1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "VPRecipeBuilder.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ScalarEvolution.h" 91 #include "llvm/Analysis/ScalarEvolutionExpander.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/LLVMContext.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/Pass.h" 125 #include "llvm/Support/Casting.h" 126 #include "llvm/Support/CommandLine.h" 127 #include "llvm/Support/Compiler.h" 128 #include "llvm/Support/Debug.h" 129 #include "llvm/Support/ErrorHandling.h" 130 #include "llvm/Support/MathExtras.h" 131 #include "llvm/Support/raw_ostream.h" 132 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 133 #include "llvm/Transforms/Utils/LoopSimplify.h" 134 #include "llvm/Transforms/Utils/LoopUtils.h" 135 #include "llvm/Transforms/Utils/LoopVersioning.h" 136 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 137 #include <algorithm> 138 #include <cassert> 139 #include <cstdint> 140 #include <cstdlib> 141 #include <functional> 142 #include <iterator> 143 #include <limits> 144 #include <memory> 145 #include <string> 146 #include <tuple> 147 #include <utility> 148 #include <vector> 149 150 using namespace llvm; 151 152 #define LV_NAME "loop-vectorize" 153 #define DEBUG_TYPE LV_NAME 154 155 /// @{ 156 /// Metadata attribute names 157 static const char *const LLVMLoopVectorizeFollowupAll = 158 "llvm.loop.vectorize.followup_all"; 159 static const char *const LLVMLoopVectorizeFollowupVectorized = 160 "llvm.loop.vectorize.followup_vectorized"; 161 static const char *const LLVMLoopVectorizeFollowupEpilogue = 162 "llvm.loop.vectorize.followup_epilogue"; 163 /// @} 164 165 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 166 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 167 168 /// Loops with a known constant trip count below this number are vectorized only 169 /// if no scalar iteration overheads are incurred. 170 static cl::opt<unsigned> TinyTripCountVectorThreshold( 171 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 172 cl::desc("Loops with a constant trip count that is smaller than this " 173 "value are vectorized only if no scalar iteration overheads " 174 "are incurred.")); 175 176 static cl::opt<bool> MaximizeBandwidth( 177 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 178 cl::desc("Maximize bandwidth when selecting vectorization factor which " 179 "will be determined by the smallest type in loop.")); 180 181 static cl::opt<bool> EnableInterleavedMemAccesses( 182 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 183 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 184 185 /// An interleave-group may need masking if it resides in a block that needs 186 /// predication, or in order to mask away gaps. 187 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 188 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 189 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 190 191 /// We don't interleave loops with a known constant trip count below this 192 /// number. 193 static const unsigned TinyTripCountInterleaveThreshold = 128; 194 195 static cl::opt<unsigned> ForceTargetNumScalarRegs( 196 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 197 cl::desc("A flag that overrides the target's number of scalar registers.")); 198 199 static cl::opt<unsigned> ForceTargetNumVectorRegs( 200 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's number of vector registers.")); 202 203 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 204 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 205 cl::desc("A flag that overrides the target's max interleave factor for " 206 "scalar loops.")); 207 208 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 209 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 210 cl::desc("A flag that overrides the target's max interleave factor for " 211 "vectorized loops.")); 212 213 static cl::opt<unsigned> ForceTargetInstructionCost( 214 "force-target-instruction-cost", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's expected cost for " 216 "an instruction to a single constant value. Mostly " 217 "useful for getting consistent testing.")); 218 219 static cl::opt<unsigned> SmallLoopCost( 220 "small-loop-cost", cl::init(20), cl::Hidden, 221 cl::desc( 222 "The cost of a loop that is considered 'small' by the interleaver.")); 223 224 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 225 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 226 cl::desc("Enable the use of the block frequency analysis to access PGO " 227 "heuristics minimizing code growth in cold regions and being more " 228 "aggressive in hot regions.")); 229 230 // Runtime interleave loops for load/store throughput. 231 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 232 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 233 cl::desc( 234 "Enable runtime interleaving until load/store ports are saturated")); 235 236 /// The number of stores in a loop that are allowed to need predication. 237 static cl::opt<unsigned> NumberOfStoresToPredicate( 238 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 239 cl::desc("Max number of stores to be predicated behind an if.")); 240 241 static cl::opt<bool> EnableIndVarRegisterHeur( 242 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 243 cl::desc("Count the induction variable only once when interleaving")); 244 245 static cl::opt<bool> EnableCondStoresVectorization( 246 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 247 cl::desc("Enable if predication of stores during vectorization.")); 248 249 static cl::opt<unsigned> MaxNestedScalarReductionIC( 250 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 251 cl::desc("The maximum interleave count to use when interleaving a scalar " 252 "reduction in a nested loop.")); 253 254 cl::opt<bool> EnableVPlanNativePath( 255 "enable-vplan-native-path", cl::init(false), cl::Hidden, 256 cl::desc("Enable VPlan-native vectorization path with " 257 "support for outer loop vectorization.")); 258 259 // This flag enables the stress testing of the VPlan H-CFG construction in the 260 // VPlan-native vectorization path. It must be used in conjuction with 261 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 262 // verification of the H-CFGs built. 263 static cl::opt<bool> VPlanBuildStressTest( 264 "vplan-build-stress-test", cl::init(false), cl::Hidden, 265 cl::desc( 266 "Build VPlan for every supported loop nest in the function and bail " 267 "out right after the build (stress test the VPlan H-CFG construction " 268 "in the VPlan-native vectorization path).")); 269 270 /// A helper function for converting Scalar types to vector types. 271 /// If the incoming type is void, we return void. If the VF is 1, we return 272 /// the scalar type. 273 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 274 if (Scalar->isVoidTy() || VF == 1) 275 return Scalar; 276 return VectorType::get(Scalar, VF); 277 } 278 279 /// A helper function that returns the type of loaded or stored value. 280 static Type *getMemInstValueType(Value *I) { 281 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 282 "Expected Load or Store instruction"); 283 if (auto *LI = dyn_cast<LoadInst>(I)) 284 return LI->getType(); 285 return cast<StoreInst>(I)->getValueOperand()->getType(); 286 } 287 288 /// A helper function that returns true if the given type is irregular. The 289 /// type is irregular if its allocated size doesn't equal the store size of an 290 /// element of the corresponding vector type at the given vectorization factor. 291 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 292 // Determine if an array of VF elements of type Ty is "bitcast compatible" 293 // with a <VF x Ty> vector. 294 if (VF > 1) { 295 auto *VectorTy = VectorType::get(Ty, VF); 296 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 297 } 298 299 // If the vectorization factor is one, we just check if an array of type Ty 300 // requires padding between elements. 301 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 302 } 303 304 /// A helper function that returns the reciprocal of the block probability of 305 /// predicated blocks. If we return X, we are assuming the predicated block 306 /// will execute once for every X iterations of the loop header. 307 /// 308 /// TODO: We should use actual block probability here, if available. Currently, 309 /// we always assume predicated blocks have a 50% chance of executing. 310 static unsigned getReciprocalPredBlockProb() { return 2; } 311 312 /// A helper function that adds a 'fast' flag to floating-point operations. 313 static Value *addFastMathFlag(Value *V) { 314 if (isa<FPMathOperator>(V)) { 315 FastMathFlags Flags; 316 Flags.setFast(); 317 cast<Instruction>(V)->setFastMathFlags(Flags); 318 } 319 return V; 320 } 321 322 /// A helper function that returns an integer or floating-point constant with 323 /// value C. 324 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 325 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 326 : ConstantFP::get(Ty, C); 327 } 328 329 namespace llvm { 330 331 /// InnerLoopVectorizer vectorizes loops which contain only one basic 332 /// block to a specified vectorization factor (VF). 333 /// This class performs the widening of scalars into vectors, or multiple 334 /// scalars. This class also implements the following features: 335 /// * It inserts an epilogue loop for handling loops that don't have iteration 336 /// counts that are known to be a multiple of the vectorization factor. 337 /// * It handles the code generation for reduction variables. 338 /// * Scalarization (implementation using scalars) of un-vectorizable 339 /// instructions. 340 /// InnerLoopVectorizer does not perform any vectorization-legality 341 /// checks, and relies on the caller to check for the different legality 342 /// aspects. The InnerLoopVectorizer relies on the 343 /// LoopVectorizationLegality class to provide information about the induction 344 /// and reduction variables that were found to a given vectorization factor. 345 class InnerLoopVectorizer { 346 public: 347 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 348 LoopInfo *LI, DominatorTree *DT, 349 const TargetLibraryInfo *TLI, 350 const TargetTransformInfo *TTI, AssumptionCache *AC, 351 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 352 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 353 LoopVectorizationCostModel *CM) 354 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 355 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 356 Builder(PSE.getSE()->getContext()), 357 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 358 virtual ~InnerLoopVectorizer() = default; 359 360 /// Create a new empty loop. Unlink the old loop and connect the new one. 361 /// Return the pre-header block of the new loop. 362 BasicBlock *createVectorizedLoopSkeleton(); 363 364 /// Widen a single instruction within the innermost loop. 365 void widenInstruction(Instruction &I); 366 367 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 368 void fixVectorizedLoop(); 369 370 // Return true if any runtime check is added. 371 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 372 373 /// A type for vectorized values in the new loop. Each value from the 374 /// original loop, when vectorized, is represented by UF vector values in the 375 /// new unrolled loop, where UF is the unroll factor. 376 using VectorParts = SmallVector<Value *, 2>; 377 378 /// Vectorize a single PHINode in a block. This method handles the induction 379 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 380 /// arbitrary length vectors. 381 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 382 383 /// A helper function to scalarize a single Instruction in the innermost loop. 384 /// Generates a sequence of scalar instances for each lane between \p MinLane 385 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 386 /// inclusive.. 387 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 388 bool IfPredicateInstr); 389 390 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 391 /// is provided, the integer induction variable will first be truncated to 392 /// the corresponding type. 393 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 394 395 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 396 /// vector or scalar value on-demand if one is not yet available. When 397 /// vectorizing a loop, we visit the definition of an instruction before its 398 /// uses. When visiting the definition, we either vectorize or scalarize the 399 /// instruction, creating an entry for it in the corresponding map. (In some 400 /// cases, such as induction variables, we will create both vector and scalar 401 /// entries.) Then, as we encounter uses of the definition, we derive values 402 /// for each scalar or vector use unless such a value is already available. 403 /// For example, if we scalarize a definition and one of its uses is vector, 404 /// we build the required vector on-demand with an insertelement sequence 405 /// when visiting the use. Otherwise, if the use is scalar, we can use the 406 /// existing scalar definition. 407 /// 408 /// Return a value in the new loop corresponding to \p V from the original 409 /// loop at unroll index \p Part. If the value has already been vectorized, 410 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 411 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 412 /// a new vector value on-demand by inserting the scalar values into a vector 413 /// with an insertelement sequence. If the value has been neither vectorized 414 /// nor scalarized, it must be loop invariant, so we simply broadcast the 415 /// value into a vector. 416 Value *getOrCreateVectorValue(Value *V, unsigned Part); 417 418 /// Return a value in the new loop corresponding to \p V from the original 419 /// loop at unroll and vector indices \p Instance. If the value has been 420 /// vectorized but not scalarized, the necessary extractelement instruction 421 /// will be generated. 422 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 423 424 /// Construct the vector value of a scalarized value \p V one lane at a time. 425 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 426 427 /// Try to vectorize the interleaved access group that \p Instr belongs to, 428 /// optionally masking the vector operations if \p BlockInMask is non-null. 429 void vectorizeInterleaveGroup(Instruction *Instr, 430 VectorParts *BlockInMask = nullptr); 431 432 /// Vectorize Load and Store instructions, optionally masking the vector 433 /// operations if \p BlockInMask is non-null. 434 void vectorizeMemoryInstruction(Instruction *Instr, 435 VectorParts *BlockInMask = nullptr); 436 437 /// Set the debug location in the builder using the debug location in 438 /// the instruction. 439 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 440 441 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 442 void fixNonInductionPHIs(void); 443 444 protected: 445 friend class LoopVectorizationPlanner; 446 447 /// A small list of PHINodes. 448 using PhiVector = SmallVector<PHINode *, 4>; 449 450 /// A type for scalarized values in the new loop. Each value from the 451 /// original loop, when scalarized, is represented by UF x VF scalar values 452 /// in the new unrolled loop, where UF is the unroll factor and VF is the 453 /// vectorization factor. 454 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 455 456 /// Set up the values of the IVs correctly when exiting the vector loop. 457 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 458 Value *CountRoundDown, Value *EndValue, 459 BasicBlock *MiddleBlock); 460 461 /// Create a new induction variable inside L. 462 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 463 Value *Step, Instruction *DL); 464 465 /// Handle all cross-iteration phis in the header. 466 void fixCrossIterationPHIs(); 467 468 /// Fix a first-order recurrence. This is the second phase of vectorizing 469 /// this phi node. 470 void fixFirstOrderRecurrence(PHINode *Phi); 471 472 /// Fix a reduction cross-iteration phi. This is the second phase of 473 /// vectorizing this phi node. 474 void fixReduction(PHINode *Phi); 475 476 /// The Loop exit block may have single value PHI nodes with some 477 /// incoming value. While vectorizing we only handled real values 478 /// that were defined inside the loop and we should have one value for 479 /// each predecessor of its parent basic block. See PR14725. 480 void fixLCSSAPHIs(); 481 482 /// Iteratively sink the scalarized operands of a predicated instruction into 483 /// the block that was created for it. 484 void sinkScalarOperands(Instruction *PredInst); 485 486 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 487 /// represented as. 488 void truncateToMinimalBitwidths(); 489 490 /// Insert the new loop to the loop hierarchy and pass manager 491 /// and update the analysis passes. 492 void updateAnalysis(); 493 494 /// Create a broadcast instruction. This method generates a broadcast 495 /// instruction (shuffle) for loop invariant values and for the induction 496 /// value. If this is the induction variable then we extend it to N, N+1, ... 497 /// this is needed because each iteration in the loop corresponds to a SIMD 498 /// element. 499 virtual Value *getBroadcastInstrs(Value *V); 500 501 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 502 /// to each vector element of Val. The sequence starts at StartIndex. 503 /// \p Opcode is relevant for FP induction variable. 504 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 505 Instruction::BinaryOps Opcode = 506 Instruction::BinaryOpsEnd); 507 508 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 509 /// variable on which to base the steps, \p Step is the size of the step, and 510 /// \p EntryVal is the value from the original loop that maps to the steps. 511 /// Note that \p EntryVal doesn't have to be an induction variable - it 512 /// can also be a truncate instruction. 513 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 514 const InductionDescriptor &ID); 515 516 /// Create a vector induction phi node based on an existing scalar one. \p 517 /// EntryVal is the value from the original loop that maps to the vector phi 518 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 519 /// truncate instruction, instead of widening the original IV, we widen a 520 /// version of the IV truncated to \p EntryVal's type. 521 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 522 Value *Step, Instruction *EntryVal); 523 524 /// Returns true if an instruction \p I should be scalarized instead of 525 /// vectorized for the chosen vectorization factor. 526 bool shouldScalarizeInstruction(Instruction *I) const; 527 528 /// Returns true if we should generate a scalar version of \p IV. 529 bool needsScalarInduction(Instruction *IV) const; 530 531 /// If there is a cast involved in the induction variable \p ID, which should 532 /// be ignored in the vectorized loop body, this function records the 533 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 534 /// cast. We had already proved that the casted Phi is equal to the uncasted 535 /// Phi in the vectorized loop (under a runtime guard), and therefore 536 /// there is no need to vectorize the cast - the same value can be used in the 537 /// vector loop for both the Phi and the cast. 538 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 539 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 540 /// 541 /// \p EntryVal is the value from the original loop that maps to the vector 542 /// phi node and is used to distinguish what is the IV currently being 543 /// processed - original one (if \p EntryVal is a phi corresponding to the 544 /// original IV) or the "newly-created" one based on the proof mentioned above 545 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 546 /// latter case \p EntryVal is a TruncInst and we must not record anything for 547 /// that IV, but it's error-prone to expect callers of this routine to care 548 /// about that, hence this explicit parameter. 549 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 550 const Instruction *EntryVal, 551 Value *VectorLoopValue, 552 unsigned Part, 553 unsigned Lane = UINT_MAX); 554 555 /// Generate a shuffle sequence that will reverse the vector Vec. 556 virtual Value *reverseVector(Value *Vec); 557 558 /// Returns (and creates if needed) the original loop trip count. 559 Value *getOrCreateTripCount(Loop *NewLoop); 560 561 /// Returns (and creates if needed) the trip count of the widened loop. 562 Value *getOrCreateVectorTripCount(Loop *NewLoop); 563 564 /// Returns a bitcasted value to the requested vector type. 565 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 566 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 567 const DataLayout &DL); 568 569 /// Emit a bypass check to see if the vector trip count is zero, including if 570 /// it overflows. 571 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 572 573 /// Emit a bypass check to see if all of the SCEV assumptions we've 574 /// had to make are correct. 575 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 576 577 /// Emit bypass checks to check any memory assumptions we may have made. 578 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 579 580 /// Compute the transformed value of Index at offset StartValue using step 581 /// StepValue. 582 /// For integer induction, returns StartValue + Index * StepValue. 583 /// For pointer induction, returns StartValue[Index * StepValue]. 584 /// FIXME: The newly created binary instructions should contain nsw/nuw 585 /// flags, which can be found from the original scalar operations. 586 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 587 const DataLayout &DL, 588 const InductionDescriptor &ID) const; 589 590 /// Add additional metadata to \p To that was not present on \p Orig. 591 /// 592 /// Currently this is used to add the noalias annotations based on the 593 /// inserted memchecks. Use this for instructions that are *cloned* into the 594 /// vector loop. 595 void addNewMetadata(Instruction *To, const Instruction *Orig); 596 597 /// Add metadata from one instruction to another. 598 /// 599 /// This includes both the original MDs from \p From and additional ones (\see 600 /// addNewMetadata). Use this for *newly created* instructions in the vector 601 /// loop. 602 void addMetadata(Instruction *To, Instruction *From); 603 604 /// Similar to the previous function but it adds the metadata to a 605 /// vector of instructions. 606 void addMetadata(ArrayRef<Value *> To, Instruction *From); 607 608 /// The original loop. 609 Loop *OrigLoop; 610 611 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 612 /// dynamic knowledge to simplify SCEV expressions and converts them to a 613 /// more usable form. 614 PredicatedScalarEvolution &PSE; 615 616 /// Loop Info. 617 LoopInfo *LI; 618 619 /// Dominator Tree. 620 DominatorTree *DT; 621 622 /// Alias Analysis. 623 AliasAnalysis *AA; 624 625 /// Target Library Info. 626 const TargetLibraryInfo *TLI; 627 628 /// Target Transform Info. 629 const TargetTransformInfo *TTI; 630 631 /// Assumption Cache. 632 AssumptionCache *AC; 633 634 /// Interface to emit optimization remarks. 635 OptimizationRemarkEmitter *ORE; 636 637 /// LoopVersioning. It's only set up (non-null) if memchecks were 638 /// used. 639 /// 640 /// This is currently only used to add no-alias metadata based on the 641 /// memchecks. The actually versioning is performed manually. 642 std::unique_ptr<LoopVersioning> LVer; 643 644 /// The vectorization SIMD factor to use. Each vector will have this many 645 /// vector elements. 646 unsigned VF; 647 648 /// The vectorization unroll factor to use. Each scalar is vectorized to this 649 /// many different vector instructions. 650 unsigned UF; 651 652 /// The builder that we use 653 IRBuilder<> Builder; 654 655 // --- Vectorization state --- 656 657 /// The vector-loop preheader. 658 BasicBlock *LoopVectorPreHeader; 659 660 /// The scalar-loop preheader. 661 BasicBlock *LoopScalarPreHeader; 662 663 /// Middle Block between the vector and the scalar. 664 BasicBlock *LoopMiddleBlock; 665 666 /// The ExitBlock of the scalar loop. 667 BasicBlock *LoopExitBlock; 668 669 /// The vector loop body. 670 BasicBlock *LoopVectorBody; 671 672 /// The scalar loop body. 673 BasicBlock *LoopScalarBody; 674 675 /// A list of all bypass blocks. The first block is the entry of the loop. 676 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 677 678 /// The new Induction variable which was added to the new block. 679 PHINode *Induction = nullptr; 680 681 /// The induction variable of the old basic block. 682 PHINode *OldInduction = nullptr; 683 684 /// Maps values from the original loop to their corresponding values in the 685 /// vectorized loop. A key value can map to either vector values, scalar 686 /// values or both kinds of values, depending on whether the key was 687 /// vectorized and scalarized. 688 VectorizerValueMap VectorLoopValueMap; 689 690 /// Store instructions that were predicated. 691 SmallVector<Instruction *, 4> PredicatedInstructions; 692 693 /// Trip count of the original loop. 694 Value *TripCount = nullptr; 695 696 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 697 Value *VectorTripCount = nullptr; 698 699 /// The legality analysis. 700 LoopVectorizationLegality *Legal; 701 702 /// The profitablity analysis. 703 LoopVectorizationCostModel *Cost; 704 705 // Record whether runtime checks are added. 706 bool AddedSafetyChecks = false; 707 708 // Holds the end values for each induction variable. We save the end values 709 // so we can later fix-up the external users of the induction variables. 710 DenseMap<PHINode *, Value *> IVEndValues; 711 712 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 713 // fixed up at the end of vector code generation. 714 SmallVector<PHINode *, 8> OrigPHIsToFix; 715 }; 716 717 class InnerLoopUnroller : public InnerLoopVectorizer { 718 public: 719 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 720 LoopInfo *LI, DominatorTree *DT, 721 const TargetLibraryInfo *TLI, 722 const TargetTransformInfo *TTI, AssumptionCache *AC, 723 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 724 LoopVectorizationLegality *LVL, 725 LoopVectorizationCostModel *CM) 726 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 727 UnrollFactor, LVL, CM) {} 728 729 private: 730 Value *getBroadcastInstrs(Value *V) override; 731 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 732 Instruction::BinaryOps Opcode = 733 Instruction::BinaryOpsEnd) override; 734 Value *reverseVector(Value *Vec) override; 735 }; 736 737 } // end namespace llvm 738 739 /// Look for a meaningful debug location on the instruction or it's 740 /// operands. 741 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 742 if (!I) 743 return I; 744 745 DebugLoc Empty; 746 if (I->getDebugLoc() != Empty) 747 return I; 748 749 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 750 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 751 if (OpInst->getDebugLoc() != Empty) 752 return OpInst; 753 } 754 755 return I; 756 } 757 758 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 759 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 760 const DILocation *DIL = Inst->getDebugLoc(); 761 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 762 !isa<DbgInfoIntrinsic>(Inst)) { 763 auto NewDIL = DIL->cloneWithDuplicationFactor(UF * VF); 764 if (NewDIL) 765 B.SetCurrentDebugLocation(NewDIL.getValue()); 766 else 767 LLVM_DEBUG(dbgs() 768 << "Failed to create new discriminator: " 769 << DIL->getFilename() << " Line: " << DIL->getLine()); 770 } 771 else 772 B.SetCurrentDebugLocation(DIL); 773 } else 774 B.SetCurrentDebugLocation(DebugLoc()); 775 } 776 777 #ifndef NDEBUG 778 /// \return string containing a file name and a line # for the given loop. 779 static std::string getDebugLocString(const Loop *L) { 780 std::string Result; 781 if (L) { 782 raw_string_ostream OS(Result); 783 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 784 LoopDbgLoc.print(OS); 785 else 786 // Just print the module name. 787 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 788 OS.flush(); 789 } 790 return Result; 791 } 792 #endif 793 794 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 795 const Instruction *Orig) { 796 // If the loop was versioned with memchecks, add the corresponding no-alias 797 // metadata. 798 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 799 LVer->annotateInstWithNoAlias(To, Orig); 800 } 801 802 void InnerLoopVectorizer::addMetadata(Instruction *To, 803 Instruction *From) { 804 propagateMetadata(To, From); 805 addNewMetadata(To, From); 806 } 807 808 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 809 Instruction *From) { 810 for (Value *V : To) { 811 if (Instruction *I = dyn_cast<Instruction>(V)) 812 addMetadata(I, From); 813 } 814 } 815 816 namespace llvm { 817 818 /// LoopVectorizationCostModel - estimates the expected speedups due to 819 /// vectorization. 820 /// In many cases vectorization is not profitable. This can happen because of 821 /// a number of reasons. In this class we mainly attempt to predict the 822 /// expected speedup/slowdowns due to the supported instruction set. We use the 823 /// TargetTransformInfo to query the different backends for the cost of 824 /// different operations. 825 class LoopVectorizationCostModel { 826 public: 827 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 828 LoopInfo *LI, LoopVectorizationLegality *Legal, 829 const TargetTransformInfo &TTI, 830 const TargetLibraryInfo *TLI, DemandedBits *DB, 831 AssumptionCache *AC, 832 OptimizationRemarkEmitter *ORE, const Function *F, 833 const LoopVectorizeHints *Hints, 834 InterleavedAccessInfo &IAI) 835 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 836 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 837 838 /// \return An upper bound for the vectorization factor, or None if 839 /// vectorization should be avoided up front. 840 Optional<unsigned> computeMaxVF(bool OptForSize); 841 842 /// \return The most profitable vectorization factor and the cost of that VF. 843 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 844 /// then this vectorization factor will be selected if vectorization is 845 /// possible. 846 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 847 848 /// Setup cost-based decisions for user vectorization factor. 849 void selectUserVectorizationFactor(unsigned UserVF) { 850 collectUniformsAndScalars(UserVF); 851 collectInstsToScalarize(UserVF); 852 } 853 854 /// \return The size (in bits) of the smallest and widest types in the code 855 /// that needs to be vectorized. We ignore values that remain scalar such as 856 /// 64 bit loop indices. 857 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 858 859 /// \return The desired interleave count. 860 /// If interleave count has been specified by metadata it will be returned. 861 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 862 /// are the selected vectorization factor and the cost of the selected VF. 863 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 864 unsigned LoopCost); 865 866 /// Memory access instruction may be vectorized in more than one way. 867 /// Form of instruction after vectorization depends on cost. 868 /// This function takes cost-based decisions for Load/Store instructions 869 /// and collects them in a map. This decisions map is used for building 870 /// the lists of loop-uniform and loop-scalar instructions. 871 /// The calculated cost is saved with widening decision in order to 872 /// avoid redundant calculations. 873 void setCostBasedWideningDecision(unsigned VF); 874 875 /// A struct that represents some properties of the register usage 876 /// of a loop. 877 struct RegisterUsage { 878 /// Holds the number of loop invariant values that are used in the loop. 879 unsigned LoopInvariantRegs; 880 881 /// Holds the maximum number of concurrent live intervals in the loop. 882 unsigned MaxLocalUsers; 883 }; 884 885 /// \return Returns information about the register usages of the loop for the 886 /// given vectorization factors. 887 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 888 889 /// Collect values we want to ignore in the cost model. 890 void collectValuesToIgnore(); 891 892 /// \returns The smallest bitwidth each instruction can be represented with. 893 /// The vector equivalents of these instructions should be truncated to this 894 /// type. 895 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 896 return MinBWs; 897 } 898 899 /// \returns True if it is more profitable to scalarize instruction \p I for 900 /// vectorization factor \p VF. 901 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 902 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 903 904 // Cost model is not run in the VPlan-native path - return conservative 905 // result until this changes. 906 if (EnableVPlanNativePath) 907 return false; 908 909 auto Scalars = InstsToScalarize.find(VF); 910 assert(Scalars != InstsToScalarize.end() && 911 "VF not yet analyzed for scalarization profitability"); 912 return Scalars->second.find(I) != Scalars->second.end(); 913 } 914 915 /// Returns true if \p I is known to be uniform after vectorization. 916 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 917 if (VF == 1) 918 return true; 919 920 // Cost model is not run in the VPlan-native path - return conservative 921 // result until this changes. 922 if (EnableVPlanNativePath) 923 return false; 924 925 auto UniformsPerVF = Uniforms.find(VF); 926 assert(UniformsPerVF != Uniforms.end() && 927 "VF not yet analyzed for uniformity"); 928 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 929 } 930 931 /// Returns true if \p I is known to be scalar after vectorization. 932 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 933 if (VF == 1) 934 return true; 935 936 // Cost model is not run in the VPlan-native path - return conservative 937 // result until this changes. 938 if (EnableVPlanNativePath) 939 return false; 940 941 auto ScalarsPerVF = Scalars.find(VF); 942 assert(ScalarsPerVF != Scalars.end() && 943 "Scalar values are not calculated for VF"); 944 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 945 } 946 947 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 948 /// for vectorization factor \p VF. 949 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 950 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 951 !isProfitableToScalarize(I, VF) && 952 !isScalarAfterVectorization(I, VF); 953 } 954 955 /// Decision that was taken during cost calculation for memory instruction. 956 enum InstWidening { 957 CM_Unknown, 958 CM_Widen, // For consecutive accesses with stride +1. 959 CM_Widen_Reverse, // For consecutive accesses with stride -1. 960 CM_Interleave, 961 CM_GatherScatter, 962 CM_Scalarize 963 }; 964 965 /// Save vectorization decision \p W and \p Cost taken by the cost model for 966 /// instruction \p I and vector width \p VF. 967 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 968 unsigned Cost) { 969 assert(VF >= 2 && "Expected VF >=2"); 970 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 971 } 972 973 /// Save vectorization decision \p W and \p Cost taken by the cost model for 974 /// interleaving group \p Grp and vector width \p VF. 975 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 976 InstWidening W, unsigned Cost) { 977 assert(VF >= 2 && "Expected VF >=2"); 978 /// Broadcast this decicion to all instructions inside the group. 979 /// But the cost will be assigned to one instruction only. 980 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 981 if (auto *I = Grp->getMember(i)) { 982 if (Grp->getInsertPos() == I) 983 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 984 else 985 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 986 } 987 } 988 } 989 990 /// Return the cost model decision for the given instruction \p I and vector 991 /// width \p VF. Return CM_Unknown if this instruction did not pass 992 /// through the cost modeling. 993 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 994 assert(VF >= 2 && "Expected VF >=2"); 995 996 // Cost model is not run in the VPlan-native path - return conservative 997 // result until this changes. 998 if (EnableVPlanNativePath) 999 return CM_GatherScatter; 1000 1001 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1002 auto Itr = WideningDecisions.find(InstOnVF); 1003 if (Itr == WideningDecisions.end()) 1004 return CM_Unknown; 1005 return Itr->second.first; 1006 } 1007 1008 /// Return the vectorization cost for the given instruction \p I and vector 1009 /// width \p VF. 1010 unsigned getWideningCost(Instruction *I, unsigned VF) { 1011 assert(VF >= 2 && "Expected VF >=2"); 1012 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1013 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1014 "The cost is not calculated"); 1015 return WideningDecisions[InstOnVF].second; 1016 } 1017 1018 /// Return True if instruction \p I is an optimizable truncate whose operand 1019 /// is an induction variable. Such a truncate will be removed by adding a new 1020 /// induction variable with the destination type. 1021 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1022 // If the instruction is not a truncate, return false. 