1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// Loops with a known constant trip count below this number are vectorized only 118 /// if no scalar iteration overheads are incurred. 119 static cl::opt<unsigned> TinyTripCountVectorThreshold( 120 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 121 cl::desc("Loops with a constant trip count that is smaller than this " 122 "value are vectorized only if no scalar iteration overheads " 123 "are incurred.")); 124 125 static cl::opt<bool> MaximizeBandwidth( 126 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 127 cl::desc("Maximize bandwidth when selecting vectorization factor which " 128 "will be determined by the smallest type in loop.")); 129 130 static cl::opt<bool> EnableInterleavedMemAccesses( 131 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 132 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 133 134 /// Maximum factor for an interleaved memory access. 135 static cl::opt<unsigned> MaxInterleaveGroupFactor( 136 "max-interleave-group-factor", cl::Hidden, 137 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 138 cl::init(8)); 139 140 /// We don't interleave loops with a known constant trip count below this 141 /// number. 142 static const unsigned TinyTripCountInterleaveThreshold = 128; 143 144 static cl::opt<unsigned> ForceTargetNumScalarRegs( 145 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of scalar registers.")); 147 148 static cl::opt<unsigned> ForceTargetNumVectorRegs( 149 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 150 cl::desc("A flag that overrides the target's number of vector registers.")); 151 152 /// Maximum vectorization interleave count. 153 static const unsigned MaxInterleaveFactor = 16; 154 155 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 156 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max interleave factor for " 158 "scalar loops.")); 159 160 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 161 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's max interleave factor for " 163 "vectorized loops.")); 164 165 static cl::opt<unsigned> ForceTargetInstructionCost( 166 "force-target-instruction-cost", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's expected cost for " 168 "an instruction to a single constant value. Mostly " 169 "useful for getting consistent testing.")); 170 171 static cl::opt<unsigned> SmallLoopCost( 172 "small-loop-cost", cl::init(20), cl::Hidden, 173 cl::desc( 174 "The cost of a loop that is considered 'small' by the interleaver.")); 175 176 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 177 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 178 cl::desc("Enable the use of the block frequency analysis to access PGO " 179 "heuristics minimizing code growth in cold regions and being more " 180 "aggressive in hot regions.")); 181 182 // Runtime interleave loops for load/store throughput. 183 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 184 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 185 cl::desc( 186 "Enable runtime interleaving until load/store ports are saturated")); 187 188 /// The number of stores in a loop that are allowed to need predication. 189 static cl::opt<unsigned> NumberOfStoresToPredicate( 190 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 191 cl::desc("Max number of stores to be predicated behind an if.")); 192 193 static cl::opt<bool> EnableIndVarRegisterHeur( 194 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 195 cl::desc("Count the induction variable only once when interleaving")); 196 197 static cl::opt<bool> EnableCondStoresVectorization( 198 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 199 cl::desc("Enable if predication of stores during vectorization.")); 200 201 static cl::opt<unsigned> MaxNestedScalarReductionIC( 202 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 203 cl::desc("The maximum interleave count to use when interleaving a scalar " 204 "reduction in a nested loop.")); 205 206 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 207 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 208 cl::desc("The maximum allowed number of runtime memory checks with a " 209 "vectorize(enable) pragma.")); 210 211 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 212 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed.")); 214 215 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 216 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 217 cl::desc("The maximum number of SCEV checks allowed with a " 218 "vectorize(enable) pragma")); 219 220 /// Create an analysis remark that explains why vectorization failed 221 /// 222 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 223 /// RemarkName is the identifier for the remark. If \p I is passed it is an 224 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 225 /// the location of the remark. \return the remark object that can be 226 /// streamed to. 227 static OptimizationRemarkAnalysis 228 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 229 Instruction *I = nullptr) { 230 Value *CodeRegion = TheLoop->getHeader(); 231 DebugLoc DL = TheLoop->getStartLoc(); 232 233 if (I) { 234 CodeRegion = I->getParent(); 235 // If there is no debug location attached to the instruction, revert back to 236 // using the loop's. 237 if (I->getDebugLoc()) 238 DL = I->getDebugLoc(); 239 } 240 241 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 242 R << "loop not vectorized: "; 243 return R; 244 } 245 246 namespace { 247 248 // Forward declarations. 249 class LoopVectorizeHints; 250 class LoopVectorizationLegality; 251 class LoopVectorizationCostModel; 252 class LoopVectorizationRequirements; 253 254 /// Returns true if the given loop body has a cycle, excluding the loop 255 /// itself. 256 static bool hasCyclesInLoopBody(const Loop &L) { 257 if (!L.empty()) 258 return true; 259 260 for (const auto &SCC : 261 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 262 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 263 if (SCC.size() > 1) { 264 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 265 DEBUG(L.dump()); 266 return true; 267 } 268 } 269 return false; 270 } 271 272 /// A helper function for converting Scalar types to vector types. 273 /// If the incoming type is void, we return void. If the VF is 1, we return 274 /// the scalar type. 275 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 276 if (Scalar->isVoidTy() || VF == 1) 277 return Scalar; 278 return VectorType::get(Scalar, VF); 279 } 280 281 // FIXME: The following helper functions have multiple implementations 282 // in the project. They can be effectively organized in a common Load/Store 283 // utilities unit. 284 285 /// A helper function that returns the pointer operand of a load or store 286 /// instruction. 287 static Value *getPointerOperand(Value *I) { 288 if (auto *LI = dyn_cast<LoadInst>(I)) 289 return LI->getPointerOperand(); 290 if (auto *SI = dyn_cast<StoreInst>(I)) 291 return SI->getPointerOperand(); 292 return nullptr; 293 } 294 295 /// A helper function that returns the type of loaded or stored value. 296 static Type *getMemInstValueType(Value *I) { 297 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 298 "Expected Load or Store instruction"); 299 if (auto *LI = dyn_cast<LoadInst>(I)) 300 return LI->getType(); 301 return cast<StoreInst>(I)->getValueOperand()->getType(); 302 } 303 304 /// A helper function that returns the alignment of load or store instruction. 305 static unsigned getMemInstAlignment(Value *I) { 306 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 307 "Expected Load or Store instruction"); 308 if (auto *LI = dyn_cast<LoadInst>(I)) 309 return LI->getAlignment(); 310 return cast<StoreInst>(I)->getAlignment(); 311 } 312 313 /// A helper function that returns the address space of the pointer operand of 314 /// load or store instruction. 315 static unsigned getMemInstAddressSpace(Value *I) { 316 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 317 "Expected Load or Store instruction"); 318 if (auto *LI = dyn_cast<LoadInst>(I)) 319 return LI->getPointerAddressSpace(); 320 return cast<StoreInst>(I)->getPointerAddressSpace(); 321 } 322 323 /// A helper function that returns true if the given type is irregular. The 324 /// type is irregular if its allocated size doesn't equal the store size of an 325 /// element of the corresponding vector type at the given vectorization factor. 326 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 327 328 // Determine if an array of VF elements of type Ty is "bitcast compatible" 329 // with a <VF x Ty> vector. 330 if (VF > 1) { 331 auto *VectorTy = VectorType::get(Ty, VF); 332 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 333 } 334 335 // If the vectorization factor is one, we just check if an array of type Ty 336 // requires padding between elements. 337 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 338 } 339 340 /// A helper function that returns the reciprocal of the block probability of 341 /// predicated blocks. If we return X, we are assuming the predicated block 342 /// will execute once for for every X iterations of the loop header. 343 /// 344 /// TODO: We should use actual block probability here, if available. Currently, 345 /// we always assume predicated blocks have a 50% chance of executing. 346 static unsigned getReciprocalPredBlockProb() { return 2; } 347 348 /// A helper function that adds a 'fast' flag to floating-point operations. 349 static Value *addFastMathFlag(Value *V) { 350 if (isa<FPMathOperator>(V)) { 351 FastMathFlags Flags; 352 Flags.setUnsafeAlgebra(); 353 cast<Instruction>(V)->setFastMathFlags(Flags); 354 } 355 return V; 356 } 357 358 /// A helper function that returns an integer or floating-point constant with 359 /// value C. 360 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 361 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 362 : ConstantFP::get(Ty, C); 363 } 364 365 /// InnerLoopVectorizer vectorizes loops which contain only one basic 366 /// block to a specified vectorization factor (VF). 367 /// This class performs the widening of scalars into vectors, or multiple 368 /// scalars. This class also implements the following features: 369 /// * It inserts an epilogue loop for handling loops that don't have iteration 370 /// counts that are known to be a multiple of the vectorization factor. 371 /// * It handles the code generation for reduction variables. 372 /// * Scalarization (implementation using scalars) of un-vectorizable 373 /// instructions. 374 /// InnerLoopVectorizer does not perform any vectorization-legality 375 /// checks, and relies on the caller to check for the different legality 376 /// aspects. The InnerLoopVectorizer relies on the 377 /// LoopVectorizationLegality class to provide information about the induction 378 /// and reduction variables that were found to a given vectorization factor. 379 class InnerLoopVectorizer { 380 public: 381 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 382 LoopInfo *LI, DominatorTree *DT, 383 const TargetLibraryInfo *TLI, 384 const TargetTransformInfo *TTI, AssumptionCache *AC, 385 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 386 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 387 LoopVectorizationCostModel *CM) 388 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 389 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 390 Builder(PSE.getSE()->getContext()), Induction(nullptr), 391 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 392 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 393 AddedSafetyChecks(false) {} 394 395 /// Create a new empty loop. Unlink the old loop and connect the new one. 396 void createVectorizedLoopSkeleton(); 397 398 /// Vectorize a single instruction within the innermost loop. 399 void vectorizeInstruction(Instruction &I); 400 401 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 402 void fixVectorizedLoop(); 403 404 // Return true if any runtime check is added. 405 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 406 407 virtual ~InnerLoopVectorizer() {} 408 409 protected: 410 /// A small list of PHINodes. 411 typedef SmallVector<PHINode *, 4> PhiVector; 412 413 /// A type for vectorized values in the new loop. Each value from the 414 /// original loop, when vectorized, is represented by UF vector values in the 415 /// new unrolled loop, where UF is the unroll factor. 416 typedef SmallVector<Value *, 2> VectorParts; 417 418 /// A type for scalarized values in the new loop. Each value from the 419 /// original loop, when scalarized, is represented by UF x VF scalar values 420 /// in the new unrolled loop, where UF is the unroll factor and VF is the 421 /// vectorization factor. 422 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 423 424 // When we if-convert we need to create edge masks. We have to cache values 425 // so that we don't end up with exponential recursion/IR. 426 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 427 EdgeMaskCacheTy; 428 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 429 430 /// Set up the values of the IVs correctly when exiting the vector loop. 431 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 432 Value *CountRoundDown, Value *EndValue, 433 BasicBlock *MiddleBlock); 434 435 /// Create a new induction variable inside L. 436 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 437 Value *Step, Instruction *DL); 438 439 /// Handle all cross-iteration phis in the header. 440 void fixCrossIterationPHIs(); 441 442 /// Fix a first-order recurrence. This is the second phase of vectorizing 443 /// this phi node. 444 void fixFirstOrderRecurrence(PHINode *Phi); 445 446 /// Fix a reduction cross-iteration phi. This is the second phase of 447 /// vectorizing this phi node. 448 void fixReduction(PHINode *Phi); 449 450 /// \brief The Loop exit block may have single value PHI nodes with some 451 /// incoming value. While vectorizing we only handled real values 452 /// that were defined inside the loop and we should have one value for 453 /// each predecessor of its parent basic block. See PR14725. 454 void fixLCSSAPHIs(); 455 456 /// Iteratively sink the scalarized operands of a predicated instruction into 457 /// the block that was created for it. 458 void sinkScalarOperands(Instruction *PredInst); 459 460 /// Predicate conditional instructions that require predication on their 461 /// respective conditions. 462 void predicateInstructions(); 463 464 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 465 /// represented as. 466 void truncateToMinimalBitwidths(); 467 468 /// A helper function that computes the predicate of the block BB, assuming 469 /// that the header block of the loop is set to True. It returns the *entry* 470 /// mask for the block BB. 471 VectorParts createBlockInMask(BasicBlock *BB); 472 /// A helper function that computes the predicate of the edge between SRC 473 /// and DST. 474 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 475 476 /// Vectorize a single PHINode in a block. This method handles the induction 477 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 478 /// arbitrary length vectors. 479 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 480 481 /// Insert the new loop to the loop hierarchy and pass manager 482 /// and update the analysis passes. 483 void updateAnalysis(); 484 485 /// This instruction is un-vectorizable. Implement it as a sequence 486 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 487 /// scalarized instruction behind an if block predicated on the control 488 /// dependence of the instruction. 489 void scalarizeInstruction(Instruction *Instr, bool IfPredicateInstr = false); 490 491 /// Vectorize Load and Store instructions, 492 virtual void vectorizeMemoryInstruction(Instruction *Instr); 493 494 /// Create a broadcast instruction. This method generates a broadcast 495 /// instruction (shuffle) for loop invariant values and for the induction 496 /// value. If this is the induction variable then we extend it to N, N+1, ... 497 /// this is needed because each iteration in the loop corresponds to a SIMD 498 /// element. 499 virtual Value *getBroadcastInstrs(Value *V); 500 501 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 502 /// to each vector element of Val. The sequence starts at StartIndex. 503 /// \p Opcode is relevant for FP induction variable. 504 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 505 Instruction::BinaryOps Opcode = 506 Instruction::BinaryOpsEnd); 507 508 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 509 /// variable on which to base the steps, \p Step is the size of the step, and 510 /// \p EntryVal is the value from the original loop that maps to the steps. 511 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 512 /// can be a truncate instruction). 513 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 514 const InductionDescriptor &ID); 515 516 /// Create a vector induction phi node based on an existing scalar one. \p 517 /// EntryVal is the value from the original loop that maps to the vector phi 518 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 519 /// truncate instruction, instead of widening the original IV, we widen a 520 /// version of the IV truncated to \p EntryVal's type. 521 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 522 Value *Step, Instruction *EntryVal); 523 524 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 525 /// is provided, the integer induction variable will first be truncated to 526 /// the corresponding type. 527 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 528 529 /// Returns true if an instruction \p I should be scalarized instead of 530 /// vectorized for the chosen vectorization factor. 531 bool shouldScalarizeInstruction(Instruction *I) const; 532 533 /// Returns true if we should generate a scalar version of \p IV. 534 bool needsScalarInduction(Instruction *IV) const; 535 536 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 537 /// vector or scalar value on-demand if one is not yet available. When 538 /// vectorizing a loop, we visit the definition of an instruction before its 539 /// uses. When visiting the definition, we either vectorize or scalarize the 540 /// instruction, creating an entry for it in the corresponding map. (In some 541 /// cases, such as induction variables, we will create both vector and scalar 542 /// entries.) Then, as we encounter uses of the definition, we derive values 543 /// for each scalar or vector use unless such a value is already available. 544 /// For example, if we scalarize a definition and one of its uses is vector, 545 /// we build the required vector on-demand with an insertelement sequence 546 /// when visiting the use. Otherwise, if the use is scalar, we can use the 547 /// existing scalar definition. 548 /// 549 /// Return a value in the new loop corresponding to \p V from the original 550 /// loop at unroll index \p Part. If the value has already been vectorized, 551 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 552 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 553 /// a new vector value on-demand by inserting the scalar values into a vector 554 /// with an insertelement sequence. If the value has been neither vectorized 555 /// nor scalarized, it must be loop invariant, so we simply broadcast the 556 /// value into a vector. 557 Value *getOrCreateVectorValue(Value *V, unsigned Part); 558 559 /// Return a value in the new loop corresponding to \p V from the original 560 /// loop at unroll index \p Part and vector index \p Lane. If the value has 561 /// been vectorized but not scalarized, the necessary extractelement 562 /// instruction will be generated. 563 Value *getOrCreateScalarValue(Value *V, unsigned Part, unsigned Lane); 564 565 /// Try to vectorize the interleaved access group that \p Instr belongs to. 566 void vectorizeInterleaveGroup(Instruction *Instr); 567 568 /// Generate a shuffle sequence that will reverse the vector Vec. 569 virtual Value *reverseVector(Value *Vec); 570 571 /// Returns (and creates if needed) the original loop trip count. 572 Value *getOrCreateTripCount(Loop *NewLoop); 573 574 /// Returns (and creates if needed) the trip count of the widened loop. 575 Value *getOrCreateVectorTripCount(Loop *NewLoop); 576 577 /// Emit a bypass check to see if the trip count would overflow, or we 578 /// wouldn't have enough iterations to execute one vector loop. 579 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 580 /// Emit a bypass check to see if the vector trip count is nonzero. 581 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 582 /// Emit a bypass check to see if all of the SCEV assumptions we've 583 /// had to make are correct. 584 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 585 /// Emit bypass checks to check any memory assumptions we may have made. 586 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 587 588 /// Add additional metadata to \p To that was not present on \p Orig. 589 /// 590 /// Currently this is used to add the noalias annotations based on the 591 /// inserted memchecks. Use this for instructions that are *cloned* into the 592 /// vector loop. 593 void addNewMetadata(Instruction *To, const Instruction *Orig); 594 595 /// Add metadata from one instruction to another. 596 /// 597 /// This includes both the original MDs from \p From and additional ones (\see 598 /// addNewMetadata). Use this for *newly created* instructions in the vector 599 /// loop. 600 void addMetadata(Instruction *To, Instruction *From); 601 602 /// \brief Similar to the previous function but it adds the metadata to a 603 /// vector of instructions. 604 void addMetadata(ArrayRef<Value *> To, Instruction *From); 605 606 /// \brief Set the debug location in the builder using the debug location in 607 /// the instruction. 608 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 609 610 /// This is a helper class for maintaining vectorization state. It's used for 611 /// mapping values from the original loop to their corresponding values in 612 /// the new loop. Two mappings are maintained: one for vectorized values and 613 /// one for scalarized values. Vectorized values are represented with UF 614 /// vector values in the new loop, and scalarized values are represented with 615 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 616 /// vectorization factors, respectively. 617 /// 618 /// Entries can be added to either map with setVectorValue and setScalarValue, 619 /// which assert that an entry was not already added before. If an entry is to 620 /// replace an existing one, call resetVectorValue. This is currently needed 621 /// to modify the mapped values during "fix-up" operations that occur once the 622 /// first phase of widening is complete. These operations include type 623 /// truncation and the second phase of recurrence widening. 624 /// 625 /// Entries from either map can be retrieved using the getVectorValue and 626 /// getScalarValue functions, which assert that the desired value exists. 627 628 struct ValueMap { 629 630 /// Construct an empty map with the given unroll and vectorization factors. 631 ValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} 632 633 /// \return True if the map has any vector entry for \p Key. 634 bool hasAnyVectorValue(Value *Key) const { 635 return VectorMapStorage.count(Key); 636 } 637 638 /// \return True if the map has a vector entry for \p Key and \p Part. 639 bool hasVectorValue(Value *Key, unsigned Part) const { 640 assert(Part < UF && "Queried Vector Part is too large."); 641 if (!hasAnyVectorValue(Key)) 642 return false; 643 const VectorParts &Entry = VectorMapStorage.find(Key)->second; 644 assert(Entry.size() == UF && "VectorParts has wrong dimensions."); 645 return Entry[Part] != nullptr; 646 } 647 648 /// \return True if the map has any scalar entry for \p Key. 649 bool hasAnyScalarValue(Value *Key) const { 650 return ScalarMapStorage.count(Key); 651 } 652 653 /// \return True if the map has a scalar entry for \p Key, \p Part and 654 /// \p Part. 655 bool hasScalarValue(Value *Key, unsigned Part, unsigned Lane) const { 656 assert(Part < UF && "Queried Scalar Part is too large."); 657 assert(Lane < VF && "Queried Scalar Lane is too large."); 658 if (!hasAnyScalarValue(Key)) 659 return false; 660 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; 661 assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); 662 assert(Entry[Part].size() == VF && "ScalarParts has wrong dimensions."); 663 return Entry[Part][Lane] != nullptr; 664 } 665 666 /// Retrieve the existing vector value that corresponds to \p Key and 667 /// \p Part. 668 Value *getVectorValue(Value *Key, unsigned Part) { 669 assert(hasVectorValue(Key, Part) && "Getting non-existent value."); 670 return VectorMapStorage[Key][Part]; 671 } 672 673 /// Retrieve the existing scalar value that corresponds to \p Key, \p Part 674 /// and \p Lane. 675 Value *getScalarValue(Value *Key, unsigned Part, unsigned Lane) { 676 assert(hasScalarValue(Key, Part, Lane) && "Getting non-existent value."); 677 return ScalarMapStorage[Key][Part][Lane]; 678 } 679 680 /// Set a vector value associated with \p Key and \p Part. Assumes such a 681 /// value is not already set. If it is, use resetVectorValue() instead. 682 void setVectorValue(Value *Key, unsigned Part, Value *Vector) { 683 assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); 684 if (!VectorMapStorage.count(Key)) { 685 VectorParts Entry(UF); 686 VectorMapStorage[Key] = Entry; 687 } 688 VectorMapStorage[Key][Part] = Vector; 689 } 690 691 /// Set a scalar value associated with \p Key for \p Part and \p Lane. 692 /// Assumes such a value is not already set. 693 void setScalarValue(Value *Key, unsigned Part, unsigned Lane, 694 Value *Scalar) { 695 assert(!hasScalarValue(Key, Part, Lane) && "Scalar value already set"); 696 if (!ScalarMapStorage.count(Key)) { 697 ScalarParts Entry(UF); 698 for (unsigned Part = 0; Part < UF; ++Part) 699 Entry[Part].resize(VF, nullptr); 700 // TODO: Consider storing uniform values only per-part, as they occupy 701 // lane 0 only, keeping the other VF-1 redundant entries null. 702 ScalarMapStorage[Key] = Entry; 703 } 704 ScalarMapStorage[Key][Part][Lane] = Scalar; 705 } 706 707 /// Reset the vector value associated with \p Key for the given \p Part. 708 /// This function can be used to update values that have already been 709 /// vectorized. This is the case for "fix-up" operations including type 710 /// truncation and the second phase of recurrence vectorization. 711 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { 712 assert(hasVectorValue(Key, Part) && "Vector value not set for part"); 713 VectorMapStorage[Key][Part] = Vector; 714 } 715 716 private: 717 /// The unroll factor. Each entry in the vector map contains UF vector 718 /// values. 719 unsigned UF; 720 721 /// The vectorization factor. Each entry in the scalar map contains UF x VF 722 /// scalar values. 723 unsigned VF; 724 725 /// The vector and scalar map storage. We use std::map and not DenseMap 726 /// because insertions to DenseMap invalidate its iterators. 727 std::map<Value *, VectorParts> VectorMapStorage; 728 std::map<Value *, ScalarParts> ScalarMapStorage; 729 }; 730 731 /// The original loop. 732 Loop *OrigLoop; 733 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 734 /// dynamic knowledge to simplify SCEV expressions and converts them to a 735 /// more usable form. 736 PredicatedScalarEvolution &PSE; 737 /// Loop Info. 738 LoopInfo *LI; 739 /// Dominator Tree. 740 DominatorTree *DT; 741 /// Alias Analysis. 742 AliasAnalysis *AA; 743 /// Target Library Info. 744 const TargetLibraryInfo *TLI; 745 /// Target Transform Info. 746 const TargetTransformInfo *TTI; 747 /// Assumption Cache. 748 AssumptionCache *AC; 749 /// Interface to emit optimization remarks. 750 OptimizationRemarkEmitter *ORE; 751 752 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 753 /// used. 754 /// 755 /// This is currently only used to add no-alias metadata based on the 756 /// memchecks. The actually versioning is performed manually. 757 std::unique_ptr<LoopVersioning> LVer; 758 759 /// The vectorization SIMD factor to use. Each vector will have this many 760 /// vector elements. 761 unsigned VF; 762 763 protected: 764 /// The vectorization unroll factor to use. Each scalar is vectorized to this 765 /// many different vector instructions. 766 unsigned UF; 767 768 /// The builder that we use 769 IRBuilder<> Builder; 770 771 // --- Vectorization state --- 772 773 /// The vector-loop preheader. 774 BasicBlock *LoopVectorPreHeader; 775 /// The scalar-loop preheader. 776 BasicBlock *LoopScalarPreHeader; 777 /// Middle Block between the vector and the scalar. 778 BasicBlock *LoopMiddleBlock; 779 /// The ExitBlock of the scalar loop. 780 BasicBlock *LoopExitBlock; 781 /// The vector loop body. 782 BasicBlock *LoopVectorBody; 783 /// The scalar loop body. 784 BasicBlock *LoopScalarBody; 785 /// A list of all bypass blocks. The first block is the entry of the loop. 786 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 787 788 /// The new Induction variable which was added to the new block. 789 PHINode *Induction; 790 /// The induction variable of the old basic block. 791 PHINode *OldInduction; 792 793 /// Maps values from the original loop to their corresponding values in the 794 /// vectorized loop. A key value can map to either vector values, scalar 795 /// values or both kinds of values, depending on whether the key was 796 /// vectorized and scalarized. 797 ValueMap VectorLoopValueMap; 798 799 /// Store instructions that should be predicated, as a pair 800 /// <StoreInst, Predicate> 801 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 802 EdgeMaskCacheTy EdgeMaskCache; 803 BlockMaskCacheTy BlockMaskCache; 804 /// Trip count of the original loop. 805 Value *TripCount; 806 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 807 Value *VectorTripCount; 808 809 /// The legality analysis. 810 LoopVectorizationLegality *Legal; 811 812 /// The profitablity analysis. 813 LoopVectorizationCostModel *Cost; 814 815 // Record whether runtime checks are added. 816 bool AddedSafetyChecks; 817 818 // Holds the end values for each induction variable. We save the end values 819 // so we can later fix-up the external users of the induction variables. 820 DenseMap<PHINode *, Value *> IVEndValues; 821 }; 822 823 class InnerLoopUnroller : public InnerLoopVectorizer { 824 public: 825 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 826 LoopInfo *LI, DominatorTree *DT, 827 const TargetLibraryInfo *TLI, 828 const TargetTransformInfo *TTI, AssumptionCache *AC, 829 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 830 LoopVectorizationLegality *LVL, 831 LoopVectorizationCostModel *CM) 832 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 833 UnrollFactor, LVL, CM) {} 834 835 private: 836 void vectorizeMemoryInstruction(Instruction *Instr) override; 837 Value *getBroadcastInstrs(Value *V) override; 838 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 839 Instruction::BinaryOps Opcode = 840 Instruction::BinaryOpsEnd) override; 841 Value *reverseVector(Value *Vec) override; 842 }; 843 844 /// \brief Look for a meaningful debug location on the instruction or it's 845 /// operands. 846 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 847 if (!I) 848 return I; 849 850 DebugLoc Empty; 851 if (I->getDebugLoc() != Empty) 852 return I; 853 854 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 855 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 856 if (OpInst->getDebugLoc() != Empty) 857 return OpInst; 858 } 859 860 return I; 861 } 862 863 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 864 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 865 const DILocation *DIL = Inst->getDebugLoc(); 866 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 867 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 868 else 869 B.SetCurrentDebugLocation(DIL); 870 } else 871 B.SetCurrentDebugLocation(DebugLoc()); 872 } 873 874 #ifndef NDEBUG 875 /// \return string containing a file name and a line # for the given loop. 876 static std::string getDebugLocString(const Loop *L) { 877 std::string Result; 878 if (L) { 879 raw_string_ostream OS(Result); 880 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 881 LoopDbgLoc.print(OS); 882 else 883 // Just print the module name. 884 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 885 OS.flush(); 886 } 887 return Result; 888 } 889 #endif 890 891 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 892 const Instruction *Orig) { 893 // If the loop was versioned with memchecks, add the corresponding no-alias 894 // metadata. 895 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 896 LVer->annotateInstWithNoAlias(To, Orig); 897 } 898 899 void InnerLoopVectorizer::addMetadata(Instruction *To, 900 Instruction *From) { 901 propagateMetadata(To, From); 902 addNewMetadata(To, From); 903 } 904 905 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 906 Instruction *From) { 907 for (Value *V : To) { 908 if (Instruction *I = dyn_cast<Instruction>(V)) 909 addMetadata(I, From); 910 } 911 } 912 913 /// \brief The group of interleaved loads/stores sharing the same stride and 914 /// close to each other. 915 /// 916 /// Each member in this group has an index starting from 0, and the largest 917 /// index should be less than interleaved factor, which is equal to the absolute 918 /// value of the access's stride. 919 /// 920 /// E.g. An interleaved load group of factor 4: 921 /// for (unsigned i = 0; i < 1024; i+=4) { 922 /// a = A[i]; // Member of index 0 923 /// b = A[i+1]; // Member of index 1 924 /// d = A[i+3]; // Member of index 3 925 /// ... 926 /// } 927 /// 928 /// An interleaved store group of factor 4: 929 /// for (unsigned i = 0; i < 1024; i+=4) { 930 /// ... 931 /// A[i] = a; // Member of index 0 932 /// A[i+1] = b; // Member of index 1 933 /// A[i+2] = c; // Member of index 2 934 /// A[i+3] = d; // Member of index 3 935 /// } 936 /// 937 /// Note: the interleaved load group could have gaps (missing members), but 938 /// the interleaved store group doesn't allow gaps. 939 class InterleaveGroup { 940 public: 941 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 942 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 943 assert(Align && "The alignment should be non-zero"); 944 945 Factor = std::abs(Stride); 946 assert(Factor > 1 && "Invalid interleave factor"); 947 948 Reverse = Stride < 0; 949 Members[0] = Instr; 950 } 951 952 bool isReverse() const { return Reverse; } 953 unsigned getFactor() const { return Factor; } 954 unsigned getAlignment() const { return Align; } 955 unsigned getNumMembers() const { return Members.size(); } 956 957 /// \brief Try to insert a new member \p Instr with index \p Index and 958 /// alignment \p NewAlign. The index is related to the leader and it could be 959 /// negative if it is the new leader. 960 /// 961 /// \returns false if the instruction doesn't belong to the group. 962 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 963 assert(NewAlign && "The new member's alignment should be non-zero"); 964 965 int Key = Index + SmallestKey; 966 967 // Skip if there is already a member with the same index. 968 if (Members.count(Key)) 969 return false; 970 971 if (Key > LargestKey) { 972 // The largest index is always less than the interleave factor. 973 if (Index >= static_cast<int>(Factor)) 974 return false; 975 976 LargestKey = Key; 977 } else if (Key < SmallestKey) { 978 // The largest index is always less than the interleave factor. 979 if (LargestKey - Key >= static_cast<int>(Factor)) 980 return false; 981 982 SmallestKey = Key; 983 } 984 985 // It's always safe to select the minimum alignment. 986 Align = std::min(Align, NewAlign); 987 Members[Key] = Instr; 988 return true; 989 } 990 991 /// \brief Get the member with the given index \p Index 992 /// 993 /// \returns nullptr if contains no such member. 994 Instruction *getMember(unsigned Index) const { 995 int Key = SmallestKey + Index; 996 if (!Members.count(Key)) 997 return nullptr; 998 999 return Members.find(Key)->second; 1000 } 1001 1002 /// \brief Get the index for the given member. Unlike the key in the member 1003 /// map, the index starts from 0. 1004 unsigned getIndex(Instruction *Instr) const { 1005 for (auto I : Members) 1006 if (I.second == Instr) 1007 return I.first - SmallestKey; 1008 1009 llvm_unreachable("InterleaveGroup contains no such member"); 1010 } 1011 1012 Instruction *getInsertPos() const { return InsertPos; } 1013 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 1014 1015 private: 1016 unsigned Factor; // Interleave Factor. 1017 bool Reverse; 1018 unsigned Align; 1019 DenseMap<int, Instruction *> Members; 1020 int SmallestKey; 1021 int LargestKey; 1022 1023 // To avoid breaking dependences, vectorized instructions of an interleave 1024 // group should be inserted at either the first load or the last store in 1025 // program order. 1026 // 1027 // E.g. %even = load i32 // Insert Position 1028 // %add = add i32 %even // Use of %even 1029 // %odd = load i32 1030 // 1031 // store i32 %even 1032 // %odd = add i32 // Def of %odd 1033 // store i32 %odd // Insert Position 1034 Instruction *InsertPos; 1035 }; 1036 1037 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1038 /// 1039 /// Use this class to analyze interleaved accesses only when we can vectorize 1040 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1041 /// on interleaved accesses is unsafe. 1042 /// 1043 /// The analysis collects interleave groups and records the relationships 1044 /// between the member and the group in a map. 1045 class InterleavedAccessInfo { 1046 public: 1047 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1048 DominatorTree *DT, LoopInfo *LI) 1049 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1050 RequiresScalarEpilogue(false) {} 1051 1052 ~InterleavedAccessInfo() { 1053 SmallSet<InterleaveGroup *, 4> DelSet; 1054 // Avoid releasing a pointer twice. 1055 for (auto &I : InterleaveGroupMap) 1056 DelSet.insert(I.second); 1057 for (auto *Ptr : DelSet) 1058 delete Ptr; 1059 } 1060 1061 /// \brief Analyze the interleaved accesses and collect them in interleave 1062 /// groups. Substitute symbolic strides using \p Strides. 1063 void analyzeInterleaving(const ValueToValueMap &Strides); 1064 1065 /// \brief Check if \p Instr belongs to any interleave group. 1066 bool isInterleaved(Instruction *Instr) const { 1067 return InterleaveGroupMap.count(Instr); 1068 } 1069 1070 /// \brief Return the maximum interleave factor of all interleaved groups. 1071 unsigned getMaxInterleaveFactor() const { 1072 unsigned MaxFactor = 1; 1073 for (auto &Entry : InterleaveGroupMap) 1074 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1075 return MaxFactor; 1076 } 1077 1078 /// \brief Get the interleave group that \p Instr belongs to. 1079 /// 1080 /// \returns nullptr if doesn't have such group. 1081 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1082 if (InterleaveGroupMap.count(Instr)) 1083 return InterleaveGroupMap.find(Instr)->second; 1084 return nullptr; 1085 } 1086 1087 /// \brief Returns true if an interleaved group that may access memory 1088 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1089 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1090 1091 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1092 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1093 1094 private: 1095 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1096 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1097 /// The interleaved access analysis can also add new predicates (for example 1098 /// by versioning strides of pointers). 