1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "VPRecipeBuilder.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseMapInfo.h" 65 #include "llvm/ADT/Hashing.h" 66 #include "llvm/ADT/MapVector.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringRef.h" 75 #include "llvm/ADT/Twine.h" 76 #include "llvm/ADT/iterator_range.h" 77 #include "llvm/Analysis/AssumptionCache.h" 78 #include "llvm/Analysis/BasicAliasAnalysis.h" 79 #include "llvm/Analysis/BlockFrequencyInfo.h" 80 #include "llvm/Analysis/CFG.h" 81 #include "llvm/Analysis/CodeMetrics.h" 82 #include "llvm/Analysis/DemandedBits.h" 83 #include "llvm/Analysis/GlobalsModRef.h" 84 #include "llvm/Analysis/LoopAccessAnalysis.h" 85 #include "llvm/Analysis/LoopAnalysisManager.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/LoopIterator.h" 88 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 89 #include "llvm/Analysis/ScalarEvolution.h" 90 #include "llvm/Analysis/ScalarEvolutionExpander.h" 91 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 92 #include "llvm/Analysis/TargetLibraryInfo.h" 93 #include "llvm/Analysis/TargetTransformInfo.h" 94 #include "llvm/Analysis/VectorUtils.h" 95 #include "llvm/IR/Attributes.h" 96 #include "llvm/IR/BasicBlock.h" 97 #include "llvm/IR/CFG.h" 98 #include "llvm/IR/Constant.h" 99 #include "llvm/IR/Constants.h" 100 #include "llvm/IR/DataLayout.h" 101 #include "llvm/IR/DebugInfoMetadata.h" 102 #include "llvm/IR/DebugLoc.h" 103 #include "llvm/IR/DerivedTypes.h" 104 #include "llvm/IR/DiagnosticInfo.h" 105 #include "llvm/IR/Dominators.h" 106 #include "llvm/IR/Function.h" 107 #include "llvm/IR/IRBuilder.h" 108 #include "llvm/IR/InstrTypes.h" 109 #include "llvm/IR/Instruction.h" 110 #include "llvm/IR/Instructions.h" 111 #include "llvm/IR/IntrinsicInst.h" 112 #include "llvm/IR/Intrinsics.h" 113 #include "llvm/IR/LLVMContext.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/Type.h" 118 #include "llvm/IR/Use.h" 119 #include "llvm/IR/User.h" 120 #include "llvm/IR/Value.h" 121 #include "llvm/IR/ValueHandle.h" 122 #include "llvm/IR/Verifier.h" 123 #include "llvm/Pass.h" 124 #include "llvm/Support/Casting.h" 125 #include "llvm/Support/CommandLine.h" 126 #include "llvm/Support/Compiler.h" 127 #include "llvm/Support/Debug.h" 128 #include "llvm/Support/ErrorHandling.h" 129 #include "llvm/Support/MathExtras.h" 130 #include "llvm/Support/raw_ostream.h" 131 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 132 #include "llvm/Transforms/Utils/LoopSimplify.h" 133 #include "llvm/Transforms/Utils/LoopUtils.h" 134 #include "llvm/Transforms/Utils/LoopVersioning.h" 135 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 136 #include <algorithm> 137 #include <cassert> 138 #include <cstdint> 139 #include <cstdlib> 140 #include <functional> 141 #include <iterator> 142 #include <limits> 143 #include <memory> 144 #include <string> 145 #include <tuple> 146 #include <utility> 147 #include <vector> 148 149 using namespace llvm; 150 151 #define LV_NAME "loop-vectorize" 152 #define DEBUG_TYPE LV_NAME 153 154 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 155 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 156 157 /// Loops with a known constant trip count below this number are vectorized only 158 /// if no scalar iteration overheads are incurred. 159 static cl::opt<unsigned> TinyTripCountVectorThreshold( 160 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 161 cl::desc("Loops with a constant trip count that is smaller than this " 162 "value are vectorized only if no scalar iteration overheads " 163 "are incurred.")); 164 165 static cl::opt<bool> MaximizeBandwidth( 166 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 167 cl::desc("Maximize bandwidth when selecting vectorization factor which " 168 "will be determined by the smallest type in loop.")); 169 170 static cl::opt<bool> EnableInterleavedMemAccesses( 171 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 172 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 173 174 /// Maximum factor for an interleaved memory access. 175 static cl::opt<unsigned> MaxInterleaveGroupFactor( 176 "max-interleave-group-factor", cl::Hidden, 177 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 178 cl::init(8)); 179 180 /// We don't interleave loops with a known constant trip count below this 181 /// number. 182 static const unsigned TinyTripCountInterleaveThreshold = 128; 183 184 static cl::opt<unsigned> ForceTargetNumScalarRegs( 185 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 186 cl::desc("A flag that overrides the target's number of scalar registers.")); 187 188 static cl::opt<unsigned> ForceTargetNumVectorRegs( 189 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 190 cl::desc("A flag that overrides the target's number of vector registers.")); 191 192 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 193 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 194 cl::desc("A flag that overrides the target's max interleave factor for " 195 "scalar loops.")); 196 197 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 198 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 199 cl::desc("A flag that overrides the target's max interleave factor for " 200 "vectorized loops.")); 201 202 static cl::opt<unsigned> ForceTargetInstructionCost( 203 "force-target-instruction-cost", cl::init(0), cl::Hidden, 204 cl::desc("A flag that overrides the target's expected cost for " 205 "an instruction to a single constant value. Mostly " 206 "useful for getting consistent testing.")); 207 208 static cl::opt<unsigned> SmallLoopCost( 209 "small-loop-cost", cl::init(20), cl::Hidden, 210 cl::desc( 211 "The cost of a loop that is considered 'small' by the interleaver.")); 212 213 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 214 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 215 cl::desc("Enable the use of the block frequency analysis to access PGO " 216 "heuristics minimizing code growth in cold regions and being more " 217 "aggressive in hot regions.")); 218 219 // Runtime interleave loops for load/store throughput. 220 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 221 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 222 cl::desc( 223 "Enable runtime interleaving until load/store ports are saturated")); 224 225 /// The number of stores in a loop that are allowed to need predication. 226 static cl::opt<unsigned> NumberOfStoresToPredicate( 227 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 228 cl::desc("Max number of stores to be predicated behind an if.")); 229 230 static cl::opt<bool> EnableIndVarRegisterHeur( 231 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 232 cl::desc("Count the induction variable only once when interleaving")); 233 234 static cl::opt<bool> EnableCondStoresVectorization( 235 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 236 cl::desc("Enable if predication of stores during vectorization.")); 237 238 static cl::opt<unsigned> MaxNestedScalarReductionIC( 239 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 240 cl::desc("The maximum interleave count to use when interleaving a scalar " 241 "reduction in a nested loop.")); 242 243 static cl::opt<bool> EnableVPlanNativePath( 244 "enable-vplan-native-path", cl::init(false), cl::Hidden, 245 cl::desc("Enable VPlan-native vectorization path with " 246 "support for outer loop vectorization.")); 247 248 // This flag enables the stress testing of the VPlan H-CFG construction in the 249 // VPlan-native vectorization path. It must be used in conjuction with 250 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 251 // verification of the H-CFGs built. 252 static cl::opt<bool> VPlanBuildStressTest( 253 "vplan-build-stress-test", cl::init(false), cl::Hidden, 254 cl::desc( 255 "Build VPlan for every supported loop nest in the function and bail " 256 "out right after the build (stress test the VPlan H-CFG construction " 257 "in the VPlan-native vectorization path).")); 258 259 /// A helper function for converting Scalar types to vector types. 260 /// If the incoming type is void, we return void. If the VF is 1, we return 261 /// the scalar type. 262 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 263 if (Scalar->isVoidTy() || VF == 1) 264 return Scalar; 265 return VectorType::get(Scalar, VF); 266 } 267 268 // FIXME: The following helper functions have multiple implementations 269 // in the project. They can be effectively organized in a common Load/Store 270 // utilities unit. 271 272 /// A helper function that returns the type of loaded or stored value. 273 static Type *getMemInstValueType(Value *I) { 274 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 275 "Expected Load or Store instruction"); 276 if (auto *LI = dyn_cast<LoadInst>(I)) 277 return LI->getType(); 278 return cast<StoreInst>(I)->getValueOperand()->getType(); 279 } 280 281 /// A helper function that returns the alignment of load or store instruction. 282 static unsigned getMemInstAlignment(Value *I) { 283 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 284 "Expected Load or Store instruction"); 285 if (auto *LI = dyn_cast<LoadInst>(I)) 286 return LI->getAlignment(); 287 return cast<StoreInst>(I)->getAlignment(); 288 } 289 290 /// A helper function that returns the address space of the pointer operand of 291 /// load or store instruction. 292 static unsigned getMemInstAddressSpace(Value *I) { 293 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 294 "Expected Load or Store instruction"); 295 if (auto *LI = dyn_cast<LoadInst>(I)) 296 return LI->getPointerAddressSpace(); 297 return cast<StoreInst>(I)->getPointerAddressSpace(); 298 } 299 300 /// A helper function that returns true if the given type is irregular. The 301 /// type is irregular if its allocated size doesn't equal the store size of an 302 /// element of the corresponding vector type at the given vectorization factor. 303 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 304 // Determine if an array of VF elements of type Ty is "bitcast compatible" 305 // with a <VF x Ty> vector. 306 if (VF > 1) { 307 auto *VectorTy = VectorType::get(Ty, VF); 308 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 309 } 310 311 // If the vectorization factor is one, we just check if an array of type Ty 312 // requires padding between elements. 313 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 314 } 315 316 /// A helper function that returns the reciprocal of the block probability of 317 /// predicated blocks. If we return X, we are assuming the predicated block 318 /// will execute once for every X iterations of the loop header. 319 /// 320 /// TODO: We should use actual block probability here, if available. Currently, 321 /// we always assume predicated blocks have a 50% chance of executing. 322 static unsigned getReciprocalPredBlockProb() { return 2; } 323 324 /// A helper function that adds a 'fast' flag to floating-point operations. 325 static Value *addFastMathFlag(Value *V) { 326 if (isa<FPMathOperator>(V)) { 327 FastMathFlags Flags; 328 Flags.setFast(); 329 cast<Instruction>(V)->setFastMathFlags(Flags); 330 } 331 return V; 332 } 333 334 /// A helper function that returns an integer or floating-point constant with 335 /// value C. 336 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 337 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 338 : ConstantFP::get(Ty, C); 339 } 340 341 namespace llvm { 342 343 /// InnerLoopVectorizer vectorizes loops which contain only one basic 344 /// block to a specified vectorization factor (VF). 345 /// This class performs the widening of scalars into vectors, or multiple 346 /// scalars. This class also implements the following features: 347 /// * It inserts an epilogue loop for handling loops that don't have iteration 348 /// counts that are known to be a multiple of the vectorization factor. 349 /// * It handles the code generation for reduction variables. 350 /// * Scalarization (implementation using scalars) of un-vectorizable 351 /// instructions. 352 /// InnerLoopVectorizer does not perform any vectorization-legality 353 /// checks, and relies on the caller to check for the different legality 354 /// aspects. The InnerLoopVectorizer relies on the 355 /// LoopVectorizationLegality class to provide information about the induction 356 /// and reduction variables that were found to a given vectorization factor. 357 class InnerLoopVectorizer { 358 public: 359 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 360 LoopInfo *LI, DominatorTree *DT, 361 const TargetLibraryInfo *TLI, 362 const TargetTransformInfo *TTI, AssumptionCache *AC, 363 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 364 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 365 LoopVectorizationCostModel *CM) 366 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 367 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 368 Builder(PSE.getSE()->getContext()), 369 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 370 virtual ~InnerLoopVectorizer() = default; 371 372 /// Create a new empty loop. Unlink the old loop and connect the new one. 373 /// Return the pre-header block of the new loop. 374 BasicBlock *createVectorizedLoopSkeleton(); 375 376 /// Widen a single instruction within the innermost loop. 377 void widenInstruction(Instruction &I); 378 379 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 380 void fixVectorizedLoop(); 381 382 // Return true if any runtime check is added. 383 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 384 385 /// A type for vectorized values in the new loop. Each value from the 386 /// original loop, when vectorized, is represented by UF vector values in the 387 /// new unrolled loop, where UF is the unroll factor. 388 using VectorParts = SmallVector<Value *, 2>; 389 390 /// Vectorize a single PHINode in a block. This method handles the induction 391 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 392 /// arbitrary length vectors. 393 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 394 395 /// A helper function to scalarize a single Instruction in the innermost loop. 396 /// Generates a sequence of scalar instances for each lane between \p MinLane 397 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 398 /// inclusive.. 399 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 400 bool IfPredicateInstr); 401 402 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 403 /// is provided, the integer induction variable will first be truncated to 404 /// the corresponding type. 405 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 406 407 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 408 /// vector or scalar value on-demand if one is not yet available. When 409 /// vectorizing a loop, we visit the definition of an instruction before its 410 /// uses. When visiting the definition, we either vectorize or scalarize the 411 /// instruction, creating an entry for it in the corresponding map. (In some 412 /// cases, such as induction variables, we will create both vector and scalar 413 /// entries.) Then, as we encounter uses of the definition, we derive values 414 /// for each scalar or vector use unless such a value is already available. 415 /// For example, if we scalarize a definition and one of its uses is vector, 416 /// we build the required vector on-demand with an insertelement sequence 417 /// when visiting the use. Otherwise, if the use is scalar, we can use the 418 /// existing scalar definition. 419 /// 420 /// Return a value in the new loop corresponding to \p V from the original 421 /// loop at unroll index \p Part. If the value has already been vectorized, 422 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 423 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 424 /// a new vector value on-demand by inserting the scalar values into a vector 425 /// with an insertelement sequence. If the value has been neither vectorized 426 /// nor scalarized, it must be loop invariant, so we simply broadcast the 427 /// value into a vector. 428 Value *getOrCreateVectorValue(Value *V, unsigned Part); 429 430 /// Return a value in the new loop corresponding to \p V from the original 431 /// loop at unroll and vector indices \p Instance. If the value has been 432 /// vectorized but not scalarized, the necessary extractelement instruction 433 /// will be generated. 434 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 435 436 /// Construct the vector value of a scalarized value \p V one lane at a time. 437 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 438 439 /// Try to vectorize the interleaved access group that \p Instr belongs to. 440 void vectorizeInterleaveGroup(Instruction *Instr); 441 442 /// Vectorize Load and Store instructions, optionally masking the vector 443 /// operations if \p BlockInMask is non-null. 444 void vectorizeMemoryInstruction(Instruction *Instr, 445 VectorParts *BlockInMask = nullptr); 446 447 /// Set the debug location in the builder using the debug location in 448 /// the instruction. 449 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 450 451 protected: 452 friend class LoopVectorizationPlanner; 453 454 /// A small list of PHINodes. 455 using PhiVector = SmallVector<PHINode *, 4>; 456 457 /// A type for scalarized values in the new loop. Each value from the 458 /// original loop, when scalarized, is represented by UF x VF scalar values 459 /// in the new unrolled loop, where UF is the unroll factor and VF is the 460 /// vectorization factor. 461 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 462 463 /// Set up the values of the IVs correctly when exiting the vector loop. 464 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 465 Value *CountRoundDown, Value *EndValue, 466 BasicBlock *MiddleBlock); 467 468 /// Create a new induction variable inside L. 469 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 470 Value *Step, Instruction *DL); 471 472 /// Handle all cross-iteration phis in the header. 473 void fixCrossIterationPHIs(); 474 475 /// Fix a first-order recurrence. This is the second phase of vectorizing 476 /// this phi node. 477 void fixFirstOrderRecurrence(PHINode *Phi); 478 479 /// Fix a reduction cross-iteration phi. This is the second phase of 480 /// vectorizing this phi node. 481 void fixReduction(PHINode *Phi); 482 483 /// The Loop exit block may have single value PHI nodes with some 484 /// incoming value. While vectorizing we only handled real values 485 /// that were defined inside the loop and we should have one value for 486 /// each predecessor of its parent basic block. See PR14725. 487 void fixLCSSAPHIs(); 488 489 /// Iteratively sink the scalarized operands of a predicated instruction into 490 /// the block that was created for it. 491 void sinkScalarOperands(Instruction *PredInst); 492 493 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 494 /// represented as. 495 void truncateToMinimalBitwidths(); 496 497 /// Insert the new loop to the loop hierarchy and pass manager 498 /// and update the analysis passes. 499 void updateAnalysis(); 500 501 /// Create a broadcast instruction. This method generates a broadcast 502 /// instruction (shuffle) for loop invariant values and for the induction 503 /// value. If this is the induction variable then we extend it to N, N+1, ... 504 /// this is needed because each iteration in the loop corresponds to a SIMD 505 /// element. 506 virtual Value *getBroadcastInstrs(Value *V); 507 508 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 509 /// to each vector element of Val. The sequence starts at StartIndex. 510 /// \p Opcode is relevant for FP induction variable. 511 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 512 Instruction::BinaryOps Opcode = 513 Instruction::BinaryOpsEnd); 514 515 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 516 /// variable on which to base the steps, \p Step is the size of the step, and 517 /// \p EntryVal is the value from the original loop that maps to the steps. 518 /// Note that \p EntryVal doesn't have to be an induction variable - it 519 /// can also be a truncate instruction. 520 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 521 const InductionDescriptor &ID); 522 523 /// Create a vector induction phi node based on an existing scalar one. \p 524 /// EntryVal is the value from the original loop that maps to the vector phi 525 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 526 /// truncate instruction, instead of widening the original IV, we widen a 527 /// version of the IV truncated to \p EntryVal's type. 528 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 529 Value *Step, Instruction *EntryVal); 530 531 /// Returns true if an instruction \p I should be scalarized instead of 532 /// vectorized for the chosen vectorization factor. 533 bool shouldScalarizeInstruction(Instruction *I) const; 534 535 /// Returns true if we should generate a scalar version of \p IV. 536 bool needsScalarInduction(Instruction *IV) const; 537 538 /// If there is a cast involved in the induction variable \p ID, which should 539 /// be ignored in the vectorized loop body, this function records the 540 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 541 /// cast. We had already proved that the casted Phi is equal to the uncasted 542 /// Phi in the vectorized loop (under a runtime guard), and therefore 543 /// there is no need to vectorize the cast - the same value can be used in the 544 /// vector loop for both the Phi and the cast. 545 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 546 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 547 /// 548 /// \p EntryVal is the value from the original loop that maps to the vector 549 /// phi node and is used to distinguish what is the IV currently being 550 /// processed - original one (if \p EntryVal is a phi corresponding to the 551 /// original IV) or the "newly-created" one based on the proof mentioned above 552 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 553 /// latter case \p EntryVal is a TruncInst and we must not record anything for 554 /// that IV, but it's error-prone to expect callers of this routine to care 555 /// about that, hence this explicit parameter. 556 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 557 const Instruction *EntryVal, 558 Value *VectorLoopValue, 559 unsigned Part, 560 unsigned Lane = UINT_MAX); 561 562 /// Generate a shuffle sequence that will reverse the vector Vec. 563 virtual Value *reverseVector(Value *Vec); 564 565 /// Returns (and creates if needed) the original loop trip count. 566 Value *getOrCreateTripCount(Loop *NewLoop); 567 568 /// Returns (and creates if needed) the trip count of the widened loop. 569 Value *getOrCreateVectorTripCount(Loop *NewLoop); 570 571 /// Returns a bitcasted value to the requested vector type. 572 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 573 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 574 const DataLayout &DL); 575 576 /// Emit a bypass check to see if the vector trip count is zero, including if 577 /// it overflows. 578 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 579 580 /// Emit a bypass check to see if all of the SCEV assumptions we've 581 /// had to make are correct. 582 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 583 584 /// Emit bypass checks to check any memory assumptions we may have made. 585 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 586 587 /// Add additional metadata to \p To that was not present on \p Orig. 588 /// 589 /// Currently this is used to add the noalias annotations based on the 590 /// inserted memchecks. Use this for instructions that are *cloned* into the 591 /// vector loop. 592 void addNewMetadata(Instruction *To, const Instruction *Orig); 593 594 /// Add metadata from one instruction to another. 595 /// 596 /// This includes both the original MDs from \p From and additional ones (\see 597 /// addNewMetadata). Use this for *newly created* instructions in the vector 598 /// loop. 599 void addMetadata(Instruction *To, Instruction *From); 600 601 /// Similar to the previous function but it adds the metadata to a 602 /// vector of instructions. 603 void addMetadata(ArrayRef<Value *> To, Instruction *From); 604 605 /// The original loop. 606 Loop *OrigLoop; 607 608 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 609 /// dynamic knowledge to simplify SCEV expressions and converts them to a 610 /// more usable form. 611 PredicatedScalarEvolution &PSE; 612 613 /// Loop Info. 614 LoopInfo *LI; 615 616 /// Dominator Tree. 617 DominatorTree *DT; 618 619 /// Alias Analysis. 620 AliasAnalysis *AA; 621 622 /// Target Library Info. 623 const TargetLibraryInfo *TLI; 624 625 /// Target Transform Info. 626 const TargetTransformInfo *TTI; 627 628 /// Assumption Cache. 629 AssumptionCache *AC; 630 631 /// Interface to emit optimization remarks. 632 OptimizationRemarkEmitter *ORE; 633 634 /// LoopVersioning. It's only set up (non-null) if memchecks were 635 /// used. 636 /// 637 /// This is currently only used to add no-alias metadata based on the 638 /// memchecks. The actually versioning is performed manually. 639 std::unique_ptr<LoopVersioning> LVer; 640 641 /// The vectorization SIMD factor to use. Each vector will have this many 642 /// vector elements. 643 unsigned VF; 644 645 /// The vectorization unroll factor to use. Each scalar is vectorized to this 646 /// many different vector instructions. 647 unsigned UF; 648 649 /// The builder that we use 650 IRBuilder<> Builder; 651 652 // --- Vectorization state --- 653 654 /// The vector-loop preheader. 655 BasicBlock *LoopVectorPreHeader; 656 657 /// The scalar-loop preheader. 658 BasicBlock *LoopScalarPreHeader; 659 660 /// Middle Block between the vector and the scalar. 661 BasicBlock *LoopMiddleBlock; 662 663 /// The ExitBlock of the scalar loop. 664 BasicBlock *LoopExitBlock; 665 666 /// The vector loop body. 667 BasicBlock *LoopVectorBody; 668 669 /// The scalar loop body. 670 BasicBlock *LoopScalarBody; 671 672 /// A list of all bypass blocks. The first block is the entry of the loop. 673 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 674 675 /// The new Induction variable which was added to the new block. 676 PHINode *Induction = nullptr; 677 678 /// The induction variable of the old basic block. 679 PHINode *OldInduction = nullptr; 680 681 /// Maps values from the original loop to their corresponding values in the 682 /// vectorized loop. A key value can map to either vector values, scalar 683 /// values or both kinds of values, depending on whether the key was 684 /// vectorized and scalarized. 685 VectorizerValueMap VectorLoopValueMap; 686 687 /// Store instructions that were predicated. 688 SmallVector<Instruction *, 4> PredicatedInstructions; 689 690 /// Trip count of the original loop. 691 Value *TripCount = nullptr; 692 693 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 694 Value *VectorTripCount = nullptr; 695 696 /// The legality analysis. 697 LoopVectorizationLegality *Legal; 698 699 /// The profitablity analysis. 700 LoopVectorizationCostModel *Cost; 701 702 // Record whether runtime checks are added. 703 bool AddedSafetyChecks = false; 704 705 // Holds the end values for each induction variable. We save the end values 706 // so we can later fix-up the external users of the induction variables. 707 DenseMap<PHINode *, Value *> IVEndValues; 708 }; 709 710 class InnerLoopUnroller : public InnerLoopVectorizer { 711 public: 712 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 713 LoopInfo *LI, DominatorTree *DT, 714 const TargetLibraryInfo *TLI, 715 const TargetTransformInfo *TTI, AssumptionCache *AC, 716 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 717 LoopVectorizationLegality *LVL, 718 LoopVectorizationCostModel *CM) 719 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 720 UnrollFactor, LVL, CM) {} 721 722 private: 723 Value *getBroadcastInstrs(Value *V) override; 724 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 725 Instruction::BinaryOps Opcode = 726 Instruction::BinaryOpsEnd) override; 727 Value *reverseVector(Value *Vec) override; 728 }; 729 730 } // end namespace llvm 731 732 /// Look for a meaningful debug location on the instruction or it's 733 /// operands. 734 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 735 if (!I) 736 return I; 737 738 DebugLoc Empty; 739 if (I->getDebugLoc() != Empty) 740 return I; 741 742 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 743 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 744 if (OpInst->getDebugLoc() != Empty) 745 return OpInst; 746 } 747 748 return I; 749 } 750 751 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 752 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 753 const DILocation *DIL = Inst->getDebugLoc(); 754 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 755 !isa<DbgInfoIntrinsic>(Inst)) 756 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 757 else 758 B.SetCurrentDebugLocation(DIL); 759 } else 760 B.SetCurrentDebugLocation(DebugLoc()); 761 } 762 763 #ifndef NDEBUG 764 /// \return string containing a file name and a line # for the given loop. 765 static std::string getDebugLocString(const Loop *L) { 766 std::string Result; 767 if (L) { 768 raw_string_ostream OS(Result); 769 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 770 LoopDbgLoc.print(OS); 771 else 772 // Just print the module name. 773 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 774 OS.flush(); 775 } 776 return Result; 777 } 778 #endif 779 780 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 781 const Instruction *Orig) { 782 // If the loop was versioned with memchecks, add the corresponding no-alias 783 // metadata. 