1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/AliasAnalysis.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/DemandedBits.h" 66 #include "llvm/Analysis/GlobalsModRef.h" 67 #include "llvm/Analysis/LoopAccessAnalysis.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/LoopIterator.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/Analysis/ValueTracking.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/DiagnosticInfo.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/IR/Verifier.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/Scalar.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include "llvm/Analysis/VectorUtils.h" 102 #include "llvm/Transforms/Utils/LoopUtils.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 static cl::opt<bool> MaximizeBandwidth( 130 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 131 cl::desc("Maximize bandwidth when selecting vectorization factor which " 132 "will be determined by the smallest type in loop.")); 133 134 /// This enables versioning on the strides of symbolically striding memory 135 /// accesses in code like the following. 136 /// for (i = 0; i < N; ++i) 137 /// A[i * Stride1] += B[i * Stride2] ... 138 /// 139 /// Will be roughly translated to 140 /// if (Stride1 == 1 && Stride2 == 1) { 141 /// for (i = 0; i < N; i+=4) 142 /// A[i:i+3] += ... 143 /// } else 144 /// ... 145 static cl::opt<bool> EnableMemAccessVersioning( 146 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 147 cl::desc("Enable symbolic stride memory access versioning")); 148 149 static cl::opt<bool> EnableInterleavedMemAccesses( 150 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 151 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 152 153 /// Maximum factor for an interleaved memory access. 154 static cl::opt<unsigned> MaxInterleaveGroupFactor( 155 "max-interleave-group-factor", cl::Hidden, 156 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 157 cl::init(8)); 158 159 /// We don't interleave loops with a known constant trip count below this 160 /// number. 161 static const unsigned TinyTripCountInterleaveThreshold = 128; 162 163 static cl::opt<unsigned> ForceTargetNumScalarRegs( 164 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's number of scalar registers.")); 166 167 static cl::opt<unsigned> ForceTargetNumVectorRegs( 168 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's number of vector registers.")); 170 171 /// Maximum vectorization interleave count. 172 static const unsigned MaxInterleaveFactor = 16; 173 174 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 175 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 176 cl::desc("A flag that overrides the target's max interleave factor for " 177 "scalar loops.")); 178 179 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 180 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's max interleave factor for " 182 "vectorized loops.")); 183 184 static cl::opt<unsigned> ForceTargetInstructionCost( 185 "force-target-instruction-cost", cl::init(0), cl::Hidden, 186 cl::desc("A flag that overrides the target's expected cost for " 187 "an instruction to a single constant value. Mostly " 188 "useful for getting consistent testing.")); 189 190 static cl::opt<unsigned> SmallLoopCost( 191 "small-loop-cost", cl::init(20), cl::Hidden, 192 cl::desc( 193 "The cost of a loop that is considered 'small' by the interleaver.")); 194 195 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 196 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 197 cl::desc("Enable the use of the block frequency analysis to access PGO " 198 "heuristics minimizing code growth in cold regions and being more " 199 "aggressive in hot regions.")); 200 201 // Runtime interleave loops for load/store throughput. 202 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 203 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 204 cl::desc( 205 "Enable runtime interleaving until load/store ports are saturated")); 206 207 /// The number of stores in a loop that are allowed to need predication. 208 static cl::opt<unsigned> NumberOfStoresToPredicate( 209 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 210 cl::desc("Max number of stores to be predicated behind an if.")); 211 212 static cl::opt<bool> EnableIndVarRegisterHeur( 213 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 214 cl::desc("Count the induction variable only once when interleaving")); 215 216 static cl::opt<bool> EnableCondStoresVectorization( 217 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 218 cl::desc("Enable if predication of stores during vectorization.")); 219 220 static cl::opt<unsigned> MaxNestedScalarReductionIC( 221 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 222 cl::desc("The maximum interleave count to use when interleaving a scalar " 223 "reduction in a nested loop.")); 224 225 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 226 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 227 cl::desc("The maximum allowed number of runtime memory checks with a " 228 "vectorize(enable) pragma.")); 229 230 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 231 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 232 cl::desc("The maximum number of SCEV checks allowed.")); 233 234 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 235 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 236 cl::desc("The maximum number of SCEV checks allowed with a " 237 "vectorize(enable) pragma")); 238 239 namespace { 240 241 // Forward declarations. 242 class LoopVectorizeHints; 243 class LoopVectorizationLegality; 244 class LoopVectorizationCostModel; 245 class LoopVectorizationRequirements; 246 247 /// \brief This modifies LoopAccessReport to initialize message with 248 /// loop-vectorizer-specific part. 249 class VectorizationReport : public LoopAccessReport { 250 public: 251 VectorizationReport(Instruction *I = nullptr) 252 : LoopAccessReport("loop not vectorized: ", I) {} 253 254 /// \brief This allows promotion of the loop-access analysis report into the 255 /// loop-vectorizer report. It modifies the message to add the 256 /// loop-vectorizer-specific part of the message. 257 explicit VectorizationReport(const LoopAccessReport &R) 258 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 259 R.getInstr()) {} 260 }; 261 262 /// A helper function for converting Scalar types to vector types. 263 /// If the incoming type is void, we return void. If the VF is 1, we return 264 /// the scalar type. 265 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 266 if (Scalar->isVoidTy() || VF == 1) 267 return Scalar; 268 return VectorType::get(Scalar, VF); 269 } 270 271 /// A helper function that returns GEP instruction and knows to skip a 272 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 273 /// pointee types of the 'bitcast' have the same size. 274 /// For example: 275 /// bitcast double** %var to i64* - can be skipped 276 /// bitcast double** %var to i8* - can not 277 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 278 279 if (isa<GetElementPtrInst>(Ptr)) 280 return cast<GetElementPtrInst>(Ptr); 281 282 if (isa<BitCastInst>(Ptr) && 283 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 284 Type *BitcastTy = Ptr->getType(); 285 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 286 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 287 return nullptr; 288 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 289 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 290 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 291 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 292 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 293 } 294 return nullptr; 295 } 296 297 /// InnerLoopVectorizer vectorizes loops which contain only one basic 298 /// block to a specified vectorization factor (VF). 299 /// This class performs the widening of scalars into vectors, or multiple 300 /// scalars. This class also implements the following features: 301 /// * It inserts an epilogue loop for handling loops that don't have iteration 302 /// counts that are known to be a multiple of the vectorization factor. 303 /// * It handles the code generation for reduction variables. 304 /// * Scalarization (implementation using scalars) of un-vectorizable 305 /// instructions. 306 /// InnerLoopVectorizer does not perform any vectorization-legality 307 /// checks, and relies on the caller to check for the different legality 308 /// aspects. The InnerLoopVectorizer relies on the 309 /// LoopVectorizationLegality class to provide information about the induction 310 /// and reduction variables that were found to a given vectorization factor. 311 class InnerLoopVectorizer { 312 public: 313 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 314 LoopInfo *LI, DominatorTree *DT, 315 const TargetLibraryInfo *TLI, 316 const TargetTransformInfo *TTI, unsigned VecWidth, 317 unsigned UnrollFactor) 318 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 319 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()), 320 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 321 TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr), 322 AddedSafetyChecks(false) {} 323 324 // Perform the actual loop widening (vectorization). 325 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 326 // can be validly truncated to. The cost model has assumed this truncation 327 // will happen when vectorizing. 328 void vectorize(LoopVectorizationLegality *L, 329 MapVector<Instruction*,uint64_t> MinimumBitWidths) { 330 MinBWs = MinimumBitWidths; 331 Legal = L; 332 // Create a new empty loop. Unlink the old loop and connect the new one. 333 createEmptyLoop(); 334 // Widen each instruction in the old loop to a new one in the new loop. 335 // Use the Legality module to find the induction and reduction variables. 336 vectorizeLoop(); 337 } 338 339 // Return true if any runtime check is added. 340 bool IsSafetyChecksAdded() { 341 return AddedSafetyChecks; 342 } 343 344 virtual ~InnerLoopVectorizer() {} 345 346 protected: 347 /// A small list of PHINodes. 348 typedef SmallVector<PHINode*, 4> PhiVector; 349 /// When we unroll loops we have multiple vector values for each scalar. 350 /// This data structure holds the unrolled and vectorized values that 351 /// originated from one scalar instruction. 352 typedef SmallVector<Value*, 2> VectorParts; 353 354 // When we if-convert we need to create edge masks. We have to cache values 355 // so that we don't end up with exponential recursion/IR. 356 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 357 VectorParts> EdgeMaskCache; 358 359 /// Create an empty loop, based on the loop ranges of the old loop. 360 void createEmptyLoop(); 361 /// Create a new induction variable inside L. 362 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 363 Value *Step, Instruction *DL); 364 /// Copy and widen the instructions from the old loop. 365 virtual void vectorizeLoop(); 366 367 /// \brief The Loop exit block may have single value PHI nodes where the 368 /// incoming value is 'Undef'. While vectorizing we only handled real values 369 /// that were defined inside the loop. Here we fix the 'undef case'. 370 /// See PR14725. 371 void fixLCSSAPHIs(); 372 373 /// Shrinks vector element sizes based on information in "MinBWs". 374 void truncateToMinimalBitwidths(); 375 376 /// A helper function that computes the predicate of the block BB, assuming 377 /// that the header block of the loop is set to True. It returns the *entry* 378 /// mask for the block BB. 379 VectorParts createBlockInMask(BasicBlock *BB); 380 /// A helper function that computes the predicate of the edge between SRC 381 /// and DST. 382 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 383 384 /// A helper function to vectorize a single BB within the innermost loop. 385 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 386 387 /// Vectorize a single PHINode in a block. This method handles the induction 388 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 389 /// arbitrary length vectors. 390 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 391 unsigned UF, unsigned VF, PhiVector *PV); 392 393 /// Insert the new loop to the loop hierarchy and pass manager 394 /// and update the analysis passes. 395 void updateAnalysis(); 396 397 /// This instruction is un-vectorizable. Implement it as a sequence 398 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 399 /// scalarized instruction behind an if block predicated on the control 400 /// dependence of the instruction. 401 virtual void scalarizeInstruction(Instruction *Instr, 402 bool IfPredicateStore=false); 403 404 /// Vectorize Load and Store instructions, 405 virtual void vectorizeMemoryInstruction(Instruction *Instr); 406 407 /// Create a broadcast instruction. This method generates a broadcast 408 /// instruction (shuffle) for loop invariant values and for the induction 409 /// value. If this is the induction variable then we extend it to N, N+1, ... 410 /// this is needed because each iteration in the loop corresponds to a SIMD 411 /// element. 412 virtual Value *getBroadcastInstrs(Value *V); 413 414 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 415 /// to each vector element of Val. The sequence starts at StartIndex. 416 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 417 418 /// When we go over instructions in the basic block we rely on previous 419 /// values within the current basic block or on loop invariant values. 420 /// When we widen (vectorize) values we place them in the map. If the values 421 /// are not within the map, they have to be loop invariant, so we simply 422 /// broadcast them into a vector. 423 VectorParts &getVectorValue(Value *V); 424 425 /// Try to vectorize the interleaved access group that \p Instr belongs to. 426 void vectorizeInterleaveGroup(Instruction *Instr); 427 428 /// Generate a shuffle sequence that will reverse the vector Vec. 429 virtual Value *reverseVector(Value *Vec); 430 431 /// Returns (and creates if needed) the original loop trip count. 432 Value *getOrCreateTripCount(Loop *NewLoop); 433 434 /// Returns (and creates if needed) the trip count of the widened loop. 435 Value *getOrCreateVectorTripCount(Loop *NewLoop); 436 437 /// Emit a bypass check to see if the trip count would overflow, or we 438 /// wouldn't have enough iterations to execute one vector loop. 439 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 440 /// Emit a bypass check to see if the vector trip count is nonzero. 441 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 442 /// Emit a bypass check to see if all of the SCEV assumptions we've 443 /// had to make are correct. 444 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 445 /// Emit bypass checks to check any memory assumptions we may have made. 446 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 447 448 /// This is a helper class that holds the vectorizer state. It maps scalar 449 /// instructions to vector instructions. When the code is 'unrolled' then 450 /// then a single scalar value is mapped to multiple vector parts. The parts 451 /// are stored in the VectorPart type. 452 struct ValueMap { 453 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 454 /// are mapped. 455 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 456 457 /// \return True if 'Key' is saved in the Value Map. 458 bool has(Value *Key) const { return MapStorage.count(Key); } 459 460 /// Initializes a new entry in the map. Sets all of the vector parts to the 461 /// save value in 'Val'. 462 /// \return A reference to a vector with splat values. 463 VectorParts &splat(Value *Key, Value *Val) { 464 VectorParts &Entry = MapStorage[Key]; 465 Entry.assign(UF, Val); 466 return Entry; 467 } 468 469 ///\return A reference to the value that is stored at 'Key'. 470 VectorParts &get(Value *Key) { 471 VectorParts &Entry = MapStorage[Key]; 472 if (Entry.empty()) 473 Entry.resize(UF); 474 assert(Entry.size() == UF); 475 return Entry; 476 } 477 478 private: 479 /// The unroll factor. Each entry in the map stores this number of vector 480 /// elements. 481 unsigned UF; 482 483 /// Map storage. We use std::map and not DenseMap because insertions to a 484 /// dense map invalidates its iterators. 485 std::map<Value *, VectorParts> MapStorage; 486 }; 487 488 /// The original loop. 489 Loop *OrigLoop; 490 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 491 /// dynamic knowledge to simplify SCEV expressions and converts them to a 492 /// more usable form. 493 PredicatedScalarEvolution &PSE; 494 /// Loop Info. 495 LoopInfo *LI; 496 /// Dominator Tree. 497 DominatorTree *DT; 498 /// Alias Analysis. 499 AliasAnalysis *AA; 500 /// Target Library Info. 501 const TargetLibraryInfo *TLI; 502 /// Target Transform Info. 503 const TargetTransformInfo *TTI; 504 505 /// The vectorization SIMD factor to use. Each vector will have this many 506 /// vector elements. 507 unsigned VF; 508 509 protected: 510 /// The vectorization unroll factor to use. Each scalar is vectorized to this 511 /// many different vector instructions. 512 unsigned UF; 513 514 /// The builder that we use 515 IRBuilder<> Builder; 516 517 // --- Vectorization state --- 518 519 /// The vector-loop preheader. 520 BasicBlock *LoopVectorPreHeader; 521 /// The scalar-loop preheader. 522 BasicBlock *LoopScalarPreHeader; 523 /// Middle Block between the vector and the scalar. 524 BasicBlock *LoopMiddleBlock; 525 ///The ExitBlock of the scalar loop. 526 BasicBlock *LoopExitBlock; 527 ///The vector loop body. 528 SmallVector<BasicBlock *, 4> LoopVectorBody; 529 ///The scalar loop body. 530 BasicBlock *LoopScalarBody; 531 /// A list of all bypass blocks. The first block is the entry of the loop. 532 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 533 534 /// The new Induction variable which was added to the new block. 535 PHINode *Induction; 536 /// The induction variable of the old basic block. 537 PHINode *OldInduction; 538 /// Maps scalars to widened vectors. 539 ValueMap WidenMap; 540 /// Store instructions that should be predicated, as a pair 541 /// <StoreInst, Predicate> 542 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; 543 EdgeMaskCache MaskCache; 544 /// Trip count of the original loop. 545 Value *TripCount; 546 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 547 Value *VectorTripCount; 548 549 /// Map of scalar integer values to the smallest bitwidth they can be legally 550 /// represented as. The vector equivalents of these values should be truncated 551 /// to this type. 552 MapVector<Instruction*,uint64_t> MinBWs; 553 LoopVectorizationLegality *Legal; 554 555 // Record whether runtime check is added. 556 bool AddedSafetyChecks; 557 }; 558 559 class InnerLoopUnroller : public InnerLoopVectorizer { 560 public: 561 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 562 LoopInfo *LI, DominatorTree *DT, 563 const TargetLibraryInfo *TLI, 564 const TargetTransformInfo *TTI, unsigned UnrollFactor) 565 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, 1, UnrollFactor) {} 566 567 private: 568 void scalarizeInstruction(Instruction *Instr, 569 bool IfPredicateStore = false) override; 570 void vectorizeMemoryInstruction(Instruction *Instr) override; 571 Value *getBroadcastInstrs(Value *V) override; 572 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 573 Value *reverseVector(Value *Vec) override; 574 }; 575 576 /// \brief Look for a meaningful debug location on the instruction or it's 577 /// operands. 578 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 579 if (!I) 580 return I; 581 582 DebugLoc Empty; 583 if (I->getDebugLoc() != Empty) 584 return I; 585 586 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 587 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 588 if (OpInst->getDebugLoc() != Empty) 589 return OpInst; 590 } 591 592 return I; 593 } 594 595 /// \brief Set the debug location in the builder using the debug location in the 596 /// instruction. 597 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 598 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 599 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 600 else 601 B.SetCurrentDebugLocation(DebugLoc()); 602 } 603 604 #ifndef NDEBUG 605 /// \return string containing a file name and a line # for the given loop. 606 static std::string getDebugLocString(const Loop *L) { 607 std::string Result; 608 if (L) { 609 raw_string_ostream OS(Result); 610 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 611 LoopDbgLoc.print(OS); 612 else 613 // Just print the module name. 614 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 615 OS.flush(); 616 } 617 return Result; 618 } 619 #endif 620 621 /// \brief Propagate known metadata from one instruction to another. 622 static void propagateMetadata(Instruction *To, const Instruction *From) { 623 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 624 From->getAllMetadataOtherThanDebugLoc(Metadata); 625 626 for (auto M : Metadata) { 627 unsigned Kind = M.first; 628 629 // These are safe to transfer (this is safe for TBAA, even when we 630 // if-convert, because should that metadata have had a control dependency 631 // on the condition, and thus actually aliased with some other 632 // non-speculated memory access when the condition was false, this would be 633 // caught by the runtime overlap checks). 634 if (Kind != LLVMContext::MD_tbaa && 635 Kind != LLVMContext::MD_alias_scope && 636 Kind != LLVMContext::MD_noalias && 637 Kind != LLVMContext::MD_fpmath && 638 Kind != LLVMContext::MD_nontemporal) 639 continue; 640 641 To->setMetadata(Kind, M.second); 642 } 643 } 644 645 /// \brief Propagate known metadata from one instruction to a vector of others. 646 static void propagateMetadata(SmallVectorImpl<Value *> &To, 647 const Instruction *From) { 648 for (Value *V : To) 649 if (Instruction *I = dyn_cast<Instruction>(V)) 650 propagateMetadata(I, From); 651 } 652 653 /// \brief The group of interleaved loads/stores sharing the same stride and 654 /// close to each other. 655 /// 656 /// Each member in this group has an index starting from 0, and the largest 657 /// index should be less than interleaved factor, which is equal to the absolute 658 /// value of the access's stride. 659 /// 660 /// E.g. An interleaved load group of factor 4: 661 /// for (unsigned i = 0; i < 1024; i+=4) { 662 /// a = A[i]; // Member of index 0 663 /// b = A[i+1]; // Member of index 1 664 /// d = A[i+3]; // Member of index 3 665 /// ... 666 /// } 667 /// 668 /// An interleaved store group of factor 4: 669 /// for (unsigned i = 0; i < 1024; i+=4) { 670 /// ... 671 /// A[i] = a; // Member of index 0 672 /// A[i+1] = b; // Member of index 1 673 /// A[i+2] = c; // Member of index 2 674 /// A[i+3] = d; // Member of index 3 675 /// } 676 /// 677 /// Note: the interleaved load group could have gaps (missing members), but 678 /// the interleaved store group doesn't allow gaps. 679 class InterleaveGroup { 680 public: 681 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 682 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 683 assert(Align && "The alignment should be non-zero"); 684 685 Factor = std::abs(Stride); 686 assert(Factor > 1 && "Invalid interleave factor"); 687 688 Reverse = Stride < 0; 689 Members[0] = Instr; 690 } 691 692 bool isReverse() const { return Reverse; } 693 unsigned getFactor() const { return Factor; } 694 unsigned getAlignment() const { return Align; } 695 unsigned getNumMembers() const { return Members.size(); } 696 697 /// \brief Try to insert a new member \p Instr with index \p Index and 698 /// alignment \p NewAlign. The index is related to the leader and it could be 699 /// negative if it is the new leader. 700 /// 701 /// \returns false if the instruction doesn't belong to the group. 702 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 703 assert(NewAlign && "The new member's alignment should be non-zero"); 704 705 int Key = Index + SmallestKey; 706 707 // Skip if there is already a member with the same index. 708 if (Members.count(Key)) 709 return false; 710 711 if (Key > LargestKey) { 712 // The largest index is always less than the interleave factor. 713 if (Index >= static_cast<int>(Factor)) 714 return false; 715 716 LargestKey = Key; 717 } else if (Key < SmallestKey) { 718 // The largest index is always less than the interleave factor. 719 if (LargestKey - Key >= static_cast<int>(Factor)) 720 return false; 721 722 SmallestKey = Key; 723 } 724 725 // It's always safe to select the minimum alignment. 726 Align = std::min(Align, NewAlign); 727 Members[Key] = Instr; 728 return true; 729 } 730 731 /// \brief Get the member with the given index \p Index 732 /// 733 /// \returns nullptr if contains no such member. 734 Instruction *getMember(unsigned Index) const { 735 int Key = SmallestKey + Index; 736 if (!Members.count(Key)) 737 return nullptr; 738 739 return Members.find(Key)->second; 740 } 741 742 /// \brief Get the index for the given member. Unlike the key in the member 743 /// map, the index starts from 0. 744 unsigned getIndex(Instruction *Instr) const { 745 for (auto I : Members) 746 if (I.second == Instr) 747 return I.first - SmallestKey; 748 749 llvm_unreachable("InterleaveGroup contains no such member"); 750 } 751 752 Instruction *getInsertPos() const { return InsertPos; } 753 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 754 755 private: 756 unsigned Factor; // Interleave Factor. 757 bool Reverse; 758 unsigned Align; 759 DenseMap<int, Instruction *> Members; 760 int SmallestKey; 761 int LargestKey; 762 763 // To avoid breaking dependences, vectorized instructions of an interleave 764 // group should be inserted at either the first load or the last store in 765 // program order. 766 // 767 // E.g. %even = load i32 // Insert Position 768 // %add = add i32 %even // Use of %even 769 // %odd = load i32 770 // 771 // store i32 %even 772 // %odd = add i32 // Def of %odd 773 // store i32 %odd // Insert Position 774 Instruction *InsertPos; 775 }; 776 777 /// \brief Drive the analysis of interleaved memory accesses in the loop. 778 /// 779 /// Use this class to analyze interleaved accesses only when we can vectorize 780 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 781 /// on interleaved accesses is unsafe. 782 /// 783 /// The analysis collects interleave groups and records the relationships 784 /// between the member and the group in a map. 785 class InterleavedAccessInfo { 786 public: 787 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 788 DominatorTree *DT) 789 : PSE(PSE), TheLoop(L), DT(DT) {} 790 791 ~InterleavedAccessInfo() { 792 SmallSet<InterleaveGroup *, 4> DelSet; 793 // Avoid releasing a pointer twice. 