1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "VPlanBuilder.h" 52 #include "llvm/ADT/APInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/DenseMap.h" 55 #include "llvm/ADT/DenseMapInfo.h" 56 #include "llvm/ADT/Hashing.h" 57 #include "llvm/ADT/MapVector.h" 58 #include "llvm/ADT/None.h" 59 #include "llvm/ADT/Optional.h" 60 #include "llvm/ADT/SCCIterator.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallPtrSet.h" 64 #include "llvm/ADT/SmallSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/Statistic.h" 67 #include "llvm/ADT/StringRef.h" 68 #include "llvm/ADT/Twine.h" 69 #include "llvm/ADT/iterator_range.h" 70 #include "llvm/Analysis/AssumptionCache.h" 71 #include "llvm/Analysis/BasicAliasAnalysis.h" 72 #include "llvm/Analysis/BlockFrequencyInfo.h" 73 #include "llvm/Analysis/CodeMetrics.h" 74 #include "llvm/Analysis/DemandedBits.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/LoopAccessAnalysis.h" 77 #include "llvm/Analysis/LoopAnalysisManager.h" 78 #include "llvm/Analysis/LoopInfo.h" 79 #include "llvm/Analysis/LoopIterator.h" 80 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 81 #include "llvm/Analysis/ScalarEvolution.h" 82 #include "llvm/Analysis/ScalarEvolutionExpander.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/TargetTransformInfo.h" 86 #include "llvm/Analysis/VectorUtils.h" 87 #include "llvm/IR/Attributes.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DebugInfoMetadata.h" 94 #include "llvm/IR/DebugLoc.h" 95 #include "llvm/IR/DerivedTypes.h" 96 #include "llvm/IR/DiagnosticInfo.h" 97 #include "llvm/IR/Dominators.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/IR/IRBuilder.h" 100 #include "llvm/IR/InstrTypes.h" 101 #include "llvm/IR/Instruction.h" 102 #include "llvm/IR/Instructions.h" 103 #include "llvm/IR/IntrinsicInst.h" 104 #include "llvm/IR/Intrinsics.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Metadata.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/Use.h" 111 #include "llvm/IR/User.h" 112 #include "llvm/IR/Value.h" 113 #include "llvm/IR/ValueHandle.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/Pass.h" 116 #include "llvm/Support/Casting.h" 117 #include "llvm/Support/CommandLine.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/MathExtras.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 124 #include "llvm/Transforms/Utils/LoopSimplify.h" 125 #include "llvm/Transforms/Utils/LoopUtils.h" 126 #include "llvm/Transforms/Utils/LoopVersioning.h" 127 #include <algorithm> 128 #include <cassert> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <functional> 132 #include <iterator> 133 #include <limits> 134 #include <memory> 135 #include <string> 136 #include <tuple> 137 #include <utility> 138 #include <vector> 139 140 using namespace llvm; 141 142 #define LV_NAME "loop-vectorize" 143 #define DEBUG_TYPE LV_NAME 144 145 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 146 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 147 148 static cl::opt<bool> 149 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 150 cl::desc("Enable if-conversion during vectorization.")); 151 152 /// Loops with a known constant trip count below this number are vectorized only 153 /// if no scalar iteration overheads are incurred. 154 static cl::opt<unsigned> TinyTripCountVectorThreshold( 155 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 156 cl::desc("Loops with a constant trip count that is smaller than this " 157 "value are vectorized only if no scalar iteration overheads " 158 "are incurred.")); 159 160 static cl::opt<bool> MaximizeBandwidth( 161 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 162 cl::desc("Maximize bandwidth when selecting vectorization factor which " 163 "will be determined by the smallest type in loop.")); 164 165 static cl::opt<bool> EnableInterleavedMemAccesses( 166 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 167 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 168 169 /// Maximum factor for an interleaved memory access. 170 static cl::opt<unsigned> MaxInterleaveGroupFactor( 171 "max-interleave-group-factor", cl::Hidden, 172 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 173 cl::init(8)); 174 175 /// We don't interleave loops with a known constant trip count below this 176 /// number. 177 static const unsigned TinyTripCountInterleaveThreshold = 128; 178 179 static cl::opt<unsigned> ForceTargetNumScalarRegs( 180 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's number of scalar registers.")); 182 183 static cl::opt<unsigned> ForceTargetNumVectorRegs( 184 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's number of vector registers.")); 186 187 /// Maximum vectorization interleave count. 188 static const unsigned MaxInterleaveFactor = 16; 189 190 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 191 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 192 cl::desc("A flag that overrides the target's max interleave factor for " 193 "scalar loops.")); 194 195 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 196 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 197 cl::desc("A flag that overrides the target's max interleave factor for " 198 "vectorized loops.")); 199 200 static cl::opt<unsigned> ForceTargetInstructionCost( 201 "force-target-instruction-cost", cl::init(0), cl::Hidden, 202 cl::desc("A flag that overrides the target's expected cost for " 203 "an instruction to a single constant value. Mostly " 204 "useful for getting consistent testing.")); 205 206 static cl::opt<unsigned> SmallLoopCost( 207 "small-loop-cost", cl::init(20), cl::Hidden, 208 cl::desc( 209 "The cost of a loop that is considered 'small' by the interleaver.")); 210 211 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 212 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 213 cl::desc("Enable the use of the block frequency analysis to access PGO " 214 "heuristics minimizing code growth in cold regions and being more " 215 "aggressive in hot regions.")); 216 217 // Runtime interleave loops for load/store throughput. 218 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 219 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 220 cl::desc( 221 "Enable runtime interleaving until load/store ports are saturated")); 222 223 /// The number of stores in a loop that are allowed to need predication. 224 static cl::opt<unsigned> NumberOfStoresToPredicate( 225 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 226 cl::desc("Max number of stores to be predicated behind an if.")); 227 228 static cl::opt<bool> EnableIndVarRegisterHeur( 229 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 230 cl::desc("Count the induction variable only once when interleaving")); 231 232 static cl::opt<bool> EnableCondStoresVectorization( 233 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 234 cl::desc("Enable if predication of stores during vectorization.")); 235 236 static cl::opt<unsigned> MaxNestedScalarReductionIC( 237 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 238 cl::desc("The maximum interleave count to use when interleaving a scalar " 239 "reduction in a nested loop.")); 240 241 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 242 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 243 cl::desc("The maximum allowed number of runtime memory checks with a " 244 "vectorize(enable) pragma.")); 245 246 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 247 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 248 cl::desc("The maximum number of SCEV checks allowed.")); 249 250 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 251 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 252 cl::desc("The maximum number of SCEV checks allowed with a " 253 "vectorize(enable) pragma")); 254 255 /// Create an analysis remark that explains why vectorization failed 256 /// 257 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 258 /// RemarkName is the identifier for the remark. If \p I is passed it is an 259 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 260 /// the location of the remark. \return the remark object that can be 261 /// streamed to. 262 static OptimizationRemarkAnalysis 263 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 264 Instruction *I = nullptr) { 265 Value *CodeRegion = TheLoop->getHeader(); 266 DebugLoc DL = TheLoop->getStartLoc(); 267 268 if (I) { 269 CodeRegion = I->getParent(); 270 // If there is no debug location attached to the instruction, revert back to 271 // using the loop's. 272 if (I->getDebugLoc()) 273 DL = I->getDebugLoc(); 274 } 275 276 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 277 R << "loop not vectorized: "; 278 return R; 279 } 280 281 namespace { 282 283 class LoopVectorizationLegality; 284 class LoopVectorizationCostModel; 285 class LoopVectorizationRequirements; 286 287 } // end anonymous namespace 288 289 /// Returns true if the given loop body has a cycle, excluding the loop 290 /// itself. 291 static bool hasCyclesInLoopBody(const Loop &L) { 292 if (!L.empty()) 293 return true; 294 295 for (const auto &SCC : 296 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 297 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 298 if (SCC.size() > 1) { 299 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 300 DEBUG(L.dump()); 301 return true; 302 } 303 } 304 return false; 305 } 306 307 /// A helper function for converting Scalar types to vector types. 308 /// If the incoming type is void, we return void. If the VF is 1, we return 309 /// the scalar type. 310 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 311 if (Scalar->isVoidTy() || VF == 1) 312 return Scalar; 313 return VectorType::get(Scalar, VF); 314 } 315 316 // FIXME: The following helper functions have multiple implementations 317 // in the project. They can be effectively organized in a common Load/Store 318 // utilities unit. 319 320 /// A helper function that returns the pointer operand of a load or store 321 /// instruction. 322 static Value *getPointerOperand(Value *I) { 323 if (auto *LI = dyn_cast<LoadInst>(I)) 324 return LI->getPointerOperand(); 325 if (auto *SI = dyn_cast<StoreInst>(I)) 326 return SI->getPointerOperand(); 327 return nullptr; 328 } 329 330 /// A helper function that returns the type of loaded or stored value. 331 static Type *getMemInstValueType(Value *I) { 332 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 333 "Expected Load or Store instruction"); 334 if (auto *LI = dyn_cast<LoadInst>(I)) 335 return LI->getType(); 336 return cast<StoreInst>(I)->getValueOperand()->getType(); 337 } 338 339 /// A helper function that returns the alignment of load or store instruction. 340 static unsigned getMemInstAlignment(Value *I) { 341 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 342 "Expected Load or Store instruction"); 343 if (auto *LI = dyn_cast<LoadInst>(I)) 344 return LI->getAlignment(); 345 return cast<StoreInst>(I)->getAlignment(); 346 } 347 348 /// A helper function that returns the address space of the pointer operand of 349 /// load or store instruction. 350 static unsigned getMemInstAddressSpace(Value *I) { 351 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 352 "Expected Load or Store instruction"); 353 if (auto *LI = dyn_cast<LoadInst>(I)) 354 return LI->getPointerAddressSpace(); 355 return cast<StoreInst>(I)->getPointerAddressSpace(); 356 } 357 358 /// A helper function that returns true if the given type is irregular. The 359 /// type is irregular if its allocated size doesn't equal the store size of an 360 /// element of the corresponding vector type at the given vectorization factor. 361 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 362 // Determine if an array of VF elements of type Ty is "bitcast compatible" 363 // with a <VF x Ty> vector. 364 if (VF > 1) { 365 auto *VectorTy = VectorType::get(Ty, VF); 366 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 367 } 368 369 // If the vectorization factor is one, we just check if an array of type Ty 370 // requires padding between elements. 371 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 372 } 373 374 /// A helper function that returns the reciprocal of the block probability of 375 /// predicated blocks. If we return X, we are assuming the predicated block 376 /// will execute once for for every X iterations of the loop header. 377 /// 378 /// TODO: We should use actual block probability here, if available. Currently, 379 /// we always assume predicated blocks have a 50% chance of executing. 380 static unsigned getReciprocalPredBlockProb() { return 2; } 381 382 /// A helper function that adds a 'fast' flag to floating-point operations. 383 static Value *addFastMathFlag(Value *V) { 384 if (isa<FPMathOperator>(V)) { 385 FastMathFlags Flags; 386 Flags.setFast(); 387 cast<Instruction>(V)->setFastMathFlags(Flags); 388 } 389 return V; 390 } 391 392 /// A helper function that returns an integer or floating-point constant with 393 /// value C. 394 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 395 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 396 : ConstantFP::get(Ty, C); 397 } 398 399 namespace llvm { 400 401 /// InnerLoopVectorizer vectorizes loops which contain only one basic 402 /// block to a specified vectorization factor (VF). 403 /// This class performs the widening of scalars into vectors, or multiple 404 /// scalars. This class also implements the following features: 405 /// * It inserts an epilogue loop for handling loops that don't have iteration 406 /// counts that are known to be a multiple of the vectorization factor. 407 /// * It handles the code generation for reduction variables. 408 /// * Scalarization (implementation using scalars) of un-vectorizable 409 /// instructions. 410 /// InnerLoopVectorizer does not perform any vectorization-legality 411 /// checks, and relies on the caller to check for the different legality 412 /// aspects. The InnerLoopVectorizer relies on the 413 /// LoopVectorizationLegality class to provide information about the induction 414 /// and reduction variables that were found to a given vectorization factor. 415 class InnerLoopVectorizer { 416 public: 417 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 418 LoopInfo *LI, DominatorTree *DT, 419 const TargetLibraryInfo *TLI, 420 const TargetTransformInfo *TTI, AssumptionCache *AC, 421 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 422 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 423 LoopVectorizationCostModel *CM) 424 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 425 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 426 Builder(PSE.getSE()->getContext()), 427 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 428 virtual ~InnerLoopVectorizer() = default; 429 430 /// Create a new empty loop. Unlink the old loop and connect the new one. 431 /// Return the pre-header block of the new loop. 432 BasicBlock *createVectorizedLoopSkeleton(); 433 434 /// Widen a single instruction within the innermost loop. 435 void widenInstruction(Instruction &I); 436 437 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 438 void fixVectorizedLoop(); 439 440 // Return true if any runtime check is added. 441 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 442 443 /// A type for vectorized values in the new loop. Each value from the 444 /// original loop, when vectorized, is represented by UF vector values in the 445 /// new unrolled loop, where UF is the unroll factor. 446 using VectorParts = SmallVector<Value *, 2>; 447 448 /// Vectorize a single PHINode in a block. This method handles the induction 449 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 450 /// arbitrary length vectors. 451 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 452 453 /// A helper function to scalarize a single Instruction in the innermost loop. 454 /// Generates a sequence of scalar instances for each lane between \p MinLane 455 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 456 /// inclusive.. 457 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 458 bool IfPredicateInstr); 459 460 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 461 /// is provided, the integer induction variable will first be truncated to 462 /// the corresponding type. 463 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 464 465 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 466 /// vector or scalar value on-demand if one is not yet available. When 467 /// vectorizing a loop, we visit the definition of an instruction before its 468 /// uses. When visiting the definition, we either vectorize or scalarize the 469 /// instruction, creating an entry for it in the corresponding map. (In some 470 /// cases, such as induction variables, we will create both vector and scalar 471 /// entries.) Then, as we encounter uses of the definition, we derive values 472 /// for each scalar or vector use unless such a value is already available. 473 /// For example, if we scalarize a definition and one of its uses is vector, 474 /// we build the required vector on-demand with an insertelement sequence 475 /// when visiting the use. Otherwise, if the use is scalar, we can use the 476 /// existing scalar definition. 477 /// 478 /// Return a value in the new loop corresponding to \p V from the original 479 /// loop at unroll index \p Part. If the value has already been vectorized, 480 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 481 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 482 /// a new vector value on-demand by inserting the scalar values into a vector 483 /// with an insertelement sequence. If the value has been neither vectorized 484 /// nor scalarized, it must be loop invariant, so we simply broadcast the 485 /// value into a vector. 486 Value *getOrCreateVectorValue(Value *V, unsigned Part); 487 488 /// Return a value in the new loop corresponding to \p V from the original 489 /// loop at unroll and vector indices \p Instance. If the value has been 490 /// vectorized but not scalarized, the necessary extractelement instruction 491 /// will be generated. 492 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 493 494 /// Construct the vector value of a scalarized value \p V one lane at a time. 495 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 496 497 /// Try to vectorize the interleaved access group that \p Instr belongs to. 498 void vectorizeInterleaveGroup(Instruction *Instr); 499 500 /// Vectorize Load and Store instructions, optionally masking the vector 501 /// operations if \p BlockInMask is non-null. 502 void vectorizeMemoryInstruction(Instruction *Instr, 503 VectorParts *BlockInMask = nullptr); 504 505 /// \brief Set the debug location in the builder using the debug location in 506 /// the instruction. 507 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 508 509 protected: 510 friend class LoopVectorizationPlanner; 511 512 /// A small list of PHINodes. 513 using PhiVector = SmallVector<PHINode *, 4>; 514 515 /// A type for scalarized values in the new loop. Each value from the 516 /// original loop, when scalarized, is represented by UF x VF scalar values 517 /// in the new unrolled loop, where UF is the unroll factor and VF is the 518 /// vectorization factor. 519 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 520 521 /// Set up the values of the IVs correctly when exiting the vector loop. 522 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 523 Value *CountRoundDown, Value *EndValue, 524 BasicBlock *MiddleBlock); 525 526 /// Create a new induction variable inside L. 527 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 528 Value *Step, Instruction *DL); 529 530 /// Handle all cross-iteration phis in the header. 531 void fixCrossIterationPHIs(); 532 533 /// Fix a first-order recurrence. This is the second phase of vectorizing 534 /// this phi node. 535 void fixFirstOrderRecurrence(PHINode *Phi); 536 537 /// Fix a reduction cross-iteration phi. This is the second phase of 538 /// vectorizing this phi node. 539 void fixReduction(PHINode *Phi); 540 541 /// \brief The Loop exit block may have single value PHI nodes with some 542 /// incoming value. While vectorizing we only handled real values 543 /// that were defined inside the loop and we should have one value for 544 /// each predecessor of its parent basic block. See PR14725. 545 void fixLCSSAPHIs(); 546 547 /// Iteratively sink the scalarized operands of a predicated instruction into 548 /// the block that was created for it. 549 void sinkScalarOperands(Instruction *PredInst); 550 551 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 552 /// represented as. 553 void truncateToMinimalBitwidths(); 554 555 /// Insert the new loop to the loop hierarchy and pass manager 556 /// and update the analysis passes. 557 void updateAnalysis(); 558 559 /// Create a broadcast instruction. This method generates a broadcast 560 /// instruction (shuffle) for loop invariant values and for the induction 561 /// value. If this is the induction variable then we extend it to N, N+1, ... 562 /// this is needed because each iteration in the loop corresponds to a SIMD 563 /// element. 564 virtual Value *getBroadcastInstrs(Value *V); 565 566 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 567 /// to each vector element of Val. The sequence starts at StartIndex. 568 /// \p Opcode is relevant for FP induction variable. 569 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 570 Instruction::BinaryOps Opcode = 571 Instruction::BinaryOpsEnd); 572 573 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 574 /// variable on which to base the steps, \p Step is the size of the step, and 575 /// \p EntryVal is the value from the original loop that maps to the steps. 576 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 577 /// can be a truncate instruction). 578 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 579 const InductionDescriptor &ID); 580 581 /// Create a vector induction phi node based on an existing scalar one. \p 582 /// EntryVal is the value from the original loop that maps to the vector phi 583 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 584 /// truncate instruction, instead of widening the original IV, we widen a 585 /// version of the IV truncated to \p EntryVal's type. 586 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 587 Value *Step, Instruction *EntryVal); 588 589 /// Returns true if an instruction \p I should be scalarized instead of 590 /// vectorized for the chosen vectorization factor. 591 bool shouldScalarizeInstruction(Instruction *I) const; 592 593 /// Returns true if we should generate a scalar version of \p IV. 594 bool needsScalarInduction(Instruction *IV) const; 595 596 /// If there is a cast involved in the induction variable \p ID, which should 597 /// be ignored in the vectorized loop body, this function records the 598 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 599 /// cast. We had already proved that the casted Phi is equal to the uncasted 600 /// Phi in the vectorized loop (under a runtime guard), and therefore 601 /// there is no need to vectorize the cast - the same value can be used in the 602 /// vector loop for both the Phi and the cast. 603 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 604 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 605 void recordVectorLoopValueForInductionCast (const InductionDescriptor &ID, 606 Value *VectorLoopValue, 607 unsigned Part, 608 unsigned Lane = UINT_MAX); 609 610 /// Generate a shuffle sequence that will reverse the vector Vec. 611 virtual Value *reverseVector(Value *Vec); 612 613 /// Returns (and creates if needed) the original loop trip count. 614 Value *getOrCreateTripCount(Loop *NewLoop); 615 616 /// Returns (and creates if needed) the trip count of the widened loop. 617 Value *getOrCreateVectorTripCount(Loop *NewLoop); 618 619 /// Returns a bitcasted value to the requested vector type. 620 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 621 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 622 const DataLayout &DL); 623 624 /// Emit a bypass check to see if the vector trip count is zero, including if 625 /// it overflows. 626 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 627 628 /// Emit a bypass check to see if all of the SCEV assumptions we've 629 /// had to make are correct. 630 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Emit bypass checks to check any memory assumptions we may have made. 633 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 634 635 /// Add additional metadata to \p To that was not present on \p Orig. 636 /// 637 /// Currently this is used to add the noalias annotations based on the 638 /// inserted memchecks. Use this for instructions that are *cloned* into the 639 /// vector loop. 640 void addNewMetadata(Instruction *To, const Instruction *Orig); 641 642 /// Add metadata from one instruction to another. 643 /// 644 /// This includes both the original MDs from \p From and additional ones (\see 645 /// addNewMetadata). Use this for *newly created* instructions in the vector 646 /// loop. 647 void addMetadata(Instruction *To, Instruction *From); 648 649 /// \brief Similar to the previous function but it adds the metadata to a 650 /// vector of instructions. 651 void addMetadata(ArrayRef<Value *> To, Instruction *From); 652 653 /// The original loop. 654 Loop *OrigLoop; 655 656 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 657 /// dynamic knowledge to simplify SCEV expressions and converts them to a 658 /// more usable form. 659 PredicatedScalarEvolution &PSE; 660 661 /// Loop Info. 662 LoopInfo *LI; 663 664 /// Dominator Tree. 665 DominatorTree *DT; 666 667 /// Alias Analysis. 668 AliasAnalysis *AA; 669 670 /// Target Library Info. 671 const TargetLibraryInfo *TLI; 672 673 /// Target Transform Info. 674 const TargetTransformInfo *TTI; 675 676 /// Assumption Cache. 677 AssumptionCache *AC; 678 679 /// Interface to emit optimization remarks. 680 OptimizationRemarkEmitter *ORE; 681 682 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 683 /// used. 684 /// 685 /// This is currently only used to add no-alias metadata based on the 686 /// memchecks. The actually versioning is performed manually. 687 std::unique_ptr<LoopVersioning> LVer; 688 689 /// The vectorization SIMD factor to use. Each vector will have this many 690 /// vector elements. 691 unsigned VF; 692 693 /// The vectorization unroll factor to use. Each scalar is vectorized to this 694 /// many different vector instructions. 695 unsigned UF; 696 697 /// The builder that we use 698 IRBuilder<> Builder; 699 700 // --- Vectorization state --- 701 702 /// The vector-loop preheader. 703 BasicBlock *LoopVectorPreHeader; 704 705 /// The scalar-loop preheader. 706 BasicBlock *LoopScalarPreHeader; 707 708 /// Middle Block between the vector and the scalar. 709 BasicBlock *LoopMiddleBlock; 710 711 /// The ExitBlock of the scalar loop. 712 BasicBlock *LoopExitBlock; 713 714 /// The vector loop body. 715 BasicBlock *LoopVectorBody; 716 717 /// The scalar loop body. 718 BasicBlock *LoopScalarBody; 719 720 /// A list of all bypass blocks. The first block is the entry of the loop. 721 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 722 723 /// The new Induction variable which was added to the new block. 724 PHINode *Induction = nullptr; 725 726 /// The induction variable of the old basic block. 727 PHINode *OldInduction = nullptr; 728 729 /// Maps values from the original loop to their corresponding values in the 730 /// vectorized loop. A key value can map to either vector values, scalar 731 /// values or both kinds of values, depending on whether the key was 732 /// vectorized and scalarized. 733 VectorizerValueMap VectorLoopValueMap; 734 735 /// Store instructions that were predicated. 736 SmallVector<Instruction *, 4> PredicatedInstructions; 737 738 /// Trip count of the original loop. 739 Value *TripCount = nullptr; 740 741 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 742 Value *VectorTripCount = nullptr; 743 744 /// The legality analysis. 745 LoopVectorizationLegality *Legal; 746 747 /// The profitablity analysis. 748 LoopVectorizationCostModel *Cost; 749 750 // Record whether runtime checks are added. 751 bool AddedSafetyChecks = false; 752 753 // Holds the end values for each induction variable. We save the end values 754 // so we can later fix-up the external users of the induction variables. 755 DenseMap<PHINode *, Value *> IVEndValues; 756 }; 757 758 class InnerLoopUnroller : public InnerLoopVectorizer { 759 public: 760 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 761 LoopInfo *LI, DominatorTree *DT, 762 const TargetLibraryInfo *TLI, 763 const TargetTransformInfo *TTI, AssumptionCache *AC, 764 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 765 LoopVectorizationLegality *LVL, 766 LoopVectorizationCostModel *CM) 767 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 768 UnrollFactor, LVL, CM) {} 769 770 private: 771 Value *getBroadcastInstrs(Value *V) override; 772 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 773 Instruction::BinaryOps Opcode = 774 Instruction::BinaryOpsEnd) override; 775 Value *reverseVector(Value *Vec) override; 776 }; 777 778 } // end namespace llvm 779 780 /// \brief Look for a meaningful debug location on the instruction or it's 781 /// operands. 782 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 783 if (!I) 784 return I; 785 786 DebugLoc Empty; 787 if (I->getDebugLoc() != Empty) 788 return I; 789 790 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 791 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 792 if (OpInst->getDebugLoc() != Empty) 793 return OpInst; 794 } 795 796 return I; 797 } 798 799 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 800 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 801 const DILocation *DIL = Inst->getDebugLoc(); 802 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 803 !isa<DbgInfoIntrinsic>(Inst)) 804 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 805 else 806 B.SetCurrentDebugLocation(DIL); 807 } else 808 B.SetCurrentDebugLocation(DebugLoc()); 809 } 810 811 #ifndef NDEBUG 812 /// \return string containing a file name and a line # for the given loop. 813 static std::string getDebugLocString(const Loop *L) { 814 std::string Result; 815 if (L) { 816 raw_string_ostream OS(Result); 817 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 818 LoopDbgLoc.print(OS); 819 else 820 // Just print the module name. 821 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 822 OS.flush(); 823 } 824 return Result; 825 } 826 #endif 827 828 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 829 const Instruction *Orig) { 830 // If the loop was versioned with memchecks, add the corresponding no-alias 831 // metadata. 832 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 833 LVer->annotateInstWithNoAlias(To, Orig); 834 } 835 836 void InnerLoopVectorizer::addMetadata(Instruction *To, 837 Instruction *From) { 838 propagateMetadata(To, From); 839 addNewMetadata(To, From); 840 } 841 842 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 843 Instruction *From) { 844 for (Value *V : To) { 845 if (Instruction *I = dyn_cast<Instruction>(V)) 846 addMetadata(I, From); 847 } 848 } 849 850 namespace llvm { 851 852 /// \brief The group of interleaved loads/stores sharing the same stride and 853 /// close to each other. 854 /// 855 /// Each member in this group has an index starting from 0, and the largest 856 /// index should be less than interleaved factor, which is equal to the absolute 857 /// value of the access's stride. 858 /// 859 /// E.g. An interleaved load group of factor 4: 860 /// for (unsigned i = 0; i < 1024; i+=4) { 861 /// a = A[i]; // Member of index 0 862 /// b = A[i+1]; // Member of index 1 863 /// d = A[i+3]; // Member of index 3 864 /// ... 865 /// } 866 /// 867 /// An interleaved store group of factor 4: 868 /// for (unsigned i = 0; i < 1024; i+=4) { 869 /// ... 870 /// A[i] = a; // Member of index 0 871 /// A[i+1] = b; // Member of index 1 872 /// A[i+2] = c; // Member of index 2 873 /// A[i+3] = d; // Member of index 3 874 /// } 875 /// 876 /// Note: the interleaved load group could have gaps (missing members), but 877 /// the interleaved store group doesn't allow gaps. 878 class InterleaveGroup { 879 public: 880 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 881 : Align(Align), InsertPos(Instr) { 882 assert(Align && "The alignment should be non-zero"); 883 884 Factor = std::abs(Stride); 885 assert(Factor > 1 && "Invalid interleave factor"); 886 887 Reverse = Stride < 0; 888 Members[0] = Instr; 889 } 890 891 bool isReverse() const { return Reverse; } 892 unsigned getFactor() const { return Factor; } 893 unsigned getAlignment() const { return Align; } 894 unsigned getNumMembers() const { return Members.size(); } 895 896 /// \brief Try to insert a new member \p Instr with index \p Index and 897 /// alignment \p NewAlign. The index is related to the leader and it could be 898 /// negative if it is the new leader. 899 /// 900 /// \returns false if the instruction doesn't belong to the group. 901 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 902 assert(NewAlign && "The new member's alignment should be non-zero"); 903 904 int Key = Index + SmallestKey; 905 906 // Skip if there is already a member with the same index. 907 if (Members.count(Key)) 908 return false; 909 910 if (Key > LargestKey) { 911 // The largest index is always less than the interleave factor. 912 if (Index >= static_cast<int>(Factor)) 913 return false; 914 915 LargestKey = Key; 916 } else if (Key < SmallestKey) { 917 // The largest index is always less than the interleave factor. 918 if (LargestKey - Key >= static_cast<int>(Factor)) 919 return false; 920 921 SmallestKey = Key; 922 } 923 924 // It's always safe to select the minimum alignment. 925 Align = std::min(Align, NewAlign); 926 Members[Key] = Instr; 927 return true; 928 } 929 930 /// \brief Get the member with the given index \p Index 931 /// 932 /// \returns nullptr if contains no such member. 933 Instruction *getMember(unsigned Index) const { 934 int Key = SmallestKey + Index; 935 if (!Members.count(Key)) 936 return nullptr; 937 938 return Members.find(Key)->second; 939 } 940 941 /// \brief Get the index for the given member. Unlike the key in the member 942 /// map, the index starts from 0. 943 unsigned getIndex(Instruction *Instr) const { 944 for (auto I : Members) 945 if (I.second == Instr) 946 return I.first - SmallestKey; 947 948 llvm_unreachable("InterleaveGroup contains no such member"); 949 } 950 951 Instruction *getInsertPos() const { return InsertPos; } 952 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 953 954 /// Add metadata (e.g. alias info) from the instructions in this group to \p 955 /// NewInst. 956 /// 957 /// FIXME: this function currently does not add noalias metadata a'la 958 /// addNewMedata. To do that we need to compute the intersection of the 959 /// noalias info from all members. 960 void addMetadata(Instruction *NewInst) const { 961 SmallVector<Value *, 4> VL; 962 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 963 [](std::pair<int, Instruction *> p) { return p.second; }); 964 propagateMetadata(NewInst, VL); 965 } 966 967 private: 968 unsigned Factor; // Interleave Factor. 969 bool Reverse; 970 unsigned Align; 971 DenseMap<int, Instruction *> Members; 972 int SmallestKey = 0; 973 int LargestKey = 0; 974 975 // To avoid breaking dependences, vectorized instructions of an interleave 976 // group should be inserted at either the first load or the last store in 977 // program order. 978 // 979 // E.g. %even = load i32 // Insert Position 980 // %add = add i32 %even // Use of %even 981 // %odd = load i32 982 // 983 // store i32 %even 984 // %odd = add i32 // Def of %odd 985 // store i32 %odd // Insert Position 986 Instruction *InsertPos; 987 }; 988 } // end namespace llvm 989 990 namespace { 991 992 /// \brief Drive the analysis of interleaved memory accesses in the loop. 993 /// 994 /// Use this class to analyze interleaved accesses only when we can vectorize 995 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 996 /// on interleaved accesses is unsafe. 997 /// 998 /// The analysis collects interleave groups and records the relationships 999 /// between the member and the group in a map. 1000 class InterleavedAccessInfo { 1001 public: 1002 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1003 DominatorTree *DT, LoopInfo *LI) 1004 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 1005 1006 ~InterleavedAccessInfo() { 1007 SmallSet<InterleaveGroup *, 4> DelSet; 1008 // Avoid releasing a pointer twice. 1009 for (auto &I : InterleaveGroupMap) 1010 DelSet.insert(I.second); 1011 for (auto *Ptr : DelSet) 1012 delete Ptr; 1013 } 1014 1015 /// \brief Analyze the interleaved accesses and collect them in interleave 1016 /// groups. Substitute symbolic strides using \p Strides. 1017 void analyzeInterleaving(const ValueToValueMap &Strides); 1018 1019 /// \brief Check if \p Instr belongs to any interleave group. 1020 bool isInterleaved(Instruction *Instr) const { 1021 return InterleaveGroupMap.count(Instr); 1022 } 1023 1024 /// \brief Get the interleave group that \p Instr belongs to. 1025 /// 1026 /// \returns nullptr if doesn't have such group. 1027 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1028 if (InterleaveGroupMap.count(Instr)) 1029 return InterleaveGroupMap.find(Instr)->second; 1030 return nullptr; 1031 } 1032 1033 /// \brief Returns true if an interleaved group that may access memory 1034 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1035 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1036 1037 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1038 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1039 1040 private: 1041 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1042 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1043 /// The interleaved access analysis can also add new predicates (for example 1044 /// by versioning strides of pointers). 1045 PredicatedScalarEvolution &PSE; 1046 1047 Loop *TheLoop; 1048 DominatorTree *DT; 1049 LoopInfo *LI; 1050 const LoopAccessInfo *LAI = nullptr; 1051 1052 /// True if the loop may contain non-reversed interleaved groups with 1053 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1054 /// out-of-bounds by executing at least one scalar epilogue iteration. 1055 bool RequiresScalarEpilogue = false; 1056 1057 /// Holds the relationships between the members and the interleave group. 1058 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1059 1060 /// Holds dependences among the memory accesses in the loop. It maps a source 1061 /// access to a set of dependent sink accesses. 1062 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1063 1064 /// \brief The descriptor for a strided memory access. 1065 struct StrideDescriptor { 1066 StrideDescriptor() = default; 1067 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1068 unsigned Align) 1069 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1070 1071 // The access's stride. It is negative for a reverse access. 1072 int64_t Stride = 0; 1073 1074 // The scalar expression of this access. 1075 const SCEV *Scev = nullptr; 1076 1077 // The size of the memory object. 1078 uint64_t Size = 0; 1079 1080 // The alignment of this access. 1081 unsigned Align = 0; 1082 }; 1083 1084 /// \brief A type for holding instructions and their stride descriptors. 1085 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1086 1087 /// \brief Create a new interleave group with the given instruction \p Instr, 1088 /// stride \p Stride and alignment \p Align. 1089 /// 1090 /// \returns the newly created interleave group. 1091 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1092 unsigned Align) { 1093 assert(!InterleaveGroupMap.count(Instr) && 1094 "Already in an interleaved access group"); 1095 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1096 return InterleaveGroupMap[Instr]; 1097 } 1098 1099 /// \brief Release the group and remove all the relationships. 1100 void releaseGroup(InterleaveGroup *Group) { 1101 for (unsigned i = 0; i < Group->getFactor(); i++) 1102 if (Instruction *Member = Group->getMember(i)) 1103 InterleaveGroupMap.erase(Member); 1104 1105 delete Group; 1106 } 1107 1108 /// \brief Collect all the accesses with a constant stride in program order. 1109 void collectConstStrideAccesses( 1110 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1111 const ValueToValueMap &Strides); 1112 1113 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1114 static bool isStrided(int Stride) { 1115 unsigned Factor = std::abs(Stride); 1116 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1117 } 1118 1119 /// \brief Returns true if \p BB is a predicated block. 1120 bool isPredicated(BasicBlock *BB) const { 1121 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1122 } 1123 1124 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1125 bool areDependencesValid() const { 1126 return LAI && LAI->getDepChecker().getDependences(); 1127 } 1128 1129 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1130 /// necessary, when constructing interleaved groups. 1131 /// 1132 /// \p A must precede \p B in program order. We return false if reordering is 1133 /// not necessary or is prevented because \p A and \p B may be dependent. 1134 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1135 StrideEntry *B) const { 1136 // Code motion for interleaved accesses can potentially hoist strided loads 1137 // and sink strided stores. The code below checks the legality of the 1138 // following two conditions: 1139 // 1140 // 1. Potentially moving a strided load (B) before any store (A) that 1141 // precedes B, or 1142 // 1143 // 2. Potentially moving a strided store (A) after any load or store (B) 1144 // that A precedes. 1145 // 1146 // It's legal to reorder A and B if we know there isn't a dependence from A 1147 // to B. Note that this determination is conservative since some 1148 // dependences could potentially be reordered safely. 1149 1150 // A is potentially the source of a dependence. 1151 auto *Src = A->first; 1152 auto SrcDes = A->second; 1153 1154 // B is potentially the sink of a dependence. 1155 auto *Sink = B->first; 1156 auto SinkDes = B->second; 1157 1158 // Code motion for interleaved accesses can't violate WAR dependences. 1159 // Thus, reordering is legal if the source isn't a write. 1160 if (!Src->mayWriteToMemory()) 1161 return true; 1162 1163 // At least one of the accesses must be strided. 1164 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1165 return true; 1166 1167 // If dependence information is not available from LoopAccessInfo, 1168 // conservatively assume the instructions can't be reordered. 1169 if (!areDependencesValid()) 1170 return false; 1171 1172 // If we know there is a dependence from source to sink, assume the 1173 // instructions can't be reordered. Otherwise, reordering is legal. 