1099 PredicatedScalarEvolution &PSE; 1100 Loop *TheLoop; 1101 DominatorTree *DT; 1102 LoopInfo *LI; 1103 const LoopAccessInfo *LAI; 1104 1105 /// True if the loop may contain non-reversed interleaved groups with 1106 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1107 /// out-of-bounds by executing at least one scalar epilogue iteration. 1108 bool RequiresScalarEpilogue; 1109 1110 /// Holds the relationships between the members and the interleave group. 1111 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1112 1113 /// Holds dependences among the memory accesses in the loop. It maps a source 1114 /// access to a set of dependent sink accesses. 1115 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1116 1117 /// \brief The descriptor for a strided memory access. 1118 struct StrideDescriptor { 1119 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1120 unsigned Align) 1121 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1122 1123 StrideDescriptor() = default; 1124 1125 // The access's stride. It is negative for a reverse access. 1126 int64_t Stride = 0; 1127 const SCEV *Scev = nullptr; // The scalar expression of this access 1128 uint64_t Size = 0; // The size of the memory object. 1129 unsigned Align = 0; // The alignment of this access. 1130 }; 1131 1132 /// \brief A type for holding instructions and their stride descriptors. 1133 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1134 1135 /// \brief Create a new interleave group with the given instruction \p Instr, 1136 /// stride \p Stride and alignment \p Align. 1137 /// 1138 /// \returns the newly created interleave group. 1139 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1140 unsigned Align) { 1141 assert(!InterleaveGroupMap.count(Instr) && 1142 "Already in an interleaved access group"); 1143 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1144 return InterleaveGroupMap[Instr]; 1145 } 1146 1147 /// \brief Release the group and remove all the relationships. 1148 void releaseGroup(InterleaveGroup *Group) { 1149 for (unsigned i = 0; i < Group->getFactor(); i++) 1150 if (Instruction *Member = Group->getMember(i)) 1151 InterleaveGroupMap.erase(Member); 1152 1153 delete Group; 1154 } 1155 1156 /// \brief Collect all the accesses with a constant stride in program order. 1157 void collectConstStrideAccesses( 1158 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1159 const ValueToValueMap &Strides); 1160 1161 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1162 static bool isStrided(int Stride) { 1163 unsigned Factor = std::abs(Stride); 1164 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1165 } 1166 1167 /// \brief Returns true if \p BB is a predicated block. 1168 bool isPredicated(BasicBlock *BB) const { 1169 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1170 } 1171 1172 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1173 bool areDependencesValid() const { 1174 return LAI && LAI->getDepChecker().getDependences(); 1175 } 1176 1177 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1178 /// necessary, when constructing interleaved groups. 1179 /// 1180 /// \p A must precede \p B in program order. We return false if reordering is 1181 /// not necessary or is prevented because \p A and \p B may be dependent. 1182 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1183 StrideEntry *B) const { 1184 1185 // Code motion for interleaved accesses can potentially hoist strided loads 1186 // and sink strided stores. The code below checks the legality of the 1187 // following two conditions: 1188 // 1189 // 1. Potentially moving a strided load (B) before any store (A) that 1190 // precedes B, or 1191 // 1192 // 2. Potentially moving a strided store (A) after any load or store (B) 1193 // that A precedes. 1194 // 1195 // It's legal to reorder A and B if we know there isn't a dependence from A 1196 // to B. Note that this determination is conservative since some 1197 // dependences could potentially be reordered safely. 1198 1199 // A is potentially the source of a dependence. 1200 auto *Src = A->first; 1201 auto SrcDes = A->second; 1202 1203 // B is potentially the sink of a dependence. 1204 auto *Sink = B->first; 1205 auto SinkDes = B->second; 1206 1207 // Code motion for interleaved accesses can't violate WAR dependences. 1208 // Thus, reordering is legal if the source isn't a write. 1209 if (!Src->mayWriteToMemory()) 1210 return true; 1211 1212 // At least one of the accesses must be strided. 1213 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1214 return true; 1215 1216 // If dependence information is not available from LoopAccessInfo, 1217 // conservatively assume the instructions can't be reordered. 1218 if (!areDependencesValid()) 1219 return false; 1220 1221 // If we know there is a dependence from source to sink, assume the 1222 // instructions can't be reordered. Otherwise, reordering is legal. 1223 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1224 } 1225 1226 /// \brief Collect the dependences from LoopAccessInfo. 1227 /// 1228 /// We process the dependences once during the interleaved access analysis to 1229 /// enable constant-time dependence queries. 1230 void collectDependences() { 1231 if (!areDependencesValid()) 1232 return; 1233 auto *Deps = LAI->getDepChecker().getDependences(); 1234 for (auto Dep : *Deps) 1235 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1236 } 1237 }; 1238 1239 /// Utility class for getting and setting loop vectorizer hints in the form 1240 /// of loop metadata. 1241 /// This class keeps a number of loop annotations locally (as member variables) 1242 /// and can, upon request, write them back as metadata on the loop. It will 1243 /// initially scan the loop for existing metadata, and will update the local 1244 /// values based on information in the loop. 1245 /// We cannot write all values to metadata, as the mere presence of some info, 1246 /// for example 'force', means a decision has been made. So, we need to be 1247 /// careful NOT to add them if the user hasn't specifically asked so. 1248 class LoopVectorizeHints { 1249 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1250 1251 /// Hint - associates name and validation with the hint value. 1252 struct Hint { 1253 const char *Name; 1254 unsigned Value; // This may have to change for non-numeric values. 1255 HintKind Kind; 1256 1257 Hint(const char *Name, unsigned Value, HintKind Kind) 1258 : Name(Name), Value(Value), Kind(Kind) {} 1259 1260 bool validate(unsigned Val) { 1261 switch (Kind) { 1262 case HK_WIDTH: 1263 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1264 case HK_UNROLL: 1265 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1266 case HK_FORCE: 1267 return (Val <= 1); 1268 } 1269 return false; 1270 } 1271 }; 1272 1273 /// Vectorization width. 1274 Hint Width; 1275 /// Vectorization interleave factor. 1276 Hint Interleave; 1277 /// Vectorization forced 1278 Hint Force; 1279 1280 /// Return the loop metadata prefix. 1281 static StringRef Prefix() { return "llvm.loop."; } 1282 1283 /// True if there is any unsafe math in the loop. 1284 bool PotentiallyUnsafe; 1285 1286 public: 1287 enum ForceKind { 1288 FK_Undefined = -1, ///< Not selected. 1289 FK_Disabled = 0, ///< Forcing disabled. 1290 FK_Enabled = 1, ///< Forcing enabled. 1291 }; 1292 1293 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1294 OptimizationRemarkEmitter &ORE) 1295 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1296 HK_WIDTH), 1297 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1298 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1299 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1300 // Populate values with existing loop metadata. 1301 getHintsFromMetadata(); 1302 1303 // force-vector-interleave overrides DisableInterleaving. 1304 if (VectorizerParams::isInterleaveForced()) 1305 Interleave.Value = VectorizerParams::VectorizationInterleave; 1306 1307 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1308 << "LV: Interleaving disabled by the pass manager\n"); 1309 } 1310 1311 /// Mark the loop L as already vectorized by setting the width to 1. 1312 void setAlreadyVectorized() { 1313 Width.Value = Interleave.Value = 1; 1314 Hint Hints[] = {Width, Interleave}; 1315 writeHintsToMetadata(Hints); 1316 } 1317 1318 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1319 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1320 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1321 emitRemarkWithHints(); 1322 return false; 1323 } 1324 1325 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1326 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1327 emitRemarkWithHints(); 1328 return false; 1329 } 1330 1331 if (getWidth() == 1 && getInterleave() == 1) { 1332 // FIXME: Add a separate metadata to indicate when the loop has already 1333 // been vectorized instead of setting width and count to 1. 1334 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1335 // FIXME: Add interleave.disable metadata. This will allow 1336 // vectorize.disable to be used without disabling the pass and errors 1337 // to differentiate between disabled vectorization and a width of 1. 1338 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1339 "AllDisabled", L->getStartLoc(), 1340 L->getHeader()) 1341 << "loop not vectorized: vectorization and interleaving are " 1342 "explicitly disabled, or vectorize width and interleave " 1343 "count are both set to 1"); 1344 return false; 1345 } 1346 1347 return true; 1348 } 1349 1350 /// Dumps all the hint information. 1351 void emitRemarkWithHints() const { 1352 using namespace ore; 1353 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1354 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1355 TheLoop->getStartLoc(), 1356 TheLoop->getHeader()) 1357 << "loop not vectorized: vectorization is explicitly disabled"); 1358 else { 1359 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1360 TheLoop->getStartLoc(), TheLoop->getHeader()); 1361 R << "loop not vectorized"; 1362 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1363 R << " (Force=" << NV("Force", true); 1364 if (Width.Value != 0) 1365 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1366 if (Interleave.Value != 0) 1367 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1368 R << ")"; 1369 } 1370 ORE.emit(R); 1371 } 1372 } 1373 1374 unsigned getWidth() const { return Width.Value; } 1375 unsigned getInterleave() const { return Interleave.Value; } 1376 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1377 1378 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1379 /// pass name to force the frontend to print the diagnostic. 1380 const char *vectorizeAnalysisPassName() const { 1381 if (getWidth() == 1) 1382 return LV_NAME; 1383 if (getForce() == LoopVectorizeHints::FK_Disabled) 1384 return LV_NAME; 1385 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1386 return LV_NAME; 1387 return OptimizationRemarkAnalysis::AlwaysPrint; 1388 } 1389 1390 bool allowReordering() const { 1391 // When enabling loop hints are provided we allow the vectorizer to change 1392 // the order of operations that is given by the scalar loop. This is not 1393 // enabled by default because can be unsafe or inefficient. For example, 1394 // reordering floating-point operations will change the way round-off 1395 // error accumulates in the loop. 1396 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1397 } 1398 1399 bool isPotentiallyUnsafe() const { 1400 // Avoid FP vectorization if the target is unsure about proper support. 1401 // This may be related to the SIMD unit in the target not handling 1402 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1403 // Otherwise, a sequence of vectorized loops, even without reduction, 1404 // could lead to different end results on the destination vectors. 1405 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1406 } 1407 1408 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1409 1410 private: 1411 /// Find hints specified in the loop metadata and update local values. 1412 void getHintsFromMetadata() { 1413 MDNode *LoopID = TheLoop->getLoopID(); 1414 if (!LoopID) 1415 return; 1416 1417 // First operand should refer to the loop id itself. 1418 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1419 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1420 1421 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1422 const MDString *S = nullptr; 1423 SmallVector<Metadata *, 4> Args; 1424 1425 // The expected hint is either a MDString or a MDNode with the first 1426 // operand a MDString. 1427 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1428 if (!MD || MD->getNumOperands() == 0) 1429 continue; 1430 S = dyn_cast<MDString>(MD->getOperand(0)); 1431 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1432 Args.push_back(MD->getOperand(i)); 1433 } else { 1434 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1435 assert(Args.size() == 0 && "too many arguments for MDString"); 1436 } 1437 1438 if (!S) 1439 continue; 1440 1441 // Check if the hint starts with the loop metadata prefix. 1442 StringRef Name = S->getString(); 1443 if (Args.size() == 1) 1444 setHint(Name, Args[0]); 1445 } 1446 } 1447 1448 /// Checks string hint with one operand and set value if valid. 1449 void setHint(StringRef Name, Metadata *Arg) { 1450 if (!Name.startswith(Prefix())) 1451 return; 1452 Name = Name.substr(Prefix().size(), StringRef::npos); 1453 1454 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1455 if (!C) 1456 return; 1457 unsigned Val = C->getZExtValue(); 1458 1459 Hint *Hints[] = {&Width, &Interleave, &Force}; 1460 for (auto H : Hints) { 1461 if (Name == H->Name) { 1462 if (H->validate(Val)) 1463 H->Value = Val; 1464 else 1465 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1466 break; 1467 } 1468 } 1469 } 1470 1471 /// Create a new hint from name / value pair. 1472 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1473 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1474 Metadata *MDs[] = {MDString::get(Context, Name), 1475 ConstantAsMetadata::get( 1476 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1477 return MDNode::get(Context, MDs); 1478 } 1479 1480 /// Matches metadata with hint name. 1481 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1482 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1483 if (!Name) 1484 return false; 1485 1486 for (auto H : HintTypes) 1487 if (Name->getString().endswith(H.Name)) 1488 return true; 1489 return false; 1490 } 1491 1492 /// Sets current hints into loop metadata, keeping other values intact. 1493 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1494 if (HintTypes.size() == 0) 1495 return; 1496 1497 // Reserve the first element to LoopID (see below). 1498 SmallVector<Metadata *, 4> MDs(1); 1499 // If the loop already has metadata, then ignore the existing operands. 1500 MDNode *LoopID = TheLoop->getLoopID(); 1501 if (LoopID) { 1502 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1503 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1504 // If node in update list, ignore old value. 1505 if (!matchesHintMetadataName(Node, HintTypes)) 1506 MDs.push_back(Node); 1507 } 1508 } 1509 1510 // Now, add the missing hints. 1511 for (auto H : HintTypes) 1512 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1513 1514 // Replace current metadata node with new one. 1515 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1516 MDNode *NewLoopID = MDNode::get(Context, MDs); 1517 // Set operand 0 to refer to the loop id itself. 1518 NewLoopID->replaceOperandWith(0, NewLoopID); 1519 1520 TheLoop->setLoopID(NewLoopID); 1521 } 1522 1523 /// The loop these hints belong to. 1524 const Loop *TheLoop; 1525 1526 /// Interface to emit optimization remarks. 1527 OptimizationRemarkEmitter &ORE; 1528 }; 1529 1530 static void emitMissedWarning(Function *F, Loop *L, 1531 const LoopVectorizeHints &LH, 1532 OptimizationRemarkEmitter *ORE) { 1533 LH.emitRemarkWithHints(); 1534 1535 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1536 if (LH.getWidth() != 1) 1537 ORE->emit(DiagnosticInfoOptimizationFailure( 1538 DEBUG_TYPE, "FailedRequestedVectorization", 1539 L->getStartLoc(), L->getHeader()) 1540 << "loop not vectorized: " 1541 << "failed explicitly specified loop vectorization"); 1542 else if (LH.getInterleave() != 1) 1543 ORE->emit(DiagnosticInfoOptimizationFailure( 1544 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1545 L->getHeader()) 1546 << "loop not interleaved: " 1547 << "failed explicitly specified loop interleaving"); 1548 } 1549 } 1550 1551 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1552 /// to what vectorization factor. 1553 /// This class does not look at the profitability of vectorization, only the 1554 /// legality. This class has two main kinds of checks: 1555 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1556 /// will change the order of memory accesses in a way that will change the 1557 /// correctness of the program. 1558 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1559 /// checks for a number of different conditions, such as the availability of a 1560 /// single induction variable, that all types are supported and vectorize-able, 1561 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1562 /// This class is also used by InnerLoopVectorizer for identifying 1563 /// induction variable and the different reduction variables. 1564 class LoopVectorizationLegality { 1565 public: 1566 LoopVectorizationLegality( 1567 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1568 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1569 const TargetTransformInfo *TTI, 1570 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1571 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1572 LoopVectorizeHints *H) 1573 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1574 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1575 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1576 Requirements(R), Hints(H) {} 1577 1578 /// ReductionList contains the reduction descriptors for all 1579 /// of the reductions that were found in the loop. 1580 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1581 1582 /// InductionList saves induction variables and maps them to the 1583 /// induction descriptor. 1584 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1585 1586 /// RecurrenceSet contains the phi nodes that are recurrences other than 1587 /// inductions and reductions. 1588 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1589 1590 /// Returns true if it is legal to vectorize this loop. 1591 /// This does not mean that it is profitable to vectorize this 1592 /// loop, only that it is legal to do so. 1593 bool canVectorize(); 1594 1595 /// Returns the primary induction variable. 1596 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1597 1598 /// Returns the reduction variables found in the loop. 1599 ReductionList *getReductionVars() { return &Reductions; } 1600 1601 /// Returns the induction variables found in the loop. 1602 InductionList *getInductionVars() { return &Inductions; } 1603 1604 /// Return the first-order recurrences found in the loop. 1605 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1606 1607 /// Return the set of instructions to sink to handle first-order recurrences. 1608 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1609 1610 /// Returns the widest induction type. 1611 Type *getWidestInductionType() { return WidestIndTy; } 1612 1613 /// Returns True if V is an induction variable in this loop. 1614 bool isInductionVariable(const Value *V); 1615 1616 /// Returns True if PN is a reduction variable in this loop. 1617 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1618 1619 /// Returns True if Phi is a first-order recurrence in this loop. 1620 bool isFirstOrderRecurrence(const PHINode *Phi); 1621 1622 /// Return true if the block BB needs to be predicated in order for the loop 1623 /// to be vectorized. 1624 bool blockNeedsPredication(BasicBlock *BB); 1625 1626 /// Check if this pointer is consecutive when vectorizing. This happens 1627 /// when the last index of the GEP is the induction variable, or that the 1628 /// pointer itself is an induction variable. 1629 /// This check allows us to vectorize A[idx] into a wide load/store. 1630 /// Returns: 1631 /// 0 - Stride is unknown or non-consecutive. 1632 /// 1 - Address is consecutive. 1633 /// -1 - Address is consecutive, and decreasing. 1634 int isConsecutivePtr(Value *Ptr); 1635 1636 /// Returns true if the value V is uniform within the loop. 1637 bool isUniform(Value *V); 1638 1639 /// Returns the information that we collected about runtime memory check. 1640 const RuntimePointerChecking *getRuntimePointerChecking() const { 1641 return LAI->getRuntimePointerChecking(); 1642 } 1643 1644 const LoopAccessInfo *getLAI() const { return LAI; } 1645 1646 /// \brief Check if \p Instr belongs to any interleaved access group. 1647 bool isAccessInterleaved(Instruction *Instr) { 1648 return InterleaveInfo.isInterleaved(Instr); 1649 } 1650 1651 /// \brief Return the maximum interleave factor of all interleaved groups. 1652 unsigned getMaxInterleaveFactor() const { 1653 return InterleaveInfo.getMaxInterleaveFactor(); 1654 } 1655 1656 /// \brief Get the interleaved access group that \p Instr belongs to. 1657 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1658 return InterleaveInfo.getInterleaveGroup(Instr); 1659 } 1660 1661 /// \brief Returns true if an interleaved group requires a scalar iteration 1662 /// to handle accesses with gaps. 1663 bool requiresScalarEpilogue() const { 1664 return InterleaveInfo.requiresScalarEpilogue(); 1665 } 1666 1667 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1668 1669 bool hasStride(Value *V) { return LAI->hasStride(V); } 1670 1671 /// Returns true if the target machine supports masked store operation 1672 /// for the given \p DataType and kind of access to \p Ptr. 1673 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1674 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1675 } 1676 /// Returns true if the target machine supports masked load operation 1677 /// for the given \p DataType and kind of access to \p Ptr. 1678 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1679 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1680 } 1681 /// Returns true if the target machine supports masked scatter operation 1682 /// for the given \p DataType. 1683 bool isLegalMaskedScatter(Type *DataType) { 1684 return TTI->isLegalMaskedScatter(DataType); 1685 } 1686 /// Returns true if the target machine supports masked gather operation 1687 /// for the given \p DataType. 1688 bool isLegalMaskedGather(Type *DataType) { 1689 return TTI->isLegalMaskedGather(DataType); 1690 } 1691 /// Returns true if the target machine can represent \p V as a masked gather 1692 /// or scatter operation. 1693 bool isLegalGatherOrScatter(Value *V) { 1694 auto *LI = dyn_cast<LoadInst>(V); 1695 auto *SI = dyn_cast<StoreInst>(V); 1696 if (!LI && !SI) 1697 return false; 1698 auto *Ptr = getPointerOperand(V); 1699 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1700 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1701 } 1702 1703 /// Returns true if vector representation of the instruction \p I 1704 /// requires mask. 1705 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1706 unsigned getNumStores() const { return LAI->getNumStores(); } 1707 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1708 unsigned getNumPredStores() const { return NumPredStores; } 1709 1710 /// Returns true if \p I is an instruction that will be scalarized with 1711 /// predication. Such instructions include conditional stores and 1712 /// instructions that may divide by zero. 1713 bool isScalarWithPredication(Instruction *I); 1714 1715 /// Returns true if \p I is a memory instruction with consecutive memory 1716 /// access that can be widened. 1717 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1718 1719 // Returns true if the NoNaN attribute is set on the function. 1720 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1721 1722 private: 1723 /// Check if a single basic block loop is vectorizable. 1724 /// At this point we know that this is a loop with a constant trip count 1725 /// and we only need to check individual instructions. 1726 bool canVectorizeInstrs(); 1727 1728 /// When we vectorize loops we may change the order in which 1729 /// we read and write from memory. This method checks if it is 1730 /// legal to vectorize the code, considering only memory constrains. 1731 /// Returns true if the loop is vectorizable 1732 bool canVectorizeMemory(); 1733 1734 /// Return true if we can vectorize this loop using the IF-conversion 1735 /// transformation. 1736 bool canVectorizeWithIfConvert(); 1737 1738 /// Return true if all of the instructions in the block can be speculatively 1739 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1740 /// and we know that we can read from them without segfault. 1741 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1742 1743 /// Updates the vectorization state by adding \p Phi to the inductions list. 1744 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1745 /// better choice for the main induction than the existing one. 1746 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1747 SmallPtrSetImpl<Value *> &AllowedExit); 1748 1749 /// Create an analysis remark that explains why vectorization failed 1750 /// 1751 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1752 /// an instruction that prevents vectorization. Otherwise the loop is used 1753 /// for the location of the remark. \return the remark object that can be 1754 /// streamed to. 1755 OptimizationRemarkAnalysis 1756 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1757 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1758 RemarkName, TheLoop, I); 1759 } 1760 1761 /// \brief If an access has a symbolic strides, this maps the pointer value to 1762 /// the stride symbol. 1763 const ValueToValueMap *getSymbolicStrides() { 1764 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1765 // it's collected. This happens from canVectorizeWithIfConvert, when the 1766 // pointer is checked to reference consecutive elements suitable for a 1767 // masked access. 1768 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1769 } 1770 1771 unsigned NumPredStores; 1772 1773 /// The loop that we evaluate. 1774 Loop *TheLoop; 1775 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1776 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1777 /// of existing SCEV assumptions. The analysis will also add a minimal set 1778 /// of new predicates if this is required to enable vectorization and 1779 /// unrolling. 1780 PredicatedScalarEvolution &PSE; 1781 /// Target Library Info. 1782 TargetLibraryInfo *TLI; 1783 /// Target Transform Info 1784 const TargetTransformInfo *TTI; 1785 /// Dominator Tree. 1786 DominatorTree *DT; 1787 // LoopAccess analysis. 1788 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1789 // And the loop-accesses info corresponding to this loop. This pointer is 1790 // null until canVectorizeMemory sets it up. 1791 const LoopAccessInfo *LAI; 1792 /// Interface to emit optimization remarks. 1793 OptimizationRemarkEmitter *ORE; 1794 1795 /// The interleave access information contains groups of interleaved accesses 1796 /// with the same stride and close to each other. 1797 InterleavedAccessInfo InterleaveInfo; 1798 1799 // --- vectorization state --- // 1800 1801 /// Holds the primary induction variable. This is the counter of the 1802 /// loop. 1803 PHINode *PrimaryInduction; 1804 /// Holds the reduction variables. 1805 ReductionList Reductions; 1806 /// Holds all of the induction variables that we found in the loop. 1807 /// Notice that inductions don't need to start at zero and that induction 1808 /// variables can be pointers. 1809 InductionList Inductions; 1810 /// Holds the phi nodes that are first-order recurrences. 1811 RecurrenceSet FirstOrderRecurrences; 1812 /// Holds instructions that need to sink past other instructions to handle 1813 /// first-order recurrences. 1814 DenseMap<Instruction *, Instruction *> SinkAfter; 1815 /// Holds the widest induction type encountered. 1816 Type *WidestIndTy; 1817 1818 /// Allowed outside users. This holds the induction and reduction 1819 /// vars which can be accessed from outside the loop. 1820 SmallPtrSet<Value *, 4> AllowedExit; 1821 1822 /// Can we assume the absence of NaNs. 1823 bool HasFunNoNaNAttr; 1824 1825 /// Vectorization requirements that will go through late-evaluation. 1826 LoopVectorizationRequirements *Requirements; 1827 1828 /// Used to emit an analysis of any legality issues. 1829 LoopVectorizeHints *Hints; 1830 1831 /// While vectorizing these instructions we have to generate a 1832 /// call to the appropriate masked intrinsic 1833 SmallPtrSet<const Instruction *, 8> MaskedOp; 1834 }; 1835 1836 /// LoopVectorizationCostModel - estimates the expected speedups due to 1837 /// vectorization. 1838 /// In many cases vectorization is not profitable. This can happen because of 1839 /// a number of reasons. In this class we mainly attempt to predict the 1840 /// expected speedup/slowdowns due to the supported instruction set. We use the 1841 /// TargetTransformInfo to query the different backends for the cost of 1842 /// different operations. 1843 class LoopVectorizationCostModel { 1844 public: 1845 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1846 LoopInfo *LI, LoopVectorizationLegality *Legal, 1847 const TargetTransformInfo &TTI, 1848 const TargetLibraryInfo *TLI, DemandedBits *DB, 1849 AssumptionCache *AC, 1850 OptimizationRemarkEmitter *ORE, const Function *F, 1851 const LoopVectorizeHints *Hints) 1852 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1853 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1854 1855 /// \return An upper bound for the vectorization factor, or None if 1856 /// vectorization should be avoided up front. 1857 Optional<unsigned> computeMaxVF(bool OptForSize); 1858 1859 /// Information about vectorization costs 1860 struct VectorizationFactor { 1861 unsigned Width; // Vector width with best cost 1862 unsigned Cost; // Cost of the loop with that width 1863 }; 1864 /// \return The most profitable vectorization factor and the cost of that VF. 1865 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1866 /// then this vectorization factor will be selected if vectorization is 1867 /// possible. 1868 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1869 1870 /// Setup cost-based decisions for user vectorization factor. 1871 void selectUserVectorizationFactor(unsigned UserVF) { 1872 collectUniformsAndScalars(UserVF); 1873 collectInstsToScalarize(UserVF); 1874 } 1875 1876 /// \return The size (in bits) of the smallest and widest types in the code 1877 /// that needs to be vectorized. We ignore values that remain scalar such as 1878 /// 64 bit loop indices. 1879 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1880 1881 /// \return The desired interleave count. 1882 /// If interleave count has been specified by metadata it will be returned. 1883 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1884 /// are the selected vectorization factor and the cost of the selected VF. 1885 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1886 unsigned LoopCost); 1887 1888 /// Memory access instruction may be vectorized in more than one way. 1889 /// Form of instruction after vectorization depends on cost. 1890 /// This function takes cost-based decisions for Load/Store instructions 1891 /// and collects them in a map. This decisions map is used for building 1892 /// the lists of loop-uniform and loop-scalar instructions. 1893 /// The calculated cost is saved with widening decision in order to 1894 /// avoid redundant calculations. 1895 void setCostBasedWideningDecision(unsigned VF); 1896 1897 /// \brief A struct that represents some properties of the register usage 1898 /// of a loop. 1899 struct RegisterUsage { 1900 /// Holds the number of loop invariant values that are used in the loop. 1901 unsigned LoopInvariantRegs; 1902 /// Holds the maximum number of concurrent live intervals in the loop. 1903 unsigned MaxLocalUsers; 1904 /// Holds the number of instructions in the loop. 1905 unsigned NumInstructions; 1906 }; 1907 1908 /// \return Returns information about the register usages of the loop for the 1909 /// given vectorization factors. 1910 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1911 1912 /// Collect values we want to ignore in the cost model. 1913 void collectValuesToIgnore(); 1914 1915 /// \returns The smallest bitwidth each instruction can be represented with. 1916 /// The vector equivalents of these instructions should be truncated to this 1917 /// type. 1918 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1919 return MinBWs; 1920 } 1921 1922 /// \returns True if it is more profitable to scalarize instruction \p I for 1923 /// vectorization factor \p VF. 1924 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1925 auto Scalars = InstsToScalarize.find(VF); 1926 assert(Scalars != InstsToScalarize.end() && 1927 "VF not yet analyzed for scalarization profitability"); 1928 return Scalars->second.count(I); 1929 } 1930 1931 /// Returns true if \p I is known to be uniform after vectorization. 1932 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1933 if (VF == 1) 1934 return true; 1935 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1936 auto UniformsPerVF = Uniforms.find(VF); 1937 return UniformsPerVF->second.count(I); 1938 } 1939 1940 /// Returns true if \p I is known to be scalar after vectorization. 1941 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1942 if (VF == 1) 1943 return true; 1944 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1945 auto ScalarsPerVF = Scalars.find(VF); 1946 return ScalarsPerVF->second.count(I); 1947 } 1948 1949 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1950 /// for vectorization factor \p VF. 1951 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1952 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1953 !isScalarAfterVectorization(I, VF); 1954 } 1955 1956 /// Decision that was taken during cost calculation for memory instruction. 1957 enum InstWidening { 1958 CM_Unknown, 1959 CM_Widen, 1960 CM_Interleave, 1961 CM_GatherScatter, 1962 CM_Scalarize 1963 }; 1964 1965 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1966 /// instruction \p I and vector width \p VF. 1967 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1968 unsigned Cost) { 1969 assert(VF >= 2 && "Expected VF >=2"); 1970 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1971 } 1972 1973 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1974 /// interleaving group \p Grp and vector width \p VF. 1975 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1976 InstWidening W, unsigned Cost) { 1977 assert(VF >= 2 && "Expected VF >=2"); 1978 /// Broadcast this decicion to all instructions inside the group. 1979 /// But the cost will be assigned to one instruction only. 1980 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1981 if (auto *I = Grp->getMember(i)) { 1982 if (Grp->getInsertPos() == I) 1983 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1984 else 1985 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1986 } 1987 } 1988 } 1989 1990 /// Return the cost model decision for the given instruction \p I and vector 1991 /// width \p VF. Return CM_Unknown if this instruction did not pass 1992 /// through the cost modeling. 1993 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1994 assert(VF >= 2 && "Expected VF >=2"); 1995 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1996 auto Itr = WideningDecisions.find(InstOnVF); 1997 if (Itr == WideningDecisions.end()) 1998 return CM_Unknown; 1999 return Itr->second.first; 2000 } 2001 2002 /// Return the vectorization cost for the given instruction \p I and vector 2003 /// width \p VF. 2004 unsigned getWideningCost(Instruction *I, unsigned VF) { 2005 assert(VF >= 2 && "Expected VF >=2"); 2006 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2007 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2008 return WideningDecisions[InstOnVF].second; 2009 } 2010 2011 /// Return True if instruction \p I is an optimizable truncate whose operand 2012 /// is an induction variable. Such a truncate will be removed by adding a new 2013 /// induction variable with the destination type. 2014 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2015 2016 // If the instruction is not a truncate, return false. 2017 auto *Trunc = dyn_cast<TruncInst>(I); 2018 if (!Trunc) 2019 return false; 2020 2021 // Get the source and destination types of the truncate. 2022 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2023 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2024 2025 // If the truncate is free for the given types, return false. Replacing a 2026 // free truncate with an induction variable would add an induction variable 2027 // update instruction to each iteration of the loop. We exclude from this 2028 // check the primary induction variable since it will need an update 2029 // instruction regardless. 2030 Value *Op = Trunc->getOperand(0); 2031 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2032 return false; 2033 2034 // If the truncated value is not an induction variable, return false. 2035 return Legal->isInductionVariable(Op); 2036 } 2037 2038 private: 2039 /// \return An upper bound for the vectorization factor, larger than zero. 2040 /// One is returned if vectorization should best be avoided due to cost. 2041 unsigned computeFeasibleMaxVF(bool OptForSize); 2042 2043 /// The vectorization cost is a combination of the cost itself and a boolean 2044 /// indicating whether any of the contributing operations will actually 2045 /// operate on 2046 /// vector values after type legalization in the backend. If this latter value 2047 /// is 2048 /// false, then all operations will be scalarized (i.e. no vectorization has 2049 /// actually taken place). 2050 typedef std::pair<unsigned, bool> VectorizationCostTy; 2051 2052 /// Returns the expected execution cost. The unit of the cost does 2053 /// not matter because we use the 'cost' units to compare different 2054 /// vector widths. The cost that is returned is *not* normalized by 2055 /// the factor width. 2056 VectorizationCostTy expectedCost(unsigned VF); 2057 2058 /// Returns the execution time cost of an instruction for a given vector 2059 /// width. Vector width of one means scalar. 2060 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2061 2062 /// The cost-computation logic from getInstructionCost which provides 2063 /// the vector type as an output parameter. 2064 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2065 2066 /// Calculate vectorization cost of memory instruction \p I. 2067 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2068 2069 /// The cost computation for scalarized memory instruction. 2070 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2071 2072 /// The cost computation for interleaving group of memory instructions. 2073 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2074 2075 /// The cost computation for Gather/Scatter instruction. 2076 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2077 2078 /// The cost computation for widening instruction \p I with consecutive 2079 /// memory access. 