794 for (auto &I : InterleaveGroupMap) 795 DelSet.insert(I.second); 796 for (auto *Ptr : DelSet) 797 delete Ptr; 798 } 799 800 /// \brief Analyze the interleaved accesses and collect them in interleave 801 /// groups. Substitute symbolic strides using \p Strides. 802 void analyzeInterleaving(const ValueToValueMap &Strides); 803 804 /// \brief Check if \p Instr belongs to any interleave group. 805 bool isInterleaved(Instruction *Instr) const { 806 return InterleaveGroupMap.count(Instr); 807 } 808 809 /// \brief Get the interleave group that \p Instr belongs to. 810 /// 811 /// \returns nullptr if doesn't have such group. 812 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 813 if (InterleaveGroupMap.count(Instr)) 814 return InterleaveGroupMap.find(Instr)->second; 815 return nullptr; 816 } 817 818 private: 819 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 820 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 821 /// The interleaved access analysis can also add new predicates (for example 822 /// by versioning strides of pointers). 823 PredicatedScalarEvolution &PSE; 824 Loop *TheLoop; 825 DominatorTree *DT; 826 827 /// Holds the relationships between the members and the interleave group. 828 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 829 830 /// \brief The descriptor for a strided memory access. 831 struct StrideDescriptor { 832 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 833 unsigned Align) 834 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 835 836 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 837 838 int Stride; // The access's stride. It is negative for a reverse access. 839 const SCEV *Scev; // The scalar expression of this access 840 unsigned Size; // The size of the memory object. 841 unsigned Align; // The alignment of this access. 842 }; 843 844 /// \brief Create a new interleave group with the given instruction \p Instr, 845 /// stride \p Stride and alignment \p Align. 846 /// 847 /// \returns the newly created interleave group. 848 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 849 unsigned Align) { 850 assert(!InterleaveGroupMap.count(Instr) && 851 "Already in an interleaved access group"); 852 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 853 return InterleaveGroupMap[Instr]; 854 } 855 856 /// \brief Release the group and remove all the relationships. 857 void releaseGroup(InterleaveGroup *Group) { 858 for (unsigned i = 0; i < Group->getFactor(); i++) 859 if (Instruction *Member = Group->getMember(i)) 860 InterleaveGroupMap.erase(Member); 861 862 delete Group; 863 } 864 865 /// \brief Collect all the accesses with a constant stride in program order. 866 void collectConstStridedAccesses( 867 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 868 const ValueToValueMap &Strides); 869 }; 870 871 /// Utility class for getting and setting loop vectorizer hints in the form 872 /// of loop metadata. 873 /// This class keeps a number of loop annotations locally (as member variables) 874 /// and can, upon request, write them back as metadata on the loop. It will 875 /// initially scan the loop for existing metadata, and will update the local 876 /// values based on information in the loop. 877 /// We cannot write all values to metadata, as the mere presence of some info, 878 /// for example 'force', means a decision has been made. So, we need to be 879 /// careful NOT to add them if the user hasn't specifically asked so. 880 class LoopVectorizeHints { 881 enum HintKind { 882 HK_WIDTH, 883 HK_UNROLL, 884 HK_FORCE 885 }; 886 887 /// Hint - associates name and validation with the hint value. 888 struct Hint { 889 const char * Name; 890 unsigned Value; // This may have to change for non-numeric values. 891 HintKind Kind; 892 893 Hint(const char * Name, unsigned Value, HintKind Kind) 894 : Name(Name), Value(Value), Kind(Kind) { } 895 896 bool validate(unsigned Val) { 897 switch (Kind) { 898 case HK_WIDTH: 899 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 900 case HK_UNROLL: 901 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 902 case HK_FORCE: 903 return (Val <= 1); 904 } 905 return false; 906 } 907 }; 908 909 /// Vectorization width. 910 Hint Width; 911 /// Vectorization interleave factor. 912 Hint Interleave; 913 /// Vectorization forced 914 Hint Force; 915 916 /// Return the loop metadata prefix. 917 static StringRef Prefix() { return "llvm.loop."; } 918 919 public: 920 enum ForceKind { 921 FK_Undefined = -1, ///< Not selected. 922 FK_Disabled = 0, ///< Forcing disabled. 923 FK_Enabled = 1, ///< Forcing enabled. 924 }; 925 926 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 927 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 928 HK_WIDTH), 929 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 930 Force("vectorize.enable", FK_Undefined, HK_FORCE), 931 TheLoop(L) { 932 // Populate values with existing loop metadata. 933 getHintsFromMetadata(); 934 935 // force-vector-interleave overrides DisableInterleaving. 936 if (VectorizerParams::isInterleaveForced()) 937 Interleave.Value = VectorizerParams::VectorizationInterleave; 938 939 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 940 << "LV: Interleaving disabled by the pass manager\n"); 941 } 942 943 /// Mark the loop L as already vectorized by setting the width to 1. 944 void setAlreadyVectorized() { 945 Width.Value = Interleave.Value = 1; 946 Hint Hints[] = {Width, Interleave}; 947 writeHintsToMetadata(Hints); 948 } 949 950 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 951 if (getForce() == LoopVectorizeHints::FK_Disabled) { 952 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 953 emitOptimizationRemarkAnalysis(F->getContext(), 954 vectorizeAnalysisPassName(), *F, 955 L->getStartLoc(), emitRemark()); 956 return false; 957 } 958 959 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 960 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 961 emitOptimizationRemarkAnalysis(F->getContext(), 962 vectorizeAnalysisPassName(), *F, 963 L->getStartLoc(), emitRemark()); 964 return false; 965 } 966 967 if (getWidth() == 1 && getInterleave() == 1) { 968 // FIXME: Add a separate metadata to indicate when the loop has already 969 // been vectorized instead of setting width and count to 1. 970 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 971 // FIXME: Add interleave.disable metadata. This will allow 972 // vectorize.disable to be used without disabling the pass and errors 973 // to differentiate between disabled vectorization and a width of 1. 974 emitOptimizationRemarkAnalysis( 975 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 976 "loop not vectorized: vectorization and interleaving are explicitly " 977 "disabled, or vectorize width and interleave count are both set to " 978 "1"); 979 return false; 980 } 981 982 return true; 983 } 984 985 /// Dumps all the hint information. 986 std::string emitRemark() const { 987 VectorizationReport R; 988 if (Force.Value == LoopVectorizeHints::FK_Disabled) 989 R << "vectorization is explicitly disabled"; 990 else { 991 R << "use -Rpass-analysis=loop-vectorize for more info"; 992 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 993 R << " (Force=true"; 994 if (Width.Value != 0) 995 R << ", Vector Width=" << Width.Value; 996 if (Interleave.Value != 0) 997 R << ", Interleave Count=" << Interleave.Value; 998 R << ")"; 999 } 1000 } 1001 1002 return R.str(); 1003 } 1004 1005 unsigned getWidth() const { return Width.Value; } 1006 unsigned getInterleave() const { return Interleave.Value; } 1007 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1008 const char *vectorizeAnalysisPassName() const { 1009 // If hints are provided that don't disable vectorization use the 1010 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1011 if (getWidth() == 1) 1012 return LV_NAME; 1013 if (getForce() == LoopVectorizeHints::FK_Disabled) 1014 return LV_NAME; 1015 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1016 return LV_NAME; 1017 return DiagnosticInfo::AlwaysPrint; 1018 } 1019 1020 bool allowReordering() const { 1021 // When enabling loop hints are provided we allow the vectorizer to change 1022 // the order of operations that is given by the scalar loop. This is not 1023 // enabled by default because can be unsafe or inefficient. For example, 1024 // reordering floating-point operations will change the way round-off 1025 // error accumulates in the loop. 1026 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1027 } 1028 1029 private: 1030 /// Find hints specified in the loop metadata and update local values. 1031 void getHintsFromMetadata() { 1032 MDNode *LoopID = TheLoop->getLoopID(); 1033 if (!LoopID) 1034 return; 1035 1036 // First operand should refer to the loop id itself. 1037 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1038 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1039 1040 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1041 const MDString *S = nullptr; 1042 SmallVector<Metadata *, 4> Args; 1043 1044 // The expected hint is either a MDString or a MDNode with the first 1045 // operand a MDString. 1046 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1047 if (!MD || MD->getNumOperands() == 0) 1048 continue; 1049 S = dyn_cast<MDString>(MD->getOperand(0)); 1050 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1051 Args.push_back(MD->getOperand(i)); 1052 } else { 1053 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1054 assert(Args.size() == 0 && "too many arguments for MDString"); 1055 } 1056 1057 if (!S) 1058 continue; 1059 1060 // Check if the hint starts with the loop metadata prefix. 1061 StringRef Name = S->getString(); 1062 if (Args.size() == 1) 1063 setHint(Name, Args[0]); 1064 } 1065 } 1066 1067 /// Checks string hint with one operand and set value if valid. 1068 void setHint(StringRef Name, Metadata *Arg) { 1069 if (!Name.startswith(Prefix())) 1070 return; 1071 Name = Name.substr(Prefix().size(), StringRef::npos); 1072 1073 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1074 if (!C) return; 1075 unsigned Val = C->getZExtValue(); 1076 1077 Hint *Hints[] = {&Width, &Interleave, &Force}; 1078 for (auto H : Hints) { 1079 if (Name == H->Name) { 1080 if (H->validate(Val)) 1081 H->Value = Val; 1082 else 1083 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1084 break; 1085 } 1086 } 1087 } 1088 1089 /// Create a new hint from name / value pair. 1090 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1091 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1092 Metadata *MDs[] = {MDString::get(Context, Name), 1093 ConstantAsMetadata::get( 1094 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1095 return MDNode::get(Context, MDs); 1096 } 1097 1098 /// Matches metadata with hint name. 1099 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1100 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1101 if (!Name) 1102 return false; 1103 1104 for (auto H : HintTypes) 1105 if (Name->getString().endswith(H.Name)) 1106 return true; 1107 return false; 1108 } 1109 1110 /// Sets current hints into loop metadata, keeping other values intact. 1111 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1112 if (HintTypes.size() == 0) 1113 return; 1114 1115 // Reserve the first element to LoopID (see below). 1116 SmallVector<Metadata *, 4> MDs(1); 1117 // If the loop already has metadata, then ignore the existing operands. 1118 MDNode *LoopID = TheLoop->getLoopID(); 1119 if (LoopID) { 1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1121 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1122 // If node in update list, ignore old value. 1123 if (!matchesHintMetadataName(Node, HintTypes)) 1124 MDs.push_back(Node); 1125 } 1126 } 1127 1128 // Now, add the missing hints. 1129 for (auto H : HintTypes) 1130 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1131 1132 // Replace current metadata node with new one. 1133 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1134 MDNode *NewLoopID = MDNode::get(Context, MDs); 1135 // Set operand 0 to refer to the loop id itself. 1136 NewLoopID->replaceOperandWith(0, NewLoopID); 1137 1138 TheLoop->setLoopID(NewLoopID); 1139 } 1140 1141 /// The loop these hints belong to. 1142 const Loop *TheLoop; 1143 }; 1144 1145 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1146 const LoopVectorizeHints &Hints, 1147 const LoopAccessReport &Message) { 1148 const char *Name = Hints.vectorizeAnalysisPassName(); 1149 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1150 } 1151 1152 static void emitMissedWarning(Function *F, Loop *L, 1153 const LoopVectorizeHints &LH) { 1154 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1155 LH.emitRemark()); 1156 1157 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1158 if (LH.getWidth() != 1) 1159 emitLoopVectorizeWarning( 1160 F->getContext(), *F, L->getStartLoc(), 1161 "failed explicitly specified loop vectorization"); 1162 else if (LH.getInterleave() != 1) 1163 emitLoopInterleaveWarning( 1164 F->getContext(), *F, L->getStartLoc(), 1165 "failed explicitly specified loop interleaving"); 1166 } 1167 } 1168 1169 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1170 /// to what vectorization factor. 1171 /// This class does not look at the profitability of vectorization, only the 1172 /// legality. This class has two main kinds of checks: 1173 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1174 /// will change the order of memory accesses in a way that will change the 1175 /// correctness of the program. 1176 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1177 /// checks for a number of different conditions, such as the availability of a 1178 /// single induction variable, that all types are supported and vectorize-able, 1179 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1180 /// This class is also used by InnerLoopVectorizer for identifying 1181 /// induction variable and the different reduction variables. 1182 class LoopVectorizationLegality { 1183 public: 1184 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1185 DominatorTree *DT, TargetLibraryInfo *TLI, 1186 AliasAnalysis *AA, Function *F, 1187 const TargetTransformInfo *TTI, 1188 LoopAccessAnalysis *LAA, 1189 LoopVectorizationRequirements *R, 1190 const LoopVectorizeHints *H) 1191 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1192 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1193 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1194 Requirements(R), Hints(H) {} 1195 1196 /// ReductionList contains the reduction descriptors for all 1197 /// of the reductions that were found in the loop. 1198 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1199 1200 /// InductionList saves induction variables and maps them to the 1201 /// induction descriptor. 1202 typedef MapVector<PHINode*, InductionDescriptor> InductionList; 1203 1204 /// Returns true if it is legal to vectorize this loop. 1205 /// This does not mean that it is profitable to vectorize this 1206 /// loop, only that it is legal to do so. 1207 bool canVectorize(); 1208 1209 /// Returns the Induction variable. 1210 PHINode *getInduction() { return Induction; } 1211 1212 /// Returns the reduction variables found in the loop. 1213 ReductionList *getReductionVars() { return &Reductions; } 1214 1215 /// Returns the induction variables found in the loop. 1216 InductionList *getInductionVars() { return &Inductions; } 1217 1218 /// Returns the widest induction type. 1219 Type *getWidestInductionType() { return WidestIndTy; } 1220 1221 /// Returns True if V is an induction variable in this loop. 1222 bool isInductionVariable(const Value *V); 1223 1224 /// Returns True if PN is a reduction variable in this loop. 1225 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1226 1227 /// Return true if the block BB needs to be predicated in order for the loop 1228 /// to be vectorized. 1229 bool blockNeedsPredication(BasicBlock *BB); 1230 1231 /// Check if this pointer is consecutive when vectorizing. This happens 1232 /// when the last index of the GEP is the induction variable, or that the 1233 /// pointer itself is an induction variable. 1234 /// This check allows us to vectorize A[idx] into a wide load/store. 1235 /// Returns: 1236 /// 0 - Stride is unknown or non-consecutive. 1237 /// 1 - Address is consecutive. 1238 /// -1 - Address is consecutive, and decreasing. 1239 int isConsecutivePtr(Value *Ptr); 1240 1241 /// Returns true if the value V is uniform within the loop. 1242 bool isUniform(Value *V); 1243 1244 /// Returns true if this instruction will remain scalar after vectorization. 1245 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 1246 1247 /// Returns the information that we collected about runtime memory check. 1248 const RuntimePointerChecking *getRuntimePointerChecking() const { 1249 return LAI->getRuntimePointerChecking(); 1250 } 1251 1252 const LoopAccessInfo *getLAI() const { 1253 return LAI; 1254 } 1255 1256 /// \brief Check if \p Instr belongs to any interleaved access group. 1257 bool isAccessInterleaved(Instruction *Instr) { 1258 return InterleaveInfo.isInterleaved(Instr); 1259 } 1260 1261 /// \brief Get the interleaved access group that \p Instr belongs to. 1262 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1263 return InterleaveInfo.getInterleaveGroup(Instr); 1264 } 1265 1266 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1267 1268 bool hasStride(Value *V) { return StrideSet.count(V); } 1269 bool mustCheckStrides() { return !StrideSet.empty(); } 1270 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1271 return StrideSet.begin(); 1272 } 1273 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1274 1275 /// Returns true if the target machine supports masked store operation 1276 /// for the given \p DataType and kind of access to \p Ptr. 1277 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1278 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1279 } 1280 /// Returns true if the target machine supports masked load operation 1281 /// for the given \p DataType and kind of access to \p Ptr. 1282 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1283 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1284 } 1285 /// Returns true if vector representation of the instruction \p I 1286 /// requires mask. 1287 bool isMaskRequired(const Instruction* I) { 1288 return (MaskedOp.count(I) != 0); 1289 } 1290 unsigned getNumStores() const { 1291 return LAI->getNumStores(); 1292 } 1293 unsigned getNumLoads() const { 1294 return LAI->getNumLoads(); 1295 } 1296 unsigned getNumPredStores() const { 1297 return NumPredStores; 1298 } 1299 private: 1300 /// Check if a single basic block loop is vectorizable. 1301 /// At this point we know that this is a loop with a constant trip count 1302 /// and we only need to check individual instructions. 1303 bool canVectorizeInstrs(); 1304 1305 /// When we vectorize loops we may change the order in which 1306 /// we read and write from memory. This method checks if it is 1307 /// legal to vectorize the code, considering only memory constrains. 1308 /// Returns true if the loop is vectorizable 1309 bool canVectorizeMemory(); 1310 1311 /// Return true if we can vectorize this loop using the IF-conversion 1312 /// transformation. 1313 bool canVectorizeWithIfConvert(); 1314 1315 /// Collect the variables that need to stay uniform after vectorization. 1316 void collectLoopUniforms(); 1317 1318 /// Return true if all of the instructions in the block can be speculatively 1319 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1320 /// and we know that we can read from them without segfault. 1321 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1322 1323 /// \brief Collect memory access with loop invariant strides. 1324 /// 1325 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1326 /// invariant. 1327 void collectStridedAccess(Value *LoadOrStoreInst); 1328 1329 /// Report an analysis message to assist the user in diagnosing loops that are 1330 /// not vectorized. These are handled as LoopAccessReport rather than 1331 /// VectorizationReport because the << operator of VectorizationReport returns 1332 /// LoopAccessReport. 1333 void emitAnalysis(const LoopAccessReport &Message) const { 1334 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1335 } 1336 1337 unsigned NumPredStores; 1338 1339 /// The loop that we evaluate. 1340 Loop *TheLoop; 1341 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1342 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1343 /// of existing SCEV assumptions. The analysis will also add a minimal set 1344 /// of new predicates if this is required to enable vectorization and 1345 /// unrolling. 1346 PredicatedScalarEvolution &PSE; 1347 /// Target Library Info. 1348 TargetLibraryInfo *TLI; 1349 /// Parent function 1350 Function *TheFunction; 1351 /// Target Transform Info 1352 const TargetTransformInfo *TTI; 1353 /// Dominator Tree. 1354 DominatorTree *DT; 1355 // LoopAccess analysis. 1356 LoopAccessAnalysis *LAA; 1357 // And the loop-accesses info corresponding to this loop. This pointer is 1358 // null until canVectorizeMemory sets it up. 1359 const LoopAccessInfo *LAI; 1360 1361 /// The interleave access information contains groups of interleaved accesses 1362 /// with the same stride and close to each other. 1363 InterleavedAccessInfo InterleaveInfo; 1364 1365 // --- vectorization state --- // 1366 1367 /// Holds the integer induction variable. This is the counter of the 1368 /// loop. 1369 PHINode *Induction; 1370 /// Holds the reduction variables. 1371 ReductionList Reductions; 1372 /// Holds all of the induction variables that we found in the loop. 1373 /// Notice that inductions don't need to start at zero and that induction 1374 /// variables can be pointers. 1375 InductionList Inductions; 1376 /// Holds the widest induction type encountered. 1377 Type *WidestIndTy; 1378 1379 /// Allowed outside users. This holds the reduction 1380 /// vars which can be accessed from outside the loop. 1381 SmallPtrSet<Value*, 4> AllowedExit; 1382 /// This set holds the variables which are known to be uniform after 1383 /// vectorization. 1384 SmallPtrSet<Instruction*, 4> Uniforms; 1385 1386 /// Can we assume the absence of NaNs. 1387 bool HasFunNoNaNAttr; 1388 1389 /// Vectorization requirements that will go through late-evaluation. 1390 LoopVectorizationRequirements *Requirements; 1391 1392 /// Used to emit an analysis of any legality issues. 1393 const LoopVectorizeHints *Hints; 1394 1395 ValueToValueMap Strides; 1396 SmallPtrSet<Value *, 8> StrideSet; 1397 1398 /// While vectorizing these instructions we have to generate a 1399 /// call to the appropriate masked intrinsic 1400 SmallPtrSet<const Instruction *, 8> MaskedOp; 1401 }; 1402 1403 /// LoopVectorizationCostModel - estimates the expected speedups due to 1404 /// vectorization. 1405 /// In many cases vectorization is not profitable. This can happen because of 1406 /// a number of reasons. In this class we mainly attempt to predict the 1407 /// expected speedup/slowdowns due to the supported instruction set. We use the 1408 /// TargetTransformInfo to query the different backends for the cost of 1409 /// different operations. 1410 class LoopVectorizationCostModel { 1411 public: 1412 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1413 LoopVectorizationLegality *Legal, 1414 const TargetTransformInfo &TTI, 1415 const TargetLibraryInfo *TLI, DemandedBits *DB, 1416 AssumptionCache *AC, const Function *F, 1417 const LoopVectorizeHints *Hints, 1418 SmallPtrSetImpl<const Value *> &ValuesToIgnore) 1419 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1420 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} 1421 1422 /// Information about vectorization costs 1423 struct VectorizationFactor { 1424 unsigned Width; // Vector width with best cost 1425 unsigned Cost; // Cost of the loop with that width 1426 }; 1427 /// \return The most profitable vectorization factor and the cost of that VF. 1428 /// This method checks every power of two up to VF. If UserVF is not ZERO 1429 /// then this vectorization factor will be selected if vectorization is 1430 /// possible. 1431 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1432 1433 /// \return The size (in bits) of the smallest and widest types in the code 1434 /// that needs to be vectorized. We ignore values that remain scalar such as 1435 /// 64 bit loop indices. 1436 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1437 1438 /// \return The desired interleave count. 1439 /// If interleave count has been specified by metadata it will be returned. 1440 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1441 /// are the selected vectorization factor and the cost of the selected VF. 1442 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1443 unsigned LoopCost); 1444 1445 /// \return The most profitable unroll factor. 1446 /// This method finds the best unroll-factor based on register pressure and 1447 /// other parameters. VF and LoopCost are the selected vectorization factor 1448 /// and the cost of the selected VF. 1449 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1450 unsigned LoopCost); 1451 1452 /// \brief A struct that represents some properties of the register usage 1453 /// of a loop. 1454 struct RegisterUsage { 1455 /// Holds the number of loop invariant values that are used in the loop. 1456 unsigned LoopInvariantRegs; 1457 /// Holds the maximum number of concurrent live intervals in the loop. 1458 unsigned MaxLocalUsers; 1459 /// Holds the number of instructions in the loop. 1460 unsigned NumInstructions; 1461 }; 1462 1463 /// \return Returns information about the register usages of the loop for the 1464 /// given vectorization factors. 1465 SmallVector<RegisterUsage, 8> 1466 calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs); 1467 1468 private: 1469 /// Returns the expected execution cost. The unit of the cost does 1470 /// not matter because we use the 'cost' units to compare different 1471 /// vector widths. The cost that is returned is *not* normalized by 1472 /// the factor width. 1473 unsigned expectedCost(unsigned VF); 1474 1475 /// Returns the execution time cost of an instruction for a given vector 1476 /// width. Vector width of one means scalar. 1477 unsigned getInstructionCost(Instruction *I, unsigned VF); 1478 1479 /// Returns whether the instruction is a load or store and will be a emitted 1480 /// as a vector operation. 