1023 auto *Trunc = dyn_cast<TruncInst>(I); 1024 if (!Trunc) 1025 return false; 1026 1027 // Get the source and destination types of the truncate. 1028 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1029 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1030 1031 // If the truncate is free for the given types, return false. Replacing a 1032 // free truncate with an induction variable would add an induction variable 1033 // update instruction to each iteration of the loop. We exclude from this 1034 // check the primary induction variable since it will need an update 1035 // instruction regardless. 1036 Value *Op = Trunc->getOperand(0); 1037 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1038 return false; 1039 1040 // If the truncated value is not an induction variable, return false. 1041 return Legal->isInductionPhi(Op); 1042 } 1043 1044 /// Collects the instructions to scalarize for each predicated instruction in 1045 /// the loop. 1046 void collectInstsToScalarize(unsigned VF); 1047 1048 /// Collect Uniform and Scalar values for the given \p VF. 1049 /// The sets depend on CM decision for Load/Store instructions 1050 /// that may be vectorized as interleave, gather-scatter or scalarized. 1051 void collectUniformsAndScalars(unsigned VF) { 1052 // Do the analysis once. 1053 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1054 return; 1055 setCostBasedWideningDecision(VF); 1056 collectLoopUniforms(VF); 1057 collectLoopScalars(VF); 1058 } 1059 1060 /// Returns true if the target machine supports masked store operation 1061 /// for the given \p DataType and kind of access to \p Ptr. 1062 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1063 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1064 } 1065 1066 /// Returns true if the target machine supports masked load operation 1067 /// for the given \p DataType and kind of access to \p Ptr. 1068 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1069 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1070 } 1071 1072 /// Returns true if the target machine supports masked scatter operation 1073 /// for the given \p DataType. 1074 bool isLegalMaskedScatter(Type *DataType) { 1075 return TTI.isLegalMaskedScatter(DataType); 1076 } 1077 1078 /// Returns true if the target machine supports masked gather operation 1079 /// for the given \p DataType. 1080 bool isLegalMaskedGather(Type *DataType) { 1081 return TTI.isLegalMaskedGather(DataType); 1082 } 1083 1084 /// Returns true if the target machine can represent \p V as a masked gather 1085 /// or scatter operation. 1086 bool isLegalGatherOrScatter(Value *V) { 1087 bool LI = isa<LoadInst>(V); 1088 bool SI = isa<StoreInst>(V); 1089 if (!LI && !SI) 1090 return false; 1091 auto *Ty = getMemInstValueType(V); 1092 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1093 } 1094 1095 /// Returns true if \p I is an instruction that will be scalarized with 1096 /// predication. Such instructions include conditional stores and 1097 /// instructions that may divide by zero. 1098 /// If a non-zero VF has been calculated, we check if I will be scalarized 1099 /// predication for that VF. 1100 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1101 1102 // Returns true if \p I is an instruction that will be predicated either 1103 // through scalar predication or masked load/store or masked gather/scatter. 1104 // Superset of instructions that return true for isScalarWithPredication. 1105 bool isPredicatedInst(Instruction *I) { 1106 if (!blockNeedsPredication(I->getParent())) 1107 return false; 1108 // Loads and stores that need some form of masked operation are predicated 1109 // instructions. 1110 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1111 return Legal->isMaskRequired(I); 1112 return isScalarWithPredication(I); 1113 } 1114 1115 /// Returns true if \p I is a memory instruction with consecutive memory 1116 /// access that can be widened. 1117 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1118 1119 /// Returns true if \p I is a memory instruction in an interleaved-group 1120 /// of memory accesses that can be vectorized with wide vector loads/stores 1121 /// and shuffles. 1122 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1123 1124 /// Check if \p Instr belongs to any interleaved access group. 1125 bool isAccessInterleaved(Instruction *Instr) { 1126 return InterleaveInfo.isInterleaved(Instr); 1127 } 1128 1129 /// Get the interleaved access group that \p Instr belongs to. 1130 const InterleaveGroup<Instruction> * 1131 getInterleavedAccessGroup(Instruction *Instr) { 1132 return InterleaveInfo.getInterleaveGroup(Instr); 1133 } 1134 1135 /// Returns true if an interleaved group requires a scalar iteration 1136 /// to handle accesses with gaps, and there is nothing preventing us from 1137 /// creating a scalar epilogue. 1138 bool requiresScalarEpilogue() const { 1139 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1140 } 1141 1142 /// Returns true if a scalar epilogue is not allowed due to optsize. 1143 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1144 1145 /// Returns true if all loop blocks should be masked to fold tail loop. 1146 bool foldTailByMasking() const { return FoldTailByMasking; } 1147 1148 bool blockNeedsPredication(BasicBlock *BB) { 1149 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1150 } 1151 1152 private: 1153 unsigned NumPredStores = 0; 1154 1155 /// \return An upper bound for the vectorization factor, larger than zero. 1156 /// One is returned if vectorization should best be avoided due to cost. 1157 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1158 1159 /// The vectorization cost is a combination of the cost itself and a boolean 1160 /// indicating whether any of the contributing operations will actually 1161 /// operate on 1162 /// vector values after type legalization in the backend. If this latter value 1163 /// is 1164 /// false, then all operations will be scalarized (i.e. no vectorization has 1165 /// actually taken place). 1166 using VectorizationCostTy = std::pair<unsigned, bool>; 1167 1168 /// Returns the expected execution cost. The unit of the cost does 1169 /// not matter because we use the 'cost' units to compare different 1170 /// vector widths. The cost that is returned is *not* normalized by 1171 /// the factor width. 1172 VectorizationCostTy expectedCost(unsigned VF); 1173 1174 /// Returns the execution time cost of an instruction for a given vector 1175 /// width. Vector width of one means scalar. 1176 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1177 1178 /// The cost-computation logic from getInstructionCost which provides 1179 /// the vector type as an output parameter. 1180 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1181 1182 /// Calculate vectorization cost of memory instruction \p I. 1183 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1184 1185 /// The cost computation for scalarized memory instruction. 1186 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1187 1188 /// The cost computation for interleaving group of memory instructions. 1189 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1190 1191 /// The cost computation for Gather/Scatter instruction. 1192 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1193 1194 /// The cost computation for widening instruction \p I with consecutive 1195 /// memory access. 1196 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1197 1198 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1199 /// Load: scalar load + broadcast. 1200 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1201 /// element) 1202 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1203 1204 /// Returns whether the instruction is a load or store and will be a emitted 1205 /// as a vector operation. 1206 bool isConsecutiveLoadOrStore(Instruction *I); 1207 1208 /// Returns true if an artificially high cost for emulated masked memrefs 1209 /// should be used. 1210 bool useEmulatedMaskMemRefHack(Instruction *I); 1211 1212 /// Create an analysis remark that explains why vectorization failed 1213 /// 1214 /// \p RemarkName is the identifier for the remark. \return the remark object 1215 /// that can be streamed to. 1216 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1217 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1218 RemarkName, TheLoop); 1219 } 1220 1221 /// Map of scalar integer values to the smallest bitwidth they can be legally 1222 /// represented as. The vector equivalents of these values should be truncated 1223 /// to this type. 1224 MapVector<Instruction *, uint64_t> MinBWs; 1225 1226 /// A type representing the costs for instructions if they were to be 1227 /// scalarized rather than vectorized. The entries are Instruction-Cost 1228 /// pairs. 1229 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1230 1231 /// A set containing all BasicBlocks that are known to present after 1232 /// vectorization as a predicated block. 1233 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1234 1235 /// Records whether it is allowed to have the original scalar loop execute at 1236 /// least once. This may be needed as a fallback loop in case runtime 1237 /// aliasing/dependence checks fail, or to handle the tail/remainder 1238 /// iterations when the trip count is unknown or doesn't divide by the VF, 1239 /// or as a peel-loop to handle gaps in interleave-groups. 1240 /// Under optsize and when the trip count is very small we don't allow any 1241 /// iterations to execute in the scalar loop. 1242 bool IsScalarEpilogueAllowed = true; 1243 1244 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1245 bool FoldTailByMasking = false; 1246 1247 /// A map holding scalar costs for different vectorization factors. The 1248 /// presence of a cost for an instruction in the mapping indicates that the 1249 /// instruction will be scalarized when vectorizing with the associated 1250 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1251 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1252 1253 /// Holds the instructions known to be uniform after vectorization. 1254 /// The data is collected per VF. 1255 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1256 1257 /// Holds the instructions known to be scalar after vectorization. 1258 /// The data is collected per VF. 1259 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1260 1261 /// Holds the instructions (address computations) that are forced to be 1262 /// scalarized. 1263 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1264 1265 /// Returns the expected difference in cost from scalarizing the expression 1266 /// feeding a predicated instruction \p PredInst. The instructions to 1267 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1268 /// non-negative return value implies the expression will be scalarized. 1269 /// Currently, only single-use chains are considered for scalarization. 1270 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1271 unsigned VF); 1272 1273 /// Collect the instructions that are uniform after vectorization. An 1274 /// instruction is uniform if we represent it with a single scalar value in 1275 /// the vectorized loop corresponding to each vector iteration. Examples of 1276 /// uniform instructions include pointer operands of consecutive or 1277 /// interleaved memory accesses. Note that although uniformity implies an 1278 /// instruction will be scalar, the reverse is not true. In general, a 1279 /// scalarized instruction will be represented by VF scalar values in the 1280 /// vectorized loop, each corresponding to an iteration of the original 1281 /// scalar loop. 1282 void collectLoopUniforms(unsigned VF); 1283 1284 /// Collect the instructions that are scalar after vectorization. An 1285 /// instruction is scalar if it is known to be uniform or will be scalarized 1286 /// during vectorization. Non-uniform scalarized instructions will be 1287 /// represented by VF values in the vectorized loop, each corresponding to an 1288 /// iteration of the original scalar loop. 1289 void collectLoopScalars(unsigned VF); 1290 1291 /// Keeps cost model vectorization decision and cost for instructions. 1292 /// Right now it is used for memory instructions only. 1293 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1294 std::pair<InstWidening, unsigned>>; 1295 1296 DecisionList WideningDecisions; 1297 1298 public: 1299 /// The loop that we evaluate. 1300 Loop *TheLoop; 1301 1302 /// Predicated scalar evolution analysis. 1303 PredicatedScalarEvolution &PSE; 1304 1305 /// Loop Info analysis. 1306 LoopInfo *LI; 1307 1308 /// Vectorization legality. 1309 LoopVectorizationLegality *Legal; 1310 1311 /// Vector target information. 1312 const TargetTransformInfo &TTI; 1313 1314 /// Target Library Info. 1315 const TargetLibraryInfo *TLI; 1316 1317 /// Demanded bits analysis. 1318 DemandedBits *DB; 1319 1320 /// Assumption cache. 1321 AssumptionCache *AC; 1322 1323 /// Interface to emit optimization remarks. 1324 OptimizationRemarkEmitter *ORE; 1325 1326 const Function *TheFunction; 1327 1328 /// Loop Vectorize Hint. 1329 const LoopVectorizeHints *Hints; 1330 1331 /// The interleave access information contains groups of interleaved accesses 1332 /// with the same stride and close to each other. 1333 InterleavedAccessInfo &InterleaveInfo; 1334 1335 /// Values to ignore in the cost model. 1336 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1337 1338 /// Values to ignore in the cost model when VF > 1. 1339 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1340 }; 1341 1342 } // end namespace llvm 1343 1344 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1345 // vectorization. The loop needs to be annotated with #pragma omp simd 1346 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1347 // vector length information is not provided, vectorization is not considered 1348 // explicit. Interleave hints are not allowed either. These limitations will be 1349 // relaxed in the future. 1350 // Please, note that we are currently forced to abuse the pragma 'clang 1351 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1352 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1353 // provides *explicit vectorization hints* (LV can bypass legal checks and 1354 // assume that vectorization is legal). However, both hints are implemented 1355 // using the same metadata (llvm.loop.vectorize, processed by 1356 // LoopVectorizeHints). This will be fixed in the future when the native IR 1357 // representation for pragma 'omp simd' is introduced. 1358 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1359 OptimizationRemarkEmitter *ORE) { 1360 assert(!OuterLp->empty() && "This is not an outer loop"); 1361 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1362 1363 // Only outer loops with an explicit vectorization hint are supported. 1364 // Unannotated outer loops are ignored. 1365 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1366 return false; 1367 1368 Function *Fn = OuterLp->getHeader()->getParent(); 1369 if (!Hints.allowVectorization(Fn, OuterLp, 1370 true /*VectorizeOnlyWhenForced*/)) { 1371 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1372 return false; 1373 } 1374 1375 if (!Hints.getWidth()) { 1376 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1377 Hints.emitRemarkWithHints(); 1378 return false; 1379 } 1380 1381 if (Hints.getInterleave() > 1) { 1382 // TODO: Interleave support is future work. 1383 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1384 "outer loops.\n"); 1385 Hints.emitRemarkWithHints(); 1386 return false; 1387 } 1388 1389 return true; 1390 } 1391 1392 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1393 OptimizationRemarkEmitter *ORE, 1394 SmallVectorImpl<Loop *> &V) { 1395 // Collect inner loops and outer loops without irreducible control flow. For 1396 // now, only collect outer loops that have explicit vectorization hints. If we 1397 // are stress testing the VPlan H-CFG construction, we collect the outermost 1398 // loop of every loop nest. 1399 if (L.empty() || VPlanBuildStressTest || 1400 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1401 LoopBlocksRPO RPOT(&L); 1402 RPOT.perform(LI); 1403 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1404 V.push_back(&L); 1405 // TODO: Collect inner loops inside marked outer loops in case 1406 // vectorization fails for the outer loop. Do not invoke 1407 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1408 // already known to be reducible. We can use an inherited attribute for 1409 // that. 1410 return; 1411 } 1412 } 1413 for (Loop *InnerL : L) 1414 collectSupportedLoops(*InnerL, LI, ORE, V); 1415 } 1416 1417 namespace { 1418 1419 /// The LoopVectorize Pass. 1420 struct LoopVectorize : public FunctionPass { 1421 /// Pass identification, replacement for typeid 1422 static char ID; 1423 1424 LoopVectorizePass Impl; 1425 1426 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1427 bool VectorizeOnlyWhenForced = false) 1428 : FunctionPass(ID) { 1429 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1430 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1431 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1432 } 1433 1434 bool runOnFunction(Function &F) override { 1435 if (skipFunction(F)) 1436 return false; 1437 1438 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1439 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1440 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1441 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1442 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1443 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1444 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1445 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1446 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1447 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1448 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1449 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1450 1451 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1452 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1453 1454 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1455 GetLAA, *ORE); 1456 } 1457 1458 void getAnalysisUsage(AnalysisUsage &AU) const override { 1459 AU.addRequired<AssumptionCacheTracker>(); 1460 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1461 AU.addRequired<DominatorTreeWrapperPass>(); 1462 AU.addRequired<LoopInfoWrapperPass>(); 1463 AU.addRequired<ScalarEvolutionWrapperPass>(); 1464 AU.addRequired<TargetTransformInfoWrapperPass>(); 1465 AU.addRequired<AAResultsWrapperPass>(); 1466 AU.addRequired<LoopAccessLegacyAnalysis>(); 1467 AU.addRequired<DemandedBitsWrapperPass>(); 1468 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1469 1470 // We currently do not preserve loopinfo/dominator analyses with outer loop 1471 // vectorization. Until this is addressed, mark these analyses as preserved 1472 // only for non-VPlan-native path. 1473 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1474 if (!EnableVPlanNativePath) { 1475 AU.addPreserved<LoopInfoWrapperPass>(); 1476 AU.addPreserved<DominatorTreeWrapperPass>(); 1477 } 1478 1479 AU.addPreserved<BasicAAWrapperPass>(); 1480 AU.addPreserved<GlobalsAAWrapperPass>(); 1481 } 1482 }; 1483 1484 } // end anonymous namespace 1485 1486 //===----------------------------------------------------------------------===// 1487 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1488 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1489 //===----------------------------------------------------------------------===// 1490 1491 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1492 // We need to place the broadcast of invariant variables outside the loop, 1493 // but only if it's proven safe to do so. Else, broadcast will be inside 1494 // vector loop body. 1495 Instruction *Instr = dyn_cast<Instruction>(V); 1496 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1497 (!Instr || 1498 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1499 // Place the code for broadcasting invariant variables in the new preheader. 1500 IRBuilder<>::InsertPointGuard Guard(Builder); 1501 if (SafeToHoist) 1502 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1503 1504 // Broadcast the scalar into all locations in the vector. 1505 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1506 1507 return Shuf; 1508 } 1509 1510 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1511 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1512 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1513 "Expected either an induction phi-node or a truncate of it!"); 1514 Value *Start = II.getStartValue(); 1515 1516 // Construct the initial value of the vector IV in the vector loop preheader 1517 auto CurrIP = Builder.saveIP(); 1518 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1519 if (isa<TruncInst>(EntryVal)) { 1520 assert(Start->getType()->isIntegerTy() && 1521 "Truncation requires an integer type"); 1522 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1523 Step = Builder.CreateTrunc(Step, TruncType); 1524 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1525 } 1526 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1527 Value *SteppedStart = 1528 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1529 1530 // We create vector phi nodes for both integer and floating-point induction 1531 // variables. Here, we determine the kind of arithmetic we will perform. 1532 Instruction::BinaryOps AddOp; 1533 Instruction::BinaryOps MulOp; 1534 if (Step->getType()->isIntegerTy()) { 1535 AddOp = Instruction::Add; 1536 MulOp = Instruction::Mul; 1537 } else { 1538 AddOp = II.getInductionOpcode(); 1539 MulOp = Instruction::FMul; 1540 } 1541 1542 // Multiply the vectorization factor by the step using integer or 1543 // floating-point arithmetic as appropriate. 1544 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1545 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1546 1547 // Create a vector splat to use in the induction update. 1548 // 1549 // FIXME: If the step is non-constant, we create the vector splat with 1550 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1551 // handle a constant vector splat. 1552 Value *SplatVF = isa<Constant>(Mul) 1553 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1554 : Builder.CreateVectorSplat(VF, Mul); 1555 Builder.restoreIP(CurrIP); 1556 1557 // We may need to add the step a number of times, depending on the unroll 1558 // factor. The last of those goes into the PHI. 1559 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1560 &*LoopVectorBody->getFirstInsertionPt()); 1561 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1562 Instruction *LastInduction = VecInd; 1563 for (unsigned Part = 0; Part < UF; ++Part) { 1564 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1565 1566 if (isa<TruncInst>(EntryVal)) 1567 addMetadata(LastInduction, EntryVal); 1568 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1569 1570 LastInduction = cast<Instruction>(addFastMathFlag( 1571 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1572 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1573 } 1574 1575 // Move the last step to the end of the latch block. This ensures consistent 1576 // placement of all induction updates. 1577 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1578 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1579 auto *ICmp = cast<Instruction>(Br->getCondition()); 1580 LastInduction->moveBefore(ICmp); 1581 LastInduction->setName("vec.ind.next"); 1582 1583 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1584 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1585 } 1586 1587 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1588 return Cost->isScalarAfterVectorization(I, VF) || 1589 Cost->isProfitableToScalarize(I, VF); 1590 } 1591 1592 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1593 if (shouldScalarizeInstruction(IV)) 1594 return true; 1595 auto isScalarInst = [&](User *U) -> bool { 1596 auto *I = cast<Instruction>(U); 1597 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1598 }; 1599 return llvm::any_of(IV->users(), isScalarInst); 1600 } 1601 1602 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1603 const InductionDescriptor &ID, const Instruction *EntryVal, 1604 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1605 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1606 "Expected either an induction phi-node or a truncate of it!"); 1607 1608 // This induction variable is not the phi from the original loop but the 1609 // newly-created IV based on the proof that casted Phi is equal to the 1610 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1611 // re-uses the same InductionDescriptor that original IV uses but we don't 1612 // have to do any recording in this case - that is done when original IV is 1613 // processed. 1614 if (isa<TruncInst>(EntryVal)) 1615 return; 1616 1617 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1618 if (Casts.empty()) 1619 return; 1620 // Only the first Cast instruction in the Casts vector is of interest. 1621 // The rest of the Casts (if exist) have no uses outside the 1622 // induction update chain itself. 1623 Instruction *CastInst = *Casts.begin(); 1624 if (Lane < UINT_MAX) 1625 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1626 else 1627 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1628 } 1629 1630 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1631 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1632 "Primary induction variable must have an integer type"); 1633 1634 auto II = Legal->getInductionVars()->find(IV); 1635 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1636 1637 auto ID = II->second; 1638 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1639 1640 // The scalar value to broadcast. This will be derived from the canonical 1641 // induction variable. 1642 Value *ScalarIV = nullptr; 1643 1644 // The value from the original loop to which we are mapping the new induction 1645 // variable. 1646 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1647 1648 // True if we have vectorized the induction variable. 1649 auto VectorizedIV = false; 1650 1651 // Determine if we want a scalar version of the induction variable. This is 1652 // true if the induction variable itself is not widened, or if it has at 1653 // least one user in the loop that is not widened. 1654 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1655 1656 // Generate code for the induction step. Note that induction steps are 1657 // required to be loop-invariant 1658 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1659 "Induction step should be loop invariant"); 1660 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1661 Value *Step = nullptr; 1662 if (PSE.getSE()->isSCEVable(IV->getType())) { 1663 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1664 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1665 LoopVectorPreHeader->getTerminator()); 1666 } else { 1667 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1668 } 1669 1670 // Try to create a new independent vector induction variable. If we can't 1671 // create the phi node, we will splat the scalar induction variable in each 1672 // loop iteration. 1673 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1674 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1675 VectorizedIV = true; 1676 } 1677 1678 // If we haven't yet vectorized the induction variable, or if we will create 1679 // a scalar one, we need to define the scalar induction variable and step 1680 // values. If we were given a truncation type, truncate the canonical 1681 // induction variable and step. Otherwise, derive these values from the 1682 // induction descriptor. 1683 if (!VectorizedIV || NeedsScalarIV) { 1684 ScalarIV = Induction; 1685 if (IV != OldInduction) { 1686 ScalarIV = IV->getType()->isIntegerTy() 1687 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1688 : Builder.CreateCast(Instruction::SIToFP, Induction, 1689 IV->getType()); 1690 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1691 ScalarIV->setName("offset.idx"); 1692 } 1693 if (Trunc) { 1694 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1695 assert(Step->getType()->isIntegerTy() && 1696 "Truncation requires an integer step"); 1697 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1698 Step = Builder.CreateTrunc(Step, TruncType); 1699 } 1700 } 1701 1702 // If we haven't yet vectorized the induction variable, splat the scalar 1703 // induction variable, and build the necessary step vectors. 1704 // TODO: Don't do it unless the vectorized IV is really required. 1705 if (!VectorizedIV) { 1706 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1707 for (unsigned Part = 0; Part < UF; ++Part) { 1708 Value *EntryPart = 1709 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1710 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1711 if (Trunc) 1712 addMetadata(EntryPart, Trunc); 1713 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1714 } 1715 } 1716 1717 // If an induction variable is only used for counting loop iterations or 1718 // calculating addresses, it doesn't need to be widened. Create scalar steps 1719 // that can be used by instructions we will later scalarize. Note that the 1720 // addition of the scalar steps will not increase the number of instructions 1721 // in the loop in the common case prior to InstCombine. We will be trading 1722 // one vector extract for each scalar step. 1723 if (NeedsScalarIV) 1724 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1725 } 1726 1727 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1728 Instruction::BinaryOps BinOp) { 1729 // Create and check the types. 1730 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1731 int VLen = Val->getType()->getVectorNumElements(); 1732 1733 Type *STy = Val->getType()->getScalarType(); 1734 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1735 "Induction Step must be an integer or FP"); 1736 assert(Step->getType() == STy && "Step has wrong type"); 1737 1738 SmallVector<Constant *, 8> Indices; 1739 1740 if (STy->isIntegerTy()) { 1741 // Create a vector of consecutive numbers from zero to VF. 1742 for (int i = 0; i < VLen; ++i) 1743 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1744 1745 // Add the consecutive indices to the vector value. 1746 Constant *Cv = ConstantVector::get(Indices); 1747 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1748 Step = Builder.CreateVectorSplat(VLen, Step); 1749 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1750 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1751 // which can be found from the original scalar operations. 1752 Step = Builder.CreateMul(Cv, Step); 1753 return Builder.CreateAdd(Val, Step, "induction"); 1754 } 1755 1756 // Floating point induction. 1757 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1758 "Binary Opcode should be specified for FP induction"); 1759 // Create a vector of consecutive numbers from zero to VF. 1760 for (int i = 0; i < VLen; ++i) 1761 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1762 1763 // Add the consecutive indices to the vector value. 1764 Constant *Cv = ConstantVector::get(Indices); 1765 1766 Step = Builder.CreateVectorSplat(VLen, Step); 1767 1768 // Floating point operations had to be 'fast' to enable the induction. 1769 FastMathFlags Flags; 1770 Flags.setFast(); 1771 1772 Value *MulOp = Builder.CreateFMul(Cv, Step); 1773 if (isa<Instruction>(MulOp)) 1774 // Have to check, MulOp may be a constant 1775 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1776 1777 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1778 if (isa<Instruction>(BOp)) 1779 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1780 return BOp; 1781 } 1782 1783 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1784 Instruction *EntryVal, 1785 const InductionDescriptor &ID) { 1786 // We shouldn't have to build scalar steps if we aren't vectorizing. 1787 assert(VF > 1 && "VF should be greater than one"); 1788 1789 // Get the value type and ensure it and the step have the same integer type. 1790 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1791 assert(ScalarIVTy == Step->getType() && 1792 "Val and Step should have the same type"); 1793 1794 // We build scalar steps for both integer and floating-point induction 1795 // variables. Here, we determine the kind of arithmetic we will perform. 1796 Instruction::BinaryOps AddOp; 1797 Instruction::BinaryOps MulOp; 1798 if (ScalarIVTy->isIntegerTy()) { 1799 AddOp = Instruction::Add; 1800 MulOp = Instruction::Mul; 1801 } else { 1802 AddOp = ID.getInductionOpcode(); 1803 MulOp = Instruction::FMul; 1804 } 1805 1806 // Determine the number of scalars we need to generate for each unroll 1807 // iteration. If EntryVal is uniform, we only need to generate the first 1808 // lane. Otherwise, we generate all VF values. 1809 unsigned Lanes = 1810 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1811 : VF; 1812 // Compute the scalar steps and save the results in VectorLoopValueMap. 1813 for (unsigned Part = 0; Part < UF; ++Part) { 1814 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1815 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1816 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1817 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1818 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1819 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1820 } 1821 } 1822 } 1823 1824 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1825 assert(V != Induction && "The new induction variable should not be used."); 1826 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1827 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1828 1829 // If we have a stride that is replaced by one, do it here. Defer this for 1830 // the VPlan-native path until we start running Legal checks in that path. 1831 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1832 V = ConstantInt::get(V->getType(), 1); 1833 1834 // If we have a vector mapped to this value, return it. 1835 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1836 return VectorLoopValueMap.getVectorValue(V, Part); 1837 1838 // If the value has not been vectorized, check if it has been scalarized 1839 // instead. If it has been scalarized, and we actually need the value in 1840 // vector form, we will construct the vector values on demand. 1841 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1842 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1843 1844 // If we've scalarized a value, that value should be an instruction. 1845 auto *I = cast<Instruction>(V); 1846 1847 // If we aren't vectorizing, we can just copy the scalar map values over to 1848 // the vector map. 1849 if (VF == 1) { 1850 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1851 return ScalarValue; 1852 } 1853 1854 // Get the last scalar instruction we generated for V and Part. If the value 1855 // is known to be uniform after vectorization, this corresponds to lane zero 1856 // of the Part unroll iteration. Otherwise, the last instruction is the one 1857 // we created for the last vector lane of the Part unroll iteration. 1858 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1859 auto *LastInst = cast<Instruction>( 1860 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1861 1862 // Set the insert point after the last scalarized instruction. This ensures 1863 // the insertelement sequence will directly follow the scalar definitions. 1864 auto OldIP = Builder.saveIP(); 1865 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1866 Builder.SetInsertPoint(&*NewIP); 1867 1868 // However, if we are vectorizing, we need to construct the vector values. 1869 // If the value is known to be uniform after vectorization, we can just 1870 // broadcast the scalar value corresponding to lane zero for each unroll 1871 // iteration. Otherwise, we construct the vector values using insertelement 1872 // instructions. Since the resulting vectors are stored in 1873 // VectorLoopValueMap, we will only generate the insertelements once. 1874 Value *VectorValue = nullptr; 1875 if (Cost->isUniformAfterVectorization(I, VF)) { 1876 VectorValue = getBroadcastInstrs(ScalarValue); 1877 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1878 } else { 1879 // Initialize packing with insertelements to start from undef. 1880 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1881 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1882 for (unsigned Lane = 0; Lane < VF; ++Lane) 1883 packScalarIntoVectorValue(V, {Part, Lane}); 1884 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1885 } 1886 Builder.restoreIP(OldIP); 1887 return VectorValue; 1888 } 1889 1890 // If this scalar is unknown, assume that it is a constant or that it is 1891 // loop invariant. Broadcast V and save the value for future uses. 1892 Value *B = getBroadcastInstrs(V); 1893 VectorLoopValueMap.setVectorValue(V, Part, B); 1894 return B; 1895 } 1896 1897 Value * 1898 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1899 const VPIteration &Instance) { 1900 // If the value is not an instruction contained in the loop, it should 1901 // already be scalar. 