108 // SELECT(Mask2, In2, 3109 // ( ...))) 3110 for (unsigned In = 0; In < NumIncoming; In++) { 3111 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3112 P->getParent()); 3113 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3114 3115 for (unsigned part = 0; part < UF; ++part) { 3116 // We might have single edge PHIs (blocks) - use an identity 3117 // 'select' for the first PHI operand. 3118 if (In == 0) 3119 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3120 In0[part]); 3121 else 3122 // Select between the current value and the previous incoming edge 3123 // based on the incoming mask. 3124 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3125 Entry[part], "predphi"); 3126 } 3127 } 3128 return; 3129 } 3130 3131 // This PHINode must be an induction variable. 3132 // Make sure that we know about it. 3133 assert(Legal->getInductionVars()->count(P) && 3134 "Not an induction variable"); 3135 3136 LoopVectorizationLegality::InductionInfo II = 3137 Legal->getInductionVars()->lookup(P); 3138 3139 switch (II.IK) { 3140 case LoopVectorizationLegality::IK_NoInduction: 3141 llvm_unreachable("Unknown induction"); 3142 case LoopVectorizationLegality::IK_IntInduction: { 3143 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3144 Type *PhiTy = P->getType(); 3145 Value *Broadcasted; 3146 if (P == OldInduction) { 3147 // Handle the canonical induction variable. We might have had to 3148 // extend the type. 3149 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3150 } else { 3151 // Handle other induction variables that are now based on the 3152 // canonical one. 3153 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3154 "normalized.idx"); 3155 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3156 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 3157 "offset.idx"); 3158 } 3159 Broadcasted = getBroadcastInstrs(Broadcasted); 3160 // After broadcasting the induction variable we need to make the vector 3161 // consecutive by adding 0, 1, 2, etc. 3162 for (unsigned part = 0; part < UF; ++part) 3163 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3164 return; 3165 } 3166 case LoopVectorizationLegality::IK_ReverseIntInduction: 3167 case LoopVectorizationLegality::IK_PtrInduction: 3168 case LoopVectorizationLegality::IK_ReversePtrInduction: 3169 // Handle reverse integer and pointer inductions. 3170 Value *StartIdx = ExtendedIdx; 3171 // This is the normalized GEP that starts counting at zero. 3172 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3173 "normalized.idx"); 3174 3175 // Handle the reverse integer induction variable case. 3176 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3177 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3178 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3179 "resize.norm.idx"); 3180 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3181 "reverse.idx"); 3182 3183 // This is a new value so do not hoist it out. 3184 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3185 // After broadcasting the induction variable we need to make the 3186 // vector consecutive by adding ... -3, -2, -1, 0. 3187 for (unsigned part = 0; part < UF; ++part) 3188 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3189 true); 3190 return; 3191 } 3192 3193 // Handle the pointer induction variable case. 3194 assert(P->getType()->isPointerTy() && "Unexpected type."); 3195 3196 // Is this a reverse induction ptr or a consecutive induction ptr. 3197 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3198 II.IK); 3199 3200 // This is the vector of results. Notice that we don't generate 3201 // vector geps because scalar geps result in better code. 3202 for (unsigned part = 0; part < UF; ++part) { 3203 if (VF == 1) { 3204 int EltIndex = (part) * (Reverse ? -1 : 1); 3205 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3206 Value *GlobalIdx; 3207 if (Reverse) 3208 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3209 else 3210 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3211 3212 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3213 "next.gep"); 3214 Entry[part] = SclrGep; 3215 continue; 3216 } 3217 3218 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3219 for (unsigned int i = 0; i < VF; ++i) { 3220 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3221 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3222 Value *GlobalIdx; 3223 if (!Reverse) 3224 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3225 else 3226 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3227 3228 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3229 "next.gep"); 3230 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3231 Builder.getInt32(i), 3232 "insert.gep"); 3233 } 3234 Entry[part] = VecVal; 3235 } 3236 return; 3237 } 3238 } 3239 3240 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3241 // For each instruction in the old loop. 3242 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3243 VectorParts &Entry = WidenMap.get(it); 3244 switch (it->getOpcode()) { 3245 case Instruction::Br: 3246 // Nothing to do for PHIs and BR, since we already took care of the 3247 // loop control flow instructions. 3248 continue; 3249 case Instruction::PHI:{ 3250 // Vectorize PHINodes. 3251 widenPHIInstruction(it, Entry, UF, VF, PV); 3252 continue; 3253 }// End of PHI. 3254 3255 case Instruction::Add: 3256 case Instruction::FAdd: 3257 case Instruction::Sub: 3258 case Instruction::FSub: 3259 case Instruction::Mul: 3260 case Instruction::FMul: 3261 case Instruction::UDiv: 3262 case Instruction::SDiv: 3263 case Instruction::FDiv: 3264 case Instruction::URem: 3265 case Instruction::SRem: 3266 case Instruction::FRem: 3267 case Instruction::Shl: 3268 case Instruction::LShr: 3269 case Instruction::AShr: 3270 case Instruction::And: 3271 case Instruction::Or: 3272 case Instruction::Xor: { 3273 // Just widen binops. 3274 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3275 setDebugLocFromInst(Builder, BinOp); 3276 VectorParts &A = getVectorValue(it->getOperand(0)); 3277 VectorParts &B = getVectorValue(it->getOperand(1)); 3278 3279 // Use this vector value for all users of the original instruction. 3280 for (unsigned Part = 0; Part < UF; ++Part) { 3281 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3282 3283 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3284 VecOp->copyIRFlags(BinOp); 3285 3286 Entry[Part] = V; 3287 } 3288 3289 propagateMetadata(Entry, it); 3290 break; 3291 } 3292 case Instruction::Select: { 3293 // Widen selects. 3294 // If the selector is loop invariant we can create a select 3295 // instruction with a scalar condition. Otherwise, use vector-select. 3296 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3297 OrigLoop); 3298 setDebugLocFromInst(Builder, it); 3299 3300 // The condition can be loop invariant but still defined inside the 3301 // loop. This means that we can't just use the original 'cond' value. 3302 // We have to take the 'vectorized' value and pick the first lane. 3303 // Instcombine will make this a no-op. 3304 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3305 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3306 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3307 3308 Value *ScalarCond = (VF == 1) ? Cond[0] : 3309 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3310 3311 for (unsigned Part = 0; Part < UF; ++Part) { 3312 Entry[Part] = Builder.CreateSelect( 3313 InvariantCond ? ScalarCond : Cond[Part], 3314 Op0[Part], 3315 Op1[Part]); 3316 } 3317 3318 propagateMetadata(Entry, it); 3319 break; 3320 } 3321 3322 case Instruction::ICmp: 3323 case Instruction::FCmp: { 3324 // Widen compares. Generate vector compares. 3325 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3326 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3327 setDebugLocFromInst(Builder, it); 3328 VectorParts &A = getVectorValue(it->getOperand(0)); 3329 VectorParts &B = getVectorValue(it->getOperand(1)); 3330 for (unsigned Part = 0; Part < UF; ++Part) { 3331 Value *C = nullptr; 3332 if (FCmp) 3333 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3334 else 3335 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3336 Entry[Part] = C; 3337 } 3338 3339 propagateMetadata(Entry, it); 3340 break; 3341 } 3342 3343 case Instruction::Store: 3344 case Instruction::Load: 3345 vectorizeMemoryInstruction(it); 3346 break; 3347 case Instruction::ZExt: 3348 case Instruction::SExt: 3349 case Instruction::FPToUI: 3350 case Instruction::FPToSI: 3351 case Instruction::FPExt: 3352 case Instruction::PtrToInt: 3353 case Instruction::IntToPtr: 3354 case Instruction::SIToFP: 3355 case Instruction::UIToFP: 3356 case Instruction::Trunc: 3357 case Instruction::FPTrunc: 3358 case Instruction::BitCast: { 3359 CastInst *CI = dyn_cast<CastInst>(it); 3360 setDebugLocFromInst(Builder, it); 3361 /// Optimize the special case where the source is the induction 3362 /// variable. Notice that we can only optimize the 'trunc' case 3363 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3364 /// c. other casts depend on pointer size. 3365 if (CI->getOperand(0) == OldInduction && 3366 it->getOpcode() == Instruction::Trunc) { 3367 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3368 CI->getType()); 3369 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3370 for (unsigned Part = 0; Part < UF; ++Part) 3371 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3372 propagateMetadata(Entry, it); 3373 break; 3374 } 3375 /// Vectorize casts. 3376 Type *DestTy = (VF == 1) ? CI->getType() : 3377 VectorType::get(CI->getType(), VF); 3378 3379 VectorParts &A = getVectorValue(it->getOperand(0)); 3380 for (unsigned Part = 0; Part < UF; ++Part) 3381 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3382 propagateMetadata(Entry, it); 3383 break; 3384 } 3385 3386 case Instruction::Call: { 3387 // Ignore dbg intrinsics. 3388 if (isa<DbgInfoIntrinsic>(it)) 3389 break; 3390 setDebugLocFromInst(Builder, it); 3391 3392 Module *M = BB->getParent()->getParent(); 3393 CallInst *CI = cast<CallInst>(it); 3394 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3395 assert(ID && "Not an intrinsic call!"); 3396 switch (ID) { 3397 case Intrinsic::assume: 3398 case Intrinsic::lifetime_end: 3399 case Intrinsic::lifetime_start: 3400 scalarizeInstruction(it); 3401 break; 3402 default: 3403 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3404 for (unsigned Part = 0; Part < UF; ++Part) { 3405 SmallVector<Value *, 4> Args; 3406 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3407 if (HasScalarOpd && i == 1) { 3408 Args.push_back(CI->getArgOperand(i)); 3409 continue; 3410 } 3411 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3412 Args.push_back(Arg[Part]); 3413 } 3414 Type *Tys[] = {CI->getType()}; 3415 if (VF > 1) 3416 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3417 3418 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3419 Entry[Part] = Builder.CreateCall(F, Args); 3420 } 3421 3422 propagateMetadata(Entry, it); 3423 break; 3424 } 3425 break; 3426 } 3427 3428 default: 3429 // All other instructions are unsupported. Scalarize them. 3430 scalarizeInstruction(it); 3431 break; 3432 }// end of switch. 3433 }// end of for_each instr. 3434 } 3435 3436 void InnerLoopVectorizer::updateAnalysis() { 3437 // Forget the original basic block. 3438 SE->forgetLoop(OrigLoop); 3439 3440 // Update the dominator tree information. 3441 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3442 "Entry does not dominate exit."); 3443 3444 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3445 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3446 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3447 3448 // Due to if predication of stores we might create a sequence of "if(pred) 3449 // a[i] = ...; " blocks. 3450 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3451 if (i == 0) 3452 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3453 else if (isPredicatedBlock(i)) { 3454 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3455 } else { 3456 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3457 } 3458 } 3459 3460 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3461 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3462 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3463 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3464 3465 DEBUG(DT->verifyDomTree()); 3466 } 3467 3468 /// \brief Check whether it is safe to if-convert this phi node. 3469 /// 3470 /// Phi nodes with constant expressions that can trap are not safe to if 3471 /// convert. 3472 static bool canIfConvertPHINodes(BasicBlock *BB) { 3473 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3474 PHINode *Phi = dyn_cast<PHINode>(I); 3475 if (!Phi) 3476 return true; 3477 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3478 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3479 if (C->canTrap()) 3480 return false; 3481 } 3482 return true; 3483 } 3484 3485 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3486 if (!EnableIfConversion) { 3487 emitAnalysis(Report() << "if-conversion is disabled"); 3488 return false; 3489 } 3490 3491 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3492 3493 // A list of pointers that we can safely read and write to. 3494 SmallPtrSet<Value *, 8> SafePointes; 3495 3496 // Collect safe addresses. 3497 for (Loop::block_iterator BI = TheLoop->block_begin(), 3498 BE = TheLoop->block_end(); BI != BE; ++BI) { 3499 BasicBlock *BB = *BI; 3500 3501 if (blockNeedsPredication(BB)) 3502 continue; 3503 3504 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3505 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3506 SafePointes.insert(LI->getPointerOperand()); 3507 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3508 SafePointes.insert(SI->getPointerOperand()); 3509 } 3510 } 3511 3512 // Collect the blocks that need predication. 3513 BasicBlock *Header = TheLoop->getHeader(); 3514 for (Loop::block_iterator BI = TheLoop->block_begin(), 3515 BE = TheLoop->block_end(); BI != BE; ++BI) { 3516 BasicBlock *BB = *BI; 3517 3518 // We don't support switch statements inside loops. 3519 if (!isa<BranchInst>(BB->getTerminator())) { 3520 emitAnalysis(Report(BB->getTerminator()) 3521 << "loop contains a switch statement"); 3522 return false; 3523 } 3524 3525 // We must be able to predicate all blocks that need to be predicated. 