1481 bool isConsecutiveLoadOrStore(Instruction *I); 1482 1483 /// Report an analysis message to assist the user in diagnosing loops that are 1484 /// not vectorized. These are handled as LoopAccessReport rather than 1485 /// VectorizationReport because the << operator of VectorizationReport returns 1486 /// LoopAccessReport. 1487 void emitAnalysis(const LoopAccessReport &Message) const { 1488 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1489 } 1490 1491 public: 1492 /// Map of scalar integer values to the smallest bitwidth they can be legally 1493 /// represented as. The vector equivalents of these values should be truncated 1494 /// to this type. 1495 MapVector<Instruction*,uint64_t> MinBWs; 1496 1497 /// The loop that we evaluate. 1498 Loop *TheLoop; 1499 /// Scev analysis. 1500 ScalarEvolution *SE; 1501 /// Loop Info analysis. 1502 LoopInfo *LI; 1503 /// Vectorization legality. 1504 LoopVectorizationLegality *Legal; 1505 /// Vector target information. 1506 const TargetTransformInfo &TTI; 1507 /// Target Library Info. 1508 const TargetLibraryInfo *TLI; 1509 /// Demanded bits analysis 1510 DemandedBits *DB; 1511 const Function *TheFunction; 1512 // Loop Vectorize Hint. 1513 const LoopVectorizeHints *Hints; 1514 // Values to ignore in the cost model. 1515 const SmallPtrSetImpl<const Value *> &ValuesToIgnore; 1516 }; 1517 1518 /// \brief This holds vectorization requirements that must be verified late in 1519 /// the process. The requirements are set by legalize and costmodel. Once 1520 /// vectorization has been determined to be possible and profitable the 1521 /// requirements can be verified by looking for metadata or compiler options. 1522 /// For example, some loops require FP commutativity which is only allowed if 1523 /// vectorization is explicitly specified or if the fast-math compiler option 1524 /// has been provided. 1525 /// Late evaluation of these requirements allows helpful diagnostics to be 1526 /// composed that tells the user what need to be done to vectorize the loop. For 1527 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1528 /// evaluation should be used only when diagnostics can generated that can be 1529 /// followed by a non-expert user. 1530 class LoopVectorizationRequirements { 1531 public: 1532 LoopVectorizationRequirements() 1533 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1534 1535 void addUnsafeAlgebraInst(Instruction *I) { 1536 // First unsafe algebra instruction. 1537 if (!UnsafeAlgebraInst) 1538 UnsafeAlgebraInst = I; 1539 } 1540 1541 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1542 1543 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1544 const char *Name = Hints.vectorizeAnalysisPassName(); 1545 bool Failed = false; 1546 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1547 emitOptimizationRemarkAnalysisFPCommute( 1548 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1549 VectorizationReport() << "cannot prove it is safe to reorder " 1550 "floating-point operations"); 1551 Failed = true; 1552 } 1553 1554 // Test if runtime memcheck thresholds are exceeded. 1555 bool PragmaThresholdReached = 1556 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1557 bool ThresholdReached = 1558 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1559 if ((ThresholdReached && !Hints.allowReordering()) || 1560 PragmaThresholdReached) { 1561 emitOptimizationRemarkAnalysisAliasing( 1562 F->getContext(), Name, *F, L->getStartLoc(), 1563 VectorizationReport() 1564 << "cannot prove it is safe to reorder memory operations"); 1565 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1566 Failed = true; 1567 } 1568 1569 return Failed; 1570 } 1571 1572 private: 1573 unsigned NumRuntimePointerChecks; 1574 Instruction *UnsafeAlgebraInst; 1575 }; 1576 1577 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1578 if (L.empty()) 1579 return V.push_back(&L); 1580 1581 for (Loop *InnerL : L) 1582 addInnerLoop(*InnerL, V); 1583 } 1584 1585 /// The LoopVectorize Pass. 1586 struct LoopVectorize : public FunctionPass { 1587 /// Pass identification, replacement for typeid 1588 static char ID; 1589 1590 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1591 : FunctionPass(ID), 1592 DisableUnrolling(NoUnrolling), 1593 AlwaysVectorize(AlwaysVectorize) { 1594 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1595 } 1596 1597 ScalarEvolution *SE; 1598 LoopInfo *LI; 1599 TargetTransformInfo *TTI; 1600 DominatorTree *DT; 1601 BlockFrequencyInfo *BFI; 1602 TargetLibraryInfo *TLI; 1603 DemandedBits *DB; 1604 AliasAnalysis *AA; 1605 AssumptionCache *AC; 1606 LoopAccessAnalysis *LAA; 1607 bool DisableUnrolling; 1608 bool AlwaysVectorize; 1609 1610 BlockFrequency ColdEntryFreq; 1611 1612 bool runOnFunction(Function &F) override { 1613 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1614 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1615 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1616 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1617 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1618 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1619 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1620 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1621 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1622 LAA = &getAnalysis<LoopAccessAnalysis>(); 1623 DB = &getAnalysis<DemandedBits>(); 1624 1625 // Compute some weights outside of the loop over the loops. Compute this 1626 // using a BranchProbability to re-use its scaling math. 1627 const BranchProbability ColdProb(1, 5); // 20% 1628 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1629 1630 // Don't attempt if 1631 // 1. the target claims to have no vector registers, and 1632 // 2. interleaving won't help ILP. 1633 // 1634 // The second condition is necessary because, even if the target has no 1635 // vector registers, loop vectorization may still enable scalar 1636 // interleaving. 1637 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1638 return false; 1639 1640 // Build up a worklist of inner-loops to vectorize. This is necessary as 1641 // the act of vectorizing or partially unrolling a loop creates new loops 1642 // and can invalidate iterators across the loops. 1643 SmallVector<Loop *, 8> Worklist; 1644 1645 for (Loop *L : *LI) 1646 addInnerLoop(*L, Worklist); 1647 1648 LoopsAnalyzed += Worklist.size(); 1649 1650 // Now walk the identified inner loops. 1651 bool Changed = false; 1652 while (!Worklist.empty()) 1653 Changed |= processLoop(Worklist.pop_back_val()); 1654 1655 // Process each loop nest in the function. 1656 return Changed; 1657 } 1658 1659 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1660 SmallVector<Metadata *, 4> MDs; 1661 // Reserve first location for self reference to the LoopID metadata node. 1662 MDs.push_back(nullptr); 1663 bool IsUnrollMetadata = false; 1664 MDNode *LoopID = L->getLoopID(); 1665 if (LoopID) { 1666 // First find existing loop unrolling disable metadata. 1667 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1668 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1669 if (MD) { 1670 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1671 IsUnrollMetadata = 1672 S && S->getString().startswith("llvm.loop.unroll.disable"); 1673 } 1674 MDs.push_back(LoopID->getOperand(i)); 1675 } 1676 } 1677 1678 if (!IsUnrollMetadata) { 1679 // Add runtime unroll disable metadata. 1680 LLVMContext &Context = L->getHeader()->getContext(); 1681 SmallVector<Metadata *, 1> DisableOperands; 1682 DisableOperands.push_back( 1683 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1684 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1685 MDs.push_back(DisableNode); 1686 MDNode *NewLoopID = MDNode::get(Context, MDs); 1687 // Set operand 0 to refer to the loop id itself. 1688 NewLoopID->replaceOperandWith(0, NewLoopID); 1689 L->setLoopID(NewLoopID); 1690 } 1691 } 1692 1693 bool processLoop(Loop *L) { 1694 assert(L->empty() && "Only process inner loops."); 1695 1696 #ifndef NDEBUG 1697 const std::string DebugLocStr = getDebugLocString(L); 1698 #endif /* NDEBUG */ 1699 1700 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1701 << L->getHeader()->getParent()->getName() << "\" from " 1702 << DebugLocStr << "\n"); 1703 1704 LoopVectorizeHints Hints(L, DisableUnrolling); 1705 1706 DEBUG(dbgs() << "LV: Loop hints:" 1707 << " force=" 1708 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1709 ? "disabled" 1710 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1711 ? "enabled" 1712 : "?")) << " width=" << Hints.getWidth() 1713 << " unroll=" << Hints.getInterleave() << "\n"); 1714 1715 // Function containing loop 1716 Function *F = L->getHeader()->getParent(); 1717 1718 // Looking at the diagnostic output is the only way to determine if a loop 1719 // was vectorized (other than looking at the IR or machine code), so it 1720 // is important to generate an optimization remark for each loop. Most of 1721 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1722 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1723 // less verbose reporting vectorized loops and unvectorized loops that may 1724 // benefit from vectorization, respectively. 1725 1726 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1727 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1728 return false; 1729 } 1730 1731 // Check the loop for a trip count threshold: 1732 // do not vectorize loops with a tiny trip count. 1733 const unsigned TC = SE->getSmallConstantTripCount(L); 1734 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1735 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1736 << "This loop is not worth vectorizing."); 1737 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1738 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1739 else { 1740 DEBUG(dbgs() << "\n"); 1741 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1742 << "vectorization is not beneficial " 1743 "and is not explicitly forced"); 1744 return false; 1745 } 1746 } 1747 1748 PredicatedScalarEvolution PSE(*SE); 1749 1750 // Check if it is legal to vectorize the loop. 1751 LoopVectorizationRequirements Requirements; 1752 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1753 &Requirements, &Hints); 1754 if (!LVL.canVectorize()) { 1755 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1756 emitMissedWarning(F, L, Hints); 1757 return false; 1758 } 1759 1760 // Collect values we want to ignore in the cost model. This includes 1761 // type-promoting instructions we identified during reduction detection. 1762 SmallPtrSet<const Value *, 32> ValuesToIgnore; 1763 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); 1764 for (auto &Reduction : *LVL.getReductionVars()) { 1765 RecurrenceDescriptor &RedDes = Reduction.second; 1766 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 1767 ValuesToIgnore.insert(Casts.begin(), Casts.end()); 1768 } 1769 1770 // Use the cost model. 1771 LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC, 1772 F, &Hints, ValuesToIgnore); 1773 1774 // Check the function attributes to find out if this function should be 1775 // optimized for size. 1776 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1777 F->optForSize(); 1778 1779 // Compute the weighted frequency of this loop being executed and see if it 1780 // is less than 20% of the function entry baseline frequency. Note that we 1781 // always have a canonical loop here because we think we *can* vectorize. 1782 // FIXME: This is hidden behind a flag due to pervasive problems with 1783 // exactly what block frequency models. 1784 if (LoopVectorizeWithBlockFrequency) { 1785 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1786 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1787 LoopEntryFreq < ColdEntryFreq) 1788 OptForSize = true; 1789 } 1790 1791 // Check the function attributes to see if implicit floats are allowed. 1792 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1793 // an integer loop and the vector instructions selected are purely integer 1794 // vector instructions? 1795 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1796 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1797 "attribute is used.\n"); 1798 emitAnalysisDiag( 1799 F, L, Hints, 1800 VectorizationReport() 1801 << "loop not vectorized due to NoImplicitFloat attribute"); 1802 emitMissedWarning(F, L, Hints); 1803 return false; 1804 } 1805 1806 // Select the optimal vectorization factor. 1807 const LoopVectorizationCostModel::VectorizationFactor VF = 1808 CM.selectVectorizationFactor(OptForSize); 1809 1810 // Select the interleave count. 1811 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1812 1813 // Get user interleave count. 1814 unsigned UserIC = Hints.getInterleave(); 1815 1816 // Identify the diagnostic messages that should be produced. 1817 std::string VecDiagMsg, IntDiagMsg; 1818 bool VectorizeLoop = true, InterleaveLoop = true; 1819 1820 if (Requirements.doesNotMeet(F, L, Hints)) { 1821 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1822 "requirements.\n"); 1823 emitMissedWarning(F, L, Hints); 1824 return false; 1825 } 1826 1827 if (VF.Width == 1) { 1828 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1829 VecDiagMsg = 1830 "the cost-model indicates that vectorization is not beneficial"; 1831 VectorizeLoop = false; 1832 } 1833 1834 if (IC == 1 && UserIC <= 1) { 1835 // Tell the user interleaving is not beneficial. 1836 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1837 IntDiagMsg = 1838 "the cost-model indicates that interleaving is not beneficial"; 1839 InterleaveLoop = false; 1840 if (UserIC == 1) 1841 IntDiagMsg += 1842 " and is explicitly disabled or interleave count is set to 1"; 1843 } else if (IC > 1 && UserIC == 1) { 1844 // Tell the user interleaving is beneficial, but it explicitly disabled. 1845 DEBUG(dbgs() 1846 << "LV: Interleaving is beneficial but is explicitly disabled."); 1847 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1848 "but is explicitly disabled or interleave count is set to 1"; 1849 InterleaveLoop = false; 1850 } 1851 1852 // Override IC if user provided an interleave count. 1853 IC = UserIC > 0 ? UserIC : IC; 1854 1855 // Emit diagnostic messages, if any. 1856 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1857 if (!VectorizeLoop && !InterleaveLoop) { 1858 // Do not vectorize or interleaving the loop. 1859 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1860 L->getStartLoc(), VecDiagMsg); 1861 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1862 L->getStartLoc(), IntDiagMsg); 1863 return false; 1864 } else if (!VectorizeLoop && InterleaveLoop) { 1865 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1866 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1867 L->getStartLoc(), VecDiagMsg); 1868 } else if (VectorizeLoop && !InterleaveLoop) { 1869 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1870 << DebugLocStr << '\n'); 1871 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1872 L->getStartLoc(), IntDiagMsg); 1873 } else if (VectorizeLoop && InterleaveLoop) { 1874 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1875 << DebugLocStr << '\n'); 1876 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1877 } 1878 1879 if (!VectorizeLoop) { 1880 assert(IC > 1 && "interleave count should not be 1 or 0"); 1881 // If we decided that it is not legal to vectorize the loop then 1882 // interleave it. 1883 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, IC); 1884 Unroller.vectorize(&LVL, CM.MinBWs); 1885 1886 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1887 Twine("interleaved loop (interleaved count: ") + 1888 Twine(IC) + ")"); 1889 } else { 1890 // If we decided that it is *legal* to vectorize the loop then do it. 1891 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, VF.Width, IC); 1892 LB.vectorize(&LVL, CM.MinBWs); 1893 ++LoopsVectorized; 1894 1895 // Add metadata to disable runtime unrolling scalar loop when there's no 1896 // runtime check about strides and memory. Because at this situation, 1897 // scalar loop is rarely used not worthy to be unrolled. 1898 if (!LB.IsSafetyChecksAdded()) 1899 AddRuntimeUnrollDisableMetaData(L); 1900 1901 // Report the vectorization decision. 1902 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1903 Twine("vectorized loop (vectorization width: ") + 1904 Twine(VF.Width) + ", interleaved count: " + 1905 Twine(IC) + ")"); 1906 } 1907 1908 // Mark the loop as already vectorized to avoid vectorizing again. 1909 Hints.setAlreadyVectorized(); 1910 1911 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1912 return true; 1913 } 1914 1915 void getAnalysisUsage(AnalysisUsage &AU) const override { 1916 AU.addRequired<AssumptionCacheTracker>(); 1917 AU.addRequiredID(LoopSimplifyID); 1918 AU.addRequiredID(LCSSAID); 1919 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1920 AU.addRequired<DominatorTreeWrapperPass>(); 1921 AU.addRequired<LoopInfoWrapperPass>(); 1922 AU.addRequired<ScalarEvolutionWrapperPass>(); 1923 AU.addRequired<TargetTransformInfoWrapperPass>(); 1924 AU.addRequired<AAResultsWrapperPass>(); 1925 AU.addRequired<LoopAccessAnalysis>(); 1926 AU.addRequired<DemandedBits>(); 1927 AU.addPreserved<LoopInfoWrapperPass>(); 1928 AU.addPreserved<DominatorTreeWrapperPass>(); 1929 AU.addPreserved<BasicAAWrapperPass>(); 1930 AU.addPreserved<AAResultsWrapperPass>(); 1931 AU.addPreserved<GlobalsAAWrapperPass>(); 1932 } 1933 1934 }; 1935 1936 } // end anonymous namespace 1937 1938 //===----------------------------------------------------------------------===// 1939 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1940 // LoopVectorizationCostModel. 1941 //===----------------------------------------------------------------------===// 1942 1943 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1944 // We need to place the broadcast of invariant variables outside the loop. 1945 Instruction *Instr = dyn_cast<Instruction>(V); 1946 bool NewInstr = 1947 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1948 Instr->getParent()) != LoopVectorBody.end()); 1949 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1950 1951 // Place the code for broadcasting invariant variables in the new preheader. 1952 IRBuilder<>::InsertPointGuard Guard(Builder); 1953 if (Invariant) 1954 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1955 1956 // Broadcast the scalar into all locations in the vector. 1957 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1958 1959 return Shuf; 1960 } 1961 1962 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1963 Value *Step) { 1964 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1965 assert(Val->getType()->getScalarType()->isIntegerTy() && 1966 "Elem must be an integer"); 1967 assert(Step->getType() == Val->getType()->getScalarType() && 1968 "Step has wrong type"); 1969 // Create the types. 1970 Type *ITy = Val->getType()->getScalarType(); 1971 VectorType *Ty = cast<VectorType>(Val->getType()); 1972 int VLen = Ty->getNumElements(); 1973 SmallVector<Constant*, 8> Indices; 1974 1975 // Create a vector of consecutive numbers from zero to VF. 1976 for (int i = 0; i < VLen; ++i) 1977 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1978 1979 // Add the consecutive indices to the vector value. 1980 Constant *Cv = ConstantVector::get(Indices); 1981 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1982 Step = Builder.CreateVectorSplat(VLen, Step); 1983 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1984 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1985 // which can be found from the original scalar operations. 1986 Step = Builder.CreateMul(Cv, Step); 1987 return Builder.CreateAdd(Val, Step, "induction"); 1988 } 1989 1990 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1991 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1992 auto *SE = PSE.getSE(); 1993 // Make sure that the pointer does not point to structs. 1994 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1995 return 0; 1996 1997 // If this value is a pointer induction variable we know it is consecutive. 1998 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1999 if (Phi && Inductions.count(Phi)) { 2000 InductionDescriptor II = Inductions[Phi]; 2001 return II.getConsecutiveDirection(); 2002 } 2003 2004 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2005 if (!Gep) 2006 return 0; 2007 2008 unsigned NumOperands = Gep->getNumOperands(); 2009 Value *GpPtr = Gep->getPointerOperand(); 2010 // If this GEP value is a consecutive pointer induction variable and all of 2011 // the indices are constant then we know it is consecutive. We can 2012 Phi = dyn_cast<PHINode>(GpPtr); 2013 if (Phi && Inductions.count(Phi)) { 2014 2015 // Make sure that the pointer does not point to structs. 2016 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2017 if (GepPtrType->getElementType()->isAggregateType()) 2018 return 0; 2019 2020 // Make sure that all of the index operands are loop invariant. 2021 for (unsigned i = 1; i < NumOperands; ++i) 2022 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2023 return 0; 2024 2025 InductionDescriptor II = Inductions[Phi]; 2026 return II.getConsecutiveDirection(); 2027 } 2028 2029 unsigned InductionOperand = getGEPInductionOperand(Gep); 2030 2031 // Check that all of the gep indices are uniform except for our induction 2032 // operand. 2033 for (unsigned i = 0; i != NumOperands; ++i) 2034 if (i != InductionOperand && 2035 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2036 return 0; 2037 2038 // We can emit wide load/stores only if the last non-zero index is the 2039 // induction variable. 2040 const SCEV *Last = nullptr; 2041 if (!Strides.count(Gep)) 2042 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2043 else { 2044 // Because of the multiplication by a stride we can have a s/zext cast. 2045 // We are going to replace this stride by 1 so the cast is safe to ignore. 2046 // 2047 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2048 // %0 = trunc i64 %indvars.iv to i32 2049 // %mul = mul i32 %0, %Stride1 2050 // %idxprom = zext i32 %mul to i64 << Safe cast. 2051 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2052 // 2053 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2054 Gep->getOperand(InductionOperand), Gep); 2055 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2056 Last = 2057 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2058 ? C->getOperand() 2059 : Last; 2060 } 2061 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2062 const SCEV *Step = AR->getStepRecurrence(*SE); 2063 2064 // The memory is consecutive because the last index is consecutive 2065 // and all other indices are loop invariant. 2066 if (Step->isOne()) 2067 return 1; 2068 if (Step->isAllOnesValue()) 2069 return -1; 2070 } 2071 2072 return 0; 2073 } 2074 2075 bool LoopVectorizationLegality::isUniform(Value *V) { 2076 return LAI->isUniform(V); 2077 } 2078 2079 InnerLoopVectorizer::VectorParts& 2080 InnerLoopVectorizer::getVectorValue(Value *V) { 2081 assert(V != Induction && "The new induction variable should not be used."); 2082 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2083 2084 // If we have a stride that is replaced by one, do it here. 2085 if (Legal->hasStride(V)) 2086 V = ConstantInt::get(V->getType(), 1); 2087 2088 // If we have this scalar in the map, return it. 2089 if (WidenMap.has(V)) 2090 return WidenMap.get(V); 2091 2092 // If this scalar is unknown, assume that it is a constant or that it is 2093 // loop invariant. Broadcast V and save the value for future uses. 2094 Value *B = getBroadcastInstrs(V); 2095 return WidenMap.splat(V, B); 2096 } 2097 2098 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2099 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2100 SmallVector<Constant*, 8> ShuffleMask; 2101 for (unsigned i = 0; i < VF; ++i) 2102 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2103 2104 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2105 ConstantVector::get(ShuffleMask), 2106 "reverse"); 2107 } 2108 2109 // Get a mask to interleave \p NumVec vectors into a wide vector. 2110 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2111 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2112 // <0, 4, 1, 5, 2, 6, 3, 7> 2113 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2114 unsigned NumVec) { 2115 SmallVector<Constant *, 16> Mask; 2116 for (unsigned i = 0; i < VF; i++) 2117 for (unsigned j = 0; j < NumVec; j++) 2118 Mask.push_back(Builder.getInt32(j * VF + i)); 2119 2120 return ConstantVector::get(Mask); 2121 } 2122 2123 // Get the strided mask starting from index \p Start. 2124 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2125 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2126 unsigned Stride, unsigned VF) { 2127 SmallVector<Constant *, 16> Mask; 2128 for (unsigned i = 0; i < VF; i++) 2129 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2130 2131 return ConstantVector::get(Mask); 2132 } 2133 2134 // Get a mask of two parts: The first part consists of sequential integers 2135 // starting from 0, The second part consists of UNDEFs. 2136 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2137 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2138 unsigned NumUndef) { 2139 SmallVector<Constant *, 16> Mask; 2140 for (unsigned i = 0; i < NumInt; i++) 2141 Mask.push_back(Builder.getInt32(i)); 2142 2143 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2144 for (unsigned i = 0; i < NumUndef; i++) 2145 Mask.push_back(Undef); 2146 2147 return ConstantVector::get(Mask); 2148 } 2149 2150 // Concatenate two vectors with the same element type. The 2nd vector should 2151 // not have more elements than the 1st vector. If the 2nd vector has less 2152 // elements, extend it with UNDEFs. 2153 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2154 Value *V2) { 2155 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2156 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2157 assert(VecTy1 && VecTy2 && 2158 VecTy1->getScalarType() == VecTy2->getScalarType() && 2159 "Expect two vectors with the same element type"); 2160 2161 unsigned NumElts1 = VecTy1->getNumElements(); 2162 unsigned NumElts2 = VecTy2->getNumElements(); 2163 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2164 2165 if (NumElts1 > NumElts2) { 2166 // Extend with UNDEFs. 