1174 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1175 } 1176 1177 /// \brief Collect the dependences from LoopAccessInfo. 1178 /// 1179 /// We process the dependences once during the interleaved access analysis to 1180 /// enable constant-time dependence queries. 1181 void collectDependences() { 1182 if (!areDependencesValid()) 1183 return; 1184 auto *Deps = LAI->getDepChecker().getDependences(); 1185 for (auto Dep : *Deps) 1186 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1187 } 1188 }; 1189 1190 /// Utility class for getting and setting loop vectorizer hints in the form 1191 /// of loop metadata. 1192 /// This class keeps a number of loop annotations locally (as member variables) 1193 /// and can, upon request, write them back as metadata on the loop. It will 1194 /// initially scan the loop for existing metadata, and will update the local 1195 /// values based on information in the loop. 1196 /// We cannot write all values to metadata, as the mere presence of some info, 1197 /// for example 'force', means a decision has been made. So, we need to be 1198 /// careful NOT to add them if the user hasn't specifically asked so. 1199 class LoopVectorizeHints { 1200 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1201 1202 /// Hint - associates name and validation with the hint value. 1203 struct Hint { 1204 const char *Name; 1205 unsigned Value; // This may have to change for non-numeric values. 1206 HintKind Kind; 1207 1208 Hint(const char *Name, unsigned Value, HintKind Kind) 1209 : Name(Name), Value(Value), Kind(Kind) {} 1210 1211 bool validate(unsigned Val) { 1212 switch (Kind) { 1213 case HK_WIDTH: 1214 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1215 case HK_UNROLL: 1216 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1217 case HK_FORCE: 1218 return (Val <= 1); 1219 case HK_ISVECTORIZED: 1220 return (Val==0 || Val==1); 1221 } 1222 return false; 1223 } 1224 }; 1225 1226 /// Vectorization width. 1227 Hint Width; 1228 1229 /// Vectorization interleave factor. 1230 Hint Interleave; 1231 1232 /// Vectorization forced 1233 Hint Force; 1234 1235 /// Already Vectorized 1236 Hint IsVectorized; 1237 1238 /// Return the loop metadata prefix. 1239 static StringRef Prefix() { return "llvm.loop."; } 1240 1241 /// True if there is any unsafe math in the loop. 1242 bool PotentiallyUnsafe = false; 1243 1244 public: 1245 enum ForceKind { 1246 FK_Undefined = -1, ///< Not selected. 1247 FK_Disabled = 0, ///< Forcing disabled. 1248 FK_Enabled = 1, ///< Forcing enabled. 1249 }; 1250 1251 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1252 OptimizationRemarkEmitter &ORE) 1253 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1254 HK_WIDTH), 1255 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1256 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1257 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1258 // Populate values with existing loop metadata. 1259 getHintsFromMetadata(); 1260 1261 // force-vector-interleave overrides DisableInterleaving. 1262 if (VectorizerParams::isInterleaveForced()) 1263 Interleave.Value = VectorizerParams::VectorizationInterleave; 1264 1265 if (IsVectorized.Value != 1) 1266 // If the vectorization width and interleaving count are both 1 then 1267 // consider the loop to have been already vectorized because there's 1268 // nothing more that we can do. 1269 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1270 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1271 << "LV: Interleaving disabled by the pass manager\n"); 1272 } 1273 1274 /// Mark the loop L as already vectorized by setting the width to 1. 1275 void setAlreadyVectorized() { 1276 IsVectorized.Value = 1; 1277 Hint Hints[] = {IsVectorized}; 1278 writeHintsToMetadata(Hints); 1279 } 1280 1281 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1282 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1283 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1284 emitRemarkWithHints(); 1285 return false; 1286 } 1287 1288 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1289 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1290 emitRemarkWithHints(); 1291 return false; 1292 } 1293 1294 if (getIsVectorized() == 1) { 1295 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1296 // FIXME: Add interleave.disable metadata. This will allow 1297 // vectorize.disable to be used without disabling the pass and errors 1298 // to differentiate between disabled vectorization and a width of 1. 1299 ORE.emit([&]() { 1300 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1301 "AllDisabled", L->getStartLoc(), 1302 L->getHeader()) 1303 << "loop not vectorized: vectorization and interleaving are " 1304 "explicitly disabled, or the loop has already been " 1305 "vectorized"; 1306 }); 1307 return false; 1308 } 1309 1310 return true; 1311 } 1312 1313 /// Dumps all the hint information. 1314 void emitRemarkWithHints() const { 1315 using namespace ore; 1316 1317 ORE.emit([&]() { 1318 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1319 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1320 TheLoop->getStartLoc(), 1321 TheLoop->getHeader()) 1322 << "loop not vectorized: vectorization is explicitly disabled"; 1323 else { 1324 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1325 TheLoop->getStartLoc(), 1326 TheLoop->getHeader()); 1327 R << "loop not vectorized"; 1328 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1329 R << " (Force=" << NV("Force", true); 1330 if (Width.Value != 0) 1331 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1332 if (Interleave.Value != 0) 1333 R << ", Interleave Count=" 1334 << NV("InterleaveCount", Interleave.Value); 1335 R << ")"; 1336 } 1337 return R; 1338 } 1339 }); 1340 } 1341 1342 unsigned getWidth() const { return Width.Value; } 1343 unsigned getInterleave() const { return Interleave.Value; } 1344 unsigned getIsVectorized() const { return IsVectorized.Value; } 1345 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1346 1347 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1348 /// pass name to force the frontend to print the diagnostic. 1349 const char *vectorizeAnalysisPassName() const { 1350 if (getWidth() == 1) 1351 return LV_NAME; 1352 if (getForce() == LoopVectorizeHints::FK_Disabled) 1353 return LV_NAME; 1354 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1355 return LV_NAME; 1356 return OptimizationRemarkAnalysis::AlwaysPrint; 1357 } 1358 1359 bool allowReordering() const { 1360 // When enabling loop hints are provided we allow the vectorizer to change 1361 // the order of operations that is given by the scalar loop. This is not 1362 // enabled by default because can be unsafe or inefficient. For example, 1363 // reordering floating-point operations will change the way round-off 1364 // error accumulates in the loop. 1365 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1366 } 1367 1368 bool isPotentiallyUnsafe() const { 1369 // Avoid FP vectorization if the target is unsure about proper support. 1370 // This may be related to the SIMD unit in the target not handling 1371 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1372 // Otherwise, a sequence of vectorized loops, even without reduction, 1373 // could lead to different end results on the destination vectors. 1374 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1375 } 1376 1377 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1378 1379 private: 1380 /// Find hints specified in the loop metadata and update local values. 1381 void getHintsFromMetadata() { 1382 MDNode *LoopID = TheLoop->getLoopID(); 1383 if (!LoopID) 1384 return; 1385 1386 // First operand should refer to the loop id itself. 1387 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1388 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1389 1390 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1391 const MDString *S = nullptr; 1392 SmallVector<Metadata *, 4> Args; 1393 1394 // The expected hint is either a MDString or a MDNode with the first 1395 // operand a MDString. 1396 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1397 if (!MD || MD->getNumOperands() == 0) 1398 continue; 1399 S = dyn_cast<MDString>(MD->getOperand(0)); 1400 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1401 Args.push_back(MD->getOperand(i)); 1402 } else { 1403 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1404 assert(Args.size() == 0 && "too many arguments for MDString"); 1405 } 1406 1407 if (!S) 1408 continue; 1409 1410 // Check if the hint starts with the loop metadata prefix. 1411 StringRef Name = S->getString(); 1412 if (Args.size() == 1) 1413 setHint(Name, Args[0]); 1414 } 1415 } 1416 1417 /// Checks string hint with one operand and set value if valid. 1418 void setHint(StringRef Name, Metadata *Arg) { 1419 if (!Name.startswith(Prefix())) 1420 return; 1421 Name = Name.substr(Prefix().size(), StringRef::npos); 1422 1423 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1424 if (!C) 1425 return; 1426 unsigned Val = C->getZExtValue(); 1427 1428 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1429 for (auto H : Hints) { 1430 if (Name == H->Name) { 1431 if (H->validate(Val)) 1432 H->Value = Val; 1433 else 1434 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1435 break; 1436 } 1437 } 1438 } 1439 1440 /// Create a new hint from name / value pair. 1441 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1442 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1443 Metadata *MDs[] = {MDString::get(Context, Name), 1444 ConstantAsMetadata::get( 1445 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1446 return MDNode::get(Context, MDs); 1447 } 1448 1449 /// Matches metadata with hint name. 1450 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1451 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1452 if (!Name) 1453 return false; 1454 1455 for (auto H : HintTypes) 1456 if (Name->getString().endswith(H.Name)) 1457 return true; 1458 return false; 1459 } 1460 1461 /// Sets current hints into loop metadata, keeping other values intact. 1462 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1463 if (HintTypes.empty()) 1464 return; 1465 1466 // Reserve the first element to LoopID (see below). 1467 SmallVector<Metadata *, 4> MDs(1); 1468 // If the loop already has metadata, then ignore the existing operands. 1469 MDNode *LoopID = TheLoop->getLoopID(); 1470 if (LoopID) { 1471 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1472 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1473 // If node in update list, ignore old value. 1474 if (!matchesHintMetadataName(Node, HintTypes)) 1475 MDs.push_back(Node); 1476 } 1477 } 1478 1479 // Now, add the missing hints. 1480 for (auto H : HintTypes) 1481 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1482 1483 // Replace current metadata node with new one. 1484 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1485 MDNode *NewLoopID = MDNode::get(Context, MDs); 1486 // Set operand 0 to refer to the loop id itself. 1487 NewLoopID->replaceOperandWith(0, NewLoopID); 1488 1489 TheLoop->setLoopID(NewLoopID); 1490 } 1491 1492 /// The loop these hints belong to. 1493 const Loop *TheLoop; 1494 1495 /// Interface to emit optimization remarks. 1496 OptimizationRemarkEmitter &ORE; 1497 }; 1498 1499 } // end anonymous namespace 1500 1501 static void emitMissedWarning(Function *F, Loop *L, 1502 const LoopVectorizeHints &LH, 1503 OptimizationRemarkEmitter *ORE) { 1504 LH.emitRemarkWithHints(); 1505 1506 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1507 if (LH.getWidth() != 1) 1508 ORE->emit(DiagnosticInfoOptimizationFailure( 1509 DEBUG_TYPE, "FailedRequestedVectorization", 1510 L->getStartLoc(), L->getHeader()) 1511 << "loop not vectorized: " 1512 << "failed explicitly specified loop vectorization"); 1513 else if (LH.getInterleave() != 1) 1514 ORE->emit(DiagnosticInfoOptimizationFailure( 1515 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1516 L->getHeader()) 1517 << "loop not interleaved: " 1518 << "failed explicitly specified loop interleaving"); 1519 } 1520 } 1521 1522 namespace { 1523 1524 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1525 /// to what vectorization factor. 1526 /// This class does not look at the profitability of vectorization, only the 1527 /// legality. This class has two main kinds of checks: 1528 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1529 /// will change the order of memory accesses in a way that will change the 1530 /// correctness of the program. 1531 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1532 /// checks for a number of different conditions, such as the availability of a 1533 /// single induction variable, that all types are supported and vectorize-able, 1534 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1535 /// This class is also used by InnerLoopVectorizer for identifying 1536 /// induction variable and the different reduction variables. 1537 class LoopVectorizationLegality { 1538 public: 1539 LoopVectorizationLegality( 1540 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1541 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1542 const TargetTransformInfo *TTI, 1543 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1544 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1545 LoopVectorizeHints *H) 1546 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1547 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {} 1548 1549 /// ReductionList contains the reduction descriptors for all 1550 /// of the reductions that were found in the loop. 1551 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1552 1553 /// InductionList saves induction variables and maps them to the 1554 /// induction descriptor. 1555 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1556 1557 /// RecurrenceSet contains the phi nodes that are recurrences other than 1558 /// inductions and reductions. 1559 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1560 1561 /// Returns true if it is legal to vectorize this loop. 1562 /// This does not mean that it is profitable to vectorize this 1563 /// loop, only that it is legal to do so. 1564 bool canVectorize(); 1565 1566 /// Returns the primary induction variable. 1567 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1568 1569 /// Returns the reduction variables found in the loop. 1570 ReductionList *getReductionVars() { return &Reductions; } 1571 1572 /// Returns the induction variables found in the loop. 1573 InductionList *getInductionVars() { return &Inductions; } 1574 1575 /// Return the first-order recurrences found in the loop. 1576 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1577 1578 /// Return the set of instructions to sink to handle first-order recurrences. 1579 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1580 1581 /// Returns the widest induction type. 1582 Type *getWidestInductionType() { return WidestIndTy; } 1583 1584 /// Returns True if V is a Phi node of an induction variable in this loop. 1585 bool isInductionPhi(const Value *V); 1586 1587 /// Returns True if V is a cast that is part of an induction def-use chain, 1588 /// and had been proven to be redundant under a runtime guard (in other 1589 /// words, the cast has the same SCEV expression as the induction phi). 1590 bool isCastedInductionVariable(const Value *V); 1591 1592 /// Returns True if V can be considered as an induction variable in this 1593 /// loop. V can be the induction phi, or some redundant cast in the def-use 1594 /// chain of the inducion phi. 1595 bool isInductionVariable(const Value *V); 1596 1597 /// Returns True if PN is a reduction variable in this loop. 1598 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1599 1600 /// Returns True if Phi is a first-order recurrence in this loop. 1601 bool isFirstOrderRecurrence(const PHINode *Phi); 1602 1603 /// Return true if the block BB needs to be predicated in order for the loop 1604 /// to be vectorized. 1605 bool blockNeedsPredication(BasicBlock *BB); 1606 1607 /// Check if this pointer is consecutive when vectorizing. This happens 1608 /// when the last index of the GEP is the induction variable, or that the 1609 /// pointer itself is an induction variable. 1610 /// This check allows us to vectorize A[idx] into a wide load/store. 1611 /// Returns: 1612 /// 0 - Stride is unknown or non-consecutive. 1613 /// 1 - Address is consecutive. 1614 /// -1 - Address is consecutive, and decreasing. 1615 /// NOTE: This method must only be used before modifying the original scalar 1616 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1617 int isConsecutivePtr(Value *Ptr); 1618 1619 /// Returns true if the value V is uniform within the loop. 1620 bool isUniform(Value *V); 1621 1622 /// Returns the information that we collected about runtime memory check. 1623 const RuntimePointerChecking *getRuntimePointerChecking() const { 1624 return LAI->getRuntimePointerChecking(); 1625 } 1626 1627 const LoopAccessInfo *getLAI() const { return LAI; } 1628 1629 /// \brief Check if \p Instr belongs to any interleaved access group. 1630 bool isAccessInterleaved(Instruction *Instr) { 1631 return InterleaveInfo.isInterleaved(Instr); 1632 } 1633 1634 /// \brief Get the interleaved access group that \p Instr belongs to. 1635 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1636 return InterleaveInfo.getInterleaveGroup(Instr); 1637 } 1638 1639 /// \brief Returns true if an interleaved group requires a scalar iteration 1640 /// to handle accesses with gaps. 1641 bool requiresScalarEpilogue() const { 1642 return InterleaveInfo.requiresScalarEpilogue(); 1643 } 1644 1645 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1646 1647 uint64_t getMaxSafeRegisterWidth() const { 1648 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1649 } 1650 1651 bool hasStride(Value *V) { return LAI->hasStride(V); } 1652 1653 /// Returns true if the target machine supports masked store operation 1654 /// for the given \p DataType and kind of access to \p Ptr. 1655 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1656 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1657 } 1658 1659 /// Returns true if the target machine supports masked load operation 1660 /// for the given \p DataType and kind of access to \p Ptr. 1661 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1662 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1663 } 1664 1665 /// Returns true if the target machine supports masked scatter operation 1666 /// for the given \p DataType. 1667 bool isLegalMaskedScatter(Type *DataType) { 1668 return TTI->isLegalMaskedScatter(DataType); 1669 } 1670 1671 /// Returns true if the target machine supports masked gather operation 1672 /// for the given \p DataType. 1673 bool isLegalMaskedGather(Type *DataType) { 1674 return TTI->isLegalMaskedGather(DataType); 1675 } 1676 1677 /// Returns true if the target machine can represent \p V as a masked gather 1678 /// or scatter operation. 1679 bool isLegalGatherOrScatter(Value *V) { 1680 auto *LI = dyn_cast<LoadInst>(V); 1681 auto *SI = dyn_cast<StoreInst>(V); 1682 if (!LI && !SI) 1683 return false; 1684 auto *Ptr = getPointerOperand(V); 1685 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1686 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1687 } 1688 1689 /// Returns true if vector representation of the instruction \p I 1690 /// requires mask. 1691 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1692 1693 unsigned getNumStores() const { return LAI->getNumStores(); } 1694 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1695 unsigned getNumPredStores() const { return NumPredStores; } 1696 1697 /// Returns true if \p I is an instruction that will be scalarized with 1698 /// predication. Such instructions include conditional stores and 1699 /// instructions that may divide by zero. 1700 bool isScalarWithPredication(Instruction *I); 1701 1702 /// Returns true if \p I is a memory instruction with consecutive memory 1703 /// access that can be widened. 1704 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1705 1706 // Returns true if the NoNaN attribute is set on the function. 1707 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1708 1709 private: 1710 /// Check if a single basic block loop is vectorizable. 1711 /// At this point we know that this is a loop with a constant trip count 1712 /// and we only need to check individual instructions. 1713 bool canVectorizeInstrs(); 1714 1715 /// When we vectorize loops we may change the order in which 1716 /// we read and write from memory. This method checks if it is 1717 /// legal to vectorize the code, considering only memory constrains. 1718 /// Returns true if the loop is vectorizable 1719 bool canVectorizeMemory(); 1720 1721 /// Return true if we can vectorize this loop using the IF-conversion 1722 /// transformation. 1723 bool canVectorizeWithIfConvert(); 1724 1725 /// Return true if all of the instructions in the block can be speculatively 1726 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1727 /// and we know that we can read from them without segfault. 1728 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1729 1730 /// Updates the vectorization state by adding \p Phi to the inductions list. 1731 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1732 /// better choice for the main induction than the existing one. 1733 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1734 SmallPtrSetImpl<Value *> &AllowedExit); 1735 1736 /// Create an analysis remark that explains why vectorization failed 1737 /// 1738 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1739 /// an instruction that prevents vectorization. Otherwise the loop is used 1740 /// for the location of the remark. \return the remark object that can be 1741 /// streamed to. 1742 OptimizationRemarkAnalysis 1743 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1744 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1745 RemarkName, TheLoop, I); 1746 } 1747 1748 /// \brief If an access has a symbolic strides, this maps the pointer value to 1749 /// the stride symbol. 1750 const ValueToValueMap *getSymbolicStrides() { 1751 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1752 // it's collected. This happens from canVectorizeWithIfConvert, when the 1753 // pointer is checked to reference consecutive elements suitable for a 1754 // masked access. 1755 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1756 } 1757 1758 unsigned NumPredStores = 0; 1759 1760 /// The loop that we evaluate. 1761 Loop *TheLoop; 1762 1763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1764 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1765 /// of existing SCEV assumptions. The analysis will also add a minimal set 1766 /// of new predicates if this is required to enable vectorization and 1767 /// unrolling. 1768 PredicatedScalarEvolution &PSE; 1769 1770 /// Target Library Info. 1771 TargetLibraryInfo *TLI; 1772 1773 /// Target Transform Info 1774 const TargetTransformInfo *TTI; 1775 1776 /// Dominator Tree. 1777 DominatorTree *DT; 1778 1779 // LoopAccess analysis. 1780 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1781 1782 // And the loop-accesses info corresponding to this loop. This pointer is 1783 // null until canVectorizeMemory sets it up. 1784 const LoopAccessInfo *LAI = nullptr; 1785 1786 /// Interface to emit optimization remarks. 1787 OptimizationRemarkEmitter *ORE; 1788 1789 /// The interleave access information contains groups of interleaved accesses 1790 /// with the same stride and close to each other. 1791 InterleavedAccessInfo InterleaveInfo; 1792 1793 // --- vectorization state --- // 1794 1795 /// Holds the primary induction variable. This is the counter of the 1796 /// loop. 1797 PHINode *PrimaryInduction = nullptr; 1798 1799 /// Holds the reduction variables. 1800 ReductionList Reductions; 1801 1802 /// Holds all of the induction variables that we found in the loop. 1803 /// Notice that inductions don't need to start at zero and that induction 1804 /// variables can be pointers. 1805 InductionList Inductions; 1806 1807 /// Holds all the casts that participate in the update chain of the induction 1808 /// variables, and that have been proven to be redundant (possibly under a 1809 /// runtime guard). These casts can be ignored when creating the vectorized 1810 /// loop body. 1811 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1812 1813 /// Holds the phi nodes that are first-order recurrences. 1814 RecurrenceSet FirstOrderRecurrences; 1815 1816 /// Holds instructions that need to sink past other instructions to handle 1817 /// first-order recurrences. 1818 DenseMap<Instruction *, Instruction *> SinkAfter; 1819 1820 /// Holds the widest induction type encountered. 1821 Type *WidestIndTy = nullptr; 1822 1823 /// Allowed outside users. This holds the induction and reduction 1824 /// vars which can be accessed from outside the loop. 1825 SmallPtrSet<Value *, 4> AllowedExit; 1826 1827 /// Can we assume the absence of NaNs. 1828 bool HasFunNoNaNAttr = false; 1829 1830 /// Vectorization requirements that will go through late-evaluation. 1831 LoopVectorizationRequirements *Requirements; 1832 1833 /// Used to emit an analysis of any legality issues. 1834 LoopVectorizeHints *Hints; 1835 1836 /// While vectorizing these instructions we have to generate a 1837 /// call to the appropriate masked intrinsic 1838 SmallPtrSet<const Instruction *, 8> MaskedOp; 1839 }; 1840 1841 /// LoopVectorizationCostModel - estimates the expected speedups due to 1842 /// vectorization. 1843 /// In many cases vectorization is not profitable. This can happen because of 1844 /// a number of reasons. In this class we mainly attempt to predict the 1845 /// expected speedup/slowdowns due to the supported instruction set. We use the 1846 /// TargetTransformInfo to query the different backends for the cost of 1847 /// different operations. 1848 class LoopVectorizationCostModel { 1849 public: 1850 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1851 LoopInfo *LI, LoopVectorizationLegality *Legal, 1852 const TargetTransformInfo &TTI, 1853 const TargetLibraryInfo *TLI, DemandedBits *DB, 1854 AssumptionCache *AC, 1855 OptimizationRemarkEmitter *ORE, const Function *F, 1856 const LoopVectorizeHints *Hints) 1857 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1858 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1859 1860 /// \return An upper bound for the vectorization factor, or None if 1861 /// vectorization should be avoided up front. 1862 Optional<unsigned> computeMaxVF(bool OptForSize); 1863 1864 /// Information about vectorization costs 1865 struct VectorizationFactor { 1866 // Vector width with best cost 1867 unsigned Width; 1868 1869 // Cost of the loop with that width 1870 unsigned Cost; 1871 }; 1872 1873 /// \return The most profitable vectorization factor and the cost of that VF. 1874 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1875 /// then this vectorization factor will be selected if vectorization is 1876 /// possible. 1877 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1878 1879 /// Setup cost-based decisions for user vectorization factor. 1880 void selectUserVectorizationFactor(unsigned UserVF) { 1881 collectUniformsAndScalars(UserVF); 1882 collectInstsToScalarize(UserVF); 1883 } 1884 1885 /// \return The size (in bits) of the smallest and widest types in the code 1886 /// that needs to be vectorized. We ignore values that remain scalar such as 1887 /// 64 bit loop indices. 1888 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1889 1890 /// \return The desired interleave count. 1891 /// If interleave count has been specified by metadata it will be returned. 1892 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1893 /// are the selected vectorization factor and the cost of the selected VF. 1894 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1895 unsigned LoopCost); 1896 1897 /// Memory access instruction may be vectorized in more than one way. 1898 /// Form of instruction after vectorization depends on cost. 1899 /// This function takes cost-based decisions for Load/Store instructions 1900 /// and collects them in a map. This decisions map is used for building 1901 /// the lists of loop-uniform and loop-scalar instructions. 1902 /// The calculated cost is saved with widening decision in order to 1903 /// avoid redundant calculations. 1904 void setCostBasedWideningDecision(unsigned VF); 1905 1906 /// \brief A struct that represents some properties of the register usage 1907 /// of a loop. 1908 struct RegisterUsage { 1909 /// Holds the number of loop invariant values that are used in the loop. 1910 unsigned LoopInvariantRegs; 1911 1912 /// Holds the maximum number of concurrent live intervals in the loop. 1913 unsigned MaxLocalUsers; 1914 1915 /// Holds the number of instructions in the loop. 1916 unsigned NumInstructions; 1917 }; 1918 1919 /// \return Returns information about the register usages of the loop for the 1920 /// given vectorization factors. 1921 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1922 1923 /// Collect values we want to ignore in the cost model. 1924 void collectValuesToIgnore(); 1925 1926 /// \returns The smallest bitwidth each instruction can be represented with. 1927 /// The vector equivalents of these instructions should be truncated to this 1928 /// type. 1929 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1930 return MinBWs; 1931 } 1932 1933 /// \returns True if it is more profitable to scalarize instruction \p I for 1934 /// vectorization factor \p VF. 1935 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1936 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1937 auto Scalars = InstsToScalarize.find(VF); 1938 assert(Scalars != InstsToScalarize.end() && 1939 "VF not yet analyzed for scalarization profitability"); 1940 return Scalars->second.count(I); 1941 } 1942 1943 /// Returns true if \p I is known to be uniform after vectorization. 1944 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1945 if (VF == 1) 1946 return true; 1947 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1948 auto UniformsPerVF = Uniforms.find(VF); 1949 return UniformsPerVF->second.count(I); 1950 } 1951 1952 /// Returns true if \p I is known to be scalar after vectorization. 1953 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1954 if (VF == 1) 1955 return true; 1956 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1957 auto ScalarsPerVF = Scalars.find(VF); 1958 return ScalarsPerVF->second.count(I); 1959 } 1960 1961 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1962 /// for vectorization factor \p VF. 1963 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1964 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1965 !isScalarAfterVectorization(I, VF); 1966 } 1967 1968 /// Decision that was taken during cost calculation for memory instruction. 1969 enum InstWidening { 1970 CM_Unknown, 1971 CM_Widen, // For consecutive accesses with stride +1. 1972 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1973 CM_Interleave, 1974 CM_GatherScatter, 1975 CM_Scalarize 1976 }; 1977 1978 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1979 /// instruction \p I and vector width \p VF. 1980 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1981 unsigned Cost) { 1982 assert(VF >= 2 && "Expected VF >=2"); 1983 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1984 } 1985 1986 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1987 /// interleaving group \p Grp and vector width \p VF. 1988 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1989 InstWidening W, unsigned Cost) { 1990 assert(VF >= 2 && "Expected VF >=2"); 1991 /// Broadcast this decicion to all instructions inside the group. 1992 /// But the cost will be assigned to one instruction only. 1993 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1994 if (auto *I = Grp->getMember(i)) { 1995 if (Grp->getInsertPos() == I) 1996 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1997 else 1998 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1999 } 2000 } 2001 } 2002 2003 /// Return the cost model decision for the given instruction \p I and vector 2004 /// width \p VF. Return CM_Unknown if this instruction did not pass 2005 /// through the cost modeling. 2006 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 2007 assert(VF >= 2 && "Expected VF >=2"); 2008 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2009 auto Itr = WideningDecisions.find(InstOnVF); 2010 if (Itr == WideningDecisions.end()) 2011 return CM_Unknown; 2012 return Itr->second.first; 2013 } 2014 2015 /// Return the vectorization cost for the given instruction \p I and vector 2016 /// width \p VF. 2017 unsigned getWideningCost(Instruction *I, unsigned VF) { 2018 assert(VF >= 2 && "Expected VF >=2"); 2019 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2020 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2021 return WideningDecisions[InstOnVF].second; 2022 } 2023 2024 /// Return True if instruction \p I is an optimizable truncate whose operand 2025 /// is an induction variable. Such a truncate will be removed by adding a new 2026 /// induction variable with the destination type. 2027 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2028 // If the instruction is not a truncate, return false. 2029 auto *Trunc = dyn_cast<TruncInst>(I); 2030 if (!Trunc) 2031 return false; 2032 2033 // Get the source and destination types of the truncate. 2034 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2035 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2036 2037 // If the truncate is free for the given types, return false. Replacing a 2038 // free truncate with an induction variable would add an induction variable 2039 // update instruction to each iteration of the loop. We exclude from this 2040 // check the primary induction variable since it will need an update 2041 // instruction regardless. 2042 Value *Op = Trunc->getOperand(0); 2043 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2044 return false; 2045 2046 // If the truncated value is not an induction variable, return false. 2047 return Legal->isInductionPhi(Op); 2048 } 2049 2050 /// Collects the instructions to scalarize for each predicated instruction in 2051 /// the loop. 2052 void collectInstsToScalarize(unsigned VF); 2053 2054 /// Collect Uniform and Scalar values for the given \p VF. 2055 /// The sets depend on CM decision for Load/Store instructions 2056 /// that may be vectorized as interleave, gather-scatter or scalarized. 2057 void collectUniformsAndScalars(unsigned VF) { 2058 // Do the analysis once. 2059 if (VF == 1 || Uniforms.count(VF)) 2060 return; 2061 setCostBasedWideningDecision(VF); 2062 collectLoopUniforms(VF); 2063 collectLoopScalars(VF); 2064 } 2065 2066 private: 2067 /// \return An upper bound for the vectorization factor, larger than zero. 2068 /// One is returned if vectorization should best be avoided due to cost. 2069 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2070 2071 /// The vectorization cost is a combination of the cost itself and a boolean 2072 /// indicating whether any of the contributing operations will actually 2073 /// operate on 2074 /// vector values after type legalization in the backend. If this latter value 2075 /// is 2076 /// false, then all operations will be scalarized (i.e. no vectorization has 2077 /// actually taken place). 2078 using VectorizationCostTy = std::pair<unsigned, bool>; 2079 2080 /// Returns the expected execution cost. The unit of the cost does 2081 /// not matter because we use the 'cost' units to compare different 2082 /// vector widths. The cost that is returned is *not* normalized by 2083 /// the factor width. 2084 VectorizationCostTy expectedCost(unsigned VF); 2085 2086 /// Returns the execution time cost of an instruction for a given vector 2087 /// width. Vector width of one means scalar. 2088 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2089 2090 /// The cost-computation logic from getInstructionCost which provides 2091 /// the vector type as an output parameter. 2092 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2093 2094 /// Calculate vectorization cost of memory instruction \p I. 2095 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2096 2097 /// The cost computation for scalarized memory instruction. 2098 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2099 2100 /// The cost computation for interleaving group of memory instructions. 2101 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2102 2103 /// The cost computation for Gather/Scatter instruction. 2104 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2105 2106 /// The cost computation for widening instruction \p I with consecutive 2107 /// memory access. 2108 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2109 2110 /// The cost calculation for Load instruction \p I with uniform pointer - 2111 /// scalar load + broadcast. 2112 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2113 2114 /// Returns whether the instruction is a load or store and will be a emitted 2115 /// as a vector operation. 2116 bool isConsecutiveLoadOrStore(Instruction *I); 2117 2118 /// Create an analysis remark that explains why vectorization failed 2119 /// 2120 /// \p RemarkName is the identifier for the remark. \return the remark object 2121 /// that can be streamed to. 2122 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2123 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2124 RemarkName, TheLoop); 2125 } 2126 2127 /// Map of scalar integer values to the smallest bitwidth they can be legally 2128 /// represented as. The vector equivalents of these values should be truncated 2129 /// to this type. 2130 MapVector<Instruction *, uint64_t> MinBWs; 2131 2132 /// A type representing the costs for instructions if they were to be 2133 /// scalarized rather than vectorized. The entries are Instruction-Cost 2134 /// pairs. 2135 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2136 2137 /// A set containing all BasicBlocks that are known to present after 2138 /// vectorization as a predicated block. 2139 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2140 2141 /// A map holding scalar costs for different vectorization factors. The 2142 /// presence of a cost for an instruction in the mapping indicates that the 2143 /// instruction will be scalarized when vectorizing with the associated 2144 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2145 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2146 2147 /// Holds the instructions known to be uniform after vectorization. 2148 /// The data is collected per VF. 2149 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2150 2151 /// Holds the instructions known to be scalar after vectorization. 2152 /// The data is collected per VF. 2153 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2154 2155 /// Holds the instructions (address computations) that are forced to be 2156 /// scalarized. 2157 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2158 2159 /// Returns the expected difference in cost from scalarizing the expression 2160 /// feeding a predicated instruction \p PredInst. The instructions to 2161 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2162 /// non-negative return value implies the expression will be scalarized. 2163 /// Currently, only single-use chains are considered for scalarization. 2164 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2165 unsigned VF); 2166 2167 /// Collect the instructions that are uniform after vectorization. An 2168 /// instruction is uniform if we represent it with a single scalar value in 2169 /// the vectorized loop corresponding to each vector iteration. Examples of 2170 /// uniform instructions include pointer operands of consecutive or 2171 /// interleaved memory accesses. Note that although uniformity implies an 2172 /// instruction will be scalar, the reverse is not true. In general, a 2173 /// scalarized instruction will be represented by VF scalar values in the 2174 /// vectorized loop, each corresponding to an iteration of the original 2175 /// scalar loop. 2176 void collectLoopUniforms(unsigned VF); 2177 2178 /// Collect the instructions that are scalar after vectorization. An 2179 /// instruction is scalar if it is known to be uniform or will be scalarized 2180 /// during vectorization. Non-uniform scalarized instructions will be 2181 /// represented by VF values in the vectorized loop, each corresponding to an 2182 /// iteration of the original scalar loop. 2183 void collectLoopScalars(unsigned VF); 2184 2185 /// Keeps cost model vectorization decision and cost for instructions. 2186 /// Right now it is used for memory instructions only. 2187 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2188 std::pair<InstWidening, unsigned>>; 2189 2190 DecisionList WideningDecisions; 2191 2192 public: 2193 /// The loop that we evaluate. 2194 Loop *TheLoop; 2195 2196 /// Predicated scalar evolution analysis. 2197 PredicatedScalarEvolution &PSE; 2198 2199 /// Loop Info analysis. 2200 LoopInfo *LI; 2201 2202 /// Vectorization legality. 2203 LoopVectorizationLegality *Legal; 2204 2205 /// Vector target information. 2206 const TargetTransformInfo &TTI; 2207 2208 /// Target Library Info. 2209 const TargetLibraryInfo *TLI; 2210 2211 /// Demanded bits analysis. 2212 DemandedBits *DB; 2213 2214 /// Assumption cache. 2215 AssumptionCache *AC; 2216 2217 /// Interface to emit optimization remarks. 2218 OptimizationRemarkEmitter *ORE; 2219 2220 const Function *TheFunction; 2221 2222 /// Loop Vectorize Hint. 2223 const LoopVectorizeHints *Hints; 2224 2225 /// Values to ignore in the cost model. 2226 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2227 2228 /// Values to ignore in the cost model when VF > 1. 2229 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2230 }; 2231 2232 } // end anonymous namespace 2233 2234 namespace llvm { 2235 2236 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2237 /// LoopVectorizationPlanner - drives the vectorization process after having 2238 /// passed Legality checks. 2239 /// The planner builds and optimizes the Vectorization Plans which record the 2240 /// decisions how to vectorize the given loop. In particular, represent the 2241 /// control-flow of the vectorized version, the replication of instructions that 2242 /// are to be scalarized, and interleave access groups. 2243 class LoopVectorizationPlanner { 2244 /// The loop that we evaluate. 2245 Loop *OrigLoop; 2246 2247 /// Loop Info analysis. 2248 LoopInfo *LI; 2249 2250 /// Target Library Info. 2251 const TargetLibraryInfo *TLI; 2252 2253 /// Target Transform Info. 2254 const TargetTransformInfo *TTI; 2255 2256 /// The legality analysis. 2257 LoopVectorizationLegality *Legal; 2258 2259 /// The profitablity analysis. 2260 LoopVectorizationCostModel &CM; 2261 2262 using VPlanPtr = std::unique_ptr<VPlan>; 2263 2264 SmallVector<VPlanPtr, 4> VPlans; 2265 2266 /// This class is used to enable the VPlan to invoke a method of ILV. This is 2267 /// needed until the method is refactored out of ILV and becomes reusable. 