3526 if (blockNeedsPredication(BB)) { 3527 if (!blockCanBePredicated(BB, SafePointes)) { 3528 emitAnalysis(Report(BB->getTerminator()) 3529 << "control flow cannot be substituted for a select"); 3530 return false; 3531 } 3532 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3533 emitAnalysis(Report(BB->getTerminator()) 3534 << "control flow cannot be substituted for a select"); 3535 return false; 3536 } 3537 } 3538 3539 // We can if-convert this loop. 3540 return true; 3541 } 3542 3543 bool LoopVectorizationLegality::canVectorize() { 3544 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3545 // be canonicalized. 3546 if (!TheLoop->getLoopPreheader()) { 3547 emitAnalysis( 3548 Report() << "loop control flow is not understood by vectorizer"); 3549 return false; 3550 } 3551 3552 // We can only vectorize innermost loops. 3553 if (TheLoop->getSubLoopsVector().size()) { 3554 emitAnalysis(Report() << "loop is not the innermost loop"); 3555 return false; 3556 } 3557 3558 // We must have a single backedge. 3559 if (TheLoop->getNumBackEdges() != 1) { 3560 emitAnalysis( 3561 Report() << "loop control flow is not understood by vectorizer"); 3562 return false; 3563 } 3564 3565 // We must have a single exiting block. 3566 if (!TheLoop->getExitingBlock()) { 3567 emitAnalysis( 3568 Report() << "loop control flow is not understood by vectorizer"); 3569 return false; 3570 } 3571 3572 // We only handle bottom-tested loops, i.e. loop in which the condition is 3573 // checked at the end of each iteration. With that we can assume that all 3574 // instructions in the loop are executed the same number of times. 3575 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3576 emitAnalysis( 3577 Report() << "loop control flow is not understood by vectorizer"); 3578 return false; 3579 } 3580 3581 // We need to have a loop header. 3582 DEBUG(dbgs() << "LV: Found a loop: " << 3583 TheLoop->getHeader()->getName() << '\n'); 3584 3585 // Check if we can if-convert non-single-bb loops. 3586 unsigned NumBlocks = TheLoop->getNumBlocks(); 3587 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3588 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3589 return false; 3590 } 3591 3592 // ScalarEvolution needs to be able to find the exit count. 3593 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3594 if (ExitCount == SE->getCouldNotCompute()) { 3595 emitAnalysis(Report() << "could not determine number of loop iterations"); 3596 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3597 return false; 3598 } 3599 3600 // Check if we can vectorize the instructions and CFG in this loop. 3601 if (!canVectorizeInstrs()) { 3602 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3603 return false; 3604 } 3605 3606 // Go over each instruction and look at memory deps. 3607 if (!canVectorizeMemory()) { 3608 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3609 return false; 3610 } 3611 3612 // Collect all of the variables that remain uniform after vectorization. 3613 collectLoopUniforms(); 3614 3615 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3616 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3617 <<"!\n"); 3618 3619 // Okay! We can vectorize. At this point we don't have any other mem analysis 3620 // which may limit our maximum vectorization factor, so just return true with 3621 // no restrictions. 3622 return true; 3623 } 3624 3625 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3626 if (Ty->isPointerTy()) 3627 return DL.getIntPtrType(Ty); 3628 3629 // It is possible that char's or short's overflow when we ask for the loop's 3630 // trip count, work around this by changing the type size. 3631 if (Ty->getScalarSizeInBits() < 32) 3632 return Type::getInt32Ty(Ty->getContext()); 3633 3634 return Ty; 3635 } 3636 3637 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3638 Ty0 = convertPointerToIntegerType(DL, Ty0); 3639 Ty1 = convertPointerToIntegerType(DL, Ty1); 3640 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3641 return Ty0; 3642 return Ty1; 3643 } 3644 3645 /// \brief Check that the instruction has outside loop users and is not an 3646 /// identified reduction variable. 3647 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3648 SmallPtrSetImpl<Value *> &Reductions) { 3649 // Reduction instructions are allowed to have exit users. All other 3650 // instructions must not have external users. 3651 if (!Reductions.count(Inst)) 3652 //Check that all of the users of the loop are inside the BB. 3653 for (User *U : Inst->users()) { 3654 Instruction *UI = cast<Instruction>(U); 3655 // This user may be a reduction exit value. 3656 if (!TheLoop->contains(UI)) { 3657 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3658 return true; 3659 } 3660 } 3661 return false; 3662 } 3663 3664 bool LoopVectorizationLegality::canVectorizeInstrs() { 3665 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3666 BasicBlock *Header = TheLoop->getHeader(); 3667 3668 // Look for the attribute signaling the absence of NaNs. 3669 Function &F = *Header->getParent(); 3670 if (F.hasFnAttribute("no-nans-fp-math")) 3671 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3672 AttributeSet::FunctionIndex, 3673 "no-nans-fp-math").getValueAsString() == "true"; 3674 3675 // For each block in the loop. 3676 for (Loop::block_iterator bb = TheLoop->block_begin(), 3677 be = TheLoop->block_end(); bb != be; ++bb) { 3678 3679 // Scan the instructions in the block and look for hazards. 3680 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3681 ++it) { 3682 3683 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3684 Type *PhiTy = Phi->getType(); 3685 // Check that this PHI type is allowed. 3686 if (!PhiTy->isIntegerTy() && 3687 !PhiTy->isFloatingPointTy() && 3688 !PhiTy->isPointerTy()) { 3689 emitAnalysis(Report(it) 3690 << "loop control flow is not understood by vectorizer"); 3691 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3692 return false; 3693 } 3694 3695 // If this PHINode is not in the header block, then we know that we 3696 // can convert it to select during if-conversion. No need to check if 3697 // the PHIs in this block are induction or reduction variables. 3698 if (*bb != Header) { 3699 // Check that this instruction has no outside users or is an 3700 // identified reduction value with an outside user. 3701 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3702 continue; 3703 emitAnalysis(Report(it) << "value could not be identified as " 3704 "an induction or reduction variable"); 3705 return false; 3706 } 3707 3708 // We only allow if-converted PHIs with exactly two incoming values. 3709 if (Phi->getNumIncomingValues() != 2) { 3710 emitAnalysis(Report(it) 3711 << "control flow not understood by vectorizer"); 3712 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3713 return false; 3714 } 3715 3716 // This is the value coming from the preheader. 3717 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3718 // Check if this is an induction variable. 3719 InductionKind IK = isInductionVariable(Phi); 3720 3721 if (IK_NoInduction != IK) { 3722 // Get the widest type. 3723 if (!WidestIndTy) 3724 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3725 else 3726 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3727 3728 // Int inductions are special because we only allow one IV. 3729 if (IK == IK_IntInduction) { 3730 // Use the phi node with the widest type as induction. Use the last 3731 // one if there are multiple (no good reason for doing this other 3732 // than it is expedient). 3733 if (!Induction || PhiTy == WidestIndTy) 3734 Induction = Phi; 3735 } 3736 3737 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3738 Inductions[Phi] = InductionInfo(StartValue, IK); 3739 3740 // Until we explicitly handle the case of an induction variable with 3741 // an outside loop user we have to give up vectorizing this loop. 3742 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3743 emitAnalysis(Report(it) << "use of induction value outside of the " 3744 "loop is not handled by vectorizer"); 3745 return false; 3746 } 3747 3748 continue; 3749 } 3750 3751 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3752 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3753 continue; 3754 } 3755 if (AddReductionVar(Phi, RK_IntegerMult)) { 3756 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3757 continue; 3758 } 3759 if (AddReductionVar(Phi, RK_IntegerOr)) { 3760 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3761 continue; 3762 } 3763 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3764 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3765 continue; 3766 } 3767 if (AddReductionVar(Phi, RK_IntegerXor)) { 3768 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3769 continue; 3770 } 3771 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3772 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3773 continue; 3774 } 3775 if (AddReductionVar(Phi, RK_FloatMult)) { 3776 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3777 continue; 3778 } 3779 if (AddReductionVar(Phi, RK_FloatAdd)) { 3780 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3781 continue; 3782 } 3783 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3784 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3785 "\n"); 3786 continue; 3787 } 3788 3789 emitAnalysis(Report(it) << "value that could not be identified as " 3790 "reduction is used outside the loop"); 3791 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3792 return false; 3793 }// end of PHI handling 3794 3795 // We still don't handle functions. However, we can ignore dbg intrinsic 3796 // calls and we do handle certain intrinsic and libm functions. 3797 CallInst *CI = dyn_cast<CallInst>(it); 3798 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3799 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3800 DEBUG(dbgs() << "LV: Found a call site.\n"); 3801 return false; 3802 } 3803 3804 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3805 // second argument is the same (i.e. loop invariant) 3806 if (CI && 3807 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3808 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3809 emitAnalysis(Report(it) 3810 << "intrinsic instruction cannot be vectorized"); 3811 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3812 return false; 3813 } 3814 } 3815 3816 // Check that the instruction return type is vectorizable. 3817 // Also, we can't vectorize extractelement instructions. 3818 if ((!VectorType::isValidElementType(it->getType()) && 3819 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3820 emitAnalysis(Report(it) 3821 << "instruction return type cannot be vectorized"); 3822 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3823 return false; 3824 } 3825 3826 // Check that the stored type is vectorizable. 3827 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3828 Type *T = ST->getValueOperand()->getType(); 3829 if (!VectorType::isValidElementType(T)) { 3830 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3831 return false; 3832 } 3833 if (EnableMemAccessVersioning) 3834 collectStridedAccess(ST); 3835 } 3836 3837 if (EnableMemAccessVersioning) 3838 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3839 collectStridedAccess(LI); 3840 3841 // Reduction instructions are allowed to have exit users. 3842 // All other instructions must not have external users. 3843 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3844 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3845 return false; 3846 } 3847 3848 } // next instr. 3849 3850 } 3851 3852 if (!Induction) { 3853 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3854 if (Inductions.empty()) { 3855 emitAnalysis(Report() 3856 << "loop induction variable could not be identified"); 3857 return false; 3858 } 3859 } 3860 3861 return true; 3862 } 3863 3864 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3865 /// return the induction operand of the gep pointer. 3866 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3867 const DataLayout *DL, Loop *Lp) { 3868 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3869 if (!GEP) 3870 return Ptr; 3871 3872 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3873 3874 // Check that all of the gep indices are uniform except for our induction 3875 // operand. 3876 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3877 if (i != InductionOperand && 3878 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3879 return Ptr; 3880 return GEP->getOperand(InductionOperand); 3881 } 3882 3883 ///\brief Look for a cast use of the passed value. 3884 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3885 Value *UniqueCast = nullptr; 3886 for (User *U : Ptr->users()) { 3887 CastInst *CI = dyn_cast<CastInst>(U); 3888 if (CI && CI->getType() == Ty) { 3889 if (!UniqueCast) 3890 UniqueCast = CI; 3891 else 3892 return nullptr; 3893 } 3894 } 3895 return UniqueCast; 3896 } 3897 3898 ///\brief Get the stride of a pointer access in a loop. 3899 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3900 /// pointer to the Value, or null otherwise. 3901 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3902 const DataLayout *DL, Loop *Lp) { 3903 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3904 if (!PtrTy || PtrTy->isAggregateType()) 3905 return nullptr; 3906 3907 // Try to remove a gep instruction to make the pointer (actually index at this 3908 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3909 // pointer, otherwise, we are analyzing the index. 3910 Value *OrigPtr = Ptr; 3911 3912 // The size of the pointer access. 3913 int64_t PtrAccessSize = 1; 3914 3915 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3916 const SCEV *V = SE->getSCEV(Ptr); 3917 3918 if (Ptr != OrigPtr) 3919 // Strip off casts. 3920 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3921 V = C->getOperand(); 3922 3923 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3924 if (!S) 3925 return nullptr; 3926 3927 V = S->getStepRecurrence(*SE); 3928 if (!V) 3929 return nullptr; 3930 3931 // Strip off the size of access multiplication if we are still analyzing the 3932 // pointer. 3933 if (OrigPtr == Ptr) { 3934 DL->getTypeAllocSize(PtrTy->getElementType()); 3935 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3936 if (M->getOperand(0)->getSCEVType() != scConstant) 3937 return nullptr; 3938 3939 const APInt &APStepVal = 3940 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3941 3942 // Huge step value - give up. 3943 if (APStepVal.getBitWidth() > 64) 3944 return nullptr; 3945 3946 int64_t StepVal = APStepVal.getSExtValue(); 3947 if (PtrAccessSize != StepVal) 3948 return nullptr; 3949 V = M->getOperand(1); 3950 } 3951 } 3952 3953 // Strip off casts. 