2167 Constant *ExtMask = 2168 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2169 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2170 } 2171 2172 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2173 return Builder.CreateShuffleVector(V1, V2, Mask); 2174 } 2175 2176 // Concatenate vectors in the given list. All vectors have the same type. 2177 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2178 ArrayRef<Value *> InputList) { 2179 unsigned NumVec = InputList.size(); 2180 assert(NumVec > 1 && "Should be at least two vectors"); 2181 2182 SmallVector<Value *, 8> ResList; 2183 ResList.append(InputList.begin(), InputList.end()); 2184 do { 2185 SmallVector<Value *, 8> TmpList; 2186 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2187 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2188 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2189 "Only the last vector may have a different type"); 2190 2191 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2192 } 2193 2194 // Push the last vector if the total number of vectors is odd. 2195 if (NumVec % 2 != 0) 2196 TmpList.push_back(ResList[NumVec - 1]); 2197 2198 ResList = TmpList; 2199 NumVec = ResList.size(); 2200 } while (NumVec > 1); 2201 2202 return ResList[0]; 2203 } 2204 2205 // Try to vectorize the interleave group that \p Instr belongs to. 2206 // 2207 // E.g. Translate following interleaved load group (factor = 3): 2208 // for (i = 0; i < N; i+=3) { 2209 // R = Pic[i]; // Member of index 0 2210 // G = Pic[i+1]; // Member of index 1 2211 // B = Pic[i+2]; // Member of index 2 2212 // ... // do something to R, G, B 2213 // } 2214 // To: 2215 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2216 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2217 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2218 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2219 // 2220 // Or translate following interleaved store group (factor = 3): 2221 // for (i = 0; i < N; i+=3) { 2222 // ... do something to R, G, B 2223 // Pic[i] = R; // Member of index 0 2224 // Pic[i+1] = G; // Member of index 1 2225 // Pic[i+2] = B; // Member of index 2 2226 // } 2227 // To: 2228 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2229 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2230 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2231 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2232 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2233 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2234 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2235 assert(Group && "Fail to get an interleaved access group."); 2236 2237 // Skip if current instruction is not the insert position. 2238 if (Instr != Group->getInsertPos()) 2239 return; 2240 2241 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2242 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2243 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2244 2245 // Prepare for the vector type of the interleaved load/store. 2246 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2247 unsigned InterleaveFactor = Group->getFactor(); 2248 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2249 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2250 2251 // Prepare for the new pointers. 2252 setDebugLocFromInst(Builder, Ptr); 2253 VectorParts &PtrParts = getVectorValue(Ptr); 2254 SmallVector<Value *, 2> NewPtrs; 2255 unsigned Index = Group->getIndex(Instr); 2256 for (unsigned Part = 0; Part < UF; Part++) { 2257 // Extract the pointer for current instruction from the pointer vector. A 2258 // reverse access uses the pointer in the last lane. 2259 Value *NewPtr = Builder.CreateExtractElement( 2260 PtrParts[Part], 2261 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2262 2263 // Notice current instruction could be any index. Need to adjust the address 2264 // to the member of index 0. 2265 // 2266 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2267 // b = A[i]; // Member of index 0 2268 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2269 // 2270 // E.g. A[i+1] = a; // Member of index 1 2271 // A[i] = b; // Member of index 0 2272 // A[i+2] = c; // Member of index 2 (Current instruction) 2273 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2274 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2275 2276 // Cast to the vector pointer type. 2277 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2278 } 2279 2280 setDebugLocFromInst(Builder, Instr); 2281 Value *UndefVec = UndefValue::get(VecTy); 2282 2283 // Vectorize the interleaved load group. 2284 if (LI) { 2285 for (unsigned Part = 0; Part < UF; Part++) { 2286 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2287 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2288 2289 for (unsigned i = 0; i < InterleaveFactor; i++) { 2290 Instruction *Member = Group->getMember(i); 2291 2292 // Skip the gaps in the group. 2293 if (!Member) 2294 continue; 2295 2296 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2297 Value *StridedVec = Builder.CreateShuffleVector( 2298 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2299 2300 // If this member has different type, cast the result type. 2301 if (Member->getType() != ScalarTy) { 2302 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2303 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2304 } 2305 2306 VectorParts &Entry = WidenMap.get(Member); 2307 Entry[Part] = 2308 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2309 } 2310 2311 propagateMetadata(NewLoadInstr, Instr); 2312 } 2313 return; 2314 } 2315 2316 // The sub vector type for current instruction. 2317 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2318 2319 // Vectorize the interleaved store group. 2320 for (unsigned Part = 0; Part < UF; Part++) { 2321 // Collect the stored vector from each member. 2322 SmallVector<Value *, 4> StoredVecs; 2323 for (unsigned i = 0; i < InterleaveFactor; i++) { 2324 // Interleaved store group doesn't allow a gap, so each index has a member 2325 Instruction *Member = Group->getMember(i); 2326 assert(Member && "Fail to get a member from an interleaved store group"); 2327 2328 Value *StoredVec = 2329 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2330 if (Group->isReverse()) 2331 StoredVec = reverseVector(StoredVec); 2332 2333 // If this member has different type, cast it to an unified type. 2334 if (StoredVec->getType() != SubVT) 2335 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2336 2337 StoredVecs.push_back(StoredVec); 2338 } 2339 2340 // Concatenate all vectors into a wide vector. 2341 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2342 2343 // Interleave the elements in the wide vector. 2344 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2345 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2346 "interleaved.vec"); 2347 2348 Instruction *NewStoreInstr = 2349 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2350 propagateMetadata(NewStoreInstr, Instr); 2351 } 2352 } 2353 2354 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2355 // Attempt to issue a wide load. 2356 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2357 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2358 2359 assert((LI || SI) && "Invalid Load/Store instruction"); 2360 2361 // Try to vectorize the interleave group if this access is interleaved. 2362 if (Legal->isAccessInterleaved(Instr)) 2363 return vectorizeInterleaveGroup(Instr); 2364 2365 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2366 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2367 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2368 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2369 // An alignment of 0 means target abi alignment. We need to use the scalar's 2370 // target abi alignment in such a case. 2371 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2372 if (!Alignment) 2373 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2374 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2375 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2376 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2377 2378 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2379 !Legal->isMaskRequired(SI)) 2380 return scalarizeInstruction(Instr, true); 2381 2382 if (ScalarAllocatedSize != VectorElementSize) 2383 return scalarizeInstruction(Instr); 2384 2385 // If the pointer is loop invariant or if it is non-consecutive, 2386 // scalarize the load. 2387 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2388 bool Reverse = ConsecutiveStride < 0; 2389 bool UniformLoad = LI && Legal->isUniform(Ptr); 2390 if (!ConsecutiveStride || UniformLoad) 2391 return scalarizeInstruction(Instr); 2392 2393 Constant *Zero = Builder.getInt32(0); 2394 VectorParts &Entry = WidenMap.get(Instr); 2395 2396 // Handle consecutive loads/stores. 2397 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2398 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2399 setDebugLocFromInst(Builder, Gep); 2400 Value *PtrOperand = Gep->getPointerOperand(); 2401 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2402 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2403 2404 // Create the new GEP with the new induction variable. 2405 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2406 Gep2->setOperand(0, FirstBasePtr); 2407 Gep2->setName("gep.indvar.base"); 2408 Ptr = Builder.Insert(Gep2); 2409 } else if (Gep) { 2410 setDebugLocFromInst(Builder, Gep); 2411 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2412 OrigLoop) && 2413 "Base ptr must be invariant"); 2414 2415 // The last index does not have to be the induction. It can be 2416 // consecutive and be a function of the index. For example A[I+1]; 2417 unsigned NumOperands = Gep->getNumOperands(); 2418 unsigned InductionOperand = getGEPInductionOperand(Gep); 2419 // Create the new GEP with the new induction variable. 2420 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2421 2422 for (unsigned i = 0; i < NumOperands; ++i) { 2423 Value *GepOperand = Gep->getOperand(i); 2424 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2425 2426 // Update last index or loop invariant instruction anchored in loop. 2427 if (i == InductionOperand || 2428 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2429 assert((i == InductionOperand || 2430 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2431 OrigLoop)) && 2432 "Must be last index or loop invariant"); 2433 2434 VectorParts &GEPParts = getVectorValue(GepOperand); 2435 Value *Index = GEPParts[0]; 2436 Index = Builder.CreateExtractElement(Index, Zero); 2437 Gep2->setOperand(i, Index); 2438 Gep2->setName("gep.indvar.idx"); 2439 } 2440 } 2441 Ptr = Builder.Insert(Gep2); 2442 } else { 2443 // Use the induction element ptr. 2444 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2445 setDebugLocFromInst(Builder, Ptr); 2446 VectorParts &PtrVal = getVectorValue(Ptr); 2447 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2448 } 2449 2450 VectorParts Mask = createBlockInMask(Instr->getParent()); 2451 // Handle Stores: 2452 if (SI) { 2453 assert(!Legal->isUniform(SI->getPointerOperand()) && 2454 "We do not allow storing to uniform addresses"); 2455 setDebugLocFromInst(Builder, SI); 2456 // We don't want to update the value in the map as it might be used in 2457 // another expression. So don't use a reference type for "StoredVal". 2458 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2459 2460 for (unsigned Part = 0; Part < UF; ++Part) { 2461 // Calculate the pointer for the specific unroll-part. 2462 Value *PartPtr = 2463 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2464 2465 if (Reverse) { 2466 // If we store to reverse consecutive memory locations, then we need 2467 // to reverse the order of elements in the stored value. 2468 StoredVal[Part] = reverseVector(StoredVal[Part]); 2469 // If the address is consecutive but reversed, then the 2470 // wide store needs to start at the last vector element. 2471 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2472 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2473 Mask[Part] = reverseVector(Mask[Part]); 2474 } 2475 2476 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2477 DataTy->getPointerTo(AddressSpace)); 2478 2479 Instruction *NewSI; 2480 if (Legal->isMaskRequired(SI)) 2481 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2482 Mask[Part]); 2483 else 2484 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2485 propagateMetadata(NewSI, SI); 2486 } 2487 return; 2488 } 2489 2490 // Handle loads. 2491 assert(LI && "Must have a load instruction"); 2492 setDebugLocFromInst(Builder, LI); 2493 for (unsigned Part = 0; Part < UF; ++Part) { 2494 // Calculate the pointer for the specific unroll-part. 2495 Value *PartPtr = 2496 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2497 2498 if (Reverse) { 2499 // If the address is consecutive but reversed, then the 2500 // wide load needs to start at the last vector element. 2501 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2502 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2503 Mask[Part] = reverseVector(Mask[Part]); 2504 } 2505 2506 Instruction* NewLI; 2507 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2508 DataTy->getPointerTo(AddressSpace)); 2509 if (Legal->isMaskRequired(LI)) 2510 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2511 UndefValue::get(DataTy), 2512 "wide.masked.load"); 2513 else 2514 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2515 propagateMetadata(NewLI, LI); 2516 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2517 } 2518 } 2519 2520 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2521 bool IfPredicateStore) { 2522 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2523 // Holds vector parameters or scalars, in case of uniform vals. 2524 SmallVector<VectorParts, 4> Params; 2525 2526 setDebugLocFromInst(Builder, Instr); 2527 2528 // Find all of the vectorized parameters. 2529 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2530 Value *SrcOp = Instr->getOperand(op); 2531 2532 // If we are accessing the old induction variable, use the new one. 2533 if (SrcOp == OldInduction) { 2534 Params.push_back(getVectorValue(SrcOp)); 2535 continue; 2536 } 2537 2538 // Try using previously calculated values. 2539 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2540 2541 // If the src is an instruction that appeared earlier in the basic block, 2542 // then it should already be vectorized. 2543 if (SrcInst && OrigLoop->contains(SrcInst)) { 2544 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2545 // The parameter is a vector value from earlier. 2546 Params.push_back(WidenMap.get(SrcInst)); 2547 } else { 2548 // The parameter is a scalar from outside the loop. Maybe even a constant. 2549 VectorParts Scalars; 2550 Scalars.append(UF, SrcOp); 2551 Params.push_back(Scalars); 2552 } 2553 } 2554 2555 assert(Params.size() == Instr->getNumOperands() && 2556 "Invalid number of operands"); 2557 2558 // Does this instruction return a value ? 2559 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2560 2561 Value *UndefVec = IsVoidRetTy ? nullptr : 2562 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2563 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2564 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2565 2566 VectorParts Cond; 2567 if (IfPredicateStore) { 2568 assert(Instr->getParent()->getSinglePredecessor() && 2569 "Only support single predecessor blocks"); 2570 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2571 Instr->getParent()); 2572 } 2573 2574 // For each vector unroll 'part': 2575 for (unsigned Part = 0; Part < UF; ++Part) { 2576 // For each scalar that we create: 2577 for (unsigned Width = 0; Width < VF; ++Width) { 2578 2579 // Start if-block. 2580 Value *Cmp = nullptr; 2581 if (IfPredicateStore) { 2582 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2583 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2584 ConstantInt::get(Cmp->getType(), 1)); 2585 } 2586 2587 Instruction *Cloned = Instr->clone(); 2588 if (!IsVoidRetTy) 2589 Cloned->setName(Instr->getName() + ".cloned"); 2590 // Replace the operands of the cloned instructions with extracted scalars. 2591 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2592 Value *Op = Params[op][Part]; 2593 // Param is a vector. Need to extract the right lane. 2594 if (Op->getType()->isVectorTy()) 2595 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2596 Cloned->setOperand(op, Op); 2597 } 2598 2599 // Place the cloned scalar in the new loop. 2600 Builder.Insert(Cloned); 2601 2602 // If the original scalar returns a value we need to place it in a vector 2603 // so that future users will be able to use it. 2604 if (!IsVoidRetTy) 2605 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2606 Builder.getInt32(Width)); 2607 // End if-block. 2608 if (IfPredicateStore) 2609 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 2610 Cmp)); 2611 } 2612 } 2613 } 2614 2615 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2616 Value *End, Value *Step, 2617 Instruction *DL) { 2618 BasicBlock *Header = L->getHeader(); 2619 BasicBlock *Latch = L->getLoopLatch(); 2620 // As we're just creating this loop, it's possible no latch exists 2621 // yet. If so, use the header as this will be a single block loop. 2622 if (!Latch) 2623 Latch = Header; 2624 2625 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2626 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2627 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2628 2629 Builder.SetInsertPoint(Latch->getTerminator()); 2630 2631 // Create i+1 and fill the PHINode. 2632 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2633 Induction->addIncoming(Start, L->getLoopPreheader()); 2634 Induction->addIncoming(Next, Latch); 2635 // Create the compare. 2636 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2637 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2638 2639 // Now we have two terminators. Remove the old one from the block. 2640 Latch->getTerminator()->eraseFromParent(); 2641 2642 return Induction; 2643 } 2644 2645 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2646 if (TripCount) 2647 return TripCount; 2648 2649 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2650 // Find the loop boundaries. 2651 ScalarEvolution *SE = PSE.getSE(); 2652 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop); 2653 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2654 "Invalid loop count"); 2655 2656 Type *IdxTy = Legal->getWidestInductionType(); 2657 2658 // The exit count might have the type of i64 while the phi is i32. This can 2659 // happen if we have an induction variable that is sign extended before the 2660 // compare. The only way that we get a backedge taken count is that the 2661 // induction variable was signed and as such will not overflow. In such a case 2662 // truncation is legal. 2663 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2664 IdxTy->getPrimitiveSizeInBits()) 2665 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2666 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2667 2668 // Get the total trip count from the count by adding 1. 2669 const SCEV *ExitCount = SE->getAddExpr( 2670 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2671 2672 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2673 2674 // Expand the trip count and place the new instructions in the preheader. 2675 // Notice that the pre-header does not change, only the loop body. 2676 SCEVExpander Exp(*SE, DL, "induction"); 2677 2678 // Count holds the overall loop count (N). 2679 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2680 L->getLoopPreheader()->getTerminator()); 2681 2682 if (TripCount->getType()->isPointerTy()) 2683 TripCount = 2684 CastInst::CreatePointerCast(TripCount, IdxTy, 2685 "exitcount.ptrcnt.to.int", 2686 L->getLoopPreheader()->getTerminator()); 2687 2688 return TripCount; 2689 } 2690 2691 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2692 if (VectorTripCount) 2693 return VectorTripCount; 2694 2695 Value *TC = getOrCreateTripCount(L); 2696 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2697 2698 // Now we need to generate the expression for N - (N % VF), which is 2699 // the part that the vectorized body will execute. 2700 // The loop step is equal to the vectorization factor (num of SIMD elements) 2701 // times the unroll factor (num of SIMD instructions). 2702 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2703 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2704 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2705 2706 return VectorTripCount; 2707 } 2708 2709 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2710 BasicBlock *Bypass) { 2711 Value *Count = getOrCreateTripCount(L); 2712 BasicBlock *BB = L->getLoopPreheader(); 2713 IRBuilder<> Builder(BB->getTerminator()); 2714 2715 // Generate code to check that the loop's trip count that we computed by 2716 // adding one to the backedge-taken count will not overflow. 2717 Value *CheckMinIters = 2718 Builder.CreateICmpULT(Count, 2719 ConstantInt::get(Count->getType(), VF * UF), 2720 "min.iters.check"); 2721 2722 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2723 "min.iters.checked"); 2724 if (L->getParentLoop()) 2725 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2726 ReplaceInstWithInst(BB->getTerminator(), 2727 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2728 LoopBypassBlocks.push_back(BB); 2729 } 2730 2731 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2732 BasicBlock *Bypass) { 2733 Value *TC = getOrCreateVectorTripCount(L); 2734 BasicBlock *BB = L->getLoopPreheader(); 2735 IRBuilder<> Builder(BB->getTerminator()); 2736 2737 // Now, compare the new count to zero. If it is zero skip the vector loop and 2738 // jump to the scalar loop. 2739 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2740 "cmp.zero"); 2741 2742 // Generate code to check that the loop's trip count that we computed by 2743 // adding one to the backedge-taken count will not overflow. 2744 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2745 "vector.ph"); 2746 if (L->getParentLoop()) 2747 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2748 ReplaceInstWithInst(BB->getTerminator(), 2749 BranchInst::Create(Bypass, NewBB, Cmp)); 2750 LoopBypassBlocks.push_back(BB); 2751 } 2752 2753 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2754 BasicBlock *BB = L->getLoopPreheader(); 2755 2756 // Generate the code to check that the SCEV assumptions that we made. 2757 // We want the new basic block to start at the first instruction in a 2758 // sequence of instructions that form a check. 2759 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2760 "scev.check"); 2761 Value *SCEVCheck = 2762 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2763 2764 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2765 if (C->isZero()) 2766 return; 2767 2768 // Create a new block containing the stride check. 2769 BB->setName("vector.scevcheck"); 2770 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2771 if (L->getParentLoop()) 2772 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2773 ReplaceInstWithInst(BB->getTerminator(), 2774 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2775 LoopBypassBlocks.push_back(BB); 2776 AddedSafetyChecks = true; 2777 } 2778 2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 2780 BasicBlock *Bypass) { 2781 BasicBlock *BB = L->getLoopPreheader(); 2782 2783 // Generate the code that checks in runtime if arrays overlap. We put the 2784 // checks into a separate block to make the more common case of few elements 2785 // faster. 2786 Instruction *FirstCheckInst; 2787 Instruction *MemRuntimeCheck; 2788 std::tie(FirstCheckInst, MemRuntimeCheck) = 2789 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2790 if (!MemRuntimeCheck) 2791 return; 2792 2793 // Create a new block containing the memory check. 2794 BB->setName("vector.memcheck"); 2795 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2796 if (L->getParentLoop()) 2797 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2798 ReplaceInstWithInst(BB->getTerminator(), 2799 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2800 LoopBypassBlocks.push_back(BB); 2801 AddedSafetyChecks = true; 2802 } 2803 2804 2805 void InnerLoopVectorizer::createEmptyLoop() { 2806 /* 2807 In this function we generate a new loop. The new loop will contain 2808 the vectorized instructions while the old loop will continue to run the 2809 scalar remainder. 2810 2811 [ ] <-- loop iteration number check. 2812 / | 2813 / v 2814 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2815 | / | 2816 | / v 2817 || [ ] <-- vector pre header. 2818 |/ | 2819 | v 2820 | [ ] \ 2821 | [ ]_| <-- vector loop. 2822 | | 2823 | v 2824 | -[ ] <--- middle-block. 2825 | / | 2826 | / v 2827 -|- >[ ] <--- new preheader. 2828 | | 2829 | v 2830 | [ ] \ 2831 | [ ]_| <-- old scalar loop to handle remainder. 2832 \ | 2833 \ v 2834 >[ ] <-- exit block. 2835 ... 2836 */ 2837 2838 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2839 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2840 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2841 assert(VectorPH && "Invalid loop structure"); 2842 assert(ExitBlock && "Must have an exit block"); 2843 2844 // Some loops have a single integer induction variable, while other loops 2845 // don't. One example is c++ iterators that often have multiple pointer 2846 // induction variables. In the code below we also support a case where we 2847 // don't have a single induction variable. 2848 // 2849 // We try to obtain an induction variable from the original loop as hard 2850 // as possible. However if we don't find one that: 2851 // - is an integer 2852 // - counts from zero, stepping by one 2853 // - is the size of the widest induction variable type 2854 // then we create a new one. 2855 OldInduction = Legal->getInduction(); 2856 Type *IdxTy = Legal->getWidestInductionType(); 2857 2858 // Split the single block loop into the two loop structure described above. 2859 BasicBlock *VecBody = 2860 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2861 BasicBlock *MiddleBlock = 2862 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2863 BasicBlock *ScalarPH = 2864 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2865 2866 // Create and register the new vector loop. 2867 Loop* Lp = new Loop(); 2868 Loop *ParentLoop = OrigLoop->getParentLoop(); 2869 2870 // Insert the new loop into the loop nest and register the new basic blocks 2871 // before calling any utilities such as SCEV that require valid LoopInfo. 2872 if (ParentLoop) { 2873 ParentLoop->addChildLoop(Lp); 2874 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2875 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2876 } else { 2877 LI->addTopLevelLoop(Lp); 2878 } 2879 Lp->addBasicBlockToLoop(VecBody, *LI); 2880 2881 // Find the loop boundaries. 