784 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 785 LVer->annotateInstWithNoAlias(To, Orig); 786 } 787 788 void InnerLoopVectorizer::addMetadata(Instruction *To, 789 Instruction *From) { 790 propagateMetadata(To, From); 791 addNewMetadata(To, From); 792 } 793 794 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 795 Instruction *From) { 796 for (Value *V : To) { 797 if (Instruction *I = dyn_cast<Instruction>(V)) 798 addMetadata(I, From); 799 } 800 } 801 802 namespace llvm { 803 804 /// The group of interleaved loads/stores sharing the same stride and 805 /// close to each other. 806 /// 807 /// Each member in this group has an index starting from 0, and the largest 808 /// index should be less than interleaved factor, which is equal to the absolute 809 /// value of the access's stride. 810 /// 811 /// E.g. An interleaved load group of factor 4: 812 /// for (unsigned i = 0; i < 1024; i+=4) { 813 /// a = A[i]; // Member of index 0 814 /// b = A[i+1]; // Member of index 1 815 /// d = A[i+3]; // Member of index 3 816 /// ... 817 /// } 818 /// 819 /// An interleaved store group of factor 4: 820 /// for (unsigned i = 0; i < 1024; i+=4) { 821 /// ... 822 /// A[i] = a; // Member of index 0 823 /// A[i+1] = b; // Member of index 1 824 /// A[i+2] = c; // Member of index 2 825 /// A[i+3] = d; // Member of index 3 826 /// } 827 /// 828 /// Note: the interleaved load group could have gaps (missing members), but 829 /// the interleaved store group doesn't allow gaps. 830 class InterleaveGroup { 831 public: 832 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 833 : Align(Align), InsertPos(Instr) { 834 assert(Align && "The alignment should be non-zero"); 835 836 Factor = std::abs(Stride); 837 assert(Factor > 1 && "Invalid interleave factor"); 838 839 Reverse = Stride < 0; 840 Members[0] = Instr; 841 } 842 843 bool isReverse() const { return Reverse; } 844 unsigned getFactor() const { return Factor; } 845 unsigned getAlignment() const { return Align; } 846 unsigned getNumMembers() const { return Members.size(); } 847 848 /// Try to insert a new member \p Instr with index \p Index and 849 /// alignment \p NewAlign. The index is related to the leader and it could be 850 /// negative if it is the new leader. 851 /// 852 /// \returns false if the instruction doesn't belong to the group. 853 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 854 assert(NewAlign && "The new member's alignment should be non-zero"); 855 856 int Key = Index + SmallestKey; 857 858 // Skip if there is already a member with the same index. 859 if (Members.count(Key)) 860 return false; 861 862 if (Key > LargestKey) { 863 // The largest index is always less than the interleave factor. 864 if (Index >= static_cast<int>(Factor)) 865 return false; 866 867 LargestKey = Key; 868 } else if (Key < SmallestKey) { 869 // The largest index is always less than the interleave factor. 870 if (LargestKey - Key >= static_cast<int>(Factor)) 871 return false; 872 873 SmallestKey = Key; 874 } 875 876 // It's always safe to select the minimum alignment. 877 Align = std::min(Align, NewAlign); 878 Members[Key] = Instr; 879 return true; 880 } 881 882 /// Get the member with the given index \p Index 883 /// 884 /// \returns nullptr if contains no such member. 885 Instruction *getMember(unsigned Index) const { 886 int Key = SmallestKey + Index; 887 if (!Members.count(Key)) 888 return nullptr; 889 890 return Members.find(Key)->second; 891 } 892 893 /// Get the index for the given member. Unlike the key in the member 894 /// map, the index starts from 0. 895 unsigned getIndex(Instruction *Instr) const { 896 for (auto I : Members) 897 if (I.second == Instr) 898 return I.first - SmallestKey; 899 900 llvm_unreachable("InterleaveGroup contains no such member"); 901 } 902 903 Instruction *getInsertPos() const { return InsertPos; } 904 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 905 906 /// Add metadata (e.g. alias info) from the instructions in this group to \p 907 /// NewInst. 908 /// 909 /// FIXME: this function currently does not add noalias metadata a'la 910 /// addNewMedata. To do that we need to compute the intersection of the 911 /// noalias info from all members. 912 void addMetadata(Instruction *NewInst) const { 913 SmallVector<Value *, 4> VL; 914 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 915 [](std::pair<int, Instruction *> p) { return p.second; }); 916 propagateMetadata(NewInst, VL); 917 } 918 919 private: 920 unsigned Factor; // Interleave Factor. 921 bool Reverse; 922 unsigned Align; 923 DenseMap<int, Instruction *> Members; 924 int SmallestKey = 0; 925 int LargestKey = 0; 926 927 // To avoid breaking dependences, vectorized instructions of an interleave 928 // group should be inserted at either the first load or the last store in 929 // program order. 930 // 931 // E.g. %even = load i32 // Insert Position 932 // %add = add i32 %even // Use of %even 933 // %odd = load i32 934 // 935 // store i32 %even 936 // %odd = add i32 // Def of %odd 937 // store i32 %odd // Insert Position 938 Instruction *InsertPos; 939 }; 940 } // end namespace llvm 941 942 namespace { 943 944 /// Drive the analysis of interleaved memory accesses in the loop. 945 /// 946 /// Use this class to analyze interleaved accesses only when we can vectorize 947 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 948 /// on interleaved accesses is unsafe. 949 /// 950 /// The analysis collects interleave groups and records the relationships 951 /// between the member and the group in a map. 952 class InterleavedAccessInfo { 953 public: 954 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 955 DominatorTree *DT, LoopInfo *LI, 956 const LoopAccessInfo *LAI) 957 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} 958 959 ~InterleavedAccessInfo() { 960 SmallPtrSet<InterleaveGroup *, 4> DelSet; 961 // Avoid releasing a pointer twice. 962 for (auto &I : InterleaveGroupMap) 963 DelSet.insert(I.second); 964 for (auto *Ptr : DelSet) 965 delete Ptr; 966 } 967 968 /// Analyze the interleaved accesses and collect them in interleave 969 /// groups. Substitute symbolic strides using \p Strides. 970 void analyzeInterleaving(); 971 972 /// Check if \p Instr belongs to any interleave group. 973 bool isInterleaved(Instruction *Instr) const { 974 return InterleaveGroupMap.count(Instr); 975 } 976 977 /// Get the interleave group that \p Instr belongs to. 978 /// 979 /// \returns nullptr if doesn't have such group. 980 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 981 if (InterleaveGroupMap.count(Instr)) 982 return InterleaveGroupMap.find(Instr)->second; 983 return nullptr; 984 } 985 986 /// Returns true if an interleaved group that may access memory 987 /// out-of-bounds requires a scalar epilogue iteration for correctness. 988 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 989 990 private: 991 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 992 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 993 /// The interleaved access analysis can also add new predicates (for example 994 /// by versioning strides of pointers). 995 PredicatedScalarEvolution &PSE; 996 997 Loop *TheLoop; 998 DominatorTree *DT; 999 LoopInfo *LI; 1000 const LoopAccessInfo *LAI; 1001 1002 /// True if the loop may contain non-reversed interleaved groups with 1003 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1004 /// out-of-bounds by executing at least one scalar epilogue iteration. 1005 bool RequiresScalarEpilogue = false; 1006 1007 /// Holds the relationships between the members and the interleave group. 1008 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1009 1010 /// Holds dependences among the memory accesses in the loop. It maps a source 1011 /// access to a set of dependent sink accesses. 1012 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1013 1014 /// The descriptor for a strided memory access. 1015 struct StrideDescriptor { 1016 StrideDescriptor() = default; 1017 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1018 unsigned Align) 1019 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1020 1021 // The access's stride. It is negative for a reverse access. 1022 int64_t Stride = 0; 1023 1024 // The scalar expression of this access. 1025 const SCEV *Scev = nullptr; 1026 1027 // The size of the memory object. 1028 uint64_t Size = 0; 1029 1030 // The alignment of this access. 1031 unsigned Align = 0; 1032 }; 1033 1034 /// A type for holding instructions and their stride descriptors. 1035 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1036 1037 /// Create a new interleave group with the given instruction \p Instr, 1038 /// stride \p Stride and alignment \p Align. 1039 /// 1040 /// \returns the newly created interleave group. 1041 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1042 unsigned Align) { 1043 assert(!InterleaveGroupMap.count(Instr) && 1044 "Already in an interleaved access group"); 1045 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1046 return InterleaveGroupMap[Instr]; 1047 } 1048 1049 /// Release the group and remove all the relationships. 1050 void releaseGroup(InterleaveGroup *Group) { 1051 for (unsigned i = 0; i < Group->getFactor(); i++) 1052 if (Instruction *Member = Group->getMember(i)) 1053 InterleaveGroupMap.erase(Member); 1054 1055 delete Group; 1056 } 1057 1058 /// Collect all the accesses with a constant stride in program order. 1059 void collectConstStrideAccesses( 1060 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1061 const ValueToValueMap &Strides); 1062 1063 /// Returns true if \p Stride is allowed in an interleaved group. 1064 static bool isStrided(int Stride) { 1065 unsigned Factor = std::abs(Stride); 1066 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1067 } 1068 1069 /// Returns true if \p BB is a predicated block. 1070 bool isPredicated(BasicBlock *BB) const { 1071 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1072 } 1073 1074 /// Returns true if LoopAccessInfo can be used for dependence queries. 1075 bool areDependencesValid() const { 1076 return LAI && LAI->getDepChecker().getDependences(); 1077 } 1078 1079 /// Returns true if memory accesses \p A and \p B can be reordered, if 1080 /// necessary, when constructing interleaved groups. 1081 /// 1082 /// \p A must precede \p B in program order. We return false if reordering is 1083 /// not necessary or is prevented because \p A and \p B may be dependent. 1084 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1085 StrideEntry *B) const { 1086 // Code motion for interleaved accesses can potentially hoist strided loads 1087 // and sink strided stores. The code below checks the legality of the 1088 // following two conditions: 1089 // 1090 // 1. Potentially moving a strided load (B) before any store (A) that 1091 // precedes B, or 1092 // 1093 // 2. Potentially moving a strided store (A) after any load or store (B) 1094 // that A precedes. 1095 // 1096 // It's legal to reorder A and B if we know there isn't a dependence from A 1097 // to B. Note that this determination is conservative since some 1098 // dependences could potentially be reordered safely. 1099 1100 // A is potentially the source of a dependence. 1101 auto *Src = A->first; 1102 auto SrcDes = A->second; 1103 1104 // B is potentially the sink of a dependence. 1105 auto *Sink = B->first; 1106 auto SinkDes = B->second; 1107 1108 // Code motion for interleaved accesses can't violate WAR dependences. 1109 // Thus, reordering is legal if the source isn't a write. 1110 if (!Src->mayWriteToMemory()) 1111 return true; 1112 1113 // At least one of the accesses must be strided. 1114 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1115 return true; 1116 1117 // If dependence information is not available from LoopAccessInfo, 1118 // conservatively assume the instructions can't be reordered. 1119 if (!areDependencesValid()) 1120 return false; 1121 1122 // If we know there is a dependence from source to sink, assume the 1123 // instructions can't be reordered. Otherwise, reordering is legal. 1124 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1125 } 1126 1127 /// Collect the dependences from LoopAccessInfo. 1128 /// 1129 /// We process the dependences once during the interleaved access analysis to 1130 /// enable constant-time dependence queries. 1131 void collectDependences() { 1132 if (!areDependencesValid()) 1133 return; 1134 auto *Deps = LAI->getDepChecker().getDependences(); 1135 for (auto Dep : *Deps) 1136 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1137 } 1138 }; 1139 1140 } // end anonymous namespace 1141 1142 static void emitMissedWarning(Function *F, Loop *L, 1143 const LoopVectorizeHints &LH, 1144 OptimizationRemarkEmitter *ORE) { 1145 LH.emitRemarkWithHints(); 1146 1147 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1148 if (LH.getWidth() != 1) 1149 ORE->emit(DiagnosticInfoOptimizationFailure( 1150 DEBUG_TYPE, "FailedRequestedVectorization", 1151 L->getStartLoc(), L->getHeader()) 1152 << "loop not vectorized: " 1153 << "failed explicitly specified loop vectorization"); 1154 else if (LH.getInterleave() != 1) 1155 ORE->emit(DiagnosticInfoOptimizationFailure( 1156 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1157 L->getHeader()) 1158 << "loop not interleaved: " 1159 << "failed explicitly specified loop interleaving"); 1160 } 1161 } 1162 1163 namespace llvm { 1164 1165 /// LoopVectorizationCostModel - estimates the expected speedups due to 1166 /// vectorization. 1167 /// In many cases vectorization is not profitable. This can happen because of 1168 /// a number of reasons. In this class we mainly attempt to predict the 1169 /// expected speedup/slowdowns due to the supported instruction set. We use the 1170 /// TargetTransformInfo to query the different backends for the cost of 1171 /// different operations. 1172 class LoopVectorizationCostModel { 1173 public: 1174 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1175 LoopInfo *LI, LoopVectorizationLegality *Legal, 1176 const TargetTransformInfo &TTI, 1177 const TargetLibraryInfo *TLI, DemandedBits *DB, 1178 AssumptionCache *AC, 1179 OptimizationRemarkEmitter *ORE, const Function *F, 1180 const LoopVectorizeHints *Hints, 1181 InterleavedAccessInfo &IAI) 1182 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1183 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 1184 1185 /// \return An upper bound for the vectorization factor, or None if 1186 /// vectorization should be avoided up front. 1187 Optional<unsigned> computeMaxVF(bool OptForSize); 1188 1189 /// \return The most profitable vectorization factor and the cost of that VF. 1190 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1191 /// then this vectorization factor will be selected if vectorization is 1192 /// possible. 1193 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1194 1195 /// Setup cost-based decisions for user vectorization factor. 1196 void selectUserVectorizationFactor(unsigned UserVF) { 1197 collectUniformsAndScalars(UserVF); 1198 collectInstsToScalarize(UserVF); 1199 } 1200 1201 /// \return The size (in bits) of the smallest and widest types in the code 1202 /// that needs to be vectorized. We ignore values that remain scalar such as 1203 /// 64 bit loop indices. 1204 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1205 1206 /// \return The desired interleave count. 1207 /// If interleave count has been specified by metadata it will be returned. 1208 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1209 /// are the selected vectorization factor and the cost of the selected VF. 1210 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1211 unsigned LoopCost); 1212 1213 /// Memory access instruction may be vectorized in more than one way. 1214 /// Form of instruction after vectorization depends on cost. 1215 /// This function takes cost-based decisions for Load/Store instructions 1216 /// and collects them in a map. This decisions map is used for building 1217 /// the lists of loop-uniform and loop-scalar instructions. 1218 /// The calculated cost is saved with widening decision in order to 1219 /// avoid redundant calculations. 1220 void setCostBasedWideningDecision(unsigned VF); 1221 1222 /// A struct that represents some properties of the register usage 1223 /// of a loop. 1224 struct RegisterUsage { 1225 /// Holds the number of loop invariant values that are used in the loop. 1226 unsigned LoopInvariantRegs; 1227 1228 /// Holds the maximum number of concurrent live intervals in the loop. 1229 unsigned MaxLocalUsers; 1230 }; 1231 1232 /// \return Returns information about the register usages of the loop for the 1233 /// given vectorization factors. 1234 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1235 1236 /// Collect values we want to ignore in the cost model. 1237 void collectValuesToIgnore(); 1238 1239 /// \returns The smallest bitwidth each instruction can be represented with. 1240 /// The vector equivalents of these instructions should be truncated to this 1241 /// type. 1242 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1243 return MinBWs; 1244 } 1245 1246 /// \returns True if it is more profitable to scalarize instruction \p I for 1247 /// vectorization factor \p VF. 1248 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1249 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1250 auto Scalars = InstsToScalarize.find(VF); 1251 assert(Scalars != InstsToScalarize.end() && 1252 "VF not yet analyzed for scalarization profitability"); 1253 return Scalars->second.count(I); 1254 } 1255 1256 /// Returns true if \p I is known to be uniform after vectorization. 1257 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1258 if (VF == 1) 1259 return true; 1260 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1261 auto UniformsPerVF = Uniforms.find(VF); 1262 return UniformsPerVF->second.count(I); 1263 } 1264 1265 /// Returns true if \p I is known to be scalar after vectorization. 1266 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1267 if (VF == 1) 1268 return true; 1269 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1270 auto ScalarsPerVF = Scalars.find(VF); 1271 return ScalarsPerVF->second.count(I); 1272 } 1273 1274 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1275 /// for vectorization factor \p VF. 1276 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1277 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1278 !isScalarAfterVectorization(I, VF); 1279 } 1280 1281 /// Decision that was taken during cost calculation for memory instruction. 1282 enum InstWidening { 1283 CM_Unknown, 1284 CM_Widen, // For consecutive accesses with stride +1. 1285 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1286 CM_Interleave, 1287 CM_GatherScatter, 1288 CM_Scalarize 1289 }; 1290 1291 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1292 /// instruction \p I and vector width \p VF. 1293 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1294 unsigned Cost) { 1295 assert(VF >= 2 && "Expected VF >=2"); 1296 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1297 } 1298 1299 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1300 /// interleaving group \p Grp and vector width \p VF. 1301 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1302 InstWidening W, unsigned Cost) { 1303 assert(VF >= 2 && "Expected VF >=2"); 1304 /// Broadcast this decicion to all instructions inside the group. 1305 /// But the cost will be assigned to one instruction only. 1306 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1307 if (auto *I = Grp->getMember(i)) { 1308 if (Grp->getInsertPos() == I) 1309 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1310 else 1311 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1312 } 1313 } 1314 } 1315 1316 /// Return the cost model decision for the given instruction \p I and vector 1317 /// width \p VF. Return CM_Unknown if this instruction did not pass 1318 /// through the cost modeling. 1319 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1320 assert(VF >= 2 && "Expected VF >=2"); 1321 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1322 auto Itr = WideningDecisions.find(InstOnVF); 1323 if (Itr == WideningDecisions.end()) 1324 return CM_Unknown; 1325 return Itr->second.first; 1326 } 1327 1328 /// Return the vectorization cost for the given instruction \p I and vector 1329 /// width \p VF. 1330 unsigned getWideningCost(Instruction *I, unsigned VF) { 1331 assert(VF >= 2 && "Expected VF >=2"); 1332 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1333 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1334 return WideningDecisions[InstOnVF].second; 1335 } 1336 1337 /// Return True if instruction \p I is an optimizable truncate whose operand 1338 /// is an induction variable. Such a truncate will be removed by adding a new 1339 /// induction variable with the destination type. 1340 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1341 // If the instruction is not a truncate, return false. 1342 auto *Trunc = dyn_cast<TruncInst>(I); 1343 if (!Trunc) 1344 return false; 1345 1346 // Get the source and destination types of the truncate. 1347 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1348 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1349 1350 // If the truncate is free for the given types, return false. Replacing a 1351 // free truncate with an induction variable would add an induction variable 1352 // update instruction to each iteration of the loop. We exclude from this 1353 // check the primary induction variable since it will need an update 1354 // instruction regardless. 1355 Value *Op = Trunc->getOperand(0); 1356 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1357 return false; 1358 1359 // If the truncated value is not an induction variable, return false. 1360 return Legal->isInductionPhi(Op); 1361 } 1362 1363 /// Collects the instructions to scalarize for each predicated instruction in 1364 /// the loop. 1365 void collectInstsToScalarize(unsigned VF); 1366 1367 /// Collect Uniform and Scalar values for the given \p VF. 1368 /// The sets depend on CM decision for Load/Store instructions 1369 /// that may be vectorized as interleave, gather-scatter or scalarized. 1370 void collectUniformsAndScalars(unsigned VF) { 1371 // Do the analysis once. 1372 if (VF == 1 || Uniforms.count(VF)) 1373 return; 1374 setCostBasedWideningDecision(VF); 1375 collectLoopUniforms(VF); 1376 collectLoopScalars(VF); 1377 } 1378 1379 /// Returns true if the target machine supports masked store operation 1380 /// for the given \p DataType and kind of access to \p Ptr. 1381 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1382 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1383 } 1384 1385 /// Returns true if the target machine supports masked load operation 1386 /// for the given \p DataType and kind of access to \p Ptr. 1387 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1388 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1389 } 1390 1391 /// Returns true if the target machine supports masked scatter operation 1392 /// for the given \p DataType. 1393 bool isLegalMaskedScatter(Type *DataType) { 1394 return TTI.isLegalMaskedScatter(DataType); 1395 } 1396 1397 /// Returns true if the target machine supports masked gather operation 1398 /// for the given \p DataType. 1399 bool isLegalMaskedGather(Type *DataType) { 1400 return TTI.isLegalMaskedGather(DataType); 1401 } 1402 1403 /// Returns true if the target machine can represent \p V as a masked gather 1404 /// or scatter operation. 1405 bool isLegalGatherOrScatter(Value *V) { 1406 bool LI = isa<LoadInst>(V); 1407 bool SI = isa<StoreInst>(V); 1408 if (!LI && !SI) 1409 return false; 1410 auto *Ty = getMemInstValueType(V); 1411 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1412 } 1413 1414 /// Returns true if \p I is an instruction that will be scalarized with 1415 /// predication. Such instructions include conditional stores and 1416 /// instructions that may divide by zero. 1417 bool isScalarWithPredication(Instruction *I); 1418 1419 /// Returns true if \p I is a memory instruction with consecutive memory 1420 /// access that can be widened. 1421 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1422 1423 /// Check if \p Instr belongs to any interleaved access group. 1424 bool isAccessInterleaved(Instruction *Instr) { 1425 return InterleaveInfo.isInterleaved(Instr); 1426 } 1427 1428 /// Get the interleaved access group that \p Instr belongs to. 1429 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1430 return InterleaveInfo.getInterleaveGroup(Instr); 1431 } 1432 1433 /// Returns true if an interleaved group requires a scalar iteration 1434 /// to handle accesses with gaps. 1435 bool requiresScalarEpilogue() const { 1436 return InterleaveInfo.requiresScalarEpilogue(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, larger than zero. 1443 /// One is returned if vectorization should best be avoided due to cost. 1444 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1445 1446 /// The vectorization cost is a combination of the cost itself and a boolean 1447 /// indicating whether any of the contributing operations will actually 1448 /// operate on 1449 /// vector values after type legalization in the backend. If this latter value 1450 /// is 1451 /// false, then all operations will be scalarized (i.e. no vectorization has 1452 /// actually taken place). 1453 using VectorizationCostTy = std::pair<unsigned, bool>; 1454 1455 /// Returns the expected execution cost. The unit of the cost does 1456 /// not matter because we use the 'cost' units to compare different 1457 /// vector widths. The cost that is returned is *not* normalized by 1458 /// the factor width. 1459 VectorizationCostTy expectedCost(unsigned VF); 1460 1461 /// Returns the execution time cost of an instruction for a given vector 1462 /// width. Vector width of one means scalar. 1463 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1464 1465 /// The cost-computation logic from getInstructionCost which provides 1466 /// the vector type as an output parameter. 1467 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1468 1469 /// Calculate vectorization cost of memory instruction \p I. 1470 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1471 1472 /// The cost computation for scalarized memory instruction. 1473 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1474 1475 /// The cost computation for interleaving group of memory instructions. 1476 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1477 1478 /// The cost computation for Gather/Scatter instruction. 1479 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1480 1481 /// The cost computation for widening instruction \p I with consecutive 1482 /// memory access. 1483 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1484 1485 /// The cost calculation for Load instruction \p I with uniform pointer - 1486 /// scalar load + broadcast. 1487 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1488 1489 /// Returns whether the instruction is a load or store and will be a emitted 1490 /// as a vector operation. 1491 bool isConsecutiveLoadOrStore(Instruction *I); 1492 1493 /// Returns true if an artificially high cost for emulated masked memrefs 1494 /// should be used. 1495 bool useEmulatedMaskMemRefHack(Instruction *I); 1496 1497 /// Create an analysis remark that explains why vectorization failed 1498 /// 1499 /// \p RemarkName is the identifier for the remark. \return the remark object 1500 /// that can be streamed to. 1501 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1502 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1503 RemarkName, TheLoop); 1504 } 1505 1506 /// Map of scalar integer values to the smallest bitwidth they can be legally 1507 /// represented as. The vector equivalents of these values should be truncated 1508 /// to this type. 1509 MapVector<Instruction *, uint64_t> MinBWs; 1510 1511 /// A type representing the costs for instructions if they were to be 1512 /// scalarized rather than vectorized. The entries are Instruction-Cost 1513 /// pairs. 1514 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1515 1516 /// A set containing all BasicBlocks that are known to present after 1517 /// vectorization as a predicated block. 