2080 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2081 2082 /// The cost calculation for Load instruction \p I with uniform pointer - 2083 /// scalar load + broadcast. 2084 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2085 2086 /// Returns whether the instruction is a load or store and will be a emitted 2087 /// as a vector operation. 2088 bool isConsecutiveLoadOrStore(Instruction *I); 2089 2090 /// Create an analysis remark that explains why vectorization failed 2091 /// 2092 /// \p RemarkName is the identifier for the remark. \return the remark object 2093 /// that can be streamed to. 2094 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2095 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2096 RemarkName, TheLoop); 2097 } 2098 2099 /// Map of scalar integer values to the smallest bitwidth they can be legally 2100 /// represented as. The vector equivalents of these values should be truncated 2101 /// to this type. 2102 MapVector<Instruction *, uint64_t> MinBWs; 2103 2104 /// A type representing the costs for instructions if they were to be 2105 /// scalarized rather than vectorized. The entries are Instruction-Cost 2106 /// pairs. 2107 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2108 2109 /// A set containing all BasicBlocks that are known to present after 2110 /// vectorization as a predicated block. 2111 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2112 2113 /// A map holding scalar costs for different vectorization factors. The 2114 /// presence of a cost for an instruction in the mapping indicates that the 2115 /// instruction will be scalarized when vectorizing with the associated 2116 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2117 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2118 2119 /// Holds the instructions known to be uniform after vectorization. 2120 /// The data is collected per VF. 2121 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2122 2123 /// Holds the instructions known to be scalar after vectorization. 2124 /// The data is collected per VF. 2125 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2126 2127 /// Holds the instructions (address computations) that are forced to be 2128 /// scalarized. 2129 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2130 2131 /// Returns the expected difference in cost from scalarizing the expression 2132 /// feeding a predicated instruction \p PredInst. The instructions to 2133 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2134 /// non-negative return value implies the expression will be scalarized. 2135 /// Currently, only single-use chains are considered for scalarization. 2136 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2137 unsigned VF); 2138 2139 /// Collects the instructions to scalarize for each predicated instruction in 2140 /// the loop. 2141 void collectInstsToScalarize(unsigned VF); 2142 2143 /// Collect the instructions that are uniform after vectorization. An 2144 /// instruction is uniform if we represent it with a single scalar value in 2145 /// the vectorized loop corresponding to each vector iteration. Examples of 2146 /// uniform instructions include pointer operands of consecutive or 2147 /// interleaved memory accesses. Note that although uniformity implies an 2148 /// instruction will be scalar, the reverse is not true. In general, a 2149 /// scalarized instruction will be represented by VF scalar values in the 2150 /// vectorized loop, each corresponding to an iteration of the original 2151 /// scalar loop. 2152 void collectLoopUniforms(unsigned VF); 2153 2154 /// Collect the instructions that are scalar after vectorization. An 2155 /// instruction is scalar if it is known to be uniform or will be scalarized 2156 /// during vectorization. Non-uniform scalarized instructions will be 2157 /// represented by VF values in the vectorized loop, each corresponding to an 2158 /// iteration of the original scalar loop. 2159 void collectLoopScalars(unsigned VF); 2160 2161 /// Collect Uniform and Scalar values for the given \p VF. 2162 /// The sets depend on CM decision for Load/Store instructions 2163 /// that may be vectorized as interleave, gather-scatter or scalarized. 2164 void collectUniformsAndScalars(unsigned VF) { 2165 // Do the analysis once. 2166 if (VF == 1 || Uniforms.count(VF)) 2167 return; 2168 setCostBasedWideningDecision(VF); 2169 collectLoopUniforms(VF); 2170 collectLoopScalars(VF); 2171 } 2172 2173 /// Keeps cost model vectorization decision and cost for instructions. 2174 /// Right now it is used for memory instructions only. 2175 typedef DenseMap<std::pair<Instruction *, unsigned>, 2176 std::pair<InstWidening, unsigned>> 2177 DecisionList; 2178 2179 DecisionList WideningDecisions; 2180 2181 public: 2182 /// The loop that we evaluate. 2183 Loop *TheLoop; 2184 /// Predicated scalar evolution analysis. 2185 PredicatedScalarEvolution &PSE; 2186 /// Loop Info analysis. 2187 LoopInfo *LI; 2188 /// Vectorization legality. 2189 LoopVectorizationLegality *Legal; 2190 /// Vector target information. 2191 const TargetTransformInfo &TTI; 2192 /// Target Library Info. 2193 const TargetLibraryInfo *TLI; 2194 /// Demanded bits analysis. 2195 DemandedBits *DB; 2196 /// Assumption cache. 2197 AssumptionCache *AC; 2198 /// Interface to emit optimization remarks. 2199 OptimizationRemarkEmitter *ORE; 2200 2201 const Function *TheFunction; 2202 /// Loop Vectorize Hint. 2203 const LoopVectorizeHints *Hints; 2204 /// Values to ignore in the cost model. 2205 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2206 /// Values to ignore in the cost model when VF > 1. 2207 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2208 }; 2209 2210 /// LoopVectorizationPlanner - drives the vectorization process after having 2211 /// passed Legality checks. 2212 class LoopVectorizationPlanner { 2213 public: 2214 LoopVectorizationPlanner(Loop *OrigLoop, LoopInfo *LI, 2215 LoopVectorizationLegality *Legal, 2216 LoopVectorizationCostModel &CM) 2217 : OrigLoop(OrigLoop), LI(LI), Legal(Legal), CM(CM) {} 2218 2219 ~LoopVectorizationPlanner() {} 2220 2221 /// Plan how to best vectorize, return the best VF and its cost. 2222 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2223 unsigned UserVF); 2224 2225 /// Generate the IR code for the vectorized loop. 2226 void executePlan(InnerLoopVectorizer &ILV); 2227 2228 protected: 2229 /// Collect the instructions from the original loop that would be trivially 2230 /// dead in the vectorized loop if generated. 2231 void collectTriviallyDeadInstructions( 2232 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2233 2234 private: 2235 /// The loop that we evaluate. 2236 Loop *OrigLoop; 2237 2238 /// Loop Info analysis. 2239 LoopInfo *LI; 2240 2241 /// The legality analysis. 2242 LoopVectorizationLegality *Legal; 2243 2244 /// The profitablity analysis. 2245 LoopVectorizationCostModel &CM; 2246 }; 2247 2248 /// \brief This holds vectorization requirements that must be verified late in 2249 /// the process. The requirements are set by legalize and costmodel. Once 2250 /// vectorization has been determined to be possible and profitable the 2251 /// requirements can be verified by looking for metadata or compiler options. 2252 /// For example, some loops require FP commutativity which is only allowed if 2253 /// vectorization is explicitly specified or if the fast-math compiler option 2254 /// has been provided. 2255 /// Late evaluation of these requirements allows helpful diagnostics to be 2256 /// composed that tells the user what need to be done to vectorize the loop. For 2257 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2258 /// evaluation should be used only when diagnostics can generated that can be 2259 /// followed by a non-expert user. 2260 class LoopVectorizationRequirements { 2261 public: 2262 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2263 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2264 2265 void addUnsafeAlgebraInst(Instruction *I) { 2266 // First unsafe algebra instruction. 2267 if (!UnsafeAlgebraInst) 2268 UnsafeAlgebraInst = I; 2269 } 2270 2271 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2272 2273 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2274 const char *PassName = Hints.vectorizeAnalysisPassName(); 2275 bool Failed = false; 2276 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2277 ORE.emit( 2278 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2279 UnsafeAlgebraInst->getDebugLoc(), 2280 UnsafeAlgebraInst->getParent()) 2281 << "loop not vectorized: cannot prove it is safe to reorder " 2282 "floating-point operations"); 2283 Failed = true; 2284 } 2285 2286 // Test if runtime memcheck thresholds are exceeded. 2287 bool PragmaThresholdReached = 2288 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2289 bool ThresholdReached = 2290 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2291 if ((ThresholdReached && !Hints.allowReordering()) || 2292 PragmaThresholdReached) { 2293 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2294 L->getStartLoc(), 2295 L->getHeader()) 2296 << "loop not vectorized: cannot prove it is safe to reorder " 2297 "memory operations"); 2298 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2299 Failed = true; 2300 } 2301 2302 return Failed; 2303 } 2304 2305 private: 2306 unsigned NumRuntimePointerChecks; 2307 Instruction *UnsafeAlgebraInst; 2308 2309 /// Interface to emit optimization remarks. 2310 OptimizationRemarkEmitter &ORE; 2311 }; 2312 2313 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2314 if (L.empty()) { 2315 if (!hasCyclesInLoopBody(L)) 2316 V.push_back(&L); 2317 return; 2318 } 2319 for (Loop *InnerL : L) 2320 addAcyclicInnerLoop(*InnerL, V); 2321 } 2322 2323 /// The LoopVectorize Pass. 2324 struct LoopVectorize : public FunctionPass { 2325 /// Pass identification, replacement for typeid 2326 static char ID; 2327 2328 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2329 : FunctionPass(ID) { 2330 Impl.DisableUnrolling = NoUnrolling; 2331 Impl.AlwaysVectorize = AlwaysVectorize; 2332 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2333 } 2334 2335 LoopVectorizePass Impl; 2336 2337 bool runOnFunction(Function &F) override { 2338 if (skipFunction(F)) 2339 return false; 2340 2341 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2342 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2343 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2344 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2345 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2346 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2347 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2348 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2349 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2350 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2351 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2352 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2353 2354 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2355 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2356 2357 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2358 GetLAA, *ORE); 2359 } 2360 2361 void getAnalysisUsage(AnalysisUsage &AU) const override { 2362 AU.addRequired<AssumptionCacheTracker>(); 2363 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2364 AU.addRequired<DominatorTreeWrapperPass>(); 2365 AU.addRequired<LoopInfoWrapperPass>(); 2366 AU.addRequired<ScalarEvolutionWrapperPass>(); 2367 AU.addRequired<TargetTransformInfoWrapperPass>(); 2368 AU.addRequired<AAResultsWrapperPass>(); 2369 AU.addRequired<LoopAccessLegacyAnalysis>(); 2370 AU.addRequired<DemandedBitsWrapperPass>(); 2371 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2372 AU.addPreserved<LoopInfoWrapperPass>(); 2373 AU.addPreserved<DominatorTreeWrapperPass>(); 2374 AU.addPreserved<BasicAAWrapperPass>(); 2375 AU.addPreserved<GlobalsAAWrapperPass>(); 2376 } 2377 }; 2378 2379 } // end anonymous namespace 2380 2381 //===----------------------------------------------------------------------===// 2382 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2383 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2384 //===----------------------------------------------------------------------===// 2385 2386 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2387 // We need to place the broadcast of invariant variables outside the loop. 2388 Instruction *Instr = dyn_cast<Instruction>(V); 2389 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2390 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2391 2392 // Place the code for broadcasting invariant variables in the new preheader. 2393 IRBuilder<>::InsertPointGuard Guard(Builder); 2394 if (Invariant) 2395 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2396 2397 // Broadcast the scalar into all locations in the vector. 2398 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2399 2400 return Shuf; 2401 } 2402 2403 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2404 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2405 Value *Start = II.getStartValue(); 2406 2407 // Construct the initial value of the vector IV in the vector loop preheader 2408 auto CurrIP = Builder.saveIP(); 2409 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2410 if (isa<TruncInst>(EntryVal)) { 2411 assert(Start->getType()->isIntegerTy() && 2412 "Truncation requires an integer type"); 2413 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2414 Step = Builder.CreateTrunc(Step, TruncType); 2415 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2416 } 2417 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2418 Value *SteppedStart = 2419 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2420 2421 // We create vector phi nodes for both integer and floating-point induction 2422 // variables. Here, we determine the kind of arithmetic we will perform. 2423 Instruction::BinaryOps AddOp; 2424 Instruction::BinaryOps MulOp; 2425 if (Step->getType()->isIntegerTy()) { 2426 AddOp = Instruction::Add; 2427 MulOp = Instruction::Mul; 2428 } else { 2429 AddOp = II.getInductionOpcode(); 2430 MulOp = Instruction::FMul; 2431 } 2432 2433 // Multiply the vectorization factor by the step using integer or 2434 // floating-point arithmetic as appropriate. 2435 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2436 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2437 2438 // Create a vector splat to use in the induction update. 2439 // 2440 // FIXME: If the step is non-constant, we create the vector splat with 2441 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2442 // handle a constant vector splat. 2443 Value *SplatVF = isa<Constant>(Mul) 2444 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2445 : Builder.CreateVectorSplat(VF, Mul); 2446 Builder.restoreIP(CurrIP); 2447 2448 // We may need to add the step a number of times, depending on the unroll 2449 // factor. The last of those goes into the PHI. 2450 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2451 &*LoopVectorBody->getFirstInsertionPt()); 2452 Instruction *LastInduction = VecInd; 2453 for (unsigned Part = 0; Part < UF; ++Part) { 2454 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2455 if (isa<TruncInst>(EntryVal)) 2456 addMetadata(LastInduction, EntryVal); 2457 LastInduction = cast<Instruction>(addFastMathFlag( 2458 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2459 } 2460 2461 // Move the last step to the end of the latch block. This ensures consistent 2462 // placement of all induction updates. 2463 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2464 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2465 auto *ICmp = cast<Instruction>(Br->getCondition()); 2466 LastInduction->moveBefore(ICmp); 2467 LastInduction->setName("vec.ind.next"); 2468 2469 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2470 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2471 } 2472 2473 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2474 return Cost->isScalarAfterVectorization(I, VF) || 2475 Cost->isProfitableToScalarize(I, VF); 2476 } 2477 2478 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2479 if (shouldScalarizeInstruction(IV)) 2480 return true; 2481 auto isScalarInst = [&](User *U) -> bool { 2482 auto *I = cast<Instruction>(U); 2483 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2484 }; 2485 return any_of(IV->users(), isScalarInst); 2486 } 2487 2488 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2489 2490 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2491 "Primary induction variable must have an integer type"); 2492 2493 auto II = Legal->getInductionVars()->find(IV); 2494 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2495 2496 auto ID = II->second; 2497 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2498 2499 // The scalar value to broadcast. This will be derived from the canonical 2500 // induction variable. 2501 Value *ScalarIV = nullptr; 2502 2503 // The value from the original loop to which we are mapping the new induction 2504 // variable. 2505 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2506 2507 // True if we have vectorized the induction variable. 2508 auto VectorizedIV = false; 2509 2510 // Determine if we want a scalar version of the induction variable. This is 2511 // true if the induction variable itself is not widened, or if it has at 2512 // least one user in the loop that is not widened. 2513 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2514 2515 // Generate code for the induction step. Note that induction steps are 2516 // required to be loop-invariant 2517 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2518 "Induction step should be loop invariant"); 2519 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2520 Value *Step = nullptr; 2521 if (PSE.getSE()->isSCEVable(IV->getType())) { 2522 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2523 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2524 LoopVectorPreHeader->getTerminator()); 2525 } else { 2526 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2527 } 2528 2529 // Try to create a new independent vector induction variable. If we can't 2530 // create the phi node, we will splat the scalar induction variable in each 2531 // loop iteration. 2532 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2533 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2534 VectorizedIV = true; 2535 } 2536 2537 // If we haven't yet vectorized the induction variable, or if we will create 2538 // a scalar one, we need to define the scalar induction variable and step 2539 // values. If we were given a truncation type, truncate the canonical 2540 // induction variable and step. Otherwise, derive these values from the 2541 // induction descriptor. 2542 if (!VectorizedIV || NeedsScalarIV) { 2543 ScalarIV = Induction; 2544 if (IV != OldInduction) { 2545 ScalarIV = IV->getType()->isIntegerTy() 2546 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2547 : Builder.CreateCast(Instruction::SIToFP, Induction, 2548 IV->getType()); 2549 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2550 ScalarIV->setName("offset.idx"); 2551 } 2552 if (Trunc) { 2553 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2554 assert(Step->getType()->isIntegerTy() && 2555 "Truncation requires an integer step"); 2556 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2557 Step = Builder.CreateTrunc(Step, TruncType); 2558 } 2559 } 2560 2561 // If we haven't yet vectorized the induction variable, splat the scalar 2562 // induction variable, and build the necessary step vectors. 2563 if (!VectorizedIV) { 2564 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2565 for (unsigned Part = 0; Part < UF; ++Part) { 2566 Value *EntryPart = 2567 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2568 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2569 if (Trunc) 2570 addMetadata(EntryPart, Trunc); 2571 } 2572 } 2573 2574 // If an induction variable is only used for counting loop iterations or 2575 // calculating addresses, it doesn't need to be widened. Create scalar steps 2576 // that can be used by instructions we will later scalarize. Note that the 2577 // addition of the scalar steps will not increase the number of instructions 2578 // in the loop in the common case prior to InstCombine. We will be trading 2579 // one vector extract for each scalar step. 2580 if (NeedsScalarIV) 2581 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2582 } 2583 2584 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2585 Instruction::BinaryOps BinOp) { 2586 // Create and check the types. 2587 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2588 int VLen = Val->getType()->getVectorNumElements(); 2589 2590 Type *STy = Val->getType()->getScalarType(); 2591 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2592 "Induction Step must be an integer or FP"); 2593 assert(Step->getType() == STy && "Step has wrong type"); 2594 2595 SmallVector<Constant *, 8> Indices; 2596 2597 if (STy->isIntegerTy()) { 2598 // Create a vector of consecutive numbers from zero to VF. 2599 for (int i = 0; i < VLen; ++i) 2600 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2601 2602 // Add the consecutive indices to the vector value. 2603 Constant *Cv = ConstantVector::get(Indices); 2604 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2605 Step = Builder.CreateVectorSplat(VLen, Step); 2606 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2607 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2608 // which can be found from the original scalar operations. 2609 Step = Builder.CreateMul(Cv, Step); 2610 return Builder.CreateAdd(Val, Step, "induction"); 2611 } 2612 2613 // Floating point induction. 2614 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2615 "Binary Opcode should be specified for FP induction"); 2616 // Create a vector of consecutive numbers from zero to VF. 2617 for (int i = 0; i < VLen; ++i) 2618 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2619 2620 // Add the consecutive indices to the vector value. 2621 Constant *Cv = ConstantVector::get(Indices); 2622 2623 Step = Builder.CreateVectorSplat(VLen, Step); 2624 2625 // Floating point operations had to be 'fast' to enable the induction. 2626 FastMathFlags Flags; 2627 Flags.setUnsafeAlgebra(); 2628 2629 Value *MulOp = Builder.CreateFMul(Cv, Step); 2630 if (isa<Instruction>(MulOp)) 2631 // Have to check, MulOp may be a constant 2632 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2633 2634 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2635 if (isa<Instruction>(BOp)) 2636 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2637 return BOp; 2638 } 2639 2640 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2641 Value *EntryVal, 2642 const InductionDescriptor &ID) { 2643 2644 // We shouldn't have to build scalar steps if we aren't vectorizing. 2645 assert(VF > 1 && "VF should be greater than one"); 2646 2647 // Get the value type and ensure it and the step have the same integer type. 2648 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2649 assert(ScalarIVTy == Step->getType() && 2650 "Val and Step should have the same type"); 2651 2652 // We build scalar steps for both integer and floating-point induction 2653 // variables. Here, we determine the kind of arithmetic we will perform. 2654 Instruction::BinaryOps AddOp; 2655 Instruction::BinaryOps MulOp; 2656 if (ScalarIVTy->isIntegerTy()) { 2657 AddOp = Instruction::Add; 2658 MulOp = Instruction::Mul; 2659 } else { 2660 AddOp = ID.getInductionOpcode(); 2661 MulOp = Instruction::FMul; 2662 } 2663 2664 // Determine the number of scalars we need to generate for each unroll 2665 // iteration. If EntryVal is uniform, we only need to generate the first 2666 // lane. Otherwise, we generate all VF values. 2667 unsigned Lanes = 2668 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2669 2670 // Compute the scalar steps and save the results in VectorLoopValueMap. 2671 for (unsigned Part = 0; Part < UF; ++Part) { 2672 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2673 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2674 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2675 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2676 VectorLoopValueMap.setScalarValue(EntryVal, Part, Lane, Add); 2677 } 2678 } 2679 } 2680 2681 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2682 2683 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2684 ValueToValueMap(); 2685 2686 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2687 if (Stride == 1 || Stride == -1) 2688 return Stride; 2689 return 0; 2690 } 2691 2692 bool LoopVectorizationLegality::isUniform(Value *V) { 2693 return LAI->isUniform(V); 2694 } 2695 2696 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2697 assert(V != Induction && "The new induction variable should not be used."); 2698 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2699 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2700 2701 // If we have a stride that is replaced by one, do it here. 2702 if (Legal->hasStride(V)) 2703 V = ConstantInt::get(V->getType(), 1); 2704 2705 // If we have a vector mapped to this value, return it. 2706 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2707 return VectorLoopValueMap.getVectorValue(V, Part); 2708 2709 // If the value has not been vectorized, check if it has been scalarized 2710 // instead. If it has been scalarized, and we actually need the value in 2711 // vector form, we will construct the vector values on demand. 2712 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2713 2714 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, Part, 0); 2715 2716 // If we've scalarized a value, that value should be an instruction. 2717 auto *I = cast<Instruction>(V); 2718 2719 // If we aren't vectorizing, we can just copy the scalar map values over to 2720 // the vector map. 2721 if (VF == 1) { 2722 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2723 return ScalarValue; 2724 } 2725 2726 // Get the last scalar instruction we generated for V and Part. If the value 2727 // is known to be uniform after vectorization, this corresponds to lane zero 2728 // of the Part unroll iteration. Otherwise, the last instruction is the one 2729 // we created for the last vector lane of the Part unroll iteration. 2730 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2731 auto *LastInst = 2732 cast<Instruction>(VectorLoopValueMap.getScalarValue(V, Part, LastLane)); 2733 2734 // Set the insert point after the last scalarized instruction. This ensures 2735 // the insertelement sequence will directly follow the scalar definitions. 2736 auto OldIP = Builder.saveIP(); 2737 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2738 Builder.SetInsertPoint(&*NewIP); 2739 2740 // However, if we are vectorizing, we need to construct the vector values. 2741 // If the value is known to be uniform after vectorization, we can just 2742 // broadcast the scalar value corresponding to lane zero for each unroll 2743 // iteration. Otherwise, we construct the vector values using insertelement 2744 // instructions. Since the resulting vectors are stored in 2745 // VectorLoopValueMap, we will only generate the insertelements once. 2746 Value *VectorValue = nullptr; 2747 if (Cost->isUniformAfterVectorization(I, VF)) { 2748 VectorValue = getBroadcastInstrs(ScalarValue); 2749 } else { 2750 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2751 for (unsigned Lane = 0; Lane < VF; ++Lane) 2752 VectorValue = Builder.CreateInsertElement( 2753 VectorValue, getOrCreateScalarValue(V, Part, Lane), 2754 Builder.getInt32(Lane)); 2755 } 2756 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2757 Builder.restoreIP(OldIP); 2758 return VectorValue; 2759 } 2760 2761 // If this scalar is unknown, assume that it is a constant or that it is 2762 // loop invariant. Broadcast V and save the value for future uses. 2763 Value *B = getBroadcastInstrs(V); 2764 VectorLoopValueMap.setVectorValue(V, Part, B); 2765 return B; 2766 } 2767 2768 Value *InnerLoopVectorizer::getOrCreateScalarValue(Value *V, unsigned Part, 2769 unsigned Lane) { 2770 2771 // If the value is not an instruction contained in the loop, it should 2772 // already be scalar. 2773 if (OrigLoop->isLoopInvariant(V)) 2774 return V; 2775 2776 assert(Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2777 : true && "Uniform values only have lane zero"); 2778 2779 // If the value from the original loop has not been vectorized, it is 2780 // represented by UF x VF scalar values in the new loop. Return the requested 2781 // scalar value. 2782 if (VectorLoopValueMap.hasScalarValue(V, Part, Lane)) 2783 return VectorLoopValueMap.getScalarValue(V, Part, Lane); 2784 2785 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2786 // for the given unroll part. If this entry is not a vector type (i.e., the 2787 // vectorization factor is one), there is no need to generate an 2788 // extractelement instruction. 2789 auto *U = getOrCreateVectorValue(V, Part); 2790 if (!U->getType()->isVectorTy()) { 2791 assert(VF == 1 && "Value not scalarized has non-vector type"); 2792 return U; 2793 } 2794 2795 // Otherwise, the value from the original loop has been vectorized and is 2796 // represented by UF vector values. Extract and return the requested scalar 2797 // value from the appropriate vector lane. 2798 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2799 } 2800 2801 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2802 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2803 SmallVector<Constant *, 8> ShuffleMask; 2804 for (unsigned i = 0; i < VF; ++i) 2805 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2806 2807 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2808 ConstantVector::get(ShuffleMask), 2809 "reverse"); 2810 } 2811 2812 // Try to vectorize the interleave group that \p Instr belongs to. 2813 // 2814 // E.g. Translate following interleaved load group (factor = 3): 2815 // for (i = 0; i < N; i+=3) { 2816 // R = Pic[i]; // Member of index 0 2817 // G = Pic[i+1]; // Member of index 1 2818 // B = Pic[i+2]; // Member of index 2 2819 // ... // do something to R, G, B 2820 // } 2821 // To: 2822 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2823 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2824 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2825 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2826 // 2827 // Or translate following interleaved store group (factor = 3): 2828 // for (i = 0; i < N; i+=3) { 2829 // ... do something to R, G, B 2830 // Pic[i] = R; // Member of index 0 2831 // Pic[i+1] = G; // Member of index 1 2832 // Pic[i+2] = B; // Member of index 2 2833 // } 2834 // To: 2835 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2836 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2837 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2838 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2839 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2840 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2841 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2842 assert(Group && "Fail to get an interleaved access group."); 2843 2844 // Skip if current instruction is not the insert position. 2845 if (Instr != Group->getInsertPos()) 2846 return; 2847 2848 Value *Ptr = getPointerOperand(Instr); 2849 2850 // Prepare for the vector type of the interleaved load/store. 2851 Type *ScalarTy = getMemInstValueType(Instr); 2852 unsigned InterleaveFactor = Group->getFactor(); 2853 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2854 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2855 2856 // Prepare for the new pointers. 2857 setDebugLocFromInst(Builder, Ptr); 2858 SmallVector<Value *, 2> NewPtrs; 2859 unsigned Index = Group->getIndex(Instr); 2860 2861 // If the group is reverse, adjust the index to refer to the last vector lane 2862 // instead of the first. We adjust the index from the first vector lane, 2863 // rather than directly getting the pointer for lane VF - 1, because the 2864 // pointer operand of the interleaved access is supposed to be uniform. For 2865 // uniform instructions, we're only required to generate a value for the 2866 // first vector lane in each unroll iteration. 2867 if (Group->isReverse()) 2868 Index += (VF - 1) * Group->getFactor(); 2869 2870 for (unsigned Part = 0; Part < UF; Part++) { 2871 Value *NewPtr = getOrCreateScalarValue(Ptr, Part, 0); 2872 2873 // Notice current instruction could be any index. Need to adjust the address 2874 // to the member of index 0. 2875 // 2876 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2877 // b = A[i]; // Member of index 0 2878 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2879 // 2880 // E.g. A[i+1] = a; // Member of index 1 2881 // A[i] = b; // Member of index 0 2882 // A[i+2] = c; // Member of index 2 (Current instruction) 2883 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2884 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2885 2886 // Cast to the vector pointer type. 2887 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2888 } 2889 2890 setDebugLocFromInst(Builder, Instr); 2891 Value *UndefVec = UndefValue::get(VecTy); 2892 2893 // Vectorize the interleaved load group. 2894 if (isa<LoadInst>(Instr)) { 2895 2896 // For each unroll part, create a wide load for the group. 2897 SmallVector<Value *, 2> NewLoads; 2898 for (unsigned Part = 0; Part < UF; Part++) { 2899 auto *NewLoad = Builder.CreateAlignedLoad( 2900 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2901 addMetadata(NewLoad, Instr); 2902 NewLoads.push_back(NewLoad); 2903 } 2904 2905 // For each member in the group, shuffle out the appropriate data from the 2906 // wide loads. 2907 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2908 Instruction *Member = Group->getMember(I); 2909 2910 // Skip the gaps in the group. 2911 if (!Member) 2912 continue; 2913 2914 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2915 for (unsigned Part = 0; Part < UF; Part++) { 2916 Value *StridedVec = Builder.CreateShuffleVector( 2917 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2918 2919 // If this member has different type, cast the result type. 2920 if (Member->getType() != ScalarTy) { 2921 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2922 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2923 } 2924 2925 if (Group->isReverse()) 2926 StridedVec = reverseVector(StridedVec); 2927 2928 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2929 } 2930 } 2931 return; 2932 } 2933 2934 // The sub vector type for current instruction. 2935 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2936 2937 // Vectorize the interleaved store group. 2938 for (unsigned Part = 0; Part < UF; Part++) { 2939 // Collect the stored vector from each member. 2940 SmallVector<Value *, 4> StoredVecs; 2941 for (unsigned i = 0; i < InterleaveFactor; i++) { 2942 // Interleaved store group doesn't allow a gap, so each index has a member 2943 Instruction *Member = Group->getMember(i); 2944 assert(Member && "Fail to get a member from an interleaved store group"); 2945 2946 Value *StoredVec = getOrCreateVectorValue( 2947 cast<StoreInst>(Member)->getValueOperand(), Part); 2948 if (Group->isReverse()) 2949 StoredVec = reverseVector(StoredVec); 2950 2951 // If this member has different type, cast it to an unified type. 2952 if (StoredVec->getType() != SubVT) 2953 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2954 2955 StoredVecs.push_back(StoredVec); 2956 } 2957 2958 // Concatenate all vectors into a wide vector. 2959 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2960 2961 // Interleave the elements in the wide vector. 2962 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2963 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2964 "interleaved.vec"); 2965 2966 Instruction *NewStoreInstr = 2967 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2968 addMetadata(NewStoreInstr, Instr); 2969 } 2970 } 2971 2972 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2973 // Attempt to issue a wide load. 2974 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2975 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2976 2977 assert((LI || SI) && "Invalid Load/Store instruction"); 2978 2979 LoopVectorizationCostModel::InstWidening Decision = 2980 Cost->getWideningDecision(Instr, VF); 2981 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2982 "CM decision should be taken at this point"); 2983 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2984 return vectorizeInterleaveGroup(Instr); 2985 2986 Type *ScalarDataTy = getMemInstValueType(Instr); 2987 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2988 Value *Ptr = getPointerOperand(Instr); 2989 unsigned Alignment = getMemInstAlignment(Instr); 2990 // An alignment of 0 means target abi alignment. We need to use the scalar's 2991 // target abi alignment in such a case. 2992 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2993 if (!Alignment) 2994 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2995 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2996 2997 // Scalarize the memory instruction if necessary. 2998 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2999 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 3000 3001 // Determine if the pointer operand of the access is either consecutive or 3002 // reverse consecutive. 3003 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3004 bool Reverse = ConsecutiveStride < 0; 3005 bool CreateGatherScatter = 3006 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3007 3008 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3009 // gather/scatter. Otherwise Decision should have been to Scalarize. 3010 assert((ConsecutiveStride || CreateGatherScatter) && 3011 "The instruction should be scalarized"); 3012 3013 // Handle consecutive loads/stores. 3014 if (ConsecutiveStride) 3015 Ptr = getOrCreateScalarValue(Ptr, 0, 0); 3016 3017 VectorParts Mask = createBlockInMask(Instr->getParent()); 3018 // Handle Stores: 3019 if (SI) { 3020 assert(!Legal->isUniform(SI->getPointerOperand()) && 3021 "We do not allow storing to uniform addresses"); 3022 setDebugLocFromInst(Builder, SI); 3023 3024 for (unsigned Part = 0; Part < UF; ++Part) { 3025 Instruction *NewSI = nullptr; 3026 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3027 if (CreateGatherScatter) { 3028 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3029 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3030 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3031 MaskPart); 3032 } else { 3033 // Calculate the pointer for the specific unroll-part. 3034 Value *PartPtr = 3035 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3036 3037 if (Reverse) { 3038 // If we store to reverse consecutive memory locations, then we need 3039 // to reverse the order of elements in the stored value. 3040 StoredVal = reverseVector(StoredVal); 3041 // We don't want to update the value in the map as it might be used in 3042 // another expression. So don't call resetVectorValue(StoredVal). 3043 3044 // If the address is consecutive but reversed, then the 3045 // wide store needs to start at the last vector element. 3046 PartPtr = 3047 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3048 PartPtr = 3049 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3050 Mask[Part] = reverseVector(Mask[Part]); 3051 } 3052 3053 Value *VecPtr = 3054 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3055 3056 if (Legal->isMaskRequired(SI)) 3057 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3058 Mask[Part]); 3059 else 3060 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3061 } 3062 addMetadata(NewSI, SI); 3063 } 3064 return; 3065 } 3066 3067 // Handle loads. 