2882 Value *Count = getOrCreateTripCount(Lp); 2883 2884 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2885 2886 // We need to test whether the backedge-taken count is uint##_max. Adding one 2887 // to it will cause overflow and an incorrect loop trip count in the vector 2888 // body. In case of overflow we want to directly jump to the scalar remainder 2889 // loop. 2890 emitMinimumIterationCountCheck(Lp, ScalarPH); 2891 // Now, compare the new count to zero. If it is zero skip the vector loop and 2892 // jump to the scalar loop. 2893 emitVectorLoopEnteredCheck(Lp, ScalarPH); 2894 // Generate the code to check any assumptions that we've made for SCEV 2895 // expressions. 2896 emitSCEVChecks(Lp, ScalarPH); 2897 2898 // Generate the code that checks in runtime if arrays overlap. We put the 2899 // checks into a separate block to make the more common case of few elements 2900 // faster. 2901 emitMemRuntimeChecks(Lp, ScalarPH); 2902 2903 // Generate the induction variable. 2904 // The loop step is equal to the vectorization factor (num of SIMD elements) 2905 // times the unroll factor (num of SIMD instructions). 2906 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2907 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2908 Induction = 2909 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2910 getDebugLocFromInstOrOperands(OldInduction)); 2911 2912 // We are going to resume the execution of the scalar loop. 2913 // Go over all of the induction variables that we found and fix the 2914 // PHIs that are left in the scalar version of the loop. 2915 // The starting values of PHI nodes depend on the counter of the last 2916 // iteration in the vectorized loop. 2917 // If we come from a bypass edge then we need to start from the original 2918 // start value. 2919 2920 // This variable saves the new starting index for the scalar loop. It is used 2921 // to test if there are any tail iterations left once the vector loop has 2922 // completed. 2923 LoopVectorizationLegality::InductionList::iterator I, E; 2924 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2925 for (I = List->begin(), E = List->end(); I != E; ++I) { 2926 PHINode *OrigPhi = I->first; 2927 InductionDescriptor II = I->second; 2928 2929 // Create phi nodes to merge from the backedge-taken check block. 2930 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, 2931 "bc.resume.val", 2932 ScalarPH->getTerminator()); 2933 Value *EndValue; 2934 if (OrigPhi == OldInduction) { 2935 // We know what the end value is. 2936 EndValue = CountRoundDown; 2937 } else { 2938 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 2939 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 2940 II.getStepValue()->getType(), 2941 "cast.crd"); 2942 EndValue = II.transform(B, CRD); 2943 EndValue->setName("ind.end"); 2944 } 2945 2946 // The new PHI merges the original incoming value, in case of a bypass, 2947 // or the value at the end of the vectorized loop. 2948 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2949 2950 // Fix the scalar body counter (PHI node). 2951 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2952 2953 // The old induction's phi node in the scalar body needs the truncated 2954 // value. 2955 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2956 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 2957 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2958 } 2959 2960 // Add a check in the middle block to see if we have completed 2961 // all of the iterations in the first vector loop. 2962 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2963 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2964 CountRoundDown, "cmp.n", 2965 MiddleBlock->getTerminator()); 2966 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2967 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2968 2969 // Get ready to start creating new instructions into the vectorized body. 2970 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2971 2972 // Save the state. 2973 LoopVectorPreHeader = Lp->getLoopPreheader(); 2974 LoopScalarPreHeader = ScalarPH; 2975 LoopMiddleBlock = MiddleBlock; 2976 LoopExitBlock = ExitBlock; 2977 LoopVectorBody.push_back(VecBody); 2978 LoopScalarBody = OldBasicBlock; 2979 2980 LoopVectorizeHints Hints(Lp, true); 2981 Hints.setAlreadyVectorized(); 2982 } 2983 2984 namespace { 2985 struct CSEDenseMapInfo { 2986 static bool canHandle(Instruction *I) { 2987 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2988 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2989 } 2990 static inline Instruction *getEmptyKey() { 2991 return DenseMapInfo<Instruction *>::getEmptyKey(); 2992 } 2993 static inline Instruction *getTombstoneKey() { 2994 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2995 } 2996 static unsigned getHashValue(Instruction *I) { 2997 assert(canHandle(I) && "Unknown instruction!"); 2998 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2999 I->value_op_end())); 3000 } 3001 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3002 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3003 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3004 return LHS == RHS; 3005 return LHS->isIdenticalTo(RHS); 3006 } 3007 }; 3008 } 3009 3010 /// \brief Check whether this block is a predicated block. 3011 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 3012 /// = ...; " blocks. We start with one vectorized basic block. For every 3013 /// conditional block we split this vectorized block. Therefore, every second 3014 /// block will be a predicated one. 3015 static bool isPredicatedBlock(unsigned BlockNum) { 3016 return BlockNum % 2; 3017 } 3018 3019 ///\brief Perform cse of induction variable instructions. 3020 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 3021 // Perform simple cse. 3022 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3023 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 3024 BasicBlock *BB = BBs[i]; 3025 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3026 Instruction *In = &*I++; 3027 3028 if (!CSEDenseMapInfo::canHandle(In)) 3029 continue; 3030 3031 // Check if we can replace this instruction with any of the 3032 // visited instructions. 3033 if (Instruction *V = CSEMap.lookup(In)) { 3034 In->replaceAllUsesWith(V); 3035 In->eraseFromParent(); 3036 continue; 3037 } 3038 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 3039 // ...;" blocks for predicated stores. Every second block is a predicated 3040 // block. 3041 if (isPredicatedBlock(i)) 3042 continue; 3043 3044 CSEMap[In] = In; 3045 } 3046 } 3047 } 3048 3049 /// \brief Adds a 'fast' flag to floating point operations. 3050 static Value *addFastMathFlag(Value *V) { 3051 if (isa<FPMathOperator>(V)){ 3052 FastMathFlags Flags; 3053 Flags.setUnsafeAlgebra(); 3054 cast<Instruction>(V)->setFastMathFlags(Flags); 3055 } 3056 return V; 3057 } 3058 3059 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3060 /// the result needs to be inserted and/or extracted from vectors. 3061 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3062 const TargetTransformInfo &TTI) { 3063 if (Ty->isVoidTy()) 3064 return 0; 3065 3066 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3067 unsigned Cost = 0; 3068 3069 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3070 if (Insert) 3071 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3072 if (Extract) 3073 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3074 } 3075 3076 return Cost; 3077 } 3078 3079 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3080 // Return the cost of the instruction, including scalarization overhead if it's 3081 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3082 // i.e. either vector version isn't available, or is too expensive. 3083 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3084 const TargetTransformInfo &TTI, 3085 const TargetLibraryInfo *TLI, 3086 bool &NeedToScalarize) { 3087 Function *F = CI->getCalledFunction(); 3088 StringRef FnName = CI->getCalledFunction()->getName(); 3089 Type *ScalarRetTy = CI->getType(); 3090 SmallVector<Type *, 4> Tys, ScalarTys; 3091 for (auto &ArgOp : CI->arg_operands()) 3092 ScalarTys.push_back(ArgOp->getType()); 3093 3094 // Estimate cost of scalarized vector call. The source operands are assumed 3095 // to be vectors, so we need to extract individual elements from there, 3096 // execute VF scalar calls, and then gather the result into the vector return 3097 // value. 3098 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3099 if (VF == 1) 3100 return ScalarCallCost; 3101 3102 // Compute corresponding vector type for return value and arguments. 3103 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3104 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3105 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3106 3107 // Compute costs of unpacking argument values for the scalar calls and 3108 // packing the return values to a vector. 3109 unsigned ScalarizationCost = 3110 getScalarizationOverhead(RetTy, true, false, TTI); 3111 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3112 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3113 3114 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3115 3116 // If we can't emit a vector call for this function, then the currently found 3117 // cost is the cost we need to return. 3118 NeedToScalarize = true; 3119 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3120 return Cost; 3121 3122 // If the corresponding vector cost is cheaper, return its cost. 3123 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3124 if (VectorCallCost < Cost) { 3125 NeedToScalarize = false; 3126 return VectorCallCost; 3127 } 3128 return Cost; 3129 } 3130 3131 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3132 // factor VF. Return the cost of the instruction, including scalarization 3133 // overhead if it's needed. 3134 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3135 const TargetTransformInfo &TTI, 3136 const TargetLibraryInfo *TLI) { 3137 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3138 assert(ID && "Expected intrinsic call!"); 3139 3140 Type *RetTy = ToVectorTy(CI->getType(), VF); 3141 SmallVector<Type *, 4> Tys; 3142 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3143 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3144 3145 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 3146 } 3147 3148 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3149 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3150 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3151 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3152 } 3153 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3154 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3155 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3156 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3157 } 3158 3159 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3160 // For every instruction `I` in MinBWs, truncate the operands, create a 3161 // truncated version of `I` and reextend its result. InstCombine runs 3162 // later and will remove any ext/trunc pairs. 3163 // 3164 SmallPtrSet<Value *, 4> Erased; 3165 for (auto &KV : MinBWs) { 3166 VectorParts &Parts = WidenMap.get(KV.first); 3167 for (Value *&I : Parts) { 3168 if (Erased.count(I) || I->use_empty()) 3169 continue; 3170 Type *OriginalTy = I->getType(); 3171 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), 3172 KV.second); 3173 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3174 OriginalTy->getVectorNumElements()); 3175 if (TruncatedTy == OriginalTy) 3176 continue; 3177 3178 IRBuilder<> B(cast<Instruction>(I)); 3179 auto ShrinkOperand = [&](Value *V) -> Value* { 3180 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3181 if (ZI->getSrcTy() == TruncatedTy) 3182 return ZI->getOperand(0); 3183 return B.CreateZExtOrTrunc(V, TruncatedTy); 3184 }; 3185 3186 // The actual instruction modification depends on the instruction type, 3187 // unfortunately. 3188 Value *NewI = nullptr; 3189 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3190 NewI = B.CreateBinOp(BO->getOpcode(), 3191 ShrinkOperand(BO->getOperand(0)), 3192 ShrinkOperand(BO->getOperand(1))); 3193 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3194 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3195 NewI = B.CreateICmp(CI->getPredicate(), 3196 ShrinkOperand(CI->getOperand(0)), 3197 ShrinkOperand(CI->getOperand(1))); 3198 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3199 NewI = B.CreateSelect(SI->getCondition(), 3200 ShrinkOperand(SI->getTrueValue()), 3201 ShrinkOperand(SI->getFalseValue())); 3202 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3203 switch (CI->getOpcode()) { 3204 default: llvm_unreachable("Unhandled cast!"); 3205 case Instruction::Trunc: 3206 NewI = ShrinkOperand(CI->getOperand(0)); 3207 break; 3208 case Instruction::SExt: 3209 NewI = B.CreateSExtOrTrunc(CI->getOperand(0), 3210 smallestIntegerVectorType(OriginalTy, 3211 TruncatedTy)); 3212 break; 3213 case Instruction::ZExt: 3214 NewI = B.CreateZExtOrTrunc(CI->getOperand(0), 3215 smallestIntegerVectorType(OriginalTy, 3216 TruncatedTy)); 3217 break; 3218 } 3219 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3220 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3221 auto *O0 = 3222 B.CreateZExtOrTrunc(SI->getOperand(0), 3223 VectorType::get(ScalarTruncatedTy, Elements0)); 3224 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3225 auto *O1 = 3226 B.CreateZExtOrTrunc(SI->getOperand(1), 3227 VectorType::get(ScalarTruncatedTy, Elements1)); 3228 3229 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3230 } else if (isa<LoadInst>(I)) { 3231 // Don't do anything with the operands, just extend the result. 3232 continue; 3233 } else { 3234 llvm_unreachable("Unhandled instruction type!"); 3235 } 3236 3237 // Lastly, extend the result. 3238 NewI->takeName(cast<Instruction>(I)); 3239 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3240 I->replaceAllUsesWith(Res); 3241 cast<Instruction>(I)->eraseFromParent(); 3242 Erased.insert(I); 3243 I = Res; 3244 } 3245 } 3246 3247 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3248 for (auto &KV : MinBWs) { 3249 VectorParts &Parts = WidenMap.get(KV.first); 3250 for (Value *&I : Parts) { 3251 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3252 if (Inst && Inst->use_empty()) { 3253 Value *NewI = Inst->getOperand(0); 3254 Inst->eraseFromParent(); 3255 I = NewI; 3256 } 3257 } 3258 } 3259 } 3260 3261 void InnerLoopVectorizer::vectorizeLoop() { 3262 //===------------------------------------------------===// 3263 // 3264 // Notice: any optimization or new instruction that go 3265 // into the code below should be also be implemented in 3266 // the cost-model. 3267 // 3268 //===------------------------------------------------===// 3269 Constant *Zero = Builder.getInt32(0); 3270 3271 // In order to support reduction variables we need to be able to vectorize 3272 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 3273 // stages. First, we create a new vector PHI node with no incoming edges. 3274 // We use this value when we vectorize all of the instructions that use the 3275 // PHI. Next, after all of the instructions in the block are complete we 3276 // add the new incoming edges to the PHI. At this point all of the 3277 // instructions in the basic block are vectorized, so we can use them to 3278 // construct the PHI. 3279 PhiVector RdxPHIsToFix; 3280 3281 // Scan the loop in a topological order to ensure that defs are vectorized 3282 // before users. 3283 LoopBlocksDFS DFS(OrigLoop); 3284 DFS.perform(LI); 3285 3286 // Vectorize all of the blocks in the original loop. 3287 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3288 be = DFS.endRPO(); bb != be; ++bb) 3289 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 3290 3291 // Insert truncates and extends for any truncated instructions as hints to 3292 // InstCombine. 3293 if (VF > 1) 3294 truncateToMinimalBitwidths(); 3295 3296 // At this point every instruction in the original loop is widened to 3297 // a vector form. We are almost done. Now, we need to fix the PHI nodes 3298 // that we vectorized. The PHI nodes are currently empty because we did 3299 // not want to introduce cycles. Notice that the remaining PHI nodes 3300 // that we need to fix are reduction variables. 3301 3302 // Create the 'reduced' values for each of the induction vars. 3303 // The reduced values are the vector values that we scalarize and combine 3304 // after the loop is finished. 3305 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 3306 it != e; ++it) { 3307 PHINode *RdxPhi = *it; 3308 assert(RdxPhi && "Unable to recover vectorized PHI"); 3309 3310 // Find the reduction variable descriptor. 3311 assert(Legal->isReductionVariable(RdxPhi) && 3312 "Unable to find the reduction variable"); 3313 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 3314 3315 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3316 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3317 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3318 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3319 RdxDesc.getMinMaxRecurrenceKind(); 3320 setDebugLocFromInst(Builder, ReductionStartValue); 3321 3322 // We need to generate a reduction vector from the incoming scalar. 3323 // To do so, we need to generate the 'identity' vector and override 3324 // one of the elements with the incoming scalar reduction. We need 3325 // to do it in the vector-loop preheader. 3326 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3327 3328 // This is the vector-clone of the value that leaves the loop. 3329 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3330 Type *VecTy = VectorExit[0]->getType(); 3331 3332 // Find the reduction identity variable. Zero for addition, or, xor, 3333 // one for multiplication, -1 for And. 3334 Value *Identity; 3335 Value *VectorStart; 3336 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3337 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3338 // MinMax reduction have the start value as their identify. 3339 if (VF == 1) { 3340 VectorStart = Identity = ReductionStartValue; 3341 } else { 3342 VectorStart = Identity = 3343 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3344 } 3345 } else { 3346 // Handle other reduction kinds: 3347 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3348 RK, VecTy->getScalarType()); 3349 if (VF == 1) { 3350 Identity = Iden; 3351 // This vector is the Identity vector where the first element is the 3352 // incoming scalar reduction. 3353 VectorStart = ReductionStartValue; 3354 } else { 3355 Identity = ConstantVector::getSplat(VF, Iden); 3356 3357 // This vector is the Identity vector where the first element is the 3358 // incoming scalar reduction. 3359 VectorStart = 3360 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3361 } 3362 } 3363 3364 // Fix the vector-loop phi. 3365 3366 // Reductions do not have to start at zero. They can start with 3367 // any loop invariant values. 3368 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 3369 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3370 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 3371 VectorParts &Val = getVectorValue(LoopVal); 3372 for (unsigned part = 0; part < UF; ++part) { 3373 // Make sure to add the reduction stat value only to the 3374 // first unroll part. 3375 Value *StartVal = (part == 0) ? VectorStart : Identity; 3376 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3377 LoopVectorPreHeader); 3378 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3379 LoopVectorBody.back()); 3380 } 3381 3382 // Before each round, move the insertion point right between 3383 // the PHIs and the values we are going to write. 3384 // This allows us to write both PHINodes and the extractelement 3385 // instructions. 3386 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3387 3388 VectorParts RdxParts = getVectorValue(LoopExitInst); 3389 setDebugLocFromInst(Builder, LoopExitInst); 3390 3391 // If the vector reduction can be performed in a smaller type, we truncate 3392 // then extend the loop exit value to enable InstCombine to evaluate the 3393 // entire expression in the smaller type. 3394 if (VF > 1 && RdxPhi->getType() != RdxDesc.getRecurrenceType()) { 3395 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3396 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); 3397 for (unsigned part = 0; part < UF; ++part) { 3398 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3399 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3400 : Builder.CreateZExt(Trunc, VecTy); 3401 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3402 UI != RdxParts[part]->user_end();) 3403 if (*UI != Trunc) { 3404 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3405 RdxParts[part] = Extnd; 3406 } else { 3407 ++UI; 3408 } 3409 } 3410 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3411 for (unsigned part = 0; part < UF; ++part) 3412 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3413 } 3414 3415 // Reduce all of the unrolled parts into a single vector. 3416 Value *ReducedPartRdx = RdxParts[0]; 3417 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3418 setDebugLocFromInst(Builder, ReducedPartRdx); 3419 for (unsigned part = 1; part < UF; ++part) { 3420 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3421 // Floating point operations had to be 'fast' to enable the reduction. 3422 ReducedPartRdx = addFastMathFlag( 3423 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3424 ReducedPartRdx, "bin.rdx")); 3425 else 3426 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3427 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3428 } 3429 3430 if (VF > 1) { 3431 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3432 // and vector ops, reducing the set of values being computed by half each 3433 // round. 3434 assert(isPowerOf2_32(VF) && 3435 "Reduction emission only supported for pow2 vectors!"); 3436 Value *TmpVec = ReducedPartRdx; 3437 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3438 for (unsigned i = VF; i != 1; i >>= 1) { 3439 // Move the upper half of the vector to the lower half. 3440 for (unsigned j = 0; j != i/2; ++j) 3441 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3442 3443 // Fill the rest of the mask with undef. 3444 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3445 UndefValue::get(Builder.getInt32Ty())); 3446 3447 Value *Shuf = 3448 Builder.CreateShuffleVector(TmpVec, 3449 UndefValue::get(TmpVec->getType()), 3450 ConstantVector::get(ShuffleMask), 3451 "rdx.shuf"); 3452 3453 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3454 // Floating point operations had to be 'fast' to enable the reduction. 3455 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3456 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3457 else 3458 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3459 TmpVec, Shuf); 3460 } 3461 3462 // The result is in the first element of the vector. 3463 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3464 Builder.getInt32(0)); 3465 3466 // If the reduction can be performed in a smaller type, we need to extend 3467 // the reduction to the wider type before we branch to the original loop. 3468 if (RdxPhi->getType() != RdxDesc.getRecurrenceType()) 3469 ReducedPartRdx = 3470 RdxDesc.isSigned() 3471 ? Builder.CreateSExt(ReducedPartRdx, RdxPhi->getType()) 3472 : Builder.CreateZExt(ReducedPartRdx, RdxPhi->getType()); 3473 } 3474 3475 // Create a phi node that merges control-flow from the backedge-taken check 3476 // block and the middle block. 3477 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 3478 LoopScalarPreHeader->getTerminator()); 3479 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3480 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3481 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3482 3483 // Now, we need to fix the users of the reduction variable 3484 // inside and outside of the scalar remainder loop. 3485 // We know that the loop is in LCSSA form. We need to update the 3486 // PHI nodes in the exit blocks. 3487 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3488 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3489 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3490 if (!LCSSAPhi) break; 3491 3492 // All PHINodes need to have a single entry edge, or two if 3493 // we already fixed them. 3494 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3495 3496 // We found our reduction value exit-PHI. Update it with the 3497 // incoming bypass edge. 3498 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3499 // Add an edge coming from the bypass. 3500 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3501 break; 3502 } 3503 }// end of the LCSSA phi scan. 3504 3505 // Fix the scalar loop reduction variable with the incoming reduction sum 3506 // from the vector body and from the backedge value. 3507 int IncomingEdgeBlockIdx = 3508 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3509 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3510 // Pick the other block. 3511 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3512 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3513 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3514 }// end of for each redux variable. 3515 3516 fixLCSSAPHIs(); 3517 3518 // Make sure DomTree is updated. 3519 updateAnalysis(); 3520 3521 // Predicate any stores. 3522 for (auto KV : PredicatedStores) { 3523 BasicBlock::iterator I(KV.first); 3524 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3525 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3526 /*BranchWeights=*/nullptr, DT); 3527 I->moveBefore(T); 3528 I->getParent()->setName("pred.store.if"); 3529 BB->setName("pred.store.continue"); 3530 } 3531 DEBUG(DT->verifyDomTree()); 3532 // Remove redundant induction instructions. 3533 cse(LoopVectorBody); 3534 } 3535 3536 void InnerLoopVectorizer::fixLCSSAPHIs() { 3537 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3538 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3539 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3540 if (!LCSSAPhi) break; 3541 if (LCSSAPhi->getNumIncomingValues() == 1) 3542 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3543 LoopMiddleBlock); 3544 } 3545 } 3546 3547 InnerLoopVectorizer::VectorParts 3548 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3549 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3550 "Invalid edge"); 3551 3552 // Look for cached value. 