2268 struct VPCallbackILV : public VPCallback { 2269 InnerLoopVectorizer &ILV; 2270 2271 VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} 2272 2273 Value *getOrCreateVectorValues(Value *V, unsigned Part) override { 2274 return ILV.getOrCreateVectorValue(V, Part); 2275 } 2276 }; 2277 2278 /// A builder used to construct the current plan. 2279 VPBuilder Builder; 2280 2281 /// When we if-convert we need to create edge masks. We have to cache values 2282 /// so that we don't end up with exponential recursion/IR. Note that 2283 /// if-conversion currently takes place during VPlan-construction, so these 2284 /// caches are only used at that stage. 2285 using EdgeMaskCacheTy = 2286 DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>; 2287 using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>; 2288 EdgeMaskCacheTy EdgeMaskCache; 2289 BlockMaskCacheTy BlockMaskCache; 2290 2291 unsigned BestVF = 0; 2292 unsigned BestUF = 0; 2293 2294 public: 2295 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2296 const TargetTransformInfo *TTI, 2297 LoopVectorizationLegality *Legal, 2298 LoopVectorizationCostModel &CM) 2299 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {} 2300 2301 /// Plan how to best vectorize, return the best VF and its cost. 2302 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2303 unsigned UserVF); 2304 2305 /// Finalize the best decision and dispose of all other VPlans. 2306 void setBestPlan(unsigned VF, unsigned UF); 2307 2308 /// Generate the IR code for the body of the vectorized loop according to the 2309 /// best selected VPlan. 2310 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2311 2312 void printPlans(raw_ostream &O) { 2313 for (const auto &Plan : VPlans) 2314 O << *Plan; 2315 } 2316 2317 protected: 2318 /// Collect the instructions from the original loop that would be trivially 2319 /// dead in the vectorized loop if generated. 2320 void collectTriviallyDeadInstructions( 2321 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2322 2323 /// A range of powers-of-2 vectorization factors with fixed start and 2324 /// adjustable end. The range includes start and excludes end, e.g.,: 2325 /// [1, 9) = {1, 2, 4, 8} 2326 struct VFRange { 2327 // A power of 2. 2328 const unsigned Start; 2329 2330 // Need not be a power of 2. If End <= Start range is empty. 2331 unsigned End; 2332 }; 2333 2334 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2335 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2336 /// returned value holds for the entire \p Range. 2337 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2338 VFRange &Range); 2339 2340 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2341 /// according to the information gathered by Legal when it checked if it is 2342 /// legal to vectorize the loop. 2343 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2344 2345 private: 2346 /// A helper function that computes the predicate of the block BB, assuming 2347 /// that the header block of the loop is set to True. It returns the *entry* 2348 /// mask for the block BB. 2349 VPValue *createBlockInMask(BasicBlock *BB, VPlanPtr &Plan); 2350 2351 /// A helper function that computes the predicate of the edge between SRC 2352 /// and DST. 2353 VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst, VPlanPtr &Plan); 2354 2355 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2356 /// \return true in the first returned value if so and false otherwise. 2357 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2358 /// for \p Range.Start, and provide it as the second returned value. 2359 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2360 /// \return value is <true, nullptr>, as it is handled by another recipe. 2361 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2362 /// to \p Range.End. 2363 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2364 2365 // Check if \I is a memory instruction to be widened for \p Range.Start and 2366 // potentially masked. Such instructions are handled by a recipe that takes an 2367 // additional VPInstruction for the mask. 2368 VPWidenMemoryInstructionRecipe *tryToWidenMemory(Instruction *I, 2369 VFRange &Range, 2370 VPlanPtr &Plan); 2371 2372 /// Check if an induction recipe should be constructed for \I within the given 2373 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2374 /// may be decreased to ensure same decision from \p Range.Start to 2375 /// \p Range.End. 2376 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2377 VFRange &Range); 2378 2379 /// Handle non-loop phi nodes. Currently all such phi nodes are turned into 2380 /// a sequence of select instructions as the vectorizer currently performs 2381 /// full if-conversion. 2382 VPBlendRecipe *tryToBlend(Instruction *I, VPlanPtr &Plan); 2383 2384 /// Check if \p I can be widened within the given VF \p Range. If \p I can be 2385 /// widened for \p Range.Start, check if the last recipe of \p VPBB can be 2386 /// extended to include \p I or else build a new VPWidenRecipe for it and 2387 /// append it to \p VPBB. Return true if \p I can be widened for Range.Start, 2388 /// false otherwise. Range.End may be decreased to ensure same decision from 2389 /// \p Range.Start to \p Range.End. 2390 bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range); 2391 2392 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2393 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2394 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2395 /// Region. Update the packing decision of predicated instructions if they 2396 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2397 /// \p Range.Start to \p Range.End. 2398 VPBasicBlock *handleReplication( 2399 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2400 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 2401 VPlanPtr &Plan); 2402 2403 /// Create a replicating region for instruction \p I that requires 2404 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2405 VPRegionBlock *createReplicateRegion(Instruction *I, VPRecipeBase *PredRecipe, 2406 VPlanPtr &Plan); 2407 2408 /// Build a VPlan according to the information gathered by Legal. \return a 2409 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2410 /// exclusive, possibly decreasing \p Range.End. 2411 VPlanPtr buildVPlan(VFRange &Range, 2412 const SmallPtrSetImpl<Value *> &NeedDef); 2413 }; 2414 2415 } // end namespace llvm 2416 2417 namespace { 2418 2419 /// \brief This holds vectorization requirements that must be verified late in 2420 /// the process. The requirements are set by legalize and costmodel. Once 2421 /// vectorization has been determined to be possible and profitable the 2422 /// requirements can be verified by looking for metadata or compiler options. 2423 /// For example, some loops require FP commutativity which is only allowed if 2424 /// vectorization is explicitly specified or if the fast-math compiler option 2425 /// has been provided. 2426 /// Late evaluation of these requirements allows helpful diagnostics to be 2427 /// composed that tells the user what need to be done to vectorize the loop. For 2428 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2429 /// evaluation should be used only when diagnostics can generated that can be 2430 /// followed by a non-expert user. 2431 class LoopVectorizationRequirements { 2432 public: 2433 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2434 2435 void addUnsafeAlgebraInst(Instruction *I) { 2436 // First unsafe algebra instruction. 2437 if (!UnsafeAlgebraInst) 2438 UnsafeAlgebraInst = I; 2439 } 2440 2441 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2442 2443 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2444 const char *PassName = Hints.vectorizeAnalysisPassName(); 2445 bool Failed = false; 2446 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2447 ORE.emit([&]() { 2448 return OptimizationRemarkAnalysisFPCommute( 2449 PassName, "CantReorderFPOps", 2450 UnsafeAlgebraInst->getDebugLoc(), 2451 UnsafeAlgebraInst->getParent()) 2452 << "loop not vectorized: cannot prove it is safe to reorder " 2453 "floating-point operations"; 2454 }); 2455 Failed = true; 2456 } 2457 2458 // Test if runtime memcheck thresholds are exceeded. 2459 bool PragmaThresholdReached = 2460 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2461 bool ThresholdReached = 2462 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2463 if ((ThresholdReached && !Hints.allowReordering()) || 2464 PragmaThresholdReached) { 2465 ORE.emit([&]() { 2466 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2467 L->getStartLoc(), 2468 L->getHeader()) 2469 << "loop not vectorized: cannot prove it is safe to reorder " 2470 "memory operations"; 2471 }); 2472 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2473 Failed = true; 2474 } 2475 2476 return Failed; 2477 } 2478 2479 private: 2480 unsigned NumRuntimePointerChecks = 0; 2481 Instruction *UnsafeAlgebraInst = nullptr; 2482 2483 /// Interface to emit optimization remarks. 2484 OptimizationRemarkEmitter &ORE; 2485 }; 2486 2487 } // end anonymous namespace 2488 2489 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2490 if (L.empty()) { 2491 if (!hasCyclesInLoopBody(L)) 2492 V.push_back(&L); 2493 return; 2494 } 2495 for (Loop *InnerL : L) 2496 addAcyclicInnerLoop(*InnerL, V); 2497 } 2498 2499 namespace { 2500 2501 /// The LoopVectorize Pass. 2502 struct LoopVectorize : public FunctionPass { 2503 /// Pass identification, replacement for typeid 2504 static char ID; 2505 2506 LoopVectorizePass Impl; 2507 2508 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2509 : FunctionPass(ID) { 2510 Impl.DisableUnrolling = NoUnrolling; 2511 Impl.AlwaysVectorize = AlwaysVectorize; 2512 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2513 } 2514 2515 bool runOnFunction(Function &F) override { 2516 if (skipFunction(F)) 2517 return false; 2518 2519 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2520 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2521 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2522 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2523 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2524 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2525 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2526 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2527 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2528 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2529 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2530 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2531 2532 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2533 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2534 2535 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2536 GetLAA, *ORE); 2537 } 2538 2539 void getAnalysisUsage(AnalysisUsage &AU) const override { 2540 AU.addRequired<AssumptionCacheTracker>(); 2541 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2542 AU.addRequired<DominatorTreeWrapperPass>(); 2543 AU.addRequired<LoopInfoWrapperPass>(); 2544 AU.addRequired<ScalarEvolutionWrapperPass>(); 2545 AU.addRequired<TargetTransformInfoWrapperPass>(); 2546 AU.addRequired<AAResultsWrapperPass>(); 2547 AU.addRequired<LoopAccessLegacyAnalysis>(); 2548 AU.addRequired<DemandedBitsWrapperPass>(); 2549 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2550 AU.addPreserved<LoopInfoWrapperPass>(); 2551 AU.addPreserved<DominatorTreeWrapperPass>(); 2552 AU.addPreserved<BasicAAWrapperPass>(); 2553 AU.addPreserved<GlobalsAAWrapperPass>(); 2554 } 2555 }; 2556 2557 } // end anonymous namespace 2558 2559 //===----------------------------------------------------------------------===// 2560 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2561 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2562 //===----------------------------------------------------------------------===// 2563 2564 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2565 // We need to place the broadcast of invariant variables outside the loop. 2566 Instruction *Instr = dyn_cast<Instruction>(V); 2567 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2568 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2569 2570 // Place the code for broadcasting invariant variables in the new preheader. 2571 IRBuilder<>::InsertPointGuard Guard(Builder); 2572 if (Invariant) 2573 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2574 2575 // Broadcast the scalar into all locations in the vector. 2576 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2577 2578 return Shuf; 2579 } 2580 2581 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2582 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2583 Value *Start = II.getStartValue(); 2584 2585 // Construct the initial value of the vector IV in the vector loop preheader 2586 auto CurrIP = Builder.saveIP(); 2587 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2588 if (isa<TruncInst>(EntryVal)) { 2589 assert(Start->getType()->isIntegerTy() && 2590 "Truncation requires an integer type"); 2591 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2592 Step = Builder.CreateTrunc(Step, TruncType); 2593 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2594 } 2595 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2596 Value *SteppedStart = 2597 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2598 2599 // We create vector phi nodes for both integer and floating-point induction 2600 // variables. Here, we determine the kind of arithmetic we will perform. 2601 Instruction::BinaryOps AddOp; 2602 Instruction::BinaryOps MulOp; 2603 if (Step->getType()->isIntegerTy()) { 2604 AddOp = Instruction::Add; 2605 MulOp = Instruction::Mul; 2606 } else { 2607 AddOp = II.getInductionOpcode(); 2608 MulOp = Instruction::FMul; 2609 } 2610 2611 // Multiply the vectorization factor by the step using integer or 2612 // floating-point arithmetic as appropriate. 2613 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2614 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2615 2616 // Create a vector splat to use in the induction update. 2617 // 2618 // FIXME: If the step is non-constant, we create the vector splat with 2619 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2620 // handle a constant vector splat. 2621 Value *SplatVF = isa<Constant>(Mul) 2622 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2623 : Builder.CreateVectorSplat(VF, Mul); 2624 Builder.restoreIP(CurrIP); 2625 2626 // We may need to add the step a number of times, depending on the unroll 2627 // factor. The last of those goes into the PHI. 2628 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2629 &*LoopVectorBody->getFirstInsertionPt()); 2630 Instruction *LastInduction = VecInd; 2631 for (unsigned Part = 0; Part < UF; ++Part) { 2632 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2633 2634 if (isa<TruncInst>(EntryVal)) 2635 addMetadata(LastInduction, EntryVal); 2636 else 2637 recordVectorLoopValueForInductionCast(II, LastInduction, Part); 2638 2639 LastInduction = cast<Instruction>(addFastMathFlag( 2640 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2641 } 2642 2643 // Move the last step to the end of the latch block. This ensures consistent 2644 // placement of all induction updates. 2645 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2646 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2647 auto *ICmp = cast<Instruction>(Br->getCondition()); 2648 LastInduction->moveBefore(ICmp); 2649 LastInduction->setName("vec.ind.next"); 2650 2651 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2652 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2653 } 2654 2655 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2656 return Cost->isScalarAfterVectorization(I, VF) || 2657 Cost->isProfitableToScalarize(I, VF); 2658 } 2659 2660 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2661 if (shouldScalarizeInstruction(IV)) 2662 return true; 2663 auto isScalarInst = [&](User *U) -> bool { 2664 auto *I = cast<Instruction>(U); 2665 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2666 }; 2667 return llvm::any_of(IV->users(), isScalarInst); 2668 } 2669 2670 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2671 const InductionDescriptor &ID, Value *VectorLoopVal, unsigned Part, 2672 unsigned Lane) { 2673 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2674 if (Casts.empty()) 2675 return; 2676 // Only the first Cast instruction in the Casts vector is of interest. 2677 // The rest of the Casts (if exist) have no uses outside the 2678 // induction update chain itself. 2679 Instruction *CastInst = *Casts.begin(); 2680 if (Lane < UINT_MAX) 2681 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2682 else 2683 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2684 } 2685 2686 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2687 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2688 "Primary induction variable must have an integer type"); 2689 2690 auto II = Legal->getInductionVars()->find(IV); 2691 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2692 2693 auto ID = II->second; 2694 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2695 2696 // The scalar value to broadcast. This will be derived from the canonical 2697 // induction variable. 2698 Value *ScalarIV = nullptr; 2699 2700 // The value from the original loop to which we are mapping the new induction 2701 // variable. 2702 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2703 2704 // True if we have vectorized the induction variable. 2705 auto VectorizedIV = false; 2706 2707 // Determine if we want a scalar version of the induction variable. This is 2708 // true if the induction variable itself is not widened, or if it has at 2709 // least one user in the loop that is not widened. 2710 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2711 2712 // Generate code for the induction step. Note that induction steps are 2713 // required to be loop-invariant 2714 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2715 "Induction step should be loop invariant"); 2716 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2717 Value *Step = nullptr; 2718 if (PSE.getSE()->isSCEVable(IV->getType())) { 2719 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2720 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2721 LoopVectorPreHeader->getTerminator()); 2722 } else { 2723 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2724 } 2725 2726 // Try to create a new independent vector induction variable. If we can't 2727 // create the phi node, we will splat the scalar induction variable in each 2728 // loop iteration. 2729 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2730 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2731 VectorizedIV = true; 2732 } 2733 2734 // If we haven't yet vectorized the induction variable, or if we will create 2735 // a scalar one, we need to define the scalar induction variable and step 2736 // values. If we were given a truncation type, truncate the canonical 2737 // induction variable and step. Otherwise, derive these values from the 2738 // induction descriptor. 2739 if (!VectorizedIV || NeedsScalarIV) { 2740 ScalarIV = Induction; 2741 if (IV != OldInduction) { 2742 ScalarIV = IV->getType()->isIntegerTy() 2743 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2744 : Builder.CreateCast(Instruction::SIToFP, Induction, 2745 IV->getType()); 2746 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2747 ScalarIV->setName("offset.idx"); 2748 } 2749 if (Trunc) { 2750 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2751 assert(Step->getType()->isIntegerTy() && 2752 "Truncation requires an integer step"); 2753 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2754 Step = Builder.CreateTrunc(Step, TruncType); 2755 } 2756 } 2757 2758 // If we haven't yet vectorized the induction variable, splat the scalar 2759 // induction variable, and build the necessary step vectors. 2760 // TODO: Don't do it unless the vectorized IV is really required. 2761 if (!VectorizedIV) { 2762 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2763 for (unsigned Part = 0; Part < UF; ++Part) { 2764 Value *EntryPart = 2765 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2766 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2767 if (Trunc) 2768 addMetadata(EntryPart, Trunc); 2769 else 2770 recordVectorLoopValueForInductionCast(ID, EntryPart, Part); 2771 } 2772 } 2773 2774 // If an induction variable is only used for counting loop iterations or 2775 // calculating addresses, it doesn't need to be widened. Create scalar steps 2776 // that can be used by instructions we will later scalarize. Note that the 2777 // addition of the scalar steps will not increase the number of instructions 2778 // in the loop in the common case prior to InstCombine. We will be trading 2779 // one vector extract for each scalar step. 2780 if (NeedsScalarIV) 2781 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2782 } 2783 2784 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2785 Instruction::BinaryOps BinOp) { 2786 // Create and check the types. 2787 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2788 int VLen = Val->getType()->getVectorNumElements(); 2789 2790 Type *STy = Val->getType()->getScalarType(); 2791 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2792 "Induction Step must be an integer or FP"); 2793 assert(Step->getType() == STy && "Step has wrong type"); 2794 2795 SmallVector<Constant *, 8> Indices; 2796 2797 if (STy->isIntegerTy()) { 2798 // Create a vector of consecutive numbers from zero to VF. 2799 for (int i = 0; i < VLen; ++i) 2800 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2801 2802 // Add the consecutive indices to the vector value. 2803 Constant *Cv = ConstantVector::get(Indices); 2804 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2805 Step = Builder.CreateVectorSplat(VLen, Step); 2806 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2807 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2808 // which can be found from the original scalar operations. 2809 Step = Builder.CreateMul(Cv, Step); 2810 return Builder.CreateAdd(Val, Step, "induction"); 2811 } 2812 2813 // Floating point induction. 2814 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2815 "Binary Opcode should be specified for FP induction"); 2816 // Create a vector of consecutive numbers from zero to VF. 2817 for (int i = 0; i < VLen; ++i) 2818 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2819 2820 // Add the consecutive indices to the vector value. 2821 Constant *Cv = ConstantVector::get(Indices); 2822 2823 Step = Builder.CreateVectorSplat(VLen, Step); 2824 2825 // Floating point operations had to be 'fast' to enable the induction. 2826 FastMathFlags Flags; 2827 Flags.setFast(); 2828 2829 Value *MulOp = Builder.CreateFMul(Cv, Step); 2830 if (isa<Instruction>(MulOp)) 2831 // Have to check, MulOp may be a constant 2832 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2833 2834 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2835 if (isa<Instruction>(BOp)) 2836 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2837 return BOp; 2838 } 2839 2840 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2841 Value *EntryVal, 2842 const InductionDescriptor &ID) { 2843 // We shouldn't have to build scalar steps if we aren't vectorizing. 2844 assert(VF > 1 && "VF should be greater than one"); 2845 2846 // Get the value type and ensure it and the step have the same integer type. 2847 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2848 assert(ScalarIVTy == Step->getType() && 2849 "Val and Step should have the same type"); 2850 2851 // We build scalar steps for both integer and floating-point induction 2852 // variables. Here, we determine the kind of arithmetic we will perform. 2853 Instruction::BinaryOps AddOp; 2854 Instruction::BinaryOps MulOp; 2855 if (ScalarIVTy->isIntegerTy()) { 2856 AddOp = Instruction::Add; 2857 MulOp = Instruction::Mul; 2858 } else { 2859 AddOp = ID.getInductionOpcode(); 2860 MulOp = Instruction::FMul; 2861 } 2862 2863 // Determine the number of scalars we need to generate for each unroll 2864 // iteration. If EntryVal is uniform, we only need to generate the first 2865 // lane. Otherwise, we generate all VF values. 2866 unsigned Lanes = 2867 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2868 : VF; 2869 // Compute the scalar steps and save the results in VectorLoopValueMap. 2870 for (unsigned Part = 0; Part < UF; ++Part) { 2871 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2872 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2873 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2874 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2875 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2876 recordVectorLoopValueForInductionCast(ID, Add, Part, Lane); 2877 } 2878 } 2879 } 2880 2881 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2882 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2883 ValueToValueMap(); 2884 2885 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2886 if (Stride == 1 || Stride == -1) 2887 return Stride; 2888 return 0; 2889 } 2890 2891 bool LoopVectorizationLegality::isUniform(Value *V) { 2892 return LAI->isUniform(V); 2893 } 2894 2895 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2896 assert(V != Induction && "The new induction variable should not be used."); 2897 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2898 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2899 2900 // If we have a stride that is replaced by one, do it here. 2901 if (Legal->hasStride(V)) 2902 V = ConstantInt::get(V->getType(), 1); 2903 2904 // If we have a vector mapped to this value, return it. 2905 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2906 return VectorLoopValueMap.getVectorValue(V, Part); 2907 2908 // If the value has not been vectorized, check if it has been scalarized 2909 // instead. If it has been scalarized, and we actually need the value in 2910 // vector form, we will construct the vector values on demand. 2911 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2912 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2913 2914 // If we've scalarized a value, that value should be an instruction. 2915 auto *I = cast<Instruction>(V); 2916 2917 // If we aren't vectorizing, we can just copy the scalar map values over to 2918 // the vector map. 2919 if (VF == 1) { 2920 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2921 return ScalarValue; 2922 } 2923 2924 // Get the last scalar instruction we generated for V and Part. If the value 2925 // is known to be uniform after vectorization, this corresponds to lane zero 2926 // of the Part unroll iteration. Otherwise, the last instruction is the one 2927 // we created for the last vector lane of the Part unroll iteration. 2928 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2929 auto *LastInst = cast<Instruction>( 2930 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2931 2932 // Set the insert point after the last scalarized instruction. This ensures 2933 // the insertelement sequence will directly follow the scalar definitions. 2934 auto OldIP = Builder.saveIP(); 2935 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2936 Builder.SetInsertPoint(&*NewIP); 2937 2938 // However, if we are vectorizing, we need to construct the vector values. 2939 // If the value is known to be uniform after vectorization, we can just 2940 // broadcast the scalar value corresponding to lane zero for each unroll 2941 // iteration. Otherwise, we construct the vector values using insertelement 2942 // instructions. Since the resulting vectors are stored in 2943 // VectorLoopValueMap, we will only generate the insertelements once. 2944 Value *VectorValue = nullptr; 2945 if (Cost->isUniformAfterVectorization(I, VF)) { 2946 VectorValue = getBroadcastInstrs(ScalarValue); 2947 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2948 } else { 2949 // Initialize packing with insertelements to start from undef. 2950 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2951 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2952 for (unsigned Lane = 0; Lane < VF; ++Lane) 2953 packScalarIntoVectorValue(V, {Part, Lane}); 2954 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2955 } 2956 Builder.restoreIP(OldIP); 2957 return VectorValue; 2958 } 2959 2960 // If this scalar is unknown, assume that it is a constant or that it is 2961 // loop invariant. Broadcast V and save the value for future uses. 2962 Value *B = getBroadcastInstrs(V); 2963 VectorLoopValueMap.setVectorValue(V, Part, B); 2964 return B; 2965 } 2966 2967 Value * 2968 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2969 const VPIteration &Instance) { 2970 // If the value is not an instruction contained in the loop, it should 2971 // already be scalar. 2972 if (OrigLoop->isLoopInvariant(V)) 2973 return V; 2974 2975 assert(Instance.Lane > 0 2976 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2977 : true && "Uniform values only have lane zero"); 2978 2979 // If the value from the original loop has not been vectorized, it is 2980 // represented by UF x VF scalar values in the new loop. Return the requested 2981 // scalar value. 2982 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2983 return VectorLoopValueMap.getScalarValue(V, Instance); 2984 2985 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2986 // for the given unroll part. If this entry is not a vector type (i.e., the 2987 // vectorization factor is one), there is no need to generate an 2988 // extractelement instruction. 2989 auto *U = getOrCreateVectorValue(V, Instance.Part); 2990 if (!U->getType()->isVectorTy()) { 2991 assert(VF == 1 && "Value not scalarized has non-vector type"); 2992 return U; 2993 } 2994 2995 // Otherwise, the value from the original loop has been vectorized and is 2996 // represented by UF vector values. Extract and return the requested scalar 2997 // value from the appropriate vector lane. 2998 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2999 } 3000 3001 void InnerLoopVectorizer::packScalarIntoVectorValue( 3002 Value *V, const VPIteration &Instance) { 3003 assert(V != Induction && "The new induction variable should not be used."); 3004 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 3005 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 3006 3007 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 3008 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 3009 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 3010 Builder.getInt32(Instance.Lane)); 3011 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 3012 } 3013 3014 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 3015 assert(Vec->getType()->isVectorTy() && "Invalid type"); 3016 SmallVector<Constant *, 8> ShuffleMask; 3017 for (unsigned i = 0; i < VF; ++i) 3018 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 3019 3020 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 3021 ConstantVector::get(ShuffleMask), 3022 "reverse"); 3023 } 3024 3025 // Try to vectorize the interleave group that \p Instr belongs to. 3026 // 3027 // E.g. Translate following interleaved load group (factor = 3): 3028 // for (i = 0; i < N; i+=3) { 3029 // R = Pic[i]; // Member of index 0 3030 // G = Pic[i+1]; // Member of index 1 3031 // B = Pic[i+2]; // Member of index 2 3032 // ... // do something to R, G, B 3033 // } 3034 // To: 3035 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 3036 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 3037 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 3038 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 3039 // 3040 // Or translate following interleaved store group (factor = 3): 3041 // for (i = 0; i < N; i+=3) { 3042 // ... do something to R, G, B 3043 // Pic[i] = R; // Member of index 0 3044 // Pic[i+1] = G; // Member of index 1 3045 // Pic[i+2] = B; // Member of index 2 3046 // } 3047 // To: 3048 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 3049 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 3050 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 3051 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 3052 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 3053 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 3054 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 3055 assert(Group && "Fail to get an interleaved access group."); 3056 3057 // Skip if current instruction is not the insert position. 3058 if (Instr != Group->getInsertPos()) 3059 return; 3060 3061 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3062 Value *Ptr = getPointerOperand(Instr); 3063 3064 // Prepare for the vector type of the interleaved load/store. 3065 Type *ScalarTy = getMemInstValueType(Instr); 3066 unsigned InterleaveFactor = Group->getFactor(); 3067 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 3068 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 3069 3070 // Prepare for the new pointers. 3071 setDebugLocFromInst(Builder, Ptr); 3072 SmallVector<Value *, 2> NewPtrs; 3073 unsigned Index = Group->getIndex(Instr); 3074 3075 // If the group is reverse, adjust the index to refer to the last vector lane 3076 // instead of the first. We adjust the index from the first vector lane, 3077 // rather than directly getting the pointer for lane VF - 1, because the 3078 // pointer operand of the interleaved access is supposed to be uniform. For 3079 // uniform instructions, we're only required to generate a value for the 3080 // first vector lane in each unroll iteration. 3081 if (Group->isReverse()) 3082 Index += (VF - 1) * Group->getFactor(); 3083 3084 for (unsigned Part = 0; Part < UF; Part++) { 3085 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 3086 3087 // Notice current instruction could be any index. Need to adjust the address 3088 // to the member of index 0. 3089 // 3090 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 3091 // b = A[i]; // Member of index 0 3092 // Current pointer is pointed to A[i+1], adjust it to A[i]. 3093 // 3094 // E.g. A[i+1] = a; // Member of index 1 3095 // A[i] = b; // Member of index 0 3096 // A[i+2] = c; // Member of index 2 (Current instruction) 3097 // Current pointer is pointed to A[i+2], adjust it to A[i]. 3098 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 3099 3100 // Cast to the vector pointer type. 3101 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 3102 } 3103 3104 setDebugLocFromInst(Builder, Instr); 3105 Value *UndefVec = UndefValue::get(VecTy); 3106 3107 // Vectorize the interleaved load group. 3108 if (isa<LoadInst>(Instr)) { 3109 // For each unroll part, create a wide load for the group. 3110 SmallVector<Value *, 2> NewLoads; 3111 for (unsigned Part = 0; Part < UF; Part++) { 3112 auto *NewLoad = Builder.CreateAlignedLoad( 3113 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 3114 Group->addMetadata(NewLoad); 3115 NewLoads.push_back(NewLoad); 3116 } 3117 3118 // For each member in the group, shuffle out the appropriate data from the 3119 // wide loads. 3120 for (unsigned I = 0; I < InterleaveFactor; ++I) { 3121 Instruction *Member = Group->getMember(I); 3122 3123 // Skip the gaps in the group. 3124 if (!Member) 3125 continue; 3126 3127 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 3128 for (unsigned Part = 0; Part < UF; Part++) { 3129 Value *StridedVec = Builder.CreateShuffleVector( 3130 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 3131 3132 // If this member has different type, cast the result type. 3133 if (Member->getType() != ScalarTy) { 3134 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 3135 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 3136 } 3137 3138 if (Group->isReverse()) 3139 StridedVec = reverseVector(StridedVec); 3140 3141 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 3142 } 3143 } 3144 return; 3145 } 3146 3147 // The sub vector type for current instruction. 3148 VectorType *SubVT = VectorType::get(ScalarTy, VF); 3149 3150 // Vectorize the interleaved store group. 3151 for (unsigned Part = 0; Part < UF; Part++) { 3152 // Collect the stored vector from each member. 3153 SmallVector<Value *, 4> StoredVecs; 3154 for (unsigned i = 0; i < InterleaveFactor; i++) { 3155 // Interleaved store group doesn't allow a gap, so each index has a member 3156 Instruction *Member = Group->getMember(i); 3157 assert(Member && "Fail to get a member from an interleaved store group"); 3158 3159 Value *StoredVec = getOrCreateVectorValue( 3160 cast<StoreInst>(Member)->getValueOperand(), Part); 3161 if (Group->isReverse()) 3162 StoredVec = reverseVector(StoredVec); 3163 3164 // If this member has different type, cast it to a unified type. 3165 3166 if (StoredVec->getType() != SubVT) 3167 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 3168 3169 StoredVecs.push_back(StoredVec); 3170 } 3171 3172 // Concatenate all vectors into a wide vector. 3173 Value *WideVec = concatenateVectors(Builder, StoredVecs); 3174 3175 // Interleave the elements in the wide vector. 3176 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 3177 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 3178 "interleaved.vec"); 3179 3180 Instruction *NewStoreInstr = 3181 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 3182 3183 Group->addMetadata(NewStoreInstr); 3184 } 3185 } 3186 3187 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 3188 VectorParts *BlockInMask) { 3189 // Attempt to issue a wide load. 3190 LoadInst *LI = dyn_cast<LoadInst>(Instr); 3191 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3192 3193 assert((LI || SI) && "Invalid Load/Store instruction"); 3194 3195 LoopVectorizationCostModel::InstWidening Decision = 3196 Cost->getWideningDecision(Instr, VF); 3197 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3198 "CM decision should be taken at this point"); 3199 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3200 return vectorizeInterleaveGroup(Instr); 3201 3202 Type *ScalarDataTy = getMemInstValueType(Instr); 3203 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3204 Value *Ptr = getPointerOperand(Instr); 3205 unsigned Alignment = getMemInstAlignment(Instr); 3206 // An alignment of 0 means target abi alignment. We need to use the scalar's 3207 // target abi alignment in such a case. 3208 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3209 if (!Alignment) 3210 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3211 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3212 3213 // Determine if the pointer operand of the access is either consecutive or 3214 // reverse consecutive. 3215 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3216 bool ConsecutiveStride = 3217 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3218 bool CreateGatherScatter = 3219 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3220 3221 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3222 // gather/scatter. Otherwise Decision should have been to Scalarize. 3223 assert((ConsecutiveStride || CreateGatherScatter) && 3224 "The instruction should be scalarized"); 3225 3226 // Handle consecutive loads/stores. 3227 if (ConsecutiveStride) 3228 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3229 3230 VectorParts Mask; 3231 bool isMaskRequired = BlockInMask; 3232 if (isMaskRequired) 3233 Mask = *BlockInMask; 3234 3235 // Handle Stores: 3236 if (SI) { 3237 assert(!Legal->isUniform(SI->getPointerOperand()) && 3238 "We do not allow storing to uniform addresses"); 3239 setDebugLocFromInst(Builder, SI); 3240 3241 for (unsigned Part = 0; Part < UF; ++Part) { 3242 Instruction *NewSI = nullptr; 3243 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3244 if (CreateGatherScatter) { 3245 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3246 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3247 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3248 MaskPart); 3249 } else { 3250 // Calculate the pointer for the specific unroll-part. 3251 Value *PartPtr = 3252 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3253 3254 if (Reverse) { 3255 // If we store to reverse consecutive memory locations, then we need 3256 // to reverse the order of elements in the stored value. 3257 StoredVal = reverseVector(StoredVal); 3258 // We don't want to update the value in the map as it might be used in 3259 // another expression. So don't call resetVectorValue(StoredVal). 3260 3261 // If the address is consecutive but reversed, then the 3262 // wide store needs to start at the last vector element. 3263 PartPtr = 3264 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3265 PartPtr = 3266 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3267 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3268 Mask[Part] = reverseVector(Mask[Part]); 3269 } 3270 3271 Value *VecPtr = 3272 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3273 3274 if (isMaskRequired) 3275 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3276 Mask[Part]); 3277 else 3278 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3279 } 3280 addMetadata(NewSI, SI); 3281 } 3282 return; 3283 } 3284 3285 // Handle loads. 3286 assert(LI && "Must have a load instruction"); 3287 setDebugLocFromInst(Builder, LI); 3288 for (unsigned Part = 0; Part < UF; ++Part) { 3289 Value *NewLI; 3290 if (CreateGatherScatter) { 3291 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3292 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3293 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3294 nullptr, "wide.masked.gather"); 3295 addMetadata(NewLI, LI); 3296 } else { 3297 // Calculate the pointer for the specific unroll-part. 3298 Value *PartPtr = 3299 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3300 3301 if (Reverse) { 3302 // If the address is consecutive but reversed, then the 3303 // wide load needs to start at the last vector element. 3304 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3305 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3306 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3307 Mask[Part] = reverseVector(Mask[Part]); 3308 } 3309 3310 Value *VecPtr = 3311 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3312 if (isMaskRequired) 3313 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3314 UndefValue::get(DataTy), 3315 "wide.masked.load"); 3316 else 3317 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3318 3319 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3320 addMetadata(NewLI, LI); 3321 if (Reverse) 3322 NewLI = reverseVector(NewLI); 3323 } 3324 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3325 } 3326 } 3327 3328 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3329 const VPIteration &Instance, 3330 bool IfPredicateInstr) { 3331 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3332 3333 setDebugLocFromInst(Builder, Instr); 3334 3335 // Does this instruction return a value ? 