1902 if (OrigLoop->isLoopInvariant(V)) 1903 return V; 1904 1905 assert(Instance.Lane > 0 1906 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1907 : true && "Uniform values only have lane zero"); 1908 1909 // If the value from the original loop has not been vectorized, it is 1910 // represented by UF x VF scalar values in the new loop. Return the requested 1911 // scalar value. 1912 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1913 return VectorLoopValueMap.getScalarValue(V, Instance); 1914 1915 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1916 // for the given unroll part. If this entry is not a vector type (i.e., the 1917 // vectorization factor is one), there is no need to generate an 1918 // extractelement instruction. 1919 auto *U = getOrCreateVectorValue(V, Instance.Part); 1920 if (!U->getType()->isVectorTy()) { 1921 assert(VF == 1 && "Value not scalarized has non-vector type"); 1922 return U; 1923 } 1924 1925 // Otherwise, the value from the original loop has been vectorized and is 1926 // represented by UF vector values. Extract and return the requested scalar 1927 // value from the appropriate vector lane. 1928 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1929 } 1930 1931 void InnerLoopVectorizer::packScalarIntoVectorValue( 1932 Value *V, const VPIteration &Instance) { 1933 assert(V != Induction && "The new induction variable should not be used."); 1934 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1935 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1936 1937 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1938 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1939 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1940 Builder.getInt32(Instance.Lane)); 1941 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1942 } 1943 1944 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1945 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1946 SmallVector<Constant *, 8> ShuffleMask; 1947 for (unsigned i = 0; i < VF; ++i) 1948 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1949 1950 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1951 ConstantVector::get(ShuffleMask), 1952 "reverse"); 1953 } 1954 1955 // Return whether we allow using masked interleave-groups (for dealing with 1956 // strided loads/stores that reside in predicated blocks, or for dealing 1957 // with gaps). 1958 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1959 // If an override option has been passed in for interleaved accesses, use it. 1960 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1961 return EnableMaskedInterleavedMemAccesses; 1962 1963 return TTI.enableMaskedInterleavedAccessVectorization(); 1964 } 1965 1966 // Try to vectorize the interleave group that \p Instr belongs to. 1967 // 1968 // E.g. Translate following interleaved load group (factor = 3): 1969 // for (i = 0; i < N; i+=3) { 1970 // R = Pic[i]; // Member of index 0 1971 // G = Pic[i+1]; // Member of index 1 1972 // B = Pic[i+2]; // Member of index 2 1973 // ... // do something to R, G, B 1974 // } 1975 // To: 1976 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1977 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1978 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1979 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1980 // 1981 // Or translate following interleaved store group (factor = 3): 1982 // for (i = 0; i < N; i+=3) { 1983 // ... do something to R, G, B 1984 // Pic[i] = R; // Member of index 0 1985 // Pic[i+1] = G; // Member of index 1 1986 // Pic[i+2] = B; // Member of index 2 1987 // } 1988 // To: 1989 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 1990 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 1991 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 1992 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 1993 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 1994 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 1995 VectorParts *BlockInMask) { 1996 const InterleaveGroup<Instruction> *Group = 1997 Cost->getInterleavedAccessGroup(Instr); 1998 assert(Group && "Fail to get an interleaved access group."); 1999 2000 // Skip if current instruction is not the insert position. 2001 if (Instr != Group->getInsertPos()) 2002 return; 2003 2004 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2005 Value *Ptr = getLoadStorePointerOperand(Instr); 2006 2007 // Prepare for the vector type of the interleaved load/store. 2008 Type *ScalarTy = getMemInstValueType(Instr); 2009 unsigned InterleaveFactor = Group->getFactor(); 2010 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2011 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2012 2013 // Prepare for the new pointers. 2014 setDebugLocFromInst(Builder, Ptr); 2015 SmallVector<Value *, 2> NewPtrs; 2016 unsigned Index = Group->getIndex(Instr); 2017 2018 VectorParts Mask; 2019 bool IsMaskForCondRequired = BlockInMask; 2020 if (IsMaskForCondRequired) { 2021 Mask = *BlockInMask; 2022 // TODO: extend the masked interleaved-group support to reversed access. 2023 assert(!Group->isReverse() && "Reversed masked interleave-group " 2024 "not supported."); 2025 } 2026 2027 // If the group is reverse, adjust the index to refer to the last vector lane 2028 // instead of the first. We adjust the index from the first vector lane, 2029 // rather than directly getting the pointer for lane VF - 1, because the 2030 // pointer operand of the interleaved access is supposed to be uniform. For 2031 // uniform instructions, we're only required to generate a value for the 2032 // first vector lane in each unroll iteration. 2033 if (Group->isReverse()) 2034 Index += (VF - 1) * Group->getFactor(); 2035 2036 bool InBounds = false; 2037 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2038 InBounds = gep->isInBounds(); 2039 2040 for (unsigned Part = 0; Part < UF; Part++) { 2041 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2042 2043 // Notice current instruction could be any index. Need to adjust the address 2044 // to the member of index 0. 2045 // 2046 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2047 // b = A[i]; // Member of index 0 2048 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2049 // 2050 // E.g. A[i+1] = a; // Member of index 1 2051 // A[i] = b; // Member of index 0 2052 // A[i+2] = c; // Member of index 2 (Current instruction) 2053 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2054 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2055 if (InBounds) 2056 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2057 2058 // Cast to the vector pointer type. 2059 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2060 } 2061 2062 setDebugLocFromInst(Builder, Instr); 2063 Value *UndefVec = UndefValue::get(VecTy); 2064 2065 Value *MaskForGaps = nullptr; 2066 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2067 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2068 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2069 } 2070 2071 // Vectorize the interleaved load group. 2072 if (isa<LoadInst>(Instr)) { 2073 // For each unroll part, create a wide load for the group. 2074 SmallVector<Value *, 2> NewLoads; 2075 for (unsigned Part = 0; Part < UF; Part++) { 2076 Instruction *NewLoad; 2077 if (IsMaskForCondRequired || MaskForGaps) { 2078 assert(useMaskedInterleavedAccesses(*TTI) && 2079 "masked interleaved groups are not allowed."); 2080 Value *GroupMask = MaskForGaps; 2081 if (IsMaskForCondRequired) { 2082 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2083 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2084 Value *ShuffledMask = Builder.CreateShuffleVector( 2085 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2086 GroupMask = MaskForGaps 2087 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2088 MaskForGaps) 2089 : ShuffledMask; 2090 } 2091 NewLoad = 2092 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2093 GroupMask, UndefVec, "wide.masked.vec"); 2094 } 2095 else 2096 NewLoad = Builder.CreateAlignedLoad(NewPtrs[Part], 2097 Group->getAlignment(), "wide.vec"); 2098 Group->addMetadata(NewLoad); 2099 NewLoads.push_back(NewLoad); 2100 } 2101 2102 // For each member in the group, shuffle out the appropriate data from the 2103 // wide loads. 2104 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2105 Instruction *Member = Group->getMember(I); 2106 2107 // Skip the gaps in the group. 2108 if (!Member) 2109 continue; 2110 2111 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2112 for (unsigned Part = 0; Part < UF; Part++) { 2113 Value *StridedVec = Builder.CreateShuffleVector( 2114 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2115 2116 // If this member has different type, cast the result type. 2117 if (Member->getType() != ScalarTy) { 2118 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2119 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2120 } 2121 2122 if (Group->isReverse()) 2123 StridedVec = reverseVector(StridedVec); 2124 2125 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2126 } 2127 } 2128 return; 2129 } 2130 2131 // The sub vector type for current instruction. 2132 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2133 2134 // Vectorize the interleaved store group. 2135 for (unsigned Part = 0; Part < UF; Part++) { 2136 // Collect the stored vector from each member. 2137 SmallVector<Value *, 4> StoredVecs; 2138 for (unsigned i = 0; i < InterleaveFactor; i++) { 2139 // Interleaved store group doesn't allow a gap, so each index has a member 2140 Instruction *Member = Group->getMember(i); 2141 assert(Member && "Fail to get a member from an interleaved store group"); 2142 2143 Value *StoredVec = getOrCreateVectorValue( 2144 cast<StoreInst>(Member)->getValueOperand(), Part); 2145 if (Group->isReverse()) 2146 StoredVec = reverseVector(StoredVec); 2147 2148 // If this member has different type, cast it to a unified type. 2149 2150 if (StoredVec->getType() != SubVT) 2151 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2152 2153 StoredVecs.push_back(StoredVec); 2154 } 2155 2156 // Concatenate all vectors into a wide vector. 2157 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2158 2159 // Interleave the elements in the wide vector. 2160 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2161 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2162 "interleaved.vec"); 2163 2164 Instruction *NewStoreInstr; 2165 if (IsMaskForCondRequired) { 2166 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2167 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2168 Value *ShuffledMask = Builder.CreateShuffleVector( 2169 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2170 NewStoreInstr = Builder.CreateMaskedStore( 2171 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2172 } 2173 else 2174 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2175 Group->getAlignment()); 2176 2177 Group->addMetadata(NewStoreInstr); 2178 } 2179 } 2180 2181 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2182 VectorParts *BlockInMask) { 2183 // Attempt to issue a wide load. 2184 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2185 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2186 2187 assert((LI || SI) && "Invalid Load/Store instruction"); 2188 2189 LoopVectorizationCostModel::InstWidening Decision = 2190 Cost->getWideningDecision(Instr, VF); 2191 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2192 "CM decision should be taken at this point"); 2193 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2194 return vectorizeInterleaveGroup(Instr); 2195 2196 Type *ScalarDataTy = getMemInstValueType(Instr); 2197 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2198 Value *Ptr = getLoadStorePointerOperand(Instr); 2199 unsigned Alignment = getLoadStoreAlignment(Instr); 2200 // An alignment of 0 means target abi alignment. We need to use the scalar's 2201 // target abi alignment in such a case. 2202 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2203 if (!Alignment) 2204 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2205 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2206 2207 // Determine if the pointer operand of the access is either consecutive or 2208 // reverse consecutive. 2209 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2210 bool ConsecutiveStride = 2211 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2212 bool CreateGatherScatter = 2213 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2214 2215 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2216 // gather/scatter. Otherwise Decision should have been to Scalarize. 2217 assert((ConsecutiveStride || CreateGatherScatter) && 2218 "The instruction should be scalarized"); 2219 2220 // Handle consecutive loads/stores. 2221 if (ConsecutiveStride) 2222 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2223 2224 VectorParts Mask; 2225 bool isMaskRequired = BlockInMask; 2226 if (isMaskRequired) 2227 Mask = *BlockInMask; 2228 2229 bool InBounds = false; 2230 if (auto *gep = dyn_cast<GetElementPtrInst>( 2231 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2232 InBounds = gep->isInBounds(); 2233 2234 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2235 // Calculate the pointer for the specific unroll-part. 2236 GetElementPtrInst *PartPtr = nullptr; 2237 2238 if (Reverse) { 2239 // If the address is consecutive but reversed, then the 2240 // wide store needs to start at the last vector element. 2241 PartPtr = cast<GetElementPtrInst>( 2242 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2243 PartPtr->setIsInBounds(InBounds); 2244 PartPtr = cast<GetElementPtrInst>( 2245 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2246 PartPtr->setIsInBounds(InBounds); 2247 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2248 Mask[Part] = reverseVector(Mask[Part]); 2249 } else { 2250 PartPtr = cast<GetElementPtrInst>( 2251 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2252 PartPtr->setIsInBounds(InBounds); 2253 } 2254 2255 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2256 }; 2257 2258 // Handle Stores: 2259 if (SI) { 2260 setDebugLocFromInst(Builder, SI); 2261 2262 for (unsigned Part = 0; Part < UF; ++Part) { 2263 Instruction *NewSI = nullptr; 2264 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2265 if (CreateGatherScatter) { 2266 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2267 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2268 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2269 MaskPart); 2270 } else { 2271 if (Reverse) { 2272 // If we store to reverse consecutive memory locations, then we need 2273 // to reverse the order of elements in the stored value. 2274 StoredVal = reverseVector(StoredVal); 2275 // We don't want to update the value in the map as it might be used in 2276 // another expression. So don't call resetVectorValue(StoredVal). 2277 } 2278 auto *VecPtr = CreateVecPtr(Part, Ptr); 2279 if (isMaskRequired) 2280 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2281 Mask[Part]); 2282 else 2283 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2284 } 2285 addMetadata(NewSI, SI); 2286 } 2287 return; 2288 } 2289 2290 // Handle loads. 2291 assert(LI && "Must have a load instruction"); 2292 setDebugLocFromInst(Builder, LI); 2293 for (unsigned Part = 0; Part < UF; ++Part) { 2294 Value *NewLI; 2295 if (CreateGatherScatter) { 2296 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2297 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2298 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2299 nullptr, "wide.masked.gather"); 2300 addMetadata(NewLI, LI); 2301 } else { 2302 auto *VecPtr = CreateVecPtr(Part, Ptr); 2303 if (isMaskRequired) 2304 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2305 UndefValue::get(DataTy), 2306 "wide.masked.load"); 2307 else 2308 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2309 2310 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2311 addMetadata(NewLI, LI); 2312 if (Reverse) 2313 NewLI = reverseVector(NewLI); 2314 } 2315 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2316 } 2317 } 2318 2319 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2320 const VPIteration &Instance, 2321 bool IfPredicateInstr) { 2322 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2323 2324 setDebugLocFromInst(Builder, Instr); 2325 2326 // Does this instruction return a value ? 2327 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2328 2329 Instruction *Cloned = Instr->clone(); 2330 if (!IsVoidRetTy) 2331 Cloned->setName(Instr->getName() + ".cloned"); 2332 2333 // Replace the operands of the cloned instructions with their scalar 2334 // equivalents in the new loop. 2335 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2336 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2337 Cloned->setOperand(op, NewOp); 2338 } 2339 addNewMetadata(Cloned, Instr); 2340 2341 // Place the cloned scalar in the new loop. 2342 Builder.Insert(Cloned); 2343 2344 // Add the cloned scalar to the scalar map entry. 2345 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2346 2347 // If we just cloned a new assumption, add it the assumption cache. 2348 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2349 if (II->getIntrinsicID() == Intrinsic::assume) 2350 AC->registerAssumption(II); 2351 2352 // End if-block. 2353 if (IfPredicateInstr) 2354 PredicatedInstructions.push_back(Cloned); 2355 } 2356 2357 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2358 Value *End, Value *Step, 2359 Instruction *DL) { 2360 BasicBlock *Header = L->getHeader(); 2361 BasicBlock *Latch = L->getLoopLatch(); 2362 // As we're just creating this loop, it's possible no latch exists 2363 // yet. If so, use the header as this will be a single block loop. 2364 if (!Latch) 2365 Latch = Header; 2366 2367 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2368 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2369 setDebugLocFromInst(Builder, OldInst); 2370 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2371 2372 Builder.SetInsertPoint(Latch->getTerminator()); 2373 setDebugLocFromInst(Builder, OldInst); 2374 2375 // Create i+1 and fill the PHINode. 2376 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2377 Induction->addIncoming(Start, L->getLoopPreheader()); 2378 Induction->addIncoming(Next, Latch); 2379 // Create the compare. 2380 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2381 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2382 2383 // Now we have two terminators. Remove the old one from the block. 2384 Latch->getTerminator()->eraseFromParent(); 2385 2386 return Induction; 2387 } 2388 2389 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2390 if (TripCount) 2391 return TripCount; 2392 2393 assert(L && "Create Trip Count for null loop."); 2394 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2395 // Find the loop boundaries. 2396 ScalarEvolution *SE = PSE.getSE(); 2397 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2398 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2399 "Invalid loop count"); 2400 2401 Type *IdxTy = Legal->getWidestInductionType(); 2402 assert(IdxTy && "No type for induction"); 2403 2404 // The exit count might have the type of i64 while the phi is i32. This can 2405 // happen if we have an induction variable that is sign extended before the 2406 // compare. The only way that we get a backedge taken count is that the 2407 // induction variable was signed and as such will not overflow. In such a case 2408 // truncation is legal. 2409 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2410 IdxTy->getPrimitiveSizeInBits()) 2411 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2412 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2413 2414 // Get the total trip count from the count by adding 1. 2415 const SCEV *ExitCount = SE->getAddExpr( 2416 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2417 2418 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2419 2420 // Expand the trip count and place the new instructions in the preheader. 2421 // Notice that the pre-header does not change, only the loop body. 2422 SCEVExpander Exp(*SE, DL, "induction"); 2423 2424 // Count holds the overall loop count (N). 2425 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2426 L->getLoopPreheader()->getTerminator()); 2427 2428 if (TripCount->getType()->isPointerTy()) 2429 TripCount = 2430 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2431 L->getLoopPreheader()->getTerminator()); 2432 2433 return TripCount; 2434 } 2435 2436 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2437 if (VectorTripCount) 2438 return VectorTripCount; 2439 2440 Value *TC = getOrCreateTripCount(L); 2441 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2442 2443 Type *Ty = TC->getType(); 2444 Constant *Step = ConstantInt::get(Ty, VF * UF); 2445 2446 // If the tail is to be folded by masking, round the number of iterations N 2447 // up to a multiple of Step instead of rounding down. This is done by first 2448 // adding Step-1 and then rounding down. Note that it's ok if this addition 2449 // overflows: the vector induction variable will eventually wrap to zero given 2450 // that it starts at zero and its Step is a power of two; the loop will then 2451 // exit, with the last early-exit vector comparison also producing all-true. 2452 if (Cost->foldTailByMasking()) { 2453 assert(isPowerOf2_32(VF * UF) && 2454 "VF*UF must be a power of 2 when folding tail by masking"); 2455 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2456 } 2457 2458 // Now we need to generate the expression for the part of the loop that the 2459 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2460 // iterations are not required for correctness, or N - Step, otherwise. Step 2461 // is equal to the vectorization factor (number of SIMD elements) times the 2462 // unroll factor (number of SIMD instructions). 2463 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2464 2465 // If there is a non-reversed interleaved group that may speculatively access 2466 // memory out-of-bounds, we need to ensure that there will be at least one 2467 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2468 // the trip count, we set the remainder to be equal to the step. If the step 2469 // does not evenly divide the trip count, no adjustment is necessary since 2470 // there will already be scalar iterations. Note that the minimum iterations 2471 // check ensures that N >= Step. 2472 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2473 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2474 R = Builder.CreateSelect(IsZero, Step, R); 2475 } 2476 2477 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2478 2479 return VectorTripCount; 2480 } 2481 2482 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2483 const DataLayout &DL) { 2484 // Verify that V is a vector type with same number of elements as DstVTy. 2485 unsigned VF = DstVTy->getNumElements(); 2486 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2487 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2488 Type *SrcElemTy = SrcVecTy->getElementType(); 2489 Type *DstElemTy = DstVTy->getElementType(); 2490 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2491 "Vector elements must have same size"); 2492 2493 // Do a direct cast if element types are castable. 2494 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2495 return Builder.CreateBitOrPointerCast(V, DstVTy); 2496 } 2497 // V cannot be directly casted to desired vector type. 2498 // May happen when V is a floating point vector but DstVTy is a vector of 2499 // pointers or vice-versa. Handle this using a two-step bitcast using an 2500 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2501 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2502 "Only one type should be a pointer type"); 2503 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2504 "Only one type should be a floating point type"); 2505 Type *IntTy = 2506 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2507 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2508 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2509 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2510 } 2511 2512 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2513 BasicBlock *Bypass) { 2514 Value *Count = getOrCreateTripCount(L); 2515 BasicBlock *BB = L->getLoopPreheader(); 2516 IRBuilder<> Builder(BB->getTerminator()); 2517 2518 // Generate code to check if the loop's trip count is less than VF * UF, or 2519 // equal to it in case a scalar epilogue is required; this implies that the 2520 // vector trip count is zero. This check also covers the case where adding one 2521 // to the backedge-taken count overflowed leading to an incorrect trip count 2522 // of zero. In this case we will also jump to the scalar loop. 2523 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2524 : ICmpInst::ICMP_ULT; 2525 2526 // If tail is to be folded, vector loop takes care of all iterations. 2527 Value *CheckMinIters = Builder.getFalse(); 2528 if (!Cost->foldTailByMasking()) 2529 CheckMinIters = Builder.CreateICmp( 2530 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2531 "min.iters.check"); 2532 2533 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2534 // Update dominator tree immediately if the generated block is a 2535 // LoopBypassBlock because SCEV expansions to generate loop bypass 2536 // checks may query it before the current function is finished. 2537 DT->addNewBlock(NewBB, BB); 2538 if (L->getParentLoop()) 2539 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2540 ReplaceInstWithInst(BB->getTerminator(), 2541 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2542 LoopBypassBlocks.push_back(BB); 2543 } 2544 2545 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2546 BasicBlock *BB = L->getLoopPreheader(); 2547 2548 // Generate the code to check that the SCEV assumptions that we made. 2549 // We want the new basic block to start at the first instruction in a 2550 // sequence of instructions that form a check. 2551 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2552 "scev.check"); 2553 Value *SCEVCheck = 2554 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2555 2556 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2557 if (C->isZero()) 2558 return; 2559 2560 assert(!Cost->foldTailByMasking() && 2561 "Cannot SCEV check stride or overflow when folding tail"); 2562 // Create a new block containing the stride check. 2563 BB->setName("vector.scevcheck"); 2564 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2565 // Update dominator tree immediately if the generated block is a 2566 // LoopBypassBlock because SCEV expansions to generate loop bypass 2567 // checks may query it before the current function is finished. 2568 DT->addNewBlock(NewBB, BB); 2569 if (L->getParentLoop()) 2570 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2571 ReplaceInstWithInst(BB->getTerminator(), 2572 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2573 LoopBypassBlocks.push_back(BB); 2574 AddedSafetyChecks = true; 2575 } 2576 2577 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2578 // VPlan-native path does not do any analysis for runtime checks currently. 2579 if (EnableVPlanNativePath) 2580 return; 2581 2582 BasicBlock *BB = L->getLoopPreheader(); 2583 2584 // Generate the code that checks in runtime if arrays overlap. We put the 2585 // checks into a separate block to make the more common case of few elements 2586 // faster. 2587 Instruction *FirstCheckInst; 2588 Instruction *MemRuntimeCheck; 2589 std::tie(FirstCheckInst, MemRuntimeCheck) = 2590 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2591 if (!MemRuntimeCheck) 2592 return; 2593 2594 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2595 // Create a new block containing the memory check. 2596 BB->setName("vector.memcheck"); 2597 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2598 // Update dominator tree immediately if the generated block is a 2599 // LoopBypassBlock because SCEV expansions to generate loop bypass 2600 // checks may query it before the current function is finished. 2601 DT->addNewBlock(NewBB, BB); 2602 if (L->getParentLoop()) 2603 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2604 ReplaceInstWithInst(BB->getTerminator(), 2605 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2606 LoopBypassBlocks.push_back(BB); 2607 AddedSafetyChecks = true; 2608 2609 // We currently don't use LoopVersioning for the actual loop cloning but we 2610 // still use it to add the noalias metadata. 2611 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2612 PSE.getSE()); 2613 LVer->prepareNoAliasMetadata(); 2614 } 2615 2616 Value *InnerLoopVectorizer::emitTransformedIndex( 2617 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2618 const InductionDescriptor &ID) const { 2619 2620 SCEVExpander Exp(*SE, DL, "induction"); 2621 auto Step = ID.getStep(); 2622 auto StartValue = ID.getStartValue(); 2623 assert(Index->getType() == Step->getType() && 2624 "Index type does not match StepValue type"); 2625 2626 // Note: the IR at this point is broken. We cannot use SE to create any new 2627 // SCEV and then expand it, hoping that SCEV's simplification will give us 2628 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2629 // lead to various SCEV crashes. So all we can do is to use builder and rely 2630 // on InstCombine for future simplifications. Here we handle some trivial 2631 // cases only. 2632 auto CreateAdd = [&B](Value *X, Value *Y) { 2633 assert(X->getType() == Y->getType() && "Types don't match!"); 2634 if (auto *CX = dyn_cast<ConstantInt>(X)) 2635 if (CX->isZero()) 2636 return Y; 2637 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2638 if (CY->isZero()) 2639 return X; 2640 return B.CreateAdd(X, Y); 2641 }; 2642 2643 auto CreateMul = [&B](Value *X, Value *Y) { 2644 assert(X->getType() == Y->getType() && "Types don't match!"); 2645 if (auto *CX = dyn_cast<ConstantInt>(X)) 2646 if (CX->isOne()) 2647 return Y; 2648 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2649 if (CY->isOne()) 2650 return X; 2651 return B.CreateMul(X, Y); 2652 }; 2653 2654 switch (ID.getKind()) { 2655 case InductionDescriptor::IK_IntInduction: { 2656 assert(Index->getType() == StartValue->getType() && 2657 "Index type does not match StartValue type"); 2658 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2659 return B.CreateSub(StartValue, Index); 2660 auto *Offset = CreateMul( 2661 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2662 return CreateAdd(StartValue, Offset); 2663 } 2664 case InductionDescriptor::IK_PtrInduction: { 2665 assert(isa<SCEVConstant>(Step) && 2666 "Expected constant step for pointer induction"); 2667 return B.CreateGEP( 2668 nullptr, StartValue, 2669 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2670 &*B.GetInsertPoint()))); 2671 } 2672 case InductionDescriptor::IK_FpInduction: { 2673 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2674 auto InductionBinOp = ID.getInductionBinOp(); 2675 assert(InductionBinOp && 2676 (InductionBinOp->getOpcode() == Instruction::FAdd || 2677 InductionBinOp->getOpcode() == Instruction::FSub) && 2678 "Original bin op should be defined for FP induction"); 2679 2680 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2681 2682 // Floating point operations had to be 'fast' to enable the induction. 2683 FastMathFlags Flags; 2684 Flags.setFast(); 2685 2686 Value *MulExp = B.CreateFMul(StepValue, Index); 2687 if (isa<Instruction>(MulExp)) 2688 // We have to check, the MulExp may be a constant. 2689 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2690 2691 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2692 "induction"); 2693 if (isa<Instruction>(BOp)) 2694 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2695 2696 return BOp; 2697 } 2698 case InductionDescriptor::IK_NoInduction: 2699 return nullptr; 2700 } 2701 llvm_unreachable("invalid enum"); 2702 } 2703 2704 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2705 /* 2706 In this function we generate a new loop. The new loop will contain 2707 the vectorized instructions while the old loop will continue to run the 2708 scalar remainder. 2709 2710 [ ] <-- loop iteration number check. 2711 / | 2712 / v 2713 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2714 | / | 2715 | / v 2716 || [ ] <-- vector pre header. 2717 |/ | 2718 | v 2719 | [ ] \ 2720 | [ ]_| <-- vector loop. 2721 | | 2722 | v 2723 | -[ ] <--- middle-block. 2724 | / | 2725 | / v 2726 -|- >[ ] <--- new preheader. 2727 | | 2728 | v 2729 | [ ] \ 2730 | [ ]_| <-- old scalar loop to handle remainder. 2731 \ | 2732 \ v 2733 >[ ] <-- exit block. 2734 ... 2735 */ 2736 2737 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2738 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2739 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2740 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2741 assert(VectorPH && "Invalid loop structure"); 2742 assert(ExitBlock && "Must have an exit block"); 2743 2744 // Some loops have a single integer induction variable, while other loops 2745 // don't. One example is c++ iterators that often have multiple pointer 2746 // induction variables. In the code below we also support a case where we 2747 // don't have a single induction variable. 2748 // 2749 // We try to obtain an induction variable from the original loop as hard 2750 // as possible. However if we don't find one that: 2751 // - is an integer 2752 // - counts from zero, stepping by one 2753 // - is the size of the widest induction variable type 2754 // then we create a new one. 2755 OldInduction = Legal->getPrimaryInduction(); 2756 Type *IdxTy = Legal->getWidestInductionType(); 2757 2758 // Split the single block loop into the two loop structure described above. 2759 BasicBlock *VecBody = 2760 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2761 BasicBlock *MiddleBlock = 2762 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2763 BasicBlock *ScalarPH = 2764 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2765 2766 // Create and register the new vector loop. 2767 Loop *Lp = LI->AllocateLoop(); 2768 Loop *ParentLoop = OrigLoop->getParentLoop(); 2769 2770 // Insert the new loop into the loop nest and register the new basic blocks 2771 // before calling any utilities such as SCEV that require valid LoopInfo. 2772 if (ParentLoop) { 2773 ParentLoop->addChildLoop(Lp); 2774 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2775 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2776 } else { 2777 LI->addTopLevelLoop(Lp); 2778 } 2779 Lp->addBasicBlockToLoop(VecBody, *LI); 2780 2781 // Find the loop boundaries. 2782 Value *Count = getOrCreateTripCount(Lp); 2783 2784 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2785 2786 // Now, compare the new count to zero. If it is zero skip the vector loop and 2787 // jump to the scalar loop. This check also covers the case where the 2788 // backedge-taken count is uint##_max: adding one to it will overflow leading 2789 // to an incorrect trip count of zero. In this (rare) case we will also jump 2790 // to the scalar loop. 2791 emitMinimumIterationCountCheck(Lp, ScalarPH); 2792 2793 // Generate the code to check any assumptions that we've made for SCEV 2794 // expressions. 2795 emitSCEVChecks(Lp, ScalarPH); 2796 2797 // Generate the code that checks in runtime if arrays overlap. We put the 2798 // checks into a separate block to make the more common case of few elements 2799 // faster. 2800 emitMemRuntimeChecks(Lp, ScalarPH); 2801 2802 // Generate the induction variable. 2803 // The loop step is equal to the vectorization factor (num of SIMD elements) 2804 // times the unroll factor (num of SIMD instructions). 2805 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2806 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2807 Induction = 2808 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2809 getDebugLocFromInstOrOperands(OldInduction)); 2810 2811 // We are going to resume the execution of the scalar loop. 2812 // Go over all of the induction variables that we found and fix the 2813 // PHIs that are left in the scalar version of the loop. 2814 // The starting values of PHI nodes depend on the counter of the last 2815 // iteration in the vectorized loop. 2816 // If we come from a bypass edge then we need to start from the original 2817 // start value. 2818 2819 // This variable saves the new starting index for the scalar loop. It is used 2820 // to test if there are any tail iterations left once the vector loop has 2821 // completed. 2822 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2823 for (auto &InductionEntry : *List) { 2824 PHINode *OrigPhi = InductionEntry.first; 2825 InductionDescriptor II = InductionEntry.second; 2826 2827 // Create phi nodes to merge from the backedge-taken check block. 