3553 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3554 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3555 if (ECEntryIt != MaskCache.end()) 3556 return ECEntryIt->second; 3557 3558 VectorParts SrcMask = createBlockInMask(Src); 3559 3560 // The terminator has to be a branch inst! 3561 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3562 assert(BI && "Unexpected terminator found"); 3563 3564 if (BI->isConditional()) { 3565 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3566 3567 if (BI->getSuccessor(0) != Dst) 3568 for (unsigned part = 0; part < UF; ++part) 3569 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3570 3571 for (unsigned part = 0; part < UF; ++part) 3572 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3573 3574 MaskCache[Edge] = EdgeMask; 3575 return EdgeMask; 3576 } 3577 3578 MaskCache[Edge] = SrcMask; 3579 return SrcMask; 3580 } 3581 3582 InnerLoopVectorizer::VectorParts 3583 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3584 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3585 3586 // Loop incoming mask is all-one. 3587 if (OrigLoop->getHeader() == BB) { 3588 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3589 return getVectorValue(C); 3590 } 3591 3592 // This is the block mask. We OR all incoming edges, and with zero. 3593 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3594 VectorParts BlockMask = getVectorValue(Zero); 3595 3596 // For each pred: 3597 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3598 VectorParts EM = createEdgeMask(*it, BB); 3599 for (unsigned part = 0; part < UF; ++part) 3600 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3601 } 3602 3603 return BlockMask; 3604 } 3605 3606 void InnerLoopVectorizer::widenPHIInstruction( 3607 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 3608 unsigned VF, PhiVector *PV) { 3609 PHINode* P = cast<PHINode>(PN); 3610 // Handle reduction variables: 3611 if (Legal->isReductionVariable(P)) { 3612 for (unsigned part = 0; part < UF; ++part) { 3613 // This is phase one of vectorizing PHIs. 3614 Type *VecTy = (VF == 1) ? PN->getType() : 3615 VectorType::get(PN->getType(), VF); 3616 Entry[part] = PHINode::Create( 3617 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); 3618 } 3619 PV->push_back(P); 3620 return; 3621 } 3622 3623 setDebugLocFromInst(Builder, P); 3624 // Check for PHI nodes that are lowered to vector selects. 3625 if (P->getParent() != OrigLoop->getHeader()) { 3626 // We know that all PHIs in non-header blocks are converted into 3627 // selects, so we don't have to worry about the insertion order and we 3628 // can just use the builder. 3629 // At this point we generate the predication tree. There may be 3630 // duplications since this is a simple recursive scan, but future 3631 // optimizations will clean it up. 3632 3633 unsigned NumIncoming = P->getNumIncomingValues(); 3634 3635 // Generate a sequence of selects of the form: 3636 // SELECT(Mask3, In3, 3637 // SELECT(Mask2, In2, 3638 // ( ...))) 3639 for (unsigned In = 0; In < NumIncoming; In++) { 3640 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3641 P->getParent()); 3642 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3643 3644 for (unsigned part = 0; part < UF; ++part) { 3645 // We might have single edge PHIs (blocks) - use an identity 3646 // 'select' for the first PHI operand. 3647 if (In == 0) 3648 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3649 In0[part]); 3650 else 3651 // Select between the current value and the previous incoming edge 3652 // based on the incoming mask. 3653 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3654 Entry[part], "predphi"); 3655 } 3656 } 3657 return; 3658 } 3659 3660 // This PHINode must be an induction variable. 3661 // Make sure that we know about it. 3662 assert(Legal->getInductionVars()->count(P) && 3663 "Not an induction variable"); 3664 3665 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3666 3667 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3668 // which can be found from the original scalar operations. 3669 switch (II.getKind()) { 3670 case InductionDescriptor::IK_NoInduction: 3671 llvm_unreachable("Unknown induction"); 3672 case InductionDescriptor::IK_IntInduction: { 3673 assert(P->getType() == II.getStartValue()->getType() && 3674 "Types must match"); 3675 // Handle other induction variables that are now based on the 3676 // canonical one. 3677 Value *V = Induction; 3678 if (P != OldInduction) { 3679 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 3680 V = II.transform(Builder, V); 3681 V->setName("offset.idx"); 3682 } 3683 Value *Broadcasted = getBroadcastInstrs(V); 3684 // After broadcasting the induction variable we need to make the vector 3685 // consecutive by adding 0, 1, 2, etc. 3686 for (unsigned part = 0; part < UF; ++part) 3687 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); 3688 return; 3689 } 3690 case InductionDescriptor::IK_PtrInduction: 3691 // Handle the pointer induction variable case. 3692 assert(P->getType()->isPointerTy() && "Unexpected type."); 3693 // This is the normalized GEP that starts counting at zero. 3694 Value *PtrInd = Induction; 3695 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); 3696 // This is the vector of results. Notice that we don't generate 3697 // vector geps because scalar geps result in better code. 3698 for (unsigned part = 0; part < UF; ++part) { 3699 if (VF == 1) { 3700 int EltIndex = part; 3701 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 3702 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3703 Value *SclrGep = II.transform(Builder, GlobalIdx); 3704 SclrGep->setName("next.gep"); 3705 Entry[part] = SclrGep; 3706 continue; 3707 } 3708 3709 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3710 for (unsigned int i = 0; i < VF; ++i) { 3711 int EltIndex = i + part * VF; 3712 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 3713 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3714 Value *SclrGep = II.transform(Builder, GlobalIdx); 3715 SclrGep->setName("next.gep"); 3716 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3717 Builder.getInt32(i), 3718 "insert.gep"); 3719 } 3720 Entry[part] = VecVal; 3721 } 3722 return; 3723 } 3724 } 3725 3726 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3727 // For each instruction in the old loop. 3728 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3729 VectorParts &Entry = WidenMap.get(&*it); 3730 3731 switch (it->getOpcode()) { 3732 case Instruction::Br: 3733 // Nothing to do for PHIs and BR, since we already took care of the 3734 // loop control flow instructions. 3735 continue; 3736 case Instruction::PHI: { 3737 // Vectorize PHINodes. 3738 widenPHIInstruction(&*it, Entry, UF, VF, PV); 3739 continue; 3740 }// End of PHI. 3741 3742 case Instruction::Add: 3743 case Instruction::FAdd: 3744 case Instruction::Sub: 3745 case Instruction::FSub: 3746 case Instruction::Mul: 3747 case Instruction::FMul: 3748 case Instruction::UDiv: 3749 case Instruction::SDiv: 3750 case Instruction::FDiv: 3751 case Instruction::URem: 3752 case Instruction::SRem: 3753 case Instruction::FRem: 3754 case Instruction::Shl: 3755 case Instruction::LShr: 3756 case Instruction::AShr: 3757 case Instruction::And: 3758 case Instruction::Or: 3759 case Instruction::Xor: { 3760 // Just widen binops. 3761 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3762 setDebugLocFromInst(Builder, BinOp); 3763 VectorParts &A = getVectorValue(it->getOperand(0)); 3764 VectorParts &B = getVectorValue(it->getOperand(1)); 3765 3766 // Use this vector value for all users of the original instruction. 3767 for (unsigned Part = 0; Part < UF; ++Part) { 3768 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3769 3770 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3771 VecOp->copyIRFlags(BinOp); 3772 3773 Entry[Part] = V; 3774 } 3775 3776 propagateMetadata(Entry, &*it); 3777 break; 3778 } 3779 case Instruction::Select: { 3780 // Widen selects. 3781 // If the selector is loop invariant we can create a select 3782 // instruction with a scalar condition. Otherwise, use vector-select. 3783 auto *SE = PSE.getSE(); 3784 bool InvariantCond = 3785 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 3786 setDebugLocFromInst(Builder, &*it); 3787 3788 // The condition can be loop invariant but still defined inside the 3789 // loop. This means that we can't just use the original 'cond' value. 3790 // We have to take the 'vectorized' value and pick the first lane. 3791 // Instcombine will make this a no-op. 3792 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3793 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3794 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3795 3796 Value *ScalarCond = (VF == 1) ? Cond[0] : 3797 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3798 3799 for (unsigned Part = 0; Part < UF; ++Part) { 3800 Entry[Part] = Builder.CreateSelect( 3801 InvariantCond ? ScalarCond : Cond[Part], 3802 Op0[Part], 3803 Op1[Part]); 3804 } 3805 3806 propagateMetadata(Entry, &*it); 3807 break; 3808 } 3809 3810 case Instruction::ICmp: 3811 case Instruction::FCmp: { 3812 // Widen compares. Generate vector compares. 3813 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3814 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3815 setDebugLocFromInst(Builder, &*it); 3816 VectorParts &A = getVectorValue(it->getOperand(0)); 3817 VectorParts &B = getVectorValue(it->getOperand(1)); 3818 for (unsigned Part = 0; Part < UF; ++Part) { 3819 Value *C = nullptr; 3820 if (FCmp) { 3821 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3822 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 3823 } else { 3824 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3825 } 3826 Entry[Part] = C; 3827 } 3828 3829 propagateMetadata(Entry, &*it); 3830 break; 3831 } 3832 3833 case Instruction::Store: 3834 case Instruction::Load: 3835 vectorizeMemoryInstruction(&*it); 3836 break; 3837 case Instruction::ZExt: 3838 case Instruction::SExt: 3839 case Instruction::FPToUI: 3840 case Instruction::FPToSI: 3841 case Instruction::FPExt: 3842 case Instruction::PtrToInt: 3843 case Instruction::IntToPtr: 3844 case Instruction::SIToFP: 3845 case Instruction::UIToFP: 3846 case Instruction::Trunc: 3847 case Instruction::FPTrunc: 3848 case Instruction::BitCast: { 3849 CastInst *CI = dyn_cast<CastInst>(it); 3850 setDebugLocFromInst(Builder, &*it); 3851 /// Optimize the special case where the source is the induction 3852 /// variable. Notice that we can only optimize the 'trunc' case 3853 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3854 /// c. other casts depend on pointer size. 3855 if (CI->getOperand(0) == OldInduction && 3856 it->getOpcode() == Instruction::Trunc) { 3857 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3858 CI->getType()); 3859 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3860 InductionDescriptor II = 3861 Legal->getInductionVars()->lookup(OldInduction); 3862 Constant *Step = ConstantInt::getSigned( 3863 CI->getType(), II.getStepValue()->getSExtValue()); 3864 for (unsigned Part = 0; Part < UF; ++Part) 3865 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3866 propagateMetadata(Entry, &*it); 3867 break; 3868 } 3869 /// Vectorize casts. 3870 Type *DestTy = (VF == 1) ? CI->getType() : 3871 VectorType::get(CI->getType(), VF); 3872 3873 VectorParts &A = getVectorValue(it->getOperand(0)); 3874 for (unsigned Part = 0; Part < UF; ++Part) 3875 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3876 propagateMetadata(Entry, &*it); 3877 break; 3878 } 3879 3880 case Instruction::Call: { 3881 // Ignore dbg intrinsics. 3882 if (isa<DbgInfoIntrinsic>(it)) 3883 break; 3884 setDebugLocFromInst(Builder, &*it); 3885 3886 Module *M = BB->getParent()->getParent(); 3887 CallInst *CI = cast<CallInst>(it); 3888 3889 StringRef FnName = CI->getCalledFunction()->getName(); 3890 Function *F = CI->getCalledFunction(); 3891 Type *RetTy = ToVectorTy(CI->getType(), VF); 3892 SmallVector<Type *, 4> Tys; 3893 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3894 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3895 3896 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3897 if (ID && 3898 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3899 ID == Intrinsic::lifetime_start)) { 3900 scalarizeInstruction(&*it); 3901 break; 3902 } 3903 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3904 // version of the instruction. 3905 // Is it beneficial to perform intrinsic call compared to lib call? 3906 bool NeedToScalarize; 3907 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3908 bool UseVectorIntrinsic = 3909 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3910 if (!UseVectorIntrinsic && NeedToScalarize) { 3911 scalarizeInstruction(&*it); 3912 break; 3913 } 3914 3915 for (unsigned Part = 0; Part < UF; ++Part) { 3916 SmallVector<Value *, 4> Args; 3917 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3918 Value *Arg = CI->getArgOperand(i); 3919 // Some intrinsics have a scalar argument - don't replace it with a 3920 // vector. 3921 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3922 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3923 Arg = VectorArg[Part]; 3924 } 3925 Args.push_back(Arg); 3926 } 3927 3928 Function *VectorF; 3929 if (UseVectorIntrinsic) { 3930 // Use vector version of the intrinsic. 3931 Type *TysForDecl[] = {CI->getType()}; 3932 if (VF > 1) 3933 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3934 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3935 } else { 3936 // Use vector version of the library call. 3937 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3938 assert(!VFnName.empty() && "Vector function name is empty."); 3939 VectorF = M->getFunction(VFnName); 3940 if (!VectorF) { 3941 // Generate a declaration 3942 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3943 VectorF = 3944 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3945 VectorF->copyAttributesFrom(F); 3946 } 3947 } 3948 assert(VectorF && "Can't create vector function."); 3949 Entry[Part] = Builder.CreateCall(VectorF, Args); 3950 } 3951 3952 propagateMetadata(Entry, &*it); 3953 break; 3954 } 3955 3956 default: 3957 // All other instructions are unsupported. Scalarize them. 3958 scalarizeInstruction(&*it); 3959 break; 3960 }// end of switch. 3961 }// end of for_each instr. 3962 } 3963 3964 void InnerLoopVectorizer::updateAnalysis() { 3965 // Forget the original basic block. 3966 PSE.getSE()->forgetLoop(OrigLoop); 3967 3968 // Update the dominator tree information. 3969 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3970 "Entry does not dominate exit."); 3971 3972 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3973 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3974 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3975 3976 // We don't predicate stores by this point, so the vector body should be a 3977 // single loop. 3978 assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); 3979 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3980 3981 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); 3982 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3983 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3984 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3985 3986 DEBUG(DT->verifyDomTree()); 3987 } 3988 3989 /// \brief Check whether it is safe to if-convert this phi node. 3990 /// 3991 /// Phi nodes with constant expressions that can trap are not safe to if 3992 /// convert. 3993 static bool canIfConvertPHINodes(BasicBlock *BB) { 3994 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3995 PHINode *Phi = dyn_cast<PHINode>(I); 3996 if (!Phi) 3997 return true; 3998 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3999 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4000 if (C->canTrap()) 4001 return false; 4002 } 4003 return true; 4004 } 4005 4006 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4007 if (!EnableIfConversion) { 4008 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4009 return false; 4010 } 4011 4012 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4013 4014 // A list of pointers that we can safely read and write to. 4015 SmallPtrSet<Value *, 8> SafePointes; 4016 4017 // Collect safe addresses. 4018 for (Loop::block_iterator BI = TheLoop->block_begin(), 4019 BE = TheLoop->block_end(); BI != BE; ++BI) { 4020 BasicBlock *BB = *BI; 4021 4022 if (blockNeedsPredication(BB)) 4023 continue; 4024 4025 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4026 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4027 SafePointes.insert(LI->getPointerOperand()); 4028 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4029 SafePointes.insert(SI->getPointerOperand()); 4030 } 4031 } 4032 4033 // Collect the blocks that need predication. 4034 BasicBlock *Header = TheLoop->getHeader(); 4035 for (Loop::block_iterator BI = TheLoop->block_begin(), 4036 BE = TheLoop->block_end(); BI != BE; ++BI) { 4037 BasicBlock *BB = *BI; 4038 4039 // We don't support switch statements inside loops. 4040 if (!isa<BranchInst>(BB->getTerminator())) { 4041 emitAnalysis(VectorizationReport(BB->getTerminator()) 4042 << "loop contains a switch statement"); 4043 return false; 4044 } 4045 4046 // We must be able to predicate all blocks that need to be predicated. 4047 if (blockNeedsPredication(BB)) { 4048 if (!blockCanBePredicated(BB, SafePointes)) { 4049 emitAnalysis(VectorizationReport(BB->getTerminator()) 4050 << "control flow cannot be substituted for a select"); 4051 return false; 4052 } 4053 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4054 emitAnalysis(VectorizationReport(BB->getTerminator()) 4055 << "control flow cannot be substituted for a select"); 4056 return false; 4057 } 4058 } 4059 4060 // We can if-convert this loop. 4061 return true; 4062 } 4063 4064 bool LoopVectorizationLegality::canVectorize() { 4065 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4066 // be canonicalized. 4067 if (!TheLoop->getLoopPreheader()) { 4068 emitAnalysis( 4069 VectorizationReport() << 4070 "loop control flow is not understood by vectorizer"); 4071 return false; 4072 } 4073 4074 // We can only vectorize innermost loops. 4075 if (!TheLoop->empty()) { 4076 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4077 return false; 4078 } 4079 4080 // We must have a single backedge. 4081 if (TheLoop->getNumBackEdges() != 1) { 4082 emitAnalysis( 4083 VectorizationReport() << 4084 "loop control flow is not understood by vectorizer"); 4085 return false; 4086 } 4087 4088 // We must have a single exiting block. 4089 if (!TheLoop->getExitingBlock()) { 4090 emitAnalysis( 4091 VectorizationReport() << 4092 "loop control flow is not understood by vectorizer"); 4093 return false; 4094 } 4095 4096 // We only handle bottom-tested loops, i.e. loop in which the condition is 4097 // checked at the end of each iteration. With that we can assume that all 4098 // instructions in the loop are executed the same number of times. 4099 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4100 emitAnalysis( 4101 VectorizationReport() << 4102 "loop control flow is not understood by vectorizer"); 4103 return false; 4104 } 4105 4106 // We need to have a loop header. 4107 DEBUG(dbgs() << "LV: Found a loop: " << 4108 TheLoop->getHeader()->getName() << '\n'); 4109 4110 // Check if we can if-convert non-single-bb loops. 4111 unsigned NumBlocks = TheLoop->getNumBlocks(); 4112 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4113 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4114 return false; 4115 } 4116 4117 // ScalarEvolution needs to be able to find the exit count. 4118 const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop); 4119 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4120 emitAnalysis(VectorizationReport() 4121 << "could not determine number of loop iterations"); 4122 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4123 return false; 4124 } 4125 4126 // Check if we can vectorize the instructions and CFG in this loop. 4127 if (!canVectorizeInstrs()) { 4128 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4129 return false; 4130 } 4131 4132 // Go over each instruction and look at memory deps. 4133 if (!canVectorizeMemory()) { 4134 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4135 return false; 4136 } 4137 4138 // Collect all of the variables that remain uniform after vectorization. 4139 collectLoopUniforms(); 4140 4141 DEBUG(dbgs() << "LV: We can vectorize this loop" 4142 << (LAI->getRuntimePointerChecking()->Need 4143 ? " (with a runtime bound check)" 4144 : "") 4145 << "!\n"); 4146 4147 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4148 4149 // If an override option has been passed in for interleaved accesses, use it. 4150 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4151 UseInterleaved = EnableInterleavedMemAccesses; 4152 4153 // Analyze interleaved memory accesses. 4154 if (UseInterleaved) 4155 InterleaveInfo.analyzeInterleaving(Strides); 4156 4157 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4158 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4159 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4160 4161 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4162 emitAnalysis(VectorizationReport() 4163 << "Too many SCEV assumptions need to be made and checked " 4164 << "at runtime"); 4165 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4166 return false; 4167 } 4168 4169 // Okay! We can vectorize. At this point we don't have any other mem analysis 4170 // which may limit our maximum vectorization factor, so just return true with 4171 // no restrictions. 4172 return true; 4173 } 4174 4175 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4176 if (Ty->isPointerTy()) 4177 return DL.getIntPtrType(Ty); 4178 4179 // It is possible that char's or short's overflow when we ask for the loop's 4180 // trip count, work around this by changing the type size. 4181 if (Ty->getScalarSizeInBits() < 32) 4182 return Type::getInt32Ty(Ty->getContext()); 4183 4184 return Ty; 4185 } 4186 4187 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4188 Ty0 = convertPointerToIntegerType(DL, Ty0); 4189 Ty1 = convertPointerToIntegerType(DL, Ty1); 4190 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4191 return Ty0; 4192 return Ty1; 4193 } 4194 4195 /// \brief Check that the instruction has outside loop users and is not an 4196 /// identified reduction variable. 4197 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4198 SmallPtrSetImpl<Value *> &Reductions) { 4199 // Reduction instructions are allowed to have exit users. All other 4200 // instructions must not have external users. 4201 if (!Reductions.count(Inst)) 4202 //Check that all of the users of the loop are inside the BB. 4203 for (User *U : Inst->users()) { 4204 Instruction *UI = cast<Instruction>(U); 4205 // This user may be a reduction exit value. 4206 if (!TheLoop->contains(UI)) { 4207 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4208 return true; 4209 } 4210 } 4211 return false; 4212 } 4213 4214 bool LoopVectorizationLegality::canVectorizeInstrs() { 4215 BasicBlock *Header = TheLoop->getHeader(); 4216 4217 // Look for the attribute signaling the absence of NaNs. 4218 Function &F = *Header->getParent(); 4219 const DataLayout &DL = F.getParent()->getDataLayout(); 4220 if (F.hasFnAttribute("no-nans-fp-math")) 4221 HasFunNoNaNAttr = 4222 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4223 4224 // For each block in the loop. 4225 for (Loop::block_iterator bb = TheLoop->block_begin(), 4226 be = TheLoop->block_end(); bb != be; ++bb) { 4227 4228 // Scan the instructions in the block and look for hazards. 4229 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4230 ++it) { 4231 4232 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4233 Type *PhiTy = Phi->getType(); 4234 // Check that this PHI type is allowed. 4235 if (!PhiTy->isIntegerTy() && 4236 !PhiTy->isFloatingPointTy() && 4237 !PhiTy->isPointerTy()) { 4238 emitAnalysis(VectorizationReport(&*it) 4239 << "loop control flow is not understood by vectorizer"); 4240 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4241 return false; 4242 } 4243 4244 // If this PHINode is not in the header block, then we know that we 4245 // can convert it to select during if-conversion. No need to check if 4246 // the PHIs in this block are induction or reduction variables. 4247 if (*bb != Header) { 4248 // Check that this instruction has no outside users or is an 4249 // identified reduction value with an outside user. 4250 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4251 continue; 4252 emitAnalysis(VectorizationReport(&*it) << 4253 "value could not be identified as " 4254 "an induction or reduction variable"); 4255 return false; 4256 } 4257 4258 // We only allow if-converted PHIs with exactly two incoming values. 4259 if (Phi->getNumIncomingValues() != 2) { 4260 emitAnalysis(VectorizationReport(&*it) 4261 << "control flow not understood by vectorizer"); 4262 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4263 return false; 4264 } 4265 4266 InductionDescriptor ID; 4267 if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) { 4268 Inductions[Phi] = ID; 4269 // Get the widest type. 4270 if (!WidestIndTy) 4271 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4272 else 4273 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4274 4275 // Int inductions are special because we only allow one IV. 4276 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4277 ID.getStepValue()->isOne() && 4278 isa<Constant>(ID.getStartValue()) && 4279 cast<Constant>(ID.getStartValue())->isNullValue()) { 4280 // Use the phi node with the widest type as induction. Use the last 4281 // one if there are multiple (no good reason for doing this other 4282 // than it is expedient). We've checked that it begins at zero and 4283 // steps by one, so this is a canonical induction variable. 4284 if (!Induction || PhiTy == WidestIndTy) 4285 Induction = Phi; 4286 } 4287 4288 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4289 4290 // Until we explicitly handle the case of an induction variable with 4291 // an outside loop user we have to give up vectorizing this loop. 4292 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4293 emitAnalysis(VectorizationReport(&*it) << 4294 "use of induction value outside of the " 4295 "loop is not handled by vectorizer"); 4296 return false; 4297 } 4298 4299 continue; 4300 } 4301 4302 RecurrenceDescriptor RedDes; 4303 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4304 if (RedDes.hasUnsafeAlgebra()) 4305 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4306 AllowedExit.insert(RedDes.getLoopExitInstr()); 4307 Reductions[Phi] = RedDes; 4308 continue; 4309 } 4310 4311 emitAnalysis(VectorizationReport(&*it) << 4312 "value that could not be identified as " 4313 "reduction is used outside the loop"); 4314 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4315 return false; 4316 }// end of PHI handling 4317 4318 // We handle calls that: 4319 // * Are debug info intrinsics. 