3954 Type *StripedOffRecurrenceCast = nullptr; 3955 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3956 StripedOffRecurrenceCast = C->getType(); 3957 V = C->getOperand(); 3958 } 3959 3960 // Look for the loop invariant symbolic value. 3961 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3962 if (!U) 3963 return nullptr; 3964 3965 Value *Stride = U->getValue(); 3966 if (!Lp->isLoopInvariant(Stride)) 3967 return nullptr; 3968 3969 // If we have stripped off the recurrence cast we have to make sure that we 3970 // return the value that is used in this loop so that we can replace it later. 3971 if (StripedOffRecurrenceCast) 3972 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3973 3974 return Stride; 3975 } 3976 3977 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 3978 Value *Ptr = nullptr; 3979 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3980 Ptr = LI->getPointerOperand(); 3981 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3982 Ptr = SI->getPointerOperand(); 3983 else 3984 return; 3985 3986 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3987 if (!Stride) 3988 return; 3989 3990 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3991 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3992 Strides[Ptr] = Stride; 3993 StrideSet.insert(Stride); 3994 } 3995 3996 void LoopVectorizationLegality::collectLoopUniforms() { 3997 // We now know that the loop is vectorizable! 3998 // Collect variables that will remain uniform after vectorization. 3999 std::vector<Value*> Worklist; 4000 BasicBlock *Latch = TheLoop->getLoopLatch(); 4001 4002 // Start with the conditional branch and walk up the block. 4003 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4004 4005 // Also add all consecutive pointer values; these values will be uniform 4006 // after vectorization (and subsequent cleanup) and, until revectorization is 4007 // supported, all dependencies must also be uniform. 4008 for (Loop::block_iterator B = TheLoop->block_begin(), 4009 BE = TheLoop->block_end(); B != BE; ++B) 4010 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4011 I != IE; ++I) 4012 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 4013 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4014 4015 while (Worklist.size()) { 4016 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4017 Worklist.pop_back(); 4018 4019 // Look at instructions inside this loop. 4020 // Stop when reaching PHI nodes. 4021 // TODO: we need to follow values all over the loop, not only in this block. 4022 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4023 continue; 4024 4025 // This is a known uniform. 4026 Uniforms.insert(I); 4027 4028 // Insert all operands. 4029 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4030 } 4031 } 4032 4033 namespace { 4034 /// \brief Analyses memory accesses in a loop. 4035 /// 4036 /// Checks whether run time pointer checks are needed and builds sets for data 4037 /// dependence checking. 4038 class AccessAnalysis { 4039 public: 4040 /// \brief Read or write access location. 4041 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4042 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4043 4044 /// \brief Set of potential dependent memory accesses. 4045 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 4046 4047 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 4048 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 4049 4050 /// \brief Register a load and whether it is only read from. 4051 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 4052 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4053 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4054 Accesses.insert(MemAccessInfo(Ptr, false)); 4055 if (IsReadOnly) 4056 ReadOnlyPtr.insert(Ptr); 4057 } 4058 4059 /// \brief Register a store. 4060 void addStore(AliasAnalysis::Location &Loc) { 4061 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4062 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4063 Accesses.insert(MemAccessInfo(Ptr, true)); 4064 } 4065 4066 /// \brief Check whether we can check the pointers at runtime for 4067 /// non-intersection. 4068 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4069 unsigned &NumComparisons, ScalarEvolution *SE, 4070 Loop *TheLoop, ValueToValueMap &Strides, 4071 bool ShouldCheckStride = false); 4072 4073 /// \brief Goes over all memory accesses, checks whether a RT check is needed 4074 /// and builds sets of dependent accesses. 4075 void buildDependenceSets() { 4076 processMemAccesses(); 4077 } 4078 4079 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 4080 4081 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 4082 void resetDepChecks() { CheckDeps.clear(); } 4083 4084 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 4085 4086 private: 4087 typedef SetVector<MemAccessInfo> PtrAccessSet; 4088 4089 /// \brief Go over all memory access and check whether runtime pointer checks 4090 /// are needed /// and build sets of dependency check candidates. 4091 void processMemAccesses(); 4092 4093 /// Set of all accesses. 4094 PtrAccessSet Accesses; 4095 4096 /// Set of accesses that need a further dependence check. 4097 MemAccessInfoSet CheckDeps; 4098 4099 /// Set of pointers that are read only. 4100 SmallPtrSet<Value*, 16> ReadOnlyPtr; 4101 4102 const DataLayout *DL; 4103 4104 /// An alias set tracker to partition the access set by underlying object and 4105 //intrinsic property (such as TBAA metadata). 4106 AliasSetTracker AST; 4107 4108 /// Sets of potentially dependent accesses - members of one set share an 4109 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4110 /// dependence check. 4111 DepCandidates &DepCands; 4112 4113 bool IsRTCheckNeeded; 4114 }; 4115 4116 } // end anonymous namespace 4117 4118 /// \brief Check whether a pointer can participate in a runtime bounds check. 4119 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 4120 Value *Ptr) { 4121 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4122 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4123 if (!AR) 4124 return false; 4125 4126 return AR->isAffine(); 4127 } 4128 4129 /// \brief Check the stride of the pointer and ensure that it does not wrap in 4130 /// the address space. 4131 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4132 const Loop *Lp, ValueToValueMap &StridesMap); 4133 4134 bool AccessAnalysis::canCheckPtrAtRT( 4135 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4136 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 4137 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 4138 // Find pointers with computable bounds. We are going to use this information 4139 // to place a runtime bound check. 4140 bool CanDoRT = true; 4141 4142 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 4143 NumComparisons = 0; 4144 4145 // We assign a consecutive id to access from different alias sets. 4146 // Accesses between different groups doesn't need to be checked. 4147 unsigned ASId = 1; 4148 for (auto &AS : AST) { 4149 unsigned NumReadPtrChecks = 0; 4150 unsigned NumWritePtrChecks = 0; 4151 4152 // We assign consecutive id to access from different dependence sets. 4153 // Accesses within the same set don't need a runtime check. 4154 unsigned RunningDepId = 1; 4155 DenseMap<Value *, unsigned> DepSetId; 4156 4157 for (auto A : AS) { 4158 Value *Ptr = A.getValue(); 4159 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 4160 MemAccessInfo Access(Ptr, IsWrite); 4161 4162 if (IsWrite) 4163 ++NumWritePtrChecks; 4164 else 4165 ++NumReadPtrChecks; 4166 4167 if (hasComputableBounds(SE, StridesMap, Ptr) && 4168 // When we run after a failing dependency check we have to make sure we 4169 // don't have wrapping pointers. 4170 (!ShouldCheckStride || 4171 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4172 // The id of the dependence set. 4173 unsigned DepId; 4174 4175 if (IsDepCheckNeeded) { 4176 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4177 unsigned &LeaderId = DepSetId[Leader]; 4178 if (!LeaderId) 4179 LeaderId = RunningDepId++; 4180 DepId = LeaderId; 4181 } else 4182 // Each access has its own dependence set. 4183 DepId = RunningDepId++; 4184 4185 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 4186 4187 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4188 } else { 4189 CanDoRT = false; 4190 } 4191 } 4192 4193 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4194 NumComparisons += 0; // Only one dependence set. 4195 else { 4196 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 4197 NumWritePtrChecks - 1)); 4198 } 4199 4200 ++ASId; 4201 } 4202 4203 // If the pointers that we would use for the bounds comparison have different 4204 // address spaces, assume the values aren't directly comparable, so we can't 4205 // use them for the runtime check. We also have to assume they could 4206 // overlap. In the future there should be metadata for whether address spaces 4207 // are disjoint. 4208 unsigned NumPointers = RtCheck.Pointers.size(); 4209 for (unsigned i = 0; i < NumPointers; ++i) { 4210 for (unsigned j = i + 1; j < NumPointers; ++j) { 4211 // Only need to check pointers between two different dependency sets. 4212 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4213 continue; 4214 // Only need to check pointers in the same alias set. 4215 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 4216 continue; 4217 4218 Value *PtrI = RtCheck.Pointers[i]; 4219 Value *PtrJ = RtCheck.Pointers[j]; 4220 4221 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4222 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4223 if (ASi != ASj) { 4224 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4225 " different address spaces\n"); 4226 return false; 4227 } 4228 } 4229 } 4230 4231 return CanDoRT; 4232 } 4233 4234 void AccessAnalysis::processMemAccesses() { 4235 // We process the set twice: first we process read-write pointers, last we 4236 // process read-only pointers. This allows us to skip dependence tests for 4237 // read-only pointers. 4238 4239 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 4240 DEBUG(dbgs() << " AST: "; AST.dump()); 4241 DEBUG(dbgs() << "LV: Accesses:\n"); 4242 DEBUG({ 4243 for (auto A : Accesses) 4244 dbgs() << "\t" << *A.getPointer() << " (" << 4245 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 4246 "read-only" : "read")) << ")\n"; 4247 }); 4248 4249 // The AliasSetTracker has nicely partitioned our pointers by metadata 4250 // compatibility and potential for underlying-object overlap. As a result, we 4251 // only need to check for potential pointer dependencies within each alias 4252 // set. 4253 for (auto &AS : AST) { 4254 // Note that both the alias-set tracker and the alias sets themselves used 4255 // linked lists internally and so the iteration order here is deterministic 4256 // (matching the original instruction order within each set). 4257 4258 bool SetHasWrite = false; 4259 4260 // Map of pointers to last access encountered. 4261 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 4262 UnderlyingObjToAccessMap ObjToLastAccess; 4263 4264 // Set of access to check after all writes have been processed. 4265 PtrAccessSet DeferredAccesses; 4266 4267 // Iterate over each alias set twice, once to process read/write pointers, 4268 // and then to process read-only pointers. 4269 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 4270 bool UseDeferred = SetIteration > 0; 4271 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4272 4273 for (auto AV : AS) { 4274 Value *Ptr = AV.getValue(); 4275 4276 // For a single memory access in AliasSetTracker, Accesses may contain 4277 // both read and write, and they both need to be handled for CheckDeps. 4278 for (auto AC : S) { 4279 if (AC.getPointer() != Ptr) 4280 continue; 4281 4282 bool IsWrite = AC.getInt(); 4283 4284 // If we're using the deferred access set, then it contains only 4285 // reads. 4286 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4287 if (UseDeferred && !IsReadOnlyPtr) 4288 continue; 4289 // Otherwise, the pointer must be in the PtrAccessSet, either as a 4290 // read or a write. 4291 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 4292 S.count(MemAccessInfo(Ptr, false))) && 4293 "Alias-set pointer not in the access set?"); 4294 4295 MemAccessInfo Access(Ptr, IsWrite); 4296 DepCands.insert(Access); 4297 4298 // Memorize read-only pointers for later processing and skip them in 4299 // the first round (they need to be checked after we have seen all 4300 // write pointers). Note: we also mark pointer that are not 4301 // consecutive as "read-only" pointers (so that we check 4302 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 4303 if (!UseDeferred && IsReadOnlyPtr) { 4304 DeferredAccesses.insert(Access); 4305 continue; 4306 } 4307 4308 // If this is a write - check other reads and writes for conflicts. If 4309 // this is a read only check other writes for conflicts (but only if 4310 // there is no other write to the ptr - this is an optimization to 4311 // catch "a[i] = a[i] + " without having to do a dependence check). 4312 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 4313 CheckDeps.insert(Access); 4314 IsRTCheckNeeded = true; 4315 } 4316 4317 if (IsWrite) 4318 SetHasWrite = true; 4319 4320 // Create sets of pointers connected by a shared alias set and 4321 // underlying object. 4322 typedef SmallVector<Value *, 16> ValueVector; 4323 ValueVector TempObjects; 4324 GetUnderlyingObjects(Ptr, TempObjects, DL); 4325 for (Value *UnderlyingObj : TempObjects) { 4326 UnderlyingObjToAccessMap::iterator Prev = 4327 ObjToLastAccess.find(UnderlyingObj); 4328 if (Prev != ObjToLastAccess.end()) 4329 DepCands.unionSets(Access, Prev->second); 4330 4331 ObjToLastAccess[UnderlyingObj] = Access; 4332 } 4333 } 4334 } 4335 } 4336 } 4337 } 4338 4339 namespace { 4340 /// \brief Checks memory dependences among accesses to the same underlying 4341 /// object to determine whether there vectorization is legal or not (and at 4342 /// which vectorization factor). 4343 /// 4344 /// This class works under the assumption that we already checked that memory 4345 /// locations with different underlying pointers are "must-not alias". 4346 /// We use the ScalarEvolution framework to symbolically evalutate access 4347 /// functions pairs. Since we currently don't restructure the loop we can rely 4348 /// on the program order of memory accesses to determine their safety. 