1518 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1519 1520 /// A map holding scalar costs for different vectorization factors. The 1521 /// presence of a cost for an instruction in the mapping indicates that the 1522 /// instruction will be scalarized when vectorizing with the associated 1523 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1524 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1525 1526 /// Holds the instructions known to be uniform after vectorization. 1527 /// The data is collected per VF. 1528 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1529 1530 /// Holds the instructions known to be scalar after vectorization. 1531 /// The data is collected per VF. 1532 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1533 1534 /// Holds the instructions (address computations) that are forced to be 1535 /// scalarized. 1536 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1537 1538 /// Returns the expected difference in cost from scalarizing the expression 1539 /// feeding a predicated instruction \p PredInst. The instructions to 1540 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1541 /// non-negative return value implies the expression will be scalarized. 1542 /// Currently, only single-use chains are considered for scalarization. 1543 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1544 unsigned VF); 1545 1546 /// Collect the instructions that are uniform after vectorization. An 1547 /// instruction is uniform if we represent it with a single scalar value in 1548 /// the vectorized loop corresponding to each vector iteration. Examples of 1549 /// uniform instructions include pointer operands of consecutive or 1550 /// interleaved memory accesses. Note that although uniformity implies an 1551 /// instruction will be scalar, the reverse is not true. In general, a 1552 /// scalarized instruction will be represented by VF scalar values in the 1553 /// vectorized loop, each corresponding to an iteration of the original 1554 /// scalar loop. 1555 void collectLoopUniforms(unsigned VF); 1556 1557 /// Collect the instructions that are scalar after vectorization. An 1558 /// instruction is scalar if it is known to be uniform or will be scalarized 1559 /// during vectorization. Non-uniform scalarized instructions will be 1560 /// represented by VF values in the vectorized loop, each corresponding to an 1561 /// iteration of the original scalar loop. 1562 void collectLoopScalars(unsigned VF); 1563 1564 /// Keeps cost model vectorization decision and cost for instructions. 1565 /// Right now it is used for memory instructions only. 1566 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1567 std::pair<InstWidening, unsigned>>; 1568 1569 DecisionList WideningDecisions; 1570 1571 public: 1572 /// The loop that we evaluate. 1573 Loop *TheLoop; 1574 1575 /// Predicated scalar evolution analysis. 1576 PredicatedScalarEvolution &PSE; 1577 1578 /// Loop Info analysis. 1579 LoopInfo *LI; 1580 1581 /// Vectorization legality. 1582 LoopVectorizationLegality *Legal; 1583 1584 /// Vector target information. 1585 const TargetTransformInfo &TTI; 1586 1587 /// Target Library Info. 1588 const TargetLibraryInfo *TLI; 1589 1590 /// Demanded bits analysis. 1591 DemandedBits *DB; 1592 1593 /// Assumption cache. 1594 AssumptionCache *AC; 1595 1596 /// Interface to emit optimization remarks. 1597 OptimizationRemarkEmitter *ORE; 1598 1599 const Function *TheFunction; 1600 1601 /// Loop Vectorize Hint. 1602 const LoopVectorizeHints *Hints; 1603 1604 /// The interleave access information contains groups of interleaved accesses 1605 /// with the same stride and close to each other. 1606 InterleavedAccessInfo &InterleaveInfo; 1607 1608 /// Values to ignore in the cost model. 1609 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1610 1611 /// Values to ignore in the cost model when VF > 1. 1612 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1613 }; 1614 1615 } // end namespace llvm 1616 1617 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1618 // vectorization. The loop needs to be annotated with #pragma omp simd 1619 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1620 // vector length information is not provided, vectorization is not considered 1621 // explicit. Interleave hints are not allowed either. These limitations will be 1622 // relaxed in the future. 1623 // Please, note that we are currently forced to abuse the pragma 'clang 1624 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1625 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1626 // provides *explicit vectorization hints* (LV can bypass legal checks and 1627 // assume that vectorization is legal). However, both hints are implemented 1628 // using the same metadata (llvm.loop.vectorize, processed by 1629 // LoopVectorizeHints). This will be fixed in the future when the native IR 1630 // representation for pragma 'omp simd' is introduced. 1631 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1632 OptimizationRemarkEmitter *ORE) { 1633 assert(!OuterLp->empty() && "This is not an outer loop"); 1634 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1635 1636 // Only outer loops with an explicit vectorization hint are supported. 1637 // Unannotated outer loops are ignored. 1638 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1639 return false; 1640 1641 Function *Fn = OuterLp->getHeader()->getParent(); 1642 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) { 1643 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1644 return false; 1645 } 1646 1647 if (!Hints.getWidth()) { 1648 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1649 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1650 return false; 1651 } 1652 1653 if (Hints.getInterleave() > 1) { 1654 // TODO: Interleave support is future work. 1655 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1656 "outer loops.\n"); 1657 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1658 return false; 1659 } 1660 1661 return true; 1662 } 1663 1664 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1665 OptimizationRemarkEmitter *ORE, 1666 SmallVectorImpl<Loop *> &V) { 1667 // Collect inner loops and outer loops without irreducible control flow. For 1668 // now, only collect outer loops that have explicit vectorization hints. If we 1669 // are stress testing the VPlan H-CFG construction, we collect the outermost 1670 // loop of every loop nest. 1671 if (L.empty() || VPlanBuildStressTest || 1672 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1673 LoopBlocksRPO RPOT(&L); 1674 RPOT.perform(LI); 1675 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1676 V.push_back(&L); 1677 // TODO: Collect inner loops inside marked outer loops in case 1678 // vectorization fails for the outer loop. Do not invoke 1679 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1680 // already known to be reducible. We can use an inherited attribute for 1681 // that. 1682 return; 1683 } 1684 } 1685 for (Loop *InnerL : L) 1686 collectSupportedLoops(*InnerL, LI, ORE, V); 1687 } 1688 1689 namespace { 1690 1691 /// The LoopVectorize Pass. 1692 struct LoopVectorize : public FunctionPass { 1693 /// Pass identification, replacement for typeid 1694 static char ID; 1695 1696 LoopVectorizePass Impl; 1697 1698 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1699 : FunctionPass(ID) { 1700 Impl.DisableUnrolling = NoUnrolling; 1701 Impl.AlwaysVectorize = AlwaysVectorize; 1702 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1703 } 1704 1705 bool runOnFunction(Function &F) override { 1706 if (skipFunction(F)) 1707 return false; 1708 1709 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1710 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1711 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1712 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1713 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1714 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1715 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1716 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1717 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1718 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1719 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1720 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1721 1722 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1723 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1724 1725 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1726 GetLAA, *ORE); 1727 } 1728 1729 void getAnalysisUsage(AnalysisUsage &AU) const override { 1730 AU.addRequired<AssumptionCacheTracker>(); 1731 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1732 AU.addRequired<DominatorTreeWrapperPass>(); 1733 AU.addRequired<LoopInfoWrapperPass>(); 1734 AU.addRequired<ScalarEvolutionWrapperPass>(); 1735 AU.addRequired<TargetTransformInfoWrapperPass>(); 1736 AU.addRequired<AAResultsWrapperPass>(); 1737 AU.addRequired<LoopAccessLegacyAnalysis>(); 1738 AU.addRequired<DemandedBitsWrapperPass>(); 1739 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1740 AU.addPreserved<LoopInfoWrapperPass>(); 1741 AU.addPreserved<DominatorTreeWrapperPass>(); 1742 AU.addPreserved<BasicAAWrapperPass>(); 1743 AU.addPreserved<GlobalsAAWrapperPass>(); 1744 } 1745 }; 1746 1747 } // end anonymous namespace 1748 1749 //===----------------------------------------------------------------------===// 1750 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1751 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1752 //===----------------------------------------------------------------------===// 1753 1754 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1755 // We need to place the broadcast of invariant variables outside the loop, 1756 // but only if it's proven safe to do so. Else, broadcast will be inside 1757 // vector loop body. 1758 Instruction *Instr = dyn_cast<Instruction>(V); 1759 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1760 (!Instr || 1761 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1762 // Place the code for broadcasting invariant variables in the new preheader. 1763 IRBuilder<>::InsertPointGuard Guard(Builder); 1764 if (SafeToHoist) 1765 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1766 1767 // Broadcast the scalar into all locations in the vector. 1768 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1769 1770 return Shuf; 1771 } 1772 1773 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1774 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1775 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1776 "Expected either an induction phi-node or a truncate of it!"); 1777 Value *Start = II.getStartValue(); 1778 1779 // Construct the initial value of the vector IV in the vector loop preheader 1780 auto CurrIP = Builder.saveIP(); 1781 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1782 if (isa<TruncInst>(EntryVal)) { 1783 assert(Start->getType()->isIntegerTy() && 1784 "Truncation requires an integer type"); 1785 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1786 Step = Builder.CreateTrunc(Step, TruncType); 1787 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1788 } 1789 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1790 Value *SteppedStart = 1791 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1792 1793 // We create vector phi nodes for both integer and floating-point induction 1794 // variables. Here, we determine the kind of arithmetic we will perform. 1795 Instruction::BinaryOps AddOp; 1796 Instruction::BinaryOps MulOp; 1797 if (Step->getType()->isIntegerTy()) { 1798 AddOp = Instruction::Add; 1799 MulOp = Instruction::Mul; 1800 } else { 1801 AddOp = II.getInductionOpcode(); 1802 MulOp = Instruction::FMul; 1803 } 1804 1805 // Multiply the vectorization factor by the step using integer or 1806 // floating-point arithmetic as appropriate. 1807 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1808 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1809 1810 // Create a vector splat to use in the induction update. 1811 // 1812 // FIXME: If the step is non-constant, we create the vector splat with 1813 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1814 // handle a constant vector splat. 1815 Value *SplatVF = isa<Constant>(Mul) 1816 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1817 : Builder.CreateVectorSplat(VF, Mul); 1818 Builder.restoreIP(CurrIP); 1819 1820 // We may need to add the step a number of times, depending on the unroll 1821 // factor. The last of those goes into the PHI. 1822 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1823 &*LoopVectorBody->getFirstInsertionPt()); 1824 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1825 Instruction *LastInduction = VecInd; 1826 for (unsigned Part = 0; Part < UF; ++Part) { 1827 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1828 1829 if (isa<TruncInst>(EntryVal)) 1830 addMetadata(LastInduction, EntryVal); 1831 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1832 1833 LastInduction = cast<Instruction>(addFastMathFlag( 1834 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1835 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1836 } 1837 1838 // Move the last step to the end of the latch block. This ensures consistent 1839 // placement of all induction updates. 1840 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1841 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1842 auto *ICmp = cast<Instruction>(Br->getCondition()); 1843 LastInduction->moveBefore(ICmp); 1844 LastInduction->setName("vec.ind.next"); 1845 1846 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1847 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1848 } 1849 1850 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1851 return Cost->isScalarAfterVectorization(I, VF) || 1852 Cost->isProfitableToScalarize(I, VF); 1853 } 1854 1855 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1856 if (shouldScalarizeInstruction(IV)) 1857 return true; 1858 auto isScalarInst = [&](User *U) -> bool { 1859 auto *I = cast<Instruction>(U); 1860 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1861 }; 1862 return llvm::any_of(IV->users(), isScalarInst); 1863 } 1864 1865 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1866 const InductionDescriptor &ID, const Instruction *EntryVal, 1867 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1868 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1869 "Expected either an induction phi-node or a truncate of it!"); 1870 1871 // This induction variable is not the phi from the original loop but the 1872 // newly-created IV based on the proof that casted Phi is equal to the 1873 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1874 // re-uses the same InductionDescriptor that original IV uses but we don't 1875 // have to do any recording in this case - that is done when original IV is 1876 // processed. 1877 if (isa<TruncInst>(EntryVal)) 1878 return; 1879 1880 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1881 if (Casts.empty()) 1882 return; 1883 // Only the first Cast instruction in the Casts vector is of interest. 1884 // The rest of the Casts (if exist) have no uses outside the 1885 // induction update chain itself. 1886 Instruction *CastInst = *Casts.begin(); 1887 if (Lane < UINT_MAX) 1888 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1889 else 1890 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1891 } 1892 1893 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1894 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1895 "Primary induction variable must have an integer type"); 1896 1897 auto II = Legal->getInductionVars()->find(IV); 1898 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1899 1900 auto ID = II->second; 1901 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1902 1903 // The scalar value to broadcast. This will be derived from the canonical 1904 // induction variable. 1905 Value *ScalarIV = nullptr; 1906 1907 // The value from the original loop to which we are mapping the new induction 1908 // variable. 1909 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1910 1911 // True if we have vectorized the induction variable. 1912 auto VectorizedIV = false; 1913 1914 // Determine if we want a scalar version of the induction variable. This is 1915 // true if the induction variable itself is not widened, or if it has at 1916 // least one user in the loop that is not widened. 1917 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1918 1919 // Generate code for the induction step. Note that induction steps are 1920 // required to be loop-invariant 1921 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1922 "Induction step should be loop invariant"); 1923 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1924 Value *Step = nullptr; 1925 if (PSE.getSE()->isSCEVable(IV->getType())) { 1926 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1927 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1928 LoopVectorPreHeader->getTerminator()); 1929 } else { 1930 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1931 } 1932 1933 // Try to create a new independent vector induction variable. If we can't 1934 // create the phi node, we will splat the scalar induction variable in each 1935 // loop iteration. 1936 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1937 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1938 VectorizedIV = true; 1939 } 1940 1941 // If we haven't yet vectorized the induction variable, or if we will create 1942 // a scalar one, we need to define the scalar induction variable and step 1943 // values. If we were given a truncation type, truncate the canonical 1944 // induction variable and step. Otherwise, derive these values from the 1945 // induction descriptor. 1946 if (!VectorizedIV || NeedsScalarIV) { 1947 ScalarIV = Induction; 1948 if (IV != OldInduction) { 1949 ScalarIV = IV->getType()->isIntegerTy() 1950 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1951 : Builder.CreateCast(Instruction::SIToFP, Induction, 1952 IV->getType()); 1953 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 1954 ScalarIV->setName("offset.idx"); 1955 } 1956 if (Trunc) { 1957 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1958 assert(Step->getType()->isIntegerTy() && 1959 "Truncation requires an integer step"); 1960 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1961 Step = Builder.CreateTrunc(Step, TruncType); 1962 } 1963 } 1964 1965 // If we haven't yet vectorized the induction variable, splat the scalar 1966 // induction variable, and build the necessary step vectors. 1967 // TODO: Don't do it unless the vectorized IV is really required. 1968 if (!VectorizedIV) { 1969 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1970 for (unsigned Part = 0; Part < UF; ++Part) { 1971 Value *EntryPart = 1972 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1973 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1974 if (Trunc) 1975 addMetadata(EntryPart, Trunc); 1976 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1977 } 1978 } 1979 1980 // If an induction variable is only used for counting loop iterations or 1981 // calculating addresses, it doesn't need to be widened. Create scalar steps 1982 // that can be used by instructions we will later scalarize. Note that the 1983 // addition of the scalar steps will not increase the number of instructions 1984 // in the loop in the common case prior to InstCombine. We will be trading 1985 // one vector extract for each scalar step. 1986 if (NeedsScalarIV) 1987 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1988 } 1989 1990 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1991 Instruction::BinaryOps BinOp) { 1992 // Create and check the types. 1993 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1994 int VLen = Val->getType()->getVectorNumElements(); 1995 1996 Type *STy = Val->getType()->getScalarType(); 1997 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1998 "Induction Step must be an integer or FP"); 1999 assert(Step->getType() == STy && "Step has wrong type"); 2000 2001 SmallVector<Constant *, 8> Indices; 2002 2003 if (STy->isIntegerTy()) { 2004 // Create a vector of consecutive numbers from zero to VF. 2005 for (int i = 0; i < VLen; ++i) 2006 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2007 2008 // Add the consecutive indices to the vector value. 2009 Constant *Cv = ConstantVector::get(Indices); 2010 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2011 Step = Builder.CreateVectorSplat(VLen, Step); 2012 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2013 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2014 // which can be found from the original scalar operations. 2015 Step = Builder.CreateMul(Cv, Step); 2016 return Builder.CreateAdd(Val, Step, "induction"); 2017 } 2018 2019 // Floating point induction. 2020 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2021 "Binary Opcode should be specified for FP induction"); 2022 // Create a vector of consecutive numbers from zero to VF. 2023 for (int i = 0; i < VLen; ++i) 2024 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2025 2026 // Add the consecutive indices to the vector value. 2027 Constant *Cv = ConstantVector::get(Indices); 2028 2029 Step = Builder.CreateVectorSplat(VLen, Step); 2030 2031 // Floating point operations had to be 'fast' to enable the induction. 2032 FastMathFlags Flags; 2033 Flags.setFast(); 2034 2035 Value *MulOp = Builder.CreateFMul(Cv, Step); 2036 if (isa<Instruction>(MulOp)) 2037 // Have to check, MulOp may be a constant 2038 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2039 2040 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2041 if (isa<Instruction>(BOp)) 2042 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2043 return BOp; 2044 } 2045 2046 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2047 Instruction *EntryVal, 2048 const InductionDescriptor &ID) { 2049 // We shouldn't have to build scalar steps if we aren't vectorizing. 2050 assert(VF > 1 && "VF should be greater than one"); 2051 2052 // Get the value type and ensure it and the step have the same integer type. 2053 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2054 assert(ScalarIVTy == Step->getType() && 2055 "Val and Step should have the same type"); 2056 2057 // We build scalar steps for both integer and floating-point induction 2058 // variables. Here, we determine the kind of arithmetic we will perform. 2059 Instruction::BinaryOps AddOp; 2060 Instruction::BinaryOps MulOp; 2061 if (ScalarIVTy->isIntegerTy()) { 2062 AddOp = Instruction::Add; 2063 MulOp = Instruction::Mul; 2064 } else { 2065 AddOp = ID.getInductionOpcode(); 2066 MulOp = Instruction::FMul; 2067 } 2068 2069 // Determine the number of scalars we need to generate for each unroll 2070 // iteration. If EntryVal is uniform, we only need to generate the first 2071 // lane. Otherwise, we generate all VF values. 2072 unsigned Lanes = 2073 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2074 : VF; 2075 // Compute the scalar steps and save the results in VectorLoopValueMap. 2076 for (unsigned Part = 0; Part < UF; ++Part) { 2077 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2078 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2079 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2080 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2081 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2082 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2083 } 2084 } 2085 } 2086 2087 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2088 assert(V != Induction && "The new induction variable should not be used."); 2089 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2090 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2091 2092 // If we have a stride that is replaced by one, do it here. 2093 if (Legal->hasStride(V)) 2094 V = ConstantInt::get(V->getType(), 1); 2095 2096 // If we have a vector mapped to this value, return it. 2097 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2098 return VectorLoopValueMap.getVectorValue(V, Part); 2099 2100 // If the value has not been vectorized, check if it has been scalarized 2101 // instead. If it has been scalarized, and we actually need the value in 2102 // vector form, we will construct the vector values on demand. 2103 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2104 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2105 2106 // If we've scalarized a value, that value should be an instruction. 2107 auto *I = cast<Instruction>(V); 2108 2109 // If we aren't vectorizing, we can just copy the scalar map values over to 2110 // the vector map. 2111 if (VF == 1) { 2112 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2113 return ScalarValue; 2114 } 2115 2116 // Get the last scalar instruction we generated for V and Part. If the value 2117 // is known to be uniform after vectorization, this corresponds to lane zero 2118 // of the Part unroll iteration. Otherwise, the last instruction is the one 2119 // we created for the last vector lane of the Part unroll iteration. 2120 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2121 auto *LastInst = cast<Instruction>( 2122 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2123 2124 // Set the insert point after the last scalarized instruction. This ensures 2125 // the insertelement sequence will directly follow the scalar definitions. 2126 auto OldIP = Builder.saveIP(); 2127 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2128 Builder.SetInsertPoint(&*NewIP); 2129 2130 // However, if we are vectorizing, we need to construct the vector values. 2131 // If the value is known to be uniform after vectorization, we can just 2132 // broadcast the scalar value corresponding to lane zero for each unroll 2133 // iteration. Otherwise, we construct the vector values using insertelement 2134 // instructions. Since the resulting vectors are stored in 2135 // VectorLoopValueMap, we will only generate the insertelements once. 2136 Value *VectorValue = nullptr; 2137 if (Cost->isUniformAfterVectorization(I, VF)) { 2138 VectorValue = getBroadcastInstrs(ScalarValue); 2139 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2140 } else { 2141 // Initialize packing with insertelements to start from undef. 2142 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2143 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2144 for (unsigned Lane = 0; Lane < VF; ++Lane) 2145 packScalarIntoVectorValue(V, {Part, Lane}); 2146 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2147 } 2148 Builder.restoreIP(OldIP); 2149 return VectorValue; 2150 } 2151 2152 // If this scalar is unknown, assume that it is a constant or that it is 2153 // loop invariant. Broadcast V and save the value for future uses. 2154 Value *B = getBroadcastInstrs(V); 2155 VectorLoopValueMap.setVectorValue(V, Part, B); 2156 return B; 2157 } 2158 2159 Value * 2160 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2161 const VPIteration &Instance) { 2162 // If the value is not an instruction contained in the loop, it should 2163 // already be scalar. 2164 if (OrigLoop->isLoopInvariant(V)) 2165 return V; 2166 2167 assert(Instance.Lane > 0 2168 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2169 : true && "Uniform values only have lane zero"); 2170 2171 // If the value from the original loop has not been vectorized, it is 2172 // represented by UF x VF scalar values in the new loop. Return the requested 2173 // scalar value. 2174 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2175 return VectorLoopValueMap.getScalarValue(V, Instance); 2176 2177 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2178 // for the given unroll part. If this entry is not a vector type (i.e., the 2179 // vectorization factor is one), there is no need to generate an 2180 // extractelement instruction. 