4320 // * Have a mapping to an IR intrinsic. 4321 // * Have a vector version available. 4322 CallInst *CI = dyn_cast<CallInst>(it); 4323 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4324 !(CI->getCalledFunction() && TLI && 4325 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4326 emitAnalysis(VectorizationReport(&*it) 4327 << "call instruction cannot be vectorized"); 4328 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4329 return false; 4330 } 4331 4332 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4333 // second argument is the same (i.e. loop invariant) 4334 if (CI && 4335 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4336 auto *SE = PSE.getSE(); 4337 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4338 emitAnalysis(VectorizationReport(&*it) 4339 << "intrinsic instruction cannot be vectorized"); 4340 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4341 return false; 4342 } 4343 } 4344 4345 // Check that the instruction return type is vectorizable. 4346 // Also, we can't vectorize extractelement instructions. 4347 if ((!VectorType::isValidElementType(it->getType()) && 4348 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4349 emitAnalysis(VectorizationReport(&*it) 4350 << "instruction return type cannot be vectorized"); 4351 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4352 return false; 4353 } 4354 4355 // Check that the stored type is vectorizable. 4356 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4357 Type *T = ST->getValueOperand()->getType(); 4358 if (!VectorType::isValidElementType(T)) { 4359 emitAnalysis(VectorizationReport(ST) << 4360 "store instruction cannot be vectorized"); 4361 return false; 4362 } 4363 if (EnableMemAccessVersioning) 4364 collectStridedAccess(ST); 4365 } 4366 4367 if (EnableMemAccessVersioning) 4368 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 4369 collectStridedAccess(LI); 4370 4371 // Reduction instructions are allowed to have exit users. 4372 // All other instructions must not have external users. 4373 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4374 emitAnalysis(VectorizationReport(&*it) << 4375 "value cannot be used outside the loop"); 4376 return false; 4377 } 4378 4379 } // next instr. 4380 4381 } 4382 4383 if (!Induction) { 4384 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4385 if (Inductions.empty()) { 4386 emitAnalysis(VectorizationReport() 4387 << "loop induction variable could not be identified"); 4388 return false; 4389 } 4390 } 4391 4392 // Now we know the widest induction type, check if our found induction 4393 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4394 // will create another. 4395 if (Induction && WidestIndTy != Induction->getType()) 4396 Induction = nullptr; 4397 4398 return true; 4399 } 4400 4401 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4402 Value *Ptr = nullptr; 4403 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4404 Ptr = LI->getPointerOperand(); 4405 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4406 Ptr = SI->getPointerOperand(); 4407 else 4408 return; 4409 4410 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4411 if (!Stride) 4412 return; 4413 4414 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4415 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4416 Strides[Ptr] = Stride; 4417 StrideSet.insert(Stride); 4418 } 4419 4420 void LoopVectorizationLegality::collectLoopUniforms() { 4421 // We now know that the loop is vectorizable! 4422 // Collect variables that will remain uniform after vectorization. 4423 std::vector<Value*> Worklist; 4424 BasicBlock *Latch = TheLoop->getLoopLatch(); 4425 4426 // Start with the conditional branch and walk up the block. 4427 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4428 4429 // Also add all consecutive pointer values; these values will be uniform 4430 // after vectorization (and subsequent cleanup) and, until revectorization is 4431 // supported, all dependencies must also be uniform. 4432 for (Loop::block_iterator B = TheLoop->block_begin(), 4433 BE = TheLoop->block_end(); B != BE; ++B) 4434 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4435 I != IE; ++I) 4436 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4437 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4438 4439 while (!Worklist.empty()) { 4440 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4441 Worklist.pop_back(); 4442 4443 // Look at instructions inside this loop. 4444 // Stop when reaching PHI nodes. 4445 // TODO: we need to follow values all over the loop, not only in this block. 4446 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4447 continue; 4448 4449 // This is a known uniform. 4450 Uniforms.insert(I); 4451 4452 // Insert all operands. 4453 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4454 } 4455 } 4456 4457 bool LoopVectorizationLegality::canVectorizeMemory() { 4458 LAI = &LAA->getInfo(TheLoop, Strides); 4459 auto &OptionalReport = LAI->getReport(); 4460 if (OptionalReport) 4461 emitAnalysis(VectorizationReport(*OptionalReport)); 4462 if (!LAI->canVectorizeMemory()) 4463 return false; 4464 4465 if (LAI->hasStoreToLoopInvariantAddress()) { 4466 emitAnalysis( 4467 VectorizationReport() 4468 << "write to a loop invariant address could not be vectorized"); 4469 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4470 return false; 4471 } 4472 4473 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4474 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 4475 4476 return true; 4477 } 4478 4479 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4480 Value *In0 = const_cast<Value*>(V); 4481 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4482 if (!PN) 4483 return false; 4484 4485 return Inductions.count(PN); 4486 } 4487 4488 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4489 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4490 } 4491 4492 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4493 SmallPtrSetImpl<Value *> &SafePtrs) { 4494 4495 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4496 // Check that we don't have a constant expression that can trap as operand. 4497 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4498 OI != OE; ++OI) { 4499 if (Constant *C = dyn_cast<Constant>(*OI)) 4500 if (C->canTrap()) 4501 return false; 4502 } 4503 // We might be able to hoist the load. 4504 if (it->mayReadFromMemory()) { 4505 LoadInst *LI = dyn_cast<LoadInst>(it); 4506 if (!LI) 4507 return false; 4508 if (!SafePtrs.count(LI->getPointerOperand())) { 4509 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4510 MaskedOp.insert(LI); 4511 continue; 4512 } 4513 return false; 4514 } 4515 } 4516 4517 // We don't predicate stores at the moment. 4518 if (it->mayWriteToMemory()) { 4519 StoreInst *SI = dyn_cast<StoreInst>(it); 4520 // We only support predication of stores in basic blocks with one 4521 // predecessor. 4522 if (!SI) 4523 return false; 4524 4525 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4526 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4527 4528 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4529 !isSinglePredecessor) { 4530 // Build a masked store if it is legal for the target, otherwise 4531 // scalarize the block. 4532 bool isLegalMaskedOp = 4533 isLegalMaskedStore(SI->getValueOperand()->getType(), 4534 SI->getPointerOperand()); 4535 if (isLegalMaskedOp) { 4536 --NumPredStores; 4537 MaskedOp.insert(SI); 4538 continue; 4539 } 4540 return false; 4541 } 4542 } 4543 if (it->mayThrow()) 4544 return false; 4545 4546 // The instructions below can trap. 4547 switch (it->getOpcode()) { 4548 default: continue; 4549 case Instruction::UDiv: 4550 case Instruction::SDiv: 4551 case Instruction::URem: 4552 case Instruction::SRem: 4553 return false; 4554 } 4555 } 4556 4557 return true; 4558 } 4559 4560 void InterleavedAccessInfo::collectConstStridedAccesses( 4561 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4562 const ValueToValueMap &Strides) { 4563 // Holds load/store instructions in program order. 4564 SmallVector<Instruction *, 16> AccessList; 4565 4566 for (auto *BB : TheLoop->getBlocks()) { 4567 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4568 4569 for (auto &I : *BB) { 4570 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4571 continue; 4572 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4573 if (IsPred) 4574 return; 4575 4576 AccessList.push_back(&I); 4577 } 4578 } 4579 4580 if (AccessList.empty()) 4581 return; 4582 4583 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4584 for (auto I : AccessList) { 4585 LoadInst *LI = dyn_cast<LoadInst>(I); 4586 StoreInst *SI = dyn_cast<StoreInst>(I); 4587 4588 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4589 int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides); 4590 4591 // The factor of the corresponding interleave group. 4592 unsigned Factor = std::abs(Stride); 4593 4594 // Ignore the access if the factor is too small or too large. 4595 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4596 continue; 4597 4598 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4599 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4600 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4601 4602 // An alignment of 0 means target ABI alignment. 4603 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4604 if (!Align) 4605 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4606 4607 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4608 } 4609 } 4610 4611 // Analyze interleaved accesses and collect them into interleave groups. 4612 // 4613 // Notice that the vectorization on interleaved groups will change instruction 4614 // orders and may break dependences. But the memory dependence check guarantees 4615 // that there is no overlap between two pointers of different strides, element 4616 // sizes or underlying bases. 4617 // 4618 // For pointers sharing the same stride, element size and underlying base, no 4619 // need to worry about Read-After-Write dependences and Write-After-Read 4620 // dependences. 4621 // 4622 // E.g. The RAW dependence: A[i] = a; 4623 // b = A[i]; 4624 // This won't exist as it is a store-load forwarding conflict, which has 4625 // already been checked and forbidden in the dependence check. 4626 // 4627 // E.g. The WAR dependence: a = A[i]; // (1) 4628 // A[i] = b; // (2) 4629 // The store group of (2) is always inserted at or below (2), and the load group 4630 // of (1) is always inserted at or above (1). The dependence is safe. 4631 void InterleavedAccessInfo::analyzeInterleaving( 4632 const ValueToValueMap &Strides) { 4633 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4634 4635 // Holds all the stride accesses. 4636 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 4637 collectConstStridedAccesses(StrideAccesses, Strides); 4638 4639 if (StrideAccesses.empty()) 4640 return; 4641 4642 // Holds all interleaved store groups temporarily. 4643 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4644 // Holds all interleaved load groups temporarily. 4645 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 4646 4647 // Search the load-load/write-write pair B-A in bottom-up order and try to 4648 // insert B into the interleave group of A according to 3 rules: 4649 // 1. A and B have the same stride. 4650 // 2. A and B have the same memory object size. 4651 // 3. B belongs to the group according to the distance. 4652 // 4653 // The bottom-up order can avoid breaking the Write-After-Write dependences 4654 // between two pointers of the same base. 4655 // E.g. A[i] = a; (1) 4656 // A[i] = b; (2) 4657 // A[i+1] = c (3) 4658 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 4659 // above (1), which guarantees that (1) is always above (2). 4660 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 4661 ++I) { 4662 Instruction *A = I->first; 4663 StrideDescriptor DesA = I->second; 4664 4665 InterleaveGroup *Group = getInterleaveGroup(A); 4666 if (!Group) { 4667 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 4668 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 4669 } 4670 4671 if (A->mayWriteToMemory()) 4672 StoreGroups.insert(Group); 4673 else 4674 LoadGroups.insert(Group); 4675 4676 for (auto II = std::next(I); II != E; ++II) { 4677 Instruction *B = II->first; 4678 StrideDescriptor DesB = II->second; 4679 4680 // Ignore if B is already in a group or B is a different memory operation. 4681 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 4682 continue; 4683 4684 // Check the rule 1 and 2. 4685 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 4686 continue; 4687 4688 // Calculate the distance and prepare for the rule 3. 4689 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 4690 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 4691 if (!DistToA) 4692 continue; 4693 4694 int DistanceToA = DistToA->getAPInt().getSExtValue(); 4695 4696 // Skip if the distance is not multiple of size as they are not in the 4697 // same group. 4698 if (DistanceToA % static_cast<int>(DesA.Size)) 4699 continue; 4700 4701 // The index of B is the index of A plus the related index to A. 4702 int IndexB = 4703 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 4704 4705 // Try to insert B into the group. 4706 if (Group->insertMember(B, IndexB, DesB.Align)) { 4707 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 4708 << " into the interleave group with" << *A << '\n'); 4709 InterleaveGroupMap[B] = Group; 4710 4711 // Set the first load in program order as the insert position. 4712 if (B->mayReadFromMemory()) 4713 Group->setInsertPos(B); 4714 } 4715 } // Iteration on instruction B 4716 } // Iteration on instruction A 4717 4718 // Remove interleaved store groups with gaps. 4719 for (InterleaveGroup *Group : StoreGroups) 4720 if (Group->getNumMembers() != Group->getFactor()) 4721 releaseGroup(Group); 4722 4723 // Remove interleaved load groups that don't have the first and last member. 4724 // This guarantees that we won't do speculative out of bounds loads. 4725 for (InterleaveGroup *Group : LoadGroups) 4726 if (!Group->getMember(0) || !Group->getMember(Group->getFactor() - 1)) 4727 releaseGroup(Group); 4728 } 4729 4730 LoopVectorizationCostModel::VectorizationFactor 4731 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4732 // Width 1 means no vectorize 4733 VectorizationFactor Factor = { 1U, 0U }; 4734 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 4735 emitAnalysis(VectorizationReport() << 4736 "runtime pointer checks needed. Enable vectorization of this " 4737 "loop with '#pragma clang loop vectorize(enable)' when " 4738 "compiling with -Os/-Oz"); 4739 DEBUG(dbgs() << 4740 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4741 return Factor; 4742 } 4743 4744 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4745 emitAnalysis(VectorizationReport() << 4746 "store that is conditionally executed prevents vectorization"); 4747 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4748 return Factor; 4749 } 4750 4751 // Find the trip count. 4752 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4753 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4754 4755 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4756 unsigned SmallestType, WidestType; 4757 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4758 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4759 unsigned MaxSafeDepDist = -1U; 4760 if (Legal->getMaxSafeDepDistBytes() != -1U) 4761 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4762 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4763 WidestRegister : MaxSafeDepDist); 4764 unsigned MaxVectorSize = WidestRegister / WidestType; 4765 4766 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 4767 << WidestType << " bits.\n"); 4768 DEBUG(dbgs() << "LV: The Widest register is: " 4769 << WidestRegister << " bits.\n"); 4770 4771 if (MaxVectorSize == 0) { 4772 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4773 MaxVectorSize = 1; 4774 } 4775 4776 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4777 " into one vector!"); 4778 4779 unsigned VF = MaxVectorSize; 4780 if (MaximizeBandwidth && !OptForSize) { 4781 // Collect all viable vectorization factors. 4782 SmallVector<unsigned, 8> VFs; 4783 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4784 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 4785 VFs.push_back(VS); 4786 4787 // For each VF calculate its register usage. 4788 auto RUs = calculateRegisterUsage(VFs); 4789 4790 // Select the largest VF which doesn't require more registers than existing 4791 // ones. 4792 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4793 for (int i = RUs.size() - 1; i >= 0; --i) { 4794 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4795 VF = VFs[i]; 4796 break; 4797 } 4798 } 4799 } 4800 4801 // If we optimize the program for size, avoid creating the tail loop. 4802 if (OptForSize) { 4803 // If we are unable to calculate the trip count then don't try to vectorize. 4804 if (TC < 2) { 4805 emitAnalysis 4806 (VectorizationReport() << 4807 "unable to calculate the loop count due to complex control flow"); 4808 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4809 return Factor; 4810 } 4811 4812 // Find the maximum SIMD width that can fit within the trip count. 4813 VF = TC % MaxVectorSize; 4814 4815 if (VF == 0) 4816 VF = MaxVectorSize; 4817 else { 4818 // If the trip count that we found modulo the vectorization factor is not 4819 // zero then we require a tail. 4820 emitAnalysis(VectorizationReport() << 4821 "cannot optimize for size and vectorize at the " 4822 "same time. Enable vectorization of this loop " 4823 "with '#pragma clang loop vectorize(enable)' " 4824 "when compiling with -Os/-Oz"); 4825 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4826 return Factor; 4827 } 4828 } 4829 4830 int UserVF = Hints->getWidth(); 4831 if (UserVF != 0) { 4832 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4833 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4834 4835 Factor.Width = UserVF; 4836 return Factor; 4837 } 4838 4839 float Cost = expectedCost(1); 4840 #ifndef NDEBUG 4841 const float ScalarCost = Cost; 4842 #endif /* NDEBUG */ 4843 unsigned Width = 1; 4844 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4845 4846 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4847 // Ignore scalar width, because the user explicitly wants vectorization. 4848 if (ForceVectorization && VF > 1) { 4849 Width = 2; 4850 Cost = expectedCost(Width) / (float)Width; 4851 } 4852 4853 for (unsigned i=2; i <= VF; i*=2) { 4854 // Notice that the vector loop needs to be executed less times, so 4855 // we need to divide the cost of the vector loops by the width of 4856 // the vector elements. 4857 float VectorCost = expectedCost(i) / (float)i; 4858 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4859 (int)VectorCost << ".\n"); 4860 if (VectorCost < Cost) { 4861 Cost = VectorCost; 4862 Width = i; 4863 } 4864 } 4865 4866 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4867 << "LV: Vectorization seems to be not beneficial, " 4868 << "but was forced by a user.\n"); 4869 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4870 Factor.Width = Width; 4871 Factor.Cost = Width * Cost; 4872 return Factor; 4873 } 4874 4875 std::pair<unsigned, unsigned> 4876 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4877 unsigned MinWidth = -1U; 4878 unsigned MaxWidth = 8; 4879 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4880 4881 // For each block. 4882 for (Loop::block_iterator bb = TheLoop->block_begin(), 4883 be = TheLoop->block_end(); bb != be; ++bb) { 4884 BasicBlock *BB = *bb; 4885 4886 // For each instruction in the loop. 4887 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4888 Type *T = it->getType(); 4889 4890 // Skip ignored values. 4891 if (ValuesToIgnore.count(&*it)) 4892 continue; 4893 4894 // Only examine Loads, Stores and PHINodes. 4895 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4896 continue; 4897 4898 // Examine PHI nodes that are reduction variables. Update the type to 4899 // account for the recurrence type. 4900 if (PHINode *PN = dyn_cast<PHINode>(it)) { 4901 if (!Legal->isReductionVariable(PN)) 4902 continue; 4903 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4904 T = RdxDesc.getRecurrenceType(); 4905 } 4906 4907 // Examine the stored values. 4908 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4909 T = ST->getValueOperand()->getType(); 4910 4911 // Ignore loaded pointer types and stored pointer types that are not 4912 // consecutive. However, we do want to take consecutive stores/loads of 4913 // pointer vectors into account. 4914 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 4915 continue; 4916 4917 MinWidth = std::min(MinWidth, 4918 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4919 MaxWidth = std::max(MaxWidth, 4920 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4921 } 4922 } 4923 4924 return {MinWidth, MaxWidth}; 4925 } 4926 4927 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4928 unsigned VF, 4929 unsigned LoopCost) { 4930 4931 // -- The interleave heuristics -- 4932 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4933 // There are many micro-architectural considerations that we can't predict 4934 // at this level. For example, frontend pressure (on decode or fetch) due to 4935 // code size, or the number and capabilities of the execution ports. 4936 // 4937 // We use the following heuristics to select the interleave count: 4938 // 1. If the code has reductions, then we interleave to break the cross 4939 // iteration dependency. 4940 // 2. If the loop is really small, then we interleave to reduce the loop 4941 // overhead. 4942 // 3. We don't interleave if we think that we will spill registers to memory 4943 // due to the increased register pressure. 4944 4945 // When we optimize for size, we don't interleave. 4946 if (OptForSize) 4947 return 1; 4948 4949 // We used the distance for the interleave count. 4950 if (Legal->getMaxSafeDepDistBytes() != -1U) 4951 return 1; 4952 4953 // Do not interleave loops with a relatively small trip count. 4954 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4955 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4956 return 1; 4957 4958 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4959 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4960 " registers\n"); 4961 4962 if (VF == 1) { 4963 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4964 TargetNumRegisters = ForceTargetNumScalarRegs; 4965 } else { 4966 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4967 TargetNumRegisters = ForceTargetNumVectorRegs; 4968 } 4969 4970 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4971 // We divide by these constants so assume that we have at least one 4972 // instruction that uses at least one register. 4973 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4974 R.NumInstructions = std::max(R.NumInstructions, 1U); 4975 4976 // We calculate the interleave count using the following formula. 4977 // Subtract the number of loop invariants from the number of available 4978 // registers. These registers are used by all of the interleaved instances. 4979 // Next, divide the remaining registers by the number of registers that is 4980 // required by the loop, in order to estimate how many parallel instances 4981 // fit without causing spills. All of this is rounded down if necessary to be 4982 // a power of two. We want power of two interleave count to simplify any 4983 // addressing operations or alignment considerations. 4984 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4985 R.MaxLocalUsers); 4986 4987 // Don't count the induction variable as interleaved. 4988 if (EnableIndVarRegisterHeur) 4989 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4990 std::max(1U, (R.MaxLocalUsers - 1))); 4991 4992 // Clamp the interleave ranges to reasonable counts. 4993 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4994 4995 // Check if the user has overridden the max. 4996 if (VF == 1) { 4997 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4998 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4999 } else { 5000 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5001 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5002 } 5003 5004 // If we did not calculate the cost for VF (because the user selected the VF) 5005 // then we calculate the cost of VF here. 5006 if (LoopCost == 0) 5007 LoopCost = expectedCost(VF); 5008 5009 // Clamp the calculated IC to be between the 1 and the max interleave count 5010 // that the target allows. 5011 if (IC > MaxInterleaveCount) 5012 IC = MaxInterleaveCount; 5013 else if (IC < 1) 5014 IC = 1; 5015 5016 // Interleave if we vectorized this loop and there is a reduction that could 5017 // benefit from interleaving. 5018 if (VF > 1 && Legal->getReductionVars()->size()) { 5019 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5020 return IC; 5021 } 5022 5023 // Note that if we've already vectorized the loop we will have done the 5024 // runtime check and so interleaving won't require further checks. 5025 bool InterleavingRequiresRuntimePointerCheck = 5026 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5027 5028 // We want to interleave small loops in order to reduce the loop overhead and 5029 // potentially expose ILP opportunities. 5030 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5031 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5032 // We assume that the cost overhead is 1 and we use the cost model 5033 // to estimate the cost of the loop and interleave until the cost of the 5034 // loop overhead is about 5% of the cost of the loop. 5035 unsigned SmallIC = 5036 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5037 5038 // Interleave until store/load ports (estimated by max interleave count) are 5039 // saturated. 5040 unsigned NumStores = Legal->getNumStores(); 5041 unsigned NumLoads = Legal->getNumLoads(); 5042 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5043 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5044 5045 // If we have a scalar reduction (vector reductions are already dealt with 5046 // by this point), we can increase the critical path length if the loop 5047 // we're interleaving is inside another loop. Limit, by default to 2, so the 5048 // critical path only gets increased by one reduction operation. 