3068 assert(LI && "Must have a load instruction"); 3069 setDebugLocFromInst(Builder, LI); 3070 for (unsigned Part = 0; Part < UF; ++Part) { 3071 Value *NewLI; 3072 if (CreateGatherScatter) { 3073 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3074 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3075 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3076 nullptr, "wide.masked.gather"); 3077 addMetadata(NewLI, LI); 3078 } else { 3079 // Calculate the pointer for the specific unroll-part. 3080 Value *PartPtr = 3081 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3082 3083 if (Reverse) { 3084 // If the address is consecutive but reversed, then the 3085 // wide load needs to start at the last vector element. 3086 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3087 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3088 Mask[Part] = reverseVector(Mask[Part]); 3089 } 3090 3091 Value *VecPtr = 3092 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3093 if (Legal->isMaskRequired(LI)) 3094 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3095 UndefValue::get(DataTy), 3096 "wide.masked.load"); 3097 else 3098 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3099 3100 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3101 addMetadata(NewLI, LI); 3102 if (Reverse) 3103 NewLI = reverseVector(NewLI); 3104 } 3105 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3106 } 3107 } 3108 3109 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3110 bool IfPredicateInstr) { 3111 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3112 DEBUG(dbgs() << "LV: Scalarizing" 3113 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3114 << '\n'); 3115 // Holds vector parameters or scalars, in case of uniform vals. 3116 SmallVector<VectorParts, 4> Params; 3117 3118 setDebugLocFromInst(Builder, Instr); 3119 3120 // Does this instruction return a value ? 3121 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3122 3123 VectorParts Cond; 3124 if (IfPredicateInstr) 3125 Cond = createBlockInMask(Instr->getParent()); 3126 3127 // Determine the number of scalars we need to generate for each unroll 3128 // iteration. If the instruction is uniform, we only need to generate the 3129 // first lane. Otherwise, we generate all VF values. 3130 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3131 3132 // For each vector unroll 'part': 3133 for (unsigned Part = 0; Part < UF; ++Part) { 3134 // For each scalar that we create: 3135 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3136 3137 // Start if-block. 3138 Value *Cmp = nullptr; 3139 if (IfPredicateInstr) { 3140 Cmp = Cond[Part]; 3141 if (Cmp->getType()->isVectorTy()) 3142 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3143 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3144 ConstantInt::get(Cmp->getType(), 1)); 3145 } 3146 3147 Instruction *Cloned = Instr->clone(); 3148 if (!IsVoidRetTy) 3149 Cloned->setName(Instr->getName() + ".cloned"); 3150 3151 // Replace the operands of the cloned instructions with their scalar 3152 // equivalents in the new loop. 3153 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3154 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Part, Lane); 3155 Cloned->setOperand(op, NewOp); 3156 } 3157 addNewMetadata(Cloned, Instr); 3158 3159 // Place the cloned scalar in the new loop. 3160 Builder.Insert(Cloned); 3161 3162 // Add the cloned scalar to the scalar map entry. 3163 VectorLoopValueMap.setScalarValue(Instr, Part, Lane, Cloned); 3164 3165 // If we just cloned a new assumption, add it the assumption cache. 3166 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3167 if (II->getIntrinsicID() == Intrinsic::assume) 3168 AC->registerAssumption(II); 3169 3170 // End if-block. 3171 if (IfPredicateInstr) 3172 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3173 } 3174 } 3175 } 3176 3177 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3178 Value *End, Value *Step, 3179 Instruction *DL) { 3180 BasicBlock *Header = L->getHeader(); 3181 BasicBlock *Latch = L->getLoopLatch(); 3182 // As we're just creating this loop, it's possible no latch exists 3183 // yet. If so, use the header as this will be a single block loop. 3184 if (!Latch) 3185 Latch = Header; 3186 3187 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3188 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3189 setDebugLocFromInst(Builder, OldInst); 3190 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3191 3192 Builder.SetInsertPoint(Latch->getTerminator()); 3193 setDebugLocFromInst(Builder, OldInst); 3194 3195 // Create i+1 and fill the PHINode. 3196 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3197 Induction->addIncoming(Start, L->getLoopPreheader()); 3198 Induction->addIncoming(Next, Latch); 3199 // Create the compare. 3200 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3201 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3202 3203 // Now we have two terminators. Remove the old one from the block. 3204 Latch->getTerminator()->eraseFromParent(); 3205 3206 return Induction; 3207 } 3208 3209 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3210 if (TripCount) 3211 return TripCount; 3212 3213 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3214 // Find the loop boundaries. 3215 ScalarEvolution *SE = PSE.getSE(); 3216 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3217 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3218 "Invalid loop count"); 3219 3220 Type *IdxTy = Legal->getWidestInductionType(); 3221 3222 // The exit count might have the type of i64 while the phi is i32. This can 3223 // happen if we have an induction variable that is sign extended before the 3224 // compare. The only way that we get a backedge taken count is that the 3225 // induction variable was signed and as such will not overflow. In such a case 3226 // truncation is legal. 3227 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3228 IdxTy->getPrimitiveSizeInBits()) 3229 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3230 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3231 3232 // Get the total trip count from the count by adding 1. 3233 const SCEV *ExitCount = SE->getAddExpr( 3234 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3235 3236 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3237 3238 // Expand the trip count and place the new instructions in the preheader. 3239 // Notice that the pre-header does not change, only the loop body. 3240 SCEVExpander Exp(*SE, DL, "induction"); 3241 3242 // Count holds the overall loop count (N). 3243 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3244 L->getLoopPreheader()->getTerminator()); 3245 3246 if (TripCount->getType()->isPointerTy()) 3247 TripCount = 3248 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3249 L->getLoopPreheader()->getTerminator()); 3250 3251 return TripCount; 3252 } 3253 3254 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3255 if (VectorTripCount) 3256 return VectorTripCount; 3257 3258 Value *TC = getOrCreateTripCount(L); 3259 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3260 3261 // Now we need to generate the expression for the part of the loop that the 3262 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3263 // iterations are not required for correctness, or N - Step, otherwise. Step 3264 // is equal to the vectorization factor (number of SIMD elements) times the 3265 // unroll factor (number of SIMD instructions). 3266 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3267 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3268 3269 // If there is a non-reversed interleaved group that may speculatively access 3270 // memory out-of-bounds, we need to ensure that there will be at least one 3271 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3272 // the trip count, we set the remainder to be equal to the step. If the step 3273 // does not evenly divide the trip count, no adjustment is necessary since 3274 // there will already be scalar iterations. Note that the minimum iterations 3275 // check ensures that N >= Step. 3276 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3277 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3278 R = Builder.CreateSelect(IsZero, Step, R); 3279 } 3280 3281 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3282 3283 return VectorTripCount; 3284 } 3285 3286 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3287 BasicBlock *Bypass) { 3288 Value *Count = getOrCreateTripCount(L); 3289 BasicBlock *BB = L->getLoopPreheader(); 3290 IRBuilder<> Builder(BB->getTerminator()); 3291 3292 // Generate code to check that the loop's trip count that we computed by 3293 // adding one to the backedge-taken count will not overflow. 3294 Value *CheckMinIters = Builder.CreateICmpULT( 3295 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3296 3297 BasicBlock *NewBB = 3298 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3299 // Update dominator tree immediately if the generated block is a 3300 // LoopBypassBlock because SCEV expansions to generate loop bypass 3301 // checks may query it before the current function is finished. 3302 DT->addNewBlock(NewBB, BB); 3303 if (L->getParentLoop()) 3304 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3305 ReplaceInstWithInst(BB->getTerminator(), 3306 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3307 LoopBypassBlocks.push_back(BB); 3308 } 3309 3310 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3311 BasicBlock *Bypass) { 3312 Value *TC = getOrCreateVectorTripCount(L); 3313 BasicBlock *BB = L->getLoopPreheader(); 3314 IRBuilder<> Builder(BB->getTerminator()); 3315 3316 // Now, compare the new count to zero. If it is zero skip the vector loop and 3317 // jump to the scalar loop. 3318 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3319 "cmp.zero"); 3320 3321 // Generate code to check that the loop's trip count that we computed by 3322 // adding one to the backedge-taken count will not overflow. 3323 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3324 // Update dominator tree immediately if the generated block is a 3325 // LoopBypassBlock because SCEV expansions to generate loop bypass 3326 // checks may query it before the current function is finished. 3327 DT->addNewBlock(NewBB, BB); 3328 if (L->getParentLoop()) 3329 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3330 ReplaceInstWithInst(BB->getTerminator(), 3331 BranchInst::Create(Bypass, NewBB, Cmp)); 3332 LoopBypassBlocks.push_back(BB); 3333 } 3334 3335 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3336 BasicBlock *BB = L->getLoopPreheader(); 3337 3338 // Generate the code to check that the SCEV assumptions that we made. 3339 // We want the new basic block to start at the first instruction in a 3340 // sequence of instructions that form a check. 3341 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3342 "scev.check"); 3343 Value *SCEVCheck = 3344 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3345 3346 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3347 if (C->isZero()) 3348 return; 3349 3350 // Create a new block containing the stride check. 3351 BB->setName("vector.scevcheck"); 3352 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3353 // Update dominator tree immediately if the generated block is a 3354 // LoopBypassBlock because SCEV expansions to generate loop bypass 3355 // checks may query it before the current function is finished. 3356 DT->addNewBlock(NewBB, BB); 3357 if (L->getParentLoop()) 3358 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3359 ReplaceInstWithInst(BB->getTerminator(), 3360 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3361 LoopBypassBlocks.push_back(BB); 3362 AddedSafetyChecks = true; 3363 } 3364 3365 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3366 BasicBlock *BB = L->getLoopPreheader(); 3367 3368 // Generate the code that checks in runtime if arrays overlap. We put the 3369 // checks into a separate block to make the more common case of few elements 3370 // faster. 3371 Instruction *FirstCheckInst; 3372 Instruction *MemRuntimeCheck; 3373 std::tie(FirstCheckInst, MemRuntimeCheck) = 3374 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3375 if (!MemRuntimeCheck) 3376 return; 3377 3378 // Create a new block containing the memory check. 3379 BB->setName("vector.memcheck"); 3380 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3381 // Update dominator tree immediately if the generated block is a 3382 // LoopBypassBlock because SCEV expansions to generate loop bypass 3383 // checks may query it before the current function is finished. 3384 DT->addNewBlock(NewBB, BB); 3385 if (L->getParentLoop()) 3386 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3387 ReplaceInstWithInst(BB->getTerminator(), 3388 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3389 LoopBypassBlocks.push_back(BB); 3390 AddedSafetyChecks = true; 3391 3392 // We currently don't use LoopVersioning for the actual loop cloning but we 3393 // still use it to add the noalias metadata. 3394 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3395 PSE.getSE()); 3396 LVer->prepareNoAliasMetadata(); 3397 } 3398 3399 void InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3400 /* 3401 In this function we generate a new loop. The new loop will contain 3402 the vectorized instructions while the old loop will continue to run the 3403 scalar remainder. 3404 3405 [ ] <-- loop iteration number check. 3406 / | 3407 / v 3408 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3409 | / | 3410 | / v 3411 || [ ] <-- vector pre header. 3412 |/ | 3413 | v 3414 | [ ] \ 3415 | [ ]_| <-- vector loop. 3416 | | 3417 | v 3418 | -[ ] <--- middle-block. 3419 | / | 3420 | / v 3421 -|- >[ ] <--- new preheader. 3422 | | 3423 | v 3424 | [ ] \ 3425 | [ ]_| <-- old scalar loop to handle remainder. 3426 \ | 3427 \ v 3428 >[ ] <-- exit block. 3429 ... 3430 */ 3431 3432 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3433 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3434 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3435 assert(VectorPH && "Invalid loop structure"); 3436 assert(ExitBlock && "Must have an exit block"); 3437 3438 // Some loops have a single integer induction variable, while other loops 3439 // don't. One example is c++ iterators that often have multiple pointer 3440 // induction variables. In the code below we also support a case where we 3441 // don't have a single induction variable. 3442 // 3443 // We try to obtain an induction variable from the original loop as hard 3444 // as possible. However if we don't find one that: 3445 // - is an integer 3446 // - counts from zero, stepping by one 3447 // - is the size of the widest induction variable type 3448 // then we create a new one. 3449 OldInduction = Legal->getPrimaryInduction(); 3450 Type *IdxTy = Legal->getWidestInductionType(); 3451 3452 // Split the single block loop into the two loop structure described above. 3453 BasicBlock *VecBody = 3454 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3455 BasicBlock *MiddleBlock = 3456 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3457 BasicBlock *ScalarPH = 3458 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3459 3460 // Create and register the new vector loop. 3461 Loop *Lp = new Loop(); 3462 Loop *ParentLoop = OrigLoop->getParentLoop(); 3463 3464 // Insert the new loop into the loop nest and register the new basic blocks 3465 // before calling any utilities such as SCEV that require valid LoopInfo. 3466 if (ParentLoop) { 3467 ParentLoop->addChildLoop(Lp); 3468 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3469 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3470 } else { 3471 LI->addTopLevelLoop(Lp); 3472 } 3473 Lp->addBasicBlockToLoop(VecBody, *LI); 3474 3475 // Find the loop boundaries. 3476 Value *Count = getOrCreateTripCount(Lp); 3477 3478 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3479 3480 // We need to test whether the backedge-taken count is uint##_max. Adding one 3481 // to it will cause overflow and an incorrect loop trip count in the vector 3482 // body. In case of overflow we want to directly jump to the scalar remainder 3483 // loop. 3484 emitMinimumIterationCountCheck(Lp, ScalarPH); 3485 // Now, compare the new count to zero. If it is zero skip the vector loop and 3486 // jump to the scalar loop. 3487 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3488 // Generate the code to check any assumptions that we've made for SCEV 3489 // expressions. 3490 emitSCEVChecks(Lp, ScalarPH); 3491 3492 // Generate the code that checks in runtime if arrays overlap. We put the 3493 // checks into a separate block to make the more common case of few elements 3494 // faster. 3495 emitMemRuntimeChecks(Lp, ScalarPH); 3496 3497 // Generate the induction variable. 3498 // The loop step is equal to the vectorization factor (num of SIMD elements) 3499 // times the unroll factor (num of SIMD instructions). 3500 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3501 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3502 Induction = 3503 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3504 getDebugLocFromInstOrOperands(OldInduction)); 3505 3506 // We are going to resume the execution of the scalar loop. 3507 // Go over all of the induction variables that we found and fix the 3508 // PHIs that are left in the scalar version of the loop. 3509 // The starting values of PHI nodes depend on the counter of the last 3510 // iteration in the vectorized loop. 3511 // If we come from a bypass edge then we need to start from the original 3512 // start value. 3513 3514 // This variable saves the new starting index for the scalar loop. It is used 3515 // to test if there are any tail iterations left once the vector loop has 3516 // completed. 3517 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3518 for (auto &InductionEntry : *List) { 3519 PHINode *OrigPhi = InductionEntry.first; 3520 InductionDescriptor II = InductionEntry.second; 3521 3522 // Create phi nodes to merge from the backedge-taken check block. 3523 PHINode *BCResumeVal = PHINode::Create( 3524 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3525 Value *&EndValue = IVEndValues[OrigPhi]; 3526 if (OrigPhi == OldInduction) { 3527 // We know what the end value is. 3528 EndValue = CountRoundDown; 3529 } else { 3530 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3531 Type *StepType = II.getStep()->getType(); 3532 Instruction::CastOps CastOp = 3533 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3534 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3535 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3536 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3537 EndValue->setName("ind.end"); 3538 } 3539 3540 // The new PHI merges the original incoming value, in case of a bypass, 3541 // or the value at the end of the vectorized loop. 3542 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3543 3544 // Fix the scalar body counter (PHI node). 3545 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3546 3547 // The old induction's phi node in the scalar body needs the truncated 3548 // value. 3549 for (BasicBlock *BB : LoopBypassBlocks) 3550 BCResumeVal->addIncoming(II.getStartValue(), BB); 3551 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3552 } 3553 3554 // Add a check in the middle block to see if we have completed 3555 // all of the iterations in the first vector loop. 3556 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3557 Value *CmpN = 3558 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3559 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3560 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3561 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3562 3563 // Get ready to start creating new instructions into the vectorized body. 3564 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3565 3566 // Save the state. 3567 LoopVectorPreHeader = Lp->getLoopPreheader(); 3568 LoopScalarPreHeader = ScalarPH; 3569 LoopMiddleBlock = MiddleBlock; 3570 LoopExitBlock = ExitBlock; 3571 LoopVectorBody = VecBody; 3572 LoopScalarBody = OldBasicBlock; 3573 3574 // Keep all loop hints from the original loop on the vector loop (we'll 3575 // replace the vectorizer-specific hints below). 3576 if (MDNode *LID = OrigLoop->getLoopID()) 3577 Lp->setLoopID(LID); 3578 3579 LoopVectorizeHints Hints(Lp, true, *ORE); 3580 Hints.setAlreadyVectorized(); 3581 } 3582 3583 // Fix up external users of the induction variable. At this point, we are 3584 // in LCSSA form, with all external PHIs that use the IV having one input value, 3585 // coming from the remainder loop. We need those PHIs to also have a correct 3586 // value for the IV when arriving directly from the middle block. 3587 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3588 const InductionDescriptor &II, 3589 Value *CountRoundDown, Value *EndValue, 3590 BasicBlock *MiddleBlock) { 3591 // There are two kinds of external IV usages - those that use the value 3592 // computed in the last iteration (the PHI) and those that use the penultimate 3593 // value (the value that feeds into the phi from the loop latch). 3594 // We allow both, but they, obviously, have different values. 3595 3596 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3597 3598 DenseMap<Value *, Value *> MissingVals; 3599 3600 // An external user of the last iteration's value should see the value that 3601 // the remainder loop uses to initialize its own IV. 3602 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3603 for (User *U : PostInc->users()) { 3604 Instruction *UI = cast<Instruction>(U); 3605 if (!OrigLoop->contains(UI)) { 3606 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3607 MissingVals[UI] = EndValue; 3608 } 3609 } 3610 3611 // An external user of the penultimate value need to see EndValue - Step. 3612 // The simplest way to get this is to recompute it from the constituent SCEVs, 3613 // that is Start + (Step * (CRD - 1)). 3614 for (User *U : OrigPhi->users()) { 3615 auto *UI = cast<Instruction>(U); 3616 if (!OrigLoop->contains(UI)) { 3617 const DataLayout &DL = 3618 OrigLoop->getHeader()->getModule()->getDataLayout(); 3619 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3620 3621 IRBuilder<> B(MiddleBlock->getTerminator()); 3622 Value *CountMinusOne = B.CreateSub( 3623 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3624 Value *CMO = 3625 !II.getStep()->getType()->isIntegerTy() 3626 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3627 II.getStep()->getType()) 3628 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3629 CMO->setName("cast.cmo"); 3630 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3631 Escape->setName("ind.escape"); 3632 MissingVals[UI] = Escape; 3633 } 3634 } 3635 3636 for (auto &I : MissingVals) { 3637 PHINode *PHI = cast<PHINode>(I.first); 3638 // One corner case we have to handle is two IVs "chasing" each-other, 3639 // that is %IV2 = phi [...], [ %IV1, %latch ] 3640 // In this case, if IV1 has an external use, we need to avoid adding both 3641 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3642 // don't already have an incoming value for the middle block. 3643 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3644 PHI->addIncoming(I.second, MiddleBlock); 3645 } 3646 } 3647 3648 namespace { 3649 struct CSEDenseMapInfo { 3650 static bool canHandle(const Instruction *I) { 3651 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3652 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3653 } 3654 static inline Instruction *getEmptyKey() { 3655 return DenseMapInfo<Instruction *>::getEmptyKey(); 3656 } 3657 static inline Instruction *getTombstoneKey() { 3658 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3659 } 3660 static unsigned getHashValue(const Instruction *I) { 3661 assert(canHandle(I) && "Unknown instruction!"); 3662 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3663 I->value_op_end())); 3664 } 3665 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3666 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3667 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3668 return LHS == RHS; 3669 return LHS->isIdenticalTo(RHS); 3670 } 3671 }; 3672 } 3673 3674 ///\brief Perform cse of induction variable instructions. 3675 static void cse(BasicBlock *BB) { 3676 // Perform simple cse. 3677 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3678 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3679 Instruction *In = &*I++; 3680 3681 if (!CSEDenseMapInfo::canHandle(In)) 3682 continue; 3683 3684 // Check if we can replace this instruction with any of the 3685 // visited instructions. 3686 if (Instruction *V = CSEMap.lookup(In)) { 3687 In->replaceAllUsesWith(V); 3688 In->eraseFromParent(); 3689 continue; 3690 } 3691 3692 CSEMap[In] = In; 3693 } 3694 } 3695 3696 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3697 /// convenience wrapper for the type-based getScalarizationOverhead API. 3698 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3699 const TargetTransformInfo &TTI) { 3700 if (VF == 1) 3701 return 0; 3702 3703 unsigned Cost = 0; 3704 Type *RetTy = ToVectorTy(I->getType(), VF); 3705 if (!RetTy->isVoidTy() && 3706 (!isa<LoadInst>(I) || 3707 !TTI.supportsEfficientVectorElementLoadStore())) 3708 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3709 3710 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3711 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3712 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3713 } 3714 else if (!isa<StoreInst>(I) || 3715 !TTI.supportsEfficientVectorElementLoadStore()) { 3716 SmallVector<const Value *, 4> Operands(I->operand_values()); 3717 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3718 } 3719 3720 return Cost; 3721 } 3722 3723 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3724 // Return the cost of the instruction, including scalarization overhead if it's 3725 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3726 // i.e. either vector version isn't available, or is too expensive. 3727 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3728 const TargetTransformInfo &TTI, 3729 const TargetLibraryInfo *TLI, 3730 bool &NeedToScalarize) { 3731 Function *F = CI->getCalledFunction(); 3732 StringRef FnName = CI->getCalledFunction()->getName(); 3733 Type *ScalarRetTy = CI->getType(); 3734 SmallVector<Type *, 4> Tys, ScalarTys; 3735 for (auto &ArgOp : CI->arg_operands()) 3736 ScalarTys.push_back(ArgOp->getType()); 3737 3738 // Estimate cost of scalarized vector call. The source operands are assumed 3739 // to be vectors, so we need to extract individual elements from there, 3740 // execute VF scalar calls, and then gather the result into the vector return 3741 // value. 3742 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3743 if (VF == 1) 3744 return ScalarCallCost; 3745 3746 // Compute corresponding vector type for return value and arguments. 3747 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3748 for (Type *ScalarTy : ScalarTys) 3749 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3750 3751 // Compute costs of unpacking argument values for the scalar calls and 3752 // packing the return values to a vector. 3753 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3754 3755 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3756 3757 // If we can't emit a vector call for this function, then the currently found 3758 // cost is the cost we need to return. 3759 NeedToScalarize = true; 3760 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3761 return Cost; 3762 3763 // If the corresponding vector cost is cheaper, return its cost. 3764 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3765 if (VectorCallCost < Cost) { 3766 NeedToScalarize = false; 3767 return VectorCallCost; 3768 } 3769 return Cost; 3770 } 3771 3772 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3773 // factor VF. Return the cost of the instruction, including scalarization 3774 // overhead if it's needed. 3775 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3776 const TargetTransformInfo &TTI, 3777 const TargetLibraryInfo *TLI) { 3778 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3779 assert(ID && "Expected intrinsic call!"); 3780 3781 FastMathFlags FMF; 3782 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3783 FMF = FPMO->getFastMathFlags(); 3784 3785 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3786 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3787 } 3788 3789 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3790 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3791 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3792 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3793 } 3794 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3795 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3796 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3797 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3798 } 3799 3800 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3801 // For every instruction `I` in MinBWs, truncate the operands, create a 3802 // truncated version of `I` and reextend its result. InstCombine runs 3803 // later and will remove any ext/trunc pairs. 3804 // 3805 SmallPtrSet<Value *, 4> Erased; 3806 for (const auto &KV : Cost->getMinimalBitwidths()) { 3807 // If the value wasn't vectorized, we must maintain the original scalar 3808 // type. The absence of the value from VectorLoopValueMap indicates that it 3809 // wasn't vectorized. 3810 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3811 continue; 3812 for (unsigned Part = 0; Part < UF; ++Part) { 3813 Value *I = getOrCreateVectorValue(KV.first, Part); 3814 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3815 continue; 3816 Type *OriginalTy = I->getType(); 3817 Type *ScalarTruncatedTy = 3818 IntegerType::get(OriginalTy->getContext(), KV.second); 3819 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3820 OriginalTy->getVectorNumElements()); 3821 if (TruncatedTy == OriginalTy) 3822 continue; 3823 3824 IRBuilder<> B(cast<Instruction>(I)); 3825 auto ShrinkOperand = [&](Value *V) -> Value * { 3826 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3827 if (ZI->getSrcTy() == TruncatedTy) 3828 return ZI->getOperand(0); 3829 return B.CreateZExtOrTrunc(V, TruncatedTy); 3830 }; 3831 3832 // The actual instruction modification depends on the instruction type, 3833 // unfortunately. 3834 Value *NewI = nullptr; 3835 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3836 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3837 ShrinkOperand(BO->getOperand(1))); 3838 3839 // Any wrapping introduced by shrinking this operation shouldn't be 3840 // considered undefined behavior. So, we can't unconditionally copy 3841 // arithmetic wrapping flags to NewI. 3842 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3843 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3844 NewI = 3845 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3846 ShrinkOperand(CI->getOperand(1))); 3847 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3848 NewI = B.CreateSelect(SI->getCondition(), 3849 ShrinkOperand(SI->getTrueValue()), 3850 ShrinkOperand(SI->getFalseValue())); 3851 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3852 switch (CI->getOpcode()) { 3853 default: 3854 llvm_unreachable("Unhandled cast!"); 3855 case Instruction::Trunc: 3856 NewI = ShrinkOperand(CI->getOperand(0)); 3857 break; 3858 case Instruction::SExt: 3859 NewI = B.CreateSExtOrTrunc( 3860 CI->getOperand(0), 3861 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3862 break; 3863 case Instruction::ZExt: 3864 NewI = B.CreateZExtOrTrunc( 3865 CI->getOperand(0), 3866 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3867 break; 3868 } 3869 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3870 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3871 auto *O0 = B.CreateZExtOrTrunc( 3872 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3873 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3874 auto *O1 = B.CreateZExtOrTrunc( 3875 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3876 3877 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3878 } else if (isa<LoadInst>(I)) { 3879 // Don't do anything with the operands, just extend the result. 3880 continue; 3881 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3882 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3883 auto *O0 = B.CreateZExtOrTrunc( 3884 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3885 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3886 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3887 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3888 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3889 auto *O0 = B.CreateZExtOrTrunc( 3890 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3891 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3892 } else { 3893 llvm_unreachable("Unhandled instruction type!"); 3894 } 3895 3896 // Lastly, extend the result. 3897 NewI->takeName(cast<Instruction>(I)); 3898 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3899 I->replaceAllUsesWith(Res); 3900 cast<Instruction>(I)->eraseFromParent(); 3901 Erased.insert(I); 3902 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3903 } 3904 } 3905 3906 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3907 for (const auto &KV : Cost->getMinimalBitwidths()) { 3908 // If the value wasn't vectorized, we must maintain the original scalar 3909 // type. The absence of the value from VectorLoopValueMap indicates that it 3910 // wasn't vectorized. 3911 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3912 continue; 3913 for (unsigned Part = 0; Part < UF; ++Part) { 3914 Value *I = getOrCreateVectorValue(KV.first, Part); 3915 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3916 if (Inst && Inst->use_empty()) { 3917 Value *NewI = Inst->getOperand(0); 3918 Inst->eraseFromParent(); 3919 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3920 } 3921 } 3922 } 3923 } 3924 3925 void InnerLoopVectorizer::fixVectorizedLoop() { 3926 // Insert truncates and extends for any truncated instructions as hints to 3927 // InstCombine. 3928 if (VF > 1) 3929 truncateToMinimalBitwidths(); 3930 3931 // At this point every instruction in the original loop is widened to a 3932 // vector form. Now we need to fix the recurrences in the loop. These PHI 3933 // nodes are currently empty because we did not want to introduce cycles. 3934 // This is the second stage of vectorizing recurrences. 3935 fixCrossIterationPHIs(); 3936 3937 // Update the dominator tree. 3938 // 3939 // FIXME: After creating the structure of the new loop, the dominator tree is 3940 // no longer up-to-date, and it remains that way until we update it 3941 // here. An out-of-date dominator tree is problematic for SCEV, 3942 // because SCEVExpander uses it to guide code generation. The 3943 // vectorizer use SCEVExpanders in several places. Instead, we should 3944 // keep the dominator tree up-to-date as we go. 3945 updateAnalysis(); 3946 3947 // Fix-up external users of the induction variables. 3948 for (auto &Entry : *Legal->getInductionVars()) 3949 fixupIVUsers(Entry.first, Entry.second, 3950 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3951 IVEndValues[Entry.first], LoopMiddleBlock); 3952 3953 fixLCSSAPHIs(); 3954 predicateInstructions(); 3955 3956 // Remove redundant induction instructions. 3957 cse(LoopVectorBody); 3958 } 3959 3960 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3961 // In order to support recurrences we need to be able to vectorize Phi nodes. 3962 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3963 // stage #2: We now need to fix the recurrences by adding incoming edges to 3964 // the currently empty PHI nodes. At this point every instruction in the 3965 // original loop is widened to a vector form so we can use them to construct 3966 // the incoming edges. 3967 for (Instruction &I : *OrigLoop->getHeader()) { 3968 PHINode *Phi = dyn_cast<PHINode>(&I); 3969 if (!Phi) 3970 break; 3971 // Handle first-order recurrences and reductions that need to be fixed. 3972 if (Legal->isFirstOrderRecurrence(Phi)) 3973 fixFirstOrderRecurrence(Phi); 3974 else if (Legal->isReductionVariable(Phi)) 3975 fixReduction(Phi); 3976 } 3977 } 3978 3979 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3980 3981 // This is the second phase of vectorizing first-order recurrences. An 3982 // overview of the transformation is described below. Suppose we have the 3983 // following loop. 3984 // 3985 // for (int i = 0; i < n; ++i) 3986 // b[i] = a[i] - a[i - 1]; 3987 // 3988 // There is a first-order recurrence on "a". For this loop, the shorthand 3989 // scalar IR looks like: 3990 // 3991 // scalar.ph: 3992 // s_init = a[-1] 3993 // br scalar.body 3994 // 3995 // scalar.body: 3996 // i = phi [0, scalar.ph], [i+1, scalar.body] 3997 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3998 // s2 = a[i] 3999 // b[i] = s2 - s1 4000 // br cond, scalar.body, ... 4001 // 4002 // In this example, s1 is a recurrence because it's value depends on the 4003 // previous iteration. In the first phase of vectorization, we created a 4004 // temporary value for s1. We now complete the vectorization and produce the 4005 // shorthand vector IR shown below (for VF = 4, UF = 1). 4006 // 4007 // vector.ph: 4008 // v_init = vector(..., ..., ..., a[-1]) 4009 // br vector.body 4010 // 4011 // vector.body 4012 // i = phi [0, vector.ph], [i+4, vector.body] 4013 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4014 // v2 = a[i, i+1, i+2, i+3]; 4015 // v3 = vector(v1(3), v2(0, 1, 2)) 4016 // b[i, i+1, i+2, i+3] = v2 - v3 4017 // br cond, vector.body, middle.block 4018 // 4019 // middle.block: 4020 // x = v2(3) 4021 // br scalar.ph 4022 // 4023 // scalar.ph: 4024 // s_init = phi [x, middle.block], [a[-1], otherwise] 4025 // br scalar.body 4026 // 4027 // After execution completes the vector loop, we extract the next value of 4028 // the recurrence (x) to use as the initial value in the scalar loop. 4029 4030 // Get the original loop preheader and single loop latch. 4031 auto *Preheader = OrigLoop->getLoopPreheader(); 4032 auto *Latch = OrigLoop->getLoopLatch(); 4033 4034 // Get the initial and previous values of the scalar recurrence. 4035 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4036 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4037 4038 // Create a vector from the initial value. 4039 auto *VectorInit = ScalarInit; 4040 if (VF > 1) { 4041 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4042 VectorInit = Builder.CreateInsertElement( 4043 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4044 Builder.getInt32(VF - 1), "vector.recur.init"); 4045 } 4046 4047 // We constructed a temporary phi node in the first phase of vectorization. 4048 // This phi node will eventually be deleted. 4049 Builder.SetInsertPoint( 4050 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4051 4052 // Create a phi node for the new recurrence. The current value will either be 4053 // the initial value inserted into a vector or loop-varying vector value. 4054 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4055 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4056 4057 // Get the vectorized previous value of the last part UF - 1. It appears last 4058 // among all unrolled iterations, due to the order of their construction. 