2828 PHINode *BCResumeVal = PHINode::Create( 2829 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2830 // Copy original phi DL over to the new one. 2831 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2832 Value *&EndValue = IVEndValues[OrigPhi]; 2833 if (OrigPhi == OldInduction) { 2834 // We know what the end value is. 2835 EndValue = CountRoundDown; 2836 } else { 2837 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2838 Type *StepType = II.getStep()->getType(); 2839 Instruction::CastOps CastOp = 2840 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2841 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2842 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2843 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2844 EndValue->setName("ind.end"); 2845 } 2846 2847 // The new PHI merges the original incoming value, in case of a bypass, 2848 // or the value at the end of the vectorized loop. 2849 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2850 2851 // Fix the scalar body counter (PHI node). 2852 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2853 2854 // The old induction's phi node in the scalar body needs the truncated 2855 // value. 2856 for (BasicBlock *BB : LoopBypassBlocks) 2857 BCResumeVal->addIncoming(II.getStartValue(), BB); 2858 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2859 } 2860 2861 // Add a check in the middle block to see if we have completed 2862 // all of the iterations in the first vector loop. 2863 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2864 // If tail is to be folded, we know we don't need to run the remainder. 2865 Value *CmpN = Builder.getTrue(); 2866 if (!Cost->foldTailByMasking()) 2867 CmpN = 2868 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2869 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2870 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2871 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2872 2873 // Get ready to start creating new instructions into the vectorized body. 2874 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2875 2876 // Save the state. 2877 LoopVectorPreHeader = Lp->getLoopPreheader(); 2878 LoopScalarPreHeader = ScalarPH; 2879 LoopMiddleBlock = MiddleBlock; 2880 LoopExitBlock = ExitBlock; 2881 LoopVectorBody = VecBody; 2882 LoopScalarBody = OldBasicBlock; 2883 2884 Optional<MDNode *> VectorizedLoopID = 2885 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2886 LLVMLoopVectorizeFollowupVectorized}); 2887 if (VectorizedLoopID.hasValue()) { 2888 Lp->setLoopID(VectorizedLoopID.getValue()); 2889 2890 // Do not setAlreadyVectorized if loop attributes have been defined 2891 // explicitly. 2892 return LoopVectorPreHeader; 2893 } 2894 2895 // Keep all loop hints from the original loop on the vector loop (we'll 2896 // replace the vectorizer-specific hints below). 2897 if (MDNode *LID = OrigLoop->getLoopID()) 2898 Lp->setLoopID(LID); 2899 2900 LoopVectorizeHints Hints(Lp, true, *ORE); 2901 Hints.setAlreadyVectorized(); 2902 2903 return LoopVectorPreHeader; 2904 } 2905 2906 // Fix up external users of the induction variable. At this point, we are 2907 // in LCSSA form, with all external PHIs that use the IV having one input value, 2908 // coming from the remainder loop. We need those PHIs to also have a correct 2909 // value for the IV when arriving directly from the middle block. 2910 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2911 const InductionDescriptor &II, 2912 Value *CountRoundDown, Value *EndValue, 2913 BasicBlock *MiddleBlock) { 2914 // There are two kinds of external IV usages - those that use the value 2915 // computed in the last iteration (the PHI) and those that use the penultimate 2916 // value (the value that feeds into the phi from the loop latch). 2917 // We allow both, but they, obviously, have different values. 2918 2919 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2920 2921 DenseMap<Value *, Value *> MissingVals; 2922 2923 // An external user of the last iteration's value should see the value that 2924 // the remainder loop uses to initialize its own IV. 2925 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2926 for (User *U : PostInc->users()) { 2927 Instruction *UI = cast<Instruction>(U); 2928 if (!OrigLoop->contains(UI)) { 2929 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2930 MissingVals[UI] = EndValue; 2931 } 2932 } 2933 2934 // An external user of the penultimate value need to see EndValue - Step. 2935 // The simplest way to get this is to recompute it from the constituent SCEVs, 2936 // that is Start + (Step * (CRD - 1)). 2937 for (User *U : OrigPhi->users()) { 2938 auto *UI = cast<Instruction>(U); 2939 if (!OrigLoop->contains(UI)) { 2940 const DataLayout &DL = 2941 OrigLoop->getHeader()->getModule()->getDataLayout(); 2942 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2943 2944 IRBuilder<> B(MiddleBlock->getTerminator()); 2945 Value *CountMinusOne = B.CreateSub( 2946 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2947 Value *CMO = 2948 !II.getStep()->getType()->isIntegerTy() 2949 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2950 II.getStep()->getType()) 2951 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2952 CMO->setName("cast.cmo"); 2953 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2954 Escape->setName("ind.escape"); 2955 MissingVals[UI] = Escape; 2956 } 2957 } 2958 2959 for (auto &I : MissingVals) { 2960 PHINode *PHI = cast<PHINode>(I.first); 2961 // One corner case we have to handle is two IVs "chasing" each-other, 2962 // that is %IV2 = phi [...], [ %IV1, %latch ] 2963 // In this case, if IV1 has an external use, we need to avoid adding both 2964 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2965 // don't already have an incoming value for the middle block. 2966 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2967 PHI->addIncoming(I.second, MiddleBlock); 2968 } 2969 } 2970 2971 namespace { 2972 2973 struct CSEDenseMapInfo { 2974 static bool canHandle(const Instruction *I) { 2975 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2976 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2977 } 2978 2979 static inline Instruction *getEmptyKey() { 2980 return DenseMapInfo<Instruction *>::getEmptyKey(); 2981 } 2982 2983 static inline Instruction *getTombstoneKey() { 2984 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2985 } 2986 2987 static unsigned getHashValue(const Instruction *I) { 2988 assert(canHandle(I) && "Unknown instruction!"); 2989 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2990 I->value_op_end())); 2991 } 2992 2993 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 2994 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2995 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2996 return LHS == RHS; 2997 return LHS->isIdenticalTo(RHS); 2998 } 2999 }; 3000 3001 } // end anonymous namespace 3002 3003 ///Perform cse of induction variable instructions. 3004 static void cse(BasicBlock *BB) { 3005 // Perform simple cse. 3006 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3007 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3008 Instruction *In = &*I++; 3009 3010 if (!CSEDenseMapInfo::canHandle(In)) 3011 continue; 3012 3013 // Check if we can replace this instruction with any of the 3014 // visited instructions. 3015 if (Instruction *V = CSEMap.lookup(In)) { 3016 In->replaceAllUsesWith(V); 3017 In->eraseFromParent(); 3018 continue; 3019 } 3020 3021 CSEMap[In] = In; 3022 } 3023 } 3024 3025 /// Estimate the overhead of scalarizing an instruction. This is a 3026 /// convenience wrapper for the type-based getScalarizationOverhead API. 3027 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3028 const TargetTransformInfo &TTI) { 3029 if (VF == 1) 3030 return 0; 3031 3032 unsigned Cost = 0; 3033 Type *RetTy = ToVectorTy(I->getType(), VF); 3034 if (!RetTy->isVoidTy() && 3035 (!isa<LoadInst>(I) || 3036 !TTI.supportsEfficientVectorElementLoadStore())) 3037 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3038 3039 // Some targets keep addresses scalar. 3040 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 3041 return Cost; 3042 3043 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3044 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3045 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3046 } 3047 else if (!isa<StoreInst>(I) || 3048 !TTI.supportsEfficientVectorElementLoadStore()) { 3049 SmallVector<const Value *, 4> Operands(I->operand_values()); 3050 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3051 } 3052 3053 return Cost; 3054 } 3055 3056 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3057 // Return the cost of the instruction, including scalarization overhead if it's 3058 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3059 // i.e. either vector version isn't available, or is too expensive. 3060 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3061 const TargetTransformInfo &TTI, 3062 const TargetLibraryInfo *TLI, 3063 bool &NeedToScalarize) { 3064 Function *F = CI->getCalledFunction(); 3065 StringRef FnName = CI->getCalledFunction()->getName(); 3066 Type *ScalarRetTy = CI->getType(); 3067 SmallVector<Type *, 4> Tys, ScalarTys; 3068 for (auto &ArgOp : CI->arg_operands()) 3069 ScalarTys.push_back(ArgOp->getType()); 3070 3071 // Estimate cost of scalarized vector call. The source operands are assumed 3072 // to be vectors, so we need to extract individual elements from there, 3073 // execute VF scalar calls, and then gather the result into the vector return 3074 // value. 3075 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3076 if (VF == 1) 3077 return ScalarCallCost; 3078 3079 // Compute corresponding vector type for return value and arguments. 3080 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3081 for (Type *ScalarTy : ScalarTys) 3082 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3083 3084 // Compute costs of unpacking argument values for the scalar calls and 3085 // packing the return values to a vector. 3086 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3087 3088 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3089 3090 // If we can't emit a vector call for this function, then the currently found 3091 // cost is the cost we need to return. 3092 NeedToScalarize = true; 3093 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3094 return Cost; 3095 3096 // If the corresponding vector cost is cheaper, return its cost. 3097 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3098 if (VectorCallCost < Cost) { 3099 NeedToScalarize = false; 3100 return VectorCallCost; 3101 } 3102 return Cost; 3103 } 3104 3105 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3106 // factor VF. Return the cost of the instruction, including scalarization 3107 // overhead if it's needed. 3108 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3109 const TargetTransformInfo &TTI, 3110 const TargetLibraryInfo *TLI) { 3111 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3112 assert(ID && "Expected intrinsic call!"); 3113 3114 FastMathFlags FMF; 3115 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3116 FMF = FPMO->getFastMathFlags(); 3117 3118 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3119 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3120 } 3121 3122 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3123 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3124 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3125 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3126 } 3127 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3128 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3129 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3130 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3131 } 3132 3133 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3134 // For every instruction `I` in MinBWs, truncate the operands, create a 3135 // truncated version of `I` and reextend its result. InstCombine runs 3136 // later and will remove any ext/trunc pairs. 3137 SmallPtrSet<Value *, 4> Erased; 3138 for (const auto &KV : Cost->getMinimalBitwidths()) { 3139 // If the value wasn't vectorized, we must maintain the original scalar 3140 // type. The absence of the value from VectorLoopValueMap indicates that it 3141 // wasn't vectorized. 3142 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3143 continue; 3144 for (unsigned Part = 0; Part < UF; ++Part) { 3145 Value *I = getOrCreateVectorValue(KV.first, Part); 3146 if (Erased.find(I) != Erased.end() || I->use_empty() || 3147 !isa<Instruction>(I)) 3148 continue; 3149 Type *OriginalTy = I->getType(); 3150 Type *ScalarTruncatedTy = 3151 IntegerType::get(OriginalTy->getContext(), KV.second); 3152 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3153 OriginalTy->getVectorNumElements()); 3154 if (TruncatedTy == OriginalTy) 3155 continue; 3156 3157 IRBuilder<> B(cast<Instruction>(I)); 3158 auto ShrinkOperand = [&](Value *V) -> Value * { 3159 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3160 if (ZI->getSrcTy() == TruncatedTy) 3161 return ZI->getOperand(0); 3162 return B.CreateZExtOrTrunc(V, TruncatedTy); 3163 }; 3164 3165 // The actual instruction modification depends on the instruction type, 3166 // unfortunately. 3167 Value *NewI = nullptr; 3168 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3169 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3170 ShrinkOperand(BO->getOperand(1))); 3171 3172 // Any wrapping introduced by shrinking this operation shouldn't be 3173 // considered undefined behavior. So, we can't unconditionally copy 3174 // arithmetic wrapping flags to NewI. 3175 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3176 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3177 NewI = 3178 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3179 ShrinkOperand(CI->getOperand(1))); 3180 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3181 NewI = B.CreateSelect(SI->getCondition(), 3182 ShrinkOperand(SI->getTrueValue()), 3183 ShrinkOperand(SI->getFalseValue())); 3184 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3185 switch (CI->getOpcode()) { 3186 default: 3187 llvm_unreachable("Unhandled cast!"); 3188 case Instruction::Trunc: 3189 NewI = ShrinkOperand(CI->getOperand(0)); 3190 break; 3191 case Instruction::SExt: 3192 NewI = B.CreateSExtOrTrunc( 3193 CI->getOperand(0), 3194 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3195 break; 3196 case Instruction::ZExt: 3197 NewI = B.CreateZExtOrTrunc( 3198 CI->getOperand(0), 3199 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3200 break; 3201 } 3202 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3203 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3204 auto *O0 = B.CreateZExtOrTrunc( 3205 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3206 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3207 auto *O1 = B.CreateZExtOrTrunc( 3208 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3209 3210 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3211 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3212 // Don't do anything with the operands, just extend the result. 3213 continue; 3214 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3215 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3216 auto *O0 = B.CreateZExtOrTrunc( 3217 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3218 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3219 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3220 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3221 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3222 auto *O0 = B.CreateZExtOrTrunc( 3223 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3224 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3225 } else { 3226 // If we don't know what to do, be conservative and don't do anything. 3227 continue; 3228 } 3229 3230 // Lastly, extend the result. 3231 NewI->takeName(cast<Instruction>(I)); 3232 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3233 I->replaceAllUsesWith(Res); 3234 cast<Instruction>(I)->eraseFromParent(); 3235 Erased.insert(I); 3236 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3237 } 3238 } 3239 3240 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3241 for (const auto &KV : Cost->getMinimalBitwidths()) { 3242 // If the value wasn't vectorized, we must maintain the original scalar 3243 // type. The absence of the value from VectorLoopValueMap indicates that it 3244 // wasn't vectorized. 3245 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3246 continue; 3247 for (unsigned Part = 0; Part < UF; ++Part) { 3248 Value *I = getOrCreateVectorValue(KV.first, Part); 3249 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3250 if (Inst && Inst->use_empty()) { 3251 Value *NewI = Inst->getOperand(0); 3252 Inst->eraseFromParent(); 3253 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3254 } 3255 } 3256 } 3257 } 3258 3259 void InnerLoopVectorizer::fixVectorizedLoop() { 3260 // Insert truncates and extends for any truncated instructions as hints to 3261 // InstCombine. 3262 if (VF > 1) 3263 truncateToMinimalBitwidths(); 3264 3265 // Fix widened non-induction PHIs by setting up the PHI operands. 3266 if (OrigPHIsToFix.size()) { 3267 assert(EnableVPlanNativePath && 3268 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3269 fixNonInductionPHIs(); 3270 } 3271 3272 // At this point every instruction in the original loop is widened to a 3273 // vector form. Now we need to fix the recurrences in the loop. These PHI 3274 // nodes are currently empty because we did not want to introduce cycles. 3275 // This is the second stage of vectorizing recurrences. 3276 fixCrossIterationPHIs(); 3277 3278 // Update the dominator tree. 3279 // 3280 // FIXME: After creating the structure of the new loop, the dominator tree is 3281 // no longer up-to-date, and it remains that way until we update it 3282 // here. An out-of-date dominator tree is problematic for SCEV, 3283 // because SCEVExpander uses it to guide code generation. The 3284 // vectorizer use SCEVExpanders in several places. Instead, we should 3285 // keep the dominator tree up-to-date as we go. 3286 updateAnalysis(); 3287 3288 // Fix-up external users of the induction variables. 3289 for (auto &Entry : *Legal->getInductionVars()) 3290 fixupIVUsers(Entry.first, Entry.second, 3291 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3292 IVEndValues[Entry.first], LoopMiddleBlock); 3293 3294 fixLCSSAPHIs(); 3295 for (Instruction *PI : PredicatedInstructions) 3296 sinkScalarOperands(&*PI); 3297 3298 // Remove redundant induction instructions. 3299 cse(LoopVectorBody); 3300 } 3301 3302 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3303 // In order to support recurrences we need to be able to vectorize Phi nodes. 3304 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3305 // stage #2: We now need to fix the recurrences by adding incoming edges to 3306 // the currently empty PHI nodes. At this point every instruction in the 3307 // original loop is widened to a vector form so we can use them to construct 3308 // the incoming edges. 3309 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3310 // Handle first-order recurrences and reductions that need to be fixed. 3311 if (Legal->isFirstOrderRecurrence(&Phi)) 3312 fixFirstOrderRecurrence(&Phi); 3313 else if (Legal->isReductionVariable(&Phi)) 3314 fixReduction(&Phi); 3315 } 3316 } 3317 3318 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3319 // This is the second phase of vectorizing first-order recurrences. An 3320 // overview of the transformation is described below. Suppose we have the 3321 // following loop. 3322 // 3323 // for (int i = 0; i < n; ++i) 3324 // b[i] = a[i] - a[i - 1]; 3325 // 3326 // There is a first-order recurrence on "a". For this loop, the shorthand 3327 // scalar IR looks like: 3328 // 3329 // scalar.ph: 3330 // s_init = a[-1] 3331 // br scalar.body 3332 // 3333 // scalar.body: 3334 // i = phi [0, scalar.ph], [i+1, scalar.body] 3335 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3336 // s2 = a[i] 3337 // b[i] = s2 - s1 3338 // br cond, scalar.body, ... 3339 // 3340 // In this example, s1 is a recurrence because it's value depends on the 3341 // previous iteration. In the first phase of vectorization, we created a 3342 // temporary value for s1. We now complete the vectorization and produce the 3343 // shorthand vector IR shown below (for VF = 4, UF = 1). 3344 // 3345 // vector.ph: 3346 // v_init = vector(..., ..., ..., a[-1]) 3347 // br vector.body 3348 // 3349 // vector.body 3350 // i = phi [0, vector.ph], [i+4, vector.body] 3351 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3352 // v2 = a[i, i+1, i+2, i+3]; 3353 // v3 = vector(v1(3), v2(0, 1, 2)) 3354 // b[i, i+1, i+2, i+3] = v2 - v3 3355 // br cond, vector.body, middle.block 3356 // 3357 // middle.block: 3358 // x = v2(3) 3359 // br scalar.ph 3360 // 3361 // scalar.ph: 3362 // s_init = phi [x, middle.block], [a[-1], otherwise] 3363 // br scalar.body 3364 // 3365 // After execution completes the vector loop, we extract the next value of 3366 // the recurrence (x) to use as the initial value in the scalar loop. 3367 3368 // Get the original loop preheader and single loop latch. 3369 auto *Preheader = OrigLoop->getLoopPreheader(); 3370 auto *Latch = OrigLoop->getLoopLatch(); 3371 3372 // Get the initial and previous values of the scalar recurrence. 3373 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3374 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3375 3376 // Create a vector from the initial value. 3377 auto *VectorInit = ScalarInit; 3378 if (VF > 1) { 3379 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3380 VectorInit = Builder.CreateInsertElement( 3381 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3382 Builder.getInt32(VF - 1), "vector.recur.init"); 3383 } 3384 3385 // We constructed a temporary phi node in the first phase of vectorization. 3386 // This phi node will eventually be deleted. 3387 Builder.SetInsertPoint( 3388 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3389 3390 // Create a phi node for the new recurrence. The current value will either be 3391 // the initial value inserted into a vector or loop-varying vector value. 3392 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3393 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3394 3395 // Get the vectorized previous value of the last part UF - 1. It appears last 3396 // among all unrolled iterations, due to the order of their construction. 3397 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3398 3399 // Set the insertion point after the previous value if it is an instruction. 3400 // Note that the previous value may have been constant-folded so it is not 3401 // guaranteed to be an instruction in the vector loop. Also, if the previous 3402 // value is a phi node, we should insert after all the phi nodes to avoid 3403 // breaking basic block verification. 3404 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3405 isa<PHINode>(PreviousLastPart)) 3406 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3407 else 3408 Builder.SetInsertPoint( 3409 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3410 3411 // We will construct a vector for the recurrence by combining the values for 3412 // the current and previous iterations. This is the required shuffle mask. 3413 SmallVector<Constant *, 8> ShuffleMask(VF); 3414 ShuffleMask[0] = Builder.getInt32(VF - 1); 3415 for (unsigned I = 1; I < VF; ++I) 3416 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3417 3418 // The vector from which to take the initial value for the current iteration 3419 // (actual or unrolled). Initially, this is the vector phi node. 3420 Value *Incoming = VecPhi; 3421 3422 // Shuffle the current and previous vector and update the vector parts. 3423 for (unsigned Part = 0; Part < UF; ++Part) { 3424 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3425 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3426 auto *Shuffle = 3427 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3428 ConstantVector::get(ShuffleMask)) 3429 : Incoming; 3430 PhiPart->replaceAllUsesWith(Shuffle); 3431 cast<Instruction>(PhiPart)->eraseFromParent(); 3432 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3433 Incoming = PreviousPart; 3434 } 3435 3436 // Fix the latch value of the new recurrence in the vector loop. 3437 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3438 3439 // Extract the last vector element in the middle block. This will be the 3440 // initial value for the recurrence when jumping to the scalar loop. 3441 auto *ExtractForScalar = Incoming; 3442 if (VF > 1) { 3443 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3444 ExtractForScalar = Builder.CreateExtractElement( 3445 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3446 } 3447 // Extract the second last element in the middle block if the 3448 // Phi is used outside the loop. We need to extract the phi itself 3449 // and not the last element (the phi update in the current iteration). This 3450 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3451 // when the scalar loop is not run at all. 3452 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3453 if (VF > 1) 3454 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3455 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3456 // When loop is unrolled without vectorizing, initialize 3457 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3458 // `Incoming`. This is analogous to the vectorized case above: extracting the 3459 // second last element when VF > 1. 3460 else if (UF > 1) 3461 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3462 3463 // Fix the initial value of the original recurrence in the scalar loop. 3464 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3465 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3466 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3467 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3468 Start->addIncoming(Incoming, BB); 3469 } 3470 3471 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3472 Phi->setName("scalar.recur"); 3473 3474 // Finally, fix users of the recurrence outside the loop. The users will need 3475 // either the last value of the scalar recurrence or the last value of the 3476 // vector recurrence we extracted in the middle block. Since the loop is in 3477 // LCSSA form, we just need to find all the phi nodes for the original scalar 3478 // recurrence in the exit block, and then add an edge for the middle block. 3479 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3480 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3481 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3482 } 3483 } 3484 } 3485 3486 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3487 Constant *Zero = Builder.getInt32(0); 3488 3489 // Get it's reduction variable descriptor. 3490 assert(Legal->isReductionVariable(Phi) && 3491 "Unable to find the reduction variable"); 3492 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3493 3494 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3495 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3496 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3497 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3498 RdxDesc.getMinMaxRecurrenceKind(); 3499 setDebugLocFromInst(Builder, ReductionStartValue); 3500 3501 // We need to generate a reduction vector from the incoming scalar. 3502 // To do so, we need to generate the 'identity' vector and override 3503 // one of the elements with the incoming scalar reduction. We need 3504 // to do it in the vector-loop preheader. 3505 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3506 3507 // This is the vector-clone of the value that leaves the loop. 3508 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3509 3510 // Find the reduction identity variable. Zero for addition, or, xor, 3511 // one for multiplication, -1 for And. 3512 Value *Identity; 3513 Value *VectorStart; 3514 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3515 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3516 // MinMax reduction have the start value as their identify. 3517 if (VF == 1) { 3518 VectorStart = Identity = ReductionStartValue; 3519 } else { 3520 VectorStart = Identity = 3521 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3522 } 3523 } else { 3524 // Handle other reduction kinds: 3525 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3526 RK, VecTy->getScalarType()); 3527 if (VF == 1) { 3528 Identity = Iden; 3529 // This vector is the Identity vector where the first element is the 3530 // incoming scalar reduction. 3531 VectorStart = ReductionStartValue; 3532 } else { 3533 Identity = ConstantVector::getSplat(VF, Iden); 3534 3535 // This vector is the Identity vector where the first element is the 3536 // incoming scalar reduction. 3537 VectorStart = 3538 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3539 } 3540 } 3541 3542 // Fix the vector-loop phi. 3543 3544 // Reductions do not have to start at zero. They can start with 3545 // any loop invariant values. 3546 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3547 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3548 for (unsigned Part = 0; Part < UF; ++Part) { 3549 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3550 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3551 // Make sure to add the reduction stat value only to the 3552 // first unroll part. 3553 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3554 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3555 cast<PHINode>(VecRdxPhi) 3556 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3557 } 3558 3559 // Before each round, move the insertion point right between 3560 // the PHIs and the values we are going to write. 3561 // This allows us to write both PHINodes and the extractelement 3562 // instructions. 3563 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3564 3565 setDebugLocFromInst(Builder, LoopExitInst); 3566 3567 // If the vector reduction can be performed in a smaller type, we truncate 3568 // then extend the loop exit value to enable InstCombine to evaluate the 3569 // entire expression in the smaller type. 3570 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3571 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3572 Builder.SetInsertPoint( 3573 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3574 VectorParts RdxParts(UF); 3575 for (unsigned Part = 0; Part < UF; ++Part) { 3576 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3577 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3578 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3579 : Builder.CreateZExt(Trunc, VecTy); 3580 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3581 UI != RdxParts[Part]->user_end();) 3582 if (*UI != Trunc) { 3583 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3584 RdxParts[Part] = Extnd; 3585 } else { 3586 ++UI; 3587 } 3588 } 3589 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3590 for (unsigned Part = 0; Part < UF; ++Part) { 3591 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3592 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3593 } 3594 } 3595 3596 // Reduce all of the unrolled parts into a single vector. 3597 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3598 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3599 setDebugLocFromInst(Builder, ReducedPartRdx); 3600 for (unsigned Part = 1; Part < UF; ++Part) { 3601 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3602 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3603 // Floating point operations had to be 'fast' to enable the reduction. 3604 ReducedPartRdx = addFastMathFlag( 3605 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3606 ReducedPartRdx, "bin.rdx")); 3607 else 3608 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3609 RdxPart); 3610 } 3611 3612 if (VF > 1) { 3613 bool NoNaN = Legal->hasFunNoNaNAttr(); 3614 ReducedPartRdx = 3615 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3616 // If the reduction can be performed in a smaller type, we need to extend 3617 // the reduction to the wider type before we branch to the original loop. 3618 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3619 ReducedPartRdx = 3620 RdxDesc.isSigned() 3621 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3622 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3623 } 3624 3625 // Create a phi node that merges control-flow from the backedge-taken check 3626 // block and the middle block. 3627 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3628 LoopScalarPreHeader->getTerminator()); 3629 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3630 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3631 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3632 3633 // Now, we need to fix the users of the reduction variable 3634 // inside and outside of the scalar remainder loop. 3635 // We know that the loop is in LCSSA form. We need to update the 3636 // PHI nodes in the exit blocks. 3637 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3638 // All PHINodes need to have a single entry edge, or two if 3639 // we already fixed them. 3640 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3641 3642 // We found a reduction value exit-PHI. Update it with the 3643 // incoming bypass edge. 3644 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3645 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3646 } // end of the LCSSA phi scan. 3647 3648 // Fix the scalar loop reduction variable with the incoming reduction sum 3649 // from the vector body and from the backedge value. 3650 int IncomingEdgeBlockIdx = 3651 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3652 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3653 // Pick the other block. 3654 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3655 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3656 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3657 } 3658 3659 void InnerLoopVectorizer::fixLCSSAPHIs() { 3660 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3661 if (LCSSAPhi.getNumIncomingValues() == 1) { 3662 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3663 // Non-instruction incoming values will have only one value. 3664 unsigned LastLane = 0; 3665 if (isa<Instruction>(IncomingValue)) 3666 LastLane = Cost->isUniformAfterVectorization( 3667 cast<Instruction>(IncomingValue), VF) 3668 ? 0 3669 : VF - 1; 3670 // Can be a loop invariant incoming value or the last scalar value to be 3671 // extracted from the vectorized loop. 3672 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3673 Value *lastIncomingValue = 3674 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3675 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3676 } 3677 } 3678 } 3679 3680 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3681 // The basic block and loop containing the predicated instruction. 3682 auto *PredBB = PredInst->getParent(); 3683 auto *VectorLoop = LI->getLoopFor(PredBB); 3684 3685 // Initialize a worklist with the operands of the predicated instruction. 3686 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3687 3688 // Holds instructions that we need to analyze again. An instruction may be 3689 // reanalyzed if we don't yet know if we can sink it or not. 3690 SmallVector<Instruction *, 8> InstsToReanalyze; 3691 3692 // Returns true if a given use occurs in the predicated block. Phi nodes use 3693 // their operands in their corresponding predecessor blocks. 3694 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3695 auto *I = cast<Instruction>(U.getUser()); 3696 BasicBlock *BB = I->getParent(); 3697 if (auto *Phi = dyn_cast<PHINode>(I)) 3698 BB = Phi->getIncomingBlock( 3699 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3700 return BB == PredBB; 3701 }; 3702 3703 // Iteratively sink the scalarized operands of the predicated instruction 3704 // into the block we created for it. When an instruction is sunk, it's 3705 // operands are then added to the worklist. The algorithm ends after one pass 3706 // through the worklist doesn't sink a single instruction. 3707 bool Changed; 3708 do { 3709 // Add the instructions that need to be reanalyzed to the worklist, and 3710 // reset the changed indicator. 3711 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3712 InstsToReanalyze.clear(); 3713 Changed = false; 3714 3715 while (!Worklist.empty()) { 3716 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3717 3718 // We can't sink an instruction if it is a phi node, is already in the 3719 // predicated block, is not in the loop, or may have side effects. 3720 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3721 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3722 continue; 3723 3724 // It's legal to sink the instruction if all its uses occur in the 3725 // predicated block. Otherwise, there's nothing to do yet, and we may 3726 // need to reanalyze the instruction. 3727 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3728 InstsToReanalyze.push_back(I); 3729 continue; 3730 } 3731 3732 // Move the instruction to the beginning of the predicated block, and add 3733 // it's operands to the worklist. 3734 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3735 Worklist.insert(I->op_begin(), I->op_end()); 3736 3737 // The sinking may have enabled other instructions to be sunk, so we will 3738 // need to iterate. 