3336 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3337 3338 Instruction *Cloned = Instr->clone(); 3339 if (!IsVoidRetTy) 3340 Cloned->setName(Instr->getName() + ".cloned"); 3341 3342 // Replace the operands of the cloned instructions with their scalar 3343 // equivalents in the new loop. 3344 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3345 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3346 Cloned->setOperand(op, NewOp); 3347 } 3348 addNewMetadata(Cloned, Instr); 3349 3350 // Place the cloned scalar in the new loop. 3351 Builder.Insert(Cloned); 3352 3353 // Add the cloned scalar to the scalar map entry. 3354 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3355 3356 // If we just cloned a new assumption, add it the assumption cache. 3357 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3358 if (II->getIntrinsicID() == Intrinsic::assume) 3359 AC->registerAssumption(II); 3360 3361 // End if-block. 3362 if (IfPredicateInstr) 3363 PredicatedInstructions.push_back(Cloned); 3364 } 3365 3366 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3367 Value *End, Value *Step, 3368 Instruction *DL) { 3369 BasicBlock *Header = L->getHeader(); 3370 BasicBlock *Latch = L->getLoopLatch(); 3371 // As we're just creating this loop, it's possible no latch exists 3372 // yet. If so, use the header as this will be a single block loop. 3373 if (!Latch) 3374 Latch = Header; 3375 3376 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3377 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3378 setDebugLocFromInst(Builder, OldInst); 3379 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3380 3381 Builder.SetInsertPoint(Latch->getTerminator()); 3382 setDebugLocFromInst(Builder, OldInst); 3383 3384 // Create i+1 and fill the PHINode. 3385 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3386 Induction->addIncoming(Start, L->getLoopPreheader()); 3387 Induction->addIncoming(Next, Latch); 3388 // Create the compare. 3389 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3390 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3391 3392 // Now we have two terminators. Remove the old one from the block. 3393 Latch->getTerminator()->eraseFromParent(); 3394 3395 return Induction; 3396 } 3397 3398 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3399 if (TripCount) 3400 return TripCount; 3401 3402 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3403 // Find the loop boundaries. 3404 ScalarEvolution *SE = PSE.getSE(); 3405 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3406 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3407 "Invalid loop count"); 3408 3409 Type *IdxTy = Legal->getWidestInductionType(); 3410 3411 // The exit count might have the type of i64 while the phi is i32. This can 3412 // happen if we have an induction variable that is sign extended before the 3413 // compare. The only way that we get a backedge taken count is that the 3414 // induction variable was signed and as such will not overflow. In such a case 3415 // truncation is legal. 3416 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3417 IdxTy->getPrimitiveSizeInBits()) 3418 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3419 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3420 3421 // Get the total trip count from the count by adding 1. 3422 const SCEV *ExitCount = SE->getAddExpr( 3423 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3424 3425 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3426 3427 // Expand the trip count and place the new instructions in the preheader. 3428 // Notice that the pre-header does not change, only the loop body. 3429 SCEVExpander Exp(*SE, DL, "induction"); 3430 3431 // Count holds the overall loop count (N). 3432 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3433 L->getLoopPreheader()->getTerminator()); 3434 3435 if (TripCount->getType()->isPointerTy()) 3436 TripCount = 3437 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3438 L->getLoopPreheader()->getTerminator()); 3439 3440 return TripCount; 3441 } 3442 3443 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3444 if (VectorTripCount) 3445 return VectorTripCount; 3446 3447 Value *TC = getOrCreateTripCount(L); 3448 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3449 3450 // Now we need to generate the expression for the part of the loop that the 3451 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3452 // iterations are not required for correctness, or N - Step, otherwise. Step 3453 // is equal to the vectorization factor (number of SIMD elements) times the 3454 // unroll factor (number of SIMD instructions). 3455 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3456 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3457 3458 // If there is a non-reversed interleaved group that may speculatively access 3459 // memory out-of-bounds, we need to ensure that there will be at least one 3460 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3461 // the trip count, we set the remainder to be equal to the step. If the step 3462 // does not evenly divide the trip count, no adjustment is necessary since 3463 // there will already be scalar iterations. Note that the minimum iterations 3464 // check ensures that N >= Step. 3465 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3466 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3467 R = Builder.CreateSelect(IsZero, Step, R); 3468 } 3469 3470 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3471 3472 return VectorTripCount; 3473 } 3474 3475 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3476 const DataLayout &DL) { 3477 // Verify that V is a vector type with same number of elements as DstVTy. 3478 unsigned VF = DstVTy->getNumElements(); 3479 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3480 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3481 Type *SrcElemTy = SrcVecTy->getElementType(); 3482 Type *DstElemTy = DstVTy->getElementType(); 3483 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3484 "Vector elements must have same size"); 3485 3486 // Do a direct cast if element types are castable. 3487 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3488 return Builder.CreateBitOrPointerCast(V, DstVTy); 3489 } 3490 // V cannot be directly casted to desired vector type. 3491 // May happen when V is a floating point vector but DstVTy is a vector of 3492 // pointers or vice-versa. Handle this using a two-step bitcast using an 3493 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3494 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3495 "Only one type should be a pointer type"); 3496 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3497 "Only one type should be a floating point type"); 3498 Type *IntTy = 3499 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3500 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3501 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3502 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3503 } 3504 3505 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3506 BasicBlock *Bypass) { 3507 Value *Count = getOrCreateTripCount(L); 3508 BasicBlock *BB = L->getLoopPreheader(); 3509 IRBuilder<> Builder(BB->getTerminator()); 3510 3511 // Generate code to check if the loop's trip count is less than VF * UF, or 3512 // equal to it in case a scalar epilogue is required; this implies that the 3513 // vector trip count is zero. This check also covers the case where adding one 3514 // to the backedge-taken count overflowed leading to an incorrect trip count 3515 // of zero. In this case we will also jump to the scalar loop. 3516 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3517 : ICmpInst::ICMP_ULT; 3518 Value *CheckMinIters = Builder.CreateICmp( 3519 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3520 3521 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3522 // Update dominator tree immediately if the generated block is a 3523 // LoopBypassBlock because SCEV expansions to generate loop bypass 3524 // checks may query it before the current function is finished. 3525 DT->addNewBlock(NewBB, BB); 3526 if (L->getParentLoop()) 3527 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3528 ReplaceInstWithInst(BB->getTerminator(), 3529 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3530 LoopBypassBlocks.push_back(BB); 3531 } 3532 3533 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3534 BasicBlock *BB = L->getLoopPreheader(); 3535 3536 // Generate the code to check that the SCEV assumptions that we made. 3537 // We want the new basic block to start at the first instruction in a 3538 // sequence of instructions that form a check. 3539 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3540 "scev.check"); 3541 Value *SCEVCheck = 3542 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3543 3544 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3545 if (C->isZero()) 3546 return; 3547 3548 // Create a new block containing the stride check. 3549 BB->setName("vector.scevcheck"); 3550 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3551 // Update dominator tree immediately if the generated block is a 3552 // LoopBypassBlock because SCEV expansions to generate loop bypass 3553 // checks may query it before the current function is finished. 3554 DT->addNewBlock(NewBB, BB); 3555 if (L->getParentLoop()) 3556 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3557 ReplaceInstWithInst(BB->getTerminator(), 3558 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3559 LoopBypassBlocks.push_back(BB); 3560 AddedSafetyChecks = true; 3561 } 3562 3563 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3564 BasicBlock *BB = L->getLoopPreheader(); 3565 3566 // Generate the code that checks in runtime if arrays overlap. We put the 3567 // checks into a separate block to make the more common case of few elements 3568 // faster. 3569 Instruction *FirstCheckInst; 3570 Instruction *MemRuntimeCheck; 3571 std::tie(FirstCheckInst, MemRuntimeCheck) = 3572 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3573 if (!MemRuntimeCheck) 3574 return; 3575 3576 // Create a new block containing the memory check. 3577 BB->setName("vector.memcheck"); 3578 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3579 // Update dominator tree immediately if the generated block is a 3580 // LoopBypassBlock because SCEV expansions to generate loop bypass 3581 // checks may query it before the current function is finished. 3582 DT->addNewBlock(NewBB, BB); 3583 if (L->getParentLoop()) 3584 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3585 ReplaceInstWithInst(BB->getTerminator(), 3586 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3587 LoopBypassBlocks.push_back(BB); 3588 AddedSafetyChecks = true; 3589 3590 // We currently don't use LoopVersioning for the actual loop cloning but we 3591 // still use it to add the noalias metadata. 3592 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3593 PSE.getSE()); 3594 LVer->prepareNoAliasMetadata(); 3595 } 3596 3597 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3598 /* 3599 In this function we generate a new loop. The new loop will contain 3600 the vectorized instructions while the old loop will continue to run the 3601 scalar remainder. 3602 3603 [ ] <-- loop iteration number check. 3604 / | 3605 / v 3606 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3607 | / | 3608 | / v 3609 || [ ] <-- vector pre header. 3610 |/ | 3611 | v 3612 | [ ] \ 3613 | [ ]_| <-- vector loop. 3614 | | 3615 | v 3616 | -[ ] <--- middle-block. 3617 | / | 3618 | / v 3619 -|- >[ ] <--- new preheader. 3620 | | 3621 | v 3622 | [ ] \ 3623 | [ ]_| <-- old scalar loop to handle remainder. 3624 \ | 3625 \ v 3626 >[ ] <-- exit block. 3627 ... 3628 */ 3629 3630 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3631 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3632 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3633 assert(VectorPH && "Invalid loop structure"); 3634 assert(ExitBlock && "Must have an exit block"); 3635 3636 // Some loops have a single integer induction variable, while other loops 3637 // don't. One example is c++ iterators that often have multiple pointer 3638 // induction variables. In the code below we also support a case where we 3639 // don't have a single induction variable. 3640 // 3641 // We try to obtain an induction variable from the original loop as hard 3642 // as possible. However if we don't find one that: 3643 // - is an integer 3644 // - counts from zero, stepping by one 3645 // - is the size of the widest induction variable type 3646 // then we create a new one. 3647 OldInduction = Legal->getPrimaryInduction(); 3648 Type *IdxTy = Legal->getWidestInductionType(); 3649 3650 // Split the single block loop into the two loop structure described above. 3651 BasicBlock *VecBody = 3652 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3653 BasicBlock *MiddleBlock = 3654 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3655 BasicBlock *ScalarPH = 3656 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3657 3658 // Create and register the new vector loop. 3659 Loop *Lp = LI->AllocateLoop(); 3660 Loop *ParentLoop = OrigLoop->getParentLoop(); 3661 3662 // Insert the new loop into the loop nest and register the new basic blocks 3663 // before calling any utilities such as SCEV that require valid LoopInfo. 3664 if (ParentLoop) { 3665 ParentLoop->addChildLoop(Lp); 3666 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3667 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3668 } else { 3669 LI->addTopLevelLoop(Lp); 3670 } 3671 Lp->addBasicBlockToLoop(VecBody, *LI); 3672 3673 // Find the loop boundaries. 3674 Value *Count = getOrCreateTripCount(Lp); 3675 3676 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3677 3678 // Now, compare the new count to zero. If it is zero skip the vector loop and 3679 // jump to the scalar loop. This check also covers the case where the 3680 // backedge-taken count is uint##_max: adding one to it will overflow leading 3681 // to an incorrect trip count of zero. In this (rare) case we will also jump 3682 // to the scalar loop. 3683 emitMinimumIterationCountCheck(Lp, ScalarPH); 3684 3685 // Generate the code to check any assumptions that we've made for SCEV 3686 // expressions. 3687 emitSCEVChecks(Lp, ScalarPH); 3688 3689 // Generate the code that checks in runtime if arrays overlap. We put the 3690 // checks into a separate block to make the more common case of few elements 3691 // faster. 3692 emitMemRuntimeChecks(Lp, ScalarPH); 3693 3694 // Generate the induction variable. 3695 // The loop step is equal to the vectorization factor (num of SIMD elements) 3696 // times the unroll factor (num of SIMD instructions). 3697 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3698 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3699 Induction = 3700 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3701 getDebugLocFromInstOrOperands(OldInduction)); 3702 3703 // We are going to resume the execution of the scalar loop. 3704 // Go over all of the induction variables that we found and fix the 3705 // PHIs that are left in the scalar version of the loop. 3706 // The starting values of PHI nodes depend on the counter of the last 3707 // iteration in the vectorized loop. 3708 // If we come from a bypass edge then we need to start from the original 3709 // start value. 3710 3711 // This variable saves the new starting index for the scalar loop. It is used 3712 // to test if there are any tail iterations left once the vector loop has 3713 // completed. 3714 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3715 for (auto &InductionEntry : *List) { 3716 PHINode *OrigPhi = InductionEntry.first; 3717 InductionDescriptor II = InductionEntry.second; 3718 3719 // Create phi nodes to merge from the backedge-taken check block. 3720 PHINode *BCResumeVal = PHINode::Create( 3721 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3722 Value *&EndValue = IVEndValues[OrigPhi]; 3723 if (OrigPhi == OldInduction) { 3724 // We know what the end value is. 3725 EndValue = CountRoundDown; 3726 } else { 3727 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3728 Type *StepType = II.getStep()->getType(); 3729 Instruction::CastOps CastOp = 3730 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3731 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3732 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3733 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3734 EndValue->setName("ind.end"); 3735 } 3736 3737 // The new PHI merges the original incoming value, in case of a bypass, 3738 // or the value at the end of the vectorized loop. 3739 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3740 3741 // Fix the scalar body counter (PHI node). 3742 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3743 3744 // The old induction's phi node in the scalar body needs the truncated 3745 // value. 3746 for (BasicBlock *BB : LoopBypassBlocks) 3747 BCResumeVal->addIncoming(II.getStartValue(), BB); 3748 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3749 } 3750 3751 // Add a check in the middle block to see if we have completed 3752 // all of the iterations in the first vector loop. 3753 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3754 Value *CmpN = 3755 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3756 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3757 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3758 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3759 3760 // Get ready to start creating new instructions into the vectorized body. 3761 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3762 3763 // Save the state. 3764 LoopVectorPreHeader = Lp->getLoopPreheader(); 3765 LoopScalarPreHeader = ScalarPH; 3766 LoopMiddleBlock = MiddleBlock; 3767 LoopExitBlock = ExitBlock; 3768 LoopVectorBody = VecBody; 3769 LoopScalarBody = OldBasicBlock; 3770 3771 // Keep all loop hints from the original loop on the vector loop (we'll 3772 // replace the vectorizer-specific hints below). 3773 if (MDNode *LID = OrigLoop->getLoopID()) 3774 Lp->setLoopID(LID); 3775 3776 LoopVectorizeHints Hints(Lp, true, *ORE); 3777 Hints.setAlreadyVectorized(); 3778 3779 return LoopVectorPreHeader; 3780 } 3781 3782 // Fix up external users of the induction variable. At this point, we are 3783 // in LCSSA form, with all external PHIs that use the IV having one input value, 3784 // coming from the remainder loop. We need those PHIs to also have a correct 3785 // value for the IV when arriving directly from the middle block. 3786 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3787 const InductionDescriptor &II, 3788 Value *CountRoundDown, Value *EndValue, 3789 BasicBlock *MiddleBlock) { 3790 // There are two kinds of external IV usages - those that use the value 3791 // computed in the last iteration (the PHI) and those that use the penultimate 3792 // value (the value that feeds into the phi from the loop latch). 3793 // We allow both, but they, obviously, have different values. 3794 3795 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3796 3797 DenseMap<Value *, Value *> MissingVals; 3798 3799 // An external user of the last iteration's value should see the value that 3800 // the remainder loop uses to initialize its own IV. 3801 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3802 for (User *U : PostInc->users()) { 3803 Instruction *UI = cast<Instruction>(U); 3804 if (!OrigLoop->contains(UI)) { 3805 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3806 MissingVals[UI] = EndValue; 3807 } 3808 } 3809 3810 // An external user of the penultimate value need to see EndValue - Step. 3811 // The simplest way to get this is to recompute it from the constituent SCEVs, 3812 // that is Start + (Step * (CRD - 1)). 3813 for (User *U : OrigPhi->users()) { 3814 auto *UI = cast<Instruction>(U); 3815 if (!OrigLoop->contains(UI)) { 3816 const DataLayout &DL = 3817 OrigLoop->getHeader()->getModule()->getDataLayout(); 3818 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3819 3820 IRBuilder<> B(MiddleBlock->getTerminator()); 3821 Value *CountMinusOne = B.CreateSub( 3822 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3823 Value *CMO = 3824 !II.getStep()->getType()->isIntegerTy() 3825 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3826 II.getStep()->getType()) 3827 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3828 CMO->setName("cast.cmo"); 3829 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3830 Escape->setName("ind.escape"); 3831 MissingVals[UI] = Escape; 3832 } 3833 } 3834 3835 for (auto &I : MissingVals) { 3836 PHINode *PHI = cast<PHINode>(I.first); 3837 // One corner case we have to handle is two IVs "chasing" each-other, 3838 // that is %IV2 = phi [...], [ %IV1, %latch ] 3839 // In this case, if IV1 has an external use, we need to avoid adding both 3840 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3841 // don't already have an incoming value for the middle block. 3842 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3843 PHI->addIncoming(I.second, MiddleBlock); 3844 } 3845 } 3846 3847 namespace { 3848 3849 struct CSEDenseMapInfo { 3850 static bool canHandle(const Instruction *I) { 3851 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3852 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3853 } 3854 3855 static inline Instruction *getEmptyKey() { 3856 return DenseMapInfo<Instruction *>::getEmptyKey(); 3857 } 3858 3859 static inline Instruction *getTombstoneKey() { 3860 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3861 } 3862 3863 static unsigned getHashValue(const Instruction *I) { 3864 assert(canHandle(I) && "Unknown instruction!"); 3865 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3866 I->value_op_end())); 3867 } 3868 3869 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3870 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3871 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3872 return LHS == RHS; 3873 return LHS->isIdenticalTo(RHS); 3874 } 3875 }; 3876 3877 } // end anonymous namespace 3878 3879 ///\brief Perform cse of induction variable instructions. 3880 static void cse(BasicBlock *BB) { 3881 // Perform simple cse. 3882 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3883 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3884 Instruction *In = &*I++; 3885 3886 if (!CSEDenseMapInfo::canHandle(In)) 3887 continue; 3888 3889 // Check if we can replace this instruction with any of the 3890 // visited instructions. 3891 if (Instruction *V = CSEMap.lookup(In)) { 3892 In->replaceAllUsesWith(V); 3893 In->eraseFromParent(); 3894 continue; 3895 } 3896 3897 CSEMap[In] = In; 3898 } 3899 } 3900 3901 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3902 /// convenience wrapper for the type-based getScalarizationOverhead API. 3903 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3904 const TargetTransformInfo &TTI) { 3905 if (VF == 1) 3906 return 0; 3907 3908 unsigned Cost = 0; 3909 Type *RetTy = ToVectorTy(I->getType(), VF); 3910 if (!RetTy->isVoidTy() && 3911 (!isa<LoadInst>(I) || 3912 !TTI.supportsEfficientVectorElementLoadStore())) 3913 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3914 3915 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3916 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3917 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3918 } 3919 else if (!isa<StoreInst>(I) || 3920 !TTI.supportsEfficientVectorElementLoadStore()) { 3921 SmallVector<const Value *, 4> Operands(I->operand_values()); 3922 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3923 } 3924 3925 return Cost; 3926 } 3927 3928 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3929 // Return the cost of the instruction, including scalarization overhead if it's 3930 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3931 // i.e. either vector version isn't available, or is too expensive. 3932 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3933 const TargetTransformInfo &TTI, 3934 const TargetLibraryInfo *TLI, 3935 bool &NeedToScalarize) { 3936 Function *F = CI->getCalledFunction(); 3937 StringRef FnName = CI->getCalledFunction()->getName(); 3938 Type *ScalarRetTy = CI->getType(); 3939 SmallVector<Type *, 4> Tys, ScalarTys; 3940 for (auto &ArgOp : CI->arg_operands()) 3941 ScalarTys.push_back(ArgOp->getType()); 3942 3943 // Estimate cost of scalarized vector call. The source operands are assumed 3944 // to be vectors, so we need to extract individual elements from there, 3945 // execute VF scalar calls, and then gather the result into the vector return 3946 // value. 3947 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3948 if (VF == 1) 3949 return ScalarCallCost; 3950 3951 // Compute corresponding vector type for return value and arguments. 3952 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3953 for (Type *ScalarTy : ScalarTys) 3954 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3955 3956 // Compute costs of unpacking argument values for the scalar calls and 3957 // packing the return values to a vector. 3958 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3959 3960 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3961 3962 // If we can't emit a vector call for this function, then the currently found 3963 // cost is the cost we need to return. 3964 NeedToScalarize = true; 3965 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3966 return Cost; 3967 3968 // If the corresponding vector cost is cheaper, return its cost. 3969 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3970 if (VectorCallCost < Cost) { 3971 NeedToScalarize = false; 3972 return VectorCallCost; 3973 } 3974 return Cost; 3975 } 3976 3977 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3978 // factor VF. Return the cost of the instruction, including scalarization 3979 // overhead if it's needed. 3980 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3981 const TargetTransformInfo &TTI, 3982 const TargetLibraryInfo *TLI) { 3983 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3984 assert(ID && "Expected intrinsic call!"); 3985 3986 FastMathFlags FMF; 3987 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3988 FMF = FPMO->getFastMathFlags(); 3989 3990 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3991 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3992 } 3993 3994 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3995 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3996 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3997 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3998 } 3999 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 4000 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 4001 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 4002 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 4003 } 4004 4005 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 4006 // For every instruction `I` in MinBWs, truncate the operands, create a 4007 // truncated version of `I` and reextend its result. InstCombine runs 4008 // later and will remove any ext/trunc pairs. 4009 SmallPtrSet<Value *, 4> Erased; 4010 for (const auto &KV : Cost->getMinimalBitwidths()) { 4011 // If the value wasn't vectorized, we must maintain the original scalar 4012 // type. The absence of the value from VectorLoopValueMap indicates that it 4013 // wasn't vectorized. 4014 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4015 continue; 4016 for (unsigned Part = 0; Part < UF; ++Part) { 4017 Value *I = getOrCreateVectorValue(KV.first, Part); 4018 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 4019 continue; 4020 Type *OriginalTy = I->getType(); 4021 Type *ScalarTruncatedTy = 4022 IntegerType::get(OriginalTy->getContext(), KV.second); 4023 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 4024 OriginalTy->getVectorNumElements()); 4025 if (TruncatedTy == OriginalTy) 4026 continue; 4027 4028 IRBuilder<> B(cast<Instruction>(I)); 4029 auto ShrinkOperand = [&](Value *V) -> Value * { 4030 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4031 if (ZI->getSrcTy() == TruncatedTy) 4032 return ZI->getOperand(0); 4033 return B.CreateZExtOrTrunc(V, TruncatedTy); 4034 }; 4035 4036 // The actual instruction modification depends on the instruction type, 4037 // unfortunately. 4038 Value *NewI = nullptr; 4039 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4040 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4041 ShrinkOperand(BO->getOperand(1))); 4042 4043 // Any wrapping introduced by shrinking this operation shouldn't be 4044 // considered undefined behavior. So, we can't unconditionally copy 4045 // arithmetic wrapping flags to NewI. 4046 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4047 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4048 NewI = 4049 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4050 ShrinkOperand(CI->getOperand(1))); 4051 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4052 NewI = B.CreateSelect(SI->getCondition(), 4053 ShrinkOperand(SI->getTrueValue()), 4054 ShrinkOperand(SI->getFalseValue())); 4055 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4056 switch (CI->getOpcode()) { 4057 default: 4058 llvm_unreachable("Unhandled cast!"); 4059 case Instruction::Trunc: 4060 NewI = ShrinkOperand(CI->getOperand(0)); 4061 break; 4062 case Instruction::SExt: 4063 NewI = B.CreateSExtOrTrunc( 4064 CI->getOperand(0), 4065 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4066 break; 4067 case Instruction::ZExt: 4068 NewI = B.CreateZExtOrTrunc( 4069 CI->getOperand(0), 4070 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4071 break; 4072 } 4073 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4074 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 4075 auto *O0 = B.CreateZExtOrTrunc( 4076 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4077 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 4078 auto *O1 = B.CreateZExtOrTrunc( 4079 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4080 4081 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 4082 } else if (isa<LoadInst>(I)) { 4083 // Don't do anything with the operands, just extend the result. 4084 continue; 4085 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4086 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 4087 auto *O0 = B.CreateZExtOrTrunc( 4088 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4089 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4090 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4091 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4092 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 4093 auto *O0 = B.CreateZExtOrTrunc( 4094 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4095 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4096 } else { 4097 llvm_unreachable("Unhandled instruction type!"); 4098 } 4099 4100 // Lastly, extend the result. 4101 NewI->takeName(cast<Instruction>(I)); 4102 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4103 I->replaceAllUsesWith(Res); 4104 cast<Instruction>(I)->eraseFromParent(); 4105 Erased.insert(I); 4106 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 4107 } 4108 } 4109 4110 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4111 for (const auto &KV : Cost->getMinimalBitwidths()) { 4112 // If the value wasn't vectorized, we must maintain the original scalar 4113 // type. The absence of the value from VectorLoopValueMap indicates that it 4114 // wasn't vectorized. 4115 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4116 continue; 4117 for (unsigned Part = 0; Part < UF; ++Part) { 4118 Value *I = getOrCreateVectorValue(KV.first, Part); 4119 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4120 if (Inst && Inst->use_empty()) { 4121 Value *NewI = Inst->getOperand(0); 4122 Inst->eraseFromParent(); 4123 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 4124 } 4125 } 4126 } 4127 } 4128 4129 void InnerLoopVectorizer::fixVectorizedLoop() { 4130 // Insert truncates and extends for any truncated instructions as hints to 4131 // InstCombine. 4132 if (VF > 1) 4133 truncateToMinimalBitwidths(); 4134 4135 // At this point every instruction in the original loop is widened to a 4136 // vector form. Now we need to fix the recurrences in the loop. These PHI 4137 // nodes are currently empty because we did not want to introduce cycles. 4138 // This is the second stage of vectorizing recurrences. 4139 fixCrossIterationPHIs(); 4140 4141 // Update the dominator tree. 4142 // 4143 // FIXME: After creating the structure of the new loop, the dominator tree is 4144 // no longer up-to-date, and it remains that way until we update it 4145 // here. An out-of-date dominator tree is problematic for SCEV, 4146 // because SCEVExpander uses it to guide code generation. The 4147 // vectorizer use SCEVExpanders in several places. Instead, we should 4148 // keep the dominator tree up-to-date as we go. 4149 updateAnalysis(); 4150 4151 // Fix-up external users of the induction variables. 4152 for (auto &Entry : *Legal->getInductionVars()) 4153 fixupIVUsers(Entry.first, Entry.second, 4154 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4155 IVEndValues[Entry.first], LoopMiddleBlock); 4156 4157 fixLCSSAPHIs(); 4158 for (Instruction *PI : PredicatedInstructions) 4159 sinkScalarOperands(&*PI); 4160 4161 // Remove redundant induction instructions. 4162 cse(LoopVectorBody); 4163 } 4164 4165 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4166 // In order to support recurrences we need to be able to vectorize Phi nodes. 4167 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4168 // stage #2: We now need to fix the recurrences by adding incoming edges to 4169 // the currently empty PHI nodes. At this point every instruction in the 4170 // original loop is widened to a vector form so we can use them to construct 4171 // the incoming edges. 4172 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4173 // Handle first-order recurrences and reductions that need to be fixed. 4174 if (Legal->isFirstOrderRecurrence(&Phi)) 4175 fixFirstOrderRecurrence(&Phi); 4176 else if (Legal->isReductionVariable(&Phi)) 4177 fixReduction(&Phi); 4178 } 4179 } 4180 4181 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4182 // This is the second phase of vectorizing first-order recurrences. An 4183 // overview of the transformation is described below. Suppose we have the 4184 // following loop. 4185 // 4186 // for (int i = 0; i < n; ++i) 4187 // b[i] = a[i] - a[i - 1]; 4188 // 4189 // There is a first-order recurrence on "a". For this loop, the shorthand 4190 // scalar IR looks like: 4191 // 4192 // scalar.ph: 4193 // s_init = a[-1] 4194 // br scalar.body 4195 // 4196 // scalar.body: 4197 // i = phi [0, scalar.ph], [i+1, scalar.body] 4198 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4199 // s2 = a[i] 4200 // b[i] = s2 - s1 4201 // br cond, scalar.body, ... 4202 // 4203 // In this example, s1 is a recurrence because it's value depends on the 4204 // previous iteration. In the first phase of vectorization, we created a 4205 // temporary value for s1. We now complete the vectorization and produce the 4206 // shorthand vector IR shown below (for VF = 4, UF = 1). 4207 // 4208 // vector.ph: 4209 // v_init = vector(..., ..., ..., a[-1]) 4210 // br vector.body 4211 // 4212 // vector.body 4213 // i = phi [0, vector.ph], [i+4, vector.body] 4214 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4215 // v2 = a[i, i+1, i+2, i+3]; 4216 // v3 = vector(v1(3), v2(0, 1, 2)) 4217 // b[i, i+1, i+2, i+3] = v2 - v3 4218 // br cond, vector.body, middle.block 4219 // 4220 // middle.block: 4221 // x = v2(3) 4222 // br scalar.ph 4223 // 4224 // scalar.ph: 4225 // s_init = phi [x, middle.block], [a[-1], otherwise] 4226 // br scalar.body 4227 // 4228 // After execution completes the vector loop, we extract the next value of 4229 // the recurrence (x) to use as the initial value in the scalar loop. 4230 4231 // Get the original loop preheader and single loop latch. 4232 auto *Preheader = OrigLoop->getLoopPreheader(); 4233 auto *Latch = OrigLoop->getLoopLatch(); 4234 4235 // Get the initial and previous values of the scalar recurrence. 4236 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4237 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4238 4239 // Create a vector from the initial value. 4240 auto *VectorInit = ScalarInit; 4241 if (VF > 1) { 4242 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4243 VectorInit = Builder.CreateInsertElement( 4244 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4245 Builder.getInt32(VF - 1), "vector.recur.init"); 4246 } 4247 4248 // We constructed a temporary phi node in the first phase of vectorization. 4249 // This phi node will eventually be deleted. 4250 Builder.SetInsertPoint( 4251 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4252 4253 // Create a phi node for the new recurrence. The current value will either be 4254 // the initial value inserted into a vector or loop-varying vector value. 4255 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4256 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4257 4258 // Get the vectorized previous value of the last part UF - 1. It appears last 4259 // among all unrolled iterations, due to the order of their construction. 4260 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4261 4262 // Set the insertion point after the previous value if it is an instruction. 4263 // Note that the previous value may have been constant-folded so it is not 4264 // guaranteed to be an instruction in the vector loop. Also, if the previous 4265 // value is a phi node, we should insert after all the phi nodes to avoid 4266 // breaking basic block verification. 4267 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4268 isa<PHINode>(PreviousLastPart)) 4269 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4270 else 4271 Builder.SetInsertPoint( 4272 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4273 4274 // We will construct a vector for the recurrence by combining the values for 4275 // the current and previous iterations. This is the required shuffle mask. 4276 SmallVector<Constant *, 8> ShuffleMask(VF); 4277 ShuffleMask[0] = Builder.getInt32(VF - 1); 4278 for (unsigned I = 1; I < VF; ++I) 4279 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4280 4281 // The vector from which to take the initial value for the current iteration 4282 // (actual or unrolled). Initially, this is the vector phi node. 4283 Value *Incoming = VecPhi; 4284 4285 // Shuffle the current and previous vector and update the vector parts. 4286 for (unsigned Part = 0; Part < UF; ++Part) { 4287 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4288 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4289 auto *Shuffle = 4290 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4291 ConstantVector::get(ShuffleMask)) 4292 : Incoming; 4293 PhiPart->replaceAllUsesWith(Shuffle); 4294 cast<Instruction>(PhiPart)->eraseFromParent(); 4295 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4296 Incoming = PreviousPart; 4297 } 4298 4299 // Fix the latch value of the new recurrence in the vector loop. 4300 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4301 4302 // Extract the last vector element in the middle block. This will be the 4303 // initial value for the recurrence when jumping to the scalar loop. 4304 auto *ExtractForScalar = Incoming; 4305 if (VF > 1) { 4306 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4307 ExtractForScalar = Builder.CreateExtractElement( 4308 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4309 } 4310 // Extract the second last element in the middle block if the 4311 // Phi is used outside the loop. We need to extract the phi itself 4312 // and not the last element (the phi update in the current iteration). This 4313 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4314 // when the scalar loop is not run at all. 4315 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4316 if (VF > 1) 4317 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4318 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4319 // When loop is unrolled without vectorizing, initialize 4320 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4321 // `Incoming`. This is analogous to the vectorized case above: extracting the 4322 // second last element when VF > 1. 4323 else if (UF > 1) 4324 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4325 4326 // Fix the initial value of the original recurrence in the scalar loop. 4327 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4328 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4329 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4330 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4331 Start->addIncoming(Incoming, BB); 4332 } 4333 4334 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4335 Phi->setName("scalar.recur"); 4336 4337 // Finally, fix users of the recurrence outside the loop. The users will need 4338 // either the last value of the scalar recurrence or the last value of the 4339 // vector recurrence we extracted in the middle block. Since the loop is in 4340 // LCSSA form, we just need to find the phi node for the original scalar 4341 // recurrence in the exit block, and then add an edge for the middle block. 4342 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4343 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4344 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4345 break; 4346 } 4347 } 4348 } 4349 4350 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4351 Constant *Zero = Builder.getInt32(0); 4352 4353 // Get it's reduction variable descriptor. 4354 assert(Legal->isReductionVariable(Phi) && 4355 "Unable to find the reduction variable"); 4356 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4357 4358 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4359 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4360 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4361 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4362 RdxDesc.getMinMaxRecurrenceKind(); 4363 setDebugLocFromInst(Builder, ReductionStartValue); 4364 4365 // We need to generate a reduction vector from the incoming scalar. 4366 // To do so, we need to generate the 'identity' vector and override 4367 // one of the elements with the incoming scalar reduction. We need 4368 // to do it in the vector-loop preheader. 4369 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4370 4371 // This is the vector-clone of the value that leaves the loop. 4372 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4373 4374 // Find the reduction identity variable. Zero for addition, or, xor, 4375 // one for multiplication, -1 for And. 4376 Value *Identity; 4377 Value *VectorStart; 4378 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4379 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4380 // MinMax reduction have the start value as their identify. 