2181 auto *U = getOrCreateVectorValue(V, Instance.Part); 2182 if (!U->getType()->isVectorTy()) { 2183 assert(VF == 1 && "Value not scalarized has non-vector type"); 2184 return U; 2185 } 2186 2187 // Otherwise, the value from the original loop has been vectorized and is 2188 // represented by UF vector values. Extract and return the requested scalar 2189 // value from the appropriate vector lane. 2190 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2191 } 2192 2193 void InnerLoopVectorizer::packScalarIntoVectorValue( 2194 Value *V, const VPIteration &Instance) { 2195 assert(V != Induction && "The new induction variable should not be used."); 2196 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2197 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2198 2199 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2200 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2201 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2202 Builder.getInt32(Instance.Lane)); 2203 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2204 } 2205 2206 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2207 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2208 SmallVector<Constant *, 8> ShuffleMask; 2209 for (unsigned i = 0; i < VF; ++i) 2210 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2211 2212 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2213 ConstantVector::get(ShuffleMask), 2214 "reverse"); 2215 } 2216 2217 // Try to vectorize the interleave group that \p Instr belongs to. 2218 // 2219 // E.g. Translate following interleaved load group (factor = 3): 2220 // for (i = 0; i < N; i+=3) { 2221 // R = Pic[i]; // Member of index 0 2222 // G = Pic[i+1]; // Member of index 1 2223 // B = Pic[i+2]; // Member of index 2 2224 // ... // do something to R, G, B 2225 // } 2226 // To: 2227 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2228 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2229 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2230 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2231 // 2232 // Or translate following interleaved store group (factor = 3): 2233 // for (i = 0; i < N; i+=3) { 2234 // ... do something to R, G, B 2235 // Pic[i] = R; // Member of index 0 2236 // Pic[i+1] = G; // Member of index 1 2237 // Pic[i+2] = B; // Member of index 2 2238 // } 2239 // To: 2240 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2241 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2242 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2243 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2244 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2245 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2246 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 2247 assert(Group && "Fail to get an interleaved access group."); 2248 2249 // Skip if current instruction is not the insert position. 2250 if (Instr != Group->getInsertPos()) 2251 return; 2252 2253 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2254 Value *Ptr = getLoadStorePointerOperand(Instr); 2255 2256 // Prepare for the vector type of the interleaved load/store. 2257 Type *ScalarTy = getMemInstValueType(Instr); 2258 unsigned InterleaveFactor = Group->getFactor(); 2259 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2260 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2261 2262 // Prepare for the new pointers. 2263 setDebugLocFromInst(Builder, Ptr); 2264 SmallVector<Value *, 2> NewPtrs; 2265 unsigned Index = Group->getIndex(Instr); 2266 2267 // If the group is reverse, adjust the index to refer to the last vector lane 2268 // instead of the first. We adjust the index from the first vector lane, 2269 // rather than directly getting the pointer for lane VF - 1, because the 2270 // pointer operand of the interleaved access is supposed to be uniform. For 2271 // uniform instructions, we're only required to generate a value for the 2272 // first vector lane in each unroll iteration. 2273 if (Group->isReverse()) 2274 Index += (VF - 1) * Group->getFactor(); 2275 2276 bool InBounds = false; 2277 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2278 InBounds = gep->isInBounds(); 2279 2280 for (unsigned Part = 0; Part < UF; Part++) { 2281 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2282 2283 // Notice current instruction could be any index. Need to adjust the address 2284 // to the member of index 0. 2285 // 2286 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2287 // b = A[i]; // Member of index 0 2288 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2289 // 2290 // E.g. A[i+1] = a; // Member of index 1 2291 // A[i] = b; // Member of index 0 2292 // A[i+2] = c; // Member of index 2 (Current instruction) 2293 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2294 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2295 if (InBounds) 2296 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2297 2298 // Cast to the vector pointer type. 2299 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2300 } 2301 2302 setDebugLocFromInst(Builder, Instr); 2303 Value *UndefVec = UndefValue::get(VecTy); 2304 2305 // Vectorize the interleaved load group. 2306 if (isa<LoadInst>(Instr)) { 2307 // For each unroll part, create a wide load for the group. 2308 SmallVector<Value *, 2> NewLoads; 2309 for (unsigned Part = 0; Part < UF; Part++) { 2310 auto *NewLoad = Builder.CreateAlignedLoad( 2311 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2312 Group->addMetadata(NewLoad); 2313 NewLoads.push_back(NewLoad); 2314 } 2315 2316 // For each member in the group, shuffle out the appropriate data from the 2317 // wide loads. 2318 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2319 Instruction *Member = Group->getMember(I); 2320 2321 // Skip the gaps in the group. 2322 if (!Member) 2323 continue; 2324 2325 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2326 for (unsigned Part = 0; Part < UF; Part++) { 2327 Value *StridedVec = Builder.CreateShuffleVector( 2328 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2329 2330 // If this member has different type, cast the result type. 2331 if (Member->getType() != ScalarTy) { 2332 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2333 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2334 } 2335 2336 if (Group->isReverse()) 2337 StridedVec = reverseVector(StridedVec); 2338 2339 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2340 } 2341 } 2342 return; 2343 } 2344 2345 // The sub vector type for current instruction. 2346 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2347 2348 // Vectorize the interleaved store group. 2349 for (unsigned Part = 0; Part < UF; Part++) { 2350 // Collect the stored vector from each member. 2351 SmallVector<Value *, 4> StoredVecs; 2352 for (unsigned i = 0; i < InterleaveFactor; i++) { 2353 // Interleaved store group doesn't allow a gap, so each index has a member 2354 Instruction *Member = Group->getMember(i); 2355 assert(Member && "Fail to get a member from an interleaved store group"); 2356 2357 Value *StoredVec = getOrCreateVectorValue( 2358 cast<StoreInst>(Member)->getValueOperand(), Part); 2359 if (Group->isReverse()) 2360 StoredVec = reverseVector(StoredVec); 2361 2362 // If this member has different type, cast it to a unified type. 2363 2364 if (StoredVec->getType() != SubVT) 2365 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2366 2367 StoredVecs.push_back(StoredVec); 2368 } 2369 2370 // Concatenate all vectors into a wide vector. 2371 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2372 2373 // Interleave the elements in the wide vector. 2374 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2375 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2376 "interleaved.vec"); 2377 2378 Instruction *NewStoreInstr = 2379 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2380 2381 Group->addMetadata(NewStoreInstr); 2382 } 2383 } 2384 2385 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2386 VectorParts *BlockInMask) { 2387 // Attempt to issue a wide load. 2388 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2389 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2390 2391 assert((LI || SI) && "Invalid Load/Store instruction"); 2392 2393 LoopVectorizationCostModel::InstWidening Decision = 2394 Cost->getWideningDecision(Instr, VF); 2395 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2396 "CM decision should be taken at this point"); 2397 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2398 return vectorizeInterleaveGroup(Instr); 2399 2400 Type *ScalarDataTy = getMemInstValueType(Instr); 2401 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2402 Value *Ptr = getLoadStorePointerOperand(Instr); 2403 unsigned Alignment = getMemInstAlignment(Instr); 2404 // An alignment of 0 means target abi alignment. We need to use the scalar's 2405 // target abi alignment in such a case. 2406 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2407 if (!Alignment) 2408 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2409 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2410 2411 // Determine if the pointer operand of the access is either consecutive or 2412 // reverse consecutive. 2413 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2414 bool ConsecutiveStride = 2415 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2416 bool CreateGatherScatter = 2417 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2418 2419 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2420 // gather/scatter. Otherwise Decision should have been to Scalarize. 2421 assert((ConsecutiveStride || CreateGatherScatter) && 2422 "The instruction should be scalarized"); 2423 2424 // Handle consecutive loads/stores. 2425 if (ConsecutiveStride) 2426 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2427 2428 VectorParts Mask; 2429 bool isMaskRequired = BlockInMask; 2430 if (isMaskRequired) 2431 Mask = *BlockInMask; 2432 2433 bool InBounds = false; 2434 if (auto *gep = dyn_cast<GetElementPtrInst>( 2435 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2436 InBounds = gep->isInBounds(); 2437 2438 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2439 // Calculate the pointer for the specific unroll-part. 2440 GetElementPtrInst *PartPtr = nullptr; 2441 2442 if (Reverse) { 2443 // If the address is consecutive but reversed, then the 2444 // wide store needs to start at the last vector element. 2445 PartPtr = cast<GetElementPtrInst>( 2446 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2447 PartPtr->setIsInBounds(InBounds); 2448 PartPtr = cast<GetElementPtrInst>( 2449 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2450 PartPtr->setIsInBounds(InBounds); 2451 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2452 Mask[Part] = reverseVector(Mask[Part]); 2453 } else { 2454 PartPtr = cast<GetElementPtrInst>( 2455 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2456 PartPtr->setIsInBounds(InBounds); 2457 } 2458 2459 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2460 }; 2461 2462 // Handle Stores: 2463 if (SI) { 2464 setDebugLocFromInst(Builder, SI); 2465 2466 for (unsigned Part = 0; Part < UF; ++Part) { 2467 Instruction *NewSI = nullptr; 2468 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2469 if (CreateGatherScatter) { 2470 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2471 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2472 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2473 MaskPart); 2474 } else { 2475 if (Reverse) { 2476 // If we store to reverse consecutive memory locations, then we need 2477 // to reverse the order of elements in the stored value. 2478 StoredVal = reverseVector(StoredVal); 2479 // We don't want to update the value in the map as it might be used in 2480 // another expression. So don't call resetVectorValue(StoredVal). 2481 } 2482 auto *VecPtr = CreateVecPtr(Part, Ptr); 2483 if (isMaskRequired) 2484 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2485 Mask[Part]); 2486 else 2487 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2488 } 2489 addMetadata(NewSI, SI); 2490 } 2491 return; 2492 } 2493 2494 // Handle loads. 2495 assert(LI && "Must have a load instruction"); 2496 setDebugLocFromInst(Builder, LI); 2497 for (unsigned Part = 0; Part < UF; ++Part) { 2498 Value *NewLI; 2499 if (CreateGatherScatter) { 2500 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2501 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2502 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2503 nullptr, "wide.masked.gather"); 2504 addMetadata(NewLI, LI); 2505 } else { 2506 auto *VecPtr = CreateVecPtr(Part, Ptr); 2507 if (isMaskRequired) 2508 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2509 UndefValue::get(DataTy), 2510 "wide.masked.load"); 2511 else 2512 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2513 2514 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2515 addMetadata(NewLI, LI); 2516 if (Reverse) 2517 NewLI = reverseVector(NewLI); 2518 } 2519 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2520 } 2521 } 2522 2523 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2524 const VPIteration &Instance, 2525 bool IfPredicateInstr) { 2526 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2527 2528 setDebugLocFromInst(Builder, Instr); 2529 2530 // Does this instruction return a value ? 2531 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2532 2533 Instruction *Cloned = Instr->clone(); 2534 if (!IsVoidRetTy) 2535 Cloned->setName(Instr->getName() + ".cloned"); 2536 2537 // Replace the operands of the cloned instructions with their scalar 2538 // equivalents in the new loop. 2539 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2540 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2541 Cloned->setOperand(op, NewOp); 2542 } 2543 addNewMetadata(Cloned, Instr); 2544 2545 // Place the cloned scalar in the new loop. 2546 Builder.Insert(Cloned); 2547 2548 // Add the cloned scalar to the scalar map entry. 2549 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2550 2551 // If we just cloned a new assumption, add it the assumption cache. 2552 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2553 if (II->getIntrinsicID() == Intrinsic::assume) 2554 AC->registerAssumption(II); 2555 2556 // End if-block. 2557 if (IfPredicateInstr) 2558 PredicatedInstructions.push_back(Cloned); 2559 } 2560 2561 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2562 Value *End, Value *Step, 2563 Instruction *DL) { 2564 BasicBlock *Header = L->getHeader(); 2565 BasicBlock *Latch = L->getLoopLatch(); 2566 // As we're just creating this loop, it's possible no latch exists 2567 // yet. If so, use the header as this will be a single block loop. 2568 if (!Latch) 2569 Latch = Header; 2570 2571 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2572 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2573 setDebugLocFromInst(Builder, OldInst); 2574 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2575 2576 Builder.SetInsertPoint(Latch->getTerminator()); 2577 setDebugLocFromInst(Builder, OldInst); 2578 2579 // Create i+1 and fill the PHINode. 2580 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2581 Induction->addIncoming(Start, L->getLoopPreheader()); 2582 Induction->addIncoming(Next, Latch); 2583 // Create the compare. 2584 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2585 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2586 2587 // Now we have two terminators. Remove the old one from the block. 2588 Latch->getTerminator()->eraseFromParent(); 2589 2590 return Induction; 2591 } 2592 2593 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2594 if (TripCount) 2595 return TripCount; 2596 2597 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2598 // Find the loop boundaries. 2599 ScalarEvolution *SE = PSE.getSE(); 2600 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2601 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2602 "Invalid loop count"); 2603 2604 Type *IdxTy = Legal->getWidestInductionType(); 2605 2606 // The exit count might have the type of i64 while the phi is i32. This can 2607 // happen if we have an induction variable that is sign extended before the 2608 // compare. The only way that we get a backedge taken count is that the 2609 // induction variable was signed and as such will not overflow. In such a case 2610 // truncation is legal. 2611 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2612 IdxTy->getPrimitiveSizeInBits()) 2613 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2614 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2615 2616 // Get the total trip count from the count by adding 1. 2617 const SCEV *ExitCount = SE->getAddExpr( 2618 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2619 2620 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2621 2622 // Expand the trip count and place the new instructions in the preheader. 2623 // Notice that the pre-header does not change, only the loop body. 2624 SCEVExpander Exp(*SE, DL, "induction"); 2625 2626 // Count holds the overall loop count (N). 2627 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2628 L->getLoopPreheader()->getTerminator()); 2629 2630 if (TripCount->getType()->isPointerTy()) 2631 TripCount = 2632 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2633 L->getLoopPreheader()->getTerminator()); 2634 2635 return TripCount; 2636 } 2637 2638 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2639 if (VectorTripCount) 2640 return VectorTripCount; 2641 2642 Value *TC = getOrCreateTripCount(L); 2643 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2644 2645 // Now we need to generate the expression for the part of the loop that the 2646 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2647 // iterations are not required for correctness, or N - Step, otherwise. Step 2648 // is equal to the vectorization factor (number of SIMD elements) times the 2649 // unroll factor (number of SIMD instructions). 2650 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2651 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2652 2653 // If there is a non-reversed interleaved group that may speculatively access 2654 // memory out-of-bounds, we need to ensure that there will be at least one 2655 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2656 // the trip count, we set the remainder to be equal to the step. If the step 2657 // does not evenly divide the trip count, no adjustment is necessary since 2658 // there will already be scalar iterations. Note that the minimum iterations 2659 // check ensures that N >= Step. 2660 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2661 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2662 R = Builder.CreateSelect(IsZero, Step, R); 2663 } 2664 2665 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2666 2667 return VectorTripCount; 2668 } 2669 2670 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2671 const DataLayout &DL) { 2672 // Verify that V is a vector type with same number of elements as DstVTy. 2673 unsigned VF = DstVTy->getNumElements(); 2674 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2675 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2676 Type *SrcElemTy = SrcVecTy->getElementType(); 2677 Type *DstElemTy = DstVTy->getElementType(); 2678 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2679 "Vector elements must have same size"); 2680 2681 // Do a direct cast if element types are castable. 2682 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2683 return Builder.CreateBitOrPointerCast(V, DstVTy); 2684 } 2685 // V cannot be directly casted to desired vector type. 2686 // May happen when V is a floating point vector but DstVTy is a vector of 2687 // pointers or vice-versa. Handle this using a two-step bitcast using an 2688 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2689 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2690 "Only one type should be a pointer type"); 2691 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2692 "Only one type should be a floating point type"); 2693 Type *IntTy = 2694 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2695 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2696 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2697 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2698 } 2699 2700 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2701 BasicBlock *Bypass) { 2702 Value *Count = getOrCreateTripCount(L); 2703 BasicBlock *BB = L->getLoopPreheader(); 2704 IRBuilder<> Builder(BB->getTerminator()); 2705 2706 // Generate code to check if the loop's trip count is less than VF * UF, or 2707 // equal to it in case a scalar epilogue is required; this implies that the 2708 // vector trip count is zero. This check also covers the case where adding one 2709 // to the backedge-taken count overflowed leading to an incorrect trip count 2710 // of zero. In this case we will also jump to the scalar loop. 2711 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2712 : ICmpInst::ICMP_ULT; 2713 Value *CheckMinIters = Builder.CreateICmp( 2714 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2715 2716 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2717 // Update dominator tree immediately if the generated block is a 2718 // LoopBypassBlock because SCEV expansions to generate loop bypass 2719 // checks may query it before the current function is finished. 2720 DT->addNewBlock(NewBB, BB); 2721 if (L->getParentLoop()) 2722 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2723 ReplaceInstWithInst(BB->getTerminator(), 2724 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2725 LoopBypassBlocks.push_back(BB); 2726 } 2727 2728 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2729 BasicBlock *BB = L->getLoopPreheader(); 2730 2731 // Generate the code to check that the SCEV assumptions that we made. 2732 // We want the new basic block to start at the first instruction in a 2733 // sequence of instructions that form a check. 2734 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2735 "scev.check"); 2736 Value *SCEVCheck = 2737 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2738 2739 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2740 if (C->isZero()) 2741 return; 2742 2743 // Create a new block containing the stride check. 2744 BB->setName("vector.scevcheck"); 2745 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2746 // Update dominator tree immediately if the generated block is a 2747 // LoopBypassBlock because SCEV expansions to generate loop bypass 2748 // checks may query it before the current function is finished. 2749 DT->addNewBlock(NewBB, BB); 2750 if (L->getParentLoop()) 2751 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2752 ReplaceInstWithInst(BB->getTerminator(), 2753 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2754 LoopBypassBlocks.push_back(BB); 2755 AddedSafetyChecks = true; 2756 } 2757 2758 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2759 BasicBlock *BB = L->getLoopPreheader(); 2760 2761 // Generate the code that checks in runtime if arrays overlap. We put the 2762 // checks into a separate block to make the more common case of few elements 2763 // faster. 2764 Instruction *FirstCheckInst; 2765 Instruction *MemRuntimeCheck; 2766 std::tie(FirstCheckInst, MemRuntimeCheck) = 2767 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2768 if (!MemRuntimeCheck) 2769 return; 2770 2771 // Create a new block containing the memory check. 2772 BB->setName("vector.memcheck"); 2773 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2774 // Update dominator tree immediately if the generated block is a 2775 // LoopBypassBlock because SCEV expansions to generate loop bypass 2776 // checks may query it before the current function is finished. 2777 DT->addNewBlock(NewBB, BB); 2778 if (L->getParentLoop()) 2779 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2780 ReplaceInstWithInst(BB->getTerminator(), 2781 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2782 LoopBypassBlocks.push_back(BB); 2783 AddedSafetyChecks = true; 2784 2785 // We currently don't use LoopVersioning for the actual loop cloning but we 2786 // still use it to add the noalias metadata. 2787 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2788 PSE.getSE()); 2789 LVer->prepareNoAliasMetadata(); 2790 } 2791 2792 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2793 /* 2794 In this function we generate a new loop. The new loop will contain 2795 the vectorized instructions while the old loop will continue to run the 2796 scalar remainder. 2797 2798 [ ] <-- loop iteration number check. 2799 / | 2800 / v 2801 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2802 | / | 2803 | / v 2804 || [ ] <-- vector pre header. 2805 |/ | 2806 | v 2807 | [ ] \ 2808 | [ ]_| <-- vector loop. 2809 | | 2810 | v 2811 | -[ ] <--- middle-block. 2812 | / | 2813 | / v 2814 -|- >[ ] <--- new preheader. 2815 | | 2816 | v 2817 | [ ] \ 2818 | [ ]_| <-- old scalar loop to handle remainder. 2819 \ | 2820 \ v 2821 >[ ] <-- exit block. 2822 ... 2823 */ 2824 2825 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2826 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2827 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2828 assert(VectorPH && "Invalid loop structure"); 2829 assert(ExitBlock && "Must have an exit block"); 2830 2831 // Some loops have a single integer induction variable, while other loops 2832 // don't. One example is c++ iterators that often have multiple pointer 2833 // induction variables. In the code below we also support a case where we 2834 // don't have a single induction variable. 2835 // 2836 // We try to obtain an induction variable from the original loop as hard 2837 // as possible. However if we don't find one that: 2838 // - is an integer 2839 // - counts from zero, stepping by one 2840 // - is the size of the widest induction variable type 2841 // then we create a new one. 2842 OldInduction = Legal->getPrimaryInduction(); 2843 Type *IdxTy = Legal->getWidestInductionType(); 2844 2845 // Split the single block loop into the two loop structure described above. 2846 BasicBlock *VecBody = 2847 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2848 BasicBlock *MiddleBlock = 2849 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2850 BasicBlock *ScalarPH = 2851 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2852 2853 // Create and register the new vector loop. 2854 Loop *Lp = LI->AllocateLoop(); 2855 Loop *ParentLoop = OrigLoop->getParentLoop(); 2856 2857 // Insert the new loop into the loop nest and register the new basic blocks 2858 // before calling any utilities such as SCEV that require valid LoopInfo. 2859 if (ParentLoop) { 2860 ParentLoop->addChildLoop(Lp); 2861 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2862 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2863 } else { 2864 LI->addTopLevelLoop(Lp); 2865 } 2866 Lp->addBasicBlockToLoop(VecBody, *LI); 2867 2868 // Find the loop boundaries. 2869 Value *Count = getOrCreateTripCount(Lp); 2870 2871 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2872 2873 // Now, compare the new count to zero. If it is zero skip the vector loop and 2874 // jump to the scalar loop. This check also covers the case where the 2875 // backedge-taken count is uint##_max: adding one to it will overflow leading 2876 // to an incorrect trip count of zero. In this (rare) case we will also jump 2877 // to the scalar loop. 2878 emitMinimumIterationCountCheck(Lp, ScalarPH); 2879 2880 // Generate the code to check any assumptions that we've made for SCEV 2881 // expressions. 2882 emitSCEVChecks(Lp, ScalarPH); 2883 2884 // Generate the code that checks in runtime if arrays overlap. We put the 2885 // checks into a separate block to make the more common case of few elements 2886 // faster. 2887 emitMemRuntimeChecks(Lp, ScalarPH); 2888 2889 // Generate the induction variable. 2890 // The loop step is equal to the vectorization factor (num of SIMD elements) 2891 // times the unroll factor (num of SIMD instructions). 2892 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2893 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2894 Induction = 2895 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2896 getDebugLocFromInstOrOperands(OldInduction)); 2897 2898 // We are going to resume the execution of the scalar loop. 2899 // Go over all of the induction variables that we found and fix the 2900 // PHIs that are left in the scalar version of the loop. 2901 // The starting values of PHI nodes depend on the counter of the last 2902 // iteration in the vectorized loop. 2903 // If we come from a bypass edge then we need to start from the original 2904 // start value. 2905 2906 // This variable saves the new starting index for the scalar loop. It is used 2907 // to test if there are any tail iterations left once the vector loop has 2908 // completed. 2909 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2910 for (auto &InductionEntry : *List) { 2911 PHINode *OrigPhi = InductionEntry.first; 2912 InductionDescriptor II = InductionEntry.second; 2913 2914 // Create phi nodes to merge from the backedge-taken check block. 2915 PHINode *BCResumeVal = PHINode::Create( 2916 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2917 // Copy original phi DL over to the new one. 2918 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2919 Value *&EndValue = IVEndValues[OrigPhi]; 2920 if (OrigPhi == OldInduction) { 2921 // We know what the end value is. 2922 EndValue = CountRoundDown; 2923 } else { 2924 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2925 Type *StepType = II.getStep()->getType(); 2926 Instruction::CastOps CastOp = 2927 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2928 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2929 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2930 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 2931 EndValue->setName("ind.end"); 2932 } 2933 2934 // The new PHI merges the original incoming value, in case of a bypass, 2935 // or the value at the end of the vectorized loop. 2936 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2937 2938 // Fix the scalar body counter (PHI node). 