3739 Changed = true; 3740 } 3741 } while (Changed); 3742 } 3743 3744 void InnerLoopVectorizer::fixNonInductionPHIs() { 3745 for (PHINode *OrigPhi : OrigPHIsToFix) { 3746 PHINode *NewPhi = 3747 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3748 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3749 3750 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3751 predecessors(OrigPhi->getParent())); 3752 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3753 predecessors(NewPhi->getParent())); 3754 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3755 "Scalar and Vector BB should have the same number of predecessors"); 3756 3757 // The insertion point in Builder may be invalidated by the time we get 3758 // here. Force the Builder insertion point to something valid so that we do 3759 // not run into issues during insertion point restore in 3760 // getOrCreateVectorValue calls below. 3761 Builder.SetInsertPoint(NewPhi); 3762 3763 // The predecessor order is preserved and we can rely on mapping between 3764 // scalar and vector block predecessors. 3765 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3766 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3767 3768 // When looking up the new scalar/vector values to fix up, use incoming 3769 // values from original phi. 3770 Value *ScIncV = 3771 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3772 3773 // Scalar incoming value may need a broadcast 3774 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3775 NewPhi->addIncoming(NewIncV, NewPredBB); 3776 } 3777 } 3778 } 3779 3780 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3781 unsigned VF) { 3782 PHINode *P = cast<PHINode>(PN); 3783 if (EnableVPlanNativePath) { 3784 // Currently we enter here in the VPlan-native path for non-induction 3785 // PHIs where all control flow is uniform. We simply widen these PHIs. 3786 // Create a vector phi with no operands - the vector phi operands will be 3787 // set at the end of vector code generation. 3788 Type *VecTy = 3789 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3790 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3791 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3792 OrigPHIsToFix.push_back(P); 3793 3794 return; 3795 } 3796 3797 assert(PN->getParent() == OrigLoop->getHeader() && 3798 "Non-header phis should have been handled elsewhere"); 3799 3800 // In order to support recurrences we need to be able to vectorize Phi nodes. 3801 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3802 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3803 // this value when we vectorize all of the instructions that use the PHI. 3804 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3805 for (unsigned Part = 0; Part < UF; ++Part) { 3806 // This is phase one of vectorizing PHIs. 3807 Type *VecTy = 3808 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3809 Value *EntryPart = PHINode::Create( 3810 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3811 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3812 } 3813 return; 3814 } 3815 3816 setDebugLocFromInst(Builder, P); 3817 3818 // This PHINode must be an induction variable. 3819 // Make sure that we know about it. 3820 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3821 3822 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3823 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3824 3825 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3826 // which can be found from the original scalar operations. 3827 switch (II.getKind()) { 3828 case InductionDescriptor::IK_NoInduction: 3829 llvm_unreachable("Unknown induction"); 3830 case InductionDescriptor::IK_IntInduction: 3831 case InductionDescriptor::IK_FpInduction: 3832 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3833 case InductionDescriptor::IK_PtrInduction: { 3834 // Handle the pointer induction variable case. 3835 assert(P->getType()->isPointerTy() && "Unexpected type."); 3836 // This is the normalized GEP that starts counting at zero. 3837 Value *PtrInd = Induction; 3838 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3839 // Determine the number of scalars we need to generate for each unroll 3840 // iteration. If the instruction is uniform, we only need to generate the 3841 // first lane. Otherwise, we generate all VF values. 3842 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3843 // These are the scalar results. Notice that we don't generate vector GEPs 3844 // because scalar GEPs result in better code. 3845 for (unsigned Part = 0; Part < UF; ++Part) { 3846 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3847 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3848 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3849 Value *SclrGep = 3850 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3851 SclrGep->setName("next.gep"); 3852 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3853 } 3854 } 3855 return; 3856 } 3857 } 3858 } 3859 3860 /// A helper function for checking whether an integer division-related 3861 /// instruction may divide by zero (in which case it must be predicated if 3862 /// executed conditionally in the scalar code). 3863 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3864 /// Non-zero divisors that are non compile-time constants will not be 3865 /// converted into multiplication, so we will still end up scalarizing 3866 /// the division, but can do so w/o predication. 3867 static bool mayDivideByZero(Instruction &I) { 3868 assert((I.getOpcode() == Instruction::UDiv || 3869 I.getOpcode() == Instruction::SDiv || 3870 I.getOpcode() == Instruction::URem || 3871 I.getOpcode() == Instruction::SRem) && 3872 "Unexpected instruction"); 3873 Value *Divisor = I.getOperand(1); 3874 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3875 return !CInt || CInt->isZero(); 3876 } 3877 3878 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3879 switch (I.getOpcode()) { 3880 case Instruction::Br: 3881 case Instruction::PHI: 3882 llvm_unreachable("This instruction is handled by a different recipe."); 3883 case Instruction::GetElementPtr: { 3884 // Construct a vector GEP by widening the operands of the scalar GEP as 3885 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3886 // results in a vector of pointers when at least one operand of the GEP 3887 // is vector-typed. Thus, to keep the representation compact, we only use 3888 // vector-typed operands for loop-varying values. 3889 auto *GEP = cast<GetElementPtrInst>(&I); 3890 3891 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3892 // If we are vectorizing, but the GEP has only loop-invariant operands, 3893 // the GEP we build (by only using vector-typed operands for 3894 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3895 // produce a vector of pointers, we need to either arbitrarily pick an 3896 // operand to broadcast, or broadcast a clone of the original GEP. 3897 // Here, we broadcast a clone of the original. 3898 // 3899 // TODO: If at some point we decide to scalarize instructions having 3900 // loop-invariant operands, this special case will no longer be 3901 // required. We would add the scalarization decision to 3902 // collectLoopScalars() and teach getVectorValue() to broadcast 3903 // the lane-zero scalar value. 3904 auto *Clone = Builder.Insert(GEP->clone()); 3905 for (unsigned Part = 0; Part < UF; ++Part) { 3906 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3907 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3908 addMetadata(EntryPart, GEP); 3909 } 3910 } else { 3911 // If the GEP has at least one loop-varying operand, we are sure to 3912 // produce a vector of pointers. But if we are only unrolling, we want 3913 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3914 // produce with the code below will be scalar (if VF == 1) or vector 3915 // (otherwise). Note that for the unroll-only case, we still maintain 3916 // values in the vector mapping with initVector, as we do for other 3917 // instructions. 3918 for (unsigned Part = 0; Part < UF; ++Part) { 3919 // The pointer operand of the new GEP. If it's loop-invariant, we 3920 // won't broadcast it. 3921 auto *Ptr = 3922 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3923 ? GEP->getPointerOperand() 3924 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3925 3926 // Collect all the indices for the new GEP. If any index is 3927 // loop-invariant, we won't broadcast it. 3928 SmallVector<Value *, 4> Indices; 3929 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3930 if (OrigLoop->isLoopInvariant(U.get())) 3931 Indices.push_back(U.get()); 3932 else 3933 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3934 } 3935 3936 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3937 // but it should be a vector, otherwise. 3938 auto *NewGEP = GEP->isInBounds() 3939 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3940 : Builder.CreateGEP(Ptr, Indices); 3941 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3942 "NewGEP is not a pointer vector"); 3943 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3944 addMetadata(NewGEP, GEP); 3945 } 3946 } 3947 3948 break; 3949 } 3950 case Instruction::UDiv: 3951 case Instruction::SDiv: 3952 case Instruction::SRem: 3953 case Instruction::URem: 3954 case Instruction::Add: 3955 case Instruction::FAdd: 3956 case Instruction::Sub: 3957 case Instruction::FSub: 3958 case Instruction::Mul: 3959 case Instruction::FMul: 3960 case Instruction::FDiv: 3961 case Instruction::FRem: 3962 case Instruction::Shl: 3963 case Instruction::LShr: 3964 case Instruction::AShr: 3965 case Instruction::And: 3966 case Instruction::Or: 3967 case Instruction::Xor: { 3968 // Just widen binops. 3969 auto *BinOp = cast<BinaryOperator>(&I); 3970 setDebugLocFromInst(Builder, BinOp); 3971 3972 for (unsigned Part = 0; Part < UF; ++Part) { 3973 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3974 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3975 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3976 3977 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3978 VecOp->copyIRFlags(BinOp); 3979 3980 // Use this vector value for all users of the original instruction. 3981 VectorLoopValueMap.setVectorValue(&I, Part, V); 3982 addMetadata(V, BinOp); 3983 } 3984 3985 break; 3986 } 3987 case Instruction::Select: { 3988 // Widen selects. 3989 // If the selector is loop invariant we can create a select 3990 // instruction with a scalar condition. Otherwise, use vector-select. 3991 auto *SE = PSE.getSE(); 3992 bool InvariantCond = 3993 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 3994 setDebugLocFromInst(Builder, &I); 3995 3996 // The condition can be loop invariant but still defined inside the 3997 // loop. This means that we can't just use the original 'cond' value. 3998 // We have to take the 'vectorized' value and pick the first lane. 3999 // Instcombine will make this a no-op. 4000 4001 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4002 4003 for (unsigned Part = 0; Part < UF; ++Part) { 4004 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4005 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4006 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4007 Value *Sel = 4008 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4009 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4010 addMetadata(Sel, &I); 4011 } 4012 4013 break; 4014 } 4015 4016 case Instruction::ICmp: 4017 case Instruction::FCmp: { 4018 // Widen compares. Generate vector compares. 4019 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4020 auto *Cmp = dyn_cast<CmpInst>(&I); 4021 setDebugLocFromInst(Builder, Cmp); 4022 for (unsigned Part = 0; Part < UF; ++Part) { 4023 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4024 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4025 Value *C = nullptr; 4026 if (FCmp) { 4027 // Propagate fast math flags. 4028 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4029 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4030 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4031 } else { 4032 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4033 } 4034 VectorLoopValueMap.setVectorValue(&I, Part, C); 4035 addMetadata(C, &I); 4036 } 4037 4038 break; 4039 } 4040 4041 case Instruction::ZExt: 4042 case Instruction::SExt: 4043 case Instruction::FPToUI: 4044 case Instruction::FPToSI: 4045 case Instruction::FPExt: 4046 case Instruction::PtrToInt: 4047 case Instruction::IntToPtr: 4048 case Instruction::SIToFP: 4049 case Instruction::UIToFP: 4050 case Instruction::Trunc: 4051 case Instruction::FPTrunc: 4052 case Instruction::BitCast: { 4053 auto *CI = dyn_cast<CastInst>(&I); 4054 setDebugLocFromInst(Builder, CI); 4055 4056 /// Vectorize casts. 4057 Type *DestTy = 4058 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4059 4060 for (unsigned Part = 0; Part < UF; ++Part) { 4061 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4062 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4063 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4064 addMetadata(Cast, &I); 4065 } 4066 break; 4067 } 4068 4069 case Instruction::Call: { 4070 // Ignore dbg intrinsics. 4071 if (isa<DbgInfoIntrinsic>(I)) 4072 break; 4073 setDebugLocFromInst(Builder, &I); 4074 4075 Module *M = I.getParent()->getParent()->getParent(); 4076 auto *CI = cast<CallInst>(&I); 4077 4078 StringRef FnName = CI->getCalledFunction()->getName(); 4079 Function *F = CI->getCalledFunction(); 4080 Type *RetTy = ToVectorTy(CI->getType(), VF); 4081 SmallVector<Type *, 4> Tys; 4082 for (Value *ArgOperand : CI->arg_operands()) 4083 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4084 4085 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4086 4087 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4088 // version of the instruction. 4089 // Is it beneficial to perform intrinsic call compared to lib call? 4090 bool NeedToScalarize; 4091 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4092 bool UseVectorIntrinsic = 4093 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4094 assert((UseVectorIntrinsic || !NeedToScalarize) && 4095 "Instruction should be scalarized elsewhere."); 4096 4097 for (unsigned Part = 0; Part < UF; ++Part) { 4098 SmallVector<Value *, 4> Args; 4099 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4100 Value *Arg = CI->getArgOperand(i); 4101 // Some intrinsics have a scalar argument - don't replace it with a 4102 // vector. 4103 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4104 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4105 Args.push_back(Arg); 4106 } 4107 4108 Function *VectorF; 4109 if (UseVectorIntrinsic) { 4110 // Use vector version of the intrinsic. 4111 Type *TysForDecl[] = {CI->getType()}; 4112 if (VF > 1) 4113 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4114 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4115 } else { 4116 // Use vector version of the library call. 4117 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4118 assert(!VFnName.empty() && "Vector function name is empty."); 4119 VectorF = M->getFunction(VFnName); 4120 if (!VectorF) { 4121 // Generate a declaration 4122 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4123 VectorF = 4124 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4125 VectorF->copyAttributesFrom(F); 4126 } 4127 } 4128 assert(VectorF && "Can't create vector function."); 4129 4130 SmallVector<OperandBundleDef, 1> OpBundles; 4131 CI->getOperandBundlesAsDefs(OpBundles); 4132 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4133 4134 if (isa<FPMathOperator>(V)) 4135 V->copyFastMathFlags(CI); 4136 4137 VectorLoopValueMap.setVectorValue(&I, Part, V); 4138 addMetadata(V, &I); 4139 } 4140 4141 break; 4142 } 4143 4144 default: 4145 // This instruction is not vectorized by simple widening. 4146 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4147 llvm_unreachable("Unhandled instruction!"); 4148 } // end of switch. 4149 } 4150 4151 void InnerLoopVectorizer::updateAnalysis() { 4152 // Forget the original basic block. 4153 PSE.getSE()->forgetLoop(OrigLoop); 4154 4155 // DT is not kept up-to-date for outer loop vectorization 4156 if (EnableVPlanNativePath) 4157 return; 4158 4159 // Update the dominator tree information. 4160 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4161 "Entry does not dominate exit."); 4162 4163 DT->addNewBlock(LoopMiddleBlock, 4164 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4165 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4166 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4167 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4168 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4169 } 4170 4171 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4172 // We should not collect Scalars more than once per VF. Right now, this 4173 // function is called from collectUniformsAndScalars(), which already does 4174 // this check. Collecting Scalars for VF=1 does not make any sense. 4175 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4176 "This function should not be visited twice for the same VF"); 4177 4178 SmallSetVector<Instruction *, 8> Worklist; 4179 4180 // These sets are used to seed the analysis with pointers used by memory 4181 // accesses that will remain scalar. 4182 SmallSetVector<Instruction *, 8> ScalarPtrs; 4183 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4184 4185 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4186 // The pointer operands of loads and stores will be scalar as long as the 4187 // memory access is not a gather or scatter operation. The value operand of a 4188 // store will remain scalar if the store is scalarized. 4189 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4190 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4191 assert(WideningDecision != CM_Unknown && 4192 "Widening decision should be ready at this moment"); 4193 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4194 if (Ptr == Store->getValueOperand()) 4195 return WideningDecision == CM_Scalarize; 4196 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4197 "Ptr is neither a value or pointer operand"); 4198 return WideningDecision != CM_GatherScatter; 4199 }; 4200 4201 // A helper that returns true if the given value is a bitcast or 4202 // getelementptr instruction contained in the loop. 4203 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4204 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4205 isa<GetElementPtrInst>(V)) && 4206 !TheLoop->isLoopInvariant(V); 4207 }; 4208 4209 // A helper that evaluates a memory access's use of a pointer. If the use 4210 // will be a scalar use, and the pointer is only used by memory accesses, we 4211 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4212 // PossibleNonScalarPtrs. 4213 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4214 // We only care about bitcast and getelementptr instructions contained in 4215 // the loop. 4216 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4217 return; 4218 4219 // If the pointer has already been identified as scalar (e.g., if it was 4220 // also identified as uniform), there's nothing to do. 4221 auto *I = cast<Instruction>(Ptr); 4222 if (Worklist.count(I)) 4223 return; 4224 4225 // If the use of the pointer will be a scalar use, and all users of the 4226 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4227 // place the pointer in PossibleNonScalarPtrs. 4228 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4229 return isa<LoadInst>(U) || isa<StoreInst>(U); 4230 })) 4231 ScalarPtrs.insert(I); 4232 else 4233 PossibleNonScalarPtrs.insert(I); 4234 }; 4235 4236 // We seed the scalars analysis with three classes of instructions: (1) 4237 // instructions marked uniform-after-vectorization, (2) bitcast and 4238 // getelementptr instructions used by memory accesses requiring a scalar use, 4239 // and (3) pointer induction variables and their update instructions (we 4240 // currently only scalarize these). 4241 // 4242 // (1) Add to the worklist all instructions that have been identified as 4243 // uniform-after-vectorization. 4244 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4245 4246 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4247 // memory accesses requiring a scalar use. The pointer operands of loads and 4248 // stores will be scalar as long as the memory accesses is not a gather or 4249 // scatter operation. The value operand of a store will remain scalar if the 4250 // store is scalarized. 4251 for (auto *BB : TheLoop->blocks()) 4252 for (auto &I : *BB) { 4253 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4254 evaluatePtrUse(Load, Load->getPointerOperand()); 4255 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4256 evaluatePtrUse(Store, Store->getPointerOperand()); 4257 evaluatePtrUse(Store, Store->getValueOperand()); 4258 } 4259 } 4260 for (auto *I : ScalarPtrs) 4261 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4262 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4263 Worklist.insert(I); 4264 } 4265 4266 // (3) Add to the worklist all pointer induction variables and their update 4267 // instructions. 4268 // 4269 // TODO: Once we are able to vectorize pointer induction variables we should 4270 // no longer insert them into the worklist here. 4271 auto *Latch = TheLoop->getLoopLatch(); 4272 for (auto &Induction : *Legal->getInductionVars()) { 4273 auto *Ind = Induction.first; 4274 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4275 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4276 continue; 4277 Worklist.insert(Ind); 4278 Worklist.insert(IndUpdate); 4279 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4280 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4281 << "\n"); 4282 } 4283 4284 // Insert the forced scalars. 4285 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4286 // induction variable when the PHI user is scalarized. 4287 auto ForcedScalar = ForcedScalars.find(VF); 4288 if (ForcedScalar != ForcedScalars.end()) 4289 for (auto *I : ForcedScalar->second) 4290 Worklist.insert(I); 4291 4292 // Expand the worklist by looking through any bitcasts and getelementptr 4293 // instructions we've already identified as scalar. This is similar to the 4294 // expansion step in collectLoopUniforms(); however, here we're only 4295 // expanding to include additional bitcasts and getelementptr instructions. 4296 unsigned Idx = 0; 4297 while (Idx != Worklist.size()) { 4298 Instruction *Dst = Worklist[Idx++]; 4299 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4300 continue; 4301 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4302 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4303 auto *J = cast<Instruction>(U); 4304 return !TheLoop->contains(J) || Worklist.count(J) || 4305 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4306 isScalarUse(J, Src)); 4307 })) { 4308 Worklist.insert(Src); 4309 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4310 } 4311 } 4312 4313 // An induction variable will remain scalar if all users of the induction 4314 // variable and induction variable update remain scalar. 4315 for (auto &Induction : *Legal->getInductionVars()) { 4316 auto *Ind = Induction.first; 4317 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4318 4319 // We already considered pointer induction variables, so there's no reason 4320 // to look at their users again. 4321 // 4322 // TODO: Once we are able to vectorize pointer induction variables we 4323 // should no longer skip over them here. 4324 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4325 continue; 4326 4327 // Determine if all users of the induction variable are scalar after 4328 // vectorization. 4329 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4330 auto *I = cast<Instruction>(U); 4331 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4332 }); 4333 if (!ScalarInd) 4334 continue; 4335 4336 // Determine if all users of the induction variable update instruction are 4337 // scalar after vectorization. 4338 auto ScalarIndUpdate = 4339 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4340 auto *I = cast<Instruction>(U); 4341 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4342 }); 4343 if (!ScalarIndUpdate) 4344 continue; 4345 4346 // The induction variable and its update instruction will remain scalar. 4347 Worklist.insert(Ind); 4348 Worklist.insert(IndUpdate); 4349 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4350 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4351 << "\n"); 4352 } 4353 4354 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4355 } 4356 4357 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4358 if (!blockNeedsPredication(I->getParent())) 4359 return false; 4360 switch(I->getOpcode()) { 4361 default: 4362 break; 4363 case Instruction::Load: 4364 case Instruction::Store: { 4365 if (!Legal->isMaskRequired(I)) 4366 return false; 4367 auto *Ptr = getLoadStorePointerOperand(I); 4368 auto *Ty = getMemInstValueType(I); 4369 // We have already decided how to vectorize this instruction, get that 4370 // result. 4371 if (VF > 1) { 4372 InstWidening WideningDecision = getWideningDecision(I, VF); 4373 assert(WideningDecision != CM_Unknown && 4374 "Widening decision should be ready at this moment"); 4375 return WideningDecision == CM_Scalarize; 4376 } 4377 return isa<LoadInst>(I) ? 4378 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4379 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4380 } 4381 case Instruction::UDiv: 4382 case Instruction::SDiv: 4383 case Instruction::SRem: 4384 case Instruction::URem: 4385 return mayDivideByZero(*I); 4386 } 4387 return false; 4388 } 4389 4390 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4391 unsigned VF) { 4392 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4393 assert(getWideningDecision(I, VF) == CM_Unknown && 4394 "Decision should not be set yet."); 4395 auto *Group = getInterleavedAccessGroup(I); 4396 assert(Group && "Must have a group."); 4397 4398 // Check if masking is required. 4399 // A Group may need masking for one of two reasons: it resides in a block that 4400 // needs predication, or it was decided to use masking to deal with gaps. 4401 bool PredicatedAccessRequiresMasking = 4402 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4403 bool AccessWithGapsRequiresMasking = 4404 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4405 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4406 return true; 4407 4408 // If masked interleaving is required, we expect that the user/target had 4409 // enabled it, because otherwise it either wouldn't have been created or 4410 // it should have been invalidated by the CostModel. 4411 assert(useMaskedInterleavedAccesses(TTI) && 4412 "Masked interleave-groups for predicated accesses are not enabled."); 4413 4414 auto *Ty = getMemInstValueType(I); 4415 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4416 : TTI.isLegalMaskedStore(Ty); 4417 } 4418 4419 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4420 unsigned VF) { 4421 // Get and ensure we have a valid memory instruction. 4422 LoadInst *LI = dyn_cast<LoadInst>(I); 4423 StoreInst *SI = dyn_cast<StoreInst>(I); 4424 assert((LI || SI) && "Invalid memory instruction"); 4425 4426 auto *Ptr = getLoadStorePointerOperand(I); 4427 4428 // In order to be widened, the pointer should be consecutive, first of all. 4429 if (!Legal->isConsecutivePtr(Ptr)) 4430 return false; 4431 4432 // If the instruction is a store located in a predicated block, it will be 4433 // scalarized. 4434 if (isScalarWithPredication(I)) 4435 return false; 4436 4437 // If the instruction's allocated size doesn't equal it's type size, it 4438 // requires padding and will be scalarized. 4439 auto &DL = I->getModule()->getDataLayout(); 4440 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4441 if (hasIrregularType(ScalarTy, DL, VF)) 4442 return false; 4443 4444 return true; 4445 } 4446 4447 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4448 // We should not collect Uniforms more than once per VF. Right now, 4449 // this function is called from collectUniformsAndScalars(), which 4450 // already does this check. Collecting Uniforms for VF=1 does not make any 4451 // sense. 4452 4453 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4454 "This function should not be visited twice for the same VF"); 4455 4456 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4457 // not analyze again. Uniforms.count(VF) will return 1. 4458 Uniforms[VF].clear(); 4459 4460 // We now know that the loop is vectorizable! 4461 // Collect instructions inside the loop that will remain uniform after 4462 // vectorization. 4463 4464 // Global values, params and instructions outside of current loop are out of 4465 // scope. 4466 auto isOutOfScope = [&](Value *V) -> bool { 4467 Instruction *I = dyn_cast<Instruction>(V); 4468 return (!I || !TheLoop->contains(I)); 4469 }; 4470 4471 SetVector<Instruction *> Worklist; 4472 BasicBlock *Latch = TheLoop->getLoopLatch(); 4473 4474 // Start with the conditional branch. If the branch condition is an 4475 // instruction contained in the loop that is only used by the branch, it is 4476 // uniform. 4477 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4478 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4479 Worklist.insert(Cmp); 4480 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4481 } 4482 4483 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4484 // are pointers that are treated like consecutive pointers during 4485 // vectorization. The pointer operands of interleaved accesses are an 4486 // example. 4487 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4488 4489 // Holds pointer operands of instructions that are possibly non-uniform. 4490 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4491 4492 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4493 InstWidening WideningDecision = getWideningDecision(I, VF); 4494 assert(WideningDecision != CM_Unknown && 4495 "Widening decision should be ready at this moment"); 4496 4497 return (WideningDecision == CM_Widen || 4498 WideningDecision == CM_Widen_Reverse || 4499 WideningDecision == CM_Interleave); 4500 }; 4501 // Iterate over the instructions in the loop, and collect all 4502 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4503 // that a consecutive-like pointer operand will be scalarized, we collect it 4504 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4505 // getelementptr instruction can be used by both vectorized and scalarized 4506 // memory instructions. For example, if a loop loads and stores from the same 4507 // location, but the store is conditional, the store will be scalarized, and 4508 // the getelementptr won't remain uniform. 4509 for (auto *BB : TheLoop->blocks()) 4510 for (auto &I : *BB) { 4511 // If there's no pointer operand, there's nothing to do. 4512 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4513 if (!Ptr) 4514 continue; 4515 4516 // True if all users of Ptr are memory accesses that have Ptr as their 4517 // pointer operand. 4518 auto UsersAreMemAccesses = 4519 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4520 return getLoadStorePointerOperand(U) == Ptr; 4521 }); 4522 4523 // Ensure the memory instruction will not be scalarized or used by 4524 // gather/scatter, making its pointer operand non-uniform. If the pointer 4525 // operand is used by any instruction other than a memory access, we 4526 // conservatively assume the pointer operand may be non-uniform. 4527 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4528 PossibleNonUniformPtrs.insert(Ptr); 4529 4530 // If the memory instruction will be vectorized and its pointer operand 4531 // is consecutive-like, or interleaving - the pointer operand should 4532 // remain uniform. 4533 else 4534 ConsecutiveLikePtrs.insert(Ptr); 4535 } 4536 4537 // Add to the Worklist all consecutive and consecutive-like pointers that 4538 // aren't also identified as possibly non-uniform. 4539 for (auto *V : ConsecutiveLikePtrs) 4540 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4541 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4542 Worklist.insert(V); 4543 } 4544 4545 // Expand Worklist in topological order: whenever a new instruction 4546 // is added , its users should be already inside Worklist. It ensures 4547 // a uniform instruction will only be used by uniform instructions. 4548 unsigned idx = 0; 4549 while (idx != Worklist.size()) { 4550 Instruction *I = Worklist[idx++]; 4551 4552 for (auto OV : I->operand_values()) { 4553 // isOutOfScope operands cannot be uniform instructions. 4554 if (isOutOfScope(OV)) 4555 continue; 4556 // First order recurrence Phi's should typically be considered 4557 // non-uniform. 4558 auto *OP = dyn_cast<PHINode>(OV); 4559 if (OP && Legal->isFirstOrderRecurrence(OP)) 4560 continue; 4561 // If all the users of the operand are uniform, then add the 4562 // operand into the uniform worklist. 4563 auto *OI = cast<Instruction>(OV); 4564 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4565 auto *J = cast<Instruction>(U); 4566 return Worklist.count(J) || 4567 (OI == getLoadStorePointerOperand(J) && 4568 isUniformDecision(J, VF)); 4569 })) { 4570 Worklist.insert(OI); 4571 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4572 } 4573 } 4574 } 4575 4576 // Returns true if Ptr is the pointer operand of a memory access instruction 4577 // I, and I is known to not require scalarization. 4578 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4579 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4580 }; 4581 4582 // For an instruction to be added into Worklist above, all its users inside 4583 // the loop should also be in Worklist. However, this condition cannot be 4584 // true for phi nodes that form a cyclic dependence. We must process phi 4585 // nodes separately. An induction variable will remain uniform if all users 4586 // of the induction variable and induction variable update remain uniform. 4587 // The code below handles both pointer and non-pointer induction variables. 4588 for (auto &Induction : *Legal->getInductionVars()) { 4589 auto *Ind = Induction.first; 4590 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4591 4592 // Determine if all users of the induction variable are uniform after 4593 // vectorization. 4594 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4595 auto *I = cast<Instruction>(U); 4596 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4597 isVectorizedMemAccessUse(I, Ind); 4598 }); 4599 if (!UniformInd) 4600 continue; 4601 4602 // Determine if all users of the induction variable update instruction are 4603 // uniform after vectorization. 4604 auto UniformIndUpdate = 4605 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4606 auto *I = cast<Instruction>(U); 4607 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4608 isVectorizedMemAccessUse(I, IndUpdate); 4609 }); 4610 if (!UniformIndUpdate) 4611 continue; 4612 4613 // The induction variable and its update instruction will remain uniform. 4614 Worklist.insert(Ind); 4615 Worklist.insert(IndUpdate); 4616 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4617 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4618 << "\n"); 4619 } 4620 4621 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4622 } 4623 4624 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4625 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4626 // TODO: It may by useful to do since it's still likely to be dynamically 4627 // uniform if the target can skip. 4628 LLVM_DEBUG( 4629 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4630 4631 ORE->emit( 4632 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4633 << "runtime pointer checks needed. Not enabled for divergent target"); 4634 4635 return None; 4636 } 4637 4638 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4639 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4640 return computeFeasibleMaxVF(OptForSize, TC); 4641 4642 if (Legal->getRuntimePointerChecking()->Need) { 4643 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4644 << "runtime pointer checks needed. Enable vectorization of this " 4645 "loop with '#pragma clang loop vectorize(enable)' when " 4646 "compiling with -Os/-Oz"); 4647 LLVM_DEBUG( 4648 dbgs() 4649 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4650 return None; 4651 } 4652 4653 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4654 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4655 << "runtime SCEV checks needed. Enable vectorization of this " 4656 "loop with '#pragma clang loop vectorize(enable)' when " 4657 "compiling with -Os/-Oz"); 4658 LLVM_DEBUG( 4659 dbgs() 4660 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4661 return None; 4662 } 4663 4664 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4665 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4666 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4667 << "runtime stride == 1 checks needed. Enable vectorization of " 4668 "this loop with '#pragma clang loop vectorize(enable)' when " 4669 "compiling with -Os/-Oz"); 4670 LLVM_DEBUG( 4671 dbgs() 4672 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4673 return None; 4674 } 4675 4676 // If we optimize the program for size, avoid creating the tail loop. 4677 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4678 4679 if (TC == 1) { 4680 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4681 << "loop trip count is one, irrelevant for vectorization"); 4682 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4683 return None; 4684 } 4685 4686 // Record that scalar epilogue is not allowed. 