4059 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4060 4061 // Set the insertion point after the previous value if it is an instruction. 4062 // Note that the previous value may have been constant-folded so it is not 4063 // guaranteed to be an instruction in the vector loop. Also, if the previous 4064 // value is a phi node, we should insert after all the phi nodes to avoid 4065 // breaking basic block verification. 4066 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4067 isa<PHINode>(PreviousLastPart)) 4068 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4069 else 4070 Builder.SetInsertPoint( 4071 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4072 4073 // We will construct a vector for the recurrence by combining the values for 4074 // the current and previous iterations. This is the required shuffle mask. 4075 SmallVector<Constant *, 8> ShuffleMask(VF); 4076 ShuffleMask[0] = Builder.getInt32(VF - 1); 4077 for (unsigned I = 1; I < VF; ++I) 4078 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4079 4080 // The vector from which to take the initial value for the current iteration 4081 // (actual or unrolled). Initially, this is the vector phi node. 4082 Value *Incoming = VecPhi; 4083 4084 // Shuffle the current and previous vector and update the vector parts. 4085 for (unsigned Part = 0; Part < UF; ++Part) { 4086 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4087 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4088 auto *Shuffle = 4089 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4090 ConstantVector::get(ShuffleMask)) 4091 : Incoming; 4092 PhiPart->replaceAllUsesWith(Shuffle); 4093 cast<Instruction>(PhiPart)->eraseFromParent(); 4094 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4095 Incoming = PreviousPart; 4096 } 4097 4098 // Fix the latch value of the new recurrence in the vector loop. 4099 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4100 4101 // Extract the last vector element in the middle block. This will be the 4102 // initial value for the recurrence when jumping to the scalar loop. 4103 auto *ExtractForScalar = Incoming; 4104 if (VF > 1) { 4105 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4106 ExtractForScalar = Builder.CreateExtractElement( 4107 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4108 } 4109 // Extract the second last element in the middle block if the 4110 // Phi is used outside the loop. We need to extract the phi itself 4111 // and not the last element (the phi update in the current iteration). This 4112 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4113 // when the scalar loop is not run at all. 4114 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4115 if (VF > 1) 4116 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4117 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4118 // When loop is unrolled without vectorizing, initialize 4119 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4120 // `Incoming`. This is analogous to the vectorized case above: extracting the 4121 // second last element when VF > 1. 4122 else if (UF > 1) 4123 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4124 4125 // Fix the initial value of the original recurrence in the scalar loop. 4126 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4127 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4128 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4129 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4130 Start->addIncoming(Incoming, BB); 4131 } 4132 4133 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4134 Phi->setName("scalar.recur"); 4135 4136 // Finally, fix users of the recurrence outside the loop. The users will need 4137 // either the last value of the scalar recurrence or the last value of the 4138 // vector recurrence we extracted in the middle block. Since the loop is in 4139 // LCSSA form, we just need to find the phi node for the original scalar 4140 // recurrence in the exit block, and then add an edge for the middle block. 4141 for (auto &I : *LoopExitBlock) { 4142 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4143 if (!LCSSAPhi) 4144 break; 4145 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4146 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4147 break; 4148 } 4149 } 4150 } 4151 4152 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4153 Constant *Zero = Builder.getInt32(0); 4154 4155 // Get it's reduction variable descriptor. 4156 assert(Legal->isReductionVariable(Phi) && 4157 "Unable to find the reduction variable"); 4158 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4159 4160 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4161 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4162 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4163 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4164 RdxDesc.getMinMaxRecurrenceKind(); 4165 setDebugLocFromInst(Builder, ReductionStartValue); 4166 4167 // We need to generate a reduction vector from the incoming scalar. 4168 // To do so, we need to generate the 'identity' vector and override 4169 // one of the elements with the incoming scalar reduction. We need 4170 // to do it in the vector-loop preheader. 4171 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4172 4173 // This is the vector-clone of the value that leaves the loop. 4174 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4175 4176 // Find the reduction identity variable. Zero for addition, or, xor, 4177 // one for multiplication, -1 for And. 4178 Value *Identity; 4179 Value *VectorStart; 4180 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4181 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4182 // MinMax reduction have the start value as their identify. 4183 if (VF == 1) { 4184 VectorStart = Identity = ReductionStartValue; 4185 } else { 4186 VectorStart = Identity = 4187 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4188 } 4189 } else { 4190 // Handle other reduction kinds: 4191 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4192 RK, VecTy->getScalarType()); 4193 if (VF == 1) { 4194 Identity = Iden; 4195 // This vector is the Identity vector where the first element is the 4196 // incoming scalar reduction. 4197 VectorStart = ReductionStartValue; 4198 } else { 4199 Identity = ConstantVector::getSplat(VF, Iden); 4200 4201 // This vector is the Identity vector where the first element is the 4202 // incoming scalar reduction. 4203 VectorStart = 4204 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4205 } 4206 } 4207 4208 // Fix the vector-loop phi. 4209 4210 // Reductions do not have to start at zero. They can start with 4211 // any loop invariant values. 4212 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4213 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4214 for (unsigned Part = 0; Part < UF; ++Part) { 4215 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4216 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4217 // Make sure to add the reduction stat value only to the 4218 // first unroll part. 4219 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4220 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4221 cast<PHINode>(VecRdxPhi) 4222 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4223 } 4224 4225 // Before each round, move the insertion point right between 4226 // the PHIs and the values we are going to write. 4227 // This allows us to write both PHINodes and the extractelement 4228 // instructions. 4229 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4230 4231 setDebugLocFromInst(Builder, LoopExitInst); 4232 4233 // If the vector reduction can be performed in a smaller type, we truncate 4234 // then extend the loop exit value to enable InstCombine to evaluate the 4235 // entire expression in the smaller type. 4236 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4237 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4238 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4239 VectorParts RdxParts(UF); 4240 for (unsigned Part = 0; Part < UF; ++Part) { 4241 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4242 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4243 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4244 : Builder.CreateZExt(Trunc, VecTy); 4245 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4246 UI != RdxParts[Part]->user_end();) 4247 if (*UI != Trunc) { 4248 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4249 RdxParts[Part] = Extnd; 4250 } else { 4251 ++UI; 4252 } 4253 } 4254 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4255 for (unsigned Part = 0; Part < UF; ++Part) { 4256 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4257 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4258 } 4259 } 4260 4261 // Reduce all of the unrolled parts into a single vector. 4262 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4263 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4264 setDebugLocFromInst(Builder, ReducedPartRdx); 4265 for (unsigned Part = 1; Part < UF; ++Part) { 4266 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4267 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4268 // Floating point operations had to be 'fast' to enable the reduction. 4269 ReducedPartRdx = addFastMathFlag( 4270 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4271 ReducedPartRdx, "bin.rdx")); 4272 else 4273 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4274 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4275 } 4276 4277 if (VF > 1) { 4278 bool NoNaN = Legal->hasFunNoNaNAttr(); 4279 ReducedPartRdx = 4280 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4281 // If the reduction can be performed in a smaller type, we need to extend 4282 // the reduction to the wider type before we branch to the original loop. 4283 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4284 ReducedPartRdx = 4285 RdxDesc.isSigned() 4286 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4287 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4288 } 4289 4290 // Create a phi node that merges control-flow from the backedge-taken check 4291 // block and the middle block. 4292 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4293 LoopScalarPreHeader->getTerminator()); 4294 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4295 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4296 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4297 4298 // Now, we need to fix the users of the reduction variable 4299 // inside and outside of the scalar remainder loop. 4300 // We know that the loop is in LCSSA form. We need to update the 4301 // PHI nodes in the exit blocks. 4302 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4303 LEE = LoopExitBlock->end(); 4304 LEI != LEE; ++LEI) { 4305 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4306 if (!LCSSAPhi) 4307 break; 4308 4309 // All PHINodes need to have a single entry edge, or two if 4310 // we already fixed them. 4311 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4312 4313 // We found a reduction value exit-PHI. Update it with the 4314 // incoming bypass edge. 4315 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4316 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4317 } // end of the LCSSA phi scan. 4318 4319 // Fix the scalar loop reduction variable with the incoming reduction sum 4320 // from the vector body and from the backedge value. 4321 int IncomingEdgeBlockIdx = 4322 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4323 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4324 // Pick the other block. 4325 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4326 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4327 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4328 } 4329 4330 void InnerLoopVectorizer::fixLCSSAPHIs() { 4331 for (Instruction &LEI : *LoopExitBlock) { 4332 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4333 if (!LCSSAPhi) 4334 break; 4335 if (LCSSAPhi->getNumIncomingValues() == 1) { 4336 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4337 "Incoming value isn't loop invariant"); 4338 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4339 } 4340 } 4341 } 4342 4343 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4344 4345 // The basic block and loop containing the predicated instruction. 4346 auto *PredBB = PredInst->getParent(); 4347 auto *VectorLoop = LI->getLoopFor(PredBB); 4348 4349 // Initialize a worklist with the operands of the predicated instruction. 4350 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4351 4352 // Holds instructions that we need to analyze again. An instruction may be 4353 // reanalyzed if we don't yet know if we can sink it or not. 4354 SmallVector<Instruction *, 8> InstsToReanalyze; 4355 4356 // Returns true if a given use occurs in the predicated block. Phi nodes use 4357 // their operands in their corresponding predecessor blocks. 4358 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4359 auto *I = cast<Instruction>(U.getUser()); 4360 BasicBlock *BB = I->getParent(); 4361 if (auto *Phi = dyn_cast<PHINode>(I)) 4362 BB = Phi->getIncomingBlock( 4363 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4364 return BB == PredBB; 4365 }; 4366 4367 // Iteratively sink the scalarized operands of the predicated instruction 4368 // into the block we created for it. When an instruction is sunk, it's 4369 // operands are then added to the worklist. The algorithm ends after one pass 4370 // through the worklist doesn't sink a single instruction. 4371 bool Changed; 4372 do { 4373 4374 // Add the instructions that need to be reanalyzed to the worklist, and 4375 // reset the changed indicator. 4376 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4377 InstsToReanalyze.clear(); 4378 Changed = false; 4379 4380 while (!Worklist.empty()) { 4381 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4382 4383 // We can't sink an instruction if it is a phi node, is already in the 4384 // predicated block, is not in the loop, or may have side effects. 4385 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4386 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4387 continue; 4388 4389 // It's legal to sink the instruction if all its uses occur in the 4390 // predicated block. Otherwise, there's nothing to do yet, and we may 4391 // need to reanalyze the instruction. 4392 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4393 InstsToReanalyze.push_back(I); 4394 continue; 4395 } 4396 4397 // Move the instruction to the beginning of the predicated block, and add 4398 // it's operands to the worklist. 4399 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4400 Worklist.insert(I->op_begin(), I->op_end()); 4401 4402 // The sinking may have enabled other instructions to be sunk, so we will 4403 // need to iterate. 4404 Changed = true; 4405 } 4406 } while (Changed); 4407 } 4408 4409 void InnerLoopVectorizer::predicateInstructions() { 4410 4411 // For each instruction I marked for predication on value C, split I into its 4412 // own basic block to form an if-then construct over C. Since I may be fed by 4413 // an extractelement instruction or other scalar operand, we try to 4414 // iteratively sink its scalar operands into the predicated block. If I feeds 4415 // an insertelement instruction, we try to move this instruction into the 4416 // predicated block as well. For non-void types, a phi node will be created 4417 // for the resulting value (either vector or scalar). 4418 // 4419 // So for some predicated instruction, e.g. the conditional sdiv in: 4420 // 4421 // for.body: 4422 // ... 4423 // %add = add nsw i32 %mul, %0 4424 // %cmp5 = icmp sgt i32 %2, 7 4425 // br i1 %cmp5, label %if.then, label %if.end 4426 // 4427 // if.then: 4428 // %div = sdiv i32 %0, %1 4429 // br label %if.end 4430 // 4431 // if.end: 4432 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4433 // 4434 // the sdiv at this point is scalarized and if-converted using a select. 4435 // The inactive elements in the vector are not used, but the predicated 4436 // instruction is still executed for all vector elements, essentially: 4437 // 4438 // vector.body: 4439 // ... 4440 // %17 = add nsw <2 x i32> %16, %wide.load 4441 // %29 = extractelement <2 x i32> %wide.load, i32 0 4442 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4443 // %31 = sdiv i32 %29, %30 4444 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4445 // %35 = extractelement <2 x i32> %wide.load, i32 1 4446 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4447 // %37 = sdiv i32 %35, %36 4448 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4449 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4450 // 4451 // Predication will now re-introduce the original control flow to avoid false 4452 // side-effects by the sdiv instructions on the inactive elements, yielding 4453 // (after cleanup): 4454 // 4455 // vector.body: 4456 // ... 4457 // %5 = add nsw <2 x i32> %4, %wide.load 4458 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4459 // %9 = extractelement <2 x i1> %8, i32 0 4460 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4461 // 4462 // pred.sdiv.if: 4463 // %10 = extractelement <2 x i32> %wide.load, i32 0 4464 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4465 // %12 = sdiv i32 %10, %11 4466 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4467 // br label %pred.sdiv.continue 4468 // 4469 // pred.sdiv.continue: 4470 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4471 // %15 = extractelement <2 x i1> %8, i32 1 4472 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4473 // 4474 // pred.sdiv.if54: 4475 // %16 = extractelement <2 x i32> %wide.load, i32 1 4476 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4477 // %18 = sdiv i32 %16, %17 4478 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4479 // br label %pred.sdiv.continue55 4480 // 4481 // pred.sdiv.continue55: 4482 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4483 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4484 4485 for (auto KV : PredicatedInstructions) { 4486 BasicBlock::iterator I(KV.first); 4487 BasicBlock *Head = I->getParent(); 4488 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4489 /*BranchWeights=*/nullptr, DT, LI); 4490 I->moveBefore(T); 4491 sinkScalarOperands(&*I); 4492 4493 BasicBlock *PredicatedBlock = I->getParent(); 4494 Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName(); 4495 PredicatedBlock->setName(BBNamePrefix + ".if"); 4496 PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue"); 4497 4498 // If the instruction is non-void create a Phi node at reconvergence point. 4499 if (!I->getType()->isVoidTy()) { 4500 Value *IncomingTrue = nullptr; 4501 Value *IncomingFalse = nullptr; 4502 4503 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4504 // If the predicated instruction is feeding an insert-element, move it 4505 // into the Then block; Phi node will be created for the vector. 4506 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4507 IEI->moveBefore(T); 4508 IncomingTrue = IEI; // the new vector with the inserted element. 4509 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4510 } else { 4511 // Phi node will be created for the scalar predicated instruction. 4512 IncomingTrue = &*I; 4513 IncomingFalse = UndefValue::get(I->getType()); 4514 } 4515 4516 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4517 assert(PostDom && "Then block has multiple successors"); 4518 PHINode *Phi = 4519 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4520 IncomingTrue->replaceAllUsesWith(Phi); 4521 Phi->addIncoming(IncomingFalse, Head); 4522 Phi->addIncoming(IncomingTrue, I->getParent()); 4523 } 4524 } 4525 4526 DEBUG(DT->verifyDomTree()); 4527 } 4528 4529 InnerLoopVectorizer::VectorParts 4530 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4531 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4532 4533 // Look for cached value. 4534 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4535 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4536 if (ECEntryIt != EdgeMaskCache.end()) 4537 return ECEntryIt->second; 4538 4539 VectorParts SrcMask = createBlockInMask(Src); 4540 4541 // The terminator has to be a branch inst! 4542 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4543 assert(BI && "Unexpected terminator found"); 4544 4545 if (BI->isConditional()) { 4546 4547 VectorParts EdgeMask(UF); 4548 for (unsigned Part = 0; Part < UF; ++Part) { 4549 auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part); 4550 if (BI->getSuccessor(0) != Dst) 4551 EdgeMaskPart = Builder.CreateNot(EdgeMaskPart); 4552 4553 EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]); 4554 EdgeMask[Part] = EdgeMaskPart; 4555 } 4556 4557 EdgeMaskCache[Edge] = EdgeMask; 4558 return EdgeMask; 4559 } 4560 4561 EdgeMaskCache[Edge] = SrcMask; 4562 return SrcMask; 4563 } 4564 4565 InnerLoopVectorizer::VectorParts 4566 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4567 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4568 4569 // Look for cached value. 4570 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4571 if (BCEntryIt != BlockMaskCache.end()) 4572 return BCEntryIt->second; 4573 4574 VectorParts BlockMask(UF); 4575 4576 // Loop incoming mask is all-one. 4577 if (OrigLoop->getHeader() == BB) { 4578 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4579 for (unsigned Part = 0; Part < UF; ++Part) 4580 BlockMask[Part] = getOrCreateVectorValue(C, Part); 4581 BlockMaskCache[BB] = BlockMask; 4582 return BlockMask; 4583 } 4584 4585 // This is the block mask. We OR all incoming edges, and with zero. 4586 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4587 for (unsigned Part = 0; Part < UF; ++Part) 4588 BlockMask[Part] = getOrCreateVectorValue(Zero, Part); 4589 4590 // For each pred: 4591 for (pred_iterator It = pred_begin(BB), E = pred_end(BB); It != E; ++It) { 4592 VectorParts EM = createEdgeMask(*It, BB); 4593 for (unsigned Part = 0; Part < UF; ++Part) 4594 BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EM[Part]); 4595 } 4596 4597 BlockMaskCache[BB] = BlockMask; 4598 return BlockMask; 4599 } 4600 4601 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4602 unsigned VF) { 4603 PHINode *P = cast<PHINode>(PN); 4604 // In order to support recurrences we need to be able to vectorize Phi nodes. 4605 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4606 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4607 // this value when we vectorize all of the instructions that use the PHI. 4608 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4609 for (unsigned Part = 0; Part < UF; ++Part) { 4610 // This is phase one of vectorizing PHIs. 4611 Type *VecTy = 4612 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4613 Value *EntryPart = PHINode::Create( 4614 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4615 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4616 } 4617 return; 4618 } 4619 4620 setDebugLocFromInst(Builder, P); 4621 // Check for PHI nodes that are lowered to vector selects. 4622 if (P->getParent() != OrigLoop->getHeader()) { 4623 // We know that all PHIs in non-header blocks are converted into 4624 // selects, so we don't have to worry about the insertion order and we 4625 // can just use the builder. 4626 // At this point we generate the predication tree. There may be 4627 // duplications since this is a simple recursive scan, but future 4628 // optimizations will clean it up. 4629 4630 unsigned NumIncoming = P->getNumIncomingValues(); 4631 4632 // Generate a sequence of selects of the form: 4633 // SELECT(Mask3, In3, 4634 // SELECT(Mask2, In2, 4635 // ( ...))) 4636 VectorParts Entry(UF); 4637 for (unsigned In = 0; In < NumIncoming; In++) { 4638 VectorParts Cond = 4639 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4640 4641 for (unsigned Part = 0; Part < UF; ++Part) { 4642 Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part); 4643 // We might have single edge PHIs (blocks) - use an identity 4644 // 'select' for the first PHI operand. 4645 if (In == 0) 4646 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, In0); 4647 else 4648 // Select between the current value and the previous incoming edge 4649 // based on the incoming mask. 4650 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part], 4651 "predphi"); 4652 } 4653 } 4654 for (unsigned Part = 0; Part < UF; ++Part) 4655 VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]); 4656 return; 4657 } 4658 4659 // This PHINode must be an induction variable. 4660 // Make sure that we know about it. 4661 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4662 4663 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4664 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4665 4666 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4667 // which can be found from the original scalar operations. 4668 switch (II.getKind()) { 4669 case InductionDescriptor::IK_NoInduction: 4670 llvm_unreachable("Unknown induction"); 4671 case InductionDescriptor::IK_IntInduction: 4672 case InductionDescriptor::IK_FpInduction: 4673 return widenIntOrFpInduction(P); 4674 case InductionDescriptor::IK_PtrInduction: { 4675 // Handle the pointer induction variable case. 4676 assert(P->getType()->isPointerTy() && "Unexpected type."); 4677 // This is the normalized GEP that starts counting at zero. 4678 Value *PtrInd = Induction; 4679 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4680 // Determine the number of scalars we need to generate for each unroll 4681 // iteration. If the instruction is uniform, we only need to generate the 4682 // first lane. Otherwise, we generate all VF values. 4683 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4684 // These are the scalar results. Notice that we don't generate vector GEPs 4685 // because scalar GEPs result in better code. 4686 for (unsigned Part = 0; Part < UF; ++Part) { 4687 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4688 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4689 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4690 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4691 SclrGep->setName("next.gep"); 4692 VectorLoopValueMap.setScalarValue(P, Part, Lane, SclrGep); 4693 } 4694 } 4695 return; 4696 } 4697 } 4698 } 4699 4700 /// A helper function for checking whether an integer division-related 4701 /// instruction may divide by zero (in which case it must be predicated if 4702 /// executed conditionally in the scalar code). 4703 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4704 /// Non-zero divisors that are non compile-time constants will not be 4705 /// converted into multiplication, so we will still end up scalarizing 4706 /// the division, but can do so w/o predication. 4707 static bool mayDivideByZero(Instruction &I) { 4708 assert((I.getOpcode() == Instruction::UDiv || 4709 I.getOpcode() == Instruction::SDiv || 4710 I.getOpcode() == Instruction::URem || 4711 I.getOpcode() == Instruction::SRem) && 4712 "Unexpected instruction"); 4713 Value *Divisor = I.getOperand(1); 4714 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4715 return !CInt || CInt->isZero(); 4716 } 4717 4718 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4719 // Scalarize instructions that should remain scalar after vectorization. 4720 if (VF > 1 && 4721 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4722 shouldScalarizeInstruction(&I)) { 4723 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4724 return; 4725 } 4726 4727 switch (I.getOpcode()) { 4728 case Instruction::Br: 4729 // Nothing to do for PHIs and BR, since we already took care of the 4730 // loop control flow instructions. 4731 break; 4732 case Instruction::PHI: { 4733 // Vectorize PHINodes. 4734 widenPHIInstruction(&I, UF, VF); 4735 break; 4736 } // End of PHI. 4737 case Instruction::GetElementPtr: { 4738 // Construct a vector GEP by widening the operands of the scalar GEP as 4739 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4740 // results in a vector of pointers when at least one operand of the GEP 4741 // is vector-typed. Thus, to keep the representation compact, we only use 4742 // vector-typed operands for loop-varying values. 4743 auto *GEP = cast<GetElementPtrInst>(&I); 4744 4745 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4746 // If we are vectorizing, but the GEP has only loop-invariant operands, 4747 // the GEP we build (by only using vector-typed operands for 4748 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4749 // produce a vector of pointers, we need to either arbitrarily pick an 4750 // operand to broadcast, or broadcast a clone of the original GEP. 4751 // Here, we broadcast a clone of the original. 4752 // 4753 // TODO: If at some point we decide to scalarize instructions having 4754 // loop-invariant operands, this special case will no longer be 4755 // required. We would add the scalarization decision to 4756 // collectLoopScalars() and teach getVectorValue() to broadcast 4757 // the lane-zero scalar value. 4758 auto *Clone = Builder.Insert(GEP->clone()); 4759 for (unsigned Part = 0; Part < UF; ++Part) { 4760 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4761 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4762 addMetadata(EntryPart, GEP); 4763 } 4764 } else { 4765 // If the GEP has at least one loop-varying operand, we are sure to 4766 // produce a vector of pointers. But if we are only unrolling, we want 4767 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4768 // produce with the code below will be scalar (if VF == 1) or vector 4769 // (otherwise). Note that for the unroll-only case, we still maintain 4770 // values in the vector mapping with initVector, as we do for other 4771 // instructions. 4772 for (unsigned Part = 0; Part < UF; ++Part) { 4773 4774 // The pointer operand of the new GEP. If it's loop-invariant, we 4775 // won't broadcast it. 4776 auto *Ptr = 4777 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4778 ? GEP->getPointerOperand() 4779 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4780 4781 // Collect all the indices for the new GEP. If any index is 4782 // loop-invariant, we won't broadcast it. 4783 SmallVector<Value *, 4> Indices; 4784 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4785 if (OrigLoop->isLoopInvariant(U.get())) 4786 Indices.push_back(U.get()); 4787 else 4788 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4789 } 4790 4791 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4792 // but it should be a vector, otherwise. 4793 auto *NewGEP = GEP->isInBounds() 4794 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4795 : Builder.CreateGEP(Ptr, Indices); 4796 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4797 "NewGEP is not a pointer vector"); 4798 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4799 addMetadata(NewGEP, GEP); 4800 } 4801 } 4802 4803 break; 4804 } 4805 case Instruction::UDiv: 4806 case Instruction::SDiv: 4807 case Instruction::SRem: 4808 case Instruction::URem: 4809 // Scalarize with predication if this instruction may divide by zero and 4810 // block execution is conditional, otherwise fallthrough. 4811 if (Legal->isScalarWithPredication(&I)) { 4812 scalarizeInstruction(&I, true); 4813 break; 4814 } 4815 LLVM_FALLTHROUGH; 4816 case Instruction::Add: 4817 case Instruction::FAdd: 4818 case Instruction::Sub: 4819 case Instruction::FSub: 4820 case Instruction::Mul: 4821 case Instruction::FMul: 4822 case Instruction::FDiv: 4823 case Instruction::FRem: 4824 case Instruction::Shl: 4825 case Instruction::LShr: 4826 case Instruction::AShr: 4827 case Instruction::And: 4828 case Instruction::Or: 4829 case Instruction::Xor: { 4830 // Just widen binops. 4831 auto *BinOp = cast<BinaryOperator>(&I); 4832 setDebugLocFromInst(Builder, BinOp); 4833 4834 for (unsigned Part = 0; Part < UF; ++Part) { 4835 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4836 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4837 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4838 4839 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4840 VecOp->copyIRFlags(BinOp); 4841 4842 // Use this vector value for all users of the original instruction. 4843 VectorLoopValueMap.setVectorValue(&I, Part, V); 4844 addMetadata(V, BinOp); 4845 } 4846 4847 break; 4848 } 4849 case Instruction::Select: { 4850 // Widen selects. 4851 // If the selector is loop invariant we can create a select 4852 // instruction with a scalar condition. Otherwise, use vector-select. 4853 auto *SE = PSE.getSE(); 4854 bool InvariantCond = 4855 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4856 setDebugLocFromInst(Builder, &I); 4857 4858 // The condition can be loop invariant but still defined inside the 4859 // loop. This means that we can't just use the original 'cond' value. 4860 // We have to take the 'vectorized' value and pick the first lane. 4861 // Instcombine will make this a no-op. 4862 4863 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), 0, 0); 4864 4865 for (unsigned Part = 0; Part < UF; ++Part) { 4866 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4867 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4868 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4869 Value *Sel = 4870 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4871 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4872 addMetadata(Sel, &I); 4873 } 4874 4875 break; 4876 } 4877 4878 case Instruction::ICmp: 4879 case Instruction::FCmp: { 4880 // Widen compares. Generate vector compares. 4881 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4882 auto *Cmp = dyn_cast<CmpInst>(&I); 4883 setDebugLocFromInst(Builder, Cmp); 4884 for (unsigned Part = 0; Part < UF; ++Part) { 4885 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4886 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4887 Value *C = nullptr; 4888 if (FCmp) { 4889 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4890 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4891 } else { 4892 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4893 } 4894 VectorLoopValueMap.setVectorValue(&I, Part, C); 4895 addMetadata(C, &I); 4896 } 4897 4898 break; 4899 } 4900 4901 case Instruction::Store: 4902 case Instruction::Load: 4903 vectorizeMemoryInstruction(&I); 4904 break; 4905 case Instruction::ZExt: 4906 case Instruction::SExt: 4907 case Instruction::FPToUI: 4908 case Instruction::FPToSI: 4909 case Instruction::FPExt: 4910 case Instruction::PtrToInt: 4911 case Instruction::IntToPtr: 4912 case Instruction::SIToFP: 4913 case Instruction::UIToFP: 4914 case Instruction::Trunc: 4915 case Instruction::FPTrunc: 4916 case Instruction::BitCast: { 4917 auto *CI = dyn_cast<CastInst>(&I); 4918 setDebugLocFromInst(Builder, CI); 4919 4920 // Optimize the special case where the source is a constant integer 4921 // induction variable. Notice that we can only optimize the 'trunc' case 4922 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4923 // (c) other casts depend on pointer size. 4924 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4925 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4926 cast<TruncInst>(CI)); 4927 break; 4928 } 4929 4930 /// Vectorize casts. 4931 Type *DestTy = 4932 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4933 4934 for (unsigned Part = 0; Part < UF; ++Part) { 4935 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4936 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4937 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4938 addMetadata(Cast, &I); 4939 } 4940 break; 4941 } 4942 4943 case Instruction::Call: { 4944 // Ignore dbg intrinsics. 4945 if (isa<DbgInfoIntrinsic>(I)) 4946 break; 4947 setDebugLocFromInst(Builder, &I); 4948 4949 Module *M = I.getParent()->getParent()->getParent(); 4950 auto *CI = cast<CallInst>(&I); 4951 4952 StringRef FnName = CI->getCalledFunction()->getName(); 4953 Function *F = CI->getCalledFunction(); 4954 Type *RetTy = ToVectorTy(CI->getType(), VF); 4955 SmallVector<Type *, 4> Tys; 4956 for (Value *ArgOperand : CI->arg_operands()) 4957 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4958 4959 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4960 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4961 ID == Intrinsic::lifetime_start)) { 4962 scalarizeInstruction(&I); 4963 break; 4964 } 4965 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4966 // version of the instruction. 4967 // Is it beneficial to perform intrinsic call compared to lib call? 4968 bool NeedToScalarize; 4969 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4970 bool UseVectorIntrinsic = 4971 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4972 if (!UseVectorIntrinsic && NeedToScalarize) { 4973 scalarizeInstruction(&I); 4974 break; 4975 } 4976 4977 for (unsigned Part = 0; Part < UF; ++Part) { 4978 SmallVector<Value *, 4> Args; 4979 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4980 Value *Arg = CI->getArgOperand(i); 4981 // Some intrinsics have a scalar argument - don't replace it with a 4982 // vector. 4983 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4984 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4985 Args.push_back(Arg); 4986 } 4987 4988 Function *VectorF; 4989 if (UseVectorIntrinsic) { 4990 // Use vector version of the intrinsic. 4991 Type *TysForDecl[] = {CI->getType()}; 4992 if (VF > 1) 4993 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4994 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4995 } else { 4996 // Use vector version of the library call. 4997 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4998 assert(!VFnName.empty() && "Vector function name is empty."); 4999 VectorF = M->getFunction(VFnName); 5000 if (!VectorF) { 5001 // Generate a declaration 5002 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 5003 VectorF = 5004 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 5005 VectorF->copyAttributesFrom(F); 5006 } 5007 } 5008 assert(VectorF && "Can't create vector function."); 5009 5010 SmallVector<OperandBundleDef, 1> OpBundles; 5011 CI->getOperandBundlesAsDefs(OpBundles); 5012 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5013 5014 if (isa<FPMathOperator>(V)) 5015 V->copyFastMathFlags(CI); 5016 5017 VectorLoopValueMap.setVectorValue(&I, Part, V); 5018 addMetadata(V, &I); 5019 } 5020 5021 break; 5022 } 5023 5024 default: 5025 // All other instructions are unsupported. Scalarize them. 5026 scalarizeInstruction(&I); 5027 break; 5028 } // end of switch. 5029 } 5030 5031 void InnerLoopVectorizer::updateAnalysis() { 5032 // Forget the original basic block. 5033 PSE.getSE()->forgetLoop(OrigLoop); 5034 5035 // Update the dominator tree information. 5036 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5037 "Entry does not dominate exit."); 5038 5039 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5040 LoopVectorPreHeader); 5041 DT->addNewBlock(LoopMiddleBlock, 5042 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5043 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5044 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5045 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5046 5047 DEBUG(DT->verifyDomTree()); 5048 } 5049 5050 /// \brief Check whether it is safe to if-convert this phi node. 5051 /// 5052 /// Phi nodes with constant expressions that can trap are not safe to if 5053 /// convert. 