2939 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2940 2941 // The old induction's phi node in the scalar body needs the truncated 2942 // value. 2943 for (BasicBlock *BB : LoopBypassBlocks) 2944 BCResumeVal->addIncoming(II.getStartValue(), BB); 2945 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2946 } 2947 2948 // Add a check in the middle block to see if we have completed 2949 // all of the iterations in the first vector loop. 2950 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2951 Value *CmpN = 2952 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2953 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2954 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2955 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2956 2957 // Get ready to start creating new instructions into the vectorized body. 2958 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2959 2960 // Save the state. 2961 LoopVectorPreHeader = Lp->getLoopPreheader(); 2962 LoopScalarPreHeader = ScalarPH; 2963 LoopMiddleBlock = MiddleBlock; 2964 LoopExitBlock = ExitBlock; 2965 LoopVectorBody = VecBody; 2966 LoopScalarBody = OldBasicBlock; 2967 2968 // Keep all loop hints from the original loop on the vector loop (we'll 2969 // replace the vectorizer-specific hints below). 2970 if (MDNode *LID = OrigLoop->getLoopID()) 2971 Lp->setLoopID(LID); 2972 2973 LoopVectorizeHints Hints(Lp, true, *ORE); 2974 Hints.setAlreadyVectorized(); 2975 2976 return LoopVectorPreHeader; 2977 } 2978 2979 // Fix up external users of the induction variable. At this point, we are 2980 // in LCSSA form, with all external PHIs that use the IV having one input value, 2981 // coming from the remainder loop. We need those PHIs to also have a correct 2982 // value for the IV when arriving directly from the middle block. 2983 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2984 const InductionDescriptor &II, 2985 Value *CountRoundDown, Value *EndValue, 2986 BasicBlock *MiddleBlock) { 2987 // There are two kinds of external IV usages - those that use the value 2988 // computed in the last iteration (the PHI) and those that use the penultimate 2989 // value (the value that feeds into the phi from the loop latch). 2990 // We allow both, but they, obviously, have different values. 2991 2992 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2993 2994 DenseMap<Value *, Value *> MissingVals; 2995 2996 // An external user of the last iteration's value should see the value that 2997 // the remainder loop uses to initialize its own IV. 2998 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2999 for (User *U : PostInc->users()) { 3000 Instruction *UI = cast<Instruction>(U); 3001 if (!OrigLoop->contains(UI)) { 3002 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3003 MissingVals[UI] = EndValue; 3004 } 3005 } 3006 3007 // An external user of the penultimate value need to see EndValue - Step. 3008 // The simplest way to get this is to recompute it from the constituent SCEVs, 3009 // that is Start + (Step * (CRD - 1)). 3010 for (User *U : OrigPhi->users()) { 3011 auto *UI = cast<Instruction>(U); 3012 if (!OrigLoop->contains(UI)) { 3013 const DataLayout &DL = 3014 OrigLoop->getHeader()->getModule()->getDataLayout(); 3015 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3016 3017 IRBuilder<> B(MiddleBlock->getTerminator()); 3018 Value *CountMinusOne = B.CreateSub( 3019 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3020 Value *CMO = 3021 !II.getStep()->getType()->isIntegerTy() 3022 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3023 II.getStep()->getType()) 3024 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3025 CMO->setName("cast.cmo"); 3026 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3027 Escape->setName("ind.escape"); 3028 MissingVals[UI] = Escape; 3029 } 3030 } 3031 3032 for (auto &I : MissingVals) { 3033 PHINode *PHI = cast<PHINode>(I.first); 3034 // One corner case we have to handle is two IVs "chasing" each-other, 3035 // that is %IV2 = phi [...], [ %IV1, %latch ] 3036 // In this case, if IV1 has an external use, we need to avoid adding both 3037 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3038 // don't already have an incoming value for the middle block. 3039 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3040 PHI->addIncoming(I.second, MiddleBlock); 3041 } 3042 } 3043 3044 namespace { 3045 3046 struct CSEDenseMapInfo { 3047 static bool canHandle(const Instruction *I) { 3048 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3049 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3050 } 3051 3052 static inline Instruction *getEmptyKey() { 3053 return DenseMapInfo<Instruction *>::getEmptyKey(); 3054 } 3055 3056 static inline Instruction *getTombstoneKey() { 3057 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3058 } 3059 3060 static unsigned getHashValue(const Instruction *I) { 3061 assert(canHandle(I) && "Unknown instruction!"); 3062 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3063 I->value_op_end())); 3064 } 3065 3066 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3067 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3068 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3069 return LHS == RHS; 3070 return LHS->isIdenticalTo(RHS); 3071 } 3072 }; 3073 3074 } // end anonymous namespace 3075 3076 ///Perform cse of induction variable instructions. 3077 static void cse(BasicBlock *BB) { 3078 // Perform simple cse. 3079 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3080 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3081 Instruction *In = &*I++; 3082 3083 if (!CSEDenseMapInfo::canHandle(In)) 3084 continue; 3085 3086 // Check if we can replace this instruction with any of the 3087 // visited instructions. 3088 if (Instruction *V = CSEMap.lookup(In)) { 3089 In->replaceAllUsesWith(V); 3090 In->eraseFromParent(); 3091 continue; 3092 } 3093 3094 CSEMap[In] = In; 3095 } 3096 } 3097 3098 /// Estimate the overhead of scalarizing an instruction. This is a 3099 /// convenience wrapper for the type-based getScalarizationOverhead API. 3100 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3101 const TargetTransformInfo &TTI) { 3102 if (VF == 1) 3103 return 0; 3104 3105 unsigned Cost = 0; 3106 Type *RetTy = ToVectorTy(I->getType(), VF); 3107 if (!RetTy->isVoidTy() && 3108 (!isa<LoadInst>(I) || 3109 !TTI.supportsEfficientVectorElementLoadStore())) 3110 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3111 3112 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3113 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3114 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3115 } 3116 else if (!isa<StoreInst>(I) || 3117 !TTI.supportsEfficientVectorElementLoadStore()) { 3118 SmallVector<const Value *, 4> Operands(I->operand_values()); 3119 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3120 } 3121 3122 return Cost; 3123 } 3124 3125 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3126 // Return the cost of the instruction, including scalarization overhead if it's 3127 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3128 // i.e. either vector version isn't available, or is too expensive. 3129 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3130 const TargetTransformInfo &TTI, 3131 const TargetLibraryInfo *TLI, 3132 bool &NeedToScalarize) { 3133 Function *F = CI->getCalledFunction(); 3134 StringRef FnName = CI->getCalledFunction()->getName(); 3135 Type *ScalarRetTy = CI->getType(); 3136 SmallVector<Type *, 4> Tys, ScalarTys; 3137 for (auto &ArgOp : CI->arg_operands()) 3138 ScalarTys.push_back(ArgOp->getType()); 3139 3140 // Estimate cost of scalarized vector call. The source operands are assumed 3141 // to be vectors, so we need to extract individual elements from there, 3142 // execute VF scalar calls, and then gather the result into the vector return 3143 // value. 3144 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3145 if (VF == 1) 3146 return ScalarCallCost; 3147 3148 // Compute corresponding vector type for return value and arguments. 3149 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3150 for (Type *ScalarTy : ScalarTys) 3151 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3152 3153 // Compute costs of unpacking argument values for the scalar calls and 3154 // packing the return values to a vector. 3155 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3156 3157 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3158 3159 // If we can't emit a vector call for this function, then the currently found 3160 // cost is the cost we need to return. 3161 NeedToScalarize = true; 3162 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3163 return Cost; 3164 3165 // If the corresponding vector cost is cheaper, return its cost. 3166 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3167 if (VectorCallCost < Cost) { 3168 NeedToScalarize = false; 3169 return VectorCallCost; 3170 } 3171 return Cost; 3172 } 3173 3174 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3175 // factor VF. Return the cost of the instruction, including scalarization 3176 // overhead if it's needed. 3177 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3178 const TargetTransformInfo &TTI, 3179 const TargetLibraryInfo *TLI) { 3180 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3181 assert(ID && "Expected intrinsic call!"); 3182 3183 FastMathFlags FMF; 3184 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3185 FMF = FPMO->getFastMathFlags(); 3186 3187 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3188 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3189 } 3190 3191 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3192 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3193 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3194 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3195 } 3196 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3197 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3198 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3199 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3200 } 3201 3202 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3203 // For every instruction `I` in MinBWs, truncate the operands, create a 3204 // truncated version of `I` and reextend its result. InstCombine runs 3205 // later and will remove any ext/trunc pairs. 3206 SmallPtrSet<Value *, 4> Erased; 3207 for (const auto &KV : Cost->getMinimalBitwidths()) { 3208 // If the value wasn't vectorized, we must maintain the original scalar 3209 // type. The absence of the value from VectorLoopValueMap indicates that it 3210 // wasn't vectorized. 3211 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3212 continue; 3213 for (unsigned Part = 0; Part < UF; ++Part) { 3214 Value *I = getOrCreateVectorValue(KV.first, Part); 3215 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3216 continue; 3217 Type *OriginalTy = I->getType(); 3218 Type *ScalarTruncatedTy = 3219 IntegerType::get(OriginalTy->getContext(), KV.second); 3220 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3221 OriginalTy->getVectorNumElements()); 3222 if (TruncatedTy == OriginalTy) 3223 continue; 3224 3225 IRBuilder<> B(cast<Instruction>(I)); 3226 auto ShrinkOperand = [&](Value *V) -> Value * { 3227 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3228 if (ZI->getSrcTy() == TruncatedTy) 3229 return ZI->getOperand(0); 3230 return B.CreateZExtOrTrunc(V, TruncatedTy); 3231 }; 3232 3233 // The actual instruction modification depends on the instruction type, 3234 // unfortunately. 3235 Value *NewI = nullptr; 3236 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3237 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3238 ShrinkOperand(BO->getOperand(1))); 3239 3240 // Any wrapping introduced by shrinking this operation shouldn't be 3241 // considered undefined behavior. So, we can't unconditionally copy 3242 // arithmetic wrapping flags to NewI. 3243 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3244 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3245 NewI = 3246 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3247 ShrinkOperand(CI->getOperand(1))); 3248 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3249 NewI = B.CreateSelect(SI->getCondition(), 3250 ShrinkOperand(SI->getTrueValue()), 3251 ShrinkOperand(SI->getFalseValue())); 3252 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3253 switch (CI->getOpcode()) { 3254 default: 3255 llvm_unreachable("Unhandled cast!"); 3256 case Instruction::Trunc: 3257 NewI = ShrinkOperand(CI->getOperand(0)); 3258 break; 3259 case Instruction::SExt: 3260 NewI = B.CreateSExtOrTrunc( 3261 CI->getOperand(0), 3262 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3263 break; 3264 case Instruction::ZExt: 3265 NewI = B.CreateZExtOrTrunc( 3266 CI->getOperand(0), 3267 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3268 break; 3269 } 3270 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3271 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3272 auto *O0 = B.CreateZExtOrTrunc( 3273 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3274 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3275 auto *O1 = B.CreateZExtOrTrunc( 3276 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3277 3278 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3279 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3280 // Don't do anything with the operands, just extend the result. 3281 continue; 3282 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3283 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3284 auto *O0 = B.CreateZExtOrTrunc( 3285 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3286 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3287 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3288 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3289 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3290 auto *O0 = B.CreateZExtOrTrunc( 3291 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3292 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3293 } else { 3294 // If we don't know what to do, be conservative and don't do anything. 3295 continue; 3296 } 3297 3298 // Lastly, extend the result. 3299 NewI->takeName(cast<Instruction>(I)); 3300 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3301 I->replaceAllUsesWith(Res); 3302 cast<Instruction>(I)->eraseFromParent(); 3303 Erased.insert(I); 3304 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3305 } 3306 } 3307 3308 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3309 for (const auto &KV : Cost->getMinimalBitwidths()) { 3310 // If the value wasn't vectorized, we must maintain the original scalar 3311 // type. The absence of the value from VectorLoopValueMap indicates that it 3312 // wasn't vectorized. 3313 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3314 continue; 3315 for (unsigned Part = 0; Part < UF; ++Part) { 3316 Value *I = getOrCreateVectorValue(KV.first, Part); 3317 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3318 if (Inst && Inst->use_empty()) { 3319 Value *NewI = Inst->getOperand(0); 3320 Inst->eraseFromParent(); 3321 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3322 } 3323 } 3324 } 3325 } 3326 3327 void InnerLoopVectorizer::fixVectorizedLoop() { 3328 // Insert truncates and extends for any truncated instructions as hints to 3329 // InstCombine. 3330 if (VF > 1) 3331 truncateToMinimalBitwidths(); 3332 3333 // At this point every instruction in the original loop is widened to a 3334 // vector form. Now we need to fix the recurrences in the loop. These PHI 3335 // nodes are currently empty because we did not want to introduce cycles. 3336 // This is the second stage of vectorizing recurrences. 3337 fixCrossIterationPHIs(); 3338 3339 // Update the dominator tree. 3340 // 3341 // FIXME: After creating the structure of the new loop, the dominator tree is 3342 // no longer up-to-date, and it remains that way until we update it 3343 // here. An out-of-date dominator tree is problematic for SCEV, 3344 // because SCEVExpander uses it to guide code generation. The 3345 // vectorizer use SCEVExpanders in several places. Instead, we should 3346 // keep the dominator tree up-to-date as we go. 3347 updateAnalysis(); 3348 3349 // Fix-up external users of the induction variables. 3350 for (auto &Entry : *Legal->getInductionVars()) 3351 fixupIVUsers(Entry.first, Entry.second, 3352 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3353 IVEndValues[Entry.first], LoopMiddleBlock); 3354 3355 fixLCSSAPHIs(); 3356 for (Instruction *PI : PredicatedInstructions) 3357 sinkScalarOperands(&*PI); 3358 3359 // Remove redundant induction instructions. 3360 cse(LoopVectorBody); 3361 } 3362 3363 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3364 // In order to support recurrences we need to be able to vectorize Phi nodes. 3365 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3366 // stage #2: We now need to fix the recurrences by adding incoming edges to 3367 // the currently empty PHI nodes. At this point every instruction in the 3368 // original loop is widened to a vector form so we can use them to construct 3369 // the incoming edges. 3370 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3371 // Handle first-order recurrences and reductions that need to be fixed. 3372 if (Legal->isFirstOrderRecurrence(&Phi)) 3373 fixFirstOrderRecurrence(&Phi); 3374 else if (Legal->isReductionVariable(&Phi)) 3375 fixReduction(&Phi); 3376 } 3377 } 3378 3379 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3380 // This is the second phase of vectorizing first-order recurrences. An 3381 // overview of the transformation is described below. Suppose we have the 3382 // following loop. 3383 // 3384 // for (int i = 0; i < n; ++i) 3385 // b[i] = a[i] - a[i - 1]; 3386 // 3387 // There is a first-order recurrence on "a". For this loop, the shorthand 3388 // scalar IR looks like: 3389 // 3390 // scalar.ph: 3391 // s_init = a[-1] 3392 // br scalar.body 3393 // 3394 // scalar.body: 3395 // i = phi [0, scalar.ph], [i+1, scalar.body] 3396 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3397 // s2 = a[i] 3398 // b[i] = s2 - s1 3399 // br cond, scalar.body, ... 3400 // 3401 // In this example, s1 is a recurrence because it's value depends on the 3402 // previous iteration. In the first phase of vectorization, we created a 3403 // temporary value for s1. We now complete the vectorization and produce the 3404 // shorthand vector IR shown below (for VF = 4, UF = 1). 3405 // 3406 // vector.ph: 3407 // v_init = vector(..., ..., ..., a[-1]) 3408 // br vector.body 3409 // 3410 // vector.body 3411 // i = phi [0, vector.ph], [i+4, vector.body] 3412 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3413 // v2 = a[i, i+1, i+2, i+3]; 3414 // v3 = vector(v1(3), v2(0, 1, 2)) 3415 // b[i, i+1, i+2, i+3] = v2 - v3 3416 // br cond, vector.body, middle.block 3417 // 3418 // middle.block: 3419 // x = v2(3) 3420 // br scalar.ph 3421 // 3422 // scalar.ph: 3423 // s_init = phi [x, middle.block], [a[-1], otherwise] 3424 // br scalar.body 3425 // 3426 // After execution completes the vector loop, we extract the next value of 3427 // the recurrence (x) to use as the initial value in the scalar loop. 3428 3429 // Get the original loop preheader and single loop latch. 3430 auto *Preheader = OrigLoop->getLoopPreheader(); 3431 auto *Latch = OrigLoop->getLoopLatch(); 3432 3433 // Get the initial and previous values of the scalar recurrence. 3434 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3435 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3436 3437 // Create a vector from the initial value. 3438 auto *VectorInit = ScalarInit; 3439 if (VF > 1) { 3440 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3441 VectorInit = Builder.CreateInsertElement( 3442 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3443 Builder.getInt32(VF - 1), "vector.recur.init"); 3444 } 3445 3446 // We constructed a temporary phi node in the first phase of vectorization. 3447 // This phi node will eventually be deleted. 3448 Builder.SetInsertPoint( 3449 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3450 3451 // Create a phi node for the new recurrence. The current value will either be 3452 // the initial value inserted into a vector or loop-varying vector value. 3453 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3454 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3455 3456 // Get the vectorized previous value of the last part UF - 1. It appears last 3457 // among all unrolled iterations, due to the order of their construction. 3458 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3459 3460 // Set the insertion point after the previous value if it is an instruction. 3461 // Note that the previous value may have been constant-folded so it is not 3462 // guaranteed to be an instruction in the vector loop. Also, if the previous 3463 // value is a phi node, we should insert after all the phi nodes to avoid 3464 // breaking basic block verification. 3465 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3466 isa<PHINode>(PreviousLastPart)) 3467 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3468 else 3469 Builder.SetInsertPoint( 3470 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3471 3472 // We will construct a vector for the recurrence by combining the values for 3473 // the current and previous iterations. This is the required shuffle mask. 3474 SmallVector<Constant *, 8> ShuffleMask(VF); 3475 ShuffleMask[0] = Builder.getInt32(VF - 1); 3476 for (unsigned I = 1; I < VF; ++I) 3477 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3478 3479 // The vector from which to take the initial value for the current iteration 3480 // (actual or unrolled). Initially, this is the vector phi node. 3481 Value *Incoming = VecPhi; 3482 3483 // Shuffle the current and previous vector and update the vector parts. 3484 for (unsigned Part = 0; Part < UF; ++Part) { 3485 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3486 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3487 auto *Shuffle = 3488 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3489 ConstantVector::get(ShuffleMask)) 3490 : Incoming; 3491 PhiPart->replaceAllUsesWith(Shuffle); 3492 cast<Instruction>(PhiPart)->eraseFromParent(); 3493 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3494 Incoming = PreviousPart; 3495 } 3496 3497 // Fix the latch value of the new recurrence in the vector loop. 3498 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3499 3500 // Extract the last vector element in the middle block. This will be the 3501 // initial value for the recurrence when jumping to the scalar loop. 3502 auto *ExtractForScalar = Incoming; 3503 if (VF > 1) { 3504 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3505 ExtractForScalar = Builder.CreateExtractElement( 3506 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3507 } 3508 // Extract the second last element in the middle block if the 3509 // Phi is used outside the loop. We need to extract the phi itself 3510 // and not the last element (the phi update in the current iteration). This 3511 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3512 // when the scalar loop is not run at all. 3513 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3514 if (VF > 1) 3515 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3516 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3517 // When loop is unrolled without vectorizing, initialize 3518 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3519 // `Incoming`. This is analogous to the vectorized case above: extracting the 3520 // second last element when VF > 1. 3521 else if (UF > 1) 3522 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3523 3524 // Fix the initial value of the original recurrence in the scalar loop. 3525 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3526 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3527 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3528 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3529 Start->addIncoming(Incoming, BB); 3530 } 3531 3532 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3533 Phi->setName("scalar.recur"); 3534 3535 // Finally, fix users of the recurrence outside the loop. The users will need 3536 // either the last value of the scalar recurrence or the last value of the 3537 // vector recurrence we extracted in the middle block. Since the loop is in 3538 // LCSSA form, we just need to find all the phi nodes for the original scalar 3539 // recurrence in the exit block, and then add an edge for the middle block. 3540 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3541 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3542 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3543 } 3544 } 3545 } 3546 3547 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3548 Constant *Zero = Builder.getInt32(0); 3549 3550 // Get it's reduction variable descriptor. 3551 assert(Legal->isReductionVariable(Phi) && 3552 "Unable to find the reduction variable"); 3553 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3554 3555 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3556 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3557 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3558 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3559 RdxDesc.getMinMaxRecurrenceKind(); 3560 setDebugLocFromInst(Builder, ReductionStartValue); 3561 3562 // We need to generate a reduction vector from the incoming scalar. 3563 // To do so, we need to generate the 'identity' vector and override 3564 // one of the elements with the incoming scalar reduction. We need 3565 // to do it in the vector-loop preheader. 3566 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3567 3568 // This is the vector-clone of the value that leaves the loop. 3569 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3570 3571 // Find the reduction identity variable. Zero for addition, or, xor, 3572 // one for multiplication, -1 for And. 3573 Value *Identity; 3574 Value *VectorStart; 3575 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3576 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3577 // MinMax reduction have the start value as their identify. 3578 if (VF == 1) { 3579 VectorStart = Identity = ReductionStartValue; 3580 } else { 3581 VectorStart = Identity = 3582 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3583 } 3584 } else { 3585 // Handle other reduction kinds: 3586 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3587 RK, VecTy->getScalarType()); 3588 if (VF == 1) { 3589 Identity = Iden; 3590 // This vector is the Identity vector where the first element is the 3591 // incoming scalar reduction. 3592 VectorStart = ReductionStartValue; 3593 } else { 3594 Identity = ConstantVector::getSplat(VF, Iden); 3595 3596 // This vector is the Identity vector where the first element is the 3597 // incoming scalar reduction. 3598 VectorStart = 3599 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3600 } 3601 } 3602 3603 // Fix the vector-loop phi. 3604 3605 // Reductions do not have to start at zero. They can start with 3606 // any loop invariant values. 3607 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3608 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3609 for (unsigned Part = 0; Part < UF; ++Part) { 3610 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3611 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3612 // Make sure to add the reduction stat value only to the 3613 // first unroll part. 3614 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3615 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3616 cast<PHINode>(VecRdxPhi) 3617 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3618 } 3619 3620 // Before each round, move the insertion point right between 3621 // the PHIs and the values we are going to write. 3622 // This allows us to write both PHINodes and the extractelement 3623 // instructions. 3624 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3625 3626 setDebugLocFromInst(Builder, LoopExitInst); 3627 3628 // If the vector reduction can be performed in a smaller type, we truncate 3629 // then extend the loop exit value to enable InstCombine to evaluate the 3630 // entire expression in the smaller type. 3631 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3632 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3633 Builder.SetInsertPoint( 3634 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3635 VectorParts RdxParts(UF); 3636 for (unsigned Part = 0; Part < UF; ++Part) { 3637 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3638 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3639 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3640 : Builder.CreateZExt(Trunc, VecTy); 3641 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3642 UI != RdxParts[Part]->user_end();) 3643 if (*UI != Trunc) { 3644 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3645 RdxParts[Part] = Extnd; 3646 } else { 3647 ++UI; 3648 } 3649 } 3650 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3651 for (unsigned Part = 0; Part < UF; ++Part) { 3652 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3653 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3654 } 3655 } 3656 3657 // Reduce all of the unrolled parts into a single vector. 