4349 /// At the moment we will only deem accesses as safe for: 4350 /// * A negative constant distance assuming program order. 4351 /// 4352 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4353 /// a[i] = tmp; y = a[i]; 4354 /// 4355 /// The latter case is safe because later checks guarantuee that there can't 4356 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4357 /// the same variable: a header phi can only be an induction or a reduction, a 4358 /// reduction can't have a memory sink, an induction can't have a memory 4359 /// source). This is important and must not be violated (or we have to 4360 /// resort to checking for cycles through memory). 4361 /// 4362 /// * A positive constant distance assuming program order that is bigger 4363 /// than the biggest memory access. 4364 /// 4365 /// tmp = a[i] OR b[i] = x 4366 /// a[i+2] = tmp y = b[i+2]; 4367 /// 4368 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4369 /// 4370 /// * Zero distances and all accesses have the same size. 4371 /// 4372 class MemoryDepChecker { 4373 public: 4374 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4375 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4376 4377 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4378 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4379 ShouldRetryWithRuntimeCheck(false) {} 4380 4381 /// \brief Register the location (instructions are given increasing numbers) 4382 /// of a write access. 4383 void addAccess(StoreInst *SI) { 4384 Value *Ptr = SI->getPointerOperand(); 4385 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4386 InstMap.push_back(SI); 4387 ++AccessIdx; 4388 } 4389 4390 /// \brief Register the location (instructions are given increasing numbers) 4391 /// of a write access. 4392 void addAccess(LoadInst *LI) { 4393 Value *Ptr = LI->getPointerOperand(); 4394 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4395 InstMap.push_back(LI); 4396 ++AccessIdx; 4397 } 4398 4399 /// \brief Check whether the dependencies between the accesses are safe. 4400 /// 4401 /// Only checks sets with elements in \p CheckDeps. 4402 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4403 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4404 4405 /// \brief The maximum number of bytes of a vector register we can vectorize 4406 /// the accesses safely with. 4407 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4408 4409 /// \brief In same cases when the dependency check fails we can still 4410 /// vectorize the loop with a dynamic array access check. 4411 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4412 4413 private: 4414 ScalarEvolution *SE; 4415 const DataLayout *DL; 4416 const Loop *InnermostLoop; 4417 4418 /// \brief Maps access locations (ptr, read/write) to program order. 4419 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4420 4421 /// \brief Memory access instructions in program order. 4422 SmallVector<Instruction *, 16> InstMap; 4423 4424 /// \brief The program order index to be used for the next instruction. 4425 unsigned AccessIdx; 4426 4427 // We can access this many bytes in parallel safely. 4428 unsigned MaxSafeDepDistBytes; 4429 4430 /// \brief If we see a non-constant dependence distance we can still try to 4431 /// vectorize this loop with runtime checks. 4432 bool ShouldRetryWithRuntimeCheck; 4433 4434 /// \brief Check whether there is a plausible dependence between the two 4435 /// accesses. 4436 /// 4437 /// Access \p A must happen before \p B in program order. The two indices 4438 /// identify the index into the program order map. 4439 /// 4440 /// This function checks whether there is a plausible dependence (or the 4441 /// absence of such can't be proved) between the two accesses. If there is a 4442 /// plausible dependence but the dependence distance is bigger than one 4443 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4444 /// distance is smaller than any other distance encountered so far). 4445 /// Otherwise, this function returns true signaling a possible dependence. 4446 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4447 const MemAccessInfo &B, unsigned BIdx, 4448 ValueToValueMap &Strides); 4449 4450 /// \brief Check whether the data dependence could prevent store-load 4451 /// forwarding. 4452 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4453 }; 4454 4455 } // end anonymous namespace 4456 4457 static bool isInBoundsGep(Value *Ptr) { 4458 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4459 return GEP->isInBounds(); 4460 return false; 4461 } 4462 4463 /// \brief Check whether the access through \p Ptr has a constant stride. 4464 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4465 const Loop *Lp, ValueToValueMap &StridesMap) { 4466 const Type *Ty = Ptr->getType(); 4467 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4468 4469 // Make sure that the pointer does not point to aggregate types. 4470 const PointerType *PtrTy = cast<PointerType>(Ty); 4471 if (PtrTy->getElementType()->isAggregateType()) { 4472 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4473 "\n"); 4474 return 0; 4475 } 4476 4477 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4478 4479 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4480 if (!AR) { 4481 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4482 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4483 return 0; 4484 } 4485 4486 // The accesss function must stride over the innermost loop. 4487 if (Lp != AR->getLoop()) { 4488 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4489 *Ptr << " SCEV: " << *PtrScev << "\n"); 4490 } 4491 4492 // The address calculation must not wrap. Otherwise, a dependence could be 4493 // inverted. 4494 // An inbounds getelementptr that is a AddRec with a unit stride 4495 // cannot wrap per definition. The unit stride requirement is checked later. 4496 // An getelementptr without an inbounds attribute and unit stride would have 4497 // to access the pointer value "0" which is undefined behavior in address 4498 // space 0, therefore we can also vectorize this case. 4499 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4500 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4501 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4502 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4503 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4504 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4505 return 0; 4506 } 4507 4508 // Check the step is constant. 4509 const SCEV *Step = AR->getStepRecurrence(*SE); 4510 4511 // Calculate the pointer stride and check if it is consecutive. 4512 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4513 if (!C) { 4514 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4515 " SCEV: " << *PtrScev << "\n"); 4516 return 0; 4517 } 4518 4519 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4520 const APInt &APStepVal = C->getValue()->getValue(); 4521 4522 // Huge step value - give up. 4523 if (APStepVal.getBitWidth() > 64) 4524 return 0; 4525 4526 int64_t StepVal = APStepVal.getSExtValue(); 4527 4528 // Strided access. 4529 int64_t Stride = StepVal / Size; 4530 int64_t Rem = StepVal % Size; 4531 if (Rem) 4532 return 0; 4533 4534 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4535 // know we can't "wrap around the address space". In case of address space 4536 // zero we know that this won't happen without triggering undefined behavior. 4537 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4538 Stride != 1 && Stride != -1) 4539 return 0; 4540 4541 return Stride; 4542 } 4543 4544 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4545 unsigned TypeByteSize) { 4546 // If loads occur at a distance that is not a multiple of a feasible vector 4547 // factor store-load forwarding does not take place. 4548 // Positive dependences might cause troubles because vectorizing them might 4549 // prevent store-load forwarding making vectorized code run a lot slower. 4550 // a[i] = a[i-3] ^ a[i-8]; 4551 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4552 // hence on your typical architecture store-load forwarding does not take 4553 // place. Vectorizing in such cases does not make sense. 4554 // Store-load forwarding distance. 4555 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4556 // Maximum vector factor. 4557 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4558 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4559 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4560 4561 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4562 vf *= 2) { 4563 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4564 MaxVFWithoutSLForwardIssues = (vf >>=1); 4565 break; 4566 } 4567 } 4568 4569 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4570 DEBUG(dbgs() << "LV: Distance " << Distance << 4571 " that could cause a store-load forwarding conflict\n"); 4572 return true; 4573 } 4574 4575 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4576 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4577 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4578 return false; 4579 } 4580 4581 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4582 const MemAccessInfo &B, unsigned BIdx, 4583 ValueToValueMap &Strides) { 4584 assert (AIdx < BIdx && "Must pass arguments in program order"); 4585 4586 Value *APtr = A.getPointer(); 4587 Value *BPtr = B.getPointer(); 4588 bool AIsWrite = A.getInt(); 4589 bool BIsWrite = B.getInt(); 4590 4591 // Two reads are independent. 4592 if (!AIsWrite && !BIsWrite) 4593 return false; 4594 4595 // We cannot check pointers in different address spaces. 4596 if (APtr->getType()->getPointerAddressSpace() != 4597 BPtr->getType()->getPointerAddressSpace()) 4598 return true; 4599 4600 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4601 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4602 4603 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4604 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4605 4606 const SCEV *Src = AScev; 4607 const SCEV *Sink = BScev; 4608 4609 // If the induction step is negative we have to invert source and sink of the 4610 // dependence. 4611 if (StrideAPtr < 0) { 4612 //Src = BScev; 4613 //Sink = AScev; 4614 std::swap(APtr, BPtr); 4615 std::swap(Src, Sink); 4616 std::swap(AIsWrite, BIsWrite); 4617 std::swap(AIdx, BIdx); 4618 std::swap(StrideAPtr, StrideBPtr); 4619 } 4620 4621 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4622 4623 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4624 << "(Induction step: " << StrideAPtr << ")\n"); 4625 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4626 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4627 4628 // Need consecutive accesses. We don't want to vectorize 4629 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4630 // the address space. 4631 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4632 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4633 return true; 4634 } 4635 4636 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4637 if (!C) { 4638 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4639 ShouldRetryWithRuntimeCheck = true; 4640 return true; 4641 } 4642 4643 Type *ATy = APtr->getType()->getPointerElementType(); 4644 Type *BTy = BPtr->getType()->getPointerElementType(); 4645 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4646 4647 // Negative distances are not plausible dependencies. 4648 const APInt &Val = C->getValue()->getValue(); 4649 if (Val.isNegative()) { 4650 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4651 if (IsTrueDataDependence && 4652 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4653 ATy != BTy)) 4654 return true; 4655 4656 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4657 return false; 4658 } 4659 4660 // Write to the same location with the same size. 4661 // Could be improved to assert type sizes are the same (i32 == float, etc). 4662 if (Val == 0) { 4663 if (ATy == BTy) 4664 return false; 4665 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4666 return true; 4667 } 4668 4669 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4670 4671 // Positive distance bigger than max vectorization factor. 4672 if (ATy != BTy) { 4673 DEBUG(dbgs() << 4674 "LV: ReadWrite-Write positive dependency with different types\n"); 4675 return false; 4676 } 4677 4678 unsigned Distance = (unsigned) Val.getZExtValue(); 4679 4680 // Bail out early if passed-in parameters make vectorization not feasible. 4681 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4682 unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1; 4683 4684 // The distance must be bigger than the size needed for a vectorized version 4685 // of the operation and the size of the vectorized operation must not be 4686 // bigger than the currrent maximum size. 4687 if (Distance < 2*TypeByteSize || 4688 2*TypeByteSize > MaxSafeDepDistBytes || 4689 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4690 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4691 << Val.getSExtValue() << '\n'); 4692 return true; 4693 } 4694 4695 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4696 Distance : MaxSafeDepDistBytes; 4697 4698 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4699 if (IsTrueDataDependence && 4700 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4701 return true; 4702 4703 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4704 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4705 4706 return false; 4707 } 4708 4709 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4710 MemAccessInfoSet &CheckDeps, 4711 ValueToValueMap &Strides) { 4712 4713 MaxSafeDepDistBytes = -1U; 4714 while (!CheckDeps.empty()) { 4715 MemAccessInfo CurAccess = *CheckDeps.begin(); 4716 4717 // Get the relevant memory access set. 4718 EquivalenceClasses<MemAccessInfo>::iterator I = 4719 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4720 4721 // Check accesses within this set. 4722 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4723 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4724 4725 // Check every access pair. 4726 while (AI != AE) { 4727 CheckDeps.erase(*AI); 4728 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4729 while (OI != AE) { 4730 // Check every accessing instruction pair in program order. 