4381 if (VF == 1) { 4382 VectorStart = Identity = ReductionStartValue; 4383 } else { 4384 VectorStart = Identity = 4385 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4386 } 4387 } else { 4388 // Handle other reduction kinds: 4389 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4390 RK, VecTy->getScalarType()); 4391 if (VF == 1) { 4392 Identity = Iden; 4393 // This vector is the Identity vector where the first element is the 4394 // incoming scalar reduction. 4395 VectorStart = ReductionStartValue; 4396 } else { 4397 Identity = ConstantVector::getSplat(VF, Iden); 4398 4399 // This vector is the Identity vector where the first element is the 4400 // incoming scalar reduction. 4401 VectorStart = 4402 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4403 } 4404 } 4405 4406 // Fix the vector-loop phi. 4407 4408 // Reductions do not have to start at zero. They can start with 4409 // any loop invariant values. 4410 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4411 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4412 for (unsigned Part = 0; Part < UF; ++Part) { 4413 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4414 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4415 // Make sure to add the reduction stat value only to the 4416 // first unroll part. 4417 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4418 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4419 cast<PHINode>(VecRdxPhi) 4420 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4421 } 4422 4423 // Before each round, move the insertion point right between 4424 // the PHIs and the values we are going to write. 4425 // This allows us to write both PHINodes and the extractelement 4426 // instructions. 4427 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4428 4429 setDebugLocFromInst(Builder, LoopExitInst); 4430 4431 // If the vector reduction can be performed in a smaller type, we truncate 4432 // then extend the loop exit value to enable InstCombine to evaluate the 4433 // entire expression in the smaller type. 4434 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4435 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4436 Builder.SetInsertPoint( 4437 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4438 VectorParts RdxParts(UF); 4439 for (unsigned Part = 0; Part < UF; ++Part) { 4440 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4441 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4442 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4443 : Builder.CreateZExt(Trunc, VecTy); 4444 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4445 UI != RdxParts[Part]->user_end();) 4446 if (*UI != Trunc) { 4447 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4448 RdxParts[Part] = Extnd; 4449 } else { 4450 ++UI; 4451 } 4452 } 4453 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4454 for (unsigned Part = 0; Part < UF; ++Part) { 4455 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4456 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4457 } 4458 } 4459 4460 // Reduce all of the unrolled parts into a single vector. 4461 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4462 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4463 setDebugLocFromInst(Builder, ReducedPartRdx); 4464 for (unsigned Part = 1; Part < UF; ++Part) { 4465 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4466 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4467 // Floating point operations had to be 'fast' to enable the reduction. 4468 ReducedPartRdx = addFastMathFlag( 4469 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4470 ReducedPartRdx, "bin.rdx")); 4471 else 4472 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4473 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4474 } 4475 4476 if (VF > 1) { 4477 bool NoNaN = Legal->hasFunNoNaNAttr(); 4478 ReducedPartRdx = 4479 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4480 // If the reduction can be performed in a smaller type, we need to extend 4481 // the reduction to the wider type before we branch to the original loop. 4482 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4483 ReducedPartRdx = 4484 RdxDesc.isSigned() 4485 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4486 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4487 } 4488 4489 // Create a phi node that merges control-flow from the backedge-taken check 4490 // block and the middle block. 4491 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4492 LoopScalarPreHeader->getTerminator()); 4493 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4494 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4495 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4496 4497 // Now, we need to fix the users of the reduction variable 4498 // inside and outside of the scalar remainder loop. 4499 // We know that the loop is in LCSSA form. We need to update the 4500 // PHI nodes in the exit blocks. 4501 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4502 // All PHINodes need to have a single entry edge, or two if 4503 // we already fixed them. 4504 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4505 4506 // We found a reduction value exit-PHI. Update it with the 4507 // incoming bypass edge. 4508 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4509 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4510 } // end of the LCSSA phi scan. 4511 4512 // Fix the scalar loop reduction variable with the incoming reduction sum 4513 // from the vector body and from the backedge value. 4514 int IncomingEdgeBlockIdx = 4515 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4516 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4517 // Pick the other block. 4518 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4519 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4520 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4521 } 4522 4523 void InnerLoopVectorizer::fixLCSSAPHIs() { 4524 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4525 if (LCSSAPhi.getNumIncomingValues() == 1) { 4526 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4527 "Incoming value isn't loop invariant"); 4528 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4529 } 4530 } 4531 } 4532 4533 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4534 // The basic block and loop containing the predicated instruction. 4535 auto *PredBB = PredInst->getParent(); 4536 auto *VectorLoop = LI->getLoopFor(PredBB); 4537 4538 // Initialize a worklist with the operands of the predicated instruction. 4539 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4540 4541 // Holds instructions that we need to analyze again. An instruction may be 4542 // reanalyzed if we don't yet know if we can sink it or not. 4543 SmallVector<Instruction *, 8> InstsToReanalyze; 4544 4545 // Returns true if a given use occurs in the predicated block. Phi nodes use 4546 // their operands in their corresponding predecessor blocks. 4547 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4548 auto *I = cast<Instruction>(U.getUser()); 4549 BasicBlock *BB = I->getParent(); 4550 if (auto *Phi = dyn_cast<PHINode>(I)) 4551 BB = Phi->getIncomingBlock( 4552 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4553 return BB == PredBB; 4554 }; 4555 4556 // Iteratively sink the scalarized operands of the predicated instruction 4557 // into the block we created for it. When an instruction is sunk, it's 4558 // operands are then added to the worklist. The algorithm ends after one pass 4559 // through the worklist doesn't sink a single instruction. 4560 bool Changed; 4561 do { 4562 // Add the instructions that need to be reanalyzed to the worklist, and 4563 // reset the changed indicator. 4564 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4565 InstsToReanalyze.clear(); 4566 Changed = false; 4567 4568 while (!Worklist.empty()) { 4569 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4570 4571 // We can't sink an instruction if it is a phi node, is already in the 4572 // predicated block, is not in the loop, or may have side effects. 4573 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4574 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4575 continue; 4576 4577 // It's legal to sink the instruction if all its uses occur in the 4578 // predicated block. Otherwise, there's nothing to do yet, and we may 4579 // need to reanalyze the instruction. 4580 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4581 InstsToReanalyze.push_back(I); 4582 continue; 4583 } 4584 4585 // Move the instruction to the beginning of the predicated block, and add 4586 // it's operands to the worklist. 4587 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4588 Worklist.insert(I->op_begin(), I->op_end()); 4589 4590 // The sinking may have enabled other instructions to be sunk, so we will 4591 // need to iterate. 4592 Changed = true; 4593 } 4594 } while (Changed); 4595 } 4596 4597 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4598 unsigned VF) { 4599 assert(PN->getParent() == OrigLoop->getHeader() && 4600 "Non-header phis should have been handled elsewhere"); 4601 4602 PHINode *P = cast<PHINode>(PN); 4603 // In order to support recurrences we need to be able to vectorize Phi nodes. 4604 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4605 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4606 // this value when we vectorize all of the instructions that use the PHI. 4607 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4608 for (unsigned Part = 0; Part < UF; ++Part) { 4609 // This is phase one of vectorizing PHIs. 4610 Type *VecTy = 4611 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4612 Value *EntryPart = PHINode::Create( 4613 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4614 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4615 } 4616 return; 4617 } 4618 4619 setDebugLocFromInst(Builder, P); 4620 4621 // This PHINode must be an induction variable. 4622 // Make sure that we know about it. 4623 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4624 4625 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4626 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4627 4628 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4629 // which can be found from the original scalar operations. 4630 switch (II.getKind()) { 4631 case InductionDescriptor::IK_NoInduction: 4632 llvm_unreachable("Unknown induction"); 4633 case InductionDescriptor::IK_IntInduction: 4634 case InductionDescriptor::IK_FpInduction: 4635 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4636 case InductionDescriptor::IK_PtrInduction: { 4637 // Handle the pointer induction variable case. 4638 assert(P->getType()->isPointerTy() && "Unexpected type."); 4639 // This is the normalized GEP that starts counting at zero. 4640 Value *PtrInd = Induction; 4641 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4642 // Determine the number of scalars we need to generate for each unroll 4643 // iteration. If the instruction is uniform, we only need to generate the 4644 // first lane. Otherwise, we generate all VF values. 4645 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4646 // These are the scalar results. Notice that we don't generate vector GEPs 4647 // because scalar GEPs result in better code. 4648 for (unsigned Part = 0; Part < UF; ++Part) { 4649 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4650 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4651 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4652 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4653 SclrGep->setName("next.gep"); 4654 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4655 } 4656 } 4657 return; 4658 } 4659 } 4660 } 4661 4662 /// A helper function for checking whether an integer division-related 4663 /// instruction may divide by zero (in which case it must be predicated if 4664 /// executed conditionally in the scalar code). 4665 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4666 /// Non-zero divisors that are non compile-time constants will not be 4667 /// converted into multiplication, so we will still end up scalarizing 4668 /// the division, but can do so w/o predication. 4669 static bool mayDivideByZero(Instruction &I) { 4670 assert((I.getOpcode() == Instruction::UDiv || 4671 I.getOpcode() == Instruction::SDiv || 4672 I.getOpcode() == Instruction::URem || 4673 I.getOpcode() == Instruction::SRem) && 4674 "Unexpected instruction"); 4675 Value *Divisor = I.getOperand(1); 4676 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4677 return !CInt || CInt->isZero(); 4678 } 4679 4680 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4681 switch (I.getOpcode()) { 4682 case Instruction::Br: 4683 case Instruction::PHI: 4684 llvm_unreachable("This instruction is handled by a different recipe."); 4685 case Instruction::GetElementPtr: { 4686 // Construct a vector GEP by widening the operands of the scalar GEP as 4687 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4688 // results in a vector of pointers when at least one operand of the GEP 4689 // is vector-typed. Thus, to keep the representation compact, we only use 4690 // vector-typed operands for loop-varying values. 4691 auto *GEP = cast<GetElementPtrInst>(&I); 4692 4693 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4694 // If we are vectorizing, but the GEP has only loop-invariant operands, 4695 // the GEP we build (by only using vector-typed operands for 4696 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4697 // produce a vector of pointers, we need to either arbitrarily pick an 4698 // operand to broadcast, or broadcast a clone of the original GEP. 4699 // Here, we broadcast a clone of the original. 4700 // 4701 // TODO: If at some point we decide to scalarize instructions having 4702 // loop-invariant operands, this special case will no longer be 4703 // required. We would add the scalarization decision to 4704 // collectLoopScalars() and teach getVectorValue() to broadcast 4705 // the lane-zero scalar value. 4706 auto *Clone = Builder.Insert(GEP->clone()); 4707 for (unsigned Part = 0; Part < UF; ++Part) { 4708 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4709 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4710 addMetadata(EntryPart, GEP); 4711 } 4712 } else { 4713 // If the GEP has at least one loop-varying operand, we are sure to 4714 // produce a vector of pointers. But if we are only unrolling, we want 4715 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4716 // produce with the code below will be scalar (if VF == 1) or vector 4717 // (otherwise). Note that for the unroll-only case, we still maintain 4718 // values in the vector mapping with initVector, as we do for other 4719 // instructions. 4720 for (unsigned Part = 0; Part < UF; ++Part) { 4721 // The pointer operand of the new GEP. If it's loop-invariant, we 4722 // won't broadcast it. 4723 auto *Ptr = 4724 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4725 ? GEP->getPointerOperand() 4726 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4727 4728 // Collect all the indices for the new GEP. If any index is 4729 // loop-invariant, we won't broadcast it. 4730 SmallVector<Value *, 4> Indices; 4731 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4732 if (OrigLoop->isLoopInvariant(U.get())) 4733 Indices.push_back(U.get()); 4734 else 4735 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4736 } 4737 4738 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4739 // but it should be a vector, otherwise. 4740 auto *NewGEP = GEP->isInBounds() 4741 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4742 : Builder.CreateGEP(Ptr, Indices); 4743 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4744 "NewGEP is not a pointer vector"); 4745 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4746 addMetadata(NewGEP, GEP); 4747 } 4748 } 4749 4750 break; 4751 } 4752 case Instruction::UDiv: 4753 case Instruction::SDiv: 4754 case Instruction::SRem: 4755 case Instruction::URem: 4756 case Instruction::Add: 4757 case Instruction::FAdd: 4758 case Instruction::Sub: 4759 case Instruction::FSub: 4760 case Instruction::Mul: 4761 case Instruction::FMul: 4762 case Instruction::FDiv: 4763 case Instruction::FRem: 4764 case Instruction::Shl: 4765 case Instruction::LShr: 4766 case Instruction::AShr: 4767 case Instruction::And: 4768 case Instruction::Or: 4769 case Instruction::Xor: { 4770 // Just widen binops. 4771 auto *BinOp = cast<BinaryOperator>(&I); 4772 setDebugLocFromInst(Builder, BinOp); 4773 4774 for (unsigned Part = 0; Part < UF; ++Part) { 4775 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4776 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4777 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4778 4779 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4780 VecOp->copyIRFlags(BinOp); 4781 4782 // Use this vector value for all users of the original instruction. 4783 VectorLoopValueMap.setVectorValue(&I, Part, V); 4784 addMetadata(V, BinOp); 4785 } 4786 4787 break; 4788 } 4789 case Instruction::Select: { 4790 // Widen selects. 4791 // If the selector is loop invariant we can create a select 4792 // instruction with a scalar condition. Otherwise, use vector-select. 4793 auto *SE = PSE.getSE(); 4794 bool InvariantCond = 4795 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4796 setDebugLocFromInst(Builder, &I); 4797 4798 // The condition can be loop invariant but still defined inside the 4799 // loop. This means that we can't just use the original 'cond' value. 4800 // We have to take the 'vectorized' value and pick the first lane. 4801 // Instcombine will make this a no-op. 4802 4803 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4804 4805 for (unsigned Part = 0; Part < UF; ++Part) { 4806 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4807 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4808 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4809 Value *Sel = 4810 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4811 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4812 addMetadata(Sel, &I); 4813 } 4814 4815 break; 4816 } 4817 4818 case Instruction::ICmp: 4819 case Instruction::FCmp: { 4820 // Widen compares. Generate vector compares. 4821 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4822 auto *Cmp = dyn_cast<CmpInst>(&I); 4823 setDebugLocFromInst(Builder, Cmp); 4824 for (unsigned Part = 0; Part < UF; ++Part) { 4825 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4826 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4827 Value *C = nullptr; 4828 if (FCmp) { 4829 // Propagate fast math flags. 4830 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4831 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4832 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4833 } else { 4834 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4835 } 4836 VectorLoopValueMap.setVectorValue(&I, Part, C); 4837 addMetadata(C, &I); 4838 } 4839 4840 break; 4841 } 4842 4843 case Instruction::ZExt: 4844 case Instruction::SExt: 4845 case Instruction::FPToUI: 4846 case Instruction::FPToSI: 4847 case Instruction::FPExt: 4848 case Instruction::PtrToInt: 4849 case Instruction::IntToPtr: 4850 case Instruction::SIToFP: 4851 case Instruction::UIToFP: 4852 case Instruction::Trunc: 4853 case Instruction::FPTrunc: 4854 case Instruction::BitCast: { 4855 auto *CI = dyn_cast<CastInst>(&I); 4856 setDebugLocFromInst(Builder, CI); 4857 4858 /// Vectorize casts. 4859 Type *DestTy = 4860 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4861 4862 for (unsigned Part = 0; Part < UF; ++Part) { 4863 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4864 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4865 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4866 addMetadata(Cast, &I); 4867 } 4868 break; 4869 } 4870 4871 case Instruction::Call: { 4872 // Ignore dbg intrinsics. 4873 if (isa<DbgInfoIntrinsic>(I)) 4874 break; 4875 setDebugLocFromInst(Builder, &I); 4876 4877 Module *M = I.getParent()->getParent()->getParent(); 4878 auto *CI = cast<CallInst>(&I); 4879 4880 StringRef FnName = CI->getCalledFunction()->getName(); 4881 Function *F = CI->getCalledFunction(); 4882 Type *RetTy = ToVectorTy(CI->getType(), VF); 4883 SmallVector<Type *, 4> Tys; 4884 for (Value *ArgOperand : CI->arg_operands()) 4885 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4886 4887 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4888 4889 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4890 // version of the instruction. 4891 // Is it beneficial to perform intrinsic call compared to lib call? 4892 bool NeedToScalarize; 4893 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4894 bool UseVectorIntrinsic = 4895 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4896 assert((UseVectorIntrinsic || !NeedToScalarize) && 4897 "Instruction should be scalarized elsewhere."); 4898 4899 for (unsigned Part = 0; Part < UF; ++Part) { 4900 SmallVector<Value *, 4> Args; 4901 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4902 Value *Arg = CI->getArgOperand(i); 4903 // Some intrinsics have a scalar argument - don't replace it with a 4904 // vector. 4905 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4906 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4907 Args.push_back(Arg); 4908 } 4909 4910 Function *VectorF; 4911 if (UseVectorIntrinsic) { 4912 // Use vector version of the intrinsic. 4913 Type *TysForDecl[] = {CI->getType()}; 4914 if (VF > 1) 4915 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4916 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4917 } else { 4918 // Use vector version of the library call. 4919 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4920 assert(!VFnName.empty() && "Vector function name is empty."); 4921 VectorF = M->getFunction(VFnName); 4922 if (!VectorF) { 4923 // Generate a declaration 4924 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4925 VectorF = 4926 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4927 VectorF->copyAttributesFrom(F); 4928 } 4929 } 4930 assert(VectorF && "Can't create vector function."); 4931 4932 SmallVector<OperandBundleDef, 1> OpBundles; 4933 CI->getOperandBundlesAsDefs(OpBundles); 4934 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4935 4936 if (isa<FPMathOperator>(V)) 4937 V->copyFastMathFlags(CI); 4938 4939 VectorLoopValueMap.setVectorValue(&I, Part, V); 4940 addMetadata(V, &I); 4941 } 4942 4943 break; 4944 } 4945 4946 default: 4947 // This instruction is not vectorized by simple widening. 4948 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4949 llvm_unreachable("Unhandled instruction!"); 4950 } // end of switch. 4951 } 4952 4953 void InnerLoopVectorizer::updateAnalysis() { 4954 // Forget the original basic block. 4955 PSE.getSE()->forgetLoop(OrigLoop); 4956 4957 // Update the dominator tree information. 4958 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4959 "Entry does not dominate exit."); 4960 4961 DT->addNewBlock(LoopMiddleBlock, 4962 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4963 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4964 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4965 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4966 DEBUG(DT->verifyDomTree()); 4967 } 4968 4969 /// \brief Check whether it is safe to if-convert this phi node. 4970 /// 4971 /// Phi nodes with constant expressions that can trap are not safe to if 4972 /// convert. 4973 static bool canIfConvertPHINodes(BasicBlock *BB) { 4974 for (PHINode &Phi : BB->phis()) { 4975 for (Value *V : Phi.incoming_values()) 4976 if (auto *C = dyn_cast<Constant>(V)) 4977 if (C->canTrap()) 4978 return false; 4979 } 4980 return true; 4981 } 4982 4983 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4984 if (!EnableIfConversion) { 4985 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4986 << "if-conversion is disabled"); 4987 return false; 4988 } 4989 4990 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4991 4992 // A list of pointers that we can safely read and write to. 4993 SmallPtrSet<Value *, 8> SafePointes; 4994 4995 // Collect safe addresses. 4996 for (BasicBlock *BB : TheLoop->blocks()) { 4997 if (blockNeedsPredication(BB)) 4998 continue; 4999 5000 for (Instruction &I : *BB) 5001 if (auto *Ptr = getPointerOperand(&I)) 5002 SafePointes.insert(Ptr); 5003 } 5004 5005 // Collect the blocks that need predication. 5006 BasicBlock *Header = TheLoop->getHeader(); 5007 for (BasicBlock *BB : TheLoop->blocks()) { 5008 // We don't support switch statements inside loops. 5009 if (!isa<BranchInst>(BB->getTerminator())) { 5010 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5011 << "loop contains a switch statement"); 5012 return false; 5013 } 5014 5015 // We must be able to predicate all blocks that need to be predicated. 5016 if (blockNeedsPredication(BB)) { 5017 if (!blockCanBePredicated(BB, SafePointes)) { 5018 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5019 << "control flow cannot be substituted for a select"); 5020 return false; 5021 } 5022 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5023 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5024 << "control flow cannot be substituted for a select"); 5025 return false; 5026 } 5027 } 5028 5029 // We can if-convert this loop. 5030 return true; 5031 } 5032 5033 bool LoopVectorizationLegality::canVectorize() { 5034 // Store the result and return it at the end instead of exiting early, in case 5035 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5036 bool Result = true; 5037 5038 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 5039 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5040 // be canonicalized. 5041 if (!TheLoop->getLoopPreheader()) { 5042 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 5043 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5044 << "loop control flow is not understood by vectorizer"); 5045 if (DoExtraAnalysis) 5046 Result = false; 5047 else 5048 return false; 5049 } 5050 5051 // FIXME: The code is currently dead, since the loop gets sent to 5052 // LoopVectorizationLegality is already an innermost loop. 5053 // 5054 // We can only vectorize innermost loops. 5055 if (!TheLoop->empty()) { 5056 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5057 << "loop is not the innermost loop"); 5058 if (DoExtraAnalysis) 5059 Result = false; 5060 else 5061 return false; 5062 } 5063 5064 // We must have a single backedge. 5065 if (TheLoop->getNumBackEdges() != 1) { 5066 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5067 << "loop control flow is not understood by vectorizer"); 5068 if (DoExtraAnalysis) 5069 Result = false; 5070 else 5071 return false; 5072 } 5073 5074 // We must have a single exiting block. 5075 if (!TheLoop->getExitingBlock()) { 5076 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5077 << "loop control flow is not understood by vectorizer"); 5078 if (DoExtraAnalysis) 5079 Result = false; 5080 else 5081 return false; 5082 } 5083 5084 // We only handle bottom-tested loops, i.e. loop in which the condition is 5085 // checked at the end of each iteration. With that we can assume that all 5086 // instructions in the loop are executed the same number of times. 5087 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5088 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5089 << "loop control flow is not understood by vectorizer"); 5090 if (DoExtraAnalysis) 5091 Result = false; 5092 else 5093 return false; 5094 } 5095 5096 // We need to have a loop header. 5097 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5098 << '\n'); 5099 5100 // Check if we can if-convert non-single-bb loops. 5101 unsigned NumBlocks = TheLoop->getNumBlocks(); 5102 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5103 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5104 if (DoExtraAnalysis) 5105 Result = false; 5106 else 5107 return false; 5108 } 5109 5110 // Check if we can vectorize the instructions and CFG in this loop. 5111 if (!canVectorizeInstrs()) { 5112 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5113 if (DoExtraAnalysis) 5114 Result = false; 5115 else 5116 return false; 5117 } 5118 5119 // Go over each instruction and look at memory deps. 5120 if (!canVectorizeMemory()) { 5121 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5122 if (DoExtraAnalysis) 5123 Result = false; 5124 else 5125 return false; 5126 } 5127 5128 DEBUG(dbgs() << "LV: We can vectorize this loop" 5129 << (LAI->getRuntimePointerChecking()->Need 5130 ? " (with a runtime bound check)" 5131 : "") 5132 << "!\n"); 5133 5134 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5135 5136 // If an override option has been passed in for interleaved accesses, use it. 5137 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5138 UseInterleaved = EnableInterleavedMemAccesses; 5139 5140 // Analyze interleaved memory accesses. 5141 if (UseInterleaved) 5142 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5143 5144 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5145 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5146 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5147 5148 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5149 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5150 << "Too many SCEV assumptions need to be made and checked " 5151 << "at runtime"); 5152 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5153 if (DoExtraAnalysis) 5154 Result = false; 5155 else 5156 return false; 5157 } 5158 5159 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5160 // we can vectorize, and at this point we don't have any other mem analysis 5161 // which may limit our maximum vectorization factor, so just return true with 5162 // no restrictions. 5163 return Result; 5164 } 5165 5166 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5167 if (Ty->isPointerTy()) 5168 return DL.getIntPtrType(Ty); 5169 5170 // It is possible that char's or short's overflow when we ask for the loop's 5171 // trip count, work around this by changing the type size. 5172 if (Ty->getScalarSizeInBits() < 32) 5173 return Type::getInt32Ty(Ty->getContext()); 5174 5175 return Ty; 5176 } 5177 5178 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5179 Ty0 = convertPointerToIntegerType(DL, Ty0); 5180 Ty1 = convertPointerToIntegerType(DL, Ty1); 5181 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5182 return Ty0; 5183 return Ty1; 5184 } 5185 5186 /// \brief Check that the instruction has outside loop users and is not an 5187 /// identified reduction variable. 5188 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5189 SmallPtrSetImpl<Value *> &AllowedExit) { 5190 // Reduction and Induction instructions are allowed to have exit users. All 5191 // other instructions must not have external users. 5192 if (!AllowedExit.count(Inst)) 5193 // Check that all of the users of the loop are inside the BB. 5194 for (User *U : Inst->users()) { 5195 Instruction *UI = cast<Instruction>(U); 5196 // This user may be a reduction exit value. 5197 if (!TheLoop->contains(UI)) { 5198 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5199 return true; 5200 } 5201 } 5202 return false; 5203 } 5204 5205 void LoopVectorizationLegality::addInductionPhi( 5206 PHINode *Phi, const InductionDescriptor &ID, 5207 SmallPtrSetImpl<Value *> &AllowedExit) { 5208 Inductions[Phi] = ID; 5209 5210 // In case this induction also comes with casts that we know we can ignore 5211 // in the vectorized loop body, record them here. All casts could be recorded 5212 // here for ignoring, but suffices to record only the first (as it is the 5213 // only one that may bw used outside the cast sequence). 5214 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5215 if (!Casts.empty()) 5216 InductionCastsToIgnore.insert(*Casts.begin()); 5217 5218 Type *PhiTy = Phi->getType(); 5219 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5220 5221 // Get the widest type. 5222 if (!PhiTy->isFloatingPointTy()) { 5223 if (!WidestIndTy) 5224 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5225 else 5226 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5227 } 5228 5229 // Int inductions are special because we only allow one IV. 5230 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5231 ID.getConstIntStepValue() && 5232 ID.getConstIntStepValue()->isOne() && 5233 isa<Constant>(ID.getStartValue()) && 5234 cast<Constant>(ID.getStartValue())->isNullValue()) { 5235 5236 // Use the phi node with the widest type as induction. Use the last 5237 // one if there are multiple (no good reason for doing this other 5238 // than it is expedient). We've checked that it begins at zero and 5239 // steps by one, so this is a canonical induction variable. 5240 if (!PrimaryInduction || PhiTy == WidestIndTy) 5241 PrimaryInduction = Phi; 5242 } 5243 5244 // Both the PHI node itself, and the "post-increment" value feeding 5245 // back into the PHI node may have external users. 5246 // We can allow those uses, except if the SCEVs we have for them rely 5247 // on predicates that only hold within the loop, since allowing the exit 5248 // currently means re-using this SCEV outside the loop. 5249 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5250 AllowedExit.insert(Phi); 5251 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5252 } 5253 5254 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5255 } 5256 5257 bool LoopVectorizationLegality::canVectorizeInstrs() { 5258 BasicBlock *Header = TheLoop->getHeader(); 5259 5260 // Look for the attribute signaling the absence of NaNs. 5261 Function &F = *Header->getParent(); 5262 HasFunNoNaNAttr = 5263 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5264 5265 // For each block in the loop. 5266 for (BasicBlock *BB : TheLoop->blocks()) { 5267 // Scan the instructions in the block and look for hazards. 5268 for (Instruction &I : *BB) { 5269 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5270 Type *PhiTy = Phi->getType(); 5271 // Check that this PHI type is allowed. 5272 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5273 !PhiTy->isPointerTy()) { 5274 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5275 << "loop control flow is not understood by vectorizer"); 5276 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5277 return false; 5278 } 5279 5280 // If this PHINode is not in the header block, then we know that we 5281 // can convert it to select during if-conversion. No need to check if 5282 // the PHIs in this block are induction or reduction variables. 5283 if (BB != Header) { 5284 // Check that this instruction has no outside users or is an 5285 // identified reduction value with an outside user. 5286 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5287 continue; 5288 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5289 << "value could not be identified as " 5290 "an induction or reduction variable"); 5291 return false; 5292 } 5293 5294 // We only allow if-converted PHIs with exactly two incoming values. 5295 if (Phi->getNumIncomingValues() != 2) { 5296 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5297 << "control flow not understood by vectorizer"); 5298 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5299 return false; 5300 } 5301 5302 RecurrenceDescriptor RedDes; 5303 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5304 if (RedDes.hasUnsafeAlgebra()) 5305 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5306 AllowedExit.insert(RedDes.getLoopExitInstr()); 5307 Reductions[Phi] = RedDes; 5308 continue; 5309 } 5310 5311 InductionDescriptor ID; 5312 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5313 addInductionPhi(Phi, ID, AllowedExit); 5314 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5315 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5316 continue; 5317 } 5318 5319 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5320 SinkAfter, DT)) { 5321 FirstOrderRecurrences.insert(Phi); 5322 continue; 5323 } 5324 5325 // As a last resort, coerce the PHI to a AddRec expression 5326 // and re-try classifying it a an induction PHI. 5327 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5328 addInductionPhi(Phi, ID, AllowedExit); 5329 continue; 5330 } 5331 5332 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5333 << "value that could not be identified as " 5334 "reduction is used outside the loop"); 5335 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5336 return false; 5337 } // end of PHI handling 5338 5339 // We handle calls that: 5340 // * Are debug info intrinsics. 5341 // * Have a mapping to an IR intrinsic. 5342 // * Have a vector version available. 5343 auto *CI = dyn_cast<CallInst>(&I); 5344 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5345 !isa<DbgInfoIntrinsic>(CI) && 5346 !(CI->getCalledFunction() && TLI && 5347 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5348 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5349 << "call instruction cannot be vectorized"); 5350 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5351 return false; 5352 } 5353 5354 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5355 // second argument is the same (i.e. loop invariant) 5356 if (CI && hasVectorInstrinsicScalarOpd( 5357 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5358 auto *SE = PSE.getSE(); 5359 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5360 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5361 << "intrinsic instruction cannot be vectorized"); 5362 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5363 return false; 5364 } 5365 } 5366 5367 // Check that the instruction return type is vectorizable. 5368 // Also, we can't vectorize extractelement instructions. 5369 if ((!VectorType::isValidElementType(I.getType()) && 5370 !I.getType()->isVoidTy()) || 5371 isa<ExtractElementInst>(I)) { 5372 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5373 << "instruction return type cannot be vectorized"); 5374 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5375 return false; 5376 } 5377 5378 // Check that the stored type is vectorizable. 5379 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5380 Type *T = ST->getValueOperand()->getType(); 5381 if (!VectorType::isValidElementType(T)) { 5382 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5383 << "store instruction cannot be vectorized"); 5384 return false; 5385 } 5386 5387 // FP instructions can allow unsafe algebra, thus vectorizable by 5388 // non-IEEE-754 compliant SIMD units. 5389 // This applies to floating-point math operations and calls, not memory 5390 // operations, shuffles, or casts, as they don't change precision or 5391 // semantics. 5392 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5393 !I.isFast()) { 5394 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5395 Hints->setPotentiallyUnsafe(); 5396 } 5397 5398 // Reduction instructions are allowed to have exit users. 5399 // All other instructions must not have external users. 5400 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5401 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5402 << "value cannot be used outside the loop"); 5403 return false; 5404 } 5405 } // next instr. 5406 } 5407 5408 if (!PrimaryInduction) { 5409 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5410 if (Inductions.empty()) { 5411 ORE->emit(createMissedAnalysis("NoInductionVariable") 5412 << "loop induction variable could not be identified"); 5413 return false; 5414 } 5415 } 5416 5417 // Now we know the widest induction type, check if our found induction 5418 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5419 // will create another. 5420 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5421 PrimaryInduction = nullptr; 5422 5423 return true; 5424 } 5425 5426 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5427 // We should not collect Scalars more than once per VF. Right now, this 5428 // function is called from collectUniformsAndScalars(), which already does 5429 // this check. Collecting Scalars for VF=1 does not make any sense. 5430 assert(VF >= 2 && !Scalars.count(VF) && 5431 "This function should not be visited twice for the same VF"); 5432 5433 SmallSetVector<Instruction *, 8> Worklist; 5434 5435 // These sets are used to seed the analysis with pointers used by memory 5436 // accesses that will remain scalar. 5437 SmallSetVector<Instruction *, 8> ScalarPtrs; 5438 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5439 5440 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5441 // The pointer operands of loads and stores will be scalar as long as the 5442 // memory access is not a gather or scatter operation. The value operand of a 5443 // store will remain scalar if the store is scalarized. 5444 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5445 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5446 assert(WideningDecision != CM_Unknown && 5447 "Widening decision should be ready at this moment"); 5448 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5449 if (Ptr == Store->getValueOperand()) 5450 return WideningDecision == CM_Scalarize; 5451 assert(Ptr == getPointerOperand(MemAccess) && 5452 "Ptr is neither a value or pointer operand"); 5453 return WideningDecision != CM_GatherScatter; 5454 }; 5455 5456 // A helper that returns true if the given value is a bitcast or 5457 // getelementptr instruction contained in the loop. 5458 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5459 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5460 isa<GetElementPtrInst>(V)) && 5461 !TheLoop->isLoopInvariant(V); 5462 }; 5463 5464 // A helper that evaluates a memory access's use of a pointer. If the use 5465 // will be a scalar use, and the pointer is only used by memory accesses, we 5466 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5467 // PossibleNonScalarPtrs. 5468 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5469 // We only care about bitcast and getelementptr instructions contained in 5470 // the loop. 5471 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5472 return; 5473 5474 // If the pointer has already been identified as scalar (e.g., if it was 5475 // also identified as uniform), there's nothing to do. 5476 auto *I = cast<Instruction>(Ptr); 5477 if (Worklist.count(I)) 5478 return; 5479 5480 // If the use of the pointer will be a scalar use, and all users of the 5481 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5482 // place the pointer in PossibleNonScalarPtrs. 5483 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5484 return isa<LoadInst>(U) || isa<StoreInst>(U); 5485 })) 5486 ScalarPtrs.insert(I); 5487 else 5488 PossibleNonScalarPtrs.insert(I); 5489 }; 5490 5491 // We seed the scalars analysis with three classes of instructions: (1) 5492 // instructions marked uniform-after-vectorization, (2) bitcast and 5493 // getelementptr instructions used by memory accesses requiring a scalar use, 5494 // and (3) pointer induction variables and their update instructions (we 5495 // currently only scalarize these). 5496 // 5497 // (1) Add to the worklist all instructions that have been identified as 5498 // uniform-after-vectorization. 