3658 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3659 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3660 setDebugLocFromInst(Builder, ReducedPartRdx); 3661 for (unsigned Part = 1; Part < UF; ++Part) { 3662 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3663 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3664 // Floating point operations had to be 'fast' to enable the reduction. 3665 ReducedPartRdx = addFastMathFlag( 3666 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3667 ReducedPartRdx, "bin.rdx")); 3668 else 3669 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3670 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 3671 } 3672 3673 if (VF > 1) { 3674 bool NoNaN = Legal->hasFunNoNaNAttr(); 3675 ReducedPartRdx = 3676 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3677 // If the reduction can be performed in a smaller type, we need to extend 3678 // the reduction to the wider type before we branch to the original loop. 3679 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3680 ReducedPartRdx = 3681 RdxDesc.isSigned() 3682 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3683 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3684 } 3685 3686 // Create a phi node that merges control-flow from the backedge-taken check 3687 // block and the middle block. 3688 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3689 LoopScalarPreHeader->getTerminator()); 3690 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3691 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3692 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3693 3694 // Now, we need to fix the users of the reduction variable 3695 // inside and outside of the scalar remainder loop. 3696 // We know that the loop is in LCSSA form. We need to update the 3697 // PHI nodes in the exit blocks. 3698 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3699 // All PHINodes need to have a single entry edge, or two if 3700 // we already fixed them. 3701 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3702 3703 // We found a reduction value exit-PHI. Update it with the 3704 // incoming bypass edge. 3705 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3706 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3707 } // end of the LCSSA phi scan. 3708 3709 // Fix the scalar loop reduction variable with the incoming reduction sum 3710 // from the vector body and from the backedge value. 3711 int IncomingEdgeBlockIdx = 3712 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3713 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3714 // Pick the other block. 3715 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3716 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3717 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3718 } 3719 3720 void InnerLoopVectorizer::fixLCSSAPHIs() { 3721 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3722 if (LCSSAPhi.getNumIncomingValues() == 1) { 3723 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 3724 "Incoming value isn't loop invariant"); 3725 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 3726 } 3727 } 3728 } 3729 3730 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3731 // The basic block and loop containing the predicated instruction. 3732 auto *PredBB = PredInst->getParent(); 3733 auto *VectorLoop = LI->getLoopFor(PredBB); 3734 3735 // Initialize a worklist with the operands of the predicated instruction. 3736 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3737 3738 // Holds instructions that we need to analyze again. An instruction may be 3739 // reanalyzed if we don't yet know if we can sink it or not. 3740 SmallVector<Instruction *, 8> InstsToReanalyze; 3741 3742 // Returns true if a given use occurs in the predicated block. Phi nodes use 3743 // their operands in their corresponding predecessor blocks. 3744 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3745 auto *I = cast<Instruction>(U.getUser()); 3746 BasicBlock *BB = I->getParent(); 3747 if (auto *Phi = dyn_cast<PHINode>(I)) 3748 BB = Phi->getIncomingBlock( 3749 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3750 return BB == PredBB; 3751 }; 3752 3753 // Iteratively sink the scalarized operands of the predicated instruction 3754 // into the block we created for it. When an instruction is sunk, it's 3755 // operands are then added to the worklist. The algorithm ends after one pass 3756 // through the worklist doesn't sink a single instruction. 3757 bool Changed; 3758 do { 3759 // Add the instructions that need to be reanalyzed to the worklist, and 3760 // reset the changed indicator. 3761 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3762 InstsToReanalyze.clear(); 3763 Changed = false; 3764 3765 while (!Worklist.empty()) { 3766 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3767 3768 // We can't sink an instruction if it is a phi node, is already in the 3769 // predicated block, is not in the loop, or may have side effects. 3770 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3771 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3772 continue; 3773 3774 // It's legal to sink the instruction if all its uses occur in the 3775 // predicated block. Otherwise, there's nothing to do yet, and we may 3776 // need to reanalyze the instruction. 3777 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3778 InstsToReanalyze.push_back(I); 3779 continue; 3780 } 3781 3782 // Move the instruction to the beginning of the predicated block, and add 3783 // it's operands to the worklist. 3784 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3785 Worklist.insert(I->op_begin(), I->op_end()); 3786 3787 // The sinking may have enabled other instructions to be sunk, so we will 3788 // need to iterate. 3789 Changed = true; 3790 } 3791 } while (Changed); 3792 } 3793 3794 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3795 unsigned VF) { 3796 assert(PN->getParent() == OrigLoop->getHeader() && 3797 "Non-header phis should have been handled elsewhere"); 3798 3799 PHINode *P = cast<PHINode>(PN); 3800 // In order to support recurrences we need to be able to vectorize Phi nodes. 3801 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3802 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3803 // this value when we vectorize all of the instructions that use the PHI. 3804 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3805 for (unsigned Part = 0; Part < UF; ++Part) { 3806 // This is phase one of vectorizing PHIs. 3807 Type *VecTy = 3808 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3809 Value *EntryPart = PHINode::Create( 3810 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3811 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3812 } 3813 return; 3814 } 3815 3816 setDebugLocFromInst(Builder, P); 3817 3818 // This PHINode must be an induction variable. 3819 // Make sure that we know about it. 3820 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3821 3822 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3823 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3824 3825 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3826 // which can be found from the original scalar operations. 3827 switch (II.getKind()) { 3828 case InductionDescriptor::IK_NoInduction: 3829 llvm_unreachable("Unknown induction"); 3830 case InductionDescriptor::IK_IntInduction: 3831 case InductionDescriptor::IK_FpInduction: 3832 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3833 case InductionDescriptor::IK_PtrInduction: { 3834 // Handle the pointer induction variable case. 3835 assert(P->getType()->isPointerTy() && "Unexpected type."); 3836 // This is the normalized GEP that starts counting at zero. 3837 Value *PtrInd = Induction; 3838 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3839 // Determine the number of scalars we need to generate for each unroll 3840 // iteration. If the instruction is uniform, we only need to generate the 3841 // first lane. Otherwise, we generate all VF values. 3842 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3843 // These are the scalar results. Notice that we don't generate vector GEPs 3844 // because scalar GEPs result in better code. 3845 for (unsigned Part = 0; Part < UF; ++Part) { 3846 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3847 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3848 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3849 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 3850 SclrGep->setName("next.gep"); 3851 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3852 } 3853 } 3854 return; 3855 } 3856 } 3857 } 3858 3859 /// A helper function for checking whether an integer division-related 3860 /// instruction may divide by zero (in which case it must be predicated if 3861 /// executed conditionally in the scalar code). 3862 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3863 /// Non-zero divisors that are non compile-time constants will not be 3864 /// converted into multiplication, so we will still end up scalarizing 3865 /// the division, but can do so w/o predication. 3866 static bool mayDivideByZero(Instruction &I) { 3867 assert((I.getOpcode() == Instruction::UDiv || 3868 I.getOpcode() == Instruction::SDiv || 3869 I.getOpcode() == Instruction::URem || 3870 I.getOpcode() == Instruction::SRem) && 3871 "Unexpected instruction"); 3872 Value *Divisor = I.getOperand(1); 3873 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3874 return !CInt || CInt->isZero(); 3875 } 3876 3877 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3878 switch (I.getOpcode()) { 3879 case Instruction::Br: 3880 case Instruction::PHI: 3881 llvm_unreachable("This instruction is handled by a different recipe."); 3882 case Instruction::GetElementPtr: { 3883 // Construct a vector GEP by widening the operands of the scalar GEP as 3884 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3885 // results in a vector of pointers when at least one operand of the GEP 3886 // is vector-typed. Thus, to keep the representation compact, we only use 3887 // vector-typed operands for loop-varying values. 3888 auto *GEP = cast<GetElementPtrInst>(&I); 3889 3890 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3891 // If we are vectorizing, but the GEP has only loop-invariant operands, 3892 // the GEP we build (by only using vector-typed operands for 3893 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3894 // produce a vector of pointers, we need to either arbitrarily pick an 3895 // operand to broadcast, or broadcast a clone of the original GEP. 3896 // Here, we broadcast a clone of the original. 3897 // 3898 // TODO: If at some point we decide to scalarize instructions having 3899 // loop-invariant operands, this special case will no longer be 3900 // required. We would add the scalarization decision to 3901 // collectLoopScalars() and teach getVectorValue() to broadcast 3902 // the lane-zero scalar value. 3903 auto *Clone = Builder.Insert(GEP->clone()); 3904 for (unsigned Part = 0; Part < UF; ++Part) { 3905 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3906 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3907 addMetadata(EntryPart, GEP); 3908 } 3909 } else { 3910 // If the GEP has at least one loop-varying operand, we are sure to 3911 // produce a vector of pointers. But if we are only unrolling, we want 3912 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3913 // produce with the code below will be scalar (if VF == 1) or vector 3914 // (otherwise). Note that for the unroll-only case, we still maintain 3915 // values in the vector mapping with initVector, as we do for other 3916 // instructions. 3917 for (unsigned Part = 0; Part < UF; ++Part) { 3918 // The pointer operand of the new GEP. If it's loop-invariant, we 3919 // won't broadcast it. 3920 auto *Ptr = 3921 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3922 ? GEP->getPointerOperand() 3923 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3924 3925 // Collect all the indices for the new GEP. If any index is 3926 // loop-invariant, we won't broadcast it. 3927 SmallVector<Value *, 4> Indices; 3928 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3929 if (OrigLoop->isLoopInvariant(U.get())) 3930 Indices.push_back(U.get()); 3931 else 3932 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3933 } 3934 3935 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3936 // but it should be a vector, otherwise. 3937 auto *NewGEP = GEP->isInBounds() 3938 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3939 : Builder.CreateGEP(Ptr, Indices); 3940 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3941 "NewGEP is not a pointer vector"); 3942 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3943 addMetadata(NewGEP, GEP); 3944 } 3945 } 3946 3947 break; 3948 } 3949 case Instruction::UDiv: 3950 case Instruction::SDiv: 3951 case Instruction::SRem: 3952 case Instruction::URem: 3953 case Instruction::Add: 3954 case Instruction::FAdd: 3955 case Instruction::Sub: 3956 case Instruction::FSub: 3957 case Instruction::Mul: 3958 case Instruction::FMul: 3959 case Instruction::FDiv: 3960 case Instruction::FRem: 3961 case Instruction::Shl: 3962 case Instruction::LShr: 3963 case Instruction::AShr: 3964 case Instruction::And: 3965 case Instruction::Or: 3966 case Instruction::Xor: { 3967 // Just widen binops. 3968 auto *BinOp = cast<BinaryOperator>(&I); 3969 setDebugLocFromInst(Builder, BinOp); 3970 3971 for (unsigned Part = 0; Part < UF; ++Part) { 3972 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3973 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3974 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3975 3976 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3977 VecOp->copyIRFlags(BinOp); 3978 3979 // Use this vector value for all users of the original instruction. 3980 VectorLoopValueMap.setVectorValue(&I, Part, V); 3981 addMetadata(V, BinOp); 3982 } 3983 3984 break; 3985 } 3986 case Instruction::Select: { 3987 // Widen selects. 3988 // If the selector is loop invariant we can create a select 3989 // instruction with a scalar condition. Otherwise, use vector-select. 3990 auto *SE = PSE.getSE(); 3991 bool InvariantCond = 3992 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 3993 setDebugLocFromInst(Builder, &I); 3994 3995 // The condition can be loop invariant but still defined inside the 3996 // loop. This means that we can't just use the original 'cond' value. 3997 // We have to take the 'vectorized' value and pick the first lane. 3998 // Instcombine will make this a no-op. 3999 4000 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4001 4002 for (unsigned Part = 0; Part < UF; ++Part) { 4003 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4004 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4005 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4006 Value *Sel = 4007 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4008 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4009 addMetadata(Sel, &I); 4010 } 4011 4012 break; 4013 } 4014 4015 case Instruction::ICmp: 4016 case Instruction::FCmp: { 4017 // Widen compares. Generate vector compares. 4018 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4019 auto *Cmp = dyn_cast<CmpInst>(&I); 4020 setDebugLocFromInst(Builder, Cmp); 4021 for (unsigned Part = 0; Part < UF; ++Part) { 4022 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4023 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4024 Value *C = nullptr; 4025 if (FCmp) { 4026 // Propagate fast math flags. 4027 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4028 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4029 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4030 } else { 4031 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4032 } 4033 VectorLoopValueMap.setVectorValue(&I, Part, C); 4034 addMetadata(C, &I); 4035 } 4036 4037 break; 4038 } 4039 4040 case Instruction::ZExt: 4041 case Instruction::SExt: 4042 case Instruction::FPToUI: 4043 case Instruction::FPToSI: 4044 case Instruction::FPExt: 4045 case Instruction::PtrToInt: 4046 case Instruction::IntToPtr: 4047 case Instruction::SIToFP: 4048 case Instruction::UIToFP: 4049 case Instruction::Trunc: 4050 case Instruction::FPTrunc: 4051 case Instruction::BitCast: { 4052 auto *CI = dyn_cast<CastInst>(&I); 4053 setDebugLocFromInst(Builder, CI); 4054 4055 /// Vectorize casts. 4056 Type *DestTy = 4057 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4058 4059 for (unsigned Part = 0; Part < UF; ++Part) { 4060 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4061 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4062 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4063 addMetadata(Cast, &I); 4064 } 4065 break; 4066 } 4067 4068 case Instruction::Call: { 4069 // Ignore dbg intrinsics. 4070 if (isa<DbgInfoIntrinsic>(I)) 4071 break; 4072 setDebugLocFromInst(Builder, &I); 4073 4074 Module *M = I.getParent()->getParent()->getParent(); 4075 auto *CI = cast<CallInst>(&I); 4076 4077 StringRef FnName = CI->getCalledFunction()->getName(); 4078 Function *F = CI->getCalledFunction(); 4079 Type *RetTy = ToVectorTy(CI->getType(), VF); 4080 SmallVector<Type *, 4> Tys; 4081 for (Value *ArgOperand : CI->arg_operands()) 4082 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4083 4084 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4085 4086 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4087 // version of the instruction. 4088 // Is it beneficial to perform intrinsic call compared to lib call? 4089 bool NeedToScalarize; 4090 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4091 bool UseVectorIntrinsic = 4092 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4093 assert((UseVectorIntrinsic || !NeedToScalarize) && 4094 "Instruction should be scalarized elsewhere."); 4095 4096 for (unsigned Part = 0; Part < UF; ++Part) { 4097 SmallVector<Value *, 4> Args; 4098 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4099 Value *Arg = CI->getArgOperand(i); 4100 // Some intrinsics have a scalar argument - don't replace it with a 4101 // vector. 4102 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4103 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4104 Args.push_back(Arg); 4105 } 4106 4107 Function *VectorF; 4108 if (UseVectorIntrinsic) { 4109 // Use vector version of the intrinsic. 4110 Type *TysForDecl[] = {CI->getType()}; 4111 if (VF > 1) 4112 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4113 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4114 } else { 4115 // Use vector version of the library call. 4116 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4117 assert(!VFnName.empty() && "Vector function name is empty."); 4118 VectorF = M->getFunction(VFnName); 4119 if (!VectorF) { 4120 // Generate a declaration 4121 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4122 VectorF = 4123 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4124 VectorF->copyAttributesFrom(F); 4125 } 4126 } 4127 assert(VectorF && "Can't create vector function."); 4128 4129 SmallVector<OperandBundleDef, 1> OpBundles; 4130 CI->getOperandBundlesAsDefs(OpBundles); 4131 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4132 4133 if (isa<FPMathOperator>(V)) 4134 V->copyFastMathFlags(CI); 4135 4136 VectorLoopValueMap.setVectorValue(&I, Part, V); 4137 addMetadata(V, &I); 4138 } 4139 4140 break; 4141 } 4142 4143 default: 4144 // This instruction is not vectorized by simple widening. 4145 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4146 llvm_unreachable("Unhandled instruction!"); 4147 } // end of switch. 4148 } 4149 4150 void InnerLoopVectorizer::updateAnalysis() { 4151 // Forget the original basic block. 4152 PSE.getSE()->forgetLoop(OrigLoop); 4153 4154 // Update the dominator tree information. 4155 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4156 "Entry does not dominate exit."); 4157 4158 DT->addNewBlock(LoopMiddleBlock, 4159 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4160 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4161 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4162 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4163 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4164 } 4165 4166 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4167 // We should not collect Scalars more than once per VF. Right now, this 4168 // function is called from collectUniformsAndScalars(), which already does 4169 // this check. Collecting Scalars for VF=1 does not make any sense. 4170 assert(VF >= 2 && !Scalars.count(VF) && 4171 "This function should not be visited twice for the same VF"); 4172 4173 SmallSetVector<Instruction *, 8> Worklist; 4174 4175 // These sets are used to seed the analysis with pointers used by memory 4176 // accesses that will remain scalar. 4177 SmallSetVector<Instruction *, 8> ScalarPtrs; 4178 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4179 4180 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4181 // The pointer operands of loads and stores will be scalar as long as the 4182 // memory access is not a gather or scatter operation. The value operand of a 4183 // store will remain scalar if the store is scalarized. 4184 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4185 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4186 assert(WideningDecision != CM_Unknown && 4187 "Widening decision should be ready at this moment"); 4188 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4189 if (Ptr == Store->getValueOperand()) 4190 return WideningDecision == CM_Scalarize; 4191 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4192 "Ptr is neither a value or pointer operand"); 4193 return WideningDecision != CM_GatherScatter; 4194 }; 4195 4196 // A helper that returns true if the given value is a bitcast or 4197 // getelementptr instruction contained in the loop. 4198 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4199 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4200 isa<GetElementPtrInst>(V)) && 4201 !TheLoop->isLoopInvariant(V); 4202 }; 4203 4204 // A helper that evaluates a memory access's use of a pointer. If the use 4205 // will be a scalar use, and the pointer is only used by memory accesses, we 4206 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4207 // PossibleNonScalarPtrs. 4208 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4209 // We only care about bitcast and getelementptr instructions contained in 4210 // the loop. 4211 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4212 return; 4213 4214 // If the pointer has already been identified as scalar (e.g., if it was 4215 // also identified as uniform), there's nothing to do. 4216 auto *I = cast<Instruction>(Ptr); 4217 if (Worklist.count(I)) 4218 return; 4219 4220 // If the use of the pointer will be a scalar use, and all users of the 4221 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4222 // place the pointer in PossibleNonScalarPtrs. 4223 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4224 return isa<LoadInst>(U) || isa<StoreInst>(U); 4225 })) 4226 ScalarPtrs.insert(I); 4227 else 4228 PossibleNonScalarPtrs.insert(I); 4229 }; 4230 4231 // We seed the scalars analysis with three classes of instructions: (1) 4232 // instructions marked uniform-after-vectorization, (2) bitcast and 4233 // getelementptr instructions used by memory accesses requiring a scalar use, 4234 // and (3) pointer induction variables and their update instructions (we 4235 // currently only scalarize these). 4236 // 4237 // (1) Add to the worklist all instructions that have been identified as 4238 // uniform-after-vectorization. 4239 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4240 4241 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4242 // memory accesses requiring a scalar use. The pointer operands of loads and 4243 // stores will be scalar as long as the memory accesses is not a gather or 4244 // scatter operation. The value operand of a store will remain scalar if the 4245 // store is scalarized. 4246 for (auto *BB : TheLoop->blocks()) 4247 for (auto &I : *BB) { 4248 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4249 evaluatePtrUse(Load, Load->getPointerOperand()); 4250 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4251 evaluatePtrUse(Store, Store->getPointerOperand()); 4252 evaluatePtrUse(Store, Store->getValueOperand()); 4253 } 4254 } 4255 for (auto *I : ScalarPtrs) 4256 if (!PossibleNonScalarPtrs.count(I)) { 4257 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4258 Worklist.insert(I); 4259 } 4260 4261 // (3) Add to the worklist all pointer induction variables and their update 4262 // instructions. 4263 // 4264 // TODO: Once we are able to vectorize pointer induction variables we should 4265 // no longer insert them into the worklist here. 4266 auto *Latch = TheLoop->getLoopLatch(); 4267 for (auto &Induction : *Legal->getInductionVars()) { 4268 auto *Ind = Induction.first; 4269 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4270 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4271 continue; 4272 Worklist.insert(Ind); 4273 Worklist.insert(IndUpdate); 4274 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4275 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4276 << "\n"); 4277 } 4278 4279 // Insert the forced scalars. 4280 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4281 // induction variable when the PHI user is scalarized. 4282 if (ForcedScalars.count(VF)) 4283 for (auto *I : ForcedScalars.find(VF)->second) 4284 Worklist.insert(I); 4285 4286 // Expand the worklist by looking through any bitcasts and getelementptr 4287 // instructions we've already identified as scalar. This is similar to the 4288 // expansion step in collectLoopUniforms(); however, here we're only 4289 // expanding to include additional bitcasts and getelementptr instructions. 4290 unsigned Idx = 0; 4291 while (Idx != Worklist.size()) { 4292 Instruction *Dst = Worklist[Idx++]; 4293 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4294 continue; 4295 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4296 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4297 auto *J = cast<Instruction>(U); 4298 return !TheLoop->contains(J) || Worklist.count(J) || 4299 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4300 isScalarUse(J, Src)); 4301 })) { 4302 Worklist.insert(Src); 4303 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4304 } 4305 } 4306 4307 // An induction variable will remain scalar if all users of the induction 4308 // variable and induction variable update remain scalar. 4309 for (auto &Induction : *Legal->getInductionVars()) { 4310 auto *Ind = Induction.first; 4311 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4312 4313 // We already considered pointer induction variables, so there's no reason 4314 // to look at their users again. 4315 // 4316 // TODO: Once we are able to vectorize pointer induction variables we 4317 // should no longer skip over them here. 4318 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4319 continue; 4320 4321 // Determine if all users of the induction variable are scalar after 4322 // vectorization. 4323 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4324 auto *I = cast<Instruction>(U); 4325 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4326 }); 4327 if (!ScalarInd) 4328 continue; 4329 4330 // Determine if all users of the induction variable update instruction are 4331 // scalar after vectorization. 4332 auto ScalarIndUpdate = 4333 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4334 auto *I = cast<Instruction>(U); 4335 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4336 }); 4337 if (!ScalarIndUpdate) 4338 continue; 4339 4340 // The induction variable and its update instruction will remain scalar. 4341 Worklist.insert(Ind); 4342 Worklist.insert(IndUpdate); 4343 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4344 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4345 << "\n"); 4346 } 4347 4348 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4349 } 4350 4351 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 4352 if (!Legal->blockNeedsPredication(I->getParent())) 4353 return false; 4354 switch(I->getOpcode()) { 4355 default: 4356 break; 4357 case Instruction::Load: 4358 case Instruction::Store: { 4359 if (!Legal->isMaskRequired(I)) 4360 return false; 4361 auto *Ptr = getLoadStorePointerOperand(I); 4362 auto *Ty = getMemInstValueType(I); 4363 return isa<LoadInst>(I) ? 4364 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4365 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4366 } 4367 case Instruction::UDiv: 4368 case Instruction::SDiv: 4369 case Instruction::SRem: 4370 case Instruction::URem: 4371 return mayDivideByZero(*I); 4372 } 4373 return false; 4374 } 4375 4376 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4377 unsigned VF) { 4378 // Get and ensure we have a valid memory instruction. 