4687 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4688 4689 IsScalarEpilogueAllowed = !OptForSize; 4690 4691 // We don't create an epilogue when optimizing for size. 4692 // Invalidate interleave groups that require an epilogue if we can't mask 4693 // the interleave-group. 4694 if (!useMaskedInterleavedAccesses(TTI)) 4695 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4696 4697 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4698 4699 if (TC > 0 && TC % MaxVF == 0) { 4700 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4701 return MaxVF; 4702 } 4703 4704 // If we don't know the precise trip count, or if the trip count that we 4705 // found modulo the vectorization factor is not zero, try to fold the tail 4706 // by masking. 4707 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4708 if (Legal->canFoldTailByMasking()) { 4709 FoldTailByMasking = true; 4710 return MaxVF; 4711 } 4712 4713 if (TC == 0) { 4714 ORE->emit( 4715 createMissedAnalysis("UnknownLoopCountComplexCFG") 4716 << "unable to calculate the loop count due to complex control flow"); 4717 return None; 4718 } 4719 4720 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4721 << "cannot optimize for size and vectorize at the same time. " 4722 "Enable vectorization of this loop with '#pragma clang loop " 4723 "vectorize(enable)' when compiling with -Os/-Oz"); 4724 return None; 4725 } 4726 4727 unsigned 4728 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4729 unsigned ConstTripCount) { 4730 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4731 unsigned SmallestType, WidestType; 4732 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4733 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4734 4735 // Get the maximum safe dependence distance in bits computed by LAA. 4736 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4737 // the memory accesses that is most restrictive (involved in the smallest 4738 // dependence distance). 4739 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4740 4741 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4742 4743 unsigned MaxVectorSize = WidestRegister / WidestType; 4744 4745 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4746 << " / " << WidestType << " bits.\n"); 4747 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4748 << WidestRegister << " bits.\n"); 4749 4750 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4751 " into one vector!"); 4752 if (MaxVectorSize == 0) { 4753 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4754 MaxVectorSize = 1; 4755 return MaxVectorSize; 4756 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4757 isPowerOf2_32(ConstTripCount)) { 4758 // We need to clamp the VF to be the ConstTripCount. There is no point in 4759 // choosing a higher viable VF as done in the loop below. 4760 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4761 << ConstTripCount << "\n"); 4762 MaxVectorSize = ConstTripCount; 4763 return MaxVectorSize; 4764 } 4765 4766 unsigned MaxVF = MaxVectorSize; 4767 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4768 (MaximizeBandwidth && !OptForSize)) { 4769 // Collect all viable vectorization factors larger than the default MaxVF 4770 // (i.e. MaxVectorSize). 4771 SmallVector<unsigned, 8> VFs; 4772 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4773 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4774 VFs.push_back(VS); 4775 4776 // For each VF calculate its register usage. 4777 auto RUs = calculateRegisterUsage(VFs); 4778 4779 // Select the largest VF which doesn't require more registers than existing 4780 // ones. 4781 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4782 for (int i = RUs.size() - 1; i >= 0; --i) { 4783 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4784 MaxVF = VFs[i]; 4785 break; 4786 } 4787 } 4788 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4789 if (MaxVF < MinVF) { 4790 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4791 << ") with target's minimum: " << MinVF << '\n'); 4792 MaxVF = MinVF; 4793 } 4794 } 4795 } 4796 return MaxVF; 4797 } 4798 4799 VectorizationFactor 4800 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4801 float Cost = expectedCost(1).first; 4802 const float ScalarCost = Cost; 4803 unsigned Width = 1; 4804 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4805 4806 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4807 if (ForceVectorization && MaxVF > 1) { 4808 // Ignore scalar width, because the user explicitly wants vectorization. 4809 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4810 // evaluation. 4811 Cost = std::numeric_limits<float>::max(); 4812 } 4813 4814 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4815 // Notice that the vector loop needs to be executed less times, so 4816 // we need to divide the cost of the vector loops by the width of 4817 // the vector elements. 4818 VectorizationCostTy C = expectedCost(i); 4819 float VectorCost = C.first / (float)i; 4820 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4821 << " costs: " << (int)VectorCost << ".\n"); 4822 if (!C.second && !ForceVectorization) { 4823 LLVM_DEBUG( 4824 dbgs() << "LV: Not considering vector loop of width " << i 4825 << " because it will not generate any vector instructions.\n"); 4826 continue; 4827 } 4828 if (VectorCost < Cost) { 4829 Cost = VectorCost; 4830 Width = i; 4831 } 4832 } 4833 4834 if (!EnableCondStoresVectorization && NumPredStores) { 4835 ORE->emit(createMissedAnalysis("ConditionalStore") 4836 << "store that is conditionally executed prevents vectorization"); 4837 LLVM_DEBUG( 4838 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4839 Width = 1; 4840 Cost = ScalarCost; 4841 } 4842 4843 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4844 << "LV: Vectorization seems to be not beneficial, " 4845 << "but was forced by a user.\n"); 4846 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4847 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4848 return Factor; 4849 } 4850 4851 std::pair<unsigned, unsigned> 4852 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4853 unsigned MinWidth = -1U; 4854 unsigned MaxWidth = 8; 4855 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4856 4857 // For each block. 4858 for (BasicBlock *BB : TheLoop->blocks()) { 4859 // For each instruction in the loop. 4860 for (Instruction &I : BB->instructionsWithoutDebug()) { 4861 Type *T = I.getType(); 4862 4863 // Skip ignored values. 4864 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4865 continue; 4866 4867 // Only examine Loads, Stores and PHINodes. 4868 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4869 continue; 4870 4871 // Examine PHI nodes that are reduction variables. Update the type to 4872 // account for the recurrence type. 4873 if (auto *PN = dyn_cast<PHINode>(&I)) { 4874 if (!Legal->isReductionVariable(PN)) 4875 continue; 4876 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4877 T = RdxDesc.getRecurrenceType(); 4878 } 4879 4880 // Examine the stored values. 4881 if (auto *ST = dyn_cast<StoreInst>(&I)) 4882 T = ST->getValueOperand()->getType(); 4883 4884 // Ignore loaded pointer types and stored pointer types that are not 4885 // vectorizable. 4886 // 4887 // FIXME: The check here attempts to predict whether a load or store will 4888 // be vectorized. We only know this for certain after a VF has 4889 // been selected. Here, we assume that if an access can be 4890 // vectorized, it will be. We should also look at extending this 4891 // optimization to non-pointer types. 4892 // 4893 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4894 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4895 continue; 4896 4897 MinWidth = std::min(MinWidth, 4898 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4899 MaxWidth = std::max(MaxWidth, 4900 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4901 } 4902 } 4903 4904 return {MinWidth, MaxWidth}; 4905 } 4906 4907 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4908 unsigned VF, 4909 unsigned LoopCost) { 4910 // -- The interleave heuristics -- 4911 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4912 // There are many micro-architectural considerations that we can't predict 4913 // at this level. For example, frontend pressure (on decode or fetch) due to 4914 // code size, or the number and capabilities of the execution ports. 4915 // 4916 // We use the following heuristics to select the interleave count: 4917 // 1. If the code has reductions, then we interleave to break the cross 4918 // iteration dependency. 4919 // 2. If the loop is really small, then we interleave to reduce the loop 4920 // overhead. 4921 // 3. We don't interleave if we think that we will spill registers to memory 4922 // due to the increased register pressure. 4923 4924 // When we optimize for size, we don't interleave. 4925 if (OptForSize) 4926 return 1; 4927 4928 // We used the distance for the interleave count. 4929 if (Legal->getMaxSafeDepDistBytes() != -1U) 4930 return 1; 4931 4932 // Do not interleave loops with a relatively small trip count. 4933 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4934 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4935 return 1; 4936 4937 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4938 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4939 << " registers\n"); 4940 4941 if (VF == 1) { 4942 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4943 TargetNumRegisters = ForceTargetNumScalarRegs; 4944 } else { 4945 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4946 TargetNumRegisters = ForceTargetNumVectorRegs; 4947 } 4948 4949 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4950 // We divide by these constants so assume that we have at least one 4951 // instruction that uses at least one register. 4952 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4953 4954 // We calculate the interleave count using the following formula. 4955 // Subtract the number of loop invariants from the number of available 4956 // registers. These registers are used by all of the interleaved instances. 4957 // Next, divide the remaining registers by the number of registers that is 4958 // required by the loop, in order to estimate how many parallel instances 4959 // fit without causing spills. All of this is rounded down if necessary to be 4960 // a power of two. We want power of two interleave count to simplify any 4961 // addressing operations or alignment considerations. 4962 // We also want power of two interleave counts to ensure that the induction 4963 // variable of the vector loop wraps to zero, when tail is folded by masking; 4964 // this currently happens when OptForSize, in which case IC is set to 1 above. 4965 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4966 R.MaxLocalUsers); 4967 4968 // Don't count the induction variable as interleaved. 4969 if (EnableIndVarRegisterHeur) 4970 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4971 std::max(1U, (R.MaxLocalUsers - 1))); 4972 4973 // Clamp the interleave ranges to reasonable counts. 4974 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4975 4976 // Check if the user has overridden the max. 4977 if (VF == 1) { 4978 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4979 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4980 } else { 4981 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4982 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4983 } 4984 4985 // If we did not calculate the cost for VF (because the user selected the VF) 4986 // then we calculate the cost of VF here. 4987 if (LoopCost == 0) 4988 LoopCost = expectedCost(VF).first; 4989 4990 // Clamp the calculated IC to be between the 1 and the max interleave count 4991 // that the target allows. 4992 if (IC > MaxInterleaveCount) 4993 IC = MaxInterleaveCount; 4994 else if (IC < 1) 4995 IC = 1; 4996 4997 // Interleave if we vectorized this loop and there is a reduction that could 4998 // benefit from interleaving. 4999 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5000 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5001 return IC; 5002 } 5003 5004 // Note that if we've already vectorized the loop we will have done the 5005 // runtime check and so interleaving won't require further checks. 5006 bool InterleavingRequiresRuntimePointerCheck = 5007 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5008 5009 // We want to interleave small loops in order to reduce the loop overhead and 5010 // potentially expose ILP opportunities. 5011 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5012 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5013 // We assume that the cost overhead is 1 and we use the cost model 5014 // to estimate the cost of the loop and interleave until the cost of the 5015 // loop overhead is about 5% of the cost of the loop. 5016 unsigned SmallIC = 5017 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5018 5019 // Interleave until store/load ports (estimated by max interleave count) are 5020 // saturated. 5021 unsigned NumStores = Legal->getNumStores(); 5022 unsigned NumLoads = Legal->getNumLoads(); 5023 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5024 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5025 5026 // If we have a scalar reduction (vector reductions are already dealt with 5027 // by this point), we can increase the critical path length if the loop 5028 // we're interleaving is inside another loop. Limit, by default to 2, so the 5029 // critical path only gets increased by one reduction operation. 5030 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5031 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5032 SmallIC = std::min(SmallIC, F); 5033 StoresIC = std::min(StoresIC, F); 5034 LoadsIC = std::min(LoadsIC, F); 5035 } 5036 5037 if (EnableLoadStoreRuntimeInterleave && 5038 std::max(StoresIC, LoadsIC) > SmallIC) { 5039 LLVM_DEBUG( 5040 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5041 return std::max(StoresIC, LoadsIC); 5042 } 5043 5044 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5045 return SmallIC; 5046 } 5047 5048 // Interleave if this is a large loop (small loops are already dealt with by 5049 // this point) that could benefit from interleaving. 5050 bool HasReductions = !Legal->getReductionVars()->empty(); 5051 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5052 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5053 return IC; 5054 } 5055 5056 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5057 return 1; 5058 } 5059 5060 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5061 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5062 // This function calculates the register usage by measuring the highest number 5063 // of values that are alive at a single location. Obviously, this is a very 5064 // rough estimation. We scan the loop in a topological order in order and 5065 // assign a number to each instruction. We use RPO to ensure that defs are 5066 // met before their users. We assume that each instruction that has in-loop 5067 // users starts an interval. We record every time that an in-loop value is 5068 // used, so we have a list of the first and last occurrences of each 5069 // instruction. Next, we transpose this data structure into a multi map that 5070 // holds the list of intervals that *end* at a specific location. This multi 5071 // map allows us to perform a linear search. We scan the instructions linearly 5072 // and record each time that a new interval starts, by placing it in a set. 5073 // If we find this value in the multi-map then we remove it from the set. 5074 // The max register usage is the maximum size of the set. 5075 // We also search for instructions that are defined outside the loop, but are 5076 // used inside the loop. We need this number separately from the max-interval 5077 // usage number because when we unroll, loop-invariant values do not take 5078 // more register. 5079 LoopBlocksDFS DFS(TheLoop); 5080 DFS.perform(LI); 5081 5082 RegisterUsage RU; 5083 5084 // Each 'key' in the map opens a new interval. The values 5085 // of the map are the index of the 'last seen' usage of the 5086 // instruction that is the key. 5087 using IntervalMap = DenseMap<Instruction *, unsigned>; 5088 5089 // Maps instruction to its index. 5090 SmallVector<Instruction *, 64> IdxToInstr; 5091 // Marks the end of each interval. 5092 IntervalMap EndPoint; 5093 // Saves the list of instruction indices that are used in the loop. 5094 SmallPtrSet<Instruction *, 8> Ends; 5095 // Saves the list of values that are used in the loop but are 5096 // defined outside the loop, such as arguments and constants. 5097 SmallPtrSet<Value *, 8> LoopInvariants; 5098 5099 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5100 for (Instruction &I : BB->instructionsWithoutDebug()) { 5101 IdxToInstr.push_back(&I); 5102 5103 // Save the end location of each USE. 5104 for (Value *U : I.operands()) { 5105 auto *Instr = dyn_cast<Instruction>(U); 5106 5107 // Ignore non-instruction values such as arguments, constants, etc. 5108 if (!Instr) 5109 continue; 5110 5111 // If this instruction is outside the loop then record it and continue. 5112 if (!TheLoop->contains(Instr)) { 5113 LoopInvariants.insert(Instr); 5114 continue; 5115 } 5116 5117 // Overwrite previous end points. 5118 EndPoint[Instr] = IdxToInstr.size(); 5119 Ends.insert(Instr); 5120 } 5121 } 5122 } 5123 5124 // Saves the list of intervals that end with the index in 'key'. 5125 using InstrList = SmallVector<Instruction *, 2>; 5126 DenseMap<unsigned, InstrList> TransposeEnds; 5127 5128 // Transpose the EndPoints to a list of values that end at each index. 5129 for (auto &Interval : EndPoint) 5130 TransposeEnds[Interval.second].push_back(Interval.first); 5131 5132 SmallPtrSet<Instruction *, 8> OpenIntervals; 5133 5134 // Get the size of the widest register. 5135 unsigned MaxSafeDepDist = -1U; 5136 if (Legal->getMaxSafeDepDistBytes() != -1U) 5137 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5138 unsigned WidestRegister = 5139 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5140 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5141 5142 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5143 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5144 5145 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5146 5147 // A lambda that gets the register usage for the given type and VF. 5148 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5149 if (Ty->isTokenTy()) 5150 return 0U; 5151 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5152 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5153 }; 5154 5155 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5156 Instruction *I = IdxToInstr[i]; 5157 5158 // Remove all of the instructions that end at this location. 5159 InstrList &List = TransposeEnds[i]; 5160 for (Instruction *ToRemove : List) 5161 OpenIntervals.erase(ToRemove); 5162 5163 // Ignore instructions that are never used within the loop. 5164 if (Ends.find(I) == Ends.end()) 5165 continue; 5166 5167 // Skip ignored values. 5168 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5169 continue; 5170 5171 // For each VF find the maximum usage of registers. 5172 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5173 if (VFs[j] == 1) { 5174 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5175 continue; 5176 } 5177 collectUniformsAndScalars(VFs[j]); 5178 // Count the number of live intervals. 5179 unsigned RegUsage = 0; 5180 for (auto Inst : OpenIntervals) { 5181 // Skip ignored values for VF > 1. 5182 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5183 isScalarAfterVectorization(Inst, VFs[j])) 5184 continue; 5185 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5186 } 5187 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5188 } 5189 5190 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5191 << OpenIntervals.size() << '\n'); 5192 5193 // Add the current instruction to the list of open intervals. 5194 OpenIntervals.insert(I); 5195 } 5196 5197 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5198 unsigned Invariant = 0; 5199 if (VFs[i] == 1) 5200 Invariant = LoopInvariants.size(); 5201 else { 5202 for (auto Inst : LoopInvariants) 5203 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5204 } 5205 5206 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5207 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5208 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5209 << '\n'); 5210 5211 RU.LoopInvariantRegs = Invariant; 5212 RU.MaxLocalUsers = MaxUsages[i]; 5213 RUs[i] = RU; 5214 } 5215 5216 return RUs; 5217 } 5218 5219 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5220 // TODO: Cost model for emulated masked load/store is completely 5221 // broken. This hack guides the cost model to use an artificially 5222 // high enough value to practically disable vectorization with such 5223 // operations, except where previously deployed legality hack allowed 5224 // using very low cost values. This is to avoid regressions coming simply 5225 // from moving "masked load/store" check from legality to cost model. 5226 // Masked Load/Gather emulation was previously never allowed. 5227 // Limited number of Masked Store/Scatter emulation was allowed. 5228 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5229 return isa<LoadInst>(I) || 5230 (isa<StoreInst>(I) && 5231 NumPredStores > NumberOfStoresToPredicate); 5232 } 5233 5234 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5235 // If we aren't vectorizing the loop, or if we've already collected the 5236 // instructions to scalarize, there's nothing to do. Collection may already 5237 // have occurred if we have a user-selected VF and are now computing the 5238 // expected cost for interleaving. 5239 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5240 return; 5241 5242 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5243 // not profitable to scalarize any instructions, the presence of VF in the 5244 // map will indicate that we've analyzed it already. 5245 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5246 5247 // Find all the instructions that are scalar with predication in the loop and 5248 // determine if it would be better to not if-convert the blocks they are in. 5249 // If so, we also record the instructions to scalarize. 5250 for (BasicBlock *BB : TheLoop->blocks()) { 5251 if (!blockNeedsPredication(BB)) 5252 continue; 5253 for (Instruction &I : *BB) 5254 if (isScalarWithPredication(&I)) { 5255 ScalarCostsTy ScalarCosts; 5256 // Do not apply discount logic if hacked cost is needed 5257 // for emulated masked memrefs. 5258 if (!useEmulatedMaskMemRefHack(&I) && 5259 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5260 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5261 // Remember that BB will remain after vectorization. 5262 PredicatedBBsAfterVectorization.insert(BB); 5263 } 5264 } 5265 } 5266 5267 int LoopVectorizationCostModel::computePredInstDiscount( 5268 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5269 unsigned VF) { 5270 assert(!isUniformAfterVectorization(PredInst, VF) && 5271 "Instruction marked uniform-after-vectorization will be predicated"); 5272 5273 // Initialize the discount to zero, meaning that the scalar version and the 5274 // vector version cost the same. 5275 int Discount = 0; 5276 5277 // Holds instructions to analyze. The instructions we visit are mapped in 5278 // ScalarCosts. Those instructions are the ones that would be scalarized if 5279 // we find that the scalar version costs less. 5280 SmallVector<Instruction *, 8> Worklist; 5281 5282 // Returns true if the given instruction can be scalarized. 5283 auto canBeScalarized = [&](Instruction *I) -> bool { 5284 // We only attempt to scalarize instructions forming a single-use chain 5285 // from the original predicated block that would otherwise be vectorized. 5286 // Although not strictly necessary, we give up on instructions we know will 5287 // already be scalar to avoid traversing chains that are unlikely to be 5288 // beneficial. 5289 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5290 isScalarAfterVectorization(I, VF)) 5291 return false; 5292 5293 // If the instruction is scalar with predication, it will be analyzed 5294 // separately. We ignore it within the context of PredInst. 5295 if (isScalarWithPredication(I)) 5296 return false; 5297 5298 // If any of the instruction's operands are uniform after vectorization, 5299 // the instruction cannot be scalarized. This prevents, for example, a 5300 // masked load from being scalarized. 5301 // 5302 // We assume we will only emit a value for lane zero of an instruction 5303 // marked uniform after vectorization, rather than VF identical values. 5304 // Thus, if we scalarize an instruction that uses a uniform, we would 5305 // create uses of values corresponding to the lanes we aren't emitting code 5306 // for. This behavior can be changed by allowing getScalarValue to clone 5307 // the lane zero values for uniforms rather than asserting. 5308 for (Use &U : I->operands()) 5309 if (auto *J = dyn_cast<Instruction>(U.get())) 5310 if (isUniformAfterVectorization(J, VF)) 5311 return false; 5312 5313 // Otherwise, we can scalarize the instruction. 5314 return true; 5315 }; 5316 5317 // Returns true if an operand that cannot be scalarized must be extracted 5318 // from a vector. We will account for this scalarization overhead below. Note 5319 // that the non-void predicated instructions are placed in their own blocks, 5320 // and their return values are inserted into vectors. Thus, an extract would 5321 // still be required. 5322 auto needsExtract = [&](Instruction *I) -> bool { 5323 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5324 }; 5325 5326 // Compute the expected cost discount from scalarizing the entire expression 5327 // feeding the predicated instruction. We currently only consider expressions 5328 // that are single-use instruction chains. 5329 Worklist.push_back(PredInst); 5330 while (!Worklist.empty()) { 5331 Instruction *I = Worklist.pop_back_val(); 5332 5333 // If we've already analyzed the instruction, there's nothing to do. 5334 if (ScalarCosts.find(I) != ScalarCosts.end()) 5335 continue; 5336 5337 // Compute the cost of the vector instruction. Note that this cost already 5338 // includes the scalarization overhead of the predicated instruction. 5339 unsigned VectorCost = getInstructionCost(I, VF).first; 5340 5341 // Compute the cost of the scalarized instruction. This cost is the cost of 5342 // the instruction as if it wasn't if-converted and instead remained in the 5343 // predicated block. We will scale this cost by block probability after 5344 // computing the scalarization overhead. 5345 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5346 5347 // Compute the scalarization overhead of needed insertelement instructions 5348 // and phi nodes. 5349 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5350 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5351 true, false); 5352 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5353 } 5354 5355 // Compute the scalarization overhead of needed extractelement 5356 // instructions. For each of the instruction's operands, if the operand can 5357 // be scalarized, add it to the worklist; otherwise, account for the 5358 // overhead. 5359 for (Use &U : I->operands()) 5360 if (auto *J = dyn_cast<Instruction>(U.get())) { 5361 assert(VectorType::isValidElementType(J->getType()) && 5362 "Instruction has non-scalar type"); 5363 if (canBeScalarized(J)) 5364 Worklist.push_back(J); 5365 else if (needsExtract(J)) 5366 ScalarCost += TTI.getScalarizationOverhead( 5367 ToVectorTy(J->getType(),VF), false, true); 5368 } 5369 5370 // Scale the total scalar cost by block probability. 5371 ScalarCost /= getReciprocalPredBlockProb(); 5372 5373 // Compute the discount. A non-negative discount means the vector version 5374 // of the instruction costs more, and scalarizing would be beneficial. 5375 Discount += VectorCost - ScalarCost; 5376 ScalarCosts[I] = ScalarCost; 5377 } 5378 5379 return Discount; 5380 } 5381 5382 LoopVectorizationCostModel::VectorizationCostTy 5383 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5384 VectorizationCostTy Cost; 5385 5386 // For each block. 5387 for (BasicBlock *BB : TheLoop->blocks()) { 5388 VectorizationCostTy BlockCost; 5389 5390 // For each instruction in the old loop. 5391 for (Instruction &I : BB->instructionsWithoutDebug()) { 5392 // Skip ignored values. 5393 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5394 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5395 continue; 5396 5397 VectorizationCostTy C = getInstructionCost(&I, VF); 5398 5399 // Check if we should override the cost. 5400 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5401 C.first = ForceTargetInstructionCost; 5402 5403 BlockCost.first += C.first; 5404 BlockCost.second |= C.second; 5405 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5406 << " for VF " << VF << " For instruction: " << I 5407 << '\n'); 5408 } 5409 5410 // If we are vectorizing a predicated block, it will have been 5411 // if-converted. This means that the block's instructions (aside from 5412 // stores and instructions that may divide by zero) will now be 5413 // unconditionally executed. For the scalar case, we may not always execute 5414 // the predicated block. Thus, scale the block's cost by the probability of 5415 // executing it. 5416 if (VF == 1 && blockNeedsPredication(BB)) 5417 BlockCost.first /= getReciprocalPredBlockProb(); 5418 5419 Cost.first += BlockCost.first; 5420 Cost.second |= BlockCost.second; 5421 } 5422 5423 return Cost; 5424 } 5425 5426 /// Gets Address Access SCEV after verifying that the access pattern 5427 /// is loop invariant except the induction variable dependence. 5428 /// 5429 /// This SCEV can be sent to the Target in order to estimate the address 5430 /// calculation cost. 5431 static const SCEV *getAddressAccessSCEV( 5432 Value *Ptr, 5433 LoopVectorizationLegality *Legal, 5434 PredicatedScalarEvolution &PSE, 5435 const Loop *TheLoop) { 5436 5437 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5438 if (!Gep) 5439 return nullptr; 5440 5441 // We are looking for a gep with all loop invariant indices except for one 5442 // which should be an induction variable. 5443 auto SE = PSE.getSE(); 5444 unsigned NumOperands = Gep->getNumOperands(); 5445 for (unsigned i = 1; i < NumOperands; ++i) { 5446 Value *Opd = Gep->getOperand(i); 5447 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5448 !Legal->isInductionVariable(Opd)) 5449 return nullptr; 5450 } 5451 5452 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5453 return PSE.getSCEV(Ptr); 5454 } 5455 5456 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5457 return Legal->hasStride(I->getOperand(0)) || 5458 Legal->hasStride(I->getOperand(1)); 5459 } 5460 5461 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5462 unsigned VF) { 5463 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5464 Type *ValTy = getMemInstValueType(I); 5465 auto SE = PSE.getSE(); 5466 5467 unsigned Alignment = getLoadStoreAlignment(I); 5468 unsigned AS = getLoadStoreAddressSpace(I); 5469 Value *Ptr = getLoadStorePointerOperand(I); 5470 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5471 5472 // Figure out whether the access is strided and get the stride value 5473 // if it's known in compile time 5474 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5475 5476 // Get the cost of the scalar memory instruction and address computation. 5477 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5478 5479 // Don't pass *I here, since it is scalar but will actually be part of a 5480 // vectorized loop where the user of it is a vectorized instruction. 5481 Cost += VF * 5482 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5483 AS); 5484 5485 // Get the overhead of the extractelement and insertelement instructions 5486 // we might create due to scalarization. 5487 Cost += getScalarizationOverhead(I, VF, TTI); 5488 5489 // If we have a predicated store, it may not be executed for each vector 5490 // lane. Scale the cost by the probability of executing the predicated 5491 // block. 5492 if (isPredicatedInst(I)) { 5493 Cost /= getReciprocalPredBlockProb(); 5494 5495 if (useEmulatedMaskMemRefHack(I)) 5496 // Artificially setting to a high enough value to practically disable 5497 // vectorization with such operations. 5498 Cost = 3000000; 5499 } 5500 5501 return Cost; 5502 } 5503 5504 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5505 unsigned VF) { 5506 Type *ValTy = getMemInstValueType(I); 5507 Type *VectorTy = ToVectorTy(ValTy, VF); 5508 unsigned Alignment = getLoadStoreAlignment(I); 5509 Value *Ptr = getLoadStorePointerOperand(I); 5510 unsigned AS = getLoadStoreAddressSpace(I); 5511 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5512 5513 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5514 "Stride should be 1 or -1 for consecutive memory access"); 5515 unsigned Cost = 0; 5516 if (Legal->isMaskRequired(I)) 5517 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5518 else 5519 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5520 5521 bool Reverse = ConsecutiveStride < 0; 5522 if (Reverse) 5523 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5524 return Cost; 5525 } 5526 5527 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5528 unsigned VF) { 5529 Type *ValTy = getMemInstValueType(I); 5530 Type *VectorTy = ToVectorTy(ValTy, VF); 5531 unsigned Alignment = getLoadStoreAlignment(I); 5532 unsigned AS = getLoadStoreAddressSpace(I); 5533 if (isa<LoadInst>(I)) { 5534 return TTI.getAddressComputationCost(ValTy) + 5535 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5536 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5537 } 5538 StoreInst *SI = cast<StoreInst>(I); 5539 5540 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5541 return TTI.getAddressComputationCost(ValTy) + 5542 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5543 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5544 Instruction::ExtractElement, 5545 VectorTy, VF - 1)); 5546 } 5547 5548 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5549 unsigned VF) { 5550 Type *ValTy = getMemInstValueType(I); 5551 Type *VectorTy = ToVectorTy(ValTy, VF); 5552 unsigned Alignment = getLoadStoreAlignment(I); 5553 Value *Ptr = getLoadStorePointerOperand(I); 5554 5555 return TTI.getAddressComputationCost(VectorTy) + 5556 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5557 Legal->isMaskRequired(I), Alignment); 5558 } 5559 5560 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5561 unsigned VF) { 5562 Type *ValTy = getMemInstValueType(I); 5563 Type *VectorTy = ToVectorTy(ValTy, VF); 5564 unsigned AS = getLoadStoreAddressSpace(I); 5565 5566 auto Group = getInterleavedAccessGroup(I); 5567 assert(Group && "Fail to get an interleaved access group."); 5568 5569 unsigned InterleaveFactor = Group->getFactor(); 5570 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5571 5572 // Holds the indices of existing members in an interleaved load group. 5573 // An interleaved store group doesn't need this as it doesn't allow gaps. 5574 SmallVector<unsigned, 4> Indices; 5575 if (isa<LoadInst>(I)) { 5576 for (unsigned i = 0; i < InterleaveFactor; i++) 5577 if (Group->getMember(i)) 5578 Indices.push_back(i); 5579 } 5580 5581 // Calculate the cost of the whole interleaved group. 5582 bool UseMaskForGaps = 5583 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5584 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5585 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5586 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5587 5588 if (Group->isReverse()) { 5589 // TODO: Add support for reversed masked interleaved access. 5590 assert(!Legal->isMaskRequired(I) && 5591 "Reverse masked interleaved access not supported."); 5592 Cost += Group->getNumMembers() * 5593 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5594 } 5595 return Cost; 5596 } 5597 5598 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5599 unsigned VF) { 5600 // Calculate scalar cost only. Vectorization cost should be ready at this 5601 // moment. 5602 if (VF == 1) { 5603 Type *ValTy = getMemInstValueType(I); 5604 unsigned Alignment = getLoadStoreAlignment(I); 5605 unsigned AS = getLoadStoreAddressSpace(I); 5606 5607 return TTI.getAddressComputationCost(ValTy) + 5608 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5609 } 5610 return getWideningCost(I, VF); 5611 } 5612 5613 LoopVectorizationCostModel::VectorizationCostTy 5614 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5615 // If we know that this instruction will remain uniform, check the cost of 5616 // the scalar version. 5617 if (isUniformAfterVectorization(I, VF)) 5618 VF = 1; 5619 5620 if (VF > 1 && isProfitableToScalarize(I, VF)) 5621 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5622 5623 // Forced scalars do not have any scalarization overhead. 