4731 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4732 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4733 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4734 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4735 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4736 return false; 4737 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4738 return false; 4739 } 4740 ++OI; 4741 } 4742 AI++; 4743 } 4744 } 4745 return true; 4746 } 4747 4748 bool LoopVectorizationLegality::canVectorizeMemory() { 4749 4750 typedef SmallVector<Value*, 16> ValueVector; 4751 typedef SmallPtrSet<Value*, 16> ValueSet; 4752 4753 // Holds the Load and Store *instructions*. 4754 ValueVector Loads; 4755 ValueVector Stores; 4756 4757 // Holds all the different accesses in the loop. 4758 unsigned NumReads = 0; 4759 unsigned NumReadWrites = 0; 4760 4761 PtrRtCheck.Pointers.clear(); 4762 PtrRtCheck.Need = false; 4763 4764 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4765 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4766 4767 // For each block. 4768 for (Loop::block_iterator bb = TheLoop->block_begin(), 4769 be = TheLoop->block_end(); bb != be; ++bb) { 4770 4771 // Scan the BB and collect legal loads and stores. 4772 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4773 ++it) { 4774 4775 // If this is a load, save it. If this instruction can read from memory 4776 // but is not a load, then we quit. Notice that we don't handle function 4777 // calls that read or write. 4778 if (it->mayReadFromMemory()) { 4779 // Many math library functions read the rounding mode. We will only 4780 // vectorize a loop if it contains known function calls that don't set 4781 // the flag. Therefore, it is safe to ignore this read from memory. 4782 CallInst *Call = dyn_cast<CallInst>(it); 4783 if (Call && getIntrinsicIDForCall(Call, TLI)) 4784 continue; 4785 4786 LoadInst *Ld = dyn_cast<LoadInst>(it); 4787 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4788 emitAnalysis(Report(Ld) 4789 << "read with atomic ordering or volatile read"); 4790 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4791 return false; 4792 } 4793 NumLoads++; 4794 Loads.push_back(Ld); 4795 DepChecker.addAccess(Ld); 4796 continue; 4797 } 4798 4799 // Save 'store' instructions. Abort if other instructions write to memory. 4800 if (it->mayWriteToMemory()) { 4801 StoreInst *St = dyn_cast<StoreInst>(it); 4802 if (!St) { 4803 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4804 return false; 4805 } 4806 if (!St->isSimple() && !IsAnnotatedParallel) { 4807 emitAnalysis(Report(St) 4808 << "write with atomic ordering or volatile write"); 4809 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4810 return false; 4811 } 4812 NumStores++; 4813 Stores.push_back(St); 4814 DepChecker.addAccess(St); 4815 } 4816 } // Next instr. 4817 } // Next block. 4818 4819 // Now we have two lists that hold the loads and the stores. 4820 // Next, we find the pointers that they use. 4821 4822 // Check if we see any stores. If there are no stores, then we don't 4823 // care if the pointers are *restrict*. 4824 if (!Stores.size()) { 4825 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4826 return true; 4827 } 4828 4829 AccessAnalysis::DepCandidates DependentAccesses; 4830 AccessAnalysis Accesses(DL, AA, DependentAccesses); 4831 4832 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4833 // multiple times on the same object. If the ptr is accessed twice, once 4834 // for read and once for write, it will only appear once (on the write 4835 // list). This is okay, since we are going to check for conflicts between 4836 // writes and between reads and writes, but not between reads and reads. 4837 ValueSet Seen; 4838 4839 ValueVector::iterator I, IE; 4840 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4841 StoreInst *ST = cast<StoreInst>(*I); 4842 Value* Ptr = ST->getPointerOperand(); 4843 4844 if (isUniform(Ptr)) { 4845 emitAnalysis( 4846 Report(ST) 4847 << "write to a loop invariant address could not be vectorized"); 4848 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4849 return false; 4850 } 4851 4852 // If we did *not* see this pointer before, insert it to the read-write 4853 // list. At this phase it is only a 'write' list. 4854 if (Seen.insert(Ptr).second) { 4855 ++NumReadWrites; 4856 4857 AliasAnalysis::Location Loc = AA->getLocation(ST); 4858 // The TBAA metadata could have a control dependency on the predication 4859 // condition, so we cannot rely on it when determining whether or not we 4860 // need runtime pointer checks. 4861 if (blockNeedsPredication(ST->getParent())) 4862 Loc.AATags.TBAA = nullptr; 4863 4864 Accesses.addStore(Loc); 4865 } 4866 } 4867 4868 if (IsAnnotatedParallel) { 4869 DEBUG(dbgs() 4870 << "LV: A loop annotated parallel, ignore memory dependency " 4871 << "checks.\n"); 4872 return true; 4873 } 4874 4875 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4876 LoadInst *LD = cast<LoadInst>(*I); 4877 Value* Ptr = LD->getPointerOperand(); 4878 // If we did *not* see this pointer before, insert it to the 4879 // read list. If we *did* see it before, then it is already in 4880 // the read-write list. This allows us to vectorize expressions 4881 // such as A[i] += x; Because the address of A[i] is a read-write 4882 // pointer. This only works if the index of A[i] is consecutive. 4883 // If the address of i is unknown (for example A[B[i]]) then we may 4884 // read a few words, modify, and write a few words, and some of the 4885 // words may be written to the same address. 4886 bool IsReadOnlyPtr = false; 4887 if (Seen.insert(Ptr).second || 4888 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4889 ++NumReads; 4890 IsReadOnlyPtr = true; 4891 } 4892 4893 AliasAnalysis::Location Loc = AA->getLocation(LD); 4894 // The TBAA metadata could have a control dependency on the predication 4895 // condition, so we cannot rely on it when determining whether or not we 4896 // need runtime pointer checks. 4897 if (blockNeedsPredication(LD->getParent())) 4898 Loc.AATags.TBAA = nullptr; 4899 4900 Accesses.addLoad(Loc, IsReadOnlyPtr); 4901 } 4902 4903 // If we write (or read-write) to a single destination and there are no 4904 // other reads in this loop then is it safe to vectorize. 4905 if (NumReadWrites == 1 && NumReads == 0) { 4906 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4907 return true; 4908 } 4909 4910 // Build dependence sets and check whether we need a runtime pointer bounds 4911 // check. 4912 Accesses.buildDependenceSets(); 4913 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4914 4915 // Find pointers with computable bounds. We are going to use this information 4916 // to place a runtime bound check. 4917 unsigned NumComparisons = 0; 4918 bool CanDoRT = false; 4919 if (NeedRTCheck) 4920 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4921 Strides); 4922 4923 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4924 " pointer comparisons.\n"); 4925 4926 // If we only have one set of dependences to check pointers among we don't 4927 // need a runtime check. 4928 if (NumComparisons == 0 && NeedRTCheck) 4929 NeedRTCheck = false; 4930 4931 // Check that we did not collect too many pointers or found an unsizeable 4932 // pointer. 4933 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4934 PtrRtCheck.reset(); 4935 CanDoRT = false; 4936 } 4937 4938 if (CanDoRT) { 4939 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4940 } 4941 4942 if (NeedRTCheck && !CanDoRT) { 4943 emitAnalysis(Report() << "cannot identify array bounds"); 4944 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4945 "the array bounds.\n"); 4946 PtrRtCheck.reset(); 4947 return false; 4948 } 4949 4950 PtrRtCheck.Need = NeedRTCheck; 4951 4952 bool CanVecMem = true; 4953 if (Accesses.isDependencyCheckNeeded()) { 4954 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4955 CanVecMem = DepChecker.areDepsSafe( 4956 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4957 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4958 4959 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4960 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4961 NeedRTCheck = true; 4962 4963 // Clear the dependency checks. We assume they are not needed. 4964 Accesses.resetDepChecks(); 4965 4966 PtrRtCheck.reset(); 4967 PtrRtCheck.Need = true; 4968 4969 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4970 TheLoop, Strides, true); 4971 // Check that we did not collect too many pointers or found an unsizeable 4972 // pointer. 4973 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4974 if (!CanDoRT && NumComparisons > 0) 4975 emitAnalysis(Report() 4976 << "cannot check memory dependencies at runtime"); 4977 else 4978 emitAnalysis(Report() 4979 << NumComparisons << " exceeds limit of " 4980 << RuntimeMemoryCheckThreshold 4981 << " dependent memory operations checked at runtime"); 4982 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4983 PtrRtCheck.reset(); 4984 return false; 4985 } 4986 4987 CanVecMem = true; 4988 } 4989 } 4990 4991 if (!CanVecMem) 4992 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4993 4994 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4995 " need a runtime memory check.\n"); 4996 4997 return CanVecMem; 4998 } 4999 5000 static bool hasMultipleUsesOf(Instruction *I, 5001 SmallPtrSetImpl<Instruction *> &Insts) { 5002 unsigned NumUses = 0; 5003 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 5004 if (Insts.count(dyn_cast<Instruction>(*Use))) 5005 ++NumUses; 5006 if (NumUses > 1) 5007 return true; 5008 } 5009 5010 return false; 5011 } 5012 5013 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 5014 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 5015 if (!Set.count(dyn_cast<Instruction>(*Use))) 5016 return false; 5017 return true; 5018 } 5019 5020 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 5021 ReductionKind Kind) { 5022 if (Phi->getNumIncomingValues() != 2) 5023 return false; 5024 5025 // Reduction variables are only found in the loop header block. 5026 if (Phi->getParent() != TheLoop->getHeader()) 5027 return false; 5028 5029 // Obtain the reduction start value from the value that comes from the loop 5030 // preheader. 5031 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 5032 5033 // ExitInstruction is the single value which is used outside the loop. 5034 // We only allow for a single reduction value to be used outside the loop. 5035 // This includes users of the reduction, variables (which form a cycle 5036 // which ends in the phi node). 5037 Instruction *ExitInstruction = nullptr; 5038 // Indicates that we found a reduction operation in our scan. 5039 bool FoundReduxOp = false; 5040 5041 // We start with the PHI node and scan for all of the users of this 5042 // instruction. All users must be instructions that can be used as reduction 5043 // variables (such as ADD). We must have a single out-of-block user. The cycle 5044 // must include the original PHI. 5045 bool FoundStartPHI = false; 5046 5047 // To recognize min/max patterns formed by a icmp select sequence, we store 5048 // the number of instruction we saw from the recognized min/max pattern, 5049 // to make sure we only see exactly the two instructions. 5050 unsigned NumCmpSelectPatternInst = 0; 5051 ReductionInstDesc ReduxDesc(false, nullptr); 5052 5053 SmallPtrSet<Instruction *, 8> VisitedInsts; 5054 SmallVector<Instruction *, 8> Worklist; 5055 Worklist.push_back(Phi); 5056 VisitedInsts.insert(Phi); 5057 5058 // A value in the reduction can be used: 5059 // - By the reduction: 5060 // - Reduction operation: 5061 // - One use of reduction value (safe). 5062 // - Multiple use of reduction value (not safe). 5063 // - PHI: 5064 // - All uses of the PHI must be the reduction (safe). 5065 // - Otherwise, not safe. 5066 // - By one instruction outside of the loop (safe). 5067 // - By further instructions outside of the loop (not safe). 5068 // - By an instruction that is not part of the reduction (not safe). 5069 // This is either: 5070 // * An instruction type other than PHI or the reduction operation. 5071 // * A PHI in the header other than the initial PHI. 5072 while (!Worklist.empty()) { 5073 Instruction *Cur = Worklist.back(); 5074 Worklist.pop_back(); 5075 5076 // No Users. 5077 // If the instruction has no users then this is a broken chain and can't be 5078 // a reduction variable. 5079 if (Cur->use_empty()) 5080 return false; 5081 5082 bool IsAPhi = isa<PHINode>(Cur); 5083 5084 // A header PHI use other than the original PHI. 5085 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 5086 return false; 5087 5088 // Reductions of instructions such as Div, and Sub is only possible if the 5089 // LHS is the reduction variable. 5090 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 5091 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 5092 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 5093 return false; 5094 5095 // Any reduction instruction must be of one of the allowed kinds. 5096 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 5097 if (!ReduxDesc.IsReduction) 5098 return false; 5099 5100 // A reduction operation must only have one use of the reduction value. 5101 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 5102 hasMultipleUsesOf(Cur, VisitedInsts)) 5103 return false; 5104 5105 // All inputs to a PHI node must be a reduction value. 5106 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 5107 return false; 5108 5109 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 5110 isa<SelectInst>(Cur))) 5111 ++NumCmpSelectPatternInst; 5112 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 5113 isa<SelectInst>(Cur))) 5114 ++NumCmpSelectPatternInst; 5115 5116 // Check whether we found a reduction operator. 5117 FoundReduxOp |= !IsAPhi; 5118 5119 // Process users of current instruction. Push non-PHI nodes after PHI nodes 5120 // onto the stack. This way we are going to have seen all inputs to PHI 5121 // nodes once we get to them. 5122 SmallVector<Instruction *, 8> NonPHIs; 5123 SmallVector<Instruction *, 8> PHIs; 5124 for (User *U : Cur->users()) { 5125 Instruction *UI = cast<Instruction>(U); 5126 5127 // Check if we found the exit user. 5128 BasicBlock *Parent = UI->getParent(); 5129 if (!TheLoop->contains(Parent)) { 5130 // Exit if you find multiple outside users or if the header phi node is 5131 // being used. In this case the user uses the value of the previous 5132 // iteration, in which case we would loose "VF-1" iterations of the 5133 // reduction operation if we vectorize. 