4379 LoadInst *LI = dyn_cast<LoadInst>(I); 4380 StoreInst *SI = dyn_cast<StoreInst>(I); 4381 assert((LI || SI) && "Invalid memory instruction"); 4382 4383 auto *Ptr = getLoadStorePointerOperand(I); 4384 4385 // In order to be widened, the pointer should be consecutive, first of all. 4386 if (!Legal->isConsecutivePtr(Ptr)) 4387 return false; 4388 4389 // If the instruction is a store located in a predicated block, it will be 4390 // scalarized. 4391 if (isScalarWithPredication(I)) 4392 return false; 4393 4394 // If the instruction's allocated size doesn't equal it's type size, it 4395 // requires padding and will be scalarized. 4396 auto &DL = I->getModule()->getDataLayout(); 4397 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4398 if (hasIrregularType(ScalarTy, DL, VF)) 4399 return false; 4400 4401 return true; 4402 } 4403 4404 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4405 // We should not collect Uniforms more than once per VF. Right now, 4406 // this function is called from collectUniformsAndScalars(), which 4407 // already does this check. Collecting Uniforms for VF=1 does not make any 4408 // sense. 4409 4410 assert(VF >= 2 && !Uniforms.count(VF) && 4411 "This function should not be visited twice for the same VF"); 4412 4413 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4414 // not analyze again. Uniforms.count(VF) will return 1. 4415 Uniforms[VF].clear(); 4416 4417 // We now know that the loop is vectorizable! 4418 // Collect instructions inside the loop that will remain uniform after 4419 // vectorization. 4420 4421 // Global values, params and instructions outside of current loop are out of 4422 // scope. 4423 auto isOutOfScope = [&](Value *V) -> bool { 4424 Instruction *I = dyn_cast<Instruction>(V); 4425 return (!I || !TheLoop->contains(I)); 4426 }; 4427 4428 SetVector<Instruction *> Worklist; 4429 BasicBlock *Latch = TheLoop->getLoopLatch(); 4430 4431 // Start with the conditional branch. If the branch condition is an 4432 // instruction contained in the loop that is only used by the branch, it is 4433 // uniform. 4434 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4435 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4436 Worklist.insert(Cmp); 4437 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4438 } 4439 4440 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4441 // are pointers that are treated like consecutive pointers during 4442 // vectorization. The pointer operands of interleaved accesses are an 4443 // example. 4444 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4445 4446 // Holds pointer operands of instructions that are possibly non-uniform. 4447 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4448 4449 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4450 InstWidening WideningDecision = getWideningDecision(I, VF); 4451 assert(WideningDecision != CM_Unknown && 4452 "Widening decision should be ready at this moment"); 4453 4454 return (WideningDecision == CM_Widen || 4455 WideningDecision == CM_Widen_Reverse || 4456 WideningDecision == CM_Interleave); 4457 }; 4458 // Iterate over the instructions in the loop, and collect all 4459 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4460 // that a consecutive-like pointer operand will be scalarized, we collect it 4461 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4462 // getelementptr instruction can be used by both vectorized and scalarized 4463 // memory instructions. For example, if a loop loads and stores from the same 4464 // location, but the store is conditional, the store will be scalarized, and 4465 // the getelementptr won't remain uniform. 4466 for (auto *BB : TheLoop->blocks()) 4467 for (auto &I : *BB) { 4468 // If there's no pointer operand, there's nothing to do. 4469 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4470 if (!Ptr) 4471 continue; 4472 4473 // True if all users of Ptr are memory accesses that have Ptr as their 4474 // pointer operand. 4475 auto UsersAreMemAccesses = 4476 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4477 return getLoadStorePointerOperand(U) == Ptr; 4478 }); 4479 4480 // Ensure the memory instruction will not be scalarized or used by 4481 // gather/scatter, making its pointer operand non-uniform. If the pointer 4482 // operand is used by any instruction other than a memory access, we 4483 // conservatively assume the pointer operand may be non-uniform. 4484 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4485 PossibleNonUniformPtrs.insert(Ptr); 4486 4487 // If the memory instruction will be vectorized and its pointer operand 4488 // is consecutive-like, or interleaving - the pointer operand should 4489 // remain uniform. 4490 else 4491 ConsecutiveLikePtrs.insert(Ptr); 4492 } 4493 4494 // Add to the Worklist all consecutive and consecutive-like pointers that 4495 // aren't also identified as possibly non-uniform. 4496 for (auto *V : ConsecutiveLikePtrs) 4497 if (!PossibleNonUniformPtrs.count(V)) { 4498 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4499 Worklist.insert(V); 4500 } 4501 4502 // Expand Worklist in topological order: whenever a new instruction 4503 // is added , its users should be either already inside Worklist, or 4504 // out of scope. It ensures a uniform instruction will only be used 4505 // by uniform instructions or out of scope instructions. 4506 unsigned idx = 0; 4507 while (idx != Worklist.size()) { 4508 Instruction *I = Worklist[idx++]; 4509 4510 for (auto OV : I->operand_values()) { 4511 if (isOutOfScope(OV)) 4512 continue; 4513 // First order recurrence Phi's should typically be considered 4514 // non-uniform. 4515 auto *OP = dyn_cast<PHINode>(OV); 4516 if (OP && Legal->isFirstOrderRecurrence(OP)) 4517 continue; 4518 // If all the users of the operand are uniform, then add the 4519 // operand into the uniform worklist. 4520 auto *OI = cast<Instruction>(OV); 4521 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4522 auto *J = cast<Instruction>(U); 4523 return !TheLoop->contains(J) || Worklist.count(J) || 4524 (OI == getLoadStorePointerOperand(J) && 4525 isUniformDecision(J, VF)); 4526 })) { 4527 Worklist.insert(OI); 4528 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4529 } 4530 } 4531 } 4532 4533 // Returns true if Ptr is the pointer operand of a memory access instruction 4534 // I, and I is known to not require scalarization. 4535 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4536 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4537 }; 4538 4539 // For an instruction to be added into Worklist above, all its users inside 4540 // the loop should also be in Worklist. However, this condition cannot be 4541 // true for phi nodes that form a cyclic dependence. We must process phi 4542 // nodes separately. An induction variable will remain uniform if all users 4543 // of the induction variable and induction variable update remain uniform. 4544 // The code below handles both pointer and non-pointer induction variables. 4545 for (auto &Induction : *Legal->getInductionVars()) { 4546 auto *Ind = Induction.first; 4547 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4548 4549 // Determine if all users of the induction variable are uniform after 4550 // vectorization. 4551 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4552 auto *I = cast<Instruction>(U); 4553 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4554 isVectorizedMemAccessUse(I, Ind); 4555 }); 4556 if (!UniformInd) 4557 continue; 4558 4559 // Determine if all users of the induction variable update instruction are 4560 // uniform after vectorization. 4561 auto UniformIndUpdate = 4562 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4563 auto *I = cast<Instruction>(U); 4564 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4565 isVectorizedMemAccessUse(I, IndUpdate); 4566 }); 4567 if (!UniformIndUpdate) 4568 continue; 4569 4570 // The induction variable and its update instruction will remain uniform. 4571 Worklist.insert(Ind); 4572 Worklist.insert(IndUpdate); 4573 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4574 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4575 << "\n"); 4576 } 4577 4578 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4579 } 4580 4581 void InterleavedAccessInfo::collectConstStrideAccesses( 4582 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 4583 const ValueToValueMap &Strides) { 4584 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4585 4586 // Since it's desired that the load/store instructions be maintained in 4587 // "program order" for the interleaved access analysis, we have to visit the 4588 // blocks in the loop in reverse postorder (i.e., in a topological order). 4589 // Such an ordering will ensure that any load/store that may be executed 4590 // before a second load/store will precede the second load/store in 4591 // AccessStrideInfo. 4592 LoopBlocksDFS DFS(TheLoop); 4593 DFS.perform(LI); 4594 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 4595 for (auto &I : *BB) { 4596 auto *LI = dyn_cast<LoadInst>(&I); 4597 auto *SI = dyn_cast<StoreInst>(&I); 4598 if (!LI && !SI) 4599 continue; 4600 4601 Value *Ptr = getLoadStorePointerOperand(&I); 4602 // We don't check wrapping here because we don't know yet if Ptr will be 4603 // part of a full group or a group with gaps. Checking wrapping for all 4604 // pointers (even those that end up in groups with no gaps) will be overly 4605 // conservative. For full groups, wrapping should be ok since if we would 4606 // wrap around the address space we would do a memory access at nullptr 4607 // even without the transformation. The wrapping checks are therefore 4608 // deferred until after we've formed the interleaved groups. 4609 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 4610 /*Assume=*/true, /*ShouldCheckWrap=*/false); 4611 4612 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4613 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4614 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4615 4616 // An alignment of 0 means target ABI alignment. 4617 unsigned Align = getMemInstAlignment(&I); 4618 if (!Align) 4619 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4620 4621 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 4622 } 4623 } 4624 4625 // Analyze interleaved accesses and collect them into interleaved load and 4626 // store groups. 4627 // 4628 // When generating code for an interleaved load group, we effectively hoist all 4629 // loads in the group to the location of the first load in program order. When 4630 // generating code for an interleaved store group, we sink all stores to the 4631 // location of the last store. This code motion can change the order of load 4632 // and store instructions and may break dependences. 4633 // 4634 // The code generation strategy mentioned above ensures that we won't violate 4635 // any write-after-read (WAR) dependences. 4636 // 4637 // E.g., for the WAR dependence: a = A[i]; // (1) 4638 // A[i] = b; // (2) 4639 // 4640 // The store group of (2) is always inserted at or below (2), and the load 4641 // group of (1) is always inserted at or above (1). Thus, the instructions will 4642 // never be reordered. All other dependences are checked to ensure the 4643 // correctness of the instruction reordering. 4644 // 4645 // The algorithm visits all memory accesses in the loop in bottom-up program 4646 // order. Program order is established by traversing the blocks in the loop in 4647 // reverse postorder when collecting the accesses. 4648 // 4649 // We visit the memory accesses in bottom-up order because it can simplify the 4650 // construction of store groups in the presence of write-after-write (WAW) 4651 // dependences. 4652 // 4653 // E.g., for the WAW dependence: A[i] = a; // (1) 4654 // A[i] = b; // (2) 4655 // A[i + 1] = c; // (3) 4656 // 4657 // We will first create a store group with (3) and (2). (1) can't be added to 4658 // this group because it and (2) are dependent. However, (1) can be grouped 4659 // with other accesses that may precede it in program order. Note that a 4660 // bottom-up order does not imply that WAW dependences should not be checked. 4661 void InterleavedAccessInfo::analyzeInterleaving() { 4662 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4663 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 4664 4665 // Holds all accesses with a constant stride. 4666 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 4667 collectConstStrideAccesses(AccessStrideInfo, Strides); 4668 4669 if (AccessStrideInfo.empty()) 4670 return; 4671 4672 // Collect the dependences in the loop. 4673 collectDependences(); 4674 4675 // Holds all interleaved store groups temporarily. 4676 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4677 // Holds all interleaved load groups temporarily. 4678 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 4679 4680 // Search in bottom-up program order for pairs of accesses (A and B) that can 4681 // form interleaved load or store groups. In the algorithm below, access A 4682 // precedes access B in program order. We initialize a group for B in the 4683 // outer loop of the algorithm, and then in the inner loop, we attempt to 4684 // insert each A into B's group if: 4685 // 4686 // 1. A and B have the same stride, 4687 // 2. A and B have the same memory object size, and 4688 // 3. A belongs in B's group according to its distance from B. 4689 // 4690 // Special care is taken to ensure group formation will not break any 4691 // dependences. 4692 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 4693 BI != E; ++BI) { 4694 Instruction *B = BI->first; 4695 StrideDescriptor DesB = BI->second; 4696 4697 // Initialize a group for B if it has an allowable stride. Even if we don't 4698 // create a group for B, we continue with the bottom-up algorithm to ensure 4699 // we don't break any of B's dependences. 4700 InterleaveGroup *Group = nullptr; 4701 if (isStrided(DesB.Stride)) { 4702 Group = getInterleaveGroup(B); 4703 if (!Group) { 4704 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 4705 << '\n'); 4706 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 4707 } 4708 if (B->mayWriteToMemory()) 4709 StoreGroups.insert(Group); 4710 else 4711 LoadGroups.insert(Group); 4712 } 4713 4714 for (auto AI = std::next(BI); AI != E; ++AI) { 4715 Instruction *A = AI->first; 4716 StrideDescriptor DesA = AI->second; 4717 4718 // Our code motion strategy implies that we can't have dependences 4719 // between accesses in an interleaved group and other accesses located 4720 // between the first and last member of the group. Note that this also 4721 // means that a group can't have more than one member at a given offset. 4722 // The accesses in a group can have dependences with other accesses, but 4723 // we must ensure we don't extend the boundaries of the group such that 4724 // we encompass those dependent accesses. 4725 // 4726 // For example, assume we have the sequence of accesses shown below in a 4727 // stride-2 loop: 4728 // 4729 // (1, 2) is a group | A[i] = a; // (1) 4730 // | A[i-1] = b; // (2) | 4731 // A[i-3] = c; // (3) 4732 // A[i] = d; // (4) | (2, 4) is not a group 4733 // 4734 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 4735 // but not with (4). If we did, the dependent access (3) would be within 4736 // the boundaries of the (2, 4) group. 4737 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 4738 // If a dependence exists and A is already in a group, we know that A 4739 // must be a store since A precedes B and WAR dependences are allowed. 4740 // Thus, A would be sunk below B. We release A's group to prevent this 4741 // illegal code motion. A will then be free to form another group with 4742 // instructions that precede it. 4743 if (isInterleaved(A)) { 4744 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 4745 StoreGroups.remove(StoreGroup); 4746 releaseGroup(StoreGroup); 4747 } 4748 4749 // If a dependence exists and A is not already in a group (or it was 4750 // and we just released it), B might be hoisted above A (if B is a 4751 // load) or another store might be sunk below A (if B is a store). In 4752 // either case, we can't add additional instructions to B's group. B 4753 // will only form a group with instructions that it precedes. 4754 break; 4755 } 4756 4757 // At this point, we've checked for illegal code motion. If either A or B 4758 // isn't strided, there's nothing left to do. 4759 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 4760 continue; 4761 4762 // Ignore A if it's already in a group or isn't the same kind of memory 4763 // operation as B. 4764 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 4765 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 4766 // should have returned false - except for the case we asked for optimization 4767 // remarks. 4768 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 4769 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 4770 continue; 4771 4772 // Check rules 1 and 2. Ignore A if its stride or size is different from 4773 // that of B. 4774 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 4775 continue; 4776 4777 // Ignore A if the memory object of A and B don't belong to the same 4778 // address space 4779 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 4780 continue; 4781 4782 // Calculate the distance from A to B. 4783 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 4784 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 4785 if (!DistToB) 4786 continue; 4787 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 4788 4789 // Check rule 3. Ignore A if its distance to B is not a multiple of the 4790 // size. 4791 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 4792 continue; 4793 4794 // Ignore A if either A or B is in a predicated block. Although we 4795 // currently prevent group formation for predicated accesses, we may be 4796 // able to relax this limitation in the future once we handle more 4797 // complicated blocks. 4798 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 4799 continue; 4800 4801 // The index of A is the index of B plus A's distance to B in multiples 4802 // of the size. 4803 int IndexA = 4804 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 4805 4806 // Try to insert A into B's group. 4807 if (Group->insertMember(A, IndexA, DesA.Align)) { 4808 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 4809 << " into the interleave group with" << *B 4810 << '\n'); 4811 InterleaveGroupMap[A] = Group; 4812 4813 // Set the first load in program order as the insert position. 4814 if (A->mayReadFromMemory()) 4815 Group->setInsertPos(A); 4816 } 4817 } // Iteration over A accesses. 4818 } // Iteration over B accesses. 4819 4820 // Remove interleaved store groups with gaps. 4821 for (InterleaveGroup *Group : StoreGroups) 4822 if (Group->getNumMembers() != Group->getFactor()) { 4823 LLVM_DEBUG( 4824 dbgs() << "LV: Invalidate candidate interleaved store group due " 4825 "to gaps.\n"); 4826 releaseGroup(Group); 4827 } 4828 // Remove interleaved groups with gaps (currently only loads) whose memory 4829 // accesses may wrap around. We have to revisit the getPtrStride analysis, 4830 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 4831 // not check wrapping (see documentation there). 4832 // FORNOW we use Assume=false; 4833 // TODO: Change to Assume=true but making sure we don't exceed the threshold 4834 // of runtime SCEV assumptions checks (thereby potentially failing to 4835 // vectorize altogether). 4836 // Additional optional optimizations: 4837 // TODO: If we are peeling the loop and we know that the first pointer doesn't 4838 // wrap then we can deduce that all pointers in the group don't wrap. 4839 // This means that we can forcefully peel the loop in order to only have to 4840 // check the first pointer for no-wrap. When we'll change to use Assume=true 4841 // we'll only need at most one runtime check per interleaved group. 4842 for (InterleaveGroup *Group : LoadGroups) { 4843 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 4844 // load would wrap around the address space we would do a memory access at 4845 // nullptr even without the transformation. 4846 if (Group->getNumMembers() == Group->getFactor()) 4847 continue; 4848 4849 // Case 2: If first and last members of the group don't wrap this implies 4850 // that all the pointers in the group don't wrap. 4851 // So we check only group member 0 (which is always guaranteed to exist), 4852 // and group member Factor - 1; If the latter doesn't exist we rely on 4853 // peeling (if it is a non-reveresed accsess -- see Case 3). 4854 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 4855 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 4856 /*ShouldCheckWrap=*/true)) { 4857 LLVM_DEBUG( 4858 dbgs() << "LV: Invalidate candidate interleaved group due to " 4859 "first group member potentially pointer-wrapping.\n"); 4860 releaseGroup(Group); 4861 continue; 4862 } 4863 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 4864 if (LastMember) { 4865 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 4866 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 4867 /*ShouldCheckWrap=*/true)) { 4868 LLVM_DEBUG( 4869 dbgs() << "LV: Invalidate candidate interleaved group due to " 4870 "last group member potentially pointer-wrapping.\n"); 4871 releaseGroup(Group); 4872 } 4873 } else { 4874 // Case 3: A non-reversed interleaved load group with gaps: We need 4875 // to execute at least one scalar epilogue iteration. This will ensure 4876 // we don't speculatively access memory out-of-bounds. We only need 4877 // to look for a member at index factor - 1, since every group must have 4878 // a member at index zero. 4879 if (Group->isReverse()) { 4880 LLVM_DEBUG( 4881 dbgs() << "LV: Invalidate candidate interleaved group due to " 4882 "a reverse access with gaps.\n"); 4883 releaseGroup(Group); 4884 continue; 4885 } 4886 LLVM_DEBUG( 4887 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 4888 RequiresScalarEpilogue = true; 4889 } 4890 } 4891 } 4892 4893 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4894 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4895 // TODO: It may by useful to do since it's still likely to be dynamically 4896 // uniform if the target can skip. 4897 LLVM_DEBUG( 4898 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4899 4900 ORE->emit( 4901 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4902 << "runtime pointer checks needed. Not enabled for divergent target"); 4903 4904 return None; 4905 } 4906 4907 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4908 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4909 return computeFeasibleMaxVF(OptForSize, TC); 4910 4911 if (Legal->getRuntimePointerChecking()->Need) { 4912 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4913 << "runtime pointer checks needed. Enable vectorization of this " 4914 "loop with '#pragma clang loop vectorize(enable)' when " 4915 "compiling with -Os/-Oz"); 4916 LLVM_DEBUG( 4917 dbgs() 4918 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4919 return None; 4920 } 4921 4922 // If we optimize the program for size, avoid creating the tail loop. 4923 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4924 4925 // If we don't know the precise trip count, don't try to vectorize. 4926 if (TC < 2) { 4927 ORE->emit( 4928 createMissedAnalysis("UnknownLoopCountComplexCFG") 4929 << "unable to calculate the loop count due to complex control flow"); 4930 LLVM_DEBUG( 4931 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4932 return None; 4933 } 4934 4935 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4936 4937 if (TC % MaxVF != 0) { 4938 // If the trip count that we found modulo the vectorization factor is not 4939 // zero then we require a tail. 4940 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 4941 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 4942 // smaller MaxVF that does not require a scalar epilog. 4943 4944 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4945 << "cannot optimize for size and vectorize at the " 4946 "same time. Enable vectorization of this loop " 4947 "with '#pragma clang loop vectorize(enable)' " 4948 "when compiling with -Os/-Oz"); 4949 LLVM_DEBUG( 4950 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4951 return None; 4952 } 4953 4954 return MaxVF; 4955 } 4956 4957 unsigned 4958 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4959 unsigned ConstTripCount) { 4960 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4961 unsigned SmallestType, WidestType; 4962 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4963 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4964 4965 // Get the maximum safe dependence distance in bits computed by LAA. 4966 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4967 // the memory accesses that is most restrictive (involved in the smallest 4968 // dependence distance). 4969 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4970 4971 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4972 4973 unsigned MaxVectorSize = WidestRegister / WidestType; 4974 4975 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4976 << " / " << WidestType << " bits.\n"); 4977 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4978 << WidestRegister << " bits.\n"); 4979 4980 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4981 " into one vector!"); 4982 if (MaxVectorSize == 0) { 4983 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4984 MaxVectorSize = 1; 4985 return MaxVectorSize; 4986 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4987 isPowerOf2_32(ConstTripCount)) { 4988 // We need to clamp the VF to be the ConstTripCount. There is no point in 4989 // choosing a higher viable VF as done in the loop below. 4990 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4991 << ConstTripCount << "\n"); 4992 MaxVectorSize = ConstTripCount; 4993 return MaxVectorSize; 4994 } 4995 4996 unsigned MaxVF = MaxVectorSize; 4997 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4998 (MaximizeBandwidth && !OptForSize)) { 4999 // Collect all viable vectorization factors larger than the default MaxVF 5000 // (i.e. MaxVectorSize). 5001 SmallVector<unsigned, 8> VFs; 5002 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5003 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5004 VFs.push_back(VS); 5005 5006 // For each VF calculate its register usage. 5007 auto RUs = calculateRegisterUsage(VFs); 5008 5009 // Select the largest VF which doesn't require more registers than existing 5010 // ones. 5011 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5012 for (int i = RUs.size() - 1; i >= 0; --i) { 5013 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5014 MaxVF = VFs[i]; 5015 break; 5016 } 5017 } 5018 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5019 if (MaxVF < MinVF) { 5020 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5021 << ") with target's minimum: " << MinVF << '\n'); 5022 MaxVF = MinVF; 5023 } 5024 } 5025 } 5026 return MaxVF; 5027 } 5028 5029 VectorizationFactor 5030 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5031 float Cost = expectedCost(1).first; 5032 const float ScalarCost = Cost; 5033 unsigned Width = 1; 5034 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5035 5036 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5037 if (ForceVectorization && MaxVF > 1) { 5038 // Ignore scalar width, because the user explicitly wants vectorization. 5039 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5040 // evaluation. 5041 Cost = std::numeric_limits<float>::max(); 5042 } 5043 5044 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5045 // Notice that the vector loop needs to be executed less times, so 5046 // we need to divide the cost of the vector loops by the width of 5047 // the vector elements. 5048 VectorizationCostTy C = expectedCost(i); 5049 float VectorCost = C.first / (float)i; 5050 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5051 << " costs: " << (int)VectorCost << ".\n"); 5052 if (!C.second && !ForceVectorization) { 5053 LLVM_DEBUG( 5054 dbgs() << "LV: Not considering vector loop of width " << i 5055 << " because it will not generate any vector instructions.\n"); 5056 continue; 5057 } 5058 if (VectorCost < Cost) { 5059 Cost = VectorCost; 5060 Width = i; 5061 } 5062 } 5063 5064 if (!EnableCondStoresVectorization && NumPredStores) { 5065 ORE->emit(createMissedAnalysis("ConditionalStore") 5066 << "store that is conditionally executed prevents vectorization"); 5067 LLVM_DEBUG( 5068 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5069 Width = 1; 5070 Cost = ScalarCost; 5071 } 5072 5073 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5074 << "LV: Vectorization seems to be not beneficial, " 5075 << "but was forced by a user.