5499 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5500 5501 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5502 // memory accesses requiring a scalar use. The pointer operands of loads and 5503 // stores will be scalar as long as the memory accesses is not a gather or 5504 // scatter operation. The value operand of a store will remain scalar if the 5505 // store is scalarized. 5506 for (auto *BB : TheLoop->blocks()) 5507 for (auto &I : *BB) { 5508 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5509 evaluatePtrUse(Load, Load->getPointerOperand()); 5510 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5511 evaluatePtrUse(Store, Store->getPointerOperand()); 5512 evaluatePtrUse(Store, Store->getValueOperand()); 5513 } 5514 } 5515 for (auto *I : ScalarPtrs) 5516 if (!PossibleNonScalarPtrs.count(I)) { 5517 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5518 Worklist.insert(I); 5519 } 5520 5521 // (3) Add to the worklist all pointer induction variables and their update 5522 // instructions. 5523 // 5524 // TODO: Once we are able to vectorize pointer induction variables we should 5525 // no longer insert them into the worklist here. 5526 auto *Latch = TheLoop->getLoopLatch(); 5527 for (auto &Induction : *Legal->getInductionVars()) { 5528 auto *Ind = Induction.first; 5529 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5530 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5531 continue; 5532 Worklist.insert(Ind); 5533 Worklist.insert(IndUpdate); 5534 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5535 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5536 } 5537 5538 // Insert the forced scalars. 5539 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5540 // induction variable when the PHI user is scalarized. 5541 if (ForcedScalars.count(VF)) 5542 for (auto *I : ForcedScalars.find(VF)->second) 5543 Worklist.insert(I); 5544 5545 // Expand the worklist by looking through any bitcasts and getelementptr 5546 // instructions we've already identified as scalar. This is similar to the 5547 // expansion step in collectLoopUniforms(); however, here we're only 5548 // expanding to include additional bitcasts and getelementptr instructions. 5549 unsigned Idx = 0; 5550 while (Idx != Worklist.size()) { 5551 Instruction *Dst = Worklist[Idx++]; 5552 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5553 continue; 5554 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5555 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5556 auto *J = cast<Instruction>(U); 5557 return !TheLoop->contains(J) || Worklist.count(J) || 5558 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5559 isScalarUse(J, Src)); 5560 })) { 5561 Worklist.insert(Src); 5562 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5563 } 5564 } 5565 5566 // An induction variable will remain scalar if all users of the induction 5567 // variable and induction variable update remain scalar. 5568 for (auto &Induction : *Legal->getInductionVars()) { 5569 auto *Ind = Induction.first; 5570 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5571 5572 // We already considered pointer induction variables, so there's no reason 5573 // to look at their users again. 5574 // 5575 // TODO: Once we are able to vectorize pointer induction variables we 5576 // should no longer skip over them here. 5577 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5578 continue; 5579 5580 // Determine if all users of the induction variable are scalar after 5581 // vectorization. 5582 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5583 auto *I = cast<Instruction>(U); 5584 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5585 }); 5586 if (!ScalarInd) 5587 continue; 5588 5589 // Determine if all users of the induction variable update instruction are 5590 // scalar after vectorization. 5591 auto ScalarIndUpdate = 5592 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5593 auto *I = cast<Instruction>(U); 5594 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5595 }); 5596 if (!ScalarIndUpdate) 5597 continue; 5598 5599 // The induction variable and its update instruction will remain scalar. 5600 Worklist.insert(Ind); 5601 Worklist.insert(IndUpdate); 5602 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5603 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5604 } 5605 5606 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5607 } 5608 5609 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5610 if (!blockNeedsPredication(I->getParent())) 5611 return false; 5612 switch(I->getOpcode()) { 5613 default: 5614 break; 5615 case Instruction::Store: 5616 return !isMaskRequired(I); 5617 case Instruction::UDiv: 5618 case Instruction::SDiv: 5619 case Instruction::SRem: 5620 case Instruction::URem: 5621 return mayDivideByZero(*I); 5622 } 5623 return false; 5624 } 5625 5626 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5627 unsigned VF) { 5628 // Get and ensure we have a valid memory instruction. 5629 LoadInst *LI = dyn_cast<LoadInst>(I); 5630 StoreInst *SI = dyn_cast<StoreInst>(I); 5631 assert((LI || SI) && "Invalid memory instruction"); 5632 5633 auto *Ptr = getPointerOperand(I); 5634 5635 // In order to be widened, the pointer should be consecutive, first of all. 5636 if (!isConsecutivePtr(Ptr)) 5637 return false; 5638 5639 // If the instruction is a store located in a predicated block, it will be 5640 // scalarized. 5641 if (isScalarWithPredication(I)) 5642 return false; 5643 5644 // If the instruction's allocated size doesn't equal it's type size, it 5645 // requires padding and will be scalarized. 5646 auto &DL = I->getModule()->getDataLayout(); 5647 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5648 if (hasIrregularType(ScalarTy, DL, VF)) 5649 return false; 5650 5651 return true; 5652 } 5653 5654 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5655 // We should not collect Uniforms more than once per VF. Right now, 5656 // this function is called from collectUniformsAndScalars(), which 5657 // already does this check. Collecting Uniforms for VF=1 does not make any 5658 // sense. 5659 5660 assert(VF >= 2 && !Uniforms.count(VF) && 5661 "This function should not be visited twice for the same VF"); 5662 5663 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5664 // not analyze again. Uniforms.count(VF) will return 1. 5665 Uniforms[VF].clear(); 5666 5667 // We now know that the loop is vectorizable! 5668 // Collect instructions inside the loop that will remain uniform after 5669 // vectorization. 5670 5671 // Global values, params and instructions outside of current loop are out of 5672 // scope. 5673 auto isOutOfScope = [&](Value *V) -> bool { 5674 Instruction *I = dyn_cast<Instruction>(V); 5675 return (!I || !TheLoop->contains(I)); 5676 }; 5677 5678 SetVector<Instruction *> Worklist; 5679 BasicBlock *Latch = TheLoop->getLoopLatch(); 5680 5681 // Start with the conditional branch. If the branch condition is an 5682 // instruction contained in the loop that is only used by the branch, it is 5683 // uniform. 5684 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5685 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5686 Worklist.insert(Cmp); 5687 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5688 } 5689 5690 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5691 // are pointers that are treated like consecutive pointers during 5692 // vectorization. The pointer operands of interleaved accesses are an 5693 // example. 5694 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5695 5696 // Holds pointer operands of instructions that are possibly non-uniform. 5697 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5698 5699 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5700 InstWidening WideningDecision = getWideningDecision(I, VF); 5701 assert(WideningDecision != CM_Unknown && 5702 "Widening decision should be ready at this moment"); 5703 5704 return (WideningDecision == CM_Widen || 5705 WideningDecision == CM_Widen_Reverse || 5706 WideningDecision == CM_Interleave); 5707 }; 5708 // Iterate over the instructions in the loop, and collect all 5709 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5710 // that a consecutive-like pointer operand will be scalarized, we collect it 5711 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5712 // getelementptr instruction can be used by both vectorized and scalarized 5713 // memory instructions. For example, if a loop loads and stores from the same 5714 // location, but the store is conditional, the store will be scalarized, and 5715 // the getelementptr won't remain uniform. 5716 for (auto *BB : TheLoop->blocks()) 5717 for (auto &I : *BB) { 5718 // If there's no pointer operand, there's nothing to do. 5719 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5720 if (!Ptr) 5721 continue; 5722 5723 // True if all users of Ptr are memory accesses that have Ptr as their 5724 // pointer operand. 5725 auto UsersAreMemAccesses = 5726 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5727 return getPointerOperand(U) == Ptr; 5728 }); 5729 5730 // Ensure the memory instruction will not be scalarized or used by 5731 // gather/scatter, making its pointer operand non-uniform. If the pointer 5732 // operand is used by any instruction other than a memory access, we 5733 // conservatively assume the pointer operand may be non-uniform. 5734 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5735 PossibleNonUniformPtrs.insert(Ptr); 5736 5737 // If the memory instruction will be vectorized and its pointer operand 5738 // is consecutive-like, or interleaving - the pointer operand should 5739 // remain uniform. 5740 else 5741 ConsecutiveLikePtrs.insert(Ptr); 5742 } 5743 5744 // Add to the Worklist all consecutive and consecutive-like pointers that 5745 // aren't also identified as possibly non-uniform. 5746 for (auto *V : ConsecutiveLikePtrs) 5747 if (!PossibleNonUniformPtrs.count(V)) { 5748 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5749 Worklist.insert(V); 5750 } 5751 5752 // Expand Worklist in topological order: whenever a new instruction 5753 // is added , its users should be either already inside Worklist, or 5754 // out of scope. It ensures a uniform instruction will only be used 5755 // by uniform instructions or out of scope instructions. 5756 unsigned idx = 0; 5757 while (idx != Worklist.size()) { 5758 Instruction *I = Worklist[idx++]; 5759 5760 for (auto OV : I->operand_values()) { 5761 if (isOutOfScope(OV)) 5762 continue; 5763 auto *OI = cast<Instruction>(OV); 5764 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5765 auto *J = cast<Instruction>(U); 5766 return !TheLoop->contains(J) || Worklist.count(J) || 5767 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5768 })) { 5769 Worklist.insert(OI); 5770 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5771 } 5772 } 5773 } 5774 5775 // Returns true if Ptr is the pointer operand of a memory access instruction 5776 // I, and I is known to not require scalarization. 5777 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5778 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5779 }; 5780 5781 // For an instruction to be added into Worklist above, all its users inside 5782 // the loop should also be in Worklist. However, this condition cannot be 5783 // true for phi nodes that form a cyclic dependence. We must process phi 5784 // nodes separately. An induction variable will remain uniform if all users 5785 // of the induction variable and induction variable update remain uniform. 5786 // The code below handles both pointer and non-pointer induction variables. 5787 for (auto &Induction : *Legal->getInductionVars()) { 5788 auto *Ind = Induction.first; 5789 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5790 5791 // Determine if all users of the induction variable are uniform after 5792 // vectorization. 5793 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5794 auto *I = cast<Instruction>(U); 5795 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5796 isVectorizedMemAccessUse(I, Ind); 5797 }); 5798 if (!UniformInd) 5799 continue; 5800 5801 // Determine if all users of the induction variable update instruction are 5802 // uniform after vectorization. 5803 auto UniformIndUpdate = 5804 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5805 auto *I = cast<Instruction>(U); 5806 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5807 isVectorizedMemAccessUse(I, IndUpdate); 5808 }); 5809 if (!UniformIndUpdate) 5810 continue; 5811 5812 // The induction variable and its update instruction will remain uniform. 5813 Worklist.insert(Ind); 5814 Worklist.insert(IndUpdate); 5815 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5816 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5817 } 5818 5819 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5820 } 5821 5822 bool LoopVectorizationLegality::canVectorizeMemory() { 5823 LAI = &(*GetLAA)(*TheLoop); 5824 InterleaveInfo.setLAI(LAI); 5825 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5826 if (LAR) { 5827 ORE->emit([&]() { 5828 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5829 "loop not vectorized: ", *LAR); 5830 }); 5831 } 5832 if (!LAI->canVectorizeMemory()) 5833 return false; 5834 5835 if (LAI->hasStoreToLoopInvariantAddress()) { 5836 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5837 << "write to a loop invariant address could not be vectorized"); 5838 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5839 return false; 5840 } 5841 5842 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5843 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5844 5845 return true; 5846 } 5847 5848 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5849 Value *In0 = const_cast<Value *>(V); 5850 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5851 if (!PN) 5852 return false; 5853 5854 return Inductions.count(PN); 5855 } 5856 5857 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5858 auto *Inst = dyn_cast<Instruction>(V); 5859 return (Inst && InductionCastsToIgnore.count(Inst)); 5860 } 5861 5862 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5863 return isInductionPhi(V) || isCastedInductionVariable(V); 5864 } 5865 5866 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5867 return FirstOrderRecurrences.count(Phi); 5868 } 5869 5870 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5871 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5872 } 5873 5874 bool LoopVectorizationLegality::blockCanBePredicated( 5875 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5876 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5877 5878 for (Instruction &I : *BB) { 5879 // Check that we don't have a constant expression that can trap as operand. 5880 for (Value *Operand : I.operands()) { 5881 if (auto *C = dyn_cast<Constant>(Operand)) 5882 if (C->canTrap()) 5883 return false; 5884 } 5885 // We might be able to hoist the load. 5886 if (I.mayReadFromMemory()) { 5887 auto *LI = dyn_cast<LoadInst>(&I); 5888 if (!LI) 5889 return false; 5890 if (!SafePtrs.count(LI->getPointerOperand())) { 5891 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5892 isLegalMaskedGather(LI->getType())) { 5893 MaskedOp.insert(LI); 5894 continue; 5895 } 5896 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5897 if (IsAnnotatedParallel) 5898 continue; 5899 return false; 5900 } 5901 } 5902 5903 if (I.mayWriteToMemory()) { 5904 auto *SI = dyn_cast<StoreInst>(&I); 5905 // We only support predication of stores in basic blocks with one 5906 // predecessor. 5907 if (!SI) 5908 return false; 5909 5910 // Build a masked store if it is legal for the target. 5911 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5912 SI->getPointerOperand()) || 5913 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5914 MaskedOp.insert(SI); 5915 continue; 5916 } 5917 5918 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5919 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5920 5921 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5922 !isSinglePredecessor) 5923 return false; 5924 } 5925 if (I.mayThrow()) 5926 return false; 5927 } 5928 5929 return true; 5930 } 5931 5932 void InterleavedAccessInfo::collectConstStrideAccesses( 5933 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5934 const ValueToValueMap &Strides) { 5935 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5936 5937 // Since it's desired that the load/store instructions be maintained in 5938 // "program order" for the interleaved access analysis, we have to visit the 5939 // blocks in the loop in reverse postorder (i.e., in a topological order). 5940 // Such an ordering will ensure that any load/store that may be executed 5941 // before a second load/store will precede the second load/store in 5942 // AccessStrideInfo. 5943 LoopBlocksDFS DFS(TheLoop); 5944 DFS.perform(LI); 5945 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5946 for (auto &I : *BB) { 5947 auto *LI = dyn_cast<LoadInst>(&I); 5948 auto *SI = dyn_cast<StoreInst>(&I); 5949 if (!LI && !SI) 5950 continue; 5951 5952 Value *Ptr = getPointerOperand(&I); 5953 // We don't check wrapping here because we don't know yet if Ptr will be 5954 // part of a full group or a group with gaps. Checking wrapping for all 5955 // pointers (even those that end up in groups with no gaps) will be overly 5956 // conservative. For full groups, wrapping should be ok since if we would 5957 // wrap around the address space we would do a memory access at nullptr 5958 // even without the transformation. The wrapping checks are therefore 5959 // deferred until after we've formed the interleaved groups. 5960 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5961 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5962 5963 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5964 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5965 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5966 5967 // An alignment of 0 means target ABI alignment. 5968 unsigned Align = getMemInstAlignment(&I); 5969 if (!Align) 5970 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5971 5972 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5973 } 5974 } 5975 5976 // Analyze interleaved accesses and collect them into interleaved load and 5977 // store groups. 5978 // 5979 // When generating code for an interleaved load group, we effectively hoist all 5980 // loads in the group to the location of the first load in program order. When 5981 // generating code for an interleaved store group, we sink all stores to the 5982 // location of the last store. This code motion can change the order of load 5983 // and store instructions and may break dependences. 5984 // 5985 // The code generation strategy mentioned above ensures that we won't violate 5986 // any write-after-read (WAR) dependences. 5987 // 5988 // E.g., for the WAR dependence: a = A[i]; // (1) 5989 // A[i] = b; // (2) 5990 // 5991 // The store group of (2) is always inserted at or below (2), and the load 5992 // group of (1) is always inserted at or above (1). Thus, the instructions will 5993 // never be reordered. All other dependences are checked to ensure the 5994 // correctness of the instruction reordering. 5995 // 5996 // The algorithm visits all memory accesses in the loop in bottom-up program 5997 // order. Program order is established by traversing the blocks in the loop in 5998 // reverse postorder when collecting the accesses. 5999 // 6000 // We visit the memory accesses in bottom-up order because it can simplify the 6001 // construction of store groups in the presence of write-after-write (WAW) 6002 // dependences. 6003 // 6004 // E.g., for the WAW dependence: A[i] = a; // (1) 6005 // A[i] = b; // (2) 6006 // A[i + 1] = c; // (3) 6007 // 6008 // We will first create a store group with (3) and (2). (1) can't be added to 6009 // this group because it and (2) are dependent. However, (1) can be grouped 6010 // with other accesses that may precede it in program order. Note that a 6011 // bottom-up order does not imply that WAW dependences should not be checked. 6012 void InterleavedAccessInfo::analyzeInterleaving( 6013 const ValueToValueMap &Strides) { 6014 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6015 6016 // Holds all accesses with a constant stride. 6017 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6018 collectConstStrideAccesses(AccessStrideInfo, Strides); 6019 6020 if (AccessStrideInfo.empty()) 6021 return; 6022 6023 // Collect the dependences in the loop. 6024 collectDependences(); 6025 6026 // Holds all interleaved store groups temporarily. 6027 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6028 // Holds all interleaved load groups temporarily. 6029 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6030 6031 // Search in bottom-up program order for pairs of accesses (A and B) that can 6032 // form interleaved load or store groups. In the algorithm below, access A 6033 // precedes access B in program order. We initialize a group for B in the 6034 // outer loop of the algorithm, and then in the inner loop, we attempt to 6035 // insert each A into B's group if: 6036 // 6037 // 1. A and B have the same stride, 6038 // 2. A and B have the same memory object size, and 6039 // 3. A belongs in B's group according to its distance from B. 6040 // 6041 // Special care is taken to ensure group formation will not break any 6042 // dependences. 6043 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6044 BI != E; ++BI) { 6045 Instruction *B = BI->first; 6046 StrideDescriptor DesB = BI->second; 6047 6048 // Initialize a group for B if it has an allowable stride. Even if we don't 6049 // create a group for B, we continue with the bottom-up algorithm to ensure 6050 // we don't break any of B's dependences. 6051 InterleaveGroup *Group = nullptr; 6052 if (isStrided(DesB.Stride)) { 6053 Group = getInterleaveGroup(B); 6054 if (!Group) { 6055 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6056 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6057 } 6058 if (B->mayWriteToMemory()) 6059 StoreGroups.insert(Group); 6060 else 6061 LoadGroups.insert(Group); 6062 } 6063 6064 for (auto AI = std::next(BI); AI != E; ++AI) { 6065 Instruction *A = AI->first; 6066 StrideDescriptor DesA = AI->second; 6067 6068 // Our code motion strategy implies that we can't have dependences 6069 // between accesses in an interleaved group and other accesses located 6070 // between the first and last member of the group. Note that this also 6071 // means that a group can't have more than one member at a given offset. 6072 // The accesses in a group can have dependences with other accesses, but 6073 // we must ensure we don't extend the boundaries of the group such that 6074 // we encompass those dependent accesses. 6075 // 6076 // For example, assume we have the sequence of accesses shown below in a 6077 // stride-2 loop: 6078 // 6079 // (1, 2) is a group | A[i] = a; // (1) 6080 // | A[i-1] = b; // (2) | 6081 // A[i-3] = c; // (3) 6082 // A[i] = d; // (4) | (2, 4) is not a group 6083 // 6084 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6085 // but not with (4). If we did, the dependent access (3) would be within 6086 // the boundaries of the (2, 4) group. 6087 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6088 // If a dependence exists and A is already in a group, we know that A 6089 // must be a store since A precedes B and WAR dependences are allowed. 6090 // Thus, A would be sunk below B. We release A's group to prevent this 6091 // illegal code motion. A will then be free to form another group with 6092 // instructions that precede it. 6093 if (isInterleaved(A)) { 6094 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6095 StoreGroups.remove(StoreGroup); 6096 releaseGroup(StoreGroup); 6097 } 6098 6099 // If a dependence exists and A is not already in a group (or it was 6100 // and we just released it), B might be hoisted above A (if B is a 6101 // load) or another store might be sunk below A (if B is a store). In 6102 // either case, we can't add additional instructions to B's group. B 6103 // will only form a group with instructions that it precedes. 6104 break; 6105 } 6106 6107 // At this point, we've checked for illegal code motion. If either A or B 6108 // isn't strided, there's nothing left to do. 6109 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6110 continue; 6111 6112 // Ignore A if it's already in a group or isn't the same kind of memory 6113 // operation as B. 6114 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6115 continue; 6116 6117 // Check rules 1 and 2. Ignore A if its stride or size is different from 6118 // that of B. 6119 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6120 continue; 6121 6122 // Ignore A if the memory object of A and B don't belong to the same 6123 // address space 6124 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6125 continue; 6126 6127 // Calculate the distance from A to B. 6128 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6129 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6130 if (!DistToB) 6131 continue; 6132 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6133 6134 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6135 // size. 6136 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6137 continue; 6138 6139 // Ignore A if either A or B is in a predicated block. Although we 6140 // currently prevent group formation for predicated accesses, we may be 6141 // able to relax this limitation in the future once we handle more 6142 // complicated blocks. 6143 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6144 continue; 6145 6146 // The index of A is the index of B plus A's distance to B in multiples 6147 // of the size. 6148 int IndexA = 6149 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6150 6151 // Try to insert A into B's group. 6152 if (Group->insertMember(A, IndexA, DesA.Align)) { 6153 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6154 << " into the interleave group with" << *B << '\n'); 6155 InterleaveGroupMap[A] = Group; 6156 6157 // Set the first load in program order as the insert position. 6158 if (A->mayReadFromMemory()) 6159 Group->setInsertPos(A); 6160 } 6161 } // Iteration over A accesses. 6162 } // Iteration over B accesses. 6163 6164 // Remove interleaved store groups with gaps. 6165 for (InterleaveGroup *Group : StoreGroups) 6166 if (Group->getNumMembers() != Group->getFactor()) { 6167 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 6168 "to gaps.\n"); 6169 releaseGroup(Group); 6170 } 6171 // Remove interleaved groups with gaps (currently only loads) whose memory 6172 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6173 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6174 // not check wrapping (see documentation there). 6175 // FORNOW we use Assume=false; 6176 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6177 // of runtime SCEV assumptions checks (thereby potentially failing to 6178 // vectorize altogether). 6179 // Additional optional optimizations: 6180 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6181 // wrap then we can deduce that all pointers in the group don't wrap. 6182 // This means that we can forcefully peel the loop in order to only have to 6183 // check the first pointer for no-wrap. When we'll change to use Assume=true 6184 // we'll only need at most one runtime check per interleaved group. 6185 for (InterleaveGroup *Group : LoadGroups) { 6186 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6187 // load would wrap around the address space we would do a memory access at 6188 // nullptr even without the transformation. 6189 if (Group->getNumMembers() == Group->getFactor()) 6190 continue; 6191 6192 // Case 2: If first and last members of the group don't wrap this implies 6193 // that all the pointers in the group don't wrap. 6194 // So we check only group member 0 (which is always guaranteed to exist), 6195 // and group member Factor - 1; If the latter doesn't exist we rely on 6196 // peeling (if it is a non-reveresed accsess -- see Case 3). 6197 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6198 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6199 /*ShouldCheckWrap=*/true)) { 6200 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6201 "first group member potentially pointer-wrapping.\n"); 6202 releaseGroup(Group); 6203 continue; 6204 } 6205 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6206 if (LastMember) { 6207 Value *LastMemberPtr = getPointerOperand(LastMember); 6208 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6209 /*ShouldCheckWrap=*/true)) { 6210 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6211 "last group member potentially pointer-wrapping.\n"); 6212 releaseGroup(Group); 6213 } 6214 } else { 6215 // Case 3: A non-reversed interleaved load group with gaps: We need 6216 // to execute at least one scalar epilogue iteration. This will ensure 6217 // we don't speculatively access memory out-of-bounds. We only need 6218 // to look for a member at index factor - 1, since every group must have 6219 // a member at index zero. 6220 if (Group->isReverse()) { 6221 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6222 "a reverse access with gaps.\n"); 6223 releaseGroup(Group); 6224 continue; 6225 } 6226 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6227 RequiresScalarEpilogue = true; 6228 } 6229 } 6230 } 6231 6232 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6233 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6234 ORE->emit(createMissedAnalysis("ConditionalStore") 6235 << "store that is conditionally executed prevents vectorization"); 6236 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6237 return None; 6238 } 6239 6240 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6241 // TODO: It may by useful to do since it's still likely to be dynamically 6242 // uniform if the target can skip. 6243 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6244 6245 ORE->emit( 6246 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6247 << "runtime pointer checks needed. Not enabled for divergent target"); 6248 6249 return None; 6250 } 6251 6252 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6253 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6254 return computeFeasibleMaxVF(OptForSize, TC); 6255 6256 if (Legal->getRuntimePointerChecking()->Need) { 6257 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6258 << "runtime pointer checks needed. Enable vectorization of this " 6259 "loop with '#pragma clang loop vectorize(enable)' when " 6260 "compiling with -Os/-Oz"); 6261 DEBUG(dbgs() 6262 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6263 return None; 6264 } 6265 6266 // If we optimize the program for size, avoid creating the tail loop. 6267 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6268 6269 // If we don't know the precise trip count, don't try to vectorize. 6270 if (TC < 2) { 6271 ORE->emit( 6272 createMissedAnalysis("UnknownLoopCountComplexCFG") 6273 << "unable to calculate the loop count due to complex control flow"); 6274 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6275 return None; 6276 } 6277 6278 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6279 6280 if (TC % MaxVF != 0) { 6281 // If the trip count that we found modulo the vectorization factor is not 6282 // zero then we require a tail. 6283 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6284 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6285 // smaller MaxVF that does not require a scalar epilog. 6286 6287 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6288 << "cannot optimize for size and vectorize at the " 6289 "same time. Enable vectorization of this loop " 6290 "with '#pragma clang loop vectorize(enable)' " 6291 "when compiling with -Os/-Oz"); 6292 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6293 return None; 6294 } 6295 6296 return MaxVF; 6297 } 6298 6299 unsigned 6300 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6301 unsigned ConstTripCount) { 6302 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6303 unsigned SmallestType, WidestType; 6304 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6305 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6306 6307 // Get the maximum safe dependence distance in bits computed by LAA. 6308 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6309 // the memory accesses that is most restrictive (involved in the smallest 6310 // dependence distance). 6311 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6312 6313 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6314 6315 unsigned MaxVectorSize = WidestRegister / WidestType; 6316 6317 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6318 << WidestType << " bits.\n"); 6319 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6320 << " bits.\n"); 6321 6322 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6323 " into one vector!"); 6324 if (MaxVectorSize == 0) { 6325 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6326 MaxVectorSize = 1; 6327 return MaxVectorSize; 6328 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6329 isPowerOf2_32(ConstTripCount)) { 6330 // We need to clamp the VF to be the ConstTripCount. There is no point in 6331 // choosing a higher viable VF as done in the loop below. 6332 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6333 << ConstTripCount << "\n"); 6334 MaxVectorSize = ConstTripCount; 6335 return MaxVectorSize; 6336 } 6337 6338 unsigned MaxVF = MaxVectorSize; 6339 if (MaximizeBandwidth && !OptForSize) { 6340 // Collect all viable vectorization factors larger than the default MaxVF 6341 // (i.e. MaxVectorSize). 6342 SmallVector<unsigned, 8> VFs; 6343 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6344 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6345 VFs.push_back(VS); 6346 6347 // For each VF calculate its register usage. 6348 auto RUs = calculateRegisterUsage(VFs); 6349 6350 // Select the largest VF which doesn't require more registers than existing 6351 // ones. 6352 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6353 for (int i = RUs.size() - 1; i >= 0; --i) { 6354 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6355 MaxVF = VFs[i]; 6356 break; 6357 } 6358 } 6359 } 6360 return MaxVF; 6361 } 6362 6363 LoopVectorizationCostModel::VectorizationFactor 6364 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6365 float Cost = expectedCost(1).first; 6366 #ifndef NDEBUG 6367 const float ScalarCost = Cost; 6368 #endif /* NDEBUG */ 6369 unsigned Width = 1; 6370 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6371 6372 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6373 // Ignore scalar width, because the user explicitly wants vectorization. 6374 if (ForceVectorization && MaxVF > 1) { 6375 Width = 2; 6376 Cost = expectedCost(Width).first / (float)Width; 6377 } 6378 6379 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6380 // Notice that the vector loop needs to be executed less times, so 6381 // we need to divide the cost of the vector loops by the width of 6382 // the vector elements. 6383 VectorizationCostTy C = expectedCost(i); 6384 float VectorCost = C.first / (float)i; 6385 DEBUG(dbgs() << "LV: Vector loop of width " << i 6386 << " costs: " << (int)VectorCost << ".\n"); 6387 if (!C.second && !ForceVectorization) { 6388 DEBUG( 6389 dbgs() << "LV: Not considering vector loop of width " << i 6390 << " because it will not generate any vector instructions.\n"); 6391 continue; 6392 } 6393 if (VectorCost < Cost) { 6394 Cost = VectorCost; 6395 Width = i; 6396 } 6397 } 6398 6399 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6400 << "LV: Vectorization seems to be not beneficial, " 6401 << "but was forced by a user.\n"); 6402 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6403 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6404 return Factor; 6405 } 6406 6407 std::pair<unsigned, unsigned> 6408 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6409 unsigned MinWidth = -1U; 6410 unsigned MaxWidth = 8; 6411 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6412 6413 // For each block. 6414 for (BasicBlock *BB : TheLoop->blocks()) { 6415 // For each instruction in the loop. 6416 for (Instruction &I : *BB) { 6417 Type *T = I.getType(); 6418 6419 // Skip ignored values. 6420 if (ValuesToIgnore.count(&I)) 6421 continue; 6422 6423 // Only examine Loads, Stores and PHINodes. 6424 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6425 continue; 6426 6427 // Examine PHI nodes that are reduction variables. Update the type to 6428 // account for the recurrence type. 6429 if (auto *PN = dyn_cast<PHINode>(&I)) { 6430 if (!Legal->isReductionVariable(PN)) 6431 continue; 6432 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6433 T = RdxDesc.getRecurrenceType(); 6434 } 6435 6436 // Examine the stored values. 6437 if (auto *ST = dyn_cast<StoreInst>(&I)) 6438 T = ST->getValueOperand()->getType(); 6439 6440 // Ignore loaded pointer types and stored pointer types that are not 6441 // vectorizable. 6442 // 6443 // FIXME: The check here attempts to predict whether a load or store will 6444 // be vectorized. We only know this for certain after a VF has 6445 // been selected. Here, we assume that if an access can be 6446 // vectorized, it will be. We should also look at extending this 6447 // optimization to non-pointer types. 6448 // 6449 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6450 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6451 continue; 6452 6453 MinWidth = std::min(MinWidth, 6454 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6455 MaxWidth = std::max(MaxWidth, 6456 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6457 } 6458 } 6459 6460 return {MinWidth, MaxWidth}; 6461 } 6462 6463 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6464 unsigned VF, 6465 unsigned LoopCost) { 6466 // -- The interleave heuristics -- 6467 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6468 // There are many micro-architectural considerations that we can't predict 6469 // at this level. For example, frontend pressure (on decode or fetch) due to 6470 // code size, or the number and capabilities of the execution ports. 6471 // 6472 // We use the following heuristics to select the interleave count: 6473 // 1. If the code has reductions, then we interleave to break the cross 6474 // iteration dependency. 6475 // 2. If the loop is really small, then we interleave to reduce the loop 6476 // overhead. 6477 // 3. We don't interleave if we think that we will spill registers to memory 6478 // due to the increased register pressure. 6479 6480 // When we optimize for size, we don't interleave. 6481 if (OptForSize) 6482 return 1; 6483 6484 // We used the distance for the interleave count. 6485 if (Legal->getMaxSafeDepDistBytes() != -1U) 6486 return 1; 6487 6488 // Do not interleave loops with a relatively small trip count. 6489 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6490 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6491 return 1; 6492 6493 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6494 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6495 << " registers\n"); 6496 6497 if (VF == 1) { 6498 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6499 TargetNumRegisters = ForceTargetNumScalarRegs; 6500 } else { 6501 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6502 TargetNumRegisters = ForceTargetNumVectorRegs; 6503 } 6504 6505 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6506 // We divide by these constants so assume that we have at least one 6507 // instruction that uses at least one register. 6508 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6509 R.NumInstructions = std::max(R.NumInstructions, 1U); 6510 6511 // We calculate the interleave count using the following formula. 6512 // Subtract the number of loop invariants from the number of available 6513 // registers. These registers are used by all of the interleaved instances. 6514 // Next, divide the remaining registers by the number of registers that is 6515 // required by the loop, in order to estimate how many parallel instances 6516 // fit without causing spills. All of this is rounded down if necessary to be 6517 // a power of two. We want power of two interleave count to simplify any 6518 // addressing operations or alignment considerations. 6519 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6520 R.MaxLocalUsers); 6521 6522 // Don't count the induction variable as interleaved. 6523 if (EnableIndVarRegisterHeur) 6524 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6525 std::max(1U, (R.MaxLocalUsers - 1))); 6526 6527 // Clamp the interleave ranges to reasonable counts. 6528 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6529 6530 // Check if the user has overridden the max. 6531 if (VF == 1) { 6532 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6533 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6534 } else { 6535 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6536 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6537 } 6538 6539 // If we did not calculate the cost for VF (because the user selected the VF) 6540 // then we calculate the cost of VF here. 6541 if (LoopCost == 0) 6542 LoopCost = expectedCost(VF).first; 6543 6544 // Clamp the calculated IC to be between the 1 and the max interleave count 6545 // that the target allows. 6546 if (IC > MaxInterleaveCount) 6547 IC = MaxInterleaveCount; 6548 else if (IC < 1) 6549 IC = 1; 6550 6551 // Interleave if we vectorized this loop and there is a reduction that could 6552 // benefit from interleaving. 6553 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6554 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6555 return IC; 6556 } 6557 6558 // Note that if we've already vectorized the loop we will have done the 6559 // runtime check and so interleaving won't require further checks. 6560 bool InterleavingRequiresRuntimePointerCheck = 6561 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6562 6563 // We want to interleave small loops in order to reduce the loop overhead and 6564 // potentially expose ILP opportunities. 6565 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6566 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6567 // We assume that the cost overhead is 1 and we use the cost model 6568 // to estimate the cost of the loop and interleave until the cost of the 6569 // loop overhead is about 5% of the cost of the loop. 6570 unsigned SmallIC = 6571 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6572 6573 // Interleave until store/load ports (estimated by max interleave count) are 6574 // saturated. 6575 unsigned NumStores = Legal->getNumStores(); 6576 unsigned NumLoads = Legal->getNumLoads(); 6577 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6578 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6579 6580 // If we have a scalar reduction (vector reductions are already dealt with 6581 // by this point), we can increase the critical path length if the loop 6582 // we're interleaving is inside another loop. Limit, by default to 2, so the 6583 // critical path only gets increased by one reduction operation. 