5134 if (ExitInstruction != nullptr || Cur == Phi) 5135 return false; 5136 5137 // The instruction used by an outside user must be the last instruction 5138 // before we feed back to the reduction phi. Otherwise, we loose VF-1 5139 // operations on the value. 5140 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 5141 return false; 5142 5143 ExitInstruction = Cur; 5144 continue; 5145 } 5146 5147 // Process instructions only once (termination). Each reduction cycle 5148 // value must only be used once, except by phi nodes and min/max 5149 // reductions which are represented as a cmp followed by a select. 5150 ReductionInstDesc IgnoredVal(false, nullptr); 5151 if (VisitedInsts.insert(UI).second) { 5152 if (isa<PHINode>(UI)) 5153 PHIs.push_back(UI); 5154 else 5155 NonPHIs.push_back(UI); 5156 } else if (!isa<PHINode>(UI) && 5157 ((!isa<FCmpInst>(UI) && 5158 !isa<ICmpInst>(UI) && 5159 !isa<SelectInst>(UI)) || 5160 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 5161 return false; 5162 5163 // Remember that we completed the cycle. 5164 if (UI == Phi) 5165 FoundStartPHI = true; 5166 } 5167 Worklist.append(PHIs.begin(), PHIs.end()); 5168 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 5169 } 5170 5171 // This means we have seen one but not the other instruction of the 5172 // pattern or more than just a select and cmp. 5173 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 5174 NumCmpSelectPatternInst != 2) 5175 return false; 5176 5177 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 5178 return false; 5179 5180 // We found a reduction var if we have reached the original phi node and we 5181 // only have a single instruction with out-of-loop users. 5182 5183 // This instruction is allowed to have out-of-loop users. 5184 AllowedExit.insert(ExitInstruction); 5185 5186 // Save the description of this reduction variable. 5187 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 5188 ReduxDesc.MinMaxKind); 5189 Reductions[Phi] = RD; 5190 // We've ended the cycle. This is a reduction variable if we have an 5191 // outside user and it has a binary op. 5192 5193 return true; 5194 } 5195 5196 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 5197 /// pattern corresponding to a min(X, Y) or max(X, Y). 5198 LoopVectorizationLegality::ReductionInstDesc 5199 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 5200 ReductionInstDesc &Prev) { 5201 5202 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 5203 "Expect a select instruction"); 5204 Instruction *Cmp = nullptr; 5205 SelectInst *Select = nullptr; 5206 5207 // We must handle the select(cmp()) as a single instruction. Advance to the 5208 // select. 5209 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5210 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5211 return ReductionInstDesc(false, I); 5212 return ReductionInstDesc(Select, Prev.MinMaxKind); 5213 } 5214 5215 // Only handle single use cases for now. 5216 if (!(Select = dyn_cast<SelectInst>(I))) 5217 return ReductionInstDesc(false, I); 5218 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5219 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5220 return ReductionInstDesc(false, I); 5221 if (!Cmp->hasOneUse()) 5222 return ReductionInstDesc(false, I); 5223 5224 Value *CmpLeft; 5225 Value *CmpRight; 5226 5227 // Look for a min/max pattern. 5228 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5229 return ReductionInstDesc(Select, MRK_UIntMin); 5230 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5231 return ReductionInstDesc(Select, MRK_UIntMax); 5232 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5233 return ReductionInstDesc(Select, MRK_SIntMax); 5234 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5235 return ReductionInstDesc(Select, MRK_SIntMin); 5236 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5237 return ReductionInstDesc(Select, MRK_FloatMin); 5238 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5239 return ReductionInstDesc(Select, MRK_FloatMax); 5240 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5241 return ReductionInstDesc(Select, MRK_FloatMin); 5242 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5243 return ReductionInstDesc(Select, MRK_FloatMax); 5244 5245 return ReductionInstDesc(false, I); 5246 } 5247 5248 LoopVectorizationLegality::ReductionInstDesc 5249 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5250 ReductionKind Kind, 5251 ReductionInstDesc &Prev) { 5252 bool FP = I->getType()->isFloatingPointTy(); 5253 bool FastMath = FP && I->hasUnsafeAlgebra(); 5254 switch (I->getOpcode()) { 5255 default: 5256 return ReductionInstDesc(false, I); 5257 case Instruction::PHI: 5258 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5259 Kind != RK_FloatMinMax)) 5260 return ReductionInstDesc(false, I); 5261 return ReductionInstDesc(I, Prev.MinMaxKind); 5262 case Instruction::Sub: 5263 case Instruction::Add: 5264 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5265 case Instruction::Mul: 5266 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5267 case Instruction::And: 5268 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5269 case Instruction::Or: 5270 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5271 case Instruction::Xor: 5272 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5273 case Instruction::FMul: 5274 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5275 case Instruction::FSub: 5276 case Instruction::FAdd: 5277 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5278 case Instruction::FCmp: 5279 case Instruction::ICmp: 5280 case Instruction::Select: 5281 if (Kind != RK_IntegerMinMax && 5282 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5283 return ReductionInstDesc(false, I); 5284 return isMinMaxSelectCmpPattern(I, Prev); 5285 } 5286 } 5287 5288 LoopVectorizationLegality::InductionKind 5289 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5290 Type *PhiTy = Phi->getType(); 5291 // We only handle integer and pointer inductions variables. 5292 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5293 return IK_NoInduction; 5294 5295 // Check that the PHI is consecutive. 5296 const SCEV *PhiScev = SE->getSCEV(Phi); 5297 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5298 if (!AR) { 5299 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5300 return IK_NoInduction; 5301 } 5302 const SCEV *Step = AR->getStepRecurrence(*SE); 5303 5304 // Integer inductions need to have a stride of one. 5305 if (PhiTy->isIntegerTy()) { 5306 if (Step->isOne()) 5307 return IK_IntInduction; 5308 if (Step->isAllOnesValue()) 5309 return IK_ReverseIntInduction; 5310 return IK_NoInduction; 5311 } 5312 5313 // Calculate the pointer stride and check if it is consecutive. 5314 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5315 if (!C) 5316 return IK_NoInduction; 5317 5318 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5319 Type *PointerElementType = PhiTy->getPointerElementType(); 5320 // The pointer stride cannot be determined if the pointer element type is not 5321 // sized. 5322 if (!PointerElementType->isSized()) 5323 return IK_NoInduction; 5324 5325 uint64_t Size = DL->getTypeAllocSize(PointerElementType); 5326 if (C->getValue()->equalsInt(Size)) 5327 return IK_PtrInduction; 5328 else if (C->getValue()->equalsInt(0 - Size)) 5329 return IK_ReversePtrInduction; 5330 5331 return IK_NoInduction; 5332 } 5333 5334 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5335 Value *In0 = const_cast<Value*>(V); 5336 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5337 if (!PN) 5338 return false; 5339 5340 return Inductions.count(PN); 5341 } 5342 5343 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5344 assert(TheLoop->contains(BB) && "Unknown block used"); 5345 5346 // Blocks that do not dominate the latch need predication. 5347 BasicBlock* Latch = TheLoop->getLoopLatch(); 5348 return !DT->dominates(BB, Latch); 5349 } 5350 5351 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5352 SmallPtrSetImpl<Value *> &SafePtrs) { 5353 5354 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5355 // Check that we don't have a constant expression that can trap as operand. 5356 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5357 OI != OE; ++OI) { 5358 if (Constant *C = dyn_cast<Constant>(*OI)) 5359 if (C->canTrap()) 5360 return false; 5361 } 5362 // We might be able to hoist the load. 5363 if (it->mayReadFromMemory()) { 5364 LoadInst *LI = dyn_cast<LoadInst>(it); 5365 if (!LI) 5366 return false; 5367 if (!SafePtrs.count(LI->getPointerOperand())) { 5368 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 5369 MaskedOp.insert(LI); 5370 continue; 5371 } 5372 return false; 5373 } 5374 } 5375 5376 // We don't predicate stores at the moment. 5377 if (it->mayWriteToMemory()) { 5378 StoreInst *SI = dyn_cast<StoreInst>(it); 5379 // We only support predication of stores in basic blocks with one 5380 // predecessor. 5381 if (!SI) 5382 return false; 5383 5384 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5385 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5386 5387 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5388 !isSinglePredecessor) { 5389 // Build a masked store if it is legal for the target, otherwise scalarize 5390 // the block. 5391 bool isLegalMaskedOp = 5392 isLegalMaskedStore(SI->getValueOperand()->getType(), 5393 SI->getPointerOperand()); 5394 if (isLegalMaskedOp) { 5395 --NumPredStores; 5396 MaskedOp.insert(SI); 5397 continue; 5398 } 5399 return false; 5400 } 5401 } 5402 if (it->mayThrow()) 5403 return false; 5404 5405 // The instructions below can trap. 5406 switch (it->getOpcode()) { 5407 default: continue; 5408 case Instruction::UDiv: 5409 case Instruction::SDiv: 5410 case Instruction::URem: 5411 case Instruction::SRem: 5412 return false; 5413 } 5414 } 5415 5416 return true; 5417 } 5418 5419 LoopVectorizationCostModel::VectorizationFactor 5420 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5421 // Width 1 means no vectorize 5422 VectorizationFactor Factor = { 1U, 0U }; 5423 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5424 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5425 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5426 return Factor; 5427 } 5428 5429 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5430 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization"); 5431 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5432 return Factor; 5433 } 5434 5435 // Find the trip count. 5436 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5437 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5438 5439 unsigned WidestType = getWidestType(); 5440 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5441 unsigned MaxSafeDepDist = -1U; 5442 if (Legal->getMaxSafeDepDistBytes() != -1U) 5443 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5444 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5445 WidestRegister : MaxSafeDepDist); 5446 unsigned MaxVectorSize = WidestRegister / WidestType; 5447 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5448 DEBUG(dbgs() << "LV: The Widest register is: " 5449 << WidestRegister << " bits.\n"); 5450 5451 if (MaxVectorSize == 0) { 5452 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5453 MaxVectorSize = 1; 5454 } 5455 5456 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5457 " into one vector!"); 5458 5459 unsigned VF = MaxVectorSize; 5460 5461 // If we optimize the program for size, avoid creating the tail loop. 5462 if (OptForSize) { 5463 // If we are unable to calculate the trip count then don't try to vectorize. 5464 if (TC < 2) { 5465 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow"); 5466 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5467 return Factor; 5468 } 5469 5470 // Find the maximum SIMD width that can fit within the trip count. 5471 VF = TC % MaxVectorSize; 5472 5473 if (VF == 0) 5474 VF = MaxVectorSize; 5475 5476 // If the trip count that we found modulo the vectorization factor is not 5477 // zero then we require a tail. 5478 if (VF < 2) { 5479 emitAnalysis(Report() << "cannot optimize for size and vectorize at the " 5480 "same time. Enable vectorization of this loop " 5481 "with '#pragma clang loop vectorize(enable)' " 5482 "when compiling with -Os"); 5483 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5484 return Factor; 5485 } 5486 } 5487 5488 int UserVF = Hints->getWidth(); 5489 if (UserVF != 0) { 5490 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5491 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5492 5493 Factor.Width = UserVF; 5494 return Factor; 5495 } 5496 5497 float Cost = expectedCost(1); 5498 #ifndef NDEBUG 5499 const float ScalarCost = Cost; 5500 #endif /* NDEBUG */ 5501 unsigned Width = 1; 5502 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5503 5504 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5505 // Ignore scalar width, because the user explicitly wants vectorization. 5506 if (ForceVectorization && VF > 1) { 5507 Width = 2; 5508 Cost = expectedCost(Width) / (float)Width; 5509 } 5510 5511 for (unsigned i=2; i <= VF; i*=2) { 5512 // Notice that the vector loop needs to be executed less times, so 5513 // we need to divide the cost of the vector loops by the width of 5514 // the vector elements. 5515 float VectorCost = expectedCost(i) / (float)i; 5516 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5517 (int)VectorCost << ".\n"); 5518 if (VectorCost < Cost) { 5519 Cost = VectorCost; 5520 Width = i; 5521 } 5522 } 5523 5524 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5525 << "LV: Vectorization seems to be not beneficial, " 5526 << "but was forced by a user.\n"); 5527 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5528 Factor.Width = Width; 5529 Factor.Cost = Width * Cost; 5530 return Factor; 5531 } 5532 5533 unsigned LoopVectorizationCostModel::getWidestType() { 5534 unsigned MaxWidth = 8; 5535 5536 // For each block. 5537 for (Loop::block_iterator bb = TheLoop->block_begin(), 5538 be = TheLoop->block_end(); bb != be; ++bb) { 5539 BasicBlock *BB = *bb; 5540 5541 // For each instruction in the loop. 5542 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5543 Type *T = it->getType(); 5544 5545 // Ignore ephemeral values. 5546 if (EphValues.count(it)) 5547 continue; 5548 5549 // Only examine Loads, Stores and PHINodes. 5550 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5551 continue; 5552 5553 // Examine PHI nodes that are reduction variables. 