5054 static bool canIfConvertPHINodes(BasicBlock *BB) { 5055 for (Instruction &I : *BB) { 5056 auto *Phi = dyn_cast<PHINode>(&I); 5057 if (!Phi) 5058 return true; 5059 for (Value *V : Phi->incoming_values()) 5060 if (auto *C = dyn_cast<Constant>(V)) 5061 if (C->canTrap()) 5062 return false; 5063 } 5064 return true; 5065 } 5066 5067 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5068 if (!EnableIfConversion) { 5069 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5070 << "if-conversion is disabled"); 5071 return false; 5072 } 5073 5074 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5075 5076 // A list of pointers that we can safely read and write to. 5077 SmallPtrSet<Value *, 8> SafePointes; 5078 5079 // Collect safe addresses. 5080 for (BasicBlock *BB : TheLoop->blocks()) { 5081 if (blockNeedsPredication(BB)) 5082 continue; 5083 5084 for (Instruction &I : *BB) 5085 if (auto *Ptr = getPointerOperand(&I)) 5086 SafePointes.insert(Ptr); 5087 } 5088 5089 // Collect the blocks that need predication. 5090 BasicBlock *Header = TheLoop->getHeader(); 5091 for (BasicBlock *BB : TheLoop->blocks()) { 5092 // We don't support switch statements inside loops. 5093 if (!isa<BranchInst>(BB->getTerminator())) { 5094 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5095 << "loop contains a switch statement"); 5096 return false; 5097 } 5098 5099 // We must be able to predicate all blocks that need to be predicated. 5100 if (blockNeedsPredication(BB)) { 5101 if (!blockCanBePredicated(BB, SafePointes)) { 5102 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5103 << "control flow cannot be substituted for a select"); 5104 return false; 5105 } 5106 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5107 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5108 << "control flow cannot be substituted for a select"); 5109 return false; 5110 } 5111 } 5112 5113 // We can if-convert this loop. 5114 return true; 5115 } 5116 5117 bool LoopVectorizationLegality::canVectorize() { 5118 // Store the result and return it at the end instead of exiting early, in case 5119 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5120 bool Result = true; 5121 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5122 // be canonicalized. 5123 if (!TheLoop->getLoopPreheader()) { 5124 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5125 << "loop control flow is not understood by vectorizer"); 5126 if (ORE->allowExtraAnalysis()) 5127 Result = false; 5128 else 5129 return false; 5130 } 5131 5132 // FIXME: The code is currently dead, since the loop gets sent to 5133 // LoopVectorizationLegality is already an innermost loop. 5134 // 5135 // We can only vectorize innermost loops. 5136 if (!TheLoop->empty()) { 5137 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5138 << "loop is not the innermost loop"); 5139 if (ORE->allowExtraAnalysis()) 5140 Result = false; 5141 else 5142 return false; 5143 } 5144 5145 // We must have a single backedge. 5146 if (TheLoop->getNumBackEdges() != 1) { 5147 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5148 << "loop control flow is not understood by vectorizer"); 5149 if (ORE->allowExtraAnalysis()) 5150 Result = false; 5151 else 5152 return false; 5153 } 5154 5155 // We must have a single exiting block. 5156 if (!TheLoop->getExitingBlock()) { 5157 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5158 << "loop control flow is not understood by vectorizer"); 5159 if (ORE->allowExtraAnalysis()) 5160 Result = false; 5161 else 5162 return false; 5163 } 5164 5165 // We only handle bottom-tested loops, i.e. loop in which the condition is 5166 // checked at the end of each iteration. With that we can assume that all 5167 // instructions in the loop are executed the same number of times. 5168 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5169 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5170 << "loop control flow is not understood by vectorizer"); 5171 if (ORE->allowExtraAnalysis()) 5172 Result = false; 5173 else 5174 return false; 5175 } 5176 5177 // We need to have a loop header. 5178 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5179 << '\n'); 5180 5181 // Check if we can if-convert non-single-bb loops. 5182 unsigned NumBlocks = TheLoop->getNumBlocks(); 5183 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5184 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5185 if (ORE->allowExtraAnalysis()) 5186 Result = false; 5187 else 5188 return false; 5189 } 5190 5191 // Check if we can vectorize the instructions and CFG in this loop. 5192 if (!canVectorizeInstrs()) { 5193 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5194 if (ORE->allowExtraAnalysis()) 5195 Result = false; 5196 else 5197 return false; 5198 } 5199 5200 // Go over each instruction and look at memory deps. 5201 if (!canVectorizeMemory()) { 5202 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5203 if (ORE->allowExtraAnalysis()) 5204 Result = false; 5205 else 5206 return false; 5207 } 5208 5209 DEBUG(dbgs() << "LV: We can vectorize this loop" 5210 << (LAI->getRuntimePointerChecking()->Need 5211 ? " (with a runtime bound check)" 5212 : "") 5213 << "!\n"); 5214 5215 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5216 5217 // If an override option has been passed in for interleaved accesses, use it. 5218 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5219 UseInterleaved = EnableInterleavedMemAccesses; 5220 5221 // Analyze interleaved memory accesses. 5222 if (UseInterleaved) 5223 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5224 5225 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5226 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5227 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5228 5229 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5230 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5231 << "Too many SCEV assumptions need to be made and checked " 5232 << "at runtime"); 5233 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5234 if (ORE->allowExtraAnalysis()) 5235 Result = false; 5236 else 5237 return false; 5238 } 5239 5240 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5241 // we can vectorize, and at this point we don't have any other mem analysis 5242 // which may limit our maximum vectorization factor, so just return true with 5243 // no restrictions. 5244 return Result; 5245 } 5246 5247 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5248 if (Ty->isPointerTy()) 5249 return DL.getIntPtrType(Ty); 5250 5251 // It is possible that char's or short's overflow when we ask for the loop's 5252 // trip count, work around this by changing the type size. 5253 if (Ty->getScalarSizeInBits() < 32) 5254 return Type::getInt32Ty(Ty->getContext()); 5255 5256 return Ty; 5257 } 5258 5259 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5260 Ty0 = convertPointerToIntegerType(DL, Ty0); 5261 Ty1 = convertPointerToIntegerType(DL, Ty1); 5262 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5263 return Ty0; 5264 return Ty1; 5265 } 5266 5267 /// \brief Check that the instruction has outside loop users and is not an 5268 /// identified reduction variable. 5269 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5270 SmallPtrSetImpl<Value *> &AllowedExit) { 5271 // Reduction and Induction instructions are allowed to have exit users. All 5272 // other instructions must not have external users. 5273 if (!AllowedExit.count(Inst)) 5274 // Check that all of the users of the loop are inside the BB. 5275 for (User *U : Inst->users()) { 5276 Instruction *UI = cast<Instruction>(U); 5277 // This user may be a reduction exit value. 5278 if (!TheLoop->contains(UI)) { 5279 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5280 return true; 5281 } 5282 } 5283 return false; 5284 } 5285 5286 void LoopVectorizationLegality::addInductionPhi( 5287 PHINode *Phi, const InductionDescriptor &ID, 5288 SmallPtrSetImpl<Value *> &AllowedExit) { 5289 Inductions[Phi] = ID; 5290 Type *PhiTy = Phi->getType(); 5291 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5292 5293 // Get the widest type. 5294 if (!PhiTy->isFloatingPointTy()) { 5295 if (!WidestIndTy) 5296 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5297 else 5298 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5299 } 5300 5301 // Int inductions are special because we only allow one IV. 5302 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5303 ID.getConstIntStepValue() && 5304 ID.getConstIntStepValue()->isOne() && 5305 isa<Constant>(ID.getStartValue()) && 5306 cast<Constant>(ID.getStartValue())->isNullValue()) { 5307 5308 // Use the phi node with the widest type as induction. Use the last 5309 // one if there are multiple (no good reason for doing this other 5310 // than it is expedient). We've checked that it begins at zero and 5311 // steps by one, so this is a canonical induction variable. 5312 if (!PrimaryInduction || PhiTy == WidestIndTy) 5313 PrimaryInduction = Phi; 5314 } 5315 5316 // Both the PHI node itself, and the "post-increment" value feeding 5317 // back into the PHI node may have external users. 5318 AllowedExit.insert(Phi); 5319 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5320 5321 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5322 return; 5323 } 5324 5325 bool LoopVectorizationLegality::canVectorizeInstrs() { 5326 BasicBlock *Header = TheLoop->getHeader(); 5327 5328 // Look for the attribute signaling the absence of NaNs. 5329 Function &F = *Header->getParent(); 5330 HasFunNoNaNAttr = 5331 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5332 5333 // For each block in the loop. 5334 for (BasicBlock *BB : TheLoop->blocks()) { 5335 // Scan the instructions in the block and look for hazards. 5336 for (Instruction &I : *BB) { 5337 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5338 Type *PhiTy = Phi->getType(); 5339 // Check that this PHI type is allowed. 5340 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5341 !PhiTy->isPointerTy()) { 5342 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5343 << "loop control flow is not understood by vectorizer"); 5344 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5345 return false; 5346 } 5347 5348 // If this PHINode is not in the header block, then we know that we 5349 // can convert it to select during if-conversion. No need to check if 5350 // the PHIs in this block are induction or reduction variables. 5351 if (BB != Header) { 5352 // Check that this instruction has no outside users or is an 5353 // identified reduction value with an outside user. 5354 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5355 continue; 5356 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5357 << "value could not be identified as " 5358 "an induction or reduction variable"); 5359 return false; 5360 } 5361 5362 // We only allow if-converted PHIs with exactly two incoming values. 5363 if (Phi->getNumIncomingValues() != 2) { 5364 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5365 << "control flow not understood by vectorizer"); 5366 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5367 return false; 5368 } 5369 5370 RecurrenceDescriptor RedDes; 5371 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5372 if (RedDes.hasUnsafeAlgebra()) 5373 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5374 AllowedExit.insert(RedDes.getLoopExitInstr()); 5375 Reductions[Phi] = RedDes; 5376 continue; 5377 } 5378 5379 InductionDescriptor ID; 5380 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5381 addInductionPhi(Phi, ID, AllowedExit); 5382 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5383 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5384 continue; 5385 } 5386 5387 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5388 SinkAfter, DT)) { 5389 FirstOrderRecurrences.insert(Phi); 5390 continue; 5391 } 5392 5393 // As a last resort, coerce the PHI to a AddRec expression 5394 // and re-try classifying it a an induction PHI. 5395 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5396 addInductionPhi(Phi, ID, AllowedExit); 5397 continue; 5398 } 5399 5400 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5401 << "value that could not be identified as " 5402 "reduction is used outside the loop"); 5403 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5404 return false; 5405 } // end of PHI handling 5406 5407 // We handle calls that: 5408 // * Are debug info intrinsics. 5409 // * Have a mapping to an IR intrinsic. 5410 // * Have a vector version available. 5411 auto *CI = dyn_cast<CallInst>(&I); 5412 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5413 !isa<DbgInfoIntrinsic>(CI) && 5414 !(CI->getCalledFunction() && TLI && 5415 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5416 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5417 << "call instruction cannot be vectorized"); 5418 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5419 return false; 5420 } 5421 5422 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5423 // second argument is the same (i.e. loop invariant) 5424 if (CI && hasVectorInstrinsicScalarOpd( 5425 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5426 auto *SE = PSE.getSE(); 5427 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5428 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5429 << "intrinsic instruction cannot be vectorized"); 5430 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5431 return false; 5432 } 5433 } 5434 5435 // Check that the instruction return type is vectorizable. 5436 // Also, we can't vectorize extractelement instructions. 5437 if ((!VectorType::isValidElementType(I.getType()) && 5438 !I.getType()->isVoidTy()) || 5439 isa<ExtractElementInst>(I)) { 5440 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5441 << "instruction return type cannot be vectorized"); 5442 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5443 return false; 5444 } 5445 5446 // Check that the stored type is vectorizable. 5447 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5448 Type *T = ST->getValueOperand()->getType(); 5449 if (!VectorType::isValidElementType(T)) { 5450 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5451 << "store instruction cannot be vectorized"); 5452 return false; 5453 } 5454 5455 // FP instructions can allow unsafe algebra, thus vectorizable by 5456 // non-IEEE-754 compliant SIMD units. 5457 // This applies to floating-point math operations and calls, not memory 5458 // operations, shuffles, or casts, as they don't change precision or 5459 // semantics. 5460 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5461 !I.hasUnsafeAlgebra()) { 5462 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5463 Hints->setPotentiallyUnsafe(); 5464 } 5465 5466 // Reduction instructions are allowed to have exit users. 5467 // All other instructions must not have external users. 5468 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5469 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5470 << "value cannot be used outside the loop"); 5471 return false; 5472 } 5473 5474 } // next instr. 5475 } 5476 5477 if (!PrimaryInduction) { 5478 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5479 if (Inductions.empty()) { 5480 ORE->emit(createMissedAnalysis("NoInductionVariable") 5481 << "loop induction variable could not be identified"); 5482 return false; 5483 } 5484 } 5485 5486 // Now we know the widest induction type, check if our found induction 5487 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5488 // will create another. 5489 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5490 PrimaryInduction = nullptr; 5491 5492 return true; 5493 } 5494 5495 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5496 5497 // We should not collect Scalars more than once per VF. Right now, this 5498 // function is called from collectUniformsAndScalars(), which already does 5499 // this check. Collecting Scalars for VF=1 does not make any sense. 5500 assert(VF >= 2 && !Scalars.count(VF) && 5501 "This function should not be visited twice for the same VF"); 5502 5503 SmallSetVector<Instruction *, 8> Worklist; 5504 5505 // These sets are used to seed the analysis with pointers used by memory 5506 // accesses that will remain scalar. 5507 SmallSetVector<Instruction *, 8> ScalarPtrs; 5508 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5509 5510 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5511 // The pointer operands of loads and stores will be scalar as long as the 5512 // memory access is not a gather or scatter operation. The value operand of a 5513 // store will remain scalar if the store is scalarized. 5514 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5515 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5516 assert(WideningDecision != CM_Unknown && 5517 "Widening decision should be ready at this moment"); 5518 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5519 if (Ptr == Store->getValueOperand()) 5520 return WideningDecision == CM_Scalarize; 5521 assert(Ptr == getPointerOperand(MemAccess) && 5522 "Ptr is neither a value or pointer operand"); 5523 return WideningDecision != CM_GatherScatter; 5524 }; 5525 5526 // A helper that returns true if the given value is a bitcast or 5527 // getelementptr instruction contained in the loop. 5528 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5529 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5530 isa<GetElementPtrInst>(V)) && 5531 !TheLoop->isLoopInvariant(V); 5532 }; 5533 5534 // A helper that evaluates a memory access's use of a pointer. If the use 5535 // will be a scalar use, and the pointer is only used by memory accesses, we 5536 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5537 // PossibleNonScalarPtrs. 5538 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5539 5540 // We only care about bitcast and getelementptr instructions contained in 5541 // the loop. 5542 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5543 return; 5544 5545 // If the pointer has already been identified as scalar (e.g., if it was 5546 // also identified as uniform), there's nothing to do. 5547 auto *I = cast<Instruction>(Ptr); 5548 if (Worklist.count(I)) 5549 return; 5550 5551 // If the use of the pointer will be a scalar use, and all users of the 5552 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5553 // place the pointer in PossibleNonScalarPtrs. 5554 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5555 return isa<LoadInst>(U) || isa<StoreInst>(U); 5556 })) 5557 ScalarPtrs.insert(I); 5558 else 5559 PossibleNonScalarPtrs.insert(I); 5560 }; 5561 5562 // We seed the scalars analysis with three classes of instructions: (1) 5563 // instructions marked uniform-after-vectorization, (2) bitcast and 5564 // getelementptr instructions used by memory accesses requiring a scalar use, 5565 // and (3) pointer induction variables and their update instructions (we 5566 // currently only scalarize these). 5567 // 5568 // (1) Add to the worklist all instructions that have been identified as 5569 // uniform-after-vectorization. 5570 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5571 5572 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5573 // memory accesses requiring a scalar use. The pointer operands of loads and 5574 // stores will be scalar as long as the memory accesses is not a gather or 5575 // scatter operation. The value operand of a store will remain scalar if the 5576 // store is scalarized. 5577 for (auto *BB : TheLoop->blocks()) 5578 for (auto &I : *BB) { 5579 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5580 evaluatePtrUse(Load, Load->getPointerOperand()); 5581 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5582 evaluatePtrUse(Store, Store->getPointerOperand()); 5583 evaluatePtrUse(Store, Store->getValueOperand()); 5584 } 5585 } 5586 for (auto *I : ScalarPtrs) 5587 if (!PossibleNonScalarPtrs.count(I)) { 5588 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5589 Worklist.insert(I); 5590 } 5591 5592 // (3) Add to the worklist all pointer induction variables and their update 5593 // instructions. 5594 // 5595 // TODO: Once we are able to vectorize pointer induction variables we should 5596 // no longer insert them into the worklist here. 5597 auto *Latch = TheLoop->getLoopLatch(); 5598 for (auto &Induction : *Legal->getInductionVars()) { 5599 auto *Ind = Induction.first; 5600 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5601 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5602 continue; 5603 Worklist.insert(Ind); 5604 Worklist.insert(IndUpdate); 5605 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5606 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5607 } 5608 5609 // Insert the forced scalars. 5610 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5611 // induction variable when the PHI user is scalarized. 5612 if (ForcedScalars.count(VF)) 5613 for (auto *I : ForcedScalars.find(VF)->second) 5614 Worklist.insert(I); 5615 5616 // Expand the worklist by looking through any bitcasts and getelementptr 5617 // instructions we've already identified as scalar. This is similar to the 5618 // expansion step in collectLoopUniforms(); however, here we're only 5619 // expanding to include additional bitcasts and getelementptr instructions. 5620 unsigned Idx = 0; 5621 while (Idx != Worklist.size()) { 5622 Instruction *Dst = Worklist[Idx++]; 5623 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5624 continue; 5625 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5626 if (all_of(Src->users(), [&](User *U) -> bool { 5627 auto *J = cast<Instruction>(U); 5628 return !TheLoop->contains(J) || Worklist.count(J) || 5629 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5630 isScalarUse(J, Src)); 5631 })) { 5632 Worklist.insert(Src); 5633 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5634 } 5635 } 5636 5637 // An induction variable will remain scalar if all users of the induction 5638 // variable and induction variable update remain scalar. 5639 for (auto &Induction : *Legal->getInductionVars()) { 5640 auto *Ind = Induction.first; 5641 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5642 5643 // We already considered pointer induction variables, so there's no reason 5644 // to look at their users again. 5645 // 5646 // TODO: Once we are able to vectorize pointer induction variables we 5647 // should no longer skip over them here. 5648 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5649 continue; 5650 5651 // Determine if all users of the induction variable are scalar after 5652 // vectorization. 5653 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5654 auto *I = cast<Instruction>(U); 5655 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5656 }); 5657 if (!ScalarInd) 5658 continue; 5659 5660 // Determine if all users of the induction variable update instruction are 5661 // scalar after vectorization. 5662 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5663 auto *I = cast<Instruction>(U); 5664 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5665 }); 5666 if (!ScalarIndUpdate) 5667 continue; 5668 5669 // The induction variable and its update instruction will remain scalar. 5670 Worklist.insert(Ind); 5671 Worklist.insert(IndUpdate); 5672 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5673 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5674 } 5675 5676 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5677 } 5678 5679 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5680 if (!blockNeedsPredication(I->getParent())) 5681 return false; 5682 switch(I->getOpcode()) { 5683 default: 5684 break; 5685 case Instruction::Store: 5686 return !isMaskRequired(I); 5687 case Instruction::UDiv: 5688 case Instruction::SDiv: 5689 case Instruction::SRem: 5690 case Instruction::URem: 5691 return mayDivideByZero(*I); 5692 } 5693 return false; 5694 } 5695 5696 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5697 unsigned VF) { 5698 // Get and ensure we have a valid memory instruction. 5699 LoadInst *LI = dyn_cast<LoadInst>(I); 5700 StoreInst *SI = dyn_cast<StoreInst>(I); 5701 assert((LI || SI) && "Invalid memory instruction"); 5702 5703 auto *Ptr = getPointerOperand(I); 5704 5705 // In order to be widened, the pointer should be consecutive, first of all. 5706 if (!isConsecutivePtr(Ptr)) 5707 return false; 5708 5709 // If the instruction is a store located in a predicated block, it will be 5710 // scalarized. 5711 if (isScalarWithPredication(I)) 5712 return false; 5713 5714 // If the instruction's allocated size doesn't equal it's type size, it 5715 // requires padding and will be scalarized. 5716 auto &DL = I->getModule()->getDataLayout(); 5717 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5718 if (hasIrregularType(ScalarTy, DL, VF)) 5719 return false; 5720 5721 return true; 5722 } 5723 5724 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5725 5726 // We should not collect Uniforms more than once per VF. Right now, 5727 // this function is called from collectUniformsAndScalars(), which 5728 // already does this check. Collecting Uniforms for VF=1 does not make any 5729 // sense. 5730 5731 assert(VF >= 2 && !Uniforms.count(VF) && 5732 "This function should not be visited twice for the same VF"); 5733 5734 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5735 // not analyze again. Uniforms.count(VF) will return 1. 5736 Uniforms[VF].clear(); 5737 5738 // We now know that the loop is vectorizable! 5739 // Collect instructions inside the loop that will remain uniform after 5740 // vectorization. 5741 5742 // Global values, params and instructions outside of current loop are out of 5743 // scope. 5744 auto isOutOfScope = [&](Value *V) -> bool { 5745 Instruction *I = dyn_cast<Instruction>(V); 5746 return (!I || !TheLoop->contains(I)); 5747 }; 5748 5749 SetVector<Instruction *> Worklist; 5750 BasicBlock *Latch = TheLoop->getLoopLatch(); 5751 5752 // Start with the conditional branch. If the branch condition is an 5753 // instruction contained in the loop that is only used by the branch, it is 5754 // uniform. 5755 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5756 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5757 Worklist.insert(Cmp); 5758 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5759 } 5760 5761 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5762 // are pointers that are treated like consecutive pointers during 5763 // vectorization. The pointer operands of interleaved accesses are an 5764 // example. 5765 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5766 5767 // Holds pointer operands of instructions that are possibly non-uniform. 5768 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5769 5770 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5771 InstWidening WideningDecision = getWideningDecision(I, VF); 5772 assert(WideningDecision != CM_Unknown && 5773 "Widening decision should be ready at this moment"); 5774 5775 return (WideningDecision == CM_Widen || 5776 WideningDecision == CM_Interleave); 5777 }; 5778 // Iterate over the instructions in the loop, and collect all 5779 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5780 // that a consecutive-like pointer operand will be scalarized, we collect it 5781 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5782 // getelementptr instruction can be used by both vectorized and scalarized 5783 // memory instructions. For example, if a loop loads and stores from the same 5784 // location, but the store is conditional, the store will be scalarized, and 5785 // the getelementptr won't remain uniform. 5786 for (auto *BB : TheLoop->blocks()) 5787 for (auto &I : *BB) { 5788 5789 // If there's no pointer operand, there's nothing to do. 5790 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5791 if (!Ptr) 5792 continue; 5793 5794 // True if all users of Ptr are memory accesses that have Ptr as their 5795 // pointer operand. 5796 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5797 return getPointerOperand(U) == Ptr; 5798 }); 5799 5800 // Ensure the memory instruction will not be scalarized or used by 5801 // gather/scatter, making its pointer operand non-uniform. If the pointer 5802 // operand is used by any instruction other than a memory access, we 5803 // conservatively assume the pointer operand may be non-uniform. 5804 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5805 PossibleNonUniformPtrs.insert(Ptr); 5806 5807 // If the memory instruction will be vectorized and its pointer operand 5808 // is consecutive-like, or interleaving - the pointer operand should 5809 // remain uniform. 5810 else 5811 ConsecutiveLikePtrs.insert(Ptr); 5812 } 5813 5814 // Add to the Worklist all consecutive and consecutive-like pointers that 5815 // aren't also identified as possibly non-uniform. 5816 for (auto *V : ConsecutiveLikePtrs) 5817 if (!PossibleNonUniformPtrs.count(V)) { 5818 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5819 Worklist.insert(V); 5820 } 5821 5822 // Expand Worklist in topological order: whenever a new instruction 5823 // is added , its users should be either already inside Worklist, or 5824 // out of scope. It ensures a uniform instruction will only be used 5825 // by uniform instructions or out of scope instructions. 5826 unsigned idx = 0; 5827 while (idx != Worklist.size()) { 5828 Instruction *I = Worklist[idx++]; 5829 5830 for (auto OV : I->operand_values()) { 5831 if (isOutOfScope(OV)) 5832 continue; 5833 auto *OI = cast<Instruction>(OV); 5834 if (all_of(OI->users(), [&](User *U) -> bool { 5835 auto *J = cast<Instruction>(U); 5836 return !TheLoop->contains(J) || Worklist.count(J) || 5837 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5838 })) { 5839 Worklist.insert(OI); 5840 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5841 } 5842 } 5843 } 5844 5845 // Returns true if Ptr is the pointer operand of a memory access instruction 5846 // I, and I is known to not require scalarization. 5847 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5848 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5849 }; 5850 5851 // For an instruction to be added into Worklist above, all its users inside 5852 // the loop should also be in Worklist. However, this condition cannot be 5853 // true for phi nodes that form a cyclic dependence. We must process phi 5854 // nodes separately. An induction variable will remain uniform if all users 5855 // of the induction variable and induction variable update remain uniform. 5856 // The code below handles both pointer and non-pointer induction variables. 5857 for (auto &Induction : *Legal->getInductionVars()) { 5858 auto *Ind = Induction.first; 5859 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5860 5861 // Determine if all users of the induction variable are uniform after 5862 // vectorization. 5863 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5864 auto *I = cast<Instruction>(U); 5865 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5866 isVectorizedMemAccessUse(I, Ind); 5867 }); 5868 if (!UniformInd) 5869 continue; 5870 5871 // Determine if all users of the induction variable update instruction are 5872 // uniform after vectorization. 5873 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5874 auto *I = cast<Instruction>(U); 5875 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5876 isVectorizedMemAccessUse(I, IndUpdate); 5877 }); 5878 if (!UniformIndUpdate) 5879 continue; 5880 5881 // The induction variable and its update instruction will remain uniform. 5882 Worklist.insert(Ind); 5883 Worklist.insert(IndUpdate); 5884 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5885 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5886 } 5887 5888 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5889 } 5890 5891 bool LoopVectorizationLegality::canVectorizeMemory() { 5892 LAI = &(*GetLAA)(*TheLoop); 5893 InterleaveInfo.setLAI(LAI); 5894 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5895 if (LAR) { 5896 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5897 "loop not vectorized: ", *LAR); 5898 ORE->emit(VR); 5899 } 5900 if (!LAI->canVectorizeMemory()) 5901 return false; 5902 5903 if (LAI->hasStoreToLoopInvariantAddress()) { 5904 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5905 << "write to a loop invariant address could not be vectorized"); 5906 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5907 return false; 5908 } 5909 5910 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5911 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5912 5913 return true; 5914 } 5915 5916 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5917 Value *In0 = const_cast<Value *>(V); 5918 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5919 if (!PN) 5920 return false; 5921 5922 return Inductions.count(PN); 5923 } 5924 5925 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5926 return FirstOrderRecurrences.count(Phi); 5927 } 5928 5929 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5930 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5931 } 5932 5933 bool LoopVectorizationLegality::blockCanBePredicated( 5934 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5935 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5936 5937 for (Instruction &I : *BB) { 5938 // Check that we don't have a constant expression that can trap as operand. 5939 for (Value *Operand : I.operands()) { 5940 if (auto *C = dyn_cast<Constant>(Operand)) 5941 if (C->canTrap()) 5942 return false; 5943 } 5944 // We might be able to hoist the load. 5945 if (I.mayReadFromMemory()) { 5946 auto *LI = dyn_cast<LoadInst>(&I); 5947 if (!LI) 5948 return false; 5949 if (!SafePtrs.count(LI->getPointerOperand())) { 5950 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5951 isLegalMaskedGather(LI->getType())) { 5952 MaskedOp.insert(LI); 5953 continue; 5954 } 5955 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5956 if (IsAnnotatedParallel) 5957 continue; 5958 return false; 5959 } 5960 } 5961 5962 if (I.mayWriteToMemory()) { 5963 auto *SI = dyn_cast<StoreInst>(&I); 5964 // We only support predication of stores in basic blocks with one 5965 // predecessor. 5966 if (!SI) 5967 return false; 5968 5969 // Build a masked store if it is legal for the target. 5970 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5971 SI->getPointerOperand()) || 5972 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5973 MaskedOp.insert(SI); 5974 continue; 5975 } 5976 5977 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5978 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5979 5980 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5981 !isSinglePredecessor) 5982 return false; 5983 } 5984 if (I.mayThrow()) 5985 return false; 5986 } 5987 5988 return true; 5989 } 5990 5991 void InterleavedAccessInfo::collectConstStrideAccesses( 5992 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5993 const ValueToValueMap &Strides) { 5994 5995 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5996 5997 // Since it's desired that the load/store instructions be maintained in 5998 // "program order" for the interleaved access analysis, we have to visit the 5999 // blocks in the loop in reverse postorder (i.e., in a topological order). 6000 // Such an ordering will ensure that any load/store that may be executed 6001 // before a second load/store will precede the second load/store in 6002 // AccessStrideInfo. 6003 LoopBlocksDFS DFS(TheLoop); 6004 DFS.perform(LI); 6005 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 6006 for (auto &I : *BB) { 6007 auto *LI = dyn_cast<LoadInst>(&I); 6008 auto *SI = dyn_cast<StoreInst>(&I); 6009 if (!LI && !SI) 6010 continue; 6011 6012 Value *Ptr = getPointerOperand(&I); 6013 // We don't check wrapping here because we don't know yet if Ptr will be 6014 // part of a full group or a group with gaps. Checking wrapping for all 6015 // pointers (even those that end up in groups with no gaps) will be overly 6016 // conservative. For full groups, wrapping should be ok since if we would 6017 // wrap around the address space we would do a memory access at nullptr 6018 // even without the transformation. The wrapping checks are therefore 6019 // deferred until after we've formed the interleaved groups. 6020 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 6021 /*Assume=*/true, /*ShouldCheckWrap=*/false); 6022 6023 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 6024 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6025 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6026 6027 // An alignment of 0 means target ABI alignment. 6028 unsigned Align = getMemInstAlignment(&I); 6029 if (!Align) 6030 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6031 6032 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6033 } 6034 } 6035 6036 // Analyze interleaved accesses and collect them into interleaved load and 6037 // store groups. 6038 // 6039 // When generating code for an interleaved load group, we effectively hoist all 6040 // loads in the group to the location of the first load in program order. When 6041 // generating code for an interleaved store group, we sink all stores to the 6042 // location of the last store. This code motion can change the order of load 6043 // and store instructions and may break dependences. 6044 // 6045 // The code generation strategy mentioned above ensures that we won't violate 6046 // any write-after-read (WAR) dependences. 6047 // 6048 // E.g., for the WAR dependence: a = A[i]; // (1) 6049 // A[i] = b; // (2) 6050 // 6051 // The store group of (2) is always inserted at or below (2), and the load 6052 // group of (1) is always inserted at or above (1). Thus, the instructions will 6053 // never be reordered. All other dependences are checked to ensure the 6054 // correctness of the instruction reordering. 6055 // 6056 // The algorithm visits all memory accesses in the loop in bottom-up program 6057 // order. Program order is established by traversing the blocks in the loop in 6058 // reverse postorder when collecting the accesses. 6059 // 6060 // We visit the memory accesses in bottom-up order because it can simplify the 6061 // construction of store groups in the presence of write-after-write (WAW) 6062 // dependences. 6063 // 6064 // E.g., for the WAW dependence: A[i] = a; // (1) 6065 // A[i] = b; // (2) 6066 // A[i + 1] = c; // (3) 6067 // 6068 // We will first create a store group with (3) and (2). (1) can't be added to 6069 // this group because it and (2) are dependent. However, (1) can be grouped 6070 // with other accesses that may precede it in program order. Note that a 6071 // bottom-up order does not imply that WAW dependences should not be checked. 6072 void InterleavedAccessInfo::analyzeInterleaving( 6073 const ValueToValueMap &Strides) { 6074 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6075 6076 // Holds all accesses with a constant stride. 6077 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6078 collectConstStrideAccesses(AccessStrideInfo, Strides); 6079 6080 if (AccessStrideInfo.empty()) 6081 return; 6082 6083 // Collect the dependences in the loop. 6084 collectDependences(); 6085 6086 // Holds all interleaved store groups temporarily. 6087 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6088 // Holds all interleaved load groups temporarily. 6089 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6090 6091 // Search in bottom-up program order for pairs of accesses (A and B) that can 6092 // form interleaved load or store groups. In the algorithm below, access A 6093 // precedes access B in program order. We initialize a group for B in the 6094 // outer loop of the algorithm, and then in the inner loop, we attempt to 6095 // insert each A into B's group if: 6096 // 6097 // 1. A and B have the same stride, 6098 // 2. A and B have the same memory object size, and 6099 // 3. A belongs in B's group according to its distance from B. 6100 // 6101 // Special care is taken to ensure group formation will not break any 6102 // dependences. 