5624 auto ForcedScalar = ForcedScalars.find(VF); 5625 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5626 auto InstSet = ForcedScalar->second; 5627 if (InstSet.find(I) != InstSet.end()) 5628 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5629 } 5630 5631 Type *VectorTy; 5632 unsigned C = getInstructionCost(I, VF, VectorTy); 5633 5634 bool TypeNotScalarized = 5635 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5636 return VectorizationCostTy(C, TypeNotScalarized); 5637 } 5638 5639 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5640 if (VF == 1) 5641 return; 5642 NumPredStores = 0; 5643 for (BasicBlock *BB : TheLoop->blocks()) { 5644 // For each instruction in the old loop. 5645 for (Instruction &I : *BB) { 5646 Value *Ptr = getLoadStorePointerOperand(&I); 5647 if (!Ptr) 5648 continue; 5649 5650 // TODO: We should generate better code and update the cost model for 5651 // predicated uniform stores. Today they are treated as any other 5652 // predicated store (see added test cases in 5653 // invariant-store-vectorization.ll). 5654 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5655 NumPredStores++; 5656 5657 if (Legal->isUniform(Ptr) && 5658 // Conditional loads and stores should be scalarized and predicated. 5659 // isScalarWithPredication cannot be used here since masked 5660 // gather/scatters are not considered scalar with predication. 5661 !Legal->blockNeedsPredication(I.getParent())) { 5662 // TODO: Avoid replicating loads and stores instead of 5663 // relying on instcombine to remove them. 5664 // Load: Scalar load + broadcast 5665 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5666 unsigned Cost = getUniformMemOpCost(&I, VF); 5667 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5668 continue; 5669 } 5670 5671 // We assume that widening is the best solution when possible. 5672 if (memoryInstructionCanBeWidened(&I, VF)) { 5673 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5674 int ConsecutiveStride = 5675 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5676 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5677 "Expected consecutive stride."); 5678 InstWidening Decision = 5679 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5680 setWideningDecision(&I, VF, Decision, Cost); 5681 continue; 5682 } 5683 5684 // Choose between Interleaving, Gather/Scatter or Scalarization. 5685 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5686 unsigned NumAccesses = 1; 5687 if (isAccessInterleaved(&I)) { 5688 auto Group = getInterleavedAccessGroup(&I); 5689 assert(Group && "Fail to get an interleaved access group."); 5690 5691 // Make one decision for the whole group. 5692 if (getWideningDecision(&I, VF) != CM_Unknown) 5693 continue; 5694 5695 NumAccesses = Group->getNumMembers(); 5696 if (interleavedAccessCanBeWidened(&I, VF)) 5697 InterleaveCost = getInterleaveGroupCost(&I, VF); 5698 } 5699 5700 unsigned GatherScatterCost = 5701 isLegalGatherOrScatter(&I) 5702 ? getGatherScatterCost(&I, VF) * NumAccesses 5703 : std::numeric_limits<unsigned>::max(); 5704 5705 unsigned ScalarizationCost = 5706 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5707 5708 // Choose better solution for the current VF, 5709 // write down this decision and use it during vectorization. 5710 unsigned Cost; 5711 InstWidening Decision; 5712 if (InterleaveCost <= GatherScatterCost && 5713 InterleaveCost < ScalarizationCost) { 5714 Decision = CM_Interleave; 5715 Cost = InterleaveCost; 5716 } else if (GatherScatterCost < ScalarizationCost) { 5717 Decision = CM_GatherScatter; 5718 Cost = GatherScatterCost; 5719 } else { 5720 Decision = CM_Scalarize; 5721 Cost = ScalarizationCost; 5722 } 5723 // If the instructions belongs to an interleave group, the whole group 5724 // receives the same decision. The whole group receives the cost, but 5725 // the cost will actually be assigned to one instruction. 5726 if (auto Group = getInterleavedAccessGroup(&I)) 5727 setWideningDecision(Group, VF, Decision, Cost); 5728 else 5729 setWideningDecision(&I, VF, Decision, Cost); 5730 } 5731 } 5732 5733 // Make sure that any load of address and any other address computation 5734 // remains scalar unless there is gather/scatter support. This avoids 5735 // inevitable extracts into address registers, and also has the benefit of 5736 // activating LSR more, since that pass can't optimize vectorized 5737 // addresses. 5738 if (TTI.prefersVectorizedAddressing()) 5739 return; 5740 5741 // Start with all scalar pointer uses. 5742 SmallPtrSet<Instruction *, 8> AddrDefs; 5743 for (BasicBlock *BB : TheLoop->blocks()) 5744 for (Instruction &I : *BB) { 5745 Instruction *PtrDef = 5746 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5747 if (PtrDef && TheLoop->contains(PtrDef) && 5748 getWideningDecision(&I, VF) != CM_GatherScatter) 5749 AddrDefs.insert(PtrDef); 5750 } 5751 5752 // Add all instructions used to generate the addresses. 5753 SmallVector<Instruction *, 4> Worklist; 5754 for (auto *I : AddrDefs) 5755 Worklist.push_back(I); 5756 while (!Worklist.empty()) { 5757 Instruction *I = Worklist.pop_back_val(); 5758 for (auto &Op : I->operands()) 5759 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5760 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5761 AddrDefs.insert(InstOp).second) 5762 Worklist.push_back(InstOp); 5763 } 5764 5765 for (auto *I : AddrDefs) { 5766 if (isa<LoadInst>(I)) { 5767 // Setting the desired widening decision should ideally be handled in 5768 // by cost functions, but since this involves the task of finding out 5769 // if the loaded register is involved in an address computation, it is 5770 // instead changed here when we know this is the case. 5771 InstWidening Decision = getWideningDecision(I, VF); 5772 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5773 // Scalarize a widened load of address. 5774 setWideningDecision(I, VF, CM_Scalarize, 5775 (VF * getMemoryInstructionCost(I, 1))); 5776 else if (auto Group = getInterleavedAccessGroup(I)) { 5777 // Scalarize an interleave group of address loads. 5778 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5779 if (Instruction *Member = Group->getMember(I)) 5780 setWideningDecision(Member, VF, CM_Scalarize, 5781 (VF * getMemoryInstructionCost(Member, 1))); 5782 } 5783 } 5784 } else 5785 // Make sure I gets scalarized and a cost estimate without 5786 // scalarization overhead. 5787 ForcedScalars[VF].insert(I); 5788 } 5789 } 5790 5791 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5792 unsigned VF, 5793 Type *&VectorTy) { 5794 Type *RetTy = I->getType(); 5795 if (canTruncateToMinimalBitwidth(I, VF)) 5796 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5797 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5798 auto SE = PSE.getSE(); 5799 5800 // TODO: We need to estimate the cost of intrinsic calls. 5801 switch (I->getOpcode()) { 5802 case Instruction::GetElementPtr: 5803 // We mark this instruction as zero-cost because the cost of GEPs in 5804 // vectorized code depends on whether the corresponding memory instruction 5805 // is scalarized or not. Therefore, we handle GEPs with the memory 5806 // instruction cost. 5807 return 0; 5808 case Instruction::Br: { 5809 // In cases of scalarized and predicated instructions, there will be VF 5810 // predicated blocks in the vectorized loop. Each branch around these 5811 // blocks requires also an extract of its vector compare i1 element. 5812 bool ScalarPredicatedBB = false; 5813 BranchInst *BI = cast<BranchInst>(I); 5814 if (VF > 1 && BI->isConditional() && 5815 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5816 PredicatedBBsAfterVectorization.end() || 5817 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5818 PredicatedBBsAfterVectorization.end())) 5819 ScalarPredicatedBB = true; 5820 5821 if (ScalarPredicatedBB) { 5822 // Return cost for branches around scalarized and predicated blocks. 5823 Type *Vec_i1Ty = 5824 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5825 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5826 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5827 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5828 // The back-edge branch will remain, as will all scalar branches. 5829 return TTI.getCFInstrCost(Instruction::Br); 5830 else 5831 // This branch will be eliminated by if-conversion. 5832 return 0; 5833 // Note: We currently assume zero cost for an unconditional branch inside 5834 // a predicated block since it will become a fall-through, although we 5835 // may decide in the future to call TTI for all branches. 5836 } 5837 case Instruction::PHI: { 5838 auto *Phi = cast<PHINode>(I); 5839 5840 // First-order recurrences are replaced by vector shuffles inside the loop. 5841 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5842 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5843 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5844 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5845 5846 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5847 // converted into select instructions. We require N - 1 selects per phi 5848 // node, where N is the number of incoming values. 5849 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5850 return (Phi->getNumIncomingValues() - 1) * 5851 TTI.getCmpSelInstrCost( 5852 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5853 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5854 5855 return TTI.getCFInstrCost(Instruction::PHI); 5856 } 5857 case Instruction::UDiv: 5858 case Instruction::SDiv: 5859 case Instruction::URem: 5860 case Instruction::SRem: 5861 // If we have a predicated instruction, it may not be executed for each 5862 // vector lane. Get the scalarization cost and scale this amount by the 5863 // probability of executing the predicated block. If the instruction is not 5864 // predicated, we fall through to the next case. 5865 if (VF > 1 && isScalarWithPredication(I)) { 5866 unsigned Cost = 0; 5867 5868 // These instructions have a non-void type, so account for the phi nodes 5869 // that we will create. This cost is likely to be zero. The phi node 5870 // cost, if any, should be scaled by the block probability because it 5871 // models a copy at the end of each predicated block. 5872 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5873 5874 // The cost of the non-predicated instruction. 5875 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5876 5877 // The cost of insertelement and extractelement instructions needed for 5878 // scalarization. 5879 Cost += getScalarizationOverhead(I, VF, TTI); 5880 5881 // Scale the cost by the probability of executing the predicated blocks. 5882 // This assumes the predicated block for each vector lane is equally 5883 // likely. 5884 return Cost / getReciprocalPredBlockProb(); 5885 } 5886 LLVM_FALLTHROUGH; 5887 case Instruction::Add: 5888 case Instruction::FAdd: 5889 case Instruction::Sub: 5890 case Instruction::FSub: 5891 case Instruction::Mul: 5892 case Instruction::FMul: 5893 case Instruction::FDiv: 5894 case Instruction::FRem: 5895 case Instruction::Shl: 5896 case Instruction::LShr: 5897 case Instruction::AShr: 5898 case Instruction::And: 5899 case Instruction::Or: 5900 case Instruction::Xor: { 5901 // Since we will replace the stride by 1 the multiplication should go away. 5902 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5903 return 0; 5904 // Certain instructions can be cheaper to vectorize if they have a constant 5905 // second vector operand. One example of this are shifts on x86. 5906 Value *Op2 = I->getOperand(1); 5907 TargetTransformInfo::OperandValueProperties Op2VP; 5908 TargetTransformInfo::OperandValueKind Op2VK = 5909 TTI.getOperandInfo(Op2, Op2VP); 5910 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5911 Op2VK = TargetTransformInfo::OK_UniformValue; 5912 5913 SmallVector<const Value *, 4> Operands(I->operand_values()); 5914 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5915 return N * TTI.getArithmeticInstrCost( 5916 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5917 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5918 } 5919 case Instruction::Select: { 5920 SelectInst *SI = cast<SelectInst>(I); 5921 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5922 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5923 Type *CondTy = SI->getCondition()->getType(); 5924 if (!ScalarCond) 5925 CondTy = VectorType::get(CondTy, VF); 5926 5927 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5928 } 5929 case Instruction::ICmp: 5930 case Instruction::FCmp: { 5931 Type *ValTy = I->getOperand(0)->getType(); 5932 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5933 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5934 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5935 VectorTy = ToVectorTy(ValTy, VF); 5936 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5937 } 5938 case Instruction::Store: 5939 case Instruction::Load: { 5940 unsigned Width = VF; 5941 if (Width > 1) { 5942 InstWidening Decision = getWideningDecision(I, Width); 5943 assert(Decision != CM_Unknown && 5944 "CM decision should be taken at this point"); 5945 if (Decision == CM_Scalarize) 5946 Width = 1; 5947 } 5948 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5949 return getMemoryInstructionCost(I, VF); 5950 } 5951 case Instruction::ZExt: 5952 case Instruction::SExt: 5953 case Instruction::FPToUI: 5954 case Instruction::FPToSI: 5955 case Instruction::FPExt: 5956 case Instruction::PtrToInt: 5957 case Instruction::IntToPtr: 5958 case Instruction::SIToFP: 5959 case Instruction::UIToFP: 5960 case Instruction::Trunc: 5961 case Instruction::FPTrunc: 5962 case Instruction::BitCast: { 5963 // We optimize the truncation of induction variables having constant 5964 // integer steps. The cost of these truncations is the same as the scalar 5965 // operation. 5966 if (isOptimizableIVTruncate(I, VF)) { 5967 auto *Trunc = cast<TruncInst>(I); 5968 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 5969 Trunc->getSrcTy(), Trunc); 5970 } 5971 5972 Type *SrcScalarTy = I->getOperand(0)->getType(); 5973 Type *SrcVecTy = 5974 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 5975 if (canTruncateToMinimalBitwidth(I, VF)) { 5976 // This cast is going to be shrunk. This may remove the cast or it might 5977 // turn it into slightly different cast. For example, if MinBW == 16, 5978 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5979 // 5980 // Calculate the modified src and dest types. 5981 Type *MinVecTy = VectorTy; 5982 if (I->getOpcode() == Instruction::Trunc) { 5983 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5984 VectorTy = 5985 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5986 } else if (I->getOpcode() == Instruction::ZExt || 5987 I->getOpcode() == Instruction::SExt) { 5988 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5989 VectorTy = 5990 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5991 } 5992 } 5993 5994 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5995 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 5996 } 5997 case Instruction::Call: { 5998 bool NeedToScalarize; 5999 CallInst *CI = cast<CallInst>(I); 6000 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6001 if (getVectorIntrinsicIDForCall(CI, TLI)) 6002 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6003 return CallCost; 6004 } 6005 default: 6006 // The cost of executing VF copies of the scalar instruction. This opcode 6007 // is unknown. Assume that it is the same as 'mul'. 6008 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6009 getScalarizationOverhead(I, VF, TTI); 6010 } // end of switch. 6011 } 6012 6013 char LoopVectorize::ID = 0; 6014 6015 static const char lv_name[] = "Loop Vectorization"; 6016 6017 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6018 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6019 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6020 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6021 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6022 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6023 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6024 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6025 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6026 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6027 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6028 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6029 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6030 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6031 6032 namespace llvm { 6033 6034 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6035 bool VectorizeOnlyWhenForced) { 6036 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6037 } 6038 6039 } // end namespace llvm 6040 6041 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6042 // Check if the pointer operand of a load or store instruction is 6043 // consecutive. 6044 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6045 return Legal->isConsecutivePtr(Ptr); 6046 return false; 6047 } 6048 6049 void LoopVectorizationCostModel::collectValuesToIgnore() { 6050 // Ignore ephemeral values. 6051 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6052 6053 // Ignore type-promoting instructions we identified during reduction 6054 // detection. 6055 for (auto &Reduction : *Legal->getReductionVars()) { 6056 RecurrenceDescriptor &RedDes = Reduction.second; 6057 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6058 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6059 } 6060 // Ignore type-casting instructions we identified during induction 6061 // detection. 6062 for (auto &Induction : *Legal->getInductionVars()) { 6063 InductionDescriptor &IndDes = Induction.second; 6064 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6065 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6066 } 6067 } 6068 6069 VectorizationFactor 6070 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6071 unsigned UserVF) { 6072 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6073 const VectorizationFactor NoVectorization = {1U, 0U}; 6074 6075 // Outer loop handling: They may require CFG and instruction level 6076 // transformations before even evaluating whether vectorization is profitable. 6077 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6078 // the vectorization pipeline. 6079 if (!OrigLoop->empty()) { 6080 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6081 // This won't be necessary when UserVF is not required in the VPlan-native 6082 // path. 6083 if (VPlanBuildStressTest && !UserVF) 6084 UserVF = 4; 6085 6086 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6087 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6088 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6089 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6090 buildVPlans(UserVF, UserVF); 6091 6092 // For VPlan build stress testing, we bail out after VPlan construction. 6093 if (VPlanBuildStressTest) 6094 return NoVectorization; 6095 6096 return {UserVF, 0}; 6097 } 6098 6099 LLVM_DEBUG( 6100 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6101 "VPlan-native path.\n"); 6102 return NoVectorization; 6103 } 6104 6105 VectorizationFactor 6106 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6107 assert(OrigLoop->empty() && "Inner loop expected."); 6108 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6109 const VectorizationFactor NoVectorization = {1U, 0U}; 6110 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6111 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6112 return NoVectorization; 6113 6114 // Invalidate interleave groups if all blocks of loop will be predicated. 6115 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6116 !useMaskedInterleavedAccesses(*TTI)) { 6117 LLVM_DEBUG( 6118 dbgs() 6119 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6120 "which requires masked-interleaved support.\n"); 6121 CM.InterleaveInfo.reset(); 6122 } 6123 6124 if (UserVF) { 6125 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6126 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6127 // Collect the instructions (and their associated costs) that will be more 6128 // profitable to scalarize. 6129 CM.selectUserVectorizationFactor(UserVF); 6130 buildVPlansWithVPRecipes(UserVF, UserVF); 6131 LLVM_DEBUG(printPlans(dbgs())); 6132 return {UserVF, 0}; 6133 } 6134 6135 unsigned MaxVF = MaybeMaxVF.getValue(); 6136 assert(MaxVF != 0 && "MaxVF is zero."); 6137 6138 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6139 // Collect Uniform and Scalar instructions after vectorization with VF. 6140 CM.collectUniformsAndScalars(VF); 6141 6142 // Collect the instructions (and their associated costs) that will be more 6143 // profitable to scalarize. 6144 if (VF > 1) 6145 CM.collectInstsToScalarize(VF); 6146 } 6147 6148 buildVPlansWithVPRecipes(1, MaxVF); 6149 LLVM_DEBUG(printPlans(dbgs())); 6150 if (MaxVF == 1) 6151 return NoVectorization; 6152 6153 // Select the optimal vectorization factor. 6154 return CM.selectVectorizationFactor(MaxVF); 6155 } 6156 6157 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6158 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6159 << '\n'); 6160 BestVF = VF; 6161 BestUF = UF; 6162 6163 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6164 return !Plan->hasVF(VF); 6165 }); 6166 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6167 } 6168 6169 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6170 DominatorTree *DT) { 6171 // Perform the actual loop transformation. 6172 6173 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6174 VPCallbackILV CallbackILV(ILV); 6175 6176 VPTransformState State{BestVF, BestUF, LI, 6177 DT, ILV.Builder, ILV.VectorLoopValueMap, 6178 &ILV, CallbackILV}; 6179 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6180 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6181 6182 //===------------------------------------------------===// 6183 // 6184 // Notice: any optimization or new instruction that go 6185 // into the code below should also be implemented in 6186 // the cost-model. 6187 // 6188 //===------------------------------------------------===// 6189 6190 // 2. Copy and widen instructions from the old loop into the new loop. 6191 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6192 VPlans.front()->execute(&State); 6193 6194 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6195 // predication, updating analyses. 6196 ILV.fixVectorizedLoop(); 6197 } 6198 6199 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6200 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6201 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6202 6203 // We create new control-flow for the vectorized loop, so the original 6204 // condition will be dead after vectorization if it's only used by the 6205 // branch. 6206 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6207 if (Cmp && Cmp->hasOneUse()) 6208 DeadInstructions.insert(Cmp); 6209 6210 // We create new "steps" for induction variable updates to which the original 6211 // induction variables map. An original update instruction will be dead if 6212 // all its users except the induction variable are dead. 6213 for (auto &Induction : *Legal->getInductionVars()) { 6214 PHINode *Ind = Induction.first; 6215 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6216 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6217 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6218 DeadInstructions.end(); 6219 })) 6220 DeadInstructions.insert(IndUpdate); 6221 6222 // We record as "Dead" also the type-casting instructions we had identified 6223 // during induction analysis. We don't need any handling for them in the 6224 // vectorized loop because we have proven that, under a proper runtime 6225 // test guarding the vectorized loop, the value of the phi, and the casted 6226 // value of the phi, are the same. The last instruction in this casting chain 6227 // will get its scalar/vector/widened def from the scalar/vector/widened def 6228 // of the respective phi node. Any other casts in the induction def-use chain 6229 // have no other uses outside the phi update chain, and will be ignored. 6230 InductionDescriptor &IndDes = Induction.second; 6231 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6232 DeadInstructions.insert(Casts.begin(), Casts.end()); 6233 } 6234 } 6235 6236 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6237 6238 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6239 6240 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6241 Instruction::BinaryOps BinOp) { 6242 // When unrolling and the VF is 1, we only need to add a simple scalar. 6243 Type *Ty = Val->getType(); 6244 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6245 6246 if (Ty->isFloatingPointTy()) { 6247 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6248 6249 // Floating point operations had to be 'fast' to enable the unrolling. 6250 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6251 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6252 } 6253 Constant *C = ConstantInt::get(Ty, StartIdx); 6254 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6255 } 6256 6257 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6258 SmallVector<Metadata *, 4> MDs; 6259 // Reserve first location for self reference to the LoopID metadata node. 6260 MDs.push_back(nullptr); 6261 bool IsUnrollMetadata = false; 6262 MDNode *LoopID = L->getLoopID(); 6263 if (LoopID) { 6264 // First find existing loop unrolling disable metadata. 6265 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6266 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6267 if (MD) { 6268 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6269 IsUnrollMetadata = 6270 S && S->getString().startswith("llvm.loop.unroll.disable"); 6271 } 6272 MDs.push_back(LoopID->getOperand(i)); 6273 } 6274 } 6275 6276 if (!IsUnrollMetadata) { 6277 // Add runtime unroll disable metadata. 6278 LLVMContext &Context = L->getHeader()->getContext(); 6279 SmallVector<Metadata *, 1> DisableOperands; 6280 DisableOperands.push_back( 6281 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6282 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6283 MDs.push_back(DisableNode); 6284 MDNode *NewLoopID = MDNode::get(Context, MDs); 6285 // Set operand 0 to refer to the loop id itself. 6286 NewLoopID->replaceOperandWith(0, NewLoopID); 6287 L->setLoopID(NewLoopID); 6288 } 6289 } 6290 6291 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6292 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6293 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6294 bool PredicateAtRangeStart = Predicate(Range.Start); 6295 6296 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6297 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6298 Range.End = TmpVF; 6299 break; 6300 } 6301 6302 return PredicateAtRangeStart; 6303 } 6304 6305 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6306 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6307 /// of VF's starting at a given VF and extending it as much as possible. Each 6308 /// vectorization decision can potentially shorten this sub-range during 6309 /// buildVPlan(). 6310 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6311 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6312 VFRange SubRange = {VF, MaxVF + 1}; 6313 VPlans.push_back(buildVPlan(SubRange)); 6314 VF = SubRange.End; 6315 } 6316 } 6317 6318 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6319 VPlanPtr &Plan) { 6320 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6321 6322 // Look for cached value. 6323 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6324 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6325 if (ECEntryIt != EdgeMaskCache.end()) 6326 return ECEntryIt->second; 6327 6328 VPValue *SrcMask = createBlockInMask(Src, Plan); 6329 6330 // The terminator has to be a branch inst! 6331 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6332 assert(BI && "Unexpected terminator found"); 6333 6334 if (!BI->isConditional()) 6335 return EdgeMaskCache[Edge] = SrcMask; 6336 6337 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6338 assert(EdgeMask && "No Edge Mask found for condition"); 6339 6340 if (BI->getSuccessor(0) != Dst) 6341 EdgeMask = Builder.createNot(EdgeMask); 6342 6343 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6344 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6345 6346 return EdgeMaskCache[Edge] = EdgeMask; 6347 } 6348 6349 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6350 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6351 6352 // Look for cached value. 6353 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6354 if (BCEntryIt != BlockMaskCache.end()) 6355 return BCEntryIt->second; 6356 6357 // All-one mask is modelled as no-mask following the convention for masked 6358 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6359 VPValue *BlockMask = nullptr; 6360 6361 if (OrigLoop->getHeader() == BB) { 6362 if (!CM.blockNeedsPredication(BB)) 6363 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6364 6365 // Introduce the early-exit compare IV <= BTC to form header block mask. 6366 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6367 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6368 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6369 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6370 return BlockMaskCache[BB] = BlockMask; 6371 } 6372 6373 // This is the block mask. We OR all incoming edges. 6374 for (auto *Predecessor : predecessors(BB)) { 6375 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6376 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6377 return BlockMaskCache[BB] = EdgeMask; 6378 6379 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6380 BlockMask = EdgeMask; 6381 continue; 6382 } 6383 6384 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6385 } 6386 6387 return BlockMaskCache[BB] = BlockMask; 6388 } 6389 6390 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6391 VFRange &Range, 6392 VPlanPtr &Plan) { 6393 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6394 if (!IG) 6395 return nullptr; 6396 6397 // Now check if IG is relevant for VF's in the given range. 6398 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6399 return [=](unsigned VF) -> bool { 6400 return (VF >= 2 && // Query is illegal for VF == 1 6401 CM.getWideningDecision(I, VF) == 6402 LoopVectorizationCostModel::CM_Interleave); 6403 }; 6404 }; 6405 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6406 return nullptr; 6407 6408 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6409 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6410 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6411 assert(I == IG->getInsertPos() && 6412 "Generating a recipe for an adjunct member of an interleave group"); 6413 6414 VPValue *Mask = nullptr; 6415 if (Legal->isMaskRequired(I)) 6416 Mask = createBlockInMask(I->getParent(), Plan); 6417 6418 return new VPInterleaveRecipe(IG, Mask); 6419 } 6420 6421 VPWidenMemoryInstructionRecipe * 6422 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6423 VPlanPtr &Plan) { 6424 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6425 return nullptr; 6426 6427 auto willWiden = [&](unsigned VF) -> bool { 6428 if (VF == 1) 6429 return false; 6430 if (CM.isScalarAfterVectorization(I, VF) || 6431 CM.isProfitableToScalarize(I, VF)) 6432 return false; 6433 LoopVectorizationCostModel::InstWidening Decision = 6434 CM.getWideningDecision(I, VF); 6435 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6436 "CM decision should be taken at this point."); 6437 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6438 "Interleave memory opportunity should be caught earlier."); 6439 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6440 }; 6441 6442 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6443 return nullptr; 6444 6445 VPValue *Mask = nullptr; 6446 if (Legal->isMaskRequired(I)) 6447 Mask = createBlockInMask(I->getParent(), Plan); 6448 6449 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6450 } 6451 6452 VPWidenIntOrFpInductionRecipe * 6453 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6454 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6455 // Check if this is an integer or fp induction. If so, build the recipe that 6456 // produces its scalar and vector values. 6457 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6458 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6459 II.getKind() == InductionDescriptor::IK_FpInduction) 6460 return new VPWidenIntOrFpInductionRecipe(Phi); 6461 6462 return nullptr; 6463 } 6464 6465 // Optimize the special case where the source is a constant integer 6466 // induction variable. Notice that we can only optimize the 'trunc' case 6467 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6468 // (c) other casts depend on pointer size. 6469 6470 // Determine whether \p K is a truncation based on an induction variable that 6471 // can be optimized. 6472 auto isOptimizableIVTruncate = 6473 [&](Instruction *K) -> std::function<bool(unsigned)> { 6474 return 6475 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6476 }; 6477 6478 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6479 isOptimizableIVTruncate(I), Range)) 6480 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6481 cast<TruncInst>(I)); 6482 return nullptr; 6483 } 6484 6485 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6486 PHINode *Phi = dyn_cast<PHINode>(I); 6487 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6488 return nullptr; 6489 6490 // We know that all PHIs in non-header blocks are converted into selects, so 6491 // we don't have to worry about the insertion order and we can just use the 6492 // builder. At this point we generate the predication tree. There may be 6493 // duplications since this is a simple recursive scan, but future 6494 // optimizations will clean it up. 6495 6496 SmallVector<VPValue *, 2> Masks; 6497 unsigned NumIncoming = Phi->getNumIncomingValues(); 6498 for (unsigned In = 0; In < NumIncoming; In++) { 6499 VPValue *EdgeMask = 6500 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6501 assert((EdgeMask || NumIncoming == 1) && 6502 "Multiple predecessors with one having a full mask"); 6503 if (EdgeMask) 6504 Masks.push_back(EdgeMask); 6505 } 6506 return new VPBlendRecipe(Phi, Masks); 6507 } 6508 6509 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6510 VFRange &Range) { 6511 6512 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6513 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6514 6515 if (IsPredicated) 6516 return false; 6517 6518 auto IsVectorizableOpcode = [](unsigned Opcode) { 6519 switch (Opcode) { 6520 case Instruction::Add: 6521 case Instruction::And: 6522 case Instruction::AShr: 6523 case Instruction::BitCast: 6524 case Instruction::Br: 6525 case Instruction::Call: 6526 case Instruction::FAdd: 6527 case Instruction::FCmp: 6528 case Instruction::FDiv: 6529 case Instruction::FMul: 6530 case Instruction::FPExt: 6531 case Instruction::FPToSI: 6532 case Instruction::FPToUI: 6533 case Instruction::FPTrunc: 6534 case Instruction::FRem: 6535 case Instruction::FSub: 6536 case Instruction::GetElementPtr: 6537 case Instruction::ICmp: 6538 case Instruction::IntToPtr: 6539 case Instruction::Load: 6540 case Instruction::LShr: 6541 case Instruction::Mul: 6542 case Instruction::Or: 6543 case Instruction::PHI: 6544 case Instruction::PtrToInt: 6545 case Instruction::SDiv: 6546 case Instruction::Select: 6547 case Instruction::SExt: 6548 case Instruction::Shl: 6549 case Instruction::SIToFP: 6550 case Instruction::SRem: 6551 case Instruction::Store: 6552 case Instruction::Sub: 6553 case Instruction::Trunc: 6554 case Instruction::UDiv: 6555 case Instruction::UIToFP: 6556 case Instruction::URem: 6557 case Instruction::Xor: 6558 case Instruction::ZExt: 6559 return true; 6560 } 6561 return false; 6562 }; 6563 6564 if (!IsVectorizableOpcode(I->getOpcode())) 6565 return false; 6566 6567 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6568 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6569 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6570 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6571 return false; 6572 } 6573 6574 auto willWiden = [&](unsigned VF) -> bool { 6575 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6576 CM.isProfitableToScalarize(I, VF))) 6577 return false; 6578 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6579 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6580 // The following case may be scalarized depending on the VF. 6581 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6582 // version of the instruction. 6583 // Is it beneficial to perform intrinsic call compared to lib call? 6584 bool NeedToScalarize; 6585 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6586 bool UseVectorIntrinsic = 6587 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6588 return UseVectorIntrinsic || !NeedToScalarize; 6589 } 6590 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6591 assert(CM.getWideningDecision(I, VF) == 6592 LoopVectorizationCostModel::CM_Scalarize && 6593 "Memory widening decisions should have been taken care by now"); 6594 return false; 6595 } 6596 return true; 6597 }; 6598 6599 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6600 return false; 6601 6602 // Success: widen this instruction. We optimize the common case where 6603 // consecutive instructions can be represented by a single recipe. 