6584 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6585 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6586 SmallIC = std::min(SmallIC, F); 6587 StoresIC = std::min(StoresIC, F); 6588 LoadsIC = std::min(LoadsIC, F); 6589 } 6590 6591 if (EnableLoadStoreRuntimeInterleave && 6592 std::max(StoresIC, LoadsIC) > SmallIC) { 6593 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6594 return std::max(StoresIC, LoadsIC); 6595 } 6596 6597 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6598 return SmallIC; 6599 } 6600 6601 // Interleave if this is a large loop (small loops are already dealt with by 6602 // this point) that could benefit from interleaving. 6603 bool HasReductions = !Legal->getReductionVars()->empty(); 6604 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6605 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6606 return IC; 6607 } 6608 6609 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6610 return 1; 6611 } 6612 6613 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6614 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6615 // This function calculates the register usage by measuring the highest number 6616 // of values that are alive at a single location. Obviously, this is a very 6617 // rough estimation. We scan the loop in a topological order in order and 6618 // assign a number to each instruction. We use RPO to ensure that defs are 6619 // met before their users. We assume that each instruction that has in-loop 6620 // users starts an interval. We record every time that an in-loop value is 6621 // used, so we have a list of the first and last occurrences of each 6622 // instruction. Next, we transpose this data structure into a multi map that 6623 // holds the list of intervals that *end* at a specific location. This multi 6624 // map allows us to perform a linear search. We scan the instructions linearly 6625 // and record each time that a new interval starts, by placing it in a set. 6626 // If we find this value in the multi-map then we remove it from the set. 6627 // The max register usage is the maximum size of the set. 6628 // We also search for instructions that are defined outside the loop, but are 6629 // used inside the loop. We need this number separately from the max-interval 6630 // usage number because when we unroll, loop-invariant values do not take 6631 // more register. 6632 LoopBlocksDFS DFS(TheLoop); 6633 DFS.perform(LI); 6634 6635 RegisterUsage RU; 6636 RU.NumInstructions = 0; 6637 6638 // Each 'key' in the map opens a new interval. The values 6639 // of the map are the index of the 'last seen' usage of the 6640 // instruction that is the key. 6641 using IntervalMap = DenseMap<Instruction *, unsigned>; 6642 6643 // Maps instruction to its index. 6644 DenseMap<unsigned, Instruction *> IdxToInstr; 6645 // Marks the end of each interval. 6646 IntervalMap EndPoint; 6647 // Saves the list of instruction indices that are used in the loop. 6648 SmallSet<Instruction *, 8> Ends; 6649 // Saves the list of values that are used in the loop but are 6650 // defined outside the loop, such as arguments and constants. 6651 SmallPtrSet<Value *, 8> LoopInvariants; 6652 6653 unsigned Index = 0; 6654 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6655 RU.NumInstructions += BB->size(); 6656 for (Instruction &I : *BB) { 6657 IdxToInstr[Index++] = &I; 6658 6659 // Save the end location of each USE. 6660 for (Value *U : I.operands()) { 6661 auto *Instr = dyn_cast<Instruction>(U); 6662 6663 // Ignore non-instruction values such as arguments, constants, etc. 6664 if (!Instr) 6665 continue; 6666 6667 // If this instruction is outside the loop then record it and continue. 6668 if (!TheLoop->contains(Instr)) { 6669 LoopInvariants.insert(Instr); 6670 continue; 6671 } 6672 6673 // Overwrite previous end points. 6674 EndPoint[Instr] = Index; 6675 Ends.insert(Instr); 6676 } 6677 } 6678 } 6679 6680 // Saves the list of intervals that end with the index in 'key'. 6681 using InstrList = SmallVector<Instruction *, 2>; 6682 DenseMap<unsigned, InstrList> TransposeEnds; 6683 6684 // Transpose the EndPoints to a list of values that end at each index. 6685 for (auto &Interval : EndPoint) 6686 TransposeEnds[Interval.second].push_back(Interval.first); 6687 6688 SmallSet<Instruction *, 8> OpenIntervals; 6689 6690 // Get the size of the widest register. 6691 unsigned MaxSafeDepDist = -1U; 6692 if (Legal->getMaxSafeDepDistBytes() != -1U) 6693 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6694 unsigned WidestRegister = 6695 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6696 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6697 6698 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6699 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6700 6701 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6702 6703 // A lambda that gets the register usage for the given type and VF. 6704 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6705 if (Ty->isTokenTy()) 6706 return 0U; 6707 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6708 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6709 }; 6710 6711 for (unsigned int i = 0; i < Index; ++i) { 6712 Instruction *I = IdxToInstr[i]; 6713 6714 // Remove all of the instructions that end at this location. 6715 InstrList &List = TransposeEnds[i]; 6716 for (Instruction *ToRemove : List) 6717 OpenIntervals.erase(ToRemove); 6718 6719 // Ignore instructions that are never used within the loop. 6720 if (!Ends.count(I)) 6721 continue; 6722 6723 // Skip ignored values. 6724 if (ValuesToIgnore.count(I)) 6725 continue; 6726 6727 // For each VF find the maximum usage of registers. 6728 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6729 if (VFs[j] == 1) { 6730 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6731 continue; 6732 } 6733 collectUniformsAndScalars(VFs[j]); 6734 // Count the number of live intervals. 6735 unsigned RegUsage = 0; 6736 for (auto Inst : OpenIntervals) { 6737 // Skip ignored values for VF > 1. 6738 if (VecValuesToIgnore.count(Inst) || 6739 isScalarAfterVectorization(Inst, VFs[j])) 6740 continue; 6741 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6742 } 6743 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6744 } 6745 6746 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6747 << OpenIntervals.size() << '\n'); 6748 6749 // Add the current instruction to the list of open intervals. 6750 OpenIntervals.insert(I); 6751 } 6752 6753 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6754 unsigned Invariant = 0; 6755 if (VFs[i] == 1) 6756 Invariant = LoopInvariants.size(); 6757 else { 6758 for (auto Inst : LoopInvariants) 6759 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6760 } 6761 6762 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6763 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6764 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6765 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6766 6767 RU.LoopInvariantRegs = Invariant; 6768 RU.MaxLocalUsers = MaxUsages[i]; 6769 RUs[i] = RU; 6770 } 6771 6772 return RUs; 6773 } 6774 6775 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6776 // If we aren't vectorizing the loop, or if we've already collected the 6777 // instructions to scalarize, there's nothing to do. Collection may already 6778 // have occurred if we have a user-selected VF and are now computing the 6779 // expected cost for interleaving. 6780 if (VF < 2 || InstsToScalarize.count(VF)) 6781 return; 6782 6783 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6784 // not profitable to scalarize any instructions, the presence of VF in the 6785 // map will indicate that we've analyzed it already. 6786 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6787 6788 // Find all the instructions that are scalar with predication in the loop and 6789 // determine if it would be better to not if-convert the blocks they are in. 6790 // If so, we also record the instructions to scalarize. 6791 for (BasicBlock *BB : TheLoop->blocks()) { 6792 if (!Legal->blockNeedsPredication(BB)) 6793 continue; 6794 for (Instruction &I : *BB) 6795 if (Legal->isScalarWithPredication(&I)) { 6796 ScalarCostsTy ScalarCosts; 6797 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6798 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6799 6800 // Remember that BB will remain after vectorization. 6801 PredicatedBBsAfterVectorization.insert(BB); 6802 } 6803 } 6804 } 6805 6806 int LoopVectorizationCostModel::computePredInstDiscount( 6807 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6808 unsigned VF) { 6809 assert(!isUniformAfterVectorization(PredInst, VF) && 6810 "Instruction marked uniform-after-vectorization will be predicated"); 6811 6812 // Initialize the discount to zero, meaning that the scalar version and the 6813 // vector version cost the same. 6814 int Discount = 0; 6815 6816 // Holds instructions to analyze. The instructions we visit are mapped in 6817 // ScalarCosts. Those instructions are the ones that would be scalarized if 6818 // we find that the scalar version costs less. 6819 SmallVector<Instruction *, 8> Worklist; 6820 6821 // Returns true if the given instruction can be scalarized. 6822 auto canBeScalarized = [&](Instruction *I) -> bool { 6823 // We only attempt to scalarize instructions forming a single-use chain 6824 // from the original predicated block that would otherwise be vectorized. 6825 // Although not strictly necessary, we give up on instructions we know will 6826 // already be scalar to avoid traversing chains that are unlikely to be 6827 // beneficial. 6828 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6829 isScalarAfterVectorization(I, VF)) 6830 return false; 6831 6832 // If the instruction is scalar with predication, it will be analyzed 6833 // separately. We ignore it within the context of PredInst. 6834 if (Legal->isScalarWithPredication(I)) 6835 return false; 6836 6837 // If any of the instruction's operands are uniform after vectorization, 6838 // the instruction cannot be scalarized. This prevents, for example, a 6839 // masked load from being scalarized. 6840 // 6841 // We assume we will only emit a value for lane zero of an instruction 6842 // marked uniform after vectorization, rather than VF identical values. 6843 // Thus, if we scalarize an instruction that uses a uniform, we would 6844 // create uses of values corresponding to the lanes we aren't emitting code 6845 // for. This behavior can be changed by allowing getScalarValue to clone 6846 // the lane zero values for uniforms rather than asserting. 6847 for (Use &U : I->operands()) 6848 if (auto *J = dyn_cast<Instruction>(U.get())) 6849 if (isUniformAfterVectorization(J, VF)) 6850 return false; 6851 6852 // Otherwise, we can scalarize the instruction. 6853 return true; 6854 }; 6855 6856 // Returns true if an operand that cannot be scalarized must be extracted 6857 // from a vector. We will account for this scalarization overhead below. Note 6858 // that the non-void predicated instructions are placed in their own blocks, 6859 // and their return values are inserted into vectors. Thus, an extract would 6860 // still be required. 6861 auto needsExtract = [&](Instruction *I) -> bool { 6862 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6863 }; 6864 6865 // Compute the expected cost discount from scalarizing the entire expression 6866 // feeding the predicated instruction. We currently only consider expressions 6867 // that are single-use instruction chains. 6868 Worklist.push_back(PredInst); 6869 while (!Worklist.empty()) { 6870 Instruction *I = Worklist.pop_back_val(); 6871 6872 // If we've already analyzed the instruction, there's nothing to do. 6873 if (ScalarCosts.count(I)) 6874 continue; 6875 6876 // Compute the cost of the vector instruction. Note that this cost already 6877 // includes the scalarization overhead of the predicated instruction. 6878 unsigned VectorCost = getInstructionCost(I, VF).first; 6879 6880 // Compute the cost of the scalarized instruction. This cost is the cost of 6881 // the instruction as if it wasn't if-converted and instead remained in the 6882 // predicated block. We will scale this cost by block probability after 6883 // computing the scalarization overhead. 6884 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6885 6886 // Compute the scalarization overhead of needed insertelement instructions 6887 // and phi nodes. 6888 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6889 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6890 true, false); 6891 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6892 } 6893 6894 // Compute the scalarization overhead of needed extractelement 6895 // instructions. For each of the instruction's operands, if the operand can 6896 // be scalarized, add it to the worklist; otherwise, account for the 6897 // overhead. 6898 for (Use &U : I->operands()) 6899 if (auto *J = dyn_cast<Instruction>(U.get())) { 6900 assert(VectorType::isValidElementType(J->getType()) && 6901 "Instruction has non-scalar type"); 6902 if (canBeScalarized(J)) 6903 Worklist.push_back(J); 6904 else if (needsExtract(J)) 6905 ScalarCost += TTI.getScalarizationOverhead( 6906 ToVectorTy(J->getType(),VF), false, true); 6907 } 6908 6909 // Scale the total scalar cost by block probability. 6910 ScalarCost /= getReciprocalPredBlockProb(); 6911 6912 // Compute the discount. A non-negative discount means the vector version 6913 // of the instruction costs more, and scalarizing would be beneficial. 6914 Discount += VectorCost - ScalarCost; 6915 ScalarCosts[I] = ScalarCost; 6916 } 6917 6918 return Discount; 6919 } 6920 6921 LoopVectorizationCostModel::VectorizationCostTy 6922 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6923 VectorizationCostTy Cost; 6924 6925 // For each block. 6926 for (BasicBlock *BB : TheLoop->blocks()) { 6927 VectorizationCostTy BlockCost; 6928 6929 // For each instruction in the old loop. 6930 for (Instruction &I : *BB) { 6931 // Skip dbg intrinsics. 6932 if (isa<DbgInfoIntrinsic>(I)) 6933 continue; 6934 6935 // Skip ignored values. 6936 if (ValuesToIgnore.count(&I) || 6937 (VF > 1 && VecValuesToIgnore.count(&I))) 6938 continue; 6939 6940 VectorizationCostTy C = getInstructionCost(&I, VF); 6941 6942 // Check if we should override the cost. 6943 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6944 C.first = ForceTargetInstructionCost; 6945 6946 BlockCost.first += C.first; 6947 BlockCost.second |= C.second; 6948 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6949 << VF << " For instruction: " << I << '\n'); 6950 } 6951 6952 // If we are vectorizing a predicated block, it will have been 6953 // if-converted. This means that the block's instructions (aside from 6954 // stores and instructions that may divide by zero) will now be 6955 // unconditionally executed. For the scalar case, we may not always execute 6956 // the predicated block. Thus, scale the block's cost by the probability of 6957 // executing it. 6958 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6959 BlockCost.first /= getReciprocalPredBlockProb(); 6960 6961 Cost.first += BlockCost.first; 6962 Cost.second |= BlockCost.second; 6963 } 6964 6965 return Cost; 6966 } 6967 6968 /// \brief Gets Address Access SCEV after verifying that the access pattern 6969 /// is loop invariant except the induction variable dependence. 6970 /// 6971 /// This SCEV can be sent to the Target in order to estimate the address 6972 /// calculation cost. 6973 static const SCEV *getAddressAccessSCEV( 6974 Value *Ptr, 6975 LoopVectorizationLegality *Legal, 6976 PredicatedScalarEvolution &PSE, 6977 const Loop *TheLoop) { 6978 6979 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6980 if (!Gep) 6981 return nullptr; 6982 6983 // We are looking for a gep with all loop invariant indices except for one 6984 // which should be an induction variable. 6985 auto SE = PSE.getSE(); 6986 unsigned NumOperands = Gep->getNumOperands(); 6987 for (unsigned i = 1; i < NumOperands; ++i) { 6988 Value *Opd = Gep->getOperand(i); 6989 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6990 !Legal->isInductionVariable(Opd)) 6991 return nullptr; 6992 } 6993 6994 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6995 return PSE.getSCEV(Ptr); 6996 } 6997 6998 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6999 return Legal->hasStride(I->getOperand(0)) || 7000 Legal->hasStride(I->getOperand(1)); 7001 } 7002 7003 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7004 unsigned VF) { 7005 Type *ValTy = getMemInstValueType(I); 7006 auto SE = PSE.getSE(); 7007 7008 unsigned Alignment = getMemInstAlignment(I); 7009 unsigned AS = getMemInstAddressSpace(I); 7010 Value *Ptr = getPointerOperand(I); 7011 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7012 7013 // Figure out whether the access is strided and get the stride value 7014 // if it's known in compile time 7015 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7016 7017 // Get the cost of the scalar memory instruction and address computation. 7018 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7019 7020 Cost += VF * 7021 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7022 AS, I); 7023 7024 // Get the overhead of the extractelement and insertelement instructions 7025 // we might create due to scalarization. 7026 Cost += getScalarizationOverhead(I, VF, TTI); 7027 7028 // If we have a predicated store, it may not be executed for each vector 7029 // lane. Scale the cost by the probability of executing the predicated 7030 // block. 7031 if (Legal->isScalarWithPredication(I)) 7032 Cost /= getReciprocalPredBlockProb(); 7033 7034 return Cost; 7035 } 7036 7037 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7038 unsigned VF) { 7039 Type *ValTy = getMemInstValueType(I); 7040 Type *VectorTy = ToVectorTy(ValTy, VF); 7041 unsigned Alignment = getMemInstAlignment(I); 7042 Value *Ptr = getPointerOperand(I); 7043 unsigned AS = getMemInstAddressSpace(I); 7044 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7045 7046 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7047 "Stride should be 1 or -1 for consecutive memory access"); 7048 unsigned Cost = 0; 7049 if (Legal->isMaskRequired(I)) 7050 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7051 else 7052 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7053 7054 bool Reverse = ConsecutiveStride < 0; 7055 if (Reverse) 7056 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7057 return Cost; 7058 } 7059 7060 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7061 unsigned VF) { 7062 LoadInst *LI = cast<LoadInst>(I); 7063 Type *ValTy = LI->getType(); 7064 Type *VectorTy = ToVectorTy(ValTy, VF); 7065 unsigned Alignment = LI->getAlignment(); 7066 unsigned AS = LI->getPointerAddressSpace(); 7067 7068 return TTI.getAddressComputationCost(ValTy) + 7069 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7070 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7071 } 7072 7073 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7074 unsigned VF) { 7075 Type *ValTy = getMemInstValueType(I); 7076 Type *VectorTy = ToVectorTy(ValTy, VF); 7077 unsigned Alignment = getMemInstAlignment(I); 7078 Value *Ptr = getPointerOperand(I); 7079 7080 return TTI.getAddressComputationCost(VectorTy) + 7081 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7082 Legal->isMaskRequired(I), Alignment); 7083 } 7084 7085 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7086 unsigned VF) { 7087 Type *ValTy = getMemInstValueType(I); 7088 Type *VectorTy = ToVectorTy(ValTy, VF); 7089 unsigned AS = getMemInstAddressSpace(I); 7090 7091 auto Group = Legal->getInterleavedAccessGroup(I); 7092 assert(Group && "Fail to get an interleaved access group."); 7093 7094 unsigned InterleaveFactor = Group->getFactor(); 7095 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7096 7097 // Holds the indices of existing members in an interleaved load group. 7098 // An interleaved store group doesn't need this as it doesn't allow gaps. 7099 SmallVector<unsigned, 4> Indices; 7100 if (isa<LoadInst>(I)) { 7101 for (unsigned i = 0; i < InterleaveFactor; i++) 7102 if (Group->getMember(i)) 7103 Indices.push_back(i); 7104 } 7105 7106 // Calculate the cost of the whole interleaved group. 7107 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7108 Group->getFactor(), Indices, 7109 Group->getAlignment(), AS); 7110 7111 if (Group->isReverse()) 7112 Cost += Group->getNumMembers() * 7113 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7114 return Cost; 7115 } 7116 7117 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7118 unsigned VF) { 7119 // Calculate scalar cost only. Vectorization cost should be ready at this 7120 // moment. 7121 if (VF == 1) { 7122 Type *ValTy = getMemInstValueType(I); 7123 unsigned Alignment = getMemInstAlignment(I); 7124 unsigned AS = getMemInstAddressSpace(I); 7125 7126 return TTI.getAddressComputationCost(ValTy) + 7127 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7128 } 7129 return getWideningCost(I, VF); 7130 } 7131 7132 LoopVectorizationCostModel::VectorizationCostTy 7133 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7134 // If we know that this instruction will remain uniform, check the cost of 7135 // the scalar version. 7136 if (isUniformAfterVectorization(I, VF)) 7137 VF = 1; 7138 7139 if (VF > 1 && isProfitableToScalarize(I, VF)) 7140 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7141 7142 // Forced scalars do not have any scalarization overhead. 7143 if (VF > 1 && ForcedScalars.count(VF) && 7144 ForcedScalars.find(VF)->second.count(I)) 7145 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7146 7147 Type *VectorTy; 7148 unsigned C = getInstructionCost(I, VF, VectorTy); 7149 7150 bool TypeNotScalarized = 7151 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7152 return VectorizationCostTy(C, TypeNotScalarized); 7153 } 7154 7155 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7156 if (VF == 1) 7157 return; 7158 for (BasicBlock *BB : TheLoop->blocks()) { 7159 // For each instruction in the old loop. 7160 for (Instruction &I : *BB) { 7161 Value *Ptr = getPointerOperand(&I); 7162 if (!Ptr) 7163 continue; 7164 7165 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7166 // Scalar load + broadcast 7167 unsigned Cost = getUniformMemOpCost(&I, VF); 7168 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7169 continue; 7170 } 7171 7172 // We assume that widening is the best solution when possible. 7173 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7174 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7175 int ConsecutiveStride = Legal->isConsecutivePtr(getPointerOperand(&I)); 7176 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7177 "Expected consecutive stride."); 7178 InstWidening Decision = 7179 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7180 setWideningDecision(&I, VF, Decision, Cost); 7181 continue; 7182 } 7183 7184 // Choose between Interleaving, Gather/Scatter or Scalarization. 7185 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7186 unsigned NumAccesses = 1; 7187 if (Legal->isAccessInterleaved(&I)) { 7188 auto Group = Legal->getInterleavedAccessGroup(&I); 7189 assert(Group && "Fail to get an interleaved access group."); 7190 7191 // Make one decision for the whole group. 7192 if (getWideningDecision(&I, VF) != CM_Unknown) 7193 continue; 7194 7195 NumAccesses = Group->getNumMembers(); 7196 InterleaveCost = getInterleaveGroupCost(&I, VF); 7197 } 7198 7199 unsigned GatherScatterCost = 7200 Legal->isLegalGatherOrScatter(&I) 7201 ? getGatherScatterCost(&I, VF) * NumAccesses 7202 : std::numeric_limits<unsigned>::max(); 7203 7204 unsigned ScalarizationCost = 7205 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7206 7207 // Choose better solution for the current VF, 7208 // write down this decision and use it during vectorization. 7209 unsigned Cost; 7210 InstWidening Decision; 7211 if (InterleaveCost <= GatherScatterCost && 7212 InterleaveCost < ScalarizationCost) { 7213 Decision = CM_Interleave; 7214 Cost = InterleaveCost; 7215 } else if (GatherScatterCost < ScalarizationCost) { 7216 Decision = CM_GatherScatter; 7217 Cost = GatherScatterCost; 7218 } else { 7219 Decision = CM_Scalarize; 7220 Cost = ScalarizationCost; 7221 } 7222 // If the instructions belongs to an interleave group, the whole group 7223 // receives the same decision. The whole group receives the cost, but 7224 // the cost will actually be assigned to one instruction. 7225 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7226 setWideningDecision(Group, VF, Decision, Cost); 7227 else 7228 setWideningDecision(&I, VF, Decision, Cost); 7229 } 7230 } 7231 7232 // Make sure that any load of address and any other address computation 7233 // remains scalar unless there is gather/scatter support. This avoids 7234 // inevitable extracts into address registers, and also has the benefit of 7235 // activating LSR more, since that pass can't optimize vectorized 7236 // addresses. 7237 if (TTI.prefersVectorizedAddressing()) 7238 return; 7239 7240 // Start with all scalar pointer uses. 7241 SmallPtrSet<Instruction *, 8> AddrDefs; 7242 for (BasicBlock *BB : TheLoop->blocks()) 7243 for (Instruction &I : *BB) { 7244 Instruction *PtrDef = 7245 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7246 if (PtrDef && TheLoop->contains(PtrDef) && 7247 getWideningDecision(&I, VF) != CM_GatherScatter) 7248 AddrDefs.insert(PtrDef); 7249 } 7250 7251 // Add all instructions used to generate the addresses. 7252 SmallVector<Instruction *, 4> Worklist; 7253 for (auto *I : AddrDefs) 7254 Worklist.push_back(I); 7255 while (!Worklist.empty()) { 7256 Instruction *I = Worklist.pop_back_val(); 7257 for (auto &Op : I->operands()) 7258 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7259 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7260 AddrDefs.insert(InstOp).second) 7261 Worklist.push_back(InstOp); 7262 } 7263 7264 for (auto *I : AddrDefs) { 7265 if (isa<LoadInst>(I)) { 7266 // Setting the desired widening decision should ideally be handled in 7267 // by cost functions, but since this involves the task of finding out 7268 // if the loaded register is involved in an address computation, it is 7269 // instead changed here when we know this is the case. 7270 InstWidening Decision = getWideningDecision(I, VF); 7271 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7272 // Scalarize a widened load of address. 7273 setWideningDecision(I, VF, CM_Scalarize, 7274 (VF * getMemoryInstructionCost(I, 1))); 7275 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7276 // Scalarize an interleave group of address loads. 7277 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7278 if (Instruction *Member = Group->getMember(I)) 7279 setWideningDecision(Member, VF, CM_Scalarize, 7280 (VF * getMemoryInstructionCost(Member, 1))); 7281 } 7282 } 7283 } else 7284 // Make sure I gets scalarized and a cost estimate without 7285 // scalarization overhead. 7286 ForcedScalars[VF].insert(I); 7287 } 7288 } 7289 7290 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7291 unsigned VF, 7292 Type *&VectorTy) { 7293 Type *RetTy = I->getType(); 7294 if (canTruncateToMinimalBitwidth(I, VF)) 7295 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7296 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7297 auto SE = PSE.getSE(); 7298 7299 // TODO: We need to estimate the cost of intrinsic calls. 7300 switch (I->getOpcode()) { 7301 case Instruction::GetElementPtr: 7302 // We mark this instruction as zero-cost because the cost of GEPs in 7303 // vectorized code depends on whether the corresponding memory instruction 7304 // is scalarized or not. Therefore, we handle GEPs with the memory 7305 // instruction cost. 7306 return 0; 7307 case Instruction::Br: { 7308 // In cases of scalarized and predicated instructions, there will be VF 7309 // predicated blocks in the vectorized loop. Each branch around these 7310 // blocks requires also an extract of its vector compare i1 element. 7311 bool ScalarPredicatedBB = false; 7312 BranchInst *BI = cast<BranchInst>(I); 7313 if (VF > 1 && BI->isConditional() && 7314 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7315 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7316 ScalarPredicatedBB = true; 7317 7318 if (ScalarPredicatedBB) { 7319 // Return cost for branches around scalarized and predicated blocks. 7320 Type *Vec_i1Ty = 7321 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7322 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7323 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7324 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7325 // The back-edge branch will remain, as will all scalar branches. 7326 return TTI.getCFInstrCost(Instruction::Br); 7327 else 7328 // This branch will be eliminated by if-conversion. 7329 return 0; 7330 // Note: We currently assume zero cost for an unconditional branch inside 7331 // a predicated block since it will become a fall-through, although we 7332 // may decide in the future to call TTI for all branches. 7333 } 7334 case Instruction::PHI: { 7335 auto *Phi = cast<PHINode>(I); 7336 7337 // First-order recurrences are replaced by vector shuffles inside the loop. 7338 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7339 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7340 VectorTy, VF - 1, VectorTy); 7341 7342 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7343 // converted into select instructions. We require N - 1 selects per phi 7344 // node, where N is the number of incoming values. 7345 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7346 return (Phi->getNumIncomingValues() - 1) * 7347 TTI.getCmpSelInstrCost( 7348 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7349 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7350 7351 return TTI.getCFInstrCost(Instruction::PHI); 7352 } 7353 case Instruction::UDiv: 7354 case Instruction::SDiv: 7355 case Instruction::URem: 7356 case Instruction::SRem: 7357 // If we have a predicated instruction, it may not be executed for each 7358 // vector lane. Get the scalarization cost and scale this amount by the 7359 // probability of executing the predicated block. If the instruction is not 7360 // predicated, we fall through to the next case. 7361 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7362 unsigned Cost = 0; 7363 7364 // These instructions have a non-void type, so account for the phi nodes 7365 // that we will create. This cost is likely to be zero. The phi node 7366 // cost, if any, should be scaled by the block probability because it 7367 // models a copy at the end of each predicated block. 7368 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7369 7370 // The cost of the non-predicated instruction. 7371 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7372 7373 // The cost of insertelement and extractelement instructions needed for 7374 // scalarization. 7375 Cost += getScalarizationOverhead(I, VF, TTI); 7376 7377 // Scale the cost by the probability of executing the predicated blocks. 7378 // This assumes the predicated block for each vector lane is equally 7379 // likely. 7380 return Cost / getReciprocalPredBlockProb(); 7381 } 7382 LLVM_FALLTHROUGH; 7383 case Instruction::Add: 7384 case Instruction::FAdd: 7385 case Instruction::Sub: 7386 case Instruction::FSub: 7387 case Instruction::Mul: 7388 case Instruction::FMul: 7389 case Instruction::FDiv: 7390 case Instruction::FRem: 7391 case Instruction::Shl: 7392 case Instruction::LShr: 7393 case Instruction::AShr: 7394 case Instruction::And: 7395 case Instruction::Or: 7396 case Instruction::Xor: { 7397 // Since we will replace the stride by 1 the multiplication should go away. 7398 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7399 return 0; 7400 // Certain instructions can be cheaper to vectorize if they have a constant 7401 // second vector operand. One example of this are shifts on x86. 7402 TargetTransformInfo::OperandValueKind Op1VK = 7403 TargetTransformInfo::OK_AnyValue; 7404 TargetTransformInfo::OperandValueKind Op2VK = 7405 TargetTransformInfo::OK_AnyValue; 7406 TargetTransformInfo::OperandValueProperties Op1VP = 7407 TargetTransformInfo::OP_None; 7408 TargetTransformInfo::OperandValueProperties Op2VP = 7409 TargetTransformInfo::OP_None; 7410 Value *Op2 = I->getOperand(1); 7411 7412 // Check for a splat or for a non uniform vector of constants. 7413 if (isa<ConstantInt>(Op2)) { 7414 ConstantInt *CInt = cast<ConstantInt>(Op2); 7415 if (CInt && CInt->getValue().isPowerOf2()) 7416 Op2VP = TargetTransformInfo::OP_PowerOf2; 7417 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7418 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7419 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7420 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7421 if (SplatValue) { 7422 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7423 if (CInt && CInt->getValue().isPowerOf2()) 7424 Op2VP = TargetTransformInfo::OP_PowerOf2; 7425 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7426 } 7427 } else if (Legal->isUniform(Op2)) { 7428 Op2VK = TargetTransformInfo::OK_UniformValue; 7429 } 7430 SmallVector<const Value *, 4> Operands(I->operand_values()); 7431 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7432 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7433 Op2VK, Op1VP, Op2VP, Operands); 7434 } 7435 case Instruction::Select: { 7436 SelectInst *SI = cast<SelectInst>(I); 7437 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7438 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7439 Type *CondTy = SI->getCondition()->getType(); 7440 if (!ScalarCond) 7441 CondTy = VectorType::get(CondTy, VF); 7442 7443 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7444 } 7445 case Instruction::ICmp: 7446 case Instruction::FCmp: { 7447 Type *ValTy = I->getOperand(0)->getType(); 7448 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7449 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7450 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7451 VectorTy = ToVectorTy(ValTy, VF); 7452 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7453 } 7454 case Instruction::Store: 7455 case Instruction::Load: { 7456 unsigned Width = VF; 7457 if (Width > 1) { 7458 InstWidening Decision = getWideningDecision(I, Width); 7459 assert(Decision != CM_Unknown && 7460 "CM decision should be taken at this point"); 7461 if (Decision == CM_Scalarize) 7462 Width = 1; 7463 } 7464 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7465 return getMemoryInstructionCost(I, VF); 7466 } 7467 case Instruction::ZExt: 7468 case Instruction::SExt: 7469 case Instruction::FPToUI: 7470 case Instruction::FPToSI: 7471 case Instruction::FPExt: 7472 case Instruction::PtrToInt: 7473 case Instruction::IntToPtr: 7474 case Instruction::SIToFP: 7475 case Instruction::UIToFP: 7476 case Instruction::Trunc: 7477 case Instruction::FPTrunc: 7478 case Instruction::BitCast: { 7479 // We optimize the truncation of induction variables having constant 7480 // integer steps. The cost of these truncations is the same as the scalar 7481 // operation. 7482 if (isOptimizableIVTruncate(I, VF)) { 7483 auto *Trunc = cast<TruncInst>(I); 7484 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7485 Trunc->getSrcTy(), Trunc); 7486 } 7487 7488 Type *SrcScalarTy = I->getOperand(0)->getType(); 7489 Type *SrcVecTy = 7490 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7491 if (canTruncateToMinimalBitwidth(I, VF)) { 7492 // This cast is going to be shrunk. This may remove the cast or it might 7493 // turn it into slightly different cast. For example, if MinBW == 16, 7494 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7495 // 7496 // Calculate the modified src and dest types. 7497 Type *MinVecTy = VectorTy; 7498 if (I->getOpcode() == Instruction::Trunc) { 7499 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7500 VectorTy = 7501 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7502 } else if (I->getOpcode() == Instruction::ZExt || 7503 I->getOpcode() == Instruction::SExt) { 7504 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7505 VectorTy = 7506 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7507 } 7508 } 7509 7510 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7511 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7512 } 7513 case Instruction::Call: { 7514 bool NeedToScalarize; 7515 CallInst *CI = cast<CallInst>(I); 7516 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7517 if (getVectorIntrinsicIDForCall(CI, TLI)) 7518 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7519 return CallCost; 7520 } 7521 default: 7522 // The cost of executing VF copies of the scalar instruction. This opcode 7523 // is unknown. Assume that it is the same as 'mul'. 7524 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7525 getScalarizationOverhead(I, VF, TTI); 7526 } // end of switch. 7527 } 7528 7529 char LoopVectorize::ID = 0; 7530 7531 static const char lv_name[] = "Loop Vectorization"; 7532 7533 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7534 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7535 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7536 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7537 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7538 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7539 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7540 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7541 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7542 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7543 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7544 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7545 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7546 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7547 7548 namespace llvm { 7549 7550 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7551 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7552 } 7553 7554 } // end namespace llvm 7555 7556 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7557 // Check if the pointer operand of a load or store instruction is 7558 // consecutive. 7559 if (auto *Ptr = getPointerOperand(Inst)) 7560 return Legal->isConsecutivePtr(Ptr); 7561 return false; 7562 } 7563 7564 void LoopVectorizationCostModel::collectValuesToIgnore() { 7565 // Ignore ephemeral values. 7566 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7567 7568 // Ignore type-promoting instructions we identified during reduction 7569 // detection. 7570 for (auto &Reduction : *Legal->getReductionVars()) { 7571 RecurrenceDescriptor &RedDes = Reduction.second; 7572 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7573 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7574 } 7575 // Ignore type-casting instructions we identified during induction 7576 // detection. 7577 for (auto &Induction : *Legal->getInductionVars()) { 7578 InductionDescriptor &IndDes = Induction.second; 7579 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7580 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7581 } 7582 } 7583 7584 LoopVectorizationCostModel::VectorizationFactor 7585 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7586 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7587 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7588 0U}; 7589 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7590 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7591 return NoVectorization; 7592 7593 if (UserVF) { 7594 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7595 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7596 // Collect the instructions (and their associated costs) that will be more 7597 // profitable to scalarize. 7598 CM.selectUserVectorizationFactor(UserVF); 7599 buildVPlans(UserVF, UserVF); 7600 DEBUG(printPlans(dbgs())); 7601 return {UserVF, 0}; 7602 } 7603 7604 unsigned MaxVF = MaybeMaxVF.getValue(); 7605 assert(MaxVF != 0 && "MaxVF is zero."); 7606 7607 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7608 // Collect Uniform and Scalar instructions after vectorization with VF. 7609 CM.collectUniformsAndScalars(VF); 7610 7611 // Collect the instructions (and their associated costs) that will be more 7612 // profitable to scalarize. 7613 if (VF > 1) 7614 CM.collectInstsToScalarize(VF); 7615 } 7616 7617 buildVPlans(1, MaxVF); 7618 DEBUG(printPlans(dbgs())); 7619 if (MaxVF == 1) 7620 return NoVectorization; 7621 7622 // Select the optimal vectorization factor. 7623 return CM.selectVectorizationFactor(MaxVF); 7624 } 7625 7626 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7627 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7628 BestVF = VF; 7629 BestUF = UF; 7630 7631 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7632 return !Plan->hasVF(VF); 7633 }); 7634 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7635 } 7636 7637 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7638 DominatorTree *DT) { 7639 // Perform the actual loop transformation. 7640 7641 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7642 VPCallbackILV CallbackILV(ILV); 7643 7644 VPTransformState State{BestVF, BestUF, LI, 7645 DT, ILV.Builder, ILV.VectorLoopValueMap, 7646 &ILV, CallbackILV}; 7647 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7648 7649 //===------------------------------------------------===// 7650 // 7651 // Notice: any optimization or new instruction that go 7652 // into the code below should also be implemented in 7653 // the cost-model. 7654 // 7655 //===------------------------------------------------===// 7656 7657 // 2. Copy and widen instructions from the old loop into the new loop. 7658 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7659 VPlans.front()->execute(&State); 7660 7661 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7662 // predication, updating analyses. 7663 ILV.fixVectorizedLoop(); 7664 } 7665 7666 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7667 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7668 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7669 7670 // We create new control-flow for the vectorized loop, so the original 7671 // condition will be dead after vectorization if it's only used by the 7672 // branch. 7673 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7674 if (Cmp && Cmp->hasOneUse()) 7675 DeadInstructions.insert(Cmp); 7676 7677 // We create new "steps" for induction variable updates to which the original 7678 // induction variables map. An original update instruction will be dead if 7679 // all its users except the induction variable are dead. 7680 for (auto &Induction : *Legal->getInductionVars()) { 7681 PHINode *Ind = Induction.first; 7682 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7683 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7684 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7685 })) 7686 DeadInstructions.insert(IndUpdate); 7687 7688 // We record as "Dead" also the type-casting instructions we had identified 7689 // during induction analysis. We don't need any handling for them in the 7690 // vectorized loop because we have proven that, under a proper runtime 7691 // test guarding the vectorized loop, the value of the phi, and the casted 7692 // value of the phi, are the same. The last instruction in this casting chain 7693 // will get its scalar/vector/widened def from the scalar/vector/widened def 7694 // of the respective phi node. Any other casts in the induction def-use chain 7695 // have no other uses outside the phi update chain, and will be ignored. 