6103 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6104 BI != E; ++BI) { 6105 Instruction *B = BI->first; 6106 StrideDescriptor DesB = BI->second; 6107 6108 // Initialize a group for B if it has an allowable stride. Even if we don't 6109 // create a group for B, we continue with the bottom-up algorithm to ensure 6110 // we don't break any of B's dependences. 6111 InterleaveGroup *Group = nullptr; 6112 if (isStrided(DesB.Stride)) { 6113 Group = getInterleaveGroup(B); 6114 if (!Group) { 6115 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6116 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6117 } 6118 if (B->mayWriteToMemory()) 6119 StoreGroups.insert(Group); 6120 else 6121 LoadGroups.insert(Group); 6122 } 6123 6124 for (auto AI = std::next(BI); AI != E; ++AI) { 6125 Instruction *A = AI->first; 6126 StrideDescriptor DesA = AI->second; 6127 6128 // Our code motion strategy implies that we can't have dependences 6129 // between accesses in an interleaved group and other accesses located 6130 // between the first and last member of the group. Note that this also 6131 // means that a group can't have more than one member at a given offset. 6132 // The accesses in a group can have dependences with other accesses, but 6133 // we must ensure we don't extend the boundaries of the group such that 6134 // we encompass those dependent accesses. 6135 // 6136 // For example, assume we have the sequence of accesses shown below in a 6137 // stride-2 loop: 6138 // 6139 // (1, 2) is a group | A[i] = a; // (1) 6140 // | A[i-1] = b; // (2) | 6141 // A[i-3] = c; // (3) 6142 // A[i] = d; // (4) | (2, 4) is not a group 6143 // 6144 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6145 // but not with (4). If we did, the dependent access (3) would be within 6146 // the boundaries of the (2, 4) group. 6147 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6148 6149 // If a dependence exists and A is already in a group, we know that A 6150 // must be a store since A precedes B and WAR dependences are allowed. 6151 // Thus, A would be sunk below B. We release A's group to prevent this 6152 // illegal code motion. A will then be free to form another group with 6153 // instructions that precede it. 6154 if (isInterleaved(A)) { 6155 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6156 StoreGroups.remove(StoreGroup); 6157 releaseGroup(StoreGroup); 6158 } 6159 6160 // If a dependence exists and A is not already in a group (or it was 6161 // and we just released it), B might be hoisted above A (if B is a 6162 // load) or another store might be sunk below A (if B is a store). In 6163 // either case, we can't add additional instructions to B's group. B 6164 // will only form a group with instructions that it precedes. 6165 break; 6166 } 6167 6168 // At this point, we've checked for illegal code motion. If either A or B 6169 // isn't strided, there's nothing left to do. 6170 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6171 continue; 6172 6173 // Ignore A if it's already in a group or isn't the same kind of memory 6174 // operation as B. 6175 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6176 continue; 6177 6178 // Check rules 1 and 2. Ignore A if its stride or size is different from 6179 // that of B. 6180 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6181 continue; 6182 6183 // Ignore A if the memory object of A and B don't belong to the same 6184 // address space 6185 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6186 continue; 6187 6188 // Calculate the distance from A to B. 6189 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6190 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6191 if (!DistToB) 6192 continue; 6193 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6194 6195 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6196 // size. 6197 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6198 continue; 6199 6200 // Ignore A if either A or B is in a predicated block. Although we 6201 // currently prevent group formation for predicated accesses, we may be 6202 // able to relax this limitation in the future once we handle more 6203 // complicated blocks. 6204 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6205 continue; 6206 6207 // The index of A is the index of B plus A's distance to B in multiples 6208 // of the size. 6209 int IndexA = 6210 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6211 6212 // Try to insert A into B's group. 6213 if (Group->insertMember(A, IndexA, DesA.Align)) { 6214 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6215 << " into the interleave group with" << *B << '\n'); 6216 InterleaveGroupMap[A] = Group; 6217 6218 // Set the first load in program order as the insert position. 6219 if (A->mayReadFromMemory()) 6220 Group->setInsertPos(A); 6221 } 6222 } // Iteration over A accesses. 6223 } // Iteration over B accesses. 6224 6225 // Remove interleaved store groups with gaps. 6226 for (InterleaveGroup *Group : StoreGroups) 6227 if (Group->getNumMembers() != Group->getFactor()) 6228 releaseGroup(Group); 6229 6230 // Remove interleaved groups with gaps (currently only loads) whose memory 6231 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6232 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6233 // not check wrapping (see documentation there). 6234 // FORNOW we use Assume=false; 6235 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6236 // of runtime SCEV assumptions checks (thereby potentially failing to 6237 // vectorize altogether). 6238 // Additional optional optimizations: 6239 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6240 // wrap then we can deduce that all pointers in the group don't wrap. 6241 // This means that we can forcefully peel the loop in order to only have to 6242 // check the first pointer for no-wrap. When we'll change to use Assume=true 6243 // we'll only need at most one runtime check per interleaved group. 6244 // 6245 for (InterleaveGroup *Group : LoadGroups) { 6246 6247 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6248 // load would wrap around the address space we would do a memory access at 6249 // nullptr even without the transformation. 6250 if (Group->getNumMembers() == Group->getFactor()) 6251 continue; 6252 6253 // Case 2: If first and last members of the group don't wrap this implies 6254 // that all the pointers in the group don't wrap. 6255 // So we check only group member 0 (which is always guaranteed to exist), 6256 // and group member Factor - 1; If the latter doesn't exist we rely on 6257 // peeling (if it is a non-reveresed accsess -- see Case 3). 6258 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6259 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6260 /*ShouldCheckWrap=*/true)) { 6261 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6262 "first group member potentially pointer-wrapping.\n"); 6263 releaseGroup(Group); 6264 continue; 6265 } 6266 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6267 if (LastMember) { 6268 Value *LastMemberPtr = getPointerOperand(LastMember); 6269 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6270 /*ShouldCheckWrap=*/true)) { 6271 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6272 "last group member potentially pointer-wrapping.\n"); 6273 releaseGroup(Group); 6274 } 6275 } else { 6276 // Case 3: A non-reversed interleaved load group with gaps: We need 6277 // to execute at least one scalar epilogue iteration. This will ensure 6278 // we don't speculatively access memory out-of-bounds. We only need 6279 // to look for a member at index factor - 1, since every group must have 6280 // a member at index zero. 6281 if (Group->isReverse()) { 6282 releaseGroup(Group); 6283 continue; 6284 } 6285 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6286 RequiresScalarEpilogue = true; 6287 } 6288 } 6289 } 6290 6291 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6292 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6293 ORE->emit(createMissedAnalysis("ConditionalStore") 6294 << "store that is conditionally executed prevents vectorization"); 6295 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6296 return None; 6297 } 6298 6299 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6300 return computeFeasibleMaxVF(OptForSize); 6301 6302 if (Legal->getRuntimePointerChecking()->Need) { 6303 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6304 << "runtime pointer checks needed. Enable vectorization of this " 6305 "loop with '#pragma clang loop vectorize(enable)' when " 6306 "compiling with -Os/-Oz"); 6307 DEBUG(dbgs() 6308 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6309 return None; 6310 } 6311 6312 // If we optimize the program for size, avoid creating the tail loop. 6313 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6314 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6315 6316 // If we don't know the precise trip count, don't try to vectorize. 6317 if (TC < 2) { 6318 ORE->emit( 6319 createMissedAnalysis("UnknownLoopCountComplexCFG") 6320 << "unable to calculate the loop count due to complex control flow"); 6321 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6322 return None; 6323 } 6324 6325 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6326 6327 if (TC % MaxVF != 0) { 6328 // If the trip count that we found modulo the vectorization factor is not 6329 // zero then we require a tail. 6330 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6331 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6332 // smaller MaxVF that does not require a scalar epilog. 6333 6334 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6335 << "cannot optimize for size and vectorize at the " 6336 "same time. Enable vectorization of this loop " 6337 "with '#pragma clang loop vectorize(enable)' " 6338 "when compiling with -Os/-Oz"); 6339 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6340 return None; 6341 } 6342 6343 return MaxVF; 6344 } 6345 6346 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6347 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6348 unsigned SmallestType, WidestType; 6349 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6350 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6351 unsigned MaxSafeDepDist = -1U; 6352 6353 // Get the maximum safe dependence distance in bits computed by LAA. If the 6354 // loop contains any interleaved accesses, we divide the dependence distance 6355 // by the maximum interleave factor of all interleaved groups. Note that 6356 // although the division ensures correctness, this is a fairly conservative 6357 // computation because the maximum distance computed by LAA may not involve 6358 // any of the interleaved accesses. 6359 if (Legal->getMaxSafeDepDistBytes() != -1U) 6360 MaxSafeDepDist = 6361 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6362 6363 WidestRegister = 6364 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6365 unsigned MaxVectorSize = WidestRegister / WidestType; 6366 6367 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6368 << WidestType << " bits.\n"); 6369 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6370 << " bits.\n"); 6371 6372 if (MaxVectorSize == 0) { 6373 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6374 MaxVectorSize = 1; 6375 } 6376 6377 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6378 " into one vector!"); 6379 6380 unsigned MaxVF = MaxVectorSize; 6381 if (MaximizeBandwidth && !OptForSize) { 6382 // Collect all viable vectorization factors. 6383 SmallVector<unsigned, 8> VFs; 6384 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6385 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6386 VFs.push_back(VS); 6387 6388 // For each VF calculate its register usage. 6389 auto RUs = calculateRegisterUsage(VFs); 6390 6391 // Select the largest VF which doesn't require more registers than existing 6392 // ones. 6393 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6394 for (int i = RUs.size() - 1; i >= 0; --i) { 6395 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6396 MaxVF = VFs[i]; 6397 break; 6398 } 6399 } 6400 } 6401 return MaxVF; 6402 } 6403 6404 LoopVectorizationCostModel::VectorizationFactor 6405 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6406 float Cost = expectedCost(1).first; 6407 #ifndef NDEBUG 6408 const float ScalarCost = Cost; 6409 #endif /* NDEBUG */ 6410 unsigned Width = 1; 6411 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6412 6413 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6414 // Ignore scalar width, because the user explicitly wants vectorization. 6415 if (ForceVectorization && MaxVF > 1) { 6416 Width = 2; 6417 Cost = expectedCost(Width).first / (float)Width; 6418 } 6419 6420 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6421 // Notice that the vector loop needs to be executed less times, so 6422 // we need to divide the cost of the vector loops by the width of 6423 // the vector elements. 6424 VectorizationCostTy C = expectedCost(i); 6425 float VectorCost = C.first / (float)i; 6426 DEBUG(dbgs() << "LV: Vector loop of width " << i 6427 << " costs: " << (int)VectorCost << ".\n"); 6428 if (!C.second && !ForceVectorization) { 6429 DEBUG( 6430 dbgs() << "LV: Not considering vector loop of width " << i 6431 << " because it will not generate any vector instructions.\n"); 6432 continue; 6433 } 6434 if (VectorCost < Cost) { 6435 Cost = VectorCost; 6436 Width = i; 6437 } 6438 } 6439 6440 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6441 << "LV: Vectorization seems to be not beneficial, " 6442 << "but was forced by a user.\n"); 6443 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6444 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6445 return Factor; 6446 } 6447 6448 std::pair<unsigned, unsigned> 6449 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6450 unsigned MinWidth = -1U; 6451 unsigned MaxWidth = 8; 6452 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6453 6454 // For each block. 6455 for (BasicBlock *BB : TheLoop->blocks()) { 6456 // For each instruction in the loop. 6457 for (Instruction &I : *BB) { 6458 Type *T = I.getType(); 6459 6460 // Skip ignored values. 6461 if (ValuesToIgnore.count(&I)) 6462 continue; 6463 6464 // Only examine Loads, Stores and PHINodes. 6465 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6466 continue; 6467 6468 // Examine PHI nodes that are reduction variables. Update the type to 6469 // account for the recurrence type. 6470 if (auto *PN = dyn_cast<PHINode>(&I)) { 6471 if (!Legal->isReductionVariable(PN)) 6472 continue; 6473 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6474 T = RdxDesc.getRecurrenceType(); 6475 } 6476 6477 // Examine the stored values. 6478 if (auto *ST = dyn_cast<StoreInst>(&I)) 6479 T = ST->getValueOperand()->getType(); 6480 6481 // Ignore loaded pointer types and stored pointer types that are not 6482 // vectorizable. 6483 // 6484 // FIXME: The check here attempts to predict whether a load or store will 6485 // be vectorized. We only know this for certain after a VF has 6486 // been selected. Here, we assume that if an access can be 6487 // vectorized, it will be. We should also look at extending this 6488 // optimization to non-pointer types. 6489 // 6490 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6491 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6492 continue; 6493 6494 MinWidth = std::min(MinWidth, 6495 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6496 MaxWidth = std::max(MaxWidth, 6497 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6498 } 6499 } 6500 6501 return {MinWidth, MaxWidth}; 6502 } 6503 6504 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6505 unsigned VF, 6506 unsigned LoopCost) { 6507 6508 // -- The interleave heuristics -- 6509 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6510 // There are many micro-architectural considerations that we can't predict 6511 // at this level. For example, frontend pressure (on decode or fetch) due to 6512 // code size, or the number and capabilities of the execution ports. 6513 // 6514 // We use the following heuristics to select the interleave count: 6515 // 1. If the code has reductions, then we interleave to break the cross 6516 // iteration dependency. 6517 // 2. If the loop is really small, then we interleave to reduce the loop 6518 // overhead. 6519 // 3. We don't interleave if we think that we will spill registers to memory 6520 // due to the increased register pressure. 6521 6522 // When we optimize for size, we don't interleave. 6523 if (OptForSize) 6524 return 1; 6525 6526 // We used the distance for the interleave count. 6527 if (Legal->getMaxSafeDepDistBytes() != -1U) 6528 return 1; 6529 6530 // Do not interleave loops with a relatively small trip count. 6531 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6532 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6533 return 1; 6534 6535 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6536 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6537 << " registers\n"); 6538 6539 if (VF == 1) { 6540 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6541 TargetNumRegisters = ForceTargetNumScalarRegs; 6542 } else { 6543 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6544 TargetNumRegisters = ForceTargetNumVectorRegs; 6545 } 6546 6547 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6548 // We divide by these constants so assume that we have at least one 6549 // instruction that uses at least one register. 6550 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6551 R.NumInstructions = std::max(R.NumInstructions, 1U); 6552 6553 // We calculate the interleave count using the following formula. 6554 // Subtract the number of loop invariants from the number of available 6555 // registers. These registers are used by all of the interleaved instances. 6556 // Next, divide the remaining registers by the number of registers that is 6557 // required by the loop, in order to estimate how many parallel instances 6558 // fit without causing spills. All of this is rounded down if necessary to be 6559 // a power of two. We want power of two interleave count to simplify any 6560 // addressing operations or alignment considerations. 6561 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6562 R.MaxLocalUsers); 6563 6564 // Don't count the induction variable as interleaved. 6565 if (EnableIndVarRegisterHeur) 6566 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6567 std::max(1U, (R.MaxLocalUsers - 1))); 6568 6569 // Clamp the interleave ranges to reasonable counts. 6570 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6571 6572 // Check if the user has overridden the max. 6573 if (VF == 1) { 6574 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6575 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6576 } else { 6577 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6578 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6579 } 6580 6581 // If we did not calculate the cost for VF (because the user selected the VF) 6582 // then we calculate the cost of VF here. 6583 if (LoopCost == 0) 6584 LoopCost = expectedCost(VF).first; 6585 6586 // Clamp the calculated IC to be between the 1 and the max interleave count 6587 // that the target allows. 6588 if (IC > MaxInterleaveCount) 6589 IC = MaxInterleaveCount; 6590 else if (IC < 1) 6591 IC = 1; 6592 6593 // Interleave if we vectorized this loop and there is a reduction that could 6594 // benefit from interleaving. 6595 if (VF > 1 && Legal->getReductionVars()->size()) { 6596 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6597 return IC; 6598 } 6599 6600 // Note that if we've already vectorized the loop we will have done the 6601 // runtime check and so interleaving won't require further checks. 6602 bool InterleavingRequiresRuntimePointerCheck = 6603 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6604 6605 // We want to interleave small loops in order to reduce the loop overhead and 6606 // potentially expose ILP opportunities. 6607 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6608 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6609 // We assume that the cost overhead is 1 and we use the cost model 6610 // to estimate the cost of the loop and interleave until the cost of the 6611 // loop overhead is about 5% of the cost of the loop. 6612 unsigned SmallIC = 6613 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6614 6615 // Interleave until store/load ports (estimated by max interleave count) are 6616 // saturated. 6617 unsigned NumStores = Legal->getNumStores(); 6618 unsigned NumLoads = Legal->getNumLoads(); 6619 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6620 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6621 6622 // If we have a scalar reduction (vector reductions are already dealt with 6623 // by this point), we can increase the critical path length if the loop 6624 // we're interleaving is inside another loop. Limit, by default to 2, so the 6625 // critical path only gets increased by one reduction operation. 6626 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6627 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6628 SmallIC = std::min(SmallIC, F); 6629 StoresIC = std::min(StoresIC, F); 6630 LoadsIC = std::min(LoadsIC, F); 6631 } 6632 6633 if (EnableLoadStoreRuntimeInterleave && 6634 std::max(StoresIC, LoadsIC) > SmallIC) { 6635 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6636 return std::max(StoresIC, LoadsIC); 6637 } 6638 6639 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6640 return SmallIC; 6641 } 6642 6643 // Interleave if this is a large loop (small loops are already dealt with by 6644 // this point) that could benefit from interleaving. 6645 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6646 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6647 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6648 return IC; 6649 } 6650 6651 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6652 return 1; 6653 } 6654 6655 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6656 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6657 // This function calculates the register usage by measuring the highest number 6658 // of values that are alive at a single location. Obviously, this is a very 6659 // rough estimation. We scan the loop in a topological order in order and 6660 // assign a number to each instruction. We use RPO to ensure that defs are 6661 // met before their users. We assume that each instruction that has in-loop 6662 // users starts an interval. We record every time that an in-loop value is 6663 // used, so we have a list of the first and last occurrences of each 6664 // instruction. Next, we transpose this data structure into a multi map that 6665 // holds the list of intervals that *end* at a specific location. This multi 6666 // map allows us to perform a linear search. We scan the instructions linearly 6667 // and record each time that a new interval starts, by placing it in a set. 6668 // If we find this value in the multi-map then we remove it from the set. 6669 // The max register usage is the maximum size of the set. 6670 // We also search for instructions that are defined outside the loop, but are 6671 // used inside the loop. We need this number separately from the max-interval 6672 // usage number because when we unroll, loop-invariant values do not take 6673 // more register. 6674 LoopBlocksDFS DFS(TheLoop); 6675 DFS.perform(LI); 6676 6677 RegisterUsage RU; 6678 RU.NumInstructions = 0; 6679 6680 // Each 'key' in the map opens a new interval. The values 6681 // of the map are the index of the 'last seen' usage of the 6682 // instruction that is the key. 6683 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6684 // Maps instruction to its index. 6685 DenseMap<unsigned, Instruction *> IdxToInstr; 6686 // Marks the end of each interval. 6687 IntervalMap EndPoint; 6688 // Saves the list of instruction indices that are used in the loop. 6689 SmallSet<Instruction *, 8> Ends; 6690 // Saves the list of values that are used in the loop but are 6691 // defined outside the loop, such as arguments and constants. 6692 SmallPtrSet<Value *, 8> LoopInvariants; 6693 6694 unsigned Index = 0; 6695 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6696 RU.NumInstructions += BB->size(); 6697 for (Instruction &I : *BB) { 6698 IdxToInstr[Index++] = &I; 6699 6700 // Save the end location of each USE. 6701 for (Value *U : I.operands()) { 6702 auto *Instr = dyn_cast<Instruction>(U); 6703 6704 // Ignore non-instruction values such as arguments, constants, etc. 6705 if (!Instr) 6706 continue; 6707 6708 // If this instruction is outside the loop then record it and continue. 6709 if (!TheLoop->contains(Instr)) { 6710 LoopInvariants.insert(Instr); 6711 continue; 6712 } 6713 6714 // Overwrite previous end points. 6715 EndPoint[Instr] = Index; 6716 Ends.insert(Instr); 6717 } 6718 } 6719 } 6720 6721 // Saves the list of intervals that end with the index in 'key'. 6722 typedef SmallVector<Instruction *, 2> InstrList; 6723 DenseMap<unsigned, InstrList> TransposeEnds; 6724 6725 // Transpose the EndPoints to a list of values that end at each index. 6726 for (auto &Interval : EndPoint) 6727 TransposeEnds[Interval.second].push_back(Interval.first); 6728 6729 SmallSet<Instruction *, 8> OpenIntervals; 6730 6731 // Get the size of the widest register. 6732 unsigned MaxSafeDepDist = -1U; 6733 if (Legal->getMaxSafeDepDistBytes() != -1U) 6734 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6735 unsigned WidestRegister = 6736 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6737 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6738 6739 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6740 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6741 6742 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6743 6744 // A lambda that gets the register usage for the given type and VF. 6745 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6746 if (Ty->isTokenTy()) 6747 return 0U; 6748 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6749 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6750 }; 6751 6752 for (unsigned int i = 0; i < Index; ++i) { 6753 Instruction *I = IdxToInstr[i]; 6754 6755 // Remove all of the instructions that end at this location. 6756 InstrList &List = TransposeEnds[i]; 6757 for (Instruction *ToRemove : List) 6758 OpenIntervals.erase(ToRemove); 6759 6760 // Ignore instructions that are never used within the loop. 6761 if (!Ends.count(I)) 6762 continue; 6763 6764 // Skip ignored values. 6765 if (ValuesToIgnore.count(I)) 6766 continue; 6767 6768 // For each VF find the maximum usage of registers. 6769 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6770 if (VFs[j] == 1) { 6771 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6772 continue; 6773 } 6774 collectUniformsAndScalars(VFs[j]); 6775 // Count the number of live intervals. 6776 unsigned RegUsage = 0; 6777 for (auto Inst : OpenIntervals) { 6778 // Skip ignored values for VF > 1. 6779 if (VecValuesToIgnore.count(Inst) || 6780 isScalarAfterVectorization(Inst, VFs[j])) 6781 continue; 6782 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6783 } 6784 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6785 } 6786 6787 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6788 << OpenIntervals.size() << '\n'); 6789 6790 // Add the current instruction to the list of open intervals. 6791 OpenIntervals.insert(I); 6792 } 6793 6794 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6795 unsigned Invariant = 0; 6796 if (VFs[i] == 1) 6797 Invariant = LoopInvariants.size(); 6798 else { 6799 for (auto Inst : LoopInvariants) 6800 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6801 } 6802 6803 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6804 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6805 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6806 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6807 6808 RU.LoopInvariantRegs = Invariant; 6809 RU.MaxLocalUsers = MaxUsages[i]; 6810 RUs[i] = RU; 6811 } 6812 6813 return RUs; 6814 } 6815 6816 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6817 6818 // If we aren't vectorizing the loop, or if we've already collected the 6819 // instructions to scalarize, there's nothing to do. Collection may already 6820 // have occurred if we have a user-selected VF and are now computing the 6821 // expected cost for interleaving. 6822 if (VF < 2 || InstsToScalarize.count(VF)) 6823 return; 6824 6825 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6826 // not profitable to scalarize any instructions, the presence of VF in the 6827 // map will indicate that we've analyzed it already. 6828 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6829 6830 // Find all the instructions that are scalar with predication in the loop and 6831 // determine if it would be better to not if-convert the blocks they are in. 6832 // If so, we also record the instructions to scalarize. 6833 for (BasicBlock *BB : TheLoop->blocks()) { 6834 if (!Legal->blockNeedsPredication(BB)) 6835 continue; 6836 for (Instruction &I : *BB) 6837 if (Legal->isScalarWithPredication(&I)) { 6838 ScalarCostsTy ScalarCosts; 6839 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6840 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6841 6842 // Remember that BB will remain after vectorization. 6843 PredicatedBBsAfterVectorization.insert(BB); 6844 } 6845 } 6846 } 6847 6848 int LoopVectorizationCostModel::computePredInstDiscount( 6849 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6850 unsigned VF) { 6851 6852 assert(!isUniformAfterVectorization(PredInst, VF) && 6853 "Instruction marked uniform-after-vectorization will be predicated"); 6854 6855 // Initialize the discount to zero, meaning that the scalar version and the 6856 // vector version cost the same. 6857 int Discount = 0; 6858 6859 // Holds instructions to analyze. The instructions we visit are mapped in 6860 // ScalarCosts. Those instructions are the ones that would be scalarized if 6861 // we find that the scalar version costs less. 6862 SmallVector<Instruction *, 8> Worklist; 6863 6864 // Returns true if the given instruction can be scalarized. 6865 auto canBeScalarized = [&](Instruction *I) -> bool { 6866 6867 // We only attempt to scalarize instructions forming a single-use chain 6868 // from the original predicated block that would otherwise be vectorized. 6869 // Although not strictly necessary, we give up on instructions we know will 6870 // already be scalar to avoid traversing chains that are unlikely to be 6871 // beneficial. 6872 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6873 isScalarAfterVectorization(I, VF)) 6874 return false; 6875 6876 // If the instruction is scalar with predication, it will be analyzed 6877 // separately. We ignore it within the context of PredInst. 6878 if (Legal->isScalarWithPredication(I)) 6879 return false; 6880 6881 // If any of the instruction's operands are uniform after vectorization, 6882 // the instruction cannot be scalarized. This prevents, for example, a 6883 // masked load from being scalarized. 6884 // 6885 // We assume we will only emit a value for lane zero of an instruction 6886 // marked uniform after vectorization, rather than VF identical values. 6887 // Thus, if we scalarize an instruction that uses a uniform, we would 6888 // create uses of values corresponding to the lanes we aren't emitting code 6889 // for. This behavior can be changed by allowing getScalarValue to clone 6890 // the lane zero values for uniforms rather than asserting. 6891 for (Use &U : I->operands()) 6892 if (auto *J = dyn_cast<Instruction>(U.get())) 6893 if (isUniformAfterVectorization(J, VF)) 6894 return false; 6895 6896 // Otherwise, we can scalarize the instruction. 6897 return true; 6898 }; 6899 6900 // Returns true if an operand that cannot be scalarized must be extracted 6901 // from a vector. We will account for this scalarization overhead below. Note 6902 // that the non-void predicated instructions are placed in their own blocks, 6903 // and their return values are inserted into vectors. Thus, an extract would 6904 // still be required. 6905 auto needsExtract = [&](Instruction *I) -> bool { 6906 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6907 }; 6908 6909 // Compute the expected cost discount from scalarizing the entire expression 6910 // feeding the predicated instruction. We currently only consider expressions 6911 // that are single-use instruction chains. 6912 Worklist.push_back(PredInst); 6913 while (!Worklist.empty()) { 6914 Instruction *I = Worklist.pop_back_val(); 6915 6916 // If we've already analyzed the instruction, there's nothing to do. 6917 if (ScalarCosts.count(I)) 6918 continue; 6919 6920 // Compute the cost of the vector instruction. Note that this cost already 6921 // includes the scalarization overhead of the predicated instruction. 6922 unsigned VectorCost = getInstructionCost(I, VF).first; 6923 6924 // Compute the cost of the scalarized instruction. This cost is the cost of 6925 // the instruction as if it wasn't if-converted and instead remained in the 6926 // predicated block. We will scale this cost by block probability after 6927 // computing the scalarization overhead. 6928 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6929 6930 // Compute the scalarization overhead of needed insertelement instructions 6931 // and phi nodes. 6932 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6933 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6934 true, false); 6935 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6936 } 6937 6938 // Compute the scalarization overhead of needed extractelement 6939 // instructions. For each of the instruction's operands, if the operand can 6940 // be scalarized, add it to the worklist; otherwise, account for the 6941 // overhead. 6942 for (Use &U : I->operands()) 6943 if (auto *J = dyn_cast<Instruction>(U.get())) { 6944 assert(VectorType::isValidElementType(J->getType()) && 6945 "Instruction has non-scalar type"); 6946 if (canBeScalarized(J)) 6947 Worklist.push_back(J); 6948 else if (needsExtract(J)) 6949 ScalarCost += TTI.getScalarizationOverhead( 6950 ToVectorTy(J->getType(),VF), false, true); 6951 } 6952 6953 // Scale the total scalar cost by block probability. 6954 ScalarCost /= getReciprocalPredBlockProb(); 6955 6956 // Compute the discount. A non-negative discount means the vector version 6957 // of the instruction costs more, and scalarizing would be beneficial. 6958 Discount += VectorCost - ScalarCost; 6959 ScalarCosts[I] = ScalarCost; 6960 } 6961 6962 return Discount; 6963 } 6964 6965 LoopVectorizationCostModel::VectorizationCostTy 6966 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6967 VectorizationCostTy Cost; 6968 6969 // Collect Uniform and Scalar instructions after vectorization with VF. 6970 collectUniformsAndScalars(VF); 6971 6972 // Collect the instructions (and their associated costs) that will be more 6973 // profitable to scalarize. 6974 collectInstsToScalarize(VF); 6975 6976 // For each block. 6977 for (BasicBlock *BB : TheLoop->blocks()) { 6978 VectorizationCostTy BlockCost; 6979 6980 // For each instruction in the old loop. 6981 for (Instruction &I : *BB) { 6982 // Skip dbg intrinsics. 6983 if (isa<DbgInfoIntrinsic>(I)) 6984 continue; 6985 6986 // Skip ignored values. 6987 if (ValuesToIgnore.count(&I)) 6988 continue; 6989 6990 VectorizationCostTy C = getInstructionCost(&I, VF); 6991 6992 // Check if we should override the cost. 6993 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6994 C.first = ForceTargetInstructionCost; 6995 6996 BlockCost.first += C.first; 6997 BlockCost.second |= C.second; 6998 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6999 << VF << " For instruction: " << I << '\n'); 7000 } 7001 7002 // If we are vectorizing a predicated block, it will have been 7003 // if-converted. This means that the block's instructions (aside from 7004 // stores and instructions that may divide by zero) will now be 7005 // unconditionally executed. For the scalar case, we may not always execute 7006 // the predicated block. Thus, scale the block's cost by the probability of 7007 // executing it. 7008 if (VF == 1 && Legal->blockNeedsPredication(BB)) 7009 BlockCost.first /= getReciprocalPredBlockProb(); 7010 7011 Cost.first += BlockCost.first; 7012 Cost.second |= BlockCost.second; 7013 } 7014 7015 return Cost; 7016 } 7017 7018 /// \brief Gets Address Access SCEV after verifying that the access pattern 7019 /// is loop invariant except the induction variable dependence. 7020 /// 7021 /// This SCEV can be sent to the Target in order to estimate the address 7022 /// calculation cost. 7023 static const SCEV *getAddressAccessSCEV( 7024 Value *Ptr, 7025 LoopVectorizationLegality *Legal, 7026 ScalarEvolution *SE, 7027 const Loop *TheLoop) { 7028 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7029 if (!Gep) 7030 return nullptr; 7031 7032 // We are looking for a gep with all loop invariant indices except for one 7033 // which should be an induction variable. 7034 unsigned NumOperands = Gep->getNumOperands(); 7035 for (unsigned i = 1; i < NumOperands; ++i) { 7036 Value *Opd = Gep->getOperand(i); 7037 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7038 !Legal->isInductionVariable(Opd)) 7039 return nullptr; 7040 } 7041 7042 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7043 return SE->getSCEV(Ptr); 7044 } 7045 7046 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7047 return Legal->hasStride(I->getOperand(0)) || 7048 Legal->hasStride(I->getOperand(1)); 7049 } 7050 7051 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7052 unsigned VF) { 7053 Type *ValTy = getMemInstValueType(I); 7054 auto SE = PSE.getSE(); 7055 7056 unsigned Alignment = getMemInstAlignment(I); 7057 unsigned AS = getMemInstAddressSpace(I); 7058 Value *Ptr = getPointerOperand(I); 7059 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7060 7061 // Figure out whether the access is strided and get the stride value 7062 // if it's known in compile time 7063 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7064 7065 // Get the cost of the scalar memory instruction and address computation. 7066 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7067 7068 Cost += VF * 7069 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7070 AS, I); 7071 7072 // Get the overhead of the extractelement and insertelement instructions 7073 // we might create due to scalarization. 7074 Cost += getScalarizationOverhead(I, VF, TTI); 7075 7076 // If we have a predicated store, it may not be executed for each vector 7077 // lane. Scale the cost by the probability of executing the predicated 7078 // block. 