5554 if (PHINode *PN = dyn_cast<PHINode>(it)) 5555 if (!Legal->getReductionVars()->count(PN)) 5556 continue; 5557 5558 // Examine the stored values. 5559 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5560 T = ST->getValueOperand()->getType(); 5561 5562 // Ignore loaded pointer types and stored pointer types that are not 5563 // consecutive. However, we do want to take consecutive stores/loads of 5564 // pointer vectors into account. 5565 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5566 continue; 5567 5568 MaxWidth = std::max(MaxWidth, 5569 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5570 } 5571 } 5572 5573 return MaxWidth; 5574 } 5575 5576 unsigned 5577 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5578 unsigned VF, 5579 unsigned LoopCost) { 5580 5581 // -- The unroll heuristics -- 5582 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5583 // There are many micro-architectural considerations that we can't predict 5584 // at this level. For example, frontend pressure (on decode or fetch) due to 5585 // code size, or the number and capabilities of the execution ports. 5586 // 5587 // We use the following heuristics to select the unroll factor: 5588 // 1. If the code has reductions, then we unroll in order to break the cross 5589 // iteration dependency. 5590 // 2. If the loop is really small, then we unroll in order to reduce the loop 5591 // overhead. 5592 // 3. We don't unroll if we think that we will spill registers to memory due 5593 // to the increased register pressure. 5594 5595 // Use the user preference, unless 'auto' is selected. 5596 int UserUF = Hints->getInterleave(); 5597 if (UserUF != 0) 5598 return UserUF; 5599 5600 // When we optimize for size, we don't unroll. 5601 if (OptForSize) 5602 return 1; 5603 5604 // We used the distance for the unroll factor. 5605 if (Legal->getMaxSafeDepDistBytes() != -1U) 5606 return 1; 5607 5608 // Do not unroll loops with a relatively small trip count. 5609 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5610 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5611 return 1; 5612 5613 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5614 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5615 " registers\n"); 5616 5617 if (VF == 1) { 5618 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5619 TargetNumRegisters = ForceTargetNumScalarRegs; 5620 } else { 5621 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5622 TargetNumRegisters = ForceTargetNumVectorRegs; 5623 } 5624 5625 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5626 // We divide by these constants so assume that we have at least one 5627 // instruction that uses at least one register. 5628 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5629 R.NumInstructions = std::max(R.NumInstructions, 1U); 5630 5631 // We calculate the unroll factor using the following formula. 5632 // Subtract the number of loop invariants from the number of available 5633 // registers. These registers are used by all of the unrolled instances. 5634 // Next, divide the remaining registers by the number of registers that is 5635 // required by the loop, in order to estimate how many parallel instances 5636 // fit without causing spills. All of this is rounded down if necessary to be 5637 // a power of two. We want power of two unroll factors to simplify any 5638 // addressing operations or alignment considerations. 5639 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5640 R.MaxLocalUsers); 5641 5642 // Don't count the induction variable as unrolled. 5643 if (EnableIndVarRegisterHeur) 5644 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5645 std::max(1U, (R.MaxLocalUsers - 1))); 5646 5647 // Clamp the unroll factor ranges to reasonable factors. 5648 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 5649 5650 // Check if the user has overridden the unroll max. 5651 if (VF == 1) { 5652 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5653 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 5654 } else { 5655 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5656 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 5657 } 5658 5659 // If we did not calculate the cost for VF (because the user selected the VF) 5660 // then we calculate the cost of VF here. 5661 if (LoopCost == 0) 5662 LoopCost = expectedCost(VF); 5663 5664 // Clamp the calculated UF to be between the 1 and the max unroll factor 5665 // that the target allows. 5666 if (UF > MaxInterleaveSize) 5667 UF = MaxInterleaveSize; 5668 else if (UF < 1) 5669 UF = 1; 5670 5671 // Unroll if we vectorized this loop and there is a reduction that could 5672 // benefit from unrolling. 5673 if (VF > 1 && Legal->getReductionVars()->size()) { 5674 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5675 return UF; 5676 } 5677 5678 // Note that if we've already vectorized the loop we will have done the 5679 // runtime check and so unrolling won't require further checks. 5680 bool UnrollingRequiresRuntimePointerCheck = 5681 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5682 5683 // We want to unroll small loops in order to reduce the loop overhead and 5684 // potentially expose ILP opportunities. 5685 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5686 if (!UnrollingRequiresRuntimePointerCheck && 5687 LoopCost < SmallLoopCost) { 5688 // We assume that the cost overhead is 1 and we use the cost model 5689 // to estimate the cost of the loop and unroll until the cost of the 5690 // loop overhead is about 5% of the cost of the loop. 5691 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5692 5693 // Unroll until store/load ports (estimated by max unroll factor) are 5694 // saturated. 5695 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5696 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5697 5698 // If we have a scalar reduction (vector reductions are already dealt with 5699 // by this point), we can increase the critical path length if the loop 5700 // we're unrolling is inside another loop. Limit, by default to 2, so the 5701 // critical path only gets increased by one reduction operation. 5702 if (Legal->getReductionVars()->size() && 5703 TheLoop->getLoopDepth() > 1) { 5704 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 5705 SmallUF = std::min(SmallUF, F); 5706 StoresUF = std::min(StoresUF, F); 5707 LoadsUF = std::min(LoadsUF, F); 5708 } 5709 5710 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5711 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5712 return std::max(StoresUF, LoadsUF); 5713 } 5714 5715 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5716 return SmallUF; 5717 } 5718 5719 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5720 return 1; 5721 } 5722 5723 LoopVectorizationCostModel::RegisterUsage 5724 LoopVectorizationCostModel::calculateRegisterUsage() { 5725 // This function calculates the register usage by measuring the highest number 5726 // of values that are alive at a single location. Obviously, this is a very 5727 // rough estimation. We scan the loop in a topological order in order and 5728 // assign a number to each instruction. We use RPO to ensure that defs are 5729 // met before their users. We assume that each instruction that has in-loop 5730 // users starts an interval. We record every time that an in-loop value is 5731 // used, so we have a list of the first and last occurrences of each 5732 // instruction. Next, we transpose this data structure into a multi map that 5733 // holds the list of intervals that *end* at a specific location. This multi 5734 // map allows us to perform a linear search. We scan the instructions linearly 5735 // and record each time that a new interval starts, by placing it in a set. 5736 // If we find this value in the multi-map then we remove it from the set. 5737 // The max register usage is the maximum size of the set. 5738 // We also search for instructions that are defined outside the loop, but are 5739 // used inside the loop. We need this number separately from the max-interval 5740 // usage number because when we unroll, loop-invariant values do not take 5741 // more register. 5742 LoopBlocksDFS DFS(TheLoop); 5743 DFS.perform(LI); 5744 5745 RegisterUsage R; 5746 R.NumInstructions = 0; 5747 5748 // Each 'key' in the map opens a new interval. The values 5749 // of the map are the index of the 'last seen' usage of the 5750 // instruction that is the key. 5751 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5752 // Maps instruction to its index. 5753 DenseMap<unsigned, Instruction*> IdxToInstr; 5754 // Marks the end of each interval. 5755 IntervalMap EndPoint; 5756 // Saves the list of instruction indices that are used in the loop. 5757 SmallSet<Instruction*, 8> Ends; 5758 // Saves the list of values that are used in the loop but are 5759 // defined outside the loop, such as arguments and constants. 5760 SmallPtrSet<Value*, 8> LoopInvariants; 5761 5762 unsigned Index = 0; 5763 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5764 be = DFS.endRPO(); bb != be; ++bb) { 5765 R.NumInstructions += (*bb)->size(); 5766 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5767 ++it) { 5768 Instruction *I = it; 5769 IdxToInstr[Index++] = I; 5770 5771 // Save the end location of each USE. 5772 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5773 Value *U = I->getOperand(i); 5774 Instruction *Instr = dyn_cast<Instruction>(U); 5775 5776 // Ignore non-instruction values such as arguments, constants, etc. 5777 if (!Instr) continue; 5778 5779 // If this instruction is outside the loop then record it and continue. 5780 if (!TheLoop->contains(Instr)) { 5781 LoopInvariants.insert(Instr); 5782 continue; 5783 } 5784 5785 // Overwrite previous end points. 5786 EndPoint[Instr] = Index; 5787 Ends.insert(Instr); 5788 } 5789 } 5790 } 5791 5792 // Saves the list of intervals that end with the index in 'key'. 5793 typedef SmallVector<Instruction*, 2> InstrList; 5794 DenseMap<unsigned, InstrList> TransposeEnds; 5795 5796 // Transpose the EndPoints to a list of values that end at each index. 5797 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5798 it != e; ++it) 5799 TransposeEnds[it->second].push_back(it->first); 5800 5801 SmallSet<Instruction*, 8> OpenIntervals; 5802 unsigned MaxUsage = 0; 5803 5804 5805 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5806 for (unsigned int i = 0; i < Index; ++i) { 5807 Instruction *I = IdxToInstr[i]; 5808 // Ignore instructions that are never used within the loop. 5809 if (!Ends.count(I)) continue; 5810 5811 // Ignore ephemeral values. 5812 if (EphValues.count(I)) 5813 continue; 5814 5815 // Remove all of the instructions that end at this location. 5816 InstrList &List = TransposeEnds[i]; 5817 for (unsigned int j=0, e = List.size(); j < e; ++j) 5818 OpenIntervals.erase(List[j]); 5819 5820 // Count the number of live interals. 5821 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5822 5823 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5824 OpenIntervals.size() << '\n'); 5825 5826 // Add the current instruction to the list of open intervals. 5827 OpenIntervals.insert(I); 5828 } 5829 5830 unsigned Invariant = LoopInvariants.size(); 5831 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5832 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5833 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5834 5835 R.LoopInvariantRegs = Invariant; 5836 R.MaxLocalUsers = MaxUsage; 5837 return R; 5838 } 5839 5840 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5841 unsigned Cost = 0; 5842 5843 // For each block. 5844 for (Loop::block_iterator bb = TheLoop->block_begin(), 5845 be = TheLoop->block_end(); bb != be; ++bb) { 5846 unsigned BlockCost = 0; 5847 BasicBlock *BB = *bb; 5848 5849 // For each instruction in the old loop. 5850 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5851 // Skip dbg intrinsics. 5852 if (isa<DbgInfoIntrinsic>(it)) 5853 continue; 5854 5855 // Ignore ephemeral values. 5856 if (EphValues.count(it)) 5857 continue; 5858 5859 unsigned C = getInstructionCost(it, VF); 5860 5861 // Check if we should override the cost. 5862 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5863 C = ForceTargetInstructionCost; 5864 5865 BlockCost += C; 5866 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5867 VF << " For instruction: " << *it << '\n'); 5868 } 5869 5870 // We assume that if-converted blocks have a 50% chance of being executed. 5871 // When the code is scalar then some of the blocks are avoided due to CF. 5872 // When the code is vectorized we execute all code paths. 5873 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5874 BlockCost /= 2; 5875 5876 Cost += BlockCost; 5877 } 5878 5879 return Cost; 5880 } 5881 5882 /// \brief Check whether the address computation for a non-consecutive memory 5883 /// access looks like an unlikely candidate for being merged into the indexing 5884 /// mode. 5885 /// 5886 /// We look for a GEP which has one index that is an induction variable and all 5887 /// other indices are loop invariant. If the stride of this access is also 5888 /// within a small bound we decide that this address computation can likely be 5889 /// merged into the addressing mode. 5890 /// In all other cases, we identify the address computation as complex. 5891 static bool isLikelyComplexAddressComputation(Value *Ptr, 5892 LoopVectorizationLegality *Legal, 5893 ScalarEvolution *SE, 5894 const Loop *TheLoop) { 5895 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5896 if (!Gep) 5897 return true; 5898 5899 // We are looking for a gep with all loop invariant indices except for one 5900 // which should be an induction variable. 5901 unsigned NumOperands = Gep->getNumOperands(); 5902 for (unsigned i = 1; i < NumOperands; ++i) { 5903 Value *Opd = Gep->getOperand(i); 5904 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5905 !Legal->isInductionVariable(Opd)) 5906 return true; 5907 } 5908 5909 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5910 // can likely be merged into the address computation. 5911 unsigned MaxMergeDistance = 64; 5912 5913 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5914 if (!AddRec) 5915 return true; 5916 5917 // Check the step is constant. 5918 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5919 // Calculate the pointer stride and check if it is consecutive. 