7696 InductionDescriptor &IndDes = Induction.second; 7697 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7698 DeadInstructions.insert(Casts.begin(), Casts.end()); 7699 } 7700 } 7701 7702 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7703 7704 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7705 7706 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7707 Instruction::BinaryOps BinOp) { 7708 // When unrolling and the VF is 1, we only need to add a simple scalar. 7709 Type *Ty = Val->getType(); 7710 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7711 7712 if (Ty->isFloatingPointTy()) { 7713 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7714 7715 // Floating point operations had to be 'fast' to enable the unrolling. 7716 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7717 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7718 } 7719 Constant *C = ConstantInt::get(Ty, StartIdx); 7720 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7721 } 7722 7723 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7724 SmallVector<Metadata *, 4> MDs; 7725 // Reserve first location for self reference to the LoopID metadata node. 7726 MDs.push_back(nullptr); 7727 bool IsUnrollMetadata = false; 7728 MDNode *LoopID = L->getLoopID(); 7729 if (LoopID) { 7730 // First find existing loop unrolling disable metadata. 7731 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7732 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7733 if (MD) { 7734 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7735 IsUnrollMetadata = 7736 S && S->getString().startswith("llvm.loop.unroll.disable"); 7737 } 7738 MDs.push_back(LoopID->getOperand(i)); 7739 } 7740 } 7741 7742 if (!IsUnrollMetadata) { 7743 // Add runtime unroll disable metadata. 7744 LLVMContext &Context = L->getHeader()->getContext(); 7745 SmallVector<Metadata *, 1> DisableOperands; 7746 DisableOperands.push_back( 7747 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7748 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7749 MDs.push_back(DisableNode); 7750 MDNode *NewLoopID = MDNode::get(Context, MDs); 7751 // Set operand 0 to refer to the loop id itself. 7752 NewLoopID->replaceOperandWith(0, NewLoopID); 7753 L->setLoopID(NewLoopID); 7754 } 7755 } 7756 7757 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7758 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7759 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7760 bool PredicateAtRangeStart = Predicate(Range.Start); 7761 7762 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7763 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7764 Range.End = TmpVF; 7765 break; 7766 } 7767 7768 return PredicateAtRangeStart; 7769 } 7770 7771 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7772 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7773 /// of VF's starting at a given VF and extending it as much as possible. Each 7774 /// vectorization decision can potentially shorten this sub-range during 7775 /// buildVPlan(). 7776 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7777 7778 // Collect conditions feeding internal conditional branches; they need to be 7779 // represented in VPlan for it to model masking. 7780 SmallPtrSet<Value *, 1> NeedDef; 7781 7782 auto *Latch = OrigLoop->getLoopLatch(); 7783 for (BasicBlock *BB : OrigLoop->blocks()) { 7784 if (BB == Latch) 7785 continue; 7786 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7787 if (Branch && Branch->isConditional()) 7788 NeedDef.insert(Branch->getCondition()); 7789 } 7790 7791 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7792 VFRange SubRange = {VF, MaxVF + 1}; 7793 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7794 VF = SubRange.End; 7795 } 7796 } 7797 7798 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7799 BasicBlock *Dst, 7800 VPlanPtr &Plan) { 7801 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7802 7803 // Look for cached value. 7804 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7805 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7806 if (ECEntryIt != EdgeMaskCache.end()) 7807 return ECEntryIt->second; 7808 7809 VPValue *SrcMask = createBlockInMask(Src, Plan); 7810 7811 // The terminator has to be a branch inst! 7812 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7813 assert(BI && "Unexpected terminator found"); 7814 7815 if (!BI->isConditional()) 7816 return EdgeMaskCache[Edge] = SrcMask; 7817 7818 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7819 assert(EdgeMask && "No Edge Mask found for condition"); 7820 7821 if (BI->getSuccessor(0) != Dst) 7822 EdgeMask = Builder.createNot(EdgeMask); 7823 7824 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7825 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7826 7827 return EdgeMaskCache[Edge] = EdgeMask; 7828 } 7829 7830 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7831 VPlanPtr &Plan) { 7832 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7833 7834 // Look for cached value. 7835 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7836 if (BCEntryIt != BlockMaskCache.end()) 7837 return BCEntryIt->second; 7838 7839 // All-one mask is modelled as no-mask following the convention for masked 7840 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7841 VPValue *BlockMask = nullptr; 7842 7843 // Loop incoming mask is all-one. 7844 if (OrigLoop->getHeader() == BB) 7845 return BlockMaskCache[BB] = BlockMask; 7846 7847 // This is the block mask. We OR all incoming edges. 7848 for (auto *Predecessor : predecessors(BB)) { 7849 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7850 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7851 return BlockMaskCache[BB] = EdgeMask; 7852 7853 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7854 BlockMask = EdgeMask; 7855 continue; 7856 } 7857 7858 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7859 } 7860 7861 return BlockMaskCache[BB] = BlockMask; 7862 } 7863 7864 VPInterleaveRecipe * 7865 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7866 VFRange &Range) { 7867 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7868 if (!IG) 7869 return nullptr; 7870 7871 // Now check if IG is relevant for VF's in the given range. 7872 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7873 return [=](unsigned VF) -> bool { 7874 return (VF >= 2 && // Query is illegal for VF == 1 7875 CM.getWideningDecision(I, VF) == 7876 LoopVectorizationCostModel::CM_Interleave); 7877 }; 7878 }; 7879 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7880 return nullptr; 7881 7882 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7883 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7884 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7885 assert(I == IG->getInsertPos() && 7886 "Generating a recipe for an adjunct member of an interleave group"); 7887 7888 return new VPInterleaveRecipe(IG); 7889 } 7890 7891 VPWidenMemoryInstructionRecipe * 7892 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7893 VPlanPtr &Plan) { 7894 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7895 return nullptr; 7896 7897 auto willWiden = [&](unsigned VF) -> bool { 7898 if (VF == 1) 7899 return false; 7900 if (CM.isScalarAfterVectorization(I, VF) || 7901 CM.isProfitableToScalarize(I, VF)) 7902 return false; 7903 LoopVectorizationCostModel::InstWidening Decision = 7904 CM.getWideningDecision(I, VF); 7905 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7906 "CM decision should be taken at this point."); 7907 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7908 "Interleave memory opportunity should be caught earlier."); 7909 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7910 }; 7911 7912 if (!getDecisionAndClampRange(willWiden, Range)) 7913 return nullptr; 7914 7915 VPValue *Mask = nullptr; 7916 if (Legal->isMaskRequired(I)) 7917 Mask = createBlockInMask(I->getParent(), Plan); 7918 7919 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7920 } 7921 7922 VPWidenIntOrFpInductionRecipe * 7923 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7924 VFRange &Range) { 7925 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7926 // Check if this is an integer or fp induction. If so, build the recipe that 7927 // produces its scalar and vector values. 7928 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7929 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7930 II.getKind() == InductionDescriptor::IK_FpInduction) 7931 return new VPWidenIntOrFpInductionRecipe(Phi); 7932 7933 return nullptr; 7934 } 7935 7936 // Optimize the special case where the source is a constant integer 7937 // induction variable. Notice that we can only optimize the 'trunc' case 7938 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7939 // (c) other casts depend on pointer size. 7940 7941 // Determine whether \p K is a truncation based on an induction variable that 7942 // can be optimized. 7943 auto isOptimizableIVTruncate = 7944 [&](Instruction *K) -> std::function<bool(unsigned)> { 7945 return 7946 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7947 }; 7948 7949 if (isa<TruncInst>(I) && 7950 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7951 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7952 cast<TruncInst>(I)); 7953 return nullptr; 7954 } 7955 7956 VPBlendRecipe * 7957 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7958 PHINode *Phi = dyn_cast<PHINode>(I); 7959 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7960 return nullptr; 7961 7962 // We know that all PHIs in non-header blocks are converted into selects, so 7963 // we don't have to worry about the insertion order and we can just use the 7964 // builder. At this point we generate the predication tree. There may be 7965 // duplications since this is a simple recursive scan, but future 7966 // optimizations will clean it up. 7967 7968 SmallVector<VPValue *, 2> Masks; 7969 unsigned NumIncoming = Phi->getNumIncomingValues(); 7970 for (unsigned In = 0; In < NumIncoming; In++) { 7971 VPValue *EdgeMask = 7972 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7973 assert((EdgeMask || NumIncoming == 1) && 7974 "Multiple predecessors with one having a full mask"); 7975 if (EdgeMask) 7976 Masks.push_back(EdgeMask); 7977 } 7978 return new VPBlendRecipe(Phi, Masks); 7979 } 7980 7981 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7982 VFRange &Range) { 7983 if (Legal->isScalarWithPredication(I)) 7984 return false; 7985 7986 auto IsVectorizableOpcode = [](unsigned Opcode) { 7987 switch (Opcode) { 7988 case Instruction::Add: 7989 case Instruction::And: 7990 case Instruction::AShr: 7991 case Instruction::BitCast: 7992 case Instruction::Br: 7993 case Instruction::Call: 7994 case Instruction::FAdd: 7995 case Instruction::FCmp: 7996 case Instruction::FDiv: 7997 case Instruction::FMul: 7998 case Instruction::FPExt: 7999 case Instruction::FPToSI: 8000 case Instruction::FPToUI: 8001 case Instruction::FPTrunc: 8002 case Instruction::FRem: 8003 case Instruction::FSub: 8004 case Instruction::GetElementPtr: 8005 case Instruction::ICmp: 8006 case Instruction::IntToPtr: 8007 case Instruction::Load: 8008 case Instruction::LShr: 8009 case Instruction::Mul: 8010 case Instruction::Or: 8011 case Instruction::PHI: 8012 case Instruction::PtrToInt: 8013 case Instruction::SDiv: 8014 case Instruction::Select: 8015 case Instruction::SExt: 8016 case Instruction::Shl: 8017 case Instruction::SIToFP: 8018 case Instruction::SRem: 8019 case Instruction::Store: 8020 case Instruction::Sub: 8021 case Instruction::Trunc: 8022 case Instruction::UDiv: 8023 case Instruction::UIToFP: 8024 case Instruction::URem: 8025 case Instruction::Xor: 8026 case Instruction::ZExt: 8027 return true; 8028 } 8029 return false; 8030 }; 8031 8032 if (!IsVectorizableOpcode(I->getOpcode())) 8033 return false; 8034 8035 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8036 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8037 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8038 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 8039 return false; 8040 } 8041 8042 auto willWiden = [&](unsigned VF) -> bool { 8043 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8044 CM.isProfitableToScalarize(I, VF))) 8045 return false; 8046 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8047 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8048 // The following case may be scalarized depending on the VF. 8049 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8050 // version of the instruction. 8051 // Is it beneficial to perform intrinsic call compared to lib call? 8052 bool NeedToScalarize; 8053 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8054 bool UseVectorIntrinsic = 8055 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8056 return UseVectorIntrinsic || !NeedToScalarize; 8057 } 8058 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8059 assert(CM.getWideningDecision(I, VF) == 8060 LoopVectorizationCostModel::CM_Scalarize && 8061 "Memory widening decisions should have been taken care by now"); 8062 return false; 8063 } 8064 return true; 8065 }; 8066 8067 if (!getDecisionAndClampRange(willWiden, Range)) 8068 return false; 8069 8070 // Success: widen this instruction. We optimize the common case where 8071 // consecutive instructions can be represented by a single recipe. 8072 if (!VPBB->empty()) { 8073 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 8074 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8075 return true; 8076 } 8077 8078 VPBB->appendRecipe(new VPWidenRecipe(I)); 8079 return true; 8080 } 8081 8082 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8083 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8084 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8085 VPlanPtr &Plan) { 8086 bool IsUniform = getDecisionAndClampRange( 8087 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8088 Range); 8089 8090 bool IsPredicated = Legal->isScalarWithPredication(I); 8091 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8092 8093 // Find if I uses a predicated instruction. If so, it will use its scalar 8094 // value. Avoid hoisting the insert-element which packs the scalar value into 8095 // a vector value, as that happens iff all users use the vector value. 8096 for (auto &Op : I->operands()) 8097 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8098 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8099 PredInst2Recipe[PredInst]->setAlsoPack(false); 8100 8101 // Finalize the recipe for Instr, first if it is not predicated. 8102 if (!IsPredicated) { 8103 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8104 VPBB->appendRecipe(Recipe); 8105 return VPBB; 8106 } 8107 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8108 assert(VPBB->getSuccessors().empty() && 8109 "VPBB has successors when handling predicated replication."); 8110 // Record predicated instructions for above packing optimizations. 8111 PredInst2Recipe[I] = Recipe; 8112 VPBlockBase *Region = 8113 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 8114 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8115 } 8116 8117 VPRegionBlock * 8118 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8119 VPRecipeBase *PredRecipe, 8120 VPlanPtr &Plan) { 8121 // Instructions marked for predication are replicated and placed under an 8122 // if-then construct to prevent side-effects. 8123 8124 // Generate recipes to compute the block mask for this region. 8125 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8126 8127 // Build the triangular if-then region. 8128 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8129 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8130 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8131 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8132 auto *PHIRecipe = 8133 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8134 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8135 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8136 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8137 8138 // Note: first set Entry as region entry and then connect successors starting 8139 // from it in order, to propagate the "parent" of each VPBasicBlock. 8140 Entry->setTwoSuccessors(Pred, Exit); 8141 Pred->setOneSuccessor(Exit); 8142 8143 return Region; 8144 } 8145 8146 LoopVectorizationPlanner::VPlanPtr 8147 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 8148 const SmallPtrSetImpl<Value *> &NeedDef) { 8149 EdgeMaskCache.clear(); 8150 BlockMaskCache.clear(); 8151 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8152 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8153 8154 // Collect instructions from the original loop that will become trivially dead 8155 // in the vectorized loop. We don't need to vectorize these instructions. For 8156 // example, original induction update instructions can become dead because we 8157 // separately emit induction "steps" when generating code for the new loop. 8158 // Similarly, we create a new latch condition when setting up the structure 8159 // of the new loop, so the old one can become dead. 8160 SmallPtrSet<Instruction *, 4> DeadInstructions; 8161 collectTriviallyDeadInstructions(DeadInstructions); 8162 8163 // Hold a mapping from predicated instructions to their recipes, in order to 8164 // fix their AlsoPack behavior if a user is determined to replicate and use a 8165 // scalar instead of vector value. 8166 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8167 8168 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8169 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8170 auto Plan = llvm::make_unique<VPlan>(VPBB); 8171 8172 // Represent values that will have defs inside VPlan. 8173 for (Value *V : NeedDef) 8174 Plan->addVPValue(V); 8175 8176 // Scan the body of the loop in a topological order to visit each basic block 8177 // after having visited its predecessor basic blocks. 8178 LoopBlocksDFS DFS(OrigLoop); 8179 DFS.perform(LI); 8180 8181 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8182 // Relevant instructions from basic block BB will be grouped into VPRecipe 8183 // ingredients and fill a new VPBasicBlock. 8184 unsigned VPBBsForBB = 0; 8185 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8186 VPBB->setOneSuccessor(FirstVPBBForBB); 8187 VPBB = FirstVPBBForBB; 8188 Builder.setInsertPoint(VPBB); 8189 8190 std::vector<Instruction *> Ingredients; 8191 8192 // Organize the ingredients to vectorize from current basic block in the 8193 // right order. 8194 for (Instruction &I : *BB) { 8195 Instruction *Instr = &I; 8196 8197 // First filter out irrelevant instructions, to ensure no recipes are 8198 // built for them. 8199 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8200 DeadInstructions.count(Instr)) 8201 continue; 8202 8203 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8204 // member of the IG, do not construct any Recipe for it. 8205 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8206 if (IG && Instr != IG->getInsertPos() && 8207 Range.Start >= 2 && // Query is illegal for VF == 1 8208 CM.getWideningDecision(Instr, Range.Start) == 8209 LoopVectorizationCostModel::CM_Interleave) { 8210 if (SinkAfterInverse.count(Instr)) 8211 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8212 continue; 8213 } 8214 8215 // Move instructions to handle first-order recurrences, step 1: avoid 8216 // handling this instruction until after we've handled the instruction it 8217 // should follow. 8218 auto SAIt = SinkAfter.find(Instr); 8219 if (SAIt != SinkAfter.end()) { 8220 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8221 << " to vectorize a 1st order recurrence.\n"); 8222 SinkAfterInverse[SAIt->second] = Instr; 8223 continue; 8224 } 8225 8226 Ingredients.push_back(Instr); 8227 8228 // Move instructions to handle first-order recurrences, step 2: push the 8229 // instruction to be sunk at its insertion point. 8230 auto SAInvIt = SinkAfterInverse.find(Instr); 8231 if (SAInvIt != SinkAfterInverse.end()) 8232 Ingredients.push_back(SAInvIt->second); 8233 } 8234 8235 // Introduce each ingredient into VPlan. 8236 for (Instruction *Instr : Ingredients) { 8237 VPRecipeBase *Recipe = nullptr; 8238 8239 // Check if Instr should belong to an interleave memory recipe, or already 8240 // does. In the latter case Instr is irrelevant. 8241 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8242 VPBB->appendRecipe(Recipe); 8243 continue; 8244 } 8245 8246 // Check if Instr is a memory operation that should be widened. 8247 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8248 VPBB->appendRecipe(Recipe); 8249 continue; 8250 } 8251 8252 // Check if Instr should form some PHI recipe. 8253 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8254 VPBB->appendRecipe(Recipe); 8255 continue; 8256 } 8257 if ((Recipe = tryToBlend(Instr, Plan))) { 8258 VPBB->appendRecipe(Recipe); 8259 continue; 8260 } 8261 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8262 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8263 continue; 8264 } 8265 8266 // Check if Instr is to be widened by a general VPWidenRecipe, after 8267 // having first checked for specific widening recipes that deal with 8268 // Interleave Groups, Inductions and Phi nodes. 8269 if (tryToWiden(Instr, VPBB, Range)) 8270 continue; 8271 8272 // Otherwise, if all widening options failed, Instruction is to be 8273 // replicated. This may create a successor for VPBB. 8274 VPBasicBlock *NextVPBB = 8275 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8276 if (NextVPBB != VPBB) { 8277 VPBB = NextVPBB; 8278 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8279 : ""); 8280 } 8281 } 8282 } 8283 8284 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8285 // may also be empty, such as the last one VPBB, reflecting original 8286 // basic-blocks with no recipes. 8287 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8288 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8289 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8290 PreEntry->disconnectSuccessor(Entry); 8291 delete PreEntry; 8292 8293 std::string PlanName; 8294 raw_string_ostream RSO(PlanName); 8295 unsigned VF = Range.Start; 8296 Plan->addVF(VF); 8297 RSO << "Initial VPlan for VF={" << VF; 8298 for (VF *= 2; VF < Range.End; VF *= 2) { 8299 Plan->addVF(VF); 8300 RSO << "," << VF; 8301 } 8302 RSO << "},UF>=1"; 8303 RSO.flush(); 8304 Plan->setName(PlanName); 8305 8306 return Plan; 8307 } 8308 8309 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8310 O << " +\n" 8311 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8312 IG->getInsertPos()->printAsOperand(O, false); 8313 O << "\\l\""; 8314 for (unsigned i = 0; i < IG->getFactor(); ++i) 8315 if (Instruction *I = IG->getMember(i)) 8316 O << " +\n" 8317 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8318 } 8319 8320 void VPWidenRecipe::execute(VPTransformState &State) { 8321 for (auto &Instr : make_range(Begin, End)) 8322 State.ILV->widenInstruction(Instr); 8323 } 8324 8325 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8326 assert(!State.Instance && "Int or FP induction being replicated."); 8327 State.ILV->widenIntOrFpInduction(IV, Trunc); 8328 } 8329 8330 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8331 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8332 } 8333 8334 void VPBlendRecipe::execute(VPTransformState &State) { 8335 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8336 // We know that all PHIs in non-header blocks are converted into 8337 // selects, so we don't have to worry about the insertion order and we 8338 // can just use the builder. 8339 // At this point we generate the predication tree. There may be 8340 // duplications since this is a simple recursive scan, but future 8341 // optimizations will clean it up. 8342 8343 unsigned NumIncoming = Phi->getNumIncomingValues(); 8344 8345 assert((User || NumIncoming == 1) && 8346 "Multiple predecessors with predecessors having a full mask"); 8347 // Generate a sequence of selects of the form: 8348 // SELECT(Mask3, In3, 8349 // SELECT(Mask2, In2, 8350 // ( ...))) 8351 InnerLoopVectorizer::VectorParts Entry(State.UF); 8352 for (unsigned In = 0; In < NumIncoming; ++In) { 8353 for (unsigned Part = 0; Part < State.UF; ++Part) { 8354 // We might have single edge PHIs (blocks) - use an identity 8355 // 'select' for the first PHI operand. 8356 Value *In0 = 8357 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8358 if (In == 0) 8359 Entry[Part] = In0; // Initialize with the first incoming value. 8360 else { 8361 // Select between the current value and the previous incoming edge 8362 // based on the incoming mask. 8363 Value *Cond = State.get(User->getOperand(In), Part); 8364 Entry[Part] = 8365 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8366 } 8367 } 8368 } 8369 for (unsigned Part = 0; Part < State.UF; ++Part) 8370 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8371 } 8372 8373 void VPInterleaveRecipe::execute(VPTransformState &State) { 8374 assert(!State.Instance && "Interleave group being replicated."); 8375 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8376 } 8377 8378 void VPReplicateRecipe::execute(VPTransformState &State) { 8379 if (State.Instance) { // Generate a single instance. 8380 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8381 // Insert scalar instance packing it into a vector. 8382 if (AlsoPack && State.VF > 1) { 8383 // If we're constructing lane 0, initialize to start from undef. 8384 if (State.Instance->Lane == 0) { 8385 Value *Undef = 8386 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8387 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8388 } 8389 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8390 } 8391 return; 8392 } 8393 8394 // Generate scalar instances for all VF lanes of all UF parts, unless the 8395 // instruction is uniform inwhich case generate only the first lane for each 8396 // of the UF parts. 8397 unsigned EndLane = IsUniform ? 1 : State.VF; 8398 for (unsigned Part = 0; Part < State.UF; ++Part) 8399 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8400 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8401 } 8402 8403 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8404 assert(State.Instance && "Branch on Mask works only on single instance."); 8405 8406 unsigned Part = State.Instance->Part; 8407 unsigned Lane = State.Instance->Lane; 8408 8409 Value *ConditionBit = nullptr; 8410 if (!User) // Block in mask is all-one. 8411 ConditionBit = State.Builder.getTrue(); 8412 else { 8413 VPValue *BlockInMask = User->getOperand(0); 8414 ConditionBit = State.get(BlockInMask, Part); 8415 if (ConditionBit->getType()->isVectorTy()) 8416 ConditionBit = State.Builder.CreateExtractElement( 8417 ConditionBit, State.Builder.getInt32(Lane)); 8418 } 8419 8420 // Replace the temporary unreachable terminator with a new conditional branch, 8421 // whose two destinations will be set later when they are created. 8422 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8423 assert(isa<UnreachableInst>(CurrentTerminator) && 8424 "Expected to replace unreachable terminator with conditional branch."); 8425 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8426 CondBr->setSuccessor(0, nullptr); 8427 ReplaceInstWithInst(CurrentTerminator, CondBr); 8428 } 8429 8430 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8431 assert(State.Instance && "Predicated instruction PHI works per instance."); 8432 Instruction *ScalarPredInst = cast<Instruction>( 8433 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8434 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8435 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8436 assert(PredicatingBB && "Predicated block has no single predecessor."); 8437 8438 // By current pack/unpack logic we need to generate only a single phi node: if 8439 // a vector value for the predicated instruction exists at this point it means 8440 // the instruction has vector users only, and a phi for the vector value is 8441 // needed. In this case the recipe of the predicated instruction is marked to 8442 // also do that packing, thereby "hoisting" the insert-element sequence. 8443 // Otherwise, a phi node for the scalar value is needed. 8444 unsigned Part = State.Instance->Part; 8445 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8446 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8447 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8448 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8449 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8450 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8451 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8452 } else { 8453 Type *PredInstType = PredInst->getType(); 8454 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8455 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8456 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8457 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8458 } 8459 } 8460 8461 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8462 if (!User) 8463 return State.ILV->vectorizeMemoryInstruction(&Instr); 8464 8465 // Last (and currently only) operand is a mask. 8466 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8467 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8468 for (unsigned Part = 0; Part < State.UF; ++Part) 8469 MaskValues[Part] = State.get(Mask, Part); 8470 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8471 } 8472 8473 bool LoopVectorizePass::processLoop(Loop *L) { 8474 assert(L->empty() && "Only process inner loops."); 8475 8476 #ifndef NDEBUG 8477 const std::string DebugLocStr = getDebugLocString(L); 8478 #endif /* NDEBUG */ 8479 8480 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8481 << L->getHeader()->getParent()->getName() << "\" from " 8482 << DebugLocStr << "\n"); 8483 8484 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8485 8486 DEBUG(dbgs() << "LV: Loop hints:" 8487 << " force=" 8488 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8489 ? "disabled" 8490 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8491 ? "enabled" 8492 : "?")) 8493 << " width=" << Hints.getWidth() 8494 << " unroll=" << Hints.getInterleave() << "\n"); 8495 8496 // Function containing loop 8497 Function *F = L->getHeader()->getParent(); 8498 8499 // Looking at the diagnostic output is the only way to determine if a loop 8500 // was vectorized (other than looking at the IR or machine code), so it 8501 // is important to generate an optimization remark for each loop. Most of 8502 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8503 // generated as OptimizationRemark and OptimizationRemarkMissed are 8504 // less verbose reporting vectorized loops and unvectorized loops that may 8505 // benefit from vectorization, respectively. 8506 8507 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8508 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8509 return false; 8510 } 8511 8512 PredicatedScalarEvolution PSE(*SE, *L); 8513 8514 // Check if it is legal to vectorize the loop. 8515 LoopVectorizationRequirements Requirements(*ORE); 8516 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8517 &Requirements, &Hints); 8518 if (!LVL.canVectorize()) { 8519 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8520 emitMissedWarning(F, L, Hints, ORE); 8521 return false; 8522 } 8523 8524 // Check the function attributes to find out if this function should be 8525 // optimized for size. 8526 bool OptForSize = 8527 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8528 8529 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8530 // count by optimizing for size, to minimize overheads. 8531 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8532 bool HasExpectedTC = (ExpectedTC > 0); 8533 8534 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8535 auto EstimatedTC = getLoopEstimatedTripCount(L); 8536 if (EstimatedTC) { 8537 ExpectedTC = *EstimatedTC; 8538 HasExpectedTC = true; 8539 } 8540 } 8541 8542 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8543 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8544 << "This loop is worth vectorizing only if no scalar " 8545 << "iteration overheads are incurred."); 8546 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8547 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8548 else { 8549 DEBUG(dbgs() << "\n"); 8550 // Loops with a very small trip count are considered for vectorization 8551 // under OptForSize, thereby making sure the cost of their loop body is 8552 // dominant, free of runtime guards and scalar iteration overheads. 8553 OptForSize = true; 8554 } 8555 } 8556 8557 // Check the function attributes to see if implicit floats are allowed. 8558 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8559 // an integer loop and the vector instructions selected are purely integer 8560 // vector instructions? 8561 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8562 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8563 "attribute is used.\n"); 8564 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8565 "NoImplicitFloat", L) 8566 << "loop not vectorized due to NoImplicitFloat attribute"); 8567 emitMissedWarning(F, L, Hints, ORE); 8568 return false; 8569 } 8570 8571 // Check if the target supports potentially unsafe FP vectorization. 8572 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8573 // for the target we're vectorizing for, to make sure none of the 8574 // additional fp-math flags can help. 8575 if (Hints.isPotentiallyUnsafe() && 8576 TTI->isFPVectorizationPotentiallyUnsafe()) { 8577 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8578 ORE->emit( 8579 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8580 << "loop not vectorized due to unsafe FP support."); 8581 emitMissedWarning(F, L, Hints, ORE); 8582 return false; 8583 } 8584 8585 // Use the cost model. 8586 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8587 &Hints); 8588 CM.collectValuesToIgnore(); 8589 8590 // Use the planner for vectorization. 8591 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8592 8593 // Get user vectorization factor. 8594 unsigned UserVF = Hints.getWidth(); 8595 8596 // Plan how to best vectorize, return the best VF and its cost. 8597 LoopVectorizationCostModel::VectorizationFactor VF = 8598 LVP.plan(OptForSize, UserVF); 8599 8600 // Select the interleave count. 8601 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8602 8603 // Get user interleave count. 8604 unsigned UserIC = Hints.getInterleave(); 8605 8606 // Identify the diagnostic messages that should be produced. 8607 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8608 bool VectorizeLoop = true, InterleaveLoop = true; 8609 if (Requirements.doesNotMeet(F, L, Hints)) { 8610 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8611 "requirements.\n"); 8612 emitMissedWarning(F, L, Hints, ORE); 8613 return false; 8614 } 8615 8616 if (VF.Width == 1) { 8617 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8618 VecDiagMsg = std::make_pair( 8619 "VectorizationNotBeneficial", 8620 "the cost-model indicates that vectorization is not beneficial"); 8621 VectorizeLoop = false; 8622 } 8623 8624 if (IC == 1 && UserIC <= 1) { 8625 // Tell the user interleaving is not beneficial. 8626 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8627 IntDiagMsg = std::make_pair( 8628 "InterleavingNotBeneficial", 8629 "the cost-model indicates that interleaving is not beneficial"); 8630 InterleaveLoop = false; 8631 if (UserIC == 1) { 8632 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8633 IntDiagMsg.second += 8634 " and is explicitly disabled or interleave count is set to 1"; 8635 } 8636 } else if (IC > 1 && UserIC == 1) { 8637 // Tell the user interleaving is beneficial, but it explicitly disabled. 8638 DEBUG(dbgs() 8639 << "LV: Interleaving is beneficial but is explicitly disabled."); 8640 IntDiagMsg = std::make_pair( 8641 "InterleavingBeneficialButDisabled", 8642 "the cost-model indicates that interleaving is beneficial " 8643 "but is explicitly disabled or interleave count is set to 1"); 8644 InterleaveLoop = false; 8645 } 8646 8647 // Override IC if user provided an interleave count. 8648 IC = UserIC > 0 ? UserIC : IC; 8649 8650 // Emit diagnostic messages, if any. 8651 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8652 if (!VectorizeLoop && !InterleaveLoop) { 8653 // Do not vectorize or interleaving the loop. 8654 ORE->emit([&]() { 8655 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8656 L->getStartLoc(), L->getHeader()) 8657 << VecDiagMsg.second; 8658 }); 8659 ORE->emit([&]() { 8660 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8661 L->getStartLoc(), L->getHeader()) 8662 << IntDiagMsg.second; 8663 }); 8664 return false; 8665 } else if (!VectorizeLoop && InterleaveLoop) { 8666 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8667 ORE->emit([&]() { 8668 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8669 L->getStartLoc(), L->getHeader()) 8670 << VecDiagMsg.second; 8671 }); 8672 } else if (VectorizeLoop && !InterleaveLoop) { 8673 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8674 << DebugLocStr << '\n'); 8675 ORE->emit([&]() { 8676 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8677 L->getStartLoc(), L->getHeader()) 8678 << IntDiagMsg.second; 8679 }); 8680 } else if (VectorizeLoop && InterleaveLoop) { 8681 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8682 << DebugLocStr << '\n'); 8683 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8684 } 8685 8686 LVP.setBestPlan(VF.Width, IC); 8687 8688 using namespace ore; 8689 8690 if (!VectorizeLoop) { 8691 assert(IC > 1 && "interleave count should not be 1 or 0"); 8692 // If we decided that it is not legal to vectorize the loop, then 8693 // interleave it. 8694 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8695 &CM); 8696 LVP.executePlan(Unroller, DT); 8697 8698 ORE->emit([&]() { 8699 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8700 L->getHeader()) 8701 << "interleaved loop (interleaved count: " 8702 << NV("InterleaveCount", IC) << ")"; 8703 }); 8704 } else { 8705 // If we decided that it is *legal* to vectorize the loop, then do it. 8706 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8707 &LVL, &CM); 8708 LVP.executePlan(LB, DT); 8709 ++LoopsVectorized; 8710 8711 // Add metadata to disable runtime unrolling a scalar loop when there are 8712 // no runtime checks about strides and memory. A scalar loop that is 8713 // rarely used is not worth unrolling. 8714 if (!LB.areSafetyChecksAdded()) 8715 AddRuntimeUnrollDisableMetaData(L); 8716 8717 // Report the vectorization decision. 8718 ORE->emit([&]() { 8719 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8720 L->getHeader()) 8721 << "vectorized loop (vectorization width: " 8722 << NV("VectorizationFactor", VF.Width) 8723 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8724 }); 8725 } 8726 8727 // Mark the loop as already vectorized to avoid vectorizing again. 8728 Hints.setAlreadyVectorized(); 8729 8730 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8731 return true; 8732 } 8733 8734 bool LoopVectorizePass::runImpl( 8735 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8736 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8737 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8738 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8739 OptimizationRemarkEmitter &ORE_) { 8740 SE = &SE_; 8741 LI = &LI_; 8742 TTI = &TTI_; 8743 DT = &DT_; 8744 BFI = &BFI_; 8745 TLI = TLI_; 8746 AA = &AA_; 8747 AC = &AC_; 8748 GetLAA = &GetLAA_; 8749 DB = &DB_; 8750 ORE = &ORE_; 8751 8752 // Don't attempt if 8753 // 1. the target claims to have no vector registers, and 8754 // 2. interleaving won't help ILP. 8755 // 8756 // The second condition is necessary because, even if the target has no 8757 // vector registers, loop vectorization may still enable scalar 8758 // interleaving. 8759 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8760 return false; 8761 8762 bool Changed = false; 8763 8764 // The vectorizer requires loops to be in simplified form. 8765 // Since simplification may add new inner loops, it has to run before the 8766 // legality and profitability checks. This means running the loop vectorizer 8767 // will simplify all loops, regardless of whether anything end up being 8768 // vectorized. 8769 for (auto &L : *LI) 8770 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8771 8772 // Build up a worklist of inner-loops to vectorize. This is necessary as 8773 // the act of vectorizing or partially unrolling a loop creates new loops 8774 // and can invalidate iterators across the loops. 8775 SmallVector<Loop *, 8> Worklist; 8776 8777 for (Loop *L : *LI) 8778 addAcyclicInnerLoop(*L, Worklist); 8779 8780 LoopsAnalyzed += Worklist.size(); 8781 8782 // Now walk the identified inner loops. 8783 while (!Worklist.empty()) { 8784 Loop *L = Worklist.pop_back_val(); 8785 8786 // For the inner loops we actually process, form LCSSA to simplify the 8787 // transform. 8788 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8789 8790 Changed |= processLoop(L); 8791 } 8792 8793 // Process each loop nest in the function. 8794 return Changed; 8795 } 8796 8797 PreservedAnalyses LoopVectorizePass::run(Function &F, 8798 FunctionAnalysisManager &AM) { 8799 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8800 auto &LI = AM.getResult<LoopAnalysis>(F); 8801 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8802 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8803 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8804 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8805 auto &AA = AM.getResult<AAManager>(F); 8806 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8807 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8808 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8809 8810 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8811 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8812 [&](Loop &L) -> const LoopAccessInfo & { 8813 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8814 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8815 }; 8816 bool Changed = 8817 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8818 if (!Changed) 8819 return PreservedAnalyses::all(); 8820 PreservedAnalyses PA; 8821 PA.preserve<LoopAnalysis>(); 8822 PA.preserve<DominatorTreeAnalysis>(); 8823 PA.preserve<BasicAA>(); 8824 PA.preserve<GlobalsAA>(); 8825 return PA; 8826 } 8827