7079 if (Legal->isScalarWithPredication(I)) 7080 Cost /= getReciprocalPredBlockProb(); 7081 7082 return Cost; 7083 } 7084 7085 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7086 unsigned VF) { 7087 Type *ValTy = getMemInstValueType(I); 7088 Type *VectorTy = ToVectorTy(ValTy, VF); 7089 unsigned Alignment = getMemInstAlignment(I); 7090 Value *Ptr = getPointerOperand(I); 7091 unsigned AS = getMemInstAddressSpace(I); 7092 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7093 7094 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7095 "Stride should be 1 or -1 for consecutive memory access"); 7096 unsigned Cost = 0; 7097 if (Legal->isMaskRequired(I)) 7098 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7099 else 7100 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7101 7102 bool Reverse = ConsecutiveStride < 0; 7103 if (Reverse) 7104 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7105 return Cost; 7106 } 7107 7108 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7109 unsigned VF) { 7110 LoadInst *LI = cast<LoadInst>(I); 7111 Type *ValTy = LI->getType(); 7112 Type *VectorTy = ToVectorTy(ValTy, VF); 7113 unsigned Alignment = LI->getAlignment(); 7114 unsigned AS = LI->getPointerAddressSpace(); 7115 7116 return TTI.getAddressComputationCost(ValTy) + 7117 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7118 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7119 } 7120 7121 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7122 unsigned VF) { 7123 Type *ValTy = getMemInstValueType(I); 7124 Type *VectorTy = ToVectorTy(ValTy, VF); 7125 unsigned Alignment = getMemInstAlignment(I); 7126 Value *Ptr = getPointerOperand(I); 7127 7128 return TTI.getAddressComputationCost(VectorTy) + 7129 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7130 Legal->isMaskRequired(I), Alignment); 7131 } 7132 7133 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7134 unsigned VF) { 7135 Type *ValTy = getMemInstValueType(I); 7136 Type *VectorTy = ToVectorTy(ValTy, VF); 7137 unsigned AS = getMemInstAddressSpace(I); 7138 7139 auto Group = Legal->getInterleavedAccessGroup(I); 7140 assert(Group && "Fail to get an interleaved access group."); 7141 7142 unsigned InterleaveFactor = Group->getFactor(); 7143 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7144 7145 // Holds the indices of existing members in an interleaved load group. 7146 // An interleaved store group doesn't need this as it doesn't allow gaps. 7147 SmallVector<unsigned, 4> Indices; 7148 if (isa<LoadInst>(I)) { 7149 for (unsigned i = 0; i < InterleaveFactor; i++) 7150 if (Group->getMember(i)) 7151 Indices.push_back(i); 7152 } 7153 7154 // Calculate the cost of the whole interleaved group. 7155 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7156 Group->getFactor(), Indices, 7157 Group->getAlignment(), AS); 7158 7159 if (Group->isReverse()) 7160 Cost += Group->getNumMembers() * 7161 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7162 return Cost; 7163 } 7164 7165 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7166 unsigned VF) { 7167 7168 // Calculate scalar cost only. Vectorization cost should be ready at this 7169 // moment. 7170 if (VF == 1) { 7171 Type *ValTy = getMemInstValueType(I); 7172 unsigned Alignment = getMemInstAlignment(I); 7173 unsigned AS = getMemInstAddressSpace(I); 7174 7175 return TTI.getAddressComputationCost(ValTy) + 7176 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7177 } 7178 return getWideningCost(I, VF); 7179 } 7180 7181 LoopVectorizationCostModel::VectorizationCostTy 7182 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7183 // If we know that this instruction will remain uniform, check the cost of 7184 // the scalar version. 7185 if (isUniformAfterVectorization(I, VF)) 7186 VF = 1; 7187 7188 if (VF > 1 && isProfitableToScalarize(I, VF)) 7189 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7190 7191 // Forced scalars do not have any scalarization overhead. 7192 if (VF > 1 && ForcedScalars.count(VF) && 7193 ForcedScalars.find(VF)->second.count(I)) 7194 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7195 7196 Type *VectorTy; 7197 unsigned C = getInstructionCost(I, VF, VectorTy); 7198 7199 bool TypeNotScalarized = 7200 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7201 return VectorizationCostTy(C, TypeNotScalarized); 7202 } 7203 7204 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7205 if (VF == 1) 7206 return; 7207 for (BasicBlock *BB : TheLoop->blocks()) { 7208 // For each instruction in the old loop. 7209 for (Instruction &I : *BB) { 7210 Value *Ptr = getPointerOperand(&I); 7211 if (!Ptr) 7212 continue; 7213 7214 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7215 // Scalar load + broadcast 7216 unsigned Cost = getUniformMemOpCost(&I, VF); 7217 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7218 continue; 7219 } 7220 7221 // We assume that widening is the best solution when possible. 7222 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7223 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7224 setWideningDecision(&I, VF, CM_Widen, Cost); 7225 continue; 7226 } 7227 7228 // Choose between Interleaving, Gather/Scatter or Scalarization. 7229 unsigned InterleaveCost = UINT_MAX; 7230 unsigned NumAccesses = 1; 7231 if (Legal->isAccessInterleaved(&I)) { 7232 auto Group = Legal->getInterleavedAccessGroup(&I); 7233 assert(Group && "Fail to get an interleaved access group."); 7234 7235 // Make one decision for the whole group. 7236 if (getWideningDecision(&I, VF) != CM_Unknown) 7237 continue; 7238 7239 NumAccesses = Group->getNumMembers(); 7240 InterleaveCost = getInterleaveGroupCost(&I, VF); 7241 } 7242 7243 unsigned GatherScatterCost = 7244 Legal->isLegalGatherOrScatter(&I) 7245 ? getGatherScatterCost(&I, VF) * NumAccesses 7246 : UINT_MAX; 7247 7248 unsigned ScalarizationCost = 7249 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7250 7251 // Choose better solution for the current VF, 7252 // write down this decision and use it during vectorization. 7253 unsigned Cost; 7254 InstWidening Decision; 7255 if (InterleaveCost <= GatherScatterCost && 7256 InterleaveCost < ScalarizationCost) { 7257 Decision = CM_Interleave; 7258 Cost = InterleaveCost; 7259 } else if (GatherScatterCost < ScalarizationCost) { 7260 Decision = CM_GatherScatter; 7261 Cost = GatherScatterCost; 7262 } else { 7263 Decision = CM_Scalarize; 7264 Cost = ScalarizationCost; 7265 } 7266 // If the instructions belongs to an interleave group, the whole group 7267 // receives the same decision. The whole group receives the cost, but 7268 // the cost will actually be assigned to one instruction. 7269 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7270 setWideningDecision(Group, VF, Decision, Cost); 7271 else 7272 setWideningDecision(&I, VF, Decision, Cost); 7273 } 7274 } 7275 7276 // Make sure that any load of address and any other address computation 7277 // remains scalar unless there is gather/scatter support. This avoids 7278 // inevitable extracts into address registers, and also has the benefit of 7279 // activating LSR more, since that pass can't optimize vectorized 7280 // addresses. 7281 if (TTI.prefersVectorizedAddressing()) 7282 return; 7283 7284 // Start with all scalar pointer uses. 7285 SmallPtrSet<Instruction *, 8> AddrDefs; 7286 for (BasicBlock *BB : TheLoop->blocks()) 7287 for (Instruction &I : *BB) { 7288 Instruction *PtrDef = 7289 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7290 if (PtrDef && TheLoop->contains(PtrDef) && 7291 getWideningDecision(&I, VF) != CM_GatherScatter) 7292 AddrDefs.insert(PtrDef); 7293 } 7294 7295 // Add all instructions used to generate the addresses. 7296 SmallVector<Instruction *, 4> Worklist; 7297 for (auto *I : AddrDefs) 7298 Worklist.push_back(I); 7299 while (!Worklist.empty()) { 7300 Instruction *I = Worklist.pop_back_val(); 7301 for (auto &Op : I->operands()) 7302 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7303 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7304 AddrDefs.insert(InstOp).second == true) 7305 Worklist.push_back(InstOp); 7306 } 7307 7308 for (auto *I : AddrDefs) { 7309 if (isa<LoadInst>(I)) { 7310 // Setting the desired widening decision should ideally be handled in 7311 // by cost functions, but since this involves the task of finding out 7312 // if the loaded register is involved in an address computation, it is 7313 // instead changed here when we know this is the case. 7314 if (getWideningDecision(I, VF) == CM_Widen) 7315 // Scalarize a widened load of address. 7316 setWideningDecision(I, VF, CM_Scalarize, 7317 (VF * getMemoryInstructionCost(I, 1))); 7318 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7319 // Scalarize an interleave group of address loads. 7320 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7321 if (Instruction *Member = Group->getMember(I)) 7322 setWideningDecision(Member, VF, CM_Scalarize, 7323 (VF * getMemoryInstructionCost(Member, 1))); 7324 } 7325 } 7326 } else 7327 // Make sure I gets scalarized and a cost estimate without 7328 // scalarization overhead. 7329 ForcedScalars[VF].insert(I); 7330 } 7331 } 7332 7333 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7334 unsigned VF, 7335 Type *&VectorTy) { 7336 Type *RetTy = I->getType(); 7337 if (canTruncateToMinimalBitwidth(I, VF)) 7338 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7339 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7340 auto SE = PSE.getSE(); 7341 7342 // TODO: We need to estimate the cost of intrinsic calls. 7343 switch (I->getOpcode()) { 7344 case Instruction::GetElementPtr: 7345 // We mark this instruction as zero-cost because the cost of GEPs in 7346 // vectorized code depends on whether the corresponding memory instruction 7347 // is scalarized or not. Therefore, we handle GEPs with the memory 7348 // instruction cost. 7349 return 0; 7350 case Instruction::Br: { 7351 // In cases of scalarized and predicated instructions, there will be VF 7352 // predicated blocks in the vectorized loop. Each branch around these 7353 // blocks requires also an extract of its vector compare i1 element. 7354 bool ScalarPredicatedBB = false; 7355 BranchInst *BI = cast<BranchInst>(I); 7356 if (VF > 1 && BI->isConditional() && 7357 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7358 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7359 ScalarPredicatedBB = true; 7360 7361 if (ScalarPredicatedBB) { 7362 // Return cost for branches around scalarized and predicated blocks. 7363 Type *Vec_i1Ty = 7364 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7365 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7366 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7367 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7368 // The back-edge branch will remain, as will all scalar branches. 7369 return TTI.getCFInstrCost(Instruction::Br); 7370 else 7371 // This branch will be eliminated by if-conversion. 7372 return 0; 7373 // Note: We currently assume zero cost for an unconditional branch inside 7374 // a predicated block since it will become a fall-through, although we 7375 // may decide in the future to call TTI for all branches. 7376 } 7377 case Instruction::PHI: { 7378 auto *Phi = cast<PHINode>(I); 7379 7380 // First-order recurrences are replaced by vector shuffles inside the loop. 7381 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7382 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7383 VectorTy, VF - 1, VectorTy); 7384 7385 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7386 // converted into select instructions. We require N - 1 selects per phi 7387 // node, where N is the number of incoming values. 7388 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7389 return (Phi->getNumIncomingValues() - 1) * 7390 TTI.getCmpSelInstrCost( 7391 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7392 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7393 7394 return TTI.getCFInstrCost(Instruction::PHI); 7395 } 7396 case Instruction::UDiv: 7397 case Instruction::SDiv: 7398 case Instruction::URem: 7399 case Instruction::SRem: 7400 // If we have a predicated instruction, it may not be executed for each 7401 // vector lane. Get the scalarization cost and scale this amount by the 7402 // probability of executing the predicated block. If the instruction is not 7403 // predicated, we fall through to the next case. 7404 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7405 unsigned Cost = 0; 7406 7407 // These instructions have a non-void type, so account for the phi nodes 7408 // that we will create. This cost is likely to be zero. The phi node 7409 // cost, if any, should be scaled by the block probability because it 7410 // models a copy at the end of each predicated block. 7411 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7412 7413 // The cost of the non-predicated instruction. 7414 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7415 7416 // The cost of insertelement and extractelement instructions needed for 7417 // scalarization. 7418 Cost += getScalarizationOverhead(I, VF, TTI); 7419 7420 // Scale the cost by the probability of executing the predicated blocks. 7421 // This assumes the predicated block for each vector lane is equally 7422 // likely. 7423 return Cost / getReciprocalPredBlockProb(); 7424 } 7425 LLVM_FALLTHROUGH; 7426 case Instruction::Add: 7427 case Instruction::FAdd: 7428 case Instruction::Sub: 7429 case Instruction::FSub: 7430 case Instruction::Mul: 7431 case Instruction::FMul: 7432 case Instruction::FDiv: 7433 case Instruction::FRem: 7434 case Instruction::Shl: 7435 case Instruction::LShr: 7436 case Instruction::AShr: 7437 case Instruction::And: 7438 case Instruction::Or: 7439 case Instruction::Xor: { 7440 // Since we will replace the stride by 1 the multiplication should go away. 7441 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7442 return 0; 7443 // Certain instructions can be cheaper to vectorize if they have a constant 7444 // second vector operand. One example of this are shifts on x86. 7445 TargetTransformInfo::OperandValueKind Op1VK = 7446 TargetTransformInfo::OK_AnyValue; 7447 TargetTransformInfo::OperandValueKind Op2VK = 7448 TargetTransformInfo::OK_AnyValue; 7449 TargetTransformInfo::OperandValueProperties Op1VP = 7450 TargetTransformInfo::OP_None; 7451 TargetTransformInfo::OperandValueProperties Op2VP = 7452 TargetTransformInfo::OP_None; 7453 Value *Op2 = I->getOperand(1); 7454 7455 // Check for a splat or for a non uniform vector of constants. 7456 if (isa<ConstantInt>(Op2)) { 7457 ConstantInt *CInt = cast<ConstantInt>(Op2); 7458 if (CInt && CInt->getValue().isPowerOf2()) 7459 Op2VP = TargetTransformInfo::OP_PowerOf2; 7460 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7461 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7462 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7463 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7464 if (SplatValue) { 7465 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7466 if (CInt && CInt->getValue().isPowerOf2()) 7467 Op2VP = TargetTransformInfo::OP_PowerOf2; 7468 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7469 } 7470 } else if (Legal->isUniform(Op2)) { 7471 Op2VK = TargetTransformInfo::OK_UniformValue; 7472 } 7473 SmallVector<const Value *, 4> Operands(I->operand_values()); 7474 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7475 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7476 Op2VK, Op1VP, Op2VP, Operands); 7477 } 7478 case Instruction::Select: { 7479 SelectInst *SI = cast<SelectInst>(I); 7480 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7481 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7482 Type *CondTy = SI->getCondition()->getType(); 7483 if (!ScalarCond) 7484 CondTy = VectorType::get(CondTy, VF); 7485 7486 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7487 } 7488 case Instruction::ICmp: 7489 case Instruction::FCmp: { 7490 Type *ValTy = I->getOperand(0)->getType(); 7491 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7492 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7493 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7494 VectorTy = ToVectorTy(ValTy, VF); 7495 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7496 } 7497 case Instruction::Store: 7498 case Instruction::Load: { 7499 unsigned Width = VF; 7500 if (Width > 1) { 7501 InstWidening Decision = getWideningDecision(I, Width); 7502 assert(Decision != CM_Unknown && 7503 "CM decision should be taken at this point"); 7504 if (Decision == CM_Scalarize) 7505 Width = 1; 7506 } 7507 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7508 return getMemoryInstructionCost(I, VF); 7509 } 7510 case Instruction::ZExt: 7511 case Instruction::SExt: 7512 case Instruction::FPToUI: 7513 case Instruction::FPToSI: 7514 case Instruction::FPExt: 7515 case Instruction::PtrToInt: 7516 case Instruction::IntToPtr: 7517 case Instruction::SIToFP: 7518 case Instruction::UIToFP: 7519 case Instruction::Trunc: 7520 case Instruction::FPTrunc: 7521 case Instruction::BitCast: { 7522 // We optimize the truncation of induction variables having constant 7523 // integer steps. The cost of these truncations is the same as the scalar 7524 // operation. 7525 if (isOptimizableIVTruncate(I, VF)) { 7526 auto *Trunc = cast<TruncInst>(I); 7527 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7528 Trunc->getSrcTy(), Trunc); 7529 } 7530 7531 Type *SrcScalarTy = I->getOperand(0)->getType(); 7532 Type *SrcVecTy = 7533 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7534 if (canTruncateToMinimalBitwidth(I, VF)) { 7535 // This cast is going to be shrunk. This may remove the cast or it might 7536 // turn it into slightly different cast. For example, if MinBW == 16, 7537 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7538 // 7539 // Calculate the modified src and dest types. 7540 Type *MinVecTy = VectorTy; 7541 if (I->getOpcode() == Instruction::Trunc) { 7542 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7543 VectorTy = 7544 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7545 } else if (I->getOpcode() == Instruction::ZExt || 7546 I->getOpcode() == Instruction::SExt) { 7547 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7548 VectorTy = 7549 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7550 } 7551 } 7552 7553 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7554 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7555 } 7556 case Instruction::Call: { 7557 bool NeedToScalarize; 7558 CallInst *CI = cast<CallInst>(I); 7559 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7560 if (getVectorIntrinsicIDForCall(CI, TLI)) 7561 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7562 return CallCost; 7563 } 7564 default: 7565 // The cost of executing VF copies of the scalar instruction. This opcode 7566 // is unknown. Assume that it is the same as 'mul'. 7567 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7568 getScalarizationOverhead(I, VF, TTI); 7569 } // end of switch. 7570 } 7571 7572 char LoopVectorize::ID = 0; 7573 static const char lv_name[] = "Loop Vectorization"; 7574 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7575 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7576 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7577 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7578 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7579 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7580 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7581 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7582 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7583 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7584 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7585 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7586 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7587 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7588 7589 namespace llvm { 7590 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7591 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7592 } 7593 } 7594 7595 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7596 7597 // Check if the pointer operand of a load or store instruction is 7598 // consecutive. 7599 if (auto *Ptr = getPointerOperand(Inst)) 7600 return Legal->isConsecutivePtr(Ptr); 7601 return false; 7602 } 7603 7604 void LoopVectorizationCostModel::collectValuesToIgnore() { 7605 // Ignore ephemeral values. 7606 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7607 7608 // Ignore type-promoting instructions we identified during reduction 7609 // detection. 7610 for (auto &Reduction : *Legal->getReductionVars()) { 7611 RecurrenceDescriptor &RedDes = Reduction.second; 7612 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7613 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7614 } 7615 } 7616 7617 LoopVectorizationCostModel::VectorizationFactor 7618 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7619 7620 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7621 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7622 0U}; 7623 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7624 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7625 return NoVectorization; 7626 7627 if (UserVF) { 7628 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7629 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7630 // Collect the instructions (and their associated costs) that will be more 7631 // profitable to scalarize. 7632 CM.selectUserVectorizationFactor(UserVF); 7633 return {UserVF, 0}; 7634 } 7635 7636 unsigned MaxVF = MaybeMaxVF.getValue(); 7637 assert(MaxVF != 0 && "MaxVF is zero."); 7638 if (MaxVF == 1) 7639 return NoVectorization; 7640 7641 // Select the optimal vectorization factor. 7642 return CM.selectVectorizationFactor(MaxVF); 7643 } 7644 7645 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV) { 7646 // Perform the actual loop transformation. 7647 7648 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7649 ILV.createVectorizedLoopSkeleton(); 7650 7651 //===------------------------------------------------===// 7652 // 7653 // Notice: any optimization or new instruction that go 7654 // into the code below should also be implemented in 7655 // the cost-model. 7656 // 7657 //===------------------------------------------------===// 7658 7659 // 2. Copy and widen instructions from the old loop into the new loop. 7660 7661 // Move instructions to handle first-order recurrences. 7662 DenseMap<Instruction *, Instruction *> SinkAfter = Legal->getSinkAfter(); 7663 for (auto &Entry : SinkAfter) { 7664 Entry.first->removeFromParent(); 7665 Entry.first->insertAfter(Entry.second); 7666 DEBUG(dbgs() << "Sinking" << *Entry.first << " after" << *Entry.second 7667 << " to vectorize a 1st order recurrence.\n"); 7668 } 7669 7670 // Collect instructions from the original loop that will become trivially dead 7671 // in the vectorized loop. We don't need to vectorize these instructions. For 7672 // example, original induction update instructions can become dead because we 7673 // separately emit induction "steps" when generating code for the new loop. 7674 // Similarly, we create a new latch condition when setting up the structure 7675 // of the new loop, so the old one can become dead. 7676 SmallPtrSet<Instruction *, 4> DeadInstructions; 7677 collectTriviallyDeadInstructions(DeadInstructions); 7678 7679 // Scan the loop in a topological order to ensure that defs are vectorized 7680 // before users. 7681 LoopBlocksDFS DFS(OrigLoop); 7682 DFS.perform(LI); 7683 7684 // Vectorize all instructions in the original loop that will not become 7685 // trivially dead when vectorized. 7686 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 7687 for (Instruction &I : *BB) 7688 if (!DeadInstructions.count(&I)) 7689 ILV.vectorizeInstruction(I); 7690 7691 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7692 // predication, updating analyses. 7693 ILV.fixVectorizedLoop(); 7694 } 7695 7696 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7697 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7698 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7699 7700 // We create new control-flow for the vectorized loop, so the original 7701 // condition will be dead after vectorization if it's only used by the 7702 // branch. 7703 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7704 if (Cmp && Cmp->hasOneUse()) 7705 DeadInstructions.insert(Cmp); 7706 7707 // We create new "steps" for induction variable updates to which the original 7708 // induction variables map. An original update instruction will be dead if 7709 // all its users except the induction variable are dead. 7710 for (auto &Induction : *Legal->getInductionVars()) { 7711 PHINode *Ind = Induction.first; 7712 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7713 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7714 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7715 })) 7716 DeadInstructions.insert(IndUpdate); 7717 } 7718 } 7719 7720 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7721 auto *SI = dyn_cast<StoreInst>(Instr); 7722 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7723 7724 return scalarizeInstruction(Instr, IfPredicateInstr); 7725 } 7726 7727 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7728 7729 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7730 7731 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7732 Instruction::BinaryOps BinOp) { 7733 // When unrolling and the VF is 1, we only need to add a simple scalar. 7734 Type *Ty = Val->getType(); 7735 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7736 7737 if (Ty->isFloatingPointTy()) { 7738 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7739 7740 // Floating point operations had to be 'fast' to enable the unrolling. 7741 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7742 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7743 } 7744 Constant *C = ConstantInt::get(Ty, StartIdx); 7745 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7746 } 7747 7748 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7749 SmallVector<Metadata *, 4> MDs; 7750 // Reserve first location for self reference to the LoopID metadata node. 7751 MDs.push_back(nullptr); 7752 bool IsUnrollMetadata = false; 7753 MDNode *LoopID = L->getLoopID(); 7754 if (LoopID) { 7755 // First find existing loop unrolling disable metadata. 7756 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7757 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7758 if (MD) { 7759 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7760 IsUnrollMetadata = 7761 S && S->getString().startswith("llvm.loop.unroll.disable"); 7762 } 7763 MDs.push_back(LoopID->getOperand(i)); 7764 } 7765 } 7766 7767 if (!IsUnrollMetadata) { 7768 // Add runtime unroll disable metadata. 7769 LLVMContext &Context = L->getHeader()->getContext(); 7770 SmallVector<Metadata *, 1> DisableOperands; 7771 DisableOperands.push_back( 7772 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7773 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7774 MDs.push_back(DisableNode); 7775 MDNode *NewLoopID = MDNode::get(Context, MDs); 7776 // Set operand 0 to refer to the loop id itself. 7777 NewLoopID->replaceOperandWith(0, NewLoopID); 7778 L->setLoopID(NewLoopID); 7779 } 7780 } 7781 7782 bool LoopVectorizePass::processLoop(Loop *L) { 7783 assert(L->empty() && "Only process inner loops."); 7784 7785 #ifndef NDEBUG 7786 const std::string DebugLocStr = getDebugLocString(L); 7787 #endif /* NDEBUG */ 7788 7789 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7790 << L->getHeader()->getParent()->getName() << "\" from " 7791 << DebugLocStr << "\n"); 7792 7793 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7794 7795 DEBUG(dbgs() << "LV: Loop hints:" 7796 << " force=" 7797 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7798 ? "disabled" 7799 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7800 ? "enabled" 7801 : "?")) 7802 << " width=" << Hints.getWidth() 7803 << " unroll=" << Hints.getInterleave() << "\n"); 7804 7805 // Function containing loop 7806 Function *F = L->getHeader()->getParent(); 7807 7808 // Looking at the diagnostic output is the only way to determine if a loop 7809 // was vectorized (other than looking at the IR or machine code), so it 7810 // is important to generate an optimization remark for each loop. Most of 7811 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7812 // generated as OptimizationRemark and OptimizationRemarkMissed are 7813 // less verbose reporting vectorized loops and unvectorized loops that may 7814 // benefit from vectorization, respectively. 7815 7816 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7817 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7818 return false; 7819 } 7820 7821 PredicatedScalarEvolution PSE(*SE, *L); 7822 7823 // Check if it is legal to vectorize the loop. 7824 LoopVectorizationRequirements Requirements(*ORE); 7825 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7826 &Requirements, &Hints); 7827 if (!LVL.canVectorize()) { 7828 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7829 emitMissedWarning(F, L, Hints, ORE); 7830 return false; 7831 } 7832 7833 // Check the function attributes to find out if this function should be 7834 // optimized for size. 7835 bool OptForSize = 7836 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7837 7838 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7839 // count by optimizing for size, to minimize overheads. 7840 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7841 bool HasExpectedTC = (ExpectedTC > 0); 7842 7843 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7844 auto EstimatedTC = getLoopEstimatedTripCount(L); 7845 if (EstimatedTC) { 7846 ExpectedTC = *EstimatedTC; 7847 HasExpectedTC = true; 7848 } 7849 } 7850 7851 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7852 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7853 << "This loop is worth vectorizing only if no scalar " 7854 << "iteration overheads are incurred."); 7855 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7856 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7857 else { 7858 DEBUG(dbgs() << "\n"); 7859 // Loops with a very small trip count are considered for vectorization 7860 // under OptForSize, thereby making sure the cost of their loop body is 7861 // dominant, free of runtime guards and scalar iteration overheads. 7862 OptForSize = true; 7863 } 7864 } 7865 7866 // Check the function attributes to see if implicit floats are allowed. 7867 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7868 // an integer loop and the vector instructions selected are purely integer 7869 // vector instructions? 7870 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7871 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7872 "attribute is used.\n"); 7873 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7874 "NoImplicitFloat", L) 7875 << "loop not vectorized due to NoImplicitFloat attribute"); 7876 emitMissedWarning(F, L, Hints, ORE); 7877 return false; 7878 } 7879 7880 // Check if the target supports potentially unsafe FP vectorization. 7881 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7882 // for the target we're vectorizing for, to make sure none of the 7883 // additional fp-math flags can help. 7884 if (Hints.isPotentiallyUnsafe() && 7885 TTI->isFPVectorizationPotentiallyUnsafe()) { 7886 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7887 ORE->emit( 7888 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7889 << "loop not vectorized due to unsafe FP support."); 7890 emitMissedWarning(F, L, Hints, ORE); 7891 return false; 7892 } 7893 7894 // Use the cost model. 7895 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7896 &Hints); 7897 CM.collectValuesToIgnore(); 7898 7899 // Use the planner for vectorization. 7900 LoopVectorizationPlanner LVP(L, LI, &LVL, CM); 7901 7902 // Get user vectorization factor. 7903 unsigned UserVF = Hints.getWidth(); 7904 7905 // Plan how to best vectorize, return the best VF and its cost. 7906 LoopVectorizationCostModel::VectorizationFactor VF = 7907 LVP.plan(OptForSize, UserVF); 7908 7909 // Select the interleave count. 7910 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7911 7912 // Get user interleave count. 7913 unsigned UserIC = Hints.getInterleave(); 7914 7915 // Identify the diagnostic messages that should be produced. 7916 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7917 bool VectorizeLoop = true, InterleaveLoop = true; 7918 if (Requirements.doesNotMeet(F, L, Hints)) { 7919 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7920 "requirements.\n"); 7921 emitMissedWarning(F, L, Hints, ORE); 7922 return false; 7923 } 7924 7925 if (VF.Width == 1) { 7926 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7927 VecDiagMsg = std::make_pair( 7928 "VectorizationNotBeneficial", 7929 "the cost-model indicates that vectorization is not beneficial"); 7930 VectorizeLoop = false; 7931 } 7932 7933 if (IC == 1 && UserIC <= 1) { 7934 // Tell the user interleaving is not beneficial. 7935 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7936 IntDiagMsg = std::make_pair( 7937 "InterleavingNotBeneficial", 7938 "the cost-model indicates that interleaving is not beneficial"); 7939 InterleaveLoop = false; 7940 if (UserIC == 1) { 7941 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7942 IntDiagMsg.second += 7943 " and is explicitly disabled or interleave count is set to 1"; 7944 } 7945 } else if (IC > 1 && UserIC == 1) { 7946 // Tell the user interleaving is beneficial, but it explicitly disabled. 7947 DEBUG(dbgs() 7948 << "LV: Interleaving is beneficial but is explicitly disabled."); 7949 IntDiagMsg = std::make_pair( 7950 "InterleavingBeneficialButDisabled", 7951 "the cost-model indicates that interleaving is beneficial " 7952 "but is explicitly disabled or interleave count is set to 1"); 7953 InterleaveLoop = false; 7954 } 7955 7956 // Override IC if user provided an interleave count. 7957 IC = UserIC > 0 ? UserIC : IC; 7958 7959 // Emit diagnostic messages, if any. 7960 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7961 if (!VectorizeLoop && !InterleaveLoop) { 7962 // Do not vectorize or interleaving the loop. 7963 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7964 L->getStartLoc(), L->getHeader()) 7965 << VecDiagMsg.second); 7966 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7967 L->getStartLoc(), L->getHeader()) 7968 << IntDiagMsg.second); 7969 return false; 7970 } else if (!VectorizeLoop && InterleaveLoop) { 7971 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7972 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7973 L->getStartLoc(), L->getHeader()) 7974 << VecDiagMsg.second); 7975 } else if (VectorizeLoop && !InterleaveLoop) { 7976 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7977 << DebugLocStr << '\n'); 7978 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7979 L->getStartLoc(), L->getHeader()) 7980 << IntDiagMsg.second); 7981 } else if (VectorizeLoop && InterleaveLoop) { 7982 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7983 << DebugLocStr << '\n'); 7984 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7985 } 7986 7987 using namespace ore; 7988 if (!VectorizeLoop) { 7989 assert(IC > 1 && "interleave count should not be 1 or 0"); 7990 // If we decided that it is not legal to vectorize the loop, then 7991 // interleave it. 7992 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7993 &CM); 7994 LVP.executePlan(Unroller); 7995 7996 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7997 L->getHeader()) 7998 << "interleaved loop (interleaved count: " 7999 << NV("InterleaveCount", IC) << ")"); 8000 } else { 8001 // If we decided that it is *legal* to vectorize the loop, then do it. 8002 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8003 &LVL, &CM); 8004 LVP.executePlan(LB); 8005 ++LoopsVectorized; 8006 8007 // Add metadata to disable runtime unrolling a scalar loop when there are 8008 // no runtime checks about strides and memory. A scalar loop that is 8009 // rarely used is not worth unrolling. 8010 if (!LB.areSafetyChecksAdded()) 8011 AddRuntimeUnrollDisableMetaData(L); 8012 8013 // Report the vectorization decision. 8014 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8015 L->getHeader()) 8016 << "vectorized loop (vectorization width: " 8017 << NV("VectorizationFactor", VF.Width) 8018 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 8019 } 8020 8021 // Mark the loop as already vectorized to avoid vectorizing again. 8022 Hints.setAlreadyVectorized(); 8023 8024 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8025 return true; 8026 } 8027 8028 bool LoopVectorizePass::runImpl( 8029 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8030 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8031 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8032 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8033 OptimizationRemarkEmitter &ORE_) { 8034 8035 SE = &SE_; 8036 LI = &LI_; 8037 TTI = &TTI_; 8038 DT = &DT_; 8039 BFI = &BFI_; 8040 TLI = TLI_; 8041 AA = &AA_; 8042 AC = &AC_; 8043 GetLAA = &GetLAA_; 8044 DB = &DB_; 8045 ORE = &ORE_; 8046 8047 // Don't attempt if 8048 // 1. the target claims to have no vector registers, and 8049 // 2. interleaving won't help ILP. 8050 // 8051 // The second condition is necessary because, even if the target has no 8052 // vector registers, loop vectorization may still enable scalar 8053 // interleaving. 8054 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8055 return false; 8056 8057 bool Changed = false; 8058 8059 // The vectorizer requires loops to be in simplified form. 8060 // Since simplification may add new inner loops, it has to run before the 8061 // legality and profitability checks. This means running the loop vectorizer 8062 // will simplify all loops, regardless of whether anything end up being 8063 // vectorized. 8064 for (auto &L : *LI) 8065 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8066 8067 // Build up a worklist of inner-loops to vectorize. This is necessary as 8068 // the act of vectorizing or partially unrolling a loop creates new loops 8069 // and can invalidate iterators across the loops. 8070 SmallVector<Loop *, 8> Worklist; 8071 8072 for (Loop *L : *LI) 8073 addAcyclicInnerLoop(*L, Worklist); 8074 8075 LoopsAnalyzed += Worklist.size(); 8076 8077 // Now walk the identified inner loops. 8078 while (!Worklist.empty()) { 8079 Loop *L = Worklist.pop_back_val(); 8080 8081 // For the inner loops we actually process, form LCSSA to simplify the 8082 // transform. 8083 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8084 8085 Changed |= processLoop(L); 8086 } 8087 8088 // Process each loop nest in the function. 8089 return Changed; 8090 8091 } 8092 8093 8094 PreservedAnalyses LoopVectorizePass::run(Function &F, 8095 FunctionAnalysisManager &AM) { 8096 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8097 auto &LI = AM.getResult<LoopAnalysis>(F); 8098 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8099 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8100 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8101 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8102 auto &AA = AM.getResult<AAManager>(F); 8103 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8104 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8105 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8106 8107 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8108 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8109 [&](Loop &L) -> const LoopAccessInfo & { 8110 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8111 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8112 }; 8113 bool Changed = 8114 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8115 if (!Changed) 8116 return PreservedAnalyses::all(); 8117 PreservedAnalyses PA; 8118 PA.preserve<LoopAnalysis>(); 8119 PA.preserve<DominatorTreeAnalysis>(); 8120 PA.preserve<BasicAA>(); 8121 PA.preserve<GlobalsAA>(); 8122 return PA; 8123 } 8124