6604 if (!VPBB->empty()) { 6605 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6606 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6607 return true; 6608 } 6609 6610 VPBB->appendRecipe(new VPWidenRecipe(I)); 6611 return true; 6612 } 6613 6614 VPBasicBlock *VPRecipeBuilder::handleReplication( 6615 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6616 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6617 VPlanPtr &Plan) { 6618 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6619 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6620 Range); 6621 6622 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6623 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6624 6625 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6626 6627 // Find if I uses a predicated instruction. If so, it will use its scalar 6628 // value. Avoid hoisting the insert-element which packs the scalar value into 6629 // a vector value, as that happens iff all users use the vector value. 6630 for (auto &Op : I->operands()) 6631 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6632 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6633 PredInst2Recipe[PredInst]->setAlsoPack(false); 6634 6635 // Finalize the recipe for Instr, first if it is not predicated. 6636 if (!IsPredicated) { 6637 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6638 VPBB->appendRecipe(Recipe); 6639 return VPBB; 6640 } 6641 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6642 assert(VPBB->getSuccessors().empty() && 6643 "VPBB has successors when handling predicated replication."); 6644 // Record predicated instructions for above packing optimizations. 6645 PredInst2Recipe[I] = Recipe; 6646 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6647 VPBlockUtils::insertBlockAfter(Region, VPBB); 6648 auto *RegSucc = new VPBasicBlock(); 6649 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6650 return RegSucc; 6651 } 6652 6653 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6654 VPRecipeBase *PredRecipe, 6655 VPlanPtr &Plan) { 6656 // Instructions marked for predication are replicated and placed under an 6657 // if-then construct to prevent side-effects. 6658 6659 // Generate recipes to compute the block mask for this region. 6660 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6661 6662 // Build the triangular if-then region. 6663 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6664 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6665 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6666 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6667 auto *PHIRecipe = 6668 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6669 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6670 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6671 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6672 6673 // Note: first set Entry as region entry and then connect successors starting 6674 // from it in order, to propagate the "parent" of each VPBasicBlock. 6675 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6676 VPBlockUtils::connectBlocks(Pred, Exit); 6677 6678 return Region; 6679 } 6680 6681 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6682 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6683 VPRecipeBase *Recipe = nullptr; 6684 // Check if Instr should belong to an interleave memory recipe, or already 6685 // does. In the latter case Instr is irrelevant. 6686 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6687 VPBB->appendRecipe(Recipe); 6688 return true; 6689 } 6690 6691 // Check if Instr is a memory operation that should be widened. 6692 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6693 VPBB->appendRecipe(Recipe); 6694 return true; 6695 } 6696 6697 // Check if Instr should form some PHI recipe. 6698 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6699 VPBB->appendRecipe(Recipe); 6700 return true; 6701 } 6702 if ((Recipe = tryToBlend(Instr, Plan))) { 6703 VPBB->appendRecipe(Recipe); 6704 return true; 6705 } 6706 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6707 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6708 return true; 6709 } 6710 6711 // Check if Instr is to be widened by a general VPWidenRecipe, after 6712 // having first checked for specific widening recipes that deal with 6713 // Interleave Groups, Inductions and Phi nodes. 6714 if (tryToWiden(Instr, VPBB, Range)) 6715 return true; 6716 6717 return false; 6718 } 6719 6720 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6721 unsigned MaxVF) { 6722 assert(OrigLoop->empty() && "Inner loop expected."); 6723 6724 // Collect conditions feeding internal conditional branches; they need to be 6725 // represented in VPlan for it to model masking. 6726 SmallPtrSet<Value *, 1> NeedDef; 6727 6728 auto *Latch = OrigLoop->getLoopLatch(); 6729 for (BasicBlock *BB : OrigLoop->blocks()) { 6730 if (BB == Latch) 6731 continue; 6732 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6733 if (Branch && Branch->isConditional()) 6734 NeedDef.insert(Branch->getCondition()); 6735 } 6736 6737 // If the tail is to be folded by masking, the primary induction variable 6738 // needs to be represented in VPlan for it to model early-exit masking. 6739 if (CM.foldTailByMasking()) 6740 NeedDef.insert(Legal->getPrimaryInduction()); 6741 6742 // Collect instructions from the original loop that will become trivially dead 6743 // in the vectorized loop. We don't need to vectorize these instructions. For 6744 // example, original induction update instructions can become dead because we 6745 // separately emit induction "steps" when generating code for the new loop. 6746 // Similarly, we create a new latch condition when setting up the structure 6747 // of the new loop, so the old one can become dead. 6748 SmallPtrSet<Instruction *, 4> DeadInstructions; 6749 collectTriviallyDeadInstructions(DeadInstructions); 6750 6751 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6752 VFRange SubRange = {VF, MaxVF + 1}; 6753 VPlans.push_back( 6754 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6755 VF = SubRange.End; 6756 } 6757 } 6758 6759 LoopVectorizationPlanner::VPlanPtr 6760 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6761 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6762 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6763 // Hold a mapping from predicated instructions to their recipes, in order to 6764 // fix their AlsoPack behavior if a user is determined to replicate and use a 6765 // scalar instead of vector value. 6766 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6767 6768 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6769 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6770 6771 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6772 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6773 auto Plan = llvm::make_unique<VPlan>(VPBB); 6774 6775 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6776 // Represent values that will have defs inside VPlan. 6777 for (Value *V : NeedDef) 6778 Plan->addVPValue(V); 6779 6780 // Scan the body of the loop in a topological order to visit each basic block 6781 // after having visited its predecessor basic blocks. 6782 LoopBlocksDFS DFS(OrigLoop); 6783 DFS.perform(LI); 6784 6785 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6786 // Relevant instructions from basic block BB will be grouped into VPRecipe 6787 // ingredients and fill a new VPBasicBlock. 6788 unsigned VPBBsForBB = 0; 6789 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6790 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6791 VPBB = FirstVPBBForBB; 6792 Builder.setInsertPoint(VPBB); 6793 6794 std::vector<Instruction *> Ingredients; 6795 6796 // Organize the ingredients to vectorize from current basic block in the 6797 // right order. 6798 for (Instruction &I : BB->instructionsWithoutDebug()) { 6799 Instruction *Instr = &I; 6800 6801 // First filter out irrelevant instructions, to ensure no recipes are 6802 // built for them. 6803 if (isa<BranchInst>(Instr) || 6804 DeadInstructions.find(Instr) != DeadInstructions.end()) 6805 continue; 6806 6807 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6808 // member of the IG, do not construct any Recipe for it. 6809 const InterleaveGroup<Instruction> *IG = 6810 CM.getInterleavedAccessGroup(Instr); 6811 if (IG && Instr != IG->getInsertPos() && 6812 Range.Start >= 2 && // Query is illegal for VF == 1 6813 CM.getWideningDecision(Instr, Range.Start) == 6814 LoopVectorizationCostModel::CM_Interleave) { 6815 auto SinkCandidate = SinkAfterInverse.find(Instr); 6816 if (SinkCandidate != SinkAfterInverse.end()) 6817 Ingredients.push_back(SinkCandidate->second); 6818 continue; 6819 } 6820 6821 // Move instructions to handle first-order recurrences, step 1: avoid 6822 // handling this instruction until after we've handled the instruction it 6823 // should follow. 6824 auto SAIt = SinkAfter.find(Instr); 6825 if (SAIt != SinkAfter.end()) { 6826 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6827 << *SAIt->second 6828 << " to vectorize a 1st order recurrence.\n"); 6829 SinkAfterInverse[SAIt->second] = Instr; 6830 continue; 6831 } 6832 6833 Ingredients.push_back(Instr); 6834 6835 // Move instructions to handle first-order recurrences, step 2: push the 6836 // instruction to be sunk at its insertion point. 6837 auto SAInvIt = SinkAfterInverse.find(Instr); 6838 if (SAInvIt != SinkAfterInverse.end()) 6839 Ingredients.push_back(SAInvIt->second); 6840 } 6841 6842 // Introduce each ingredient into VPlan. 6843 for (Instruction *Instr : Ingredients) { 6844 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6845 continue; 6846 6847 // Otherwise, if all widening options failed, Instruction is to be 6848 // replicated. This may create a successor for VPBB. 6849 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6850 Instr, Range, VPBB, PredInst2Recipe, Plan); 6851 if (NextVPBB != VPBB) { 6852 VPBB = NextVPBB; 6853 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6854 : ""); 6855 } 6856 } 6857 } 6858 6859 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6860 // may also be empty, such as the last one VPBB, reflecting original 6861 // basic-blocks with no recipes. 6862 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6863 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6864 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6865 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6866 delete PreEntry; 6867 6868 std::string PlanName; 6869 raw_string_ostream RSO(PlanName); 6870 unsigned VF = Range.Start; 6871 Plan->addVF(VF); 6872 RSO << "Initial VPlan for VF={" << VF; 6873 for (VF *= 2; VF < Range.End; VF *= 2) { 6874 Plan->addVF(VF); 6875 RSO << "," << VF; 6876 } 6877 RSO << "},UF>=1"; 6878 RSO.flush(); 6879 Plan->setName(PlanName); 6880 6881 return Plan; 6882 } 6883 6884 LoopVectorizationPlanner::VPlanPtr 6885 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6886 // Outer loop handling: They may require CFG and instruction level 6887 // transformations before even evaluating whether vectorization is profitable. 6888 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6889 // the vectorization pipeline. 6890 assert(!OrigLoop->empty()); 6891 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6892 6893 // Create new empty VPlan 6894 auto Plan = llvm::make_unique<VPlan>(); 6895 6896 // Build hierarchical CFG 6897 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6898 HCFGBuilder.buildHierarchicalCFG(); 6899 6900 SmallPtrSet<Instruction *, 1> DeadInstructions; 6901 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6902 Plan, Legal->getInductionVars(), DeadInstructions); 6903 6904 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6905 Plan->addVF(VF); 6906 6907 return Plan; 6908 } 6909 6910 Value* LoopVectorizationPlanner::VPCallbackILV:: 6911 getOrCreateVectorValues(Value *V, unsigned Part) { 6912 return ILV.getOrCreateVectorValue(V, Part); 6913 } 6914 6915 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6916 O << " +\n" 6917 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6918 IG->getInsertPos()->printAsOperand(O, false); 6919 if (User) { 6920 O << ", "; 6921 User->getOperand(0)->printAsOperand(O); 6922 } 6923 O << "\\l\""; 6924 for (unsigned i = 0; i < IG->getFactor(); ++i) 6925 if (Instruction *I = IG->getMember(i)) 6926 O << " +\n" 6927 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6928 } 6929 6930 void VPWidenRecipe::execute(VPTransformState &State) { 6931 for (auto &Instr : make_range(Begin, End)) 6932 State.ILV->widenInstruction(Instr); 6933 } 6934 6935 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 6936 assert(!State.Instance && "Int or FP induction being replicated."); 6937 State.ILV->widenIntOrFpInduction(IV, Trunc); 6938 } 6939 6940 void VPWidenPHIRecipe::execute(VPTransformState &State) { 6941 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 6942 } 6943 6944 void VPBlendRecipe::execute(VPTransformState &State) { 6945 State.ILV->setDebugLocFromInst(State.Builder, Phi); 6946 // We know that all PHIs in non-header blocks are converted into 6947 // selects, so we don't have to worry about the insertion order and we 6948 // can just use the builder. 6949 // At this point we generate the predication tree. There may be 6950 // duplications since this is a simple recursive scan, but future 6951 // optimizations will clean it up. 6952 6953 unsigned NumIncoming = Phi->getNumIncomingValues(); 6954 6955 assert((User || NumIncoming == 1) && 6956 "Multiple predecessors with predecessors having a full mask"); 6957 // Generate a sequence of selects of the form: 6958 // SELECT(Mask3, In3, 6959 // SELECT(Mask2, In2, 6960 // ( ...))) 6961 InnerLoopVectorizer::VectorParts Entry(State.UF); 6962 for (unsigned In = 0; In < NumIncoming; ++In) { 6963 for (unsigned Part = 0; Part < State.UF; ++Part) { 6964 // We might have single edge PHIs (blocks) - use an identity 6965 // 'select' for the first PHI operand. 6966 Value *In0 = 6967 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 6968 if (In == 0) 6969 Entry[Part] = In0; // Initialize with the first incoming value. 6970 else { 6971 // Select between the current value and the previous incoming edge 6972 // based on the incoming mask. 6973 Value *Cond = State.get(User->getOperand(In), Part); 6974 Entry[Part] = 6975 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 6976 } 6977 } 6978 } 6979 for (unsigned Part = 0; Part < State.UF; ++Part) 6980 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 6981 } 6982 6983 void VPInterleaveRecipe::execute(VPTransformState &State) { 6984 assert(!State.Instance && "Interleave group being replicated."); 6985 if (!User) 6986 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 6987 6988 // Last (and currently only) operand is a mask. 6989 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 6990 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 6991 for (unsigned Part = 0; Part < State.UF; ++Part) 6992 MaskValues[Part] = State.get(Mask, Part); 6993 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 6994 } 6995 6996 void VPReplicateRecipe::execute(VPTransformState &State) { 6997 if (State.Instance) { // Generate a single instance. 6998 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 6999 // Insert scalar instance packing it into a vector. 7000 if (AlsoPack && State.VF > 1) { 7001 // If we're constructing lane 0, initialize to start from undef. 7002 if (State.Instance->Lane == 0) { 7003 Value *Undef = 7004 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7005 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7006 } 7007 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7008 } 7009 return; 7010 } 7011 7012 // Generate scalar instances for all VF lanes of all UF parts, unless the 7013 // instruction is uniform inwhich case generate only the first lane for each 7014 // of the UF parts. 7015 unsigned EndLane = IsUniform ? 1 : State.VF; 7016 for (unsigned Part = 0; Part < State.UF; ++Part) 7017 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7018 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7019 } 7020 7021 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7022 assert(State.Instance && "Branch on Mask works only on single instance."); 7023 7024 unsigned Part = State.Instance->Part; 7025 unsigned Lane = State.Instance->Lane; 7026 7027 Value *ConditionBit = nullptr; 7028 if (!User) // Block in mask is all-one. 7029 ConditionBit = State.Builder.getTrue(); 7030 else { 7031 VPValue *BlockInMask = User->getOperand(0); 7032 ConditionBit = State.get(BlockInMask, Part); 7033 if (ConditionBit->getType()->isVectorTy()) 7034 ConditionBit = State.Builder.CreateExtractElement( 7035 ConditionBit, State.Builder.getInt32(Lane)); 7036 } 7037 7038 // Replace the temporary unreachable terminator with a new conditional branch, 7039 // whose two destinations will be set later when they are created. 7040 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7041 assert(isa<UnreachableInst>(CurrentTerminator) && 7042 "Expected to replace unreachable terminator with conditional branch."); 7043 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7044 CondBr->setSuccessor(0, nullptr); 7045 ReplaceInstWithInst(CurrentTerminator, CondBr); 7046 } 7047 7048 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7049 assert(State.Instance && "Predicated instruction PHI works per instance."); 7050 Instruction *ScalarPredInst = cast<Instruction>( 7051 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7052 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7053 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7054 assert(PredicatingBB && "Predicated block has no single predecessor."); 7055 7056 // By current pack/unpack logic we need to generate only a single phi node: if 7057 // a vector value for the predicated instruction exists at this point it means 7058 // the instruction has vector users only, and a phi for the vector value is 7059 // needed. In this case the recipe of the predicated instruction is marked to 7060 // also do that packing, thereby "hoisting" the insert-element sequence. 7061 // Otherwise, a phi node for the scalar value is needed. 7062 unsigned Part = State.Instance->Part; 7063 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7064 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7065 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7066 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7067 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7068 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7069 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7070 } else { 7071 Type *PredInstType = PredInst->getType(); 7072 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7073 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7074 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7075 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7076 } 7077 } 7078 7079 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7080 if (!User) 7081 return State.ILV->vectorizeMemoryInstruction(&Instr); 7082 7083 // Last (and currently only) operand is a mask. 7084 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7085 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7086 for (unsigned Part = 0; Part < State.UF; ++Part) 7087 MaskValues[Part] = State.get(Mask, Part); 7088 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7089 } 7090 7091 // Process the loop in the VPlan-native vectorization path. This path builds 7092 // VPlan upfront in the vectorization pipeline, which allows to apply 7093 // VPlan-to-VPlan transformations from the very beginning without modifying the 7094 // input LLVM IR. 7095 static bool processLoopInVPlanNativePath( 7096 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7097 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7098 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7099 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7100 7101 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7102 Function *F = L->getHeader()->getParent(); 7103 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7104 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7105 &Hints, IAI); 7106 // Use the planner for outer loop vectorization. 7107 // TODO: CM is not used at this point inside the planner. Turn CM into an 7108 // optional argument if we don't need it in the future. 7109 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7110 7111 // Get user vectorization factor. 7112 unsigned UserVF = Hints.getWidth(); 7113 7114 // Check the function attributes to find out if this function should be 7115 // optimized for size. 7116 bool OptForSize = 7117 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7118 7119 // Plan how to best vectorize, return the best VF and its cost. 7120 VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7121 7122 // If we are stress testing VPlan builds, do not attempt to generate vector 7123 // code. 7124 if (VPlanBuildStressTest) 7125 return false; 7126 7127 LVP.setBestPlan(VF.Width, 1); 7128 7129 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL, 7130 &CM); 7131 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7132 << L->getHeader()->getParent()->getName() << "\"\n"); 7133 LVP.executePlan(LB, DT); 7134 7135 // Mark the loop as already vectorized to avoid vectorizing again. 7136 Hints.setAlreadyVectorized(); 7137 7138 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7139 return true; 7140 } 7141 7142 bool LoopVectorizePass::processLoop(Loop *L) { 7143 assert((EnableVPlanNativePath || L->empty()) && 7144 "VPlan-native path is not enabled. Only process inner loops."); 7145 7146 #ifndef NDEBUG 7147 const std::string DebugLocStr = getDebugLocString(L); 7148 #endif /* NDEBUG */ 7149 7150 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7151 << L->getHeader()->getParent()->getName() << "\" from " 7152 << DebugLocStr << "\n"); 7153 7154 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7155 7156 LLVM_DEBUG( 7157 dbgs() << "LV: Loop hints:" 7158 << " force=" 7159 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7160 ? "disabled" 7161 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7162 ? "enabled" 7163 : "?")) 7164 << " width=" << Hints.getWidth() 7165 << " unroll=" << Hints.getInterleave() << "\n"); 7166 7167 // Function containing loop 7168 Function *F = L->getHeader()->getParent(); 7169 7170 // Looking at the diagnostic output is the only way to determine if a loop 7171 // was vectorized (other than looking at the IR or machine code), so it 7172 // is important to generate an optimization remark for each loop. Most of 7173 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7174 // generated as OptimizationRemark and OptimizationRemarkMissed are 7175 // less verbose reporting vectorized loops and unvectorized loops that may 7176 // benefit from vectorization, respectively. 7177 7178 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7179 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7180 return false; 7181 } 7182 7183 PredicatedScalarEvolution PSE(*SE, *L); 7184 7185 // Check if it is legal to vectorize the loop. 7186 LoopVectorizationRequirements Requirements(*ORE); 7187 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7188 &Requirements, &Hints, DB, AC); 7189 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7190 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7191 Hints.emitRemarkWithHints(); 7192 return false; 7193 } 7194 7195 // Check the function attributes to find out if this function should be 7196 // optimized for size. 7197 bool OptForSize = 7198 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7199 7200 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7201 // here. They may require CFG and instruction level transformations before 7202 // even evaluating whether vectorization is profitable. Since we cannot modify 7203 // the incoming IR, we need to build VPlan upfront in the vectorization 7204 // pipeline. 7205 if (!L->empty()) 7206 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7207 ORE, Hints); 7208 7209 assert(L->empty() && "Inner loop expected."); 7210 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7211 // count by optimizing for size, to minimize overheads. 7212 // Prefer constant trip counts over profile data, over upper bound estimate. 7213 unsigned ExpectedTC = 0; 7214 bool HasExpectedTC = false; 7215 if (const SCEVConstant *ConstExits = 7216 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7217 const APInt &ExitsCount = ConstExits->getAPInt(); 7218 // We are interested in small values for ExpectedTC. Skip over those that 7219 // can't fit an unsigned. 7220 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7221 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7222 HasExpectedTC = true; 7223 } 7224 } 7225 // ExpectedTC may be large because it's bound by a variable. Check 7226 // profiling information to validate we should vectorize. 7227 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7228 auto EstimatedTC = getLoopEstimatedTripCount(L); 7229 if (EstimatedTC) { 7230 ExpectedTC = *EstimatedTC; 7231 HasExpectedTC = true; 7232 } 7233 } 7234 if (!HasExpectedTC) { 7235 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7236 HasExpectedTC = (ExpectedTC > 0); 7237 } 7238 7239 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7240 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7241 << "This loop is worth vectorizing only if no scalar " 7242 << "iteration overheads are incurred."); 7243 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7244 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7245 else { 7246 LLVM_DEBUG(dbgs() << "\n"); 7247 // Loops with a very small trip count are considered for vectorization 7248 // under OptForSize, thereby making sure the cost of their loop body is 7249 // dominant, free of runtime guards and scalar iteration overheads. 7250 OptForSize = true; 7251 } 7252 } 7253 7254 // Check the function attributes to see if implicit floats are allowed. 7255 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7256 // an integer loop and the vector instructions selected are purely integer 7257 // vector instructions? 7258 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7259 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7260 "attribute is used.\n"); 7261 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7262 "NoImplicitFloat", L) 7263 << "loop not vectorized due to NoImplicitFloat attribute"); 7264 Hints.emitRemarkWithHints(); 7265 return false; 7266 } 7267 7268 // Check if the target supports potentially unsafe FP vectorization. 7269 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7270 // for the target we're vectorizing for, to make sure none of the 7271 // additional fp-math flags can help. 7272 if (Hints.isPotentiallyUnsafe() && 7273 TTI->isFPVectorizationPotentiallyUnsafe()) { 7274 LLVM_DEBUG( 7275 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7276 ORE->emit( 7277 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7278 << "loop not vectorized due to unsafe FP support."); 7279 Hints.emitRemarkWithHints(); 7280 return false; 7281 } 7282 7283 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7284 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7285 7286 // If an override option has been passed in for interleaved accesses, use it. 7287 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7288 UseInterleaved = EnableInterleavedMemAccesses; 7289 7290 // Analyze interleaved memory accesses. 7291 if (UseInterleaved) { 7292 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7293 } 7294 7295 // Use the cost model. 7296 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7297 &Hints, IAI); 7298 CM.collectValuesToIgnore(); 7299 7300 // Use the planner for vectorization. 7301 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7302 7303 // Get user vectorization factor. 7304 unsigned UserVF = Hints.getWidth(); 7305 7306 // Plan how to best vectorize, return the best VF and its cost. 7307 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7308 7309 // Select the interleave count. 7310 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7311 7312 // Get user interleave count. 7313 unsigned UserIC = Hints.getInterleave(); 7314 7315 // Identify the diagnostic messages that should be produced. 7316 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7317 bool VectorizeLoop = true, InterleaveLoop = true; 7318 if (Requirements.doesNotMeet(F, L, Hints)) { 7319 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7320 "requirements.\n"); 7321 Hints.emitRemarkWithHints(); 7322 return false; 7323 } 7324 7325 if (VF.Width == 1) { 7326 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7327 VecDiagMsg = std::make_pair( 7328 "VectorizationNotBeneficial", 7329 "the cost-model indicates that vectorization is not beneficial"); 7330 VectorizeLoop = false; 7331 } 7332 7333 if (IC == 1 && UserIC <= 1) { 7334 // Tell the user interleaving is not beneficial. 7335 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7336 IntDiagMsg = std::make_pair( 7337 "InterleavingNotBeneficial", 7338 "the cost-model indicates that interleaving is not beneficial"); 7339 InterleaveLoop = false; 7340 if (UserIC == 1) { 7341 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7342 IntDiagMsg.second += 7343 " and is explicitly disabled or interleave count is set to 1"; 7344 } 7345 } else if (IC > 1 && UserIC == 1) { 7346 // Tell the user interleaving is beneficial, but it explicitly disabled. 7347 LLVM_DEBUG( 7348 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7349 IntDiagMsg = std::make_pair( 7350 "InterleavingBeneficialButDisabled", 7351 "the cost-model indicates that interleaving is beneficial " 7352 "but is explicitly disabled or interleave count is set to 1"); 7353 InterleaveLoop = false; 7354 } 7355 7356 // Override IC if user provided an interleave count. 7357 IC = UserIC > 0 ? UserIC : IC; 7358 7359 // Emit diagnostic messages, if any. 7360 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7361 if (!VectorizeLoop && !InterleaveLoop) { 7362 // Do not vectorize or interleaving the loop. 7363 ORE->emit([&]() { 7364 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7365 L->getStartLoc(), L->getHeader()) 7366 << VecDiagMsg.second; 7367 }); 7368 ORE->emit([&]() { 7369 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7370 L->getStartLoc(), L->getHeader()) 7371 << IntDiagMsg.second; 7372 }); 7373 return false; 7374 } else if (!VectorizeLoop && InterleaveLoop) { 7375 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7376 ORE->emit([&]() { 7377 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7378 L->getStartLoc(), L->getHeader()) 7379 << VecDiagMsg.second; 7380 }); 7381 } else if (VectorizeLoop && !InterleaveLoop) { 7382 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7383 << ") in " << DebugLocStr << '\n'); 7384 ORE->emit([&]() { 7385 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7386 L->getStartLoc(), L->getHeader()) 7387 << IntDiagMsg.second; 7388 }); 7389 } else if (VectorizeLoop && InterleaveLoop) { 7390 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7391 << ") in " << DebugLocStr << '\n'); 7392 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7393 } 7394 7395 LVP.setBestPlan(VF.Width, IC); 7396 7397 using namespace ore; 7398 bool DisableRuntimeUnroll = false; 7399 MDNode *OrigLoopID = L->getLoopID(); 7400 7401 if (!VectorizeLoop) { 7402 assert(IC > 1 && "interleave count should not be 1 or 0"); 7403 // If we decided that it is not legal to vectorize the loop, then 7404 // interleave it. 7405 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7406 &CM); 7407 LVP.executePlan(Unroller, DT); 7408 7409 ORE->emit([&]() { 7410 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7411 L->getHeader()) 7412 << "interleaved loop (interleaved count: " 7413 << NV("InterleaveCount", IC) << ")"; 7414 }); 7415 } else { 7416 // If we decided that it is *legal* to vectorize the loop, then do it. 7417 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7418 &LVL, &CM); 7419 LVP.executePlan(LB, DT); 7420 ++LoopsVectorized; 7421 7422 // Add metadata to disable runtime unrolling a scalar loop when there are 7423 // no runtime checks about strides and memory. A scalar loop that is 7424 // rarely used is not worth unrolling. 7425 if (!LB.areSafetyChecksAdded()) 7426 DisableRuntimeUnroll = true; 7427 7428 // Report the vectorization decision. 7429 ORE->emit([&]() { 7430 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7431 L->getHeader()) 7432 << "vectorized loop (vectorization width: " 7433 << NV("VectorizationFactor", VF.Width) 7434 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7435 }); 7436 } 7437 7438 Optional<MDNode *> RemainderLoopID = 7439 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7440 LLVMLoopVectorizeFollowupEpilogue}); 7441 if (RemainderLoopID.hasValue()) { 7442 L->setLoopID(RemainderLoopID.getValue()); 7443 } else { 7444 if (DisableRuntimeUnroll) 7445 AddRuntimeUnrollDisableMetaData(L); 7446 7447 // Mark the loop as already vectorized to avoid vectorizing again. 7448 Hints.setAlreadyVectorized(); 7449 } 7450 7451 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7452 return true; 7453 } 7454 7455 bool LoopVectorizePass::runImpl( 7456 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7457 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7458 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7459 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7460 OptimizationRemarkEmitter &ORE_) { 7461 SE = &SE_; 7462 LI = &LI_; 7463 TTI = &TTI_; 7464 DT = &DT_; 7465 BFI = &BFI_; 7466 TLI = TLI_; 7467 AA = &AA_; 7468 AC = &AC_; 7469 GetLAA = &GetLAA_; 7470 DB = &DB_; 7471 ORE = &ORE_; 7472 7473 // Don't attempt if 7474 // 1. the target claims to have no vector registers, and 7475 // 2. interleaving won't help ILP. 7476 // 7477 // The second condition is necessary because, even if the target has no 7478 // vector registers, loop vectorization may still enable scalar 7479 // interleaving. 7480 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7481 return false; 7482 7483 bool Changed = false; 7484 7485 // The vectorizer requires loops to be in simplified form. 7486 // Since simplification may add new inner loops, it has to run before the 7487 // legality and profitability checks. This means running the loop vectorizer 7488 // will simplify all loops, regardless of whether anything end up being 7489 // vectorized. 7490 for (auto &L : *LI) 7491 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7492 7493 // Build up a worklist of inner-loops to vectorize. This is necessary as 7494 // the act of vectorizing or partially unrolling a loop creates new loops 7495 // and can invalidate iterators across the loops. 7496 SmallVector<Loop *, 8> Worklist; 7497 7498 for (Loop *L : *LI) 7499 collectSupportedLoops(*L, LI, ORE, Worklist); 7500 7501 LoopsAnalyzed += Worklist.size(); 7502 7503 // Now walk the identified inner loops. 7504 while (!Worklist.empty()) { 7505 Loop *L = Worklist.pop_back_val(); 7506 7507 // For the inner loops we actually process, form LCSSA to simplify the 7508 // transform. 7509 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7510 7511 Changed |= processLoop(L); 7512 } 7513 7514 // Process each loop nest in the function. 7515 return Changed; 7516 } 7517 7518 PreservedAnalyses LoopVectorizePass::run(Function &F, 7519 FunctionAnalysisManager &AM) { 7520 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7521 auto &LI = AM.getResult<LoopAnalysis>(F); 7522 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7523 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7524 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7525 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7526 auto &AA = AM.getResult<AAManager>(F); 7527 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7528 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7529 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7530 7531 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7532 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7533 [&](Loop &L) -> const LoopAccessInfo & { 7534 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7535 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7536 }; 7537 bool Changed = 7538 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7539 if (!Changed) 7540 return PreservedAnalyses::all(); 7541 PreservedAnalyses PA; 7542 7543 // We currently do not preserve loopinfo/dominator analyses with outer loop 7544 // vectorization. Until this is addressed, mark these analyses as preserved 7545 // only for non-VPlan-native path. 7546 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7547 if (!EnableVPlanNativePath) { 7548 PA.preserve<LoopAnalysis>(); 7549 PA.preserve<DominatorTreeAnalysis>(); 7550 } 7551 PA.preserve<BasicAA>(); 7552 PA.preserve<GlobalsAA>(); 7553 return PA; 7554 } 7555