5920 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5921 if (!C) 5922 return true; 5923 5924 const APInt &APStepVal = C->getValue()->getValue(); 5925 5926 // Huge step value - give up. 5927 if (APStepVal.getBitWidth() > 64) 5928 return true; 5929 5930 int64_t StepVal = APStepVal.getSExtValue(); 5931 5932 return StepVal > MaxMergeDistance; 5933 } 5934 5935 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5936 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5937 return true; 5938 return false; 5939 } 5940 5941 unsigned 5942 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5943 // If we know that this instruction will remain uniform, check the cost of 5944 // the scalar version. 5945 if (Legal->isUniformAfterVectorization(I)) 5946 VF = 1; 5947 5948 Type *RetTy = I->getType(); 5949 Type *VectorTy = ToVectorTy(RetTy, VF); 5950 5951 // TODO: We need to estimate the cost of intrinsic calls. 5952 switch (I->getOpcode()) { 5953 case Instruction::GetElementPtr: 5954 // We mark this instruction as zero-cost because the cost of GEPs in 5955 // vectorized code depends on whether the corresponding memory instruction 5956 // is scalarized or not. Therefore, we handle GEPs with the memory 5957 // instruction cost. 5958 return 0; 5959 case Instruction::Br: { 5960 return TTI.getCFInstrCost(I->getOpcode()); 5961 } 5962 case Instruction::PHI: 5963 //TODO: IF-converted IFs become selects. 5964 return 0; 5965 case Instruction::Add: 5966 case Instruction::FAdd: 5967 case Instruction::Sub: 5968 case Instruction::FSub: 5969 case Instruction::Mul: 5970 case Instruction::FMul: 5971 case Instruction::UDiv: 5972 case Instruction::SDiv: 5973 case Instruction::FDiv: 5974 case Instruction::URem: 5975 case Instruction::SRem: 5976 case Instruction::FRem: 5977 case Instruction::Shl: 5978 case Instruction::LShr: 5979 case Instruction::AShr: 5980 case Instruction::And: 5981 case Instruction::Or: 5982 case Instruction::Xor: { 5983 // Since we will replace the stride by 1 the multiplication should go away. 5984 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5985 return 0; 5986 // Certain instructions can be cheaper to vectorize if they have a constant 5987 // second vector operand. One example of this are shifts on x86. 5988 TargetTransformInfo::OperandValueKind Op1VK = 5989 TargetTransformInfo::OK_AnyValue; 5990 TargetTransformInfo::OperandValueKind Op2VK = 5991 TargetTransformInfo::OK_AnyValue; 5992 TargetTransformInfo::OperandValueProperties Op1VP = 5993 TargetTransformInfo::OP_None; 5994 TargetTransformInfo::OperandValueProperties Op2VP = 5995 TargetTransformInfo::OP_None; 5996 Value *Op2 = I->getOperand(1); 5997 5998 // Check for a splat of a constant or for a non uniform vector of constants. 5999 if (isa<ConstantInt>(Op2)) { 6000 ConstantInt *CInt = cast<ConstantInt>(Op2); 6001 if (CInt && CInt->getValue().isPowerOf2()) 6002 Op2VP = TargetTransformInfo::OP_PowerOf2; 6003 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6004 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6005 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6006 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6007 if (SplatValue) { 6008 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6009 if (CInt && CInt->getValue().isPowerOf2()) 6010 Op2VP = TargetTransformInfo::OP_PowerOf2; 6011 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6012 } 6013 } 6014 6015 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6016 Op1VP, Op2VP); 6017 } 6018 case Instruction::Select: { 6019 SelectInst *SI = cast<SelectInst>(I); 6020 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6021 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6022 Type *CondTy = SI->getCondition()->getType(); 6023 if (!ScalarCond) 6024 CondTy = VectorType::get(CondTy, VF); 6025 6026 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6027 } 6028 case Instruction::ICmp: 6029 case Instruction::FCmp: { 6030 Type *ValTy = I->getOperand(0)->getType(); 6031 VectorTy = ToVectorTy(ValTy, VF); 6032 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6033 } 6034 case Instruction::Store: 6035 case Instruction::Load: { 6036 StoreInst *SI = dyn_cast<StoreInst>(I); 6037 LoadInst *LI = dyn_cast<LoadInst>(I); 6038 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 6039 LI->getType()); 6040 VectorTy = ToVectorTy(ValTy, VF); 6041 6042 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6043 unsigned AS = SI ? SI->getPointerAddressSpace() : 6044 LI->getPointerAddressSpace(); 6045 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6046 // We add the cost of address computation here instead of with the gep 6047 // instruction because only here we know whether the operation is 6048 // scalarized. 6049 if (VF == 1) 6050 return TTI.getAddressComputationCost(VectorTy) + 6051 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6052 6053 // Scalarized loads/stores. 6054 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6055 bool Reverse = ConsecutiveStride < 0; 6056 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 6057 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 6058 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 6059 bool IsComplexComputation = 6060 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6061 unsigned Cost = 0; 6062 // The cost of extracting from the value vector and pointer vector. 6063 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6064 for (unsigned i = 0; i < VF; ++i) { 6065 // The cost of extracting the pointer operand. 6066 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6067 // In case of STORE, the cost of ExtractElement from the vector. 6068 // In case of LOAD, the cost of InsertElement into the returned 6069 // vector. 6070 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 6071 Instruction::InsertElement, 6072 VectorTy, i); 6073 } 6074 6075 // The cost of the scalar loads/stores. 6076 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6077 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6078 Alignment, AS); 6079 return Cost; 6080 } 6081 6082 // Wide load/stores. 6083 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6084 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6085 6086 if (Reverse) 6087 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 6088 VectorTy, 0); 6089 return Cost; 6090 } 6091 case Instruction::ZExt: 6092 case Instruction::SExt: 6093 case Instruction::FPToUI: 6094 case Instruction::FPToSI: 6095 case Instruction::FPExt: 6096 case Instruction::PtrToInt: 6097 case Instruction::IntToPtr: 6098 case Instruction::SIToFP: 6099 case Instruction::UIToFP: 6100 case Instruction::Trunc: 6101 case Instruction::FPTrunc: 6102 case Instruction::BitCast: { 6103 // We optimize the truncation of induction variable. 6104 // The cost of these is the same as the scalar operation. 6105 if (I->getOpcode() == Instruction::Trunc && 6106 Legal->isInductionVariable(I->getOperand(0))) 6107 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6108 I->getOperand(0)->getType()); 6109 6110 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 6111 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6112 } 6113 case Instruction::Call: { 6114 CallInst *CI = cast<CallInst>(I); 6115 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 6116 assert(ID && "Not an intrinsic call!"); 6117 Type *RetTy = ToVectorTy(CI->getType(), VF); 6118 SmallVector<Type*, 4> Tys; 6119 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 6120 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 6121 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 6122 } 6123 default: { 6124 // We are scalarizing the instruction. Return the cost of the scalar 6125 // instruction, plus the cost of insert and extract into vector 6126 // elements, times the vector width. 6127 unsigned Cost = 0; 6128 6129 if (!RetTy->isVoidTy() && VF != 1) { 6130 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6131 VectorTy); 6132 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6133 VectorTy); 6134 6135 // The cost of inserting the results plus extracting each one of the 6136 // operands. 6137 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6138 } 6139 6140 // The cost of executing VF copies of the scalar instruction. This opcode 6141 // is unknown. Assume that it is the same as 'mul'. 6142 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6143 return Cost; 6144 } 6145 }// end of switch. 6146 } 6147 6148 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 6149 if (Scalar->isVoidTy() || VF == 1) 6150 return Scalar; 6151 return VectorType::get(Scalar, VF); 6152 } 6153 6154 char LoopVectorize::ID = 0; 6155 static const char lv_name[] = "Loop Vectorization"; 6156 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6157 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 6158 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 6159 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6160 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 6161 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6162 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 6163 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6164 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 6165 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6166 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6167 6168 namespace llvm { 6169 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6170 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6171 } 6172 } 6173 6174 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6175 // Check for a store. 6176 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6177 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6178 6179 // Check for a load. 6180 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6181 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6182 6183 return false; 6184 } 6185 6186 6187 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6188 bool IfPredicateStore) { 6189 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6190 // Holds vector parameters or scalars, in case of uniform vals. 6191 SmallVector<VectorParts, 4> Params; 6192 6193 setDebugLocFromInst(Builder, Instr); 6194 6195 // Find all of the vectorized parameters. 6196 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6197 Value *SrcOp = Instr->getOperand(op); 6198 6199 // If we are accessing the old induction variable, use the new one. 6200 if (SrcOp == OldInduction) { 6201 Params.push_back(getVectorValue(SrcOp)); 6202 continue; 6203 } 6204 6205 // Try using previously calculated values. 6206 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6207 6208 // If the src is an instruction that appeared earlier in the basic block 6209 // then it should already be vectorized. 6210 if (SrcInst && OrigLoop->contains(SrcInst)) { 6211 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6212 // The parameter is a vector value from earlier. 6213 Params.push_back(WidenMap.get(SrcInst)); 6214 } else { 6215 // The parameter is a scalar from outside the loop. Maybe even a constant. 6216 VectorParts Scalars; 6217 Scalars.append(UF, SrcOp); 6218 Params.push_back(Scalars); 6219 } 6220 } 6221 6222 assert(Params.size() == Instr->getNumOperands() && 6223 "Invalid number of operands"); 6224 6225 // Does this instruction return a value ? 6226 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6227 6228 Value *UndefVec = IsVoidRetTy ? nullptr : 6229 UndefValue::get(Instr->getType()); 6230 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6231 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6232 6233 Instruction *InsertPt = Builder.GetInsertPoint(); 6234 BasicBlock *IfBlock = Builder.GetInsertBlock(); 6235 BasicBlock *CondBlock = nullptr; 6236 6237 VectorParts Cond; 6238 Loop *VectorLp = nullptr; 6239 if (IfPredicateStore) { 6240 assert(Instr->getParent()->getSinglePredecessor() && 6241 "Only support single predecessor blocks"); 6242 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6243 Instr->getParent()); 6244 VectorLp = LI->getLoopFor(IfBlock); 6245 assert(VectorLp && "Must have a loop for this block"); 6246 } 6247 6248 // For each vector unroll 'part': 6249 for (unsigned Part = 0; Part < UF; ++Part) { 6250 // For each scalar that we create: 6251 6252 // Start an "if (pred) a[i] = ..." block. 6253 Value *Cmp = nullptr; 6254 if (IfPredicateStore) { 6255 if (Cond[Part]->getType()->isVectorTy()) 6256 Cond[Part] = 6257 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6258 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6259 ConstantInt::get(Cond[Part]->getType(), 1)); 6260 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 6261 LoopVectorBody.push_back(CondBlock); 6262 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 6263 // Update Builder with newly created basic block. 6264 Builder.SetInsertPoint(InsertPt); 6265 } 6266 6267 Instruction *Cloned = Instr->clone(); 6268 if (!IsVoidRetTy) 6269 Cloned->setName(Instr->getName() + ".cloned"); 6270 // Replace the operands of the cloned instructions with extracted scalars. 6271 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6272 Value *Op = Params[op][Part]; 6273 Cloned->setOperand(op, Op); 6274 } 6275 6276 // Place the cloned scalar in the new loop. 6277 Builder.Insert(Cloned); 6278 6279 // If the original scalar returns a value we need to place it in a vector 6280 // so that future users will be able to use it. 6281 if (!IsVoidRetTy) 6282 VecResults[Part] = Cloned; 6283 6284 // End if-block. 6285 if (IfPredicateStore) { 6286 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6287 LoopVectorBody.push_back(NewIfBlock); 6288 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 6289 Builder.SetInsertPoint(InsertPt); 6290 Instruction *OldBr = IfBlock->getTerminator(); 6291 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6292 OldBr->eraseFromParent(); 6293 IfBlock = NewIfBlock; 6294 } 6295 } 6296 } 6297 6298 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6299 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6300 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6301 6302 return scalarizeInstruction(Instr, IfPredicateStore); 6303 } 6304 6305 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6306 return Vec; 6307 } 6308 6309 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6310 return V; 6311 } 6312 6313 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6314 bool Negate) { 6315 // When unrolling and the VF is 1, we only need to add a simple scalar. 6316 Type *ITy = Val->getType(); 6317 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6318 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6319 return Builder.CreateAdd(Val, C, "induction"); 6320 } 6321