5049 if (Legal->getReductionVars()->size() && 5050 TheLoop->getLoopDepth() > 1) { 5051 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5052 SmallIC = std::min(SmallIC, F); 5053 StoresIC = std::min(StoresIC, F); 5054 LoadsIC = std::min(LoadsIC, F); 5055 } 5056 5057 if (EnableLoadStoreRuntimeInterleave && 5058 std::max(StoresIC, LoadsIC) > SmallIC) { 5059 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5060 return std::max(StoresIC, LoadsIC); 5061 } 5062 5063 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5064 return SmallIC; 5065 } 5066 5067 // Interleave if this is a large loop (small loops are already dealt with by 5068 // this point) that could benefit from interleaving. 5069 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5070 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5071 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5072 return IC; 5073 } 5074 5075 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5076 return 1; 5077 } 5078 5079 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5080 LoopVectorizationCostModel::calculateRegisterUsage( 5081 const SmallVector<unsigned, 8> &VFs) { 5082 // This function calculates the register usage by measuring the highest number 5083 // of values that are alive at a single location. Obviously, this is a very 5084 // rough estimation. We scan the loop in a topological order in order and 5085 // assign a number to each instruction. We use RPO to ensure that defs are 5086 // met before their users. We assume that each instruction that has in-loop 5087 // users starts an interval. We record every time that an in-loop value is 5088 // used, so we have a list of the first and last occurrences of each 5089 // instruction. Next, we transpose this data structure into a multi map that 5090 // holds the list of intervals that *end* at a specific location. This multi 5091 // map allows us to perform a linear search. We scan the instructions linearly 5092 // and record each time that a new interval starts, by placing it in a set. 5093 // If we find this value in the multi-map then we remove it from the set. 5094 // The max register usage is the maximum size of the set. 5095 // We also search for instructions that are defined outside the loop, but are 5096 // used inside the loop. We need this number separately from the max-interval 5097 // usage number because when we unroll, loop-invariant values do not take 5098 // more register. 5099 LoopBlocksDFS DFS(TheLoop); 5100 DFS.perform(LI); 5101 5102 RegisterUsage RU; 5103 RU.NumInstructions = 0; 5104 5105 // Each 'key' in the map opens a new interval. The values 5106 // of the map are the index of the 'last seen' usage of the 5107 // instruction that is the key. 5108 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5109 // Maps instruction to its index. 5110 DenseMap<unsigned, Instruction*> IdxToInstr; 5111 // Marks the end of each interval. 5112 IntervalMap EndPoint; 5113 // Saves the list of instruction indices that are used in the loop. 5114 SmallSet<Instruction*, 8> Ends; 5115 // Saves the list of values that are used in the loop but are 5116 // defined outside the loop, such as arguments and constants. 5117 SmallPtrSet<Value*, 8> LoopInvariants; 5118 5119 unsigned Index = 0; 5120 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5121 be = DFS.endRPO(); bb != be; ++bb) { 5122 RU.NumInstructions += (*bb)->size(); 5123 for (Instruction &I : **bb) { 5124 IdxToInstr[Index++] = &I; 5125 5126 // Save the end location of each USE. 5127 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5128 Value *U = I.getOperand(i); 5129 Instruction *Instr = dyn_cast<Instruction>(U); 5130 5131 // Ignore non-instruction values such as arguments, constants, etc. 5132 if (!Instr) continue; 5133 5134 // If this instruction is outside the loop then record it and continue. 5135 if (!TheLoop->contains(Instr)) { 5136 LoopInvariants.insert(Instr); 5137 continue; 5138 } 5139 5140 // Overwrite previous end points. 5141 EndPoint[Instr] = Index; 5142 Ends.insert(Instr); 5143 } 5144 } 5145 } 5146 5147 // Saves the list of intervals that end with the index in 'key'. 5148 typedef SmallVector<Instruction*, 2> InstrList; 5149 DenseMap<unsigned, InstrList> TransposeEnds; 5150 5151 // Transpose the EndPoints to a list of values that end at each index. 5152 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5153 it != e; ++it) 5154 TransposeEnds[it->second].push_back(it->first); 5155 5156 SmallSet<Instruction*, 8> OpenIntervals; 5157 5158 // Get the size of the widest register. 5159 unsigned MaxSafeDepDist = -1U; 5160 if (Legal->getMaxSafeDepDistBytes() != -1U) 5161 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5162 unsigned WidestRegister = 5163 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5164 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5165 5166 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5167 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5168 5169 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5170 5171 // A lambda that gets the register usage for the given type and VF. 5172 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5173 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5174 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5175 }; 5176 5177 for (unsigned int i = 0; i < Index; ++i) { 5178 Instruction *I = IdxToInstr[i]; 5179 // Ignore instructions that are never used within the loop. 5180 if (!Ends.count(I)) continue; 5181 5182 // Skip ignored values. 5183 if (ValuesToIgnore.count(I)) 5184 continue; 5185 5186 // Remove all of the instructions that end at this location. 5187 InstrList &List = TransposeEnds[i]; 5188 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5189 OpenIntervals.erase(List[j]); 5190 5191 // For each VF find the maximum usage of registers. 5192 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5193 if (VFs[j] == 1) { 5194 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5195 continue; 5196 } 5197 5198 // Count the number of live intervals. 5199 unsigned RegUsage = 0; 5200 for (auto Inst : OpenIntervals) 5201 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5202 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5203 } 5204 5205 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5206 << OpenIntervals.size() << '\n'); 5207 5208 // Add the current instruction to the list of open intervals. 5209 OpenIntervals.insert(I); 5210 } 5211 5212 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5213 unsigned Invariant = 0; 5214 if (VFs[i] == 1) 5215 Invariant = LoopInvariants.size(); 5216 else { 5217 for (auto Inst : LoopInvariants) 5218 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5219 } 5220 5221 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5222 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5223 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5224 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5225 5226 RU.LoopInvariantRegs = Invariant; 5227 RU.MaxLocalUsers = MaxUsages[i]; 5228 RUs[i] = RU; 5229 } 5230 5231 return RUs; 5232 } 5233 5234 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5235 unsigned Cost = 0; 5236 5237 // For each block. 5238 for (Loop::block_iterator bb = TheLoop->block_begin(), 5239 be = TheLoop->block_end(); bb != be; ++bb) { 5240 unsigned BlockCost = 0; 5241 BasicBlock *BB = *bb; 5242 5243 // For each instruction in the old loop. 5244 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5245 // Skip dbg intrinsics. 5246 if (isa<DbgInfoIntrinsic>(it)) 5247 continue; 5248 5249 // Skip ignored values. 5250 if (ValuesToIgnore.count(&*it)) 5251 continue; 5252 5253 unsigned C = getInstructionCost(&*it, VF); 5254 5255 // Check if we should override the cost. 5256 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5257 C = ForceTargetInstructionCost; 5258 5259 BlockCost += C; 5260 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5261 VF << " For instruction: " << *it << '\n'); 5262 } 5263 5264 // We assume that if-converted blocks have a 50% chance of being executed. 5265 // When the code is scalar then some of the blocks are avoided due to CF. 5266 // When the code is vectorized we execute all code paths. 5267 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5268 BlockCost /= 2; 5269 5270 Cost += BlockCost; 5271 } 5272 5273 return Cost; 5274 } 5275 5276 /// \brief Check whether the address computation for a non-consecutive memory 5277 /// access looks like an unlikely candidate for being merged into the indexing 5278 /// mode. 5279 /// 5280 /// We look for a GEP which has one index that is an induction variable and all 5281 /// other indices are loop invariant. If the stride of this access is also 5282 /// within a small bound we decide that this address computation can likely be 5283 /// merged into the addressing mode. 5284 /// In all other cases, we identify the address computation as complex. 5285 static bool isLikelyComplexAddressComputation(Value *Ptr, 5286 LoopVectorizationLegality *Legal, 5287 ScalarEvolution *SE, 5288 const Loop *TheLoop) { 5289 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5290 if (!Gep) 5291 return true; 5292 5293 // We are looking for a gep with all loop invariant indices except for one 5294 // which should be an induction variable. 5295 unsigned NumOperands = Gep->getNumOperands(); 5296 for (unsigned i = 1; i < NumOperands; ++i) { 5297 Value *Opd = Gep->getOperand(i); 5298 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5299 !Legal->isInductionVariable(Opd)) 5300 return true; 5301 } 5302 5303 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5304 // can likely be merged into the address computation. 5305 unsigned MaxMergeDistance = 64; 5306 5307 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5308 if (!AddRec) 5309 return true; 5310 5311 // Check the step is constant. 5312 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5313 // Calculate the pointer stride and check if it is consecutive. 5314 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5315 if (!C) 5316 return true; 5317 5318 const APInt &APStepVal = C->getAPInt(); 5319 5320 // Huge step value - give up. 5321 if (APStepVal.getBitWidth() > 64) 5322 return true; 5323 5324 int64_t StepVal = APStepVal.getSExtValue(); 5325 5326 return StepVal > MaxMergeDistance; 5327 } 5328 5329 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5330 return Legal->hasStride(I->getOperand(0)) || 5331 Legal->hasStride(I->getOperand(1)); 5332 } 5333 5334 unsigned 5335 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5336 // If we know that this instruction will remain uniform, check the cost of 5337 // the scalar version. 5338 if (Legal->isUniformAfterVectorization(I)) 5339 VF = 1; 5340 5341 Type *RetTy = I->getType(); 5342 if (VF > 1 && MinBWs.count(I)) 5343 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5344 Type *VectorTy = ToVectorTy(RetTy, VF); 5345 5346 // TODO: We need to estimate the cost of intrinsic calls. 5347 switch (I->getOpcode()) { 5348 case Instruction::GetElementPtr: 5349 // We mark this instruction as zero-cost because the cost of GEPs in 5350 // vectorized code depends on whether the corresponding memory instruction 5351 // is scalarized or not. Therefore, we handle GEPs with the memory 5352 // instruction cost. 5353 return 0; 5354 case Instruction::Br: { 5355 return TTI.getCFInstrCost(I->getOpcode()); 5356 } 5357 case Instruction::PHI: 5358 //TODO: IF-converted IFs become selects. 5359 return 0; 5360 case Instruction::Add: 5361 case Instruction::FAdd: 5362 case Instruction::Sub: 5363 case Instruction::FSub: 5364 case Instruction::Mul: 5365 case Instruction::FMul: 5366 case Instruction::UDiv: 5367 case Instruction::SDiv: 5368 case Instruction::FDiv: 5369 case Instruction::URem: 5370 case Instruction::SRem: 5371 case Instruction::FRem: 5372 case Instruction::Shl: 5373 case Instruction::LShr: 5374 case Instruction::AShr: 5375 case Instruction::And: 5376 case Instruction::Or: 5377 case Instruction::Xor: { 5378 // Since we will replace the stride by 1 the multiplication should go away. 5379 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5380 return 0; 5381 // Certain instructions can be cheaper to vectorize if they have a constant 5382 // second vector operand. One example of this are shifts on x86. 5383 TargetTransformInfo::OperandValueKind Op1VK = 5384 TargetTransformInfo::OK_AnyValue; 5385 TargetTransformInfo::OperandValueKind Op2VK = 5386 TargetTransformInfo::OK_AnyValue; 5387 TargetTransformInfo::OperandValueProperties Op1VP = 5388 TargetTransformInfo::OP_None; 5389 TargetTransformInfo::OperandValueProperties Op2VP = 5390 TargetTransformInfo::OP_None; 5391 Value *Op2 = I->getOperand(1); 5392 5393 // Check for a splat of a constant or for a non uniform vector of constants. 5394 if (isa<ConstantInt>(Op2)) { 5395 ConstantInt *CInt = cast<ConstantInt>(Op2); 5396 if (CInt && CInt->getValue().isPowerOf2()) 5397 Op2VP = TargetTransformInfo::OP_PowerOf2; 5398 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5399 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5400 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5401 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5402 if (SplatValue) { 5403 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5404 if (CInt && CInt->getValue().isPowerOf2()) 5405 Op2VP = TargetTransformInfo::OP_PowerOf2; 5406 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5407 } 5408 } 5409 5410 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5411 Op1VP, Op2VP); 5412 } 5413 case Instruction::Select: { 5414 SelectInst *SI = cast<SelectInst>(I); 5415 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5416 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5417 Type *CondTy = SI->getCondition()->getType(); 5418 if (!ScalarCond) 5419 CondTy = VectorType::get(CondTy, VF); 5420 5421 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5422 } 5423 case Instruction::ICmp: 5424 case Instruction::FCmp: { 5425 Type *ValTy = I->getOperand(0)->getType(); 5426 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5427 auto It = MinBWs.find(Op0AsInstruction); 5428 if (VF > 1 && It != MinBWs.end()) 5429 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5430 VectorTy = ToVectorTy(ValTy, VF); 5431 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5432 } 5433 case Instruction::Store: 5434 case Instruction::Load: { 5435 StoreInst *SI = dyn_cast<StoreInst>(I); 5436 LoadInst *LI = dyn_cast<LoadInst>(I); 5437 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5438 LI->getType()); 5439 VectorTy = ToVectorTy(ValTy, VF); 5440 5441 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5442 unsigned AS = SI ? SI->getPointerAddressSpace() : 5443 LI->getPointerAddressSpace(); 5444 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5445 // We add the cost of address computation here instead of with the gep 5446 // instruction because only here we know whether the operation is 5447 // scalarized. 5448 if (VF == 1) 5449 return TTI.getAddressComputationCost(VectorTy) + 5450 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5451 5452 // For an interleaved access, calculate the total cost of the whole 5453 // interleave group. 5454 if (Legal->isAccessInterleaved(I)) { 5455 auto Group = Legal->getInterleavedAccessGroup(I); 5456 assert(Group && "Fail to get an interleaved access group."); 5457 5458 // Only calculate the cost once at the insert position. 5459 if (Group->getInsertPos() != I) 5460 return 0; 5461 5462 unsigned InterleaveFactor = Group->getFactor(); 5463 Type *WideVecTy = 5464 VectorType::get(VectorTy->getVectorElementType(), 5465 VectorTy->getVectorNumElements() * InterleaveFactor); 5466 5467 // Holds the indices of existing members in an interleaved load group. 5468 // An interleaved store group doesn't need this as it dones't allow gaps. 5469 SmallVector<unsigned, 4> Indices; 5470 if (LI) { 5471 for (unsigned i = 0; i < InterleaveFactor; i++) 5472 if (Group->getMember(i)) 5473 Indices.push_back(i); 5474 } 5475 5476 // Calculate the cost of the whole interleaved group. 5477 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5478 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5479 Group->getAlignment(), AS); 5480 5481 if (Group->isReverse()) 5482 Cost += 5483 Group->getNumMembers() * 5484 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5485 5486 // FIXME: The interleaved load group with a huge gap could be even more 5487 // expensive than scalar operations. Then we could ignore such group and 5488 // use scalar operations instead. 5489 return Cost; 5490 } 5491 5492 // Scalarized loads/stores. 5493 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5494 bool Reverse = ConsecutiveStride < 0; 5495 const DataLayout &DL = I->getModule()->getDataLayout(); 5496 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5497 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5498 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5499 bool IsComplexComputation = 5500 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5501 unsigned Cost = 0; 5502 // The cost of extracting from the value vector and pointer vector. 5503 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5504 for (unsigned i = 0; i < VF; ++i) { 5505 // The cost of extracting the pointer operand. 5506 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5507 // In case of STORE, the cost of ExtractElement from the vector. 5508 // In case of LOAD, the cost of InsertElement into the returned 5509 // vector. 5510 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5511 Instruction::InsertElement, 5512 VectorTy, i); 5513 } 5514 5515 // The cost of the scalar loads/stores. 5516 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5517 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5518 Alignment, AS); 5519 return Cost; 5520 } 5521 5522 // Wide load/stores. 5523 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5524 if (Legal->isMaskRequired(I)) 5525 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5526 AS); 5527 else 5528 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5529 5530 if (Reverse) 5531 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5532 VectorTy, 0); 5533 return Cost; 5534 } 5535 case Instruction::ZExt: 5536 case Instruction::SExt: 5537 case Instruction::FPToUI: 5538 case Instruction::FPToSI: 5539 case Instruction::FPExt: 5540 case Instruction::PtrToInt: 5541 case Instruction::IntToPtr: 5542 case Instruction::SIToFP: 5543 case Instruction::UIToFP: 5544 case Instruction::Trunc: 5545 case Instruction::FPTrunc: 5546 case Instruction::BitCast: { 5547 // We optimize the truncation of induction variable. 5548 // The cost of these is the same as the scalar operation. 5549 if (I->getOpcode() == Instruction::Trunc && 5550 Legal->isInductionVariable(I->getOperand(0))) 5551 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5552 I->getOperand(0)->getType()); 5553 5554 Type *SrcScalarTy = I->getOperand(0)->getType(); 5555 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 5556 if (VF > 1 && MinBWs.count(I)) { 5557 // This cast is going to be shrunk. This may remove the cast or it might 5558 // turn it into slightly different cast. For example, if MinBW == 16, 5559 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5560 // 5561 // Calculate the modified src and dest types. 5562 Type *MinVecTy = VectorTy; 5563 if (I->getOpcode() == Instruction::Trunc) { 5564 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5565 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), 5566 MinVecTy); 5567 } else if (I->getOpcode() == Instruction::ZExt || 5568 I->getOpcode() == Instruction::SExt) { 5569 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5570 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), 5571 MinVecTy); 5572 } 5573 } 5574 5575 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5576 } 5577 case Instruction::Call: { 5578 bool NeedToScalarize; 5579 CallInst *CI = cast<CallInst>(I); 5580 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5581 if (getIntrinsicIDForCall(CI, TLI)) 5582 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5583 return CallCost; 5584 } 5585 default: { 5586 // We are scalarizing the instruction. Return the cost of the scalar 5587 // instruction, plus the cost of insert and extract into vector 5588 // elements, times the vector width. 5589 unsigned Cost = 0; 5590 5591 if (!RetTy->isVoidTy() && VF != 1) { 5592 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5593 VectorTy); 5594 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5595 VectorTy); 5596 5597 // The cost of inserting the results plus extracting each one of the 5598 // operands. 5599 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5600 } 5601 5602 // The cost of executing VF copies of the scalar instruction. This opcode 5603 // is unknown. Assume that it is the same as 'mul'. 5604 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5605 return Cost; 5606 } 5607 }// end of switch. 5608 } 5609 5610 char LoopVectorize::ID = 0; 5611 static const char lv_name[] = "Loop Vectorization"; 5612 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5613 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5614 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 5615 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5616 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 5617 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5618 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 5619 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5620 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5621 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5622 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5623 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5624 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5625 INITIALIZE_PASS_DEPENDENCY(DemandedBits) 5626 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5627 5628 namespace llvm { 5629 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5630 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5631 } 5632 } 5633 5634 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5635 // Check for a store. 5636 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5637 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5638 5639 // Check for a load. 5640 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5641 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5642 5643 return false; 5644 } 5645 5646 5647 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5648 bool IfPredicateStore) { 5649 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5650 // Holds vector parameters or scalars, in case of uniform vals. 5651 SmallVector<VectorParts, 4> Params; 5652 5653 setDebugLocFromInst(Builder, Instr); 5654 5655 // Find all of the vectorized parameters. 5656 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5657 Value *SrcOp = Instr->getOperand(op); 5658 5659 // If we are accessing the old induction variable, use the new one. 5660 if (SrcOp == OldInduction) { 5661 Params.push_back(getVectorValue(SrcOp)); 5662 continue; 5663 } 5664 5665 // Try using previously calculated values. 5666 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5667 5668 // If the src is an instruction that appeared earlier in the basic block 5669 // then it should already be vectorized. 5670 if (SrcInst && OrigLoop->contains(SrcInst)) { 5671 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5672 // The parameter is a vector value from earlier. 5673 Params.push_back(WidenMap.get(SrcInst)); 5674 } else { 5675 // The parameter is a scalar from outside the loop. Maybe even a constant. 5676 VectorParts Scalars; 5677 Scalars.append(UF, SrcOp); 5678 Params.push_back(Scalars); 5679 } 5680 } 5681 5682 assert(Params.size() == Instr->getNumOperands() && 5683 "Invalid number of operands"); 5684 5685 // Does this instruction return a value ? 5686 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5687 5688 Value *UndefVec = IsVoidRetTy ? nullptr : 5689 UndefValue::get(Instr->getType()); 5690 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5691 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5692 5693 VectorParts Cond; 5694 if (IfPredicateStore) { 5695 assert(Instr->getParent()->getSinglePredecessor() && 5696 "Only support single predecessor blocks"); 5697 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5698 Instr->getParent()); 5699 } 5700 5701 // For each vector unroll 'part': 5702 for (unsigned Part = 0; Part < UF; ++Part) { 5703 // For each scalar that we create: 5704 5705 // Start an "if (pred) a[i] = ..." block. 5706 Value *Cmp = nullptr; 5707 if (IfPredicateStore) { 5708 if (Cond[Part]->getType()->isVectorTy()) 5709 Cond[Part] = 5710 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5711 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5712 ConstantInt::get(Cond[Part]->getType(), 1)); 5713 } 5714 5715 Instruction *Cloned = Instr->clone(); 5716 if (!IsVoidRetTy) 5717 Cloned->setName(Instr->getName() + ".cloned"); 5718 // Replace the operands of the cloned instructions with extracted scalars. 5719 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5720 Value *Op = Params[op][Part]; 5721 Cloned->setOperand(op, Op); 5722 } 5723 5724 // Place the cloned scalar in the new loop. 5725 Builder.Insert(Cloned); 5726 5727 // If the original scalar returns a value we need to place it in a vector 5728 // so that future users will be able to use it. 5729 if (!IsVoidRetTy) 5730 VecResults[Part] = Cloned; 5731 5732 // End if-block. 5733 if (IfPredicateStore) 5734 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 5735 Cmp)); 5736 } 5737 } 5738 5739 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5740 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5741 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5742 5743 return scalarizeInstruction(Instr, IfPredicateStore); 5744 } 5745 5746 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5747 return Vec; 5748 } 5749 5750 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5751 return V; 5752 } 5753 5754 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5755 // When unrolling and the VF is 1, we only need to add a simple scalar. 5756 Type *ITy = Val->getType(); 5757 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5758 Constant *C = ConstantInt::get(ITy, StartIdx); 5759 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5760 } 5761