\n"); 5076 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5077 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5078 return Factor; 5079 } 5080 5081 std::pair<unsigned, unsigned> 5082 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5083 unsigned MinWidth = -1U; 5084 unsigned MaxWidth = 8; 5085 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5086 5087 // For each block. 5088 for (BasicBlock *BB : TheLoop->blocks()) { 5089 // For each instruction in the loop. 5090 for (Instruction &I : *BB) { 5091 Type *T = I.getType(); 5092 5093 // Skip ignored values. 5094 if (ValuesToIgnore.count(&I)) 5095 continue; 5096 5097 // Only examine Loads, Stores and PHINodes. 5098 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5099 continue; 5100 5101 // Examine PHI nodes that are reduction variables. Update the type to 5102 // account for the recurrence type. 5103 if (auto *PN = dyn_cast<PHINode>(&I)) { 5104 if (!Legal->isReductionVariable(PN)) 5105 continue; 5106 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5107 T = RdxDesc.getRecurrenceType(); 5108 } 5109 5110 // Examine the stored values. 5111 if (auto *ST = dyn_cast<StoreInst>(&I)) 5112 T = ST->getValueOperand()->getType(); 5113 5114 // Ignore loaded pointer types and stored pointer types that are not 5115 // vectorizable. 5116 // 5117 // FIXME: The check here attempts to predict whether a load or store will 5118 // be vectorized. We only know this for certain after a VF has 5119 // been selected. Here, we assume that if an access can be 5120 // vectorized, it will be. We should also look at extending this 5121 // optimization to non-pointer types. 5122 // 5123 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5124 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5125 continue; 5126 5127 MinWidth = std::min(MinWidth, 5128 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5129 MaxWidth = std::max(MaxWidth, 5130 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5131 } 5132 } 5133 5134 return {MinWidth, MaxWidth}; 5135 } 5136 5137 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5138 unsigned VF, 5139 unsigned LoopCost) { 5140 // -- The interleave heuristics -- 5141 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5142 // There are many micro-architectural considerations that we can't predict 5143 // at this level. For example, frontend pressure (on decode or fetch) due to 5144 // code size, or the number and capabilities of the execution ports. 5145 // 5146 // We use the following heuristics to select the interleave count: 5147 // 1. If the code has reductions, then we interleave to break the cross 5148 // iteration dependency. 5149 // 2. If the loop is really small, then we interleave to reduce the loop 5150 // overhead. 5151 // 3. We don't interleave if we think that we will spill registers to memory 5152 // due to the increased register pressure. 5153 5154 // When we optimize for size, we don't interleave. 5155 if (OptForSize) 5156 return 1; 5157 5158 // We used the distance for the interleave count. 5159 if (Legal->getMaxSafeDepDistBytes() != -1U) 5160 return 1; 5161 5162 // Do not interleave loops with a relatively small trip count. 5163 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5164 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5165 return 1; 5166 5167 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5168 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5169 << " registers\n"); 5170 5171 if (VF == 1) { 5172 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5173 TargetNumRegisters = ForceTargetNumScalarRegs; 5174 } else { 5175 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5176 TargetNumRegisters = ForceTargetNumVectorRegs; 5177 } 5178 5179 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5180 // We divide by these constants so assume that we have at least one 5181 // instruction that uses at least one register. 5182 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5183 5184 // We calculate the interleave count using the following formula. 5185 // Subtract the number of loop invariants from the number of available 5186 // registers. These registers are used by all of the interleaved instances. 5187 // Next, divide the remaining registers by the number of registers that is 5188 // required by the loop, in order to estimate how many parallel instances 5189 // fit without causing spills. All of this is rounded down if necessary to be 5190 // a power of two. We want power of two interleave count to simplify any 5191 // addressing operations or alignment considerations. 5192 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5193 R.MaxLocalUsers); 5194 5195 // Don't count the induction variable as interleaved. 5196 if (EnableIndVarRegisterHeur) 5197 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5198 std::max(1U, (R.MaxLocalUsers - 1))); 5199 5200 // Clamp the interleave ranges to reasonable counts. 5201 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5202 5203 // Check if the user has overridden the max. 5204 if (VF == 1) { 5205 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5206 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5207 } else { 5208 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5209 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5210 } 5211 5212 // If we did not calculate the cost for VF (because the user selected the VF) 5213 // then we calculate the cost of VF here. 5214 if (LoopCost == 0) 5215 LoopCost = expectedCost(VF).first; 5216 5217 // Clamp the calculated IC to be between the 1 and the max interleave count 5218 // that the target allows. 5219 if (IC > MaxInterleaveCount) 5220 IC = MaxInterleaveCount; 5221 else if (IC < 1) 5222 IC = 1; 5223 5224 // Interleave if we vectorized this loop and there is a reduction that could 5225 // benefit from interleaving. 5226 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5227 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5228 return IC; 5229 } 5230 5231 // Note that if we've already vectorized the loop we will have done the 5232 // runtime check and so interleaving won't require further checks. 5233 bool InterleavingRequiresRuntimePointerCheck = 5234 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5235 5236 // We want to interleave small loops in order to reduce the loop overhead and 5237 // potentially expose ILP opportunities. 5238 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5239 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5240 // We assume that the cost overhead is 1 and we use the cost model 5241 // to estimate the cost of the loop and interleave until the cost of the 5242 // loop overhead is about 5% of the cost of the loop. 5243 unsigned SmallIC = 5244 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5245 5246 // Interleave until store/load ports (estimated by max interleave count) are 5247 // saturated. 5248 unsigned NumStores = Legal->getNumStores(); 5249 unsigned NumLoads = Legal->getNumLoads(); 5250 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5251 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5252 5253 // If we have a scalar reduction (vector reductions are already dealt with 5254 // by this point), we can increase the critical path length if the loop 5255 // we're interleaving is inside another loop. Limit, by default to 2, so the 5256 // critical path only gets increased by one reduction operation. 5257 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5258 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5259 SmallIC = std::min(SmallIC, F); 5260 StoresIC = std::min(StoresIC, F); 5261 LoadsIC = std::min(LoadsIC, F); 5262 } 5263 5264 if (EnableLoadStoreRuntimeInterleave && 5265 std::max(StoresIC, LoadsIC) > SmallIC) { 5266 LLVM_DEBUG( 5267 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5268 return std::max(StoresIC, LoadsIC); 5269 } 5270 5271 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5272 return SmallIC; 5273 } 5274 5275 // Interleave if this is a large loop (small loops are already dealt with by 5276 // this point) that could benefit from interleaving. 5277 bool HasReductions = !Legal->getReductionVars()->empty(); 5278 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5279 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5280 return IC; 5281 } 5282 5283 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5284 return 1; 5285 } 5286 5287 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5288 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5289 // This function calculates the register usage by measuring the highest number 5290 // of values that are alive at a single location. Obviously, this is a very 5291 // rough estimation. We scan the loop in a topological order in order and 5292 // assign a number to each instruction. We use RPO to ensure that defs are 5293 // met before their users. We assume that each instruction that has in-loop 5294 // users starts an interval. We record every time that an in-loop value is 5295 // used, so we have a list of the first and last occurrences of each 5296 // instruction. Next, we transpose this data structure into a multi map that 5297 // holds the list of intervals that *end* at a specific location. This multi 5298 // map allows us to perform a linear search. We scan the instructions linearly 5299 // and record each time that a new interval starts, by placing it in a set. 5300 // If we find this value in the multi-map then we remove it from the set. 5301 // The max register usage is the maximum size of the set. 5302 // We also search for instructions that are defined outside the loop, but are 5303 // used inside the loop. We need this number separately from the max-interval 5304 // usage number because when we unroll, loop-invariant values do not take 5305 // more register. 5306 LoopBlocksDFS DFS(TheLoop); 5307 DFS.perform(LI); 5308 5309 RegisterUsage RU; 5310 5311 // Each 'key' in the map opens a new interval. The values 5312 // of the map are the index of the 'last seen' usage of the 5313 // instruction that is the key. 5314 using IntervalMap = DenseMap<Instruction *, unsigned>; 5315 5316 // Maps instruction to its index. 5317 DenseMap<unsigned, Instruction *> IdxToInstr; 5318 // Marks the end of each interval. 5319 IntervalMap EndPoint; 5320 // Saves the list of instruction indices that are used in the loop. 5321 SmallPtrSet<Instruction *, 8> Ends; 5322 // Saves the list of values that are used in the loop but are 5323 // defined outside the loop, such as arguments and constants. 5324 SmallPtrSet<Value *, 8> LoopInvariants; 5325 5326 unsigned Index = 0; 5327 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5328 for (Instruction &I : *BB) { 5329 IdxToInstr[Index++] = &I; 5330 5331 // Save the end location of each USE. 5332 for (Value *U : I.operands()) { 5333 auto *Instr = dyn_cast<Instruction>(U); 5334 5335 // Ignore non-instruction values such as arguments, constants, etc. 5336 if (!Instr) 5337 continue; 5338 5339 // If this instruction is outside the loop then record it and continue. 5340 if (!TheLoop->contains(Instr)) { 5341 LoopInvariants.insert(Instr); 5342 continue; 5343 } 5344 5345 // Overwrite previous end points. 5346 EndPoint[Instr] = Index; 5347 Ends.insert(Instr); 5348 } 5349 } 5350 } 5351 5352 // Saves the list of intervals that end with the index in 'key'. 5353 using InstrList = SmallVector<Instruction *, 2>; 5354 DenseMap<unsigned, InstrList> TransposeEnds; 5355 5356 // Transpose the EndPoints to a list of values that end at each index. 5357 for (auto &Interval : EndPoint) 5358 TransposeEnds[Interval.second].push_back(Interval.first); 5359 5360 SmallPtrSet<Instruction *, 8> OpenIntervals; 5361 5362 // Get the size of the widest register. 5363 unsigned MaxSafeDepDist = -1U; 5364 if (Legal->getMaxSafeDepDistBytes() != -1U) 5365 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5366 unsigned WidestRegister = 5367 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5368 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5369 5370 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5371 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5372 5373 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5374 5375 // A lambda that gets the register usage for the given type and VF. 5376 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5377 if (Ty->isTokenTy()) 5378 return 0U; 5379 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5380 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5381 }; 5382 5383 for (unsigned int i = 0; i < Index; ++i) { 5384 Instruction *I = IdxToInstr[i]; 5385 5386 // Remove all of the instructions that end at this location. 5387 InstrList &List = TransposeEnds[i]; 5388 for (Instruction *ToRemove : List) 5389 OpenIntervals.erase(ToRemove); 5390 5391 // Ignore instructions that are never used within the loop. 5392 if (!Ends.count(I)) 5393 continue; 5394 5395 // Skip ignored values. 5396 if (ValuesToIgnore.count(I)) 5397 continue; 5398 5399 // For each VF find the maximum usage of registers. 5400 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5401 if (VFs[j] == 1) { 5402 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5403 continue; 5404 } 5405 collectUniformsAndScalars(VFs[j]); 5406 // Count the number of live intervals. 5407 unsigned RegUsage = 0; 5408 for (auto Inst : OpenIntervals) { 5409 // Skip ignored values for VF > 1. 5410 if (VecValuesToIgnore.count(Inst) || 5411 isScalarAfterVectorization(Inst, VFs[j])) 5412 continue; 5413 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5414 } 5415 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5416 } 5417 5418 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5419 << OpenIntervals.size() << '\n'); 5420 5421 // Add the current instruction to the list of open intervals. 5422 OpenIntervals.insert(I); 5423 } 5424 5425 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5426 unsigned Invariant = 0; 5427 if (VFs[i] == 1) 5428 Invariant = LoopInvariants.size(); 5429 else { 5430 for (auto Inst : LoopInvariants) 5431 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5432 } 5433 5434 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5435 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5436 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5437 << '\n'); 5438 5439 RU.LoopInvariantRegs = Invariant; 5440 RU.MaxLocalUsers = MaxUsages[i]; 5441 RUs[i] = RU; 5442 } 5443 5444 return RUs; 5445 } 5446 5447 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5448 // TODO: Cost model for emulated masked load/store is completely 5449 // broken. This hack guides the cost model to use an artificially 5450 // high enough value to practically disable vectorization with such 5451 // operations, except where previously deployed legality hack allowed 5452 // using very low cost values. This is to avoid regressions coming simply 5453 // from moving "masked load/store" check from legality to cost model. 5454 // Masked Load/Gather emulation was previously never allowed. 5455 // Limited number of Masked Store/Scatter emulation was allowed. 5456 assert(isScalarWithPredication(I) && 5457 "Expecting a scalar emulated instruction"); 5458 return isa<LoadInst>(I) || 5459 (isa<StoreInst>(I) && 5460 NumPredStores > NumberOfStoresToPredicate); 5461 } 5462 5463 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5464 // If we aren't vectorizing the loop, or if we've already collected the 5465 // instructions to scalarize, there's nothing to do. Collection may already 5466 // have occurred if we have a user-selected VF and are now computing the 5467 // expected cost for interleaving. 5468 if (VF < 2 || InstsToScalarize.count(VF)) 5469 return; 5470 5471 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5472 // not profitable to scalarize any instructions, the presence of VF in the 5473 // map will indicate that we've analyzed it already. 5474 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5475 5476 // Find all the instructions that are scalar with predication in the loop and 5477 // determine if it would be better to not if-convert the blocks they are in. 5478 // If so, we also record the instructions to scalarize. 5479 for (BasicBlock *BB : TheLoop->blocks()) { 5480 if (!Legal->blockNeedsPredication(BB)) 5481 continue; 5482 for (Instruction &I : *BB) 5483 if (isScalarWithPredication(&I)) { 5484 ScalarCostsTy ScalarCosts; 5485 // Do not apply discount logic if hacked cost is needed 5486 // for emulated masked memrefs. 5487 if (!useEmulatedMaskMemRefHack(&I) && 5488 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5489 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5490 // Remember that BB will remain after vectorization. 5491 PredicatedBBsAfterVectorization.insert(BB); 5492 } 5493 } 5494 } 5495 5496 int LoopVectorizationCostModel::computePredInstDiscount( 5497 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5498 unsigned VF) { 5499 assert(!isUniformAfterVectorization(PredInst, VF) && 5500 "Instruction marked uniform-after-vectorization will be predicated"); 5501 5502 // Initialize the discount to zero, meaning that the scalar version and the 5503 // vector version cost the same. 5504 int Discount = 0; 5505 5506 // Holds instructions to analyze. The instructions we visit are mapped in 5507 // ScalarCosts. Those instructions are the ones that would be scalarized if 5508 // we find that the scalar version costs less. 5509 SmallVector<Instruction *, 8> Worklist; 5510 5511 // Returns true if the given instruction can be scalarized. 5512 auto canBeScalarized = [&](Instruction *I) -> bool { 5513 // We only attempt to scalarize instructions forming a single-use chain 5514 // from the original predicated block that would otherwise be vectorized. 5515 // Although not strictly necessary, we give up on instructions we know will 5516 // already be scalar to avoid traversing chains that are unlikely to be 5517 // beneficial. 5518 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5519 isScalarAfterVectorization(I, VF)) 5520 return false; 5521 5522 // If the instruction is scalar with predication, it will be analyzed 5523 // separately. We ignore it within the context of PredInst. 5524 if (isScalarWithPredication(I)) 5525 return false; 5526 5527 // If any of the instruction's operands are uniform after vectorization, 5528 // the instruction cannot be scalarized. This prevents, for example, a 5529 // masked load from being scalarized. 5530 // 5531 // We assume we will only emit a value for lane zero of an instruction 5532 // marked uniform after vectorization, rather than VF identical values. 5533 // Thus, if we scalarize an instruction that uses a uniform, we would 5534 // create uses of values corresponding to the lanes we aren't emitting code 5535 // for. This behavior can be changed by allowing getScalarValue to clone 5536 // the lane zero values for uniforms rather than asserting. 5537 for (Use &U : I->operands()) 5538 if (auto *J = dyn_cast<Instruction>(U.get())) 5539 if (isUniformAfterVectorization(J, VF)) 5540 return false; 5541 5542 // Otherwise, we can scalarize the instruction. 5543 return true; 5544 }; 5545 5546 // Returns true if an operand that cannot be scalarized must be extracted 5547 // from a vector. We will account for this scalarization overhead below. Note 5548 // that the non-void predicated instructions are placed in their own blocks, 5549 // and their return values are inserted into vectors. Thus, an extract would 5550 // still be required. 5551 auto needsExtract = [&](Instruction *I) -> bool { 5552 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5553 }; 5554 5555 // Compute the expected cost discount from scalarizing the entire expression 5556 // feeding the predicated instruction. We currently only consider expressions 5557 // that are single-use instruction chains. 5558 Worklist.push_back(PredInst); 5559 while (!Worklist.empty()) { 5560 Instruction *I = Worklist.pop_back_val(); 5561 5562 // If we've already analyzed the instruction, there's nothing to do. 5563 if (ScalarCosts.count(I)) 5564 continue; 5565 5566 // Compute the cost of the vector instruction. Note that this cost already 5567 // includes the scalarization overhead of the predicated instruction. 5568 unsigned VectorCost = getInstructionCost(I, VF).first; 5569 5570 // Compute the cost of the scalarized instruction. This cost is the cost of 5571 // the instruction as if it wasn't if-converted and instead remained in the 5572 // predicated block. We will scale this cost by block probability after 5573 // computing the scalarization overhead. 5574 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5575 5576 // Compute the scalarization overhead of needed insertelement instructions 5577 // and phi nodes. 5578 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5579 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5580 true, false); 5581 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5582 } 5583 5584 // Compute the scalarization overhead of needed extractelement 5585 // instructions. For each of the instruction's operands, if the operand can 5586 // be scalarized, add it to the worklist; otherwise, account for the 5587 // overhead. 5588 for (Use &U : I->operands()) 5589 if (auto *J = dyn_cast<Instruction>(U.get())) { 5590 assert(VectorType::isValidElementType(J->getType()) && 5591 "Instruction has non-scalar type"); 5592 if (canBeScalarized(J)) 5593 Worklist.push_back(J); 5594 else if (needsExtract(J)) 5595 ScalarCost += TTI.getScalarizationOverhead( 5596 ToVectorTy(J->getType(),VF), false, true); 5597 } 5598 5599 // Scale the total scalar cost by block probability. 5600 ScalarCost /= getReciprocalPredBlockProb(); 5601 5602 // Compute the discount. A non-negative discount means the vector version 5603 // of the instruction costs more, and scalarizing would be beneficial. 5604 Discount += VectorCost - ScalarCost; 5605 ScalarCosts[I] = ScalarCost; 5606 } 5607 5608 return Discount; 5609 } 5610 5611 LoopVectorizationCostModel::VectorizationCostTy 5612 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5613 VectorizationCostTy Cost; 5614 5615 // For each block. 5616 for (BasicBlock *BB : TheLoop->blocks()) { 5617 VectorizationCostTy BlockCost; 5618 5619 // For each instruction in the old loop. 5620 for (Instruction &I : BB->instructionsWithoutDebug()) { 5621 // Skip ignored values. 5622 if (ValuesToIgnore.count(&I) || 5623 (VF > 1 && VecValuesToIgnore.count(&I))) 5624 continue; 5625 5626 VectorizationCostTy C = getInstructionCost(&I, VF); 5627 5628 // Check if we should override the cost. 5629 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5630 C.first = ForceTargetInstructionCost; 5631 5632 BlockCost.first += C.first; 5633 BlockCost.second |= C.second; 5634 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5635 << " for VF " << VF << " For instruction: " << I 5636 << '\n'); 5637 } 5638 5639 // If we are vectorizing a predicated block, it will have been 5640 // if-converted. This means that the block's instructions (aside from 5641 // stores and instructions that may divide by zero) will now be 5642 // unconditionally executed. For the scalar case, we may not always execute 5643 // the predicated block. Thus, scale the block's cost by the probability of 5644 // executing it. 5645 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5646 BlockCost.first /= getReciprocalPredBlockProb(); 5647 5648 Cost.first += BlockCost.first; 5649 Cost.second |= BlockCost.second; 5650 } 5651 5652 return Cost; 5653 } 5654 5655 /// Gets Address Access SCEV after verifying that the access pattern 5656 /// is loop invariant except the induction variable dependence. 5657 /// 5658 /// This SCEV can be sent to the Target in order to estimate the address 5659 /// calculation cost. 5660 static const SCEV *getAddressAccessSCEV( 5661 Value *Ptr, 5662 LoopVectorizationLegality *Legal, 5663 PredicatedScalarEvolution &PSE, 5664 const Loop *TheLoop) { 5665 5666 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5667 if (!Gep) 5668 return nullptr; 5669 5670 // We are looking for a gep with all loop invariant indices except for one 5671 // which should be an induction variable. 5672 auto SE = PSE.getSE(); 5673 unsigned NumOperands = Gep->getNumOperands(); 5674 for (unsigned i = 1; i < NumOperands; ++i) { 5675 Value *Opd = Gep->getOperand(i); 5676 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5677 !Legal->isInductionVariable(Opd)) 5678 return nullptr; 5679 } 5680 5681 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5682 return PSE.getSCEV(Ptr); 5683 } 5684 5685 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5686 return Legal->hasStride(I->getOperand(0)) || 5687 Legal->hasStride(I->getOperand(1)); 5688 } 5689 5690 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5691 unsigned VF) { 5692 Type *ValTy = getMemInstValueType(I); 5693 auto SE = PSE.getSE(); 5694 5695 unsigned Alignment = getMemInstAlignment(I); 5696 unsigned AS = getMemInstAddressSpace(I); 5697 Value *Ptr = getLoadStorePointerOperand(I); 5698 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5699 5700 // Figure out whether the access is strided and get the stride value 5701 // if it's known in compile time 5702 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5703 5704 // Get the cost of the scalar memory instruction and address computation. 5705 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5706 5707 Cost += VF * 5708 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5709 AS, I); 5710 5711 // Get the overhead of the extractelement and insertelement instructions 5712 // we might create due to scalarization. 5713 Cost += getScalarizationOverhead(I, VF, TTI); 5714 5715 // If we have a predicated store, it may not be executed for each vector 5716 // lane. Scale the cost by the probability of executing the predicated 5717 // block. 5718 if (isScalarWithPredication(I)) { 5719 Cost /= getReciprocalPredBlockProb(); 5720 5721 if (useEmulatedMaskMemRefHack(I)) 5722 // Artificially setting to a high enough value to practically disable 5723 // vectorization with such operations. 5724 Cost = 3000000; 5725 } 5726 5727 return Cost; 5728 } 5729 5730 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5731 unsigned VF) { 5732 Type *ValTy = getMemInstValueType(I); 5733 Type *VectorTy = ToVectorTy(ValTy, VF); 5734 unsigned Alignment = getMemInstAlignment(I); 5735 Value *Ptr = getLoadStorePointerOperand(I); 5736 unsigned AS = getMemInstAddressSpace(I); 5737 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5738 5739 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5740 "Stride should be 1 or -1 for consecutive memory access"); 5741 unsigned Cost = 0; 5742 if (Legal->isMaskRequired(I)) 5743 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5744 else 5745 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5746 5747 bool Reverse = ConsecutiveStride < 0; 5748 if (Reverse) 5749 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5750 return Cost; 5751 } 5752 5753 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5754 unsigned VF) { 5755 LoadInst *LI = cast<LoadInst>(I); 5756 Type *ValTy = LI->getType(); 5757 Type *VectorTy = ToVectorTy(ValTy, VF); 5758 unsigned Alignment = LI->getAlignment(); 5759 unsigned AS = LI->getPointerAddressSpace(); 5760 5761 return TTI.getAddressComputationCost(ValTy) + 5762 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5763 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5764 } 5765 5766 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5767 unsigned VF) { 5768 Type *ValTy = getMemInstValueType(I); 5769 Type *VectorTy = ToVectorTy(ValTy, VF); 5770 unsigned Alignment = getMemInstAlignment(I); 5771 Value *Ptr = getLoadStorePointerOperand(I); 5772 5773 return TTI.getAddressComputationCost(VectorTy) + 5774 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5775 Legal->isMaskRequired(I), Alignment); 5776 } 5777 5778 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5779 unsigned VF) { 5780 Type *ValTy = getMemInstValueType(I); 5781 Type *VectorTy = ToVectorTy(ValTy, VF); 5782 unsigned AS = getMemInstAddressSpace(I); 5783 5784 auto Group = getInterleavedAccessGroup(I); 5785 assert(Group && "Fail to get an interleaved access group."); 5786 5787 unsigned InterleaveFactor = Group->getFactor(); 5788 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5789 5790 // Holds the indices of existing members in an interleaved load group. 5791 // An interleaved store group doesn't need this as it doesn't allow gaps. 5792 SmallVector<unsigned, 4> Indices; 5793 if (isa<LoadInst>(I)) { 5794 for (unsigned i = 0; i < InterleaveFactor; i++) 5795 if (Group->getMember(i)) 5796 Indices.push_back(i); 5797 } 5798 5799 // Calculate the cost of the whole interleaved group. 5800 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 5801 Group->getFactor(), Indices, 5802 Group->getAlignment(), AS); 5803 5804 if (Group->isReverse()) 5805 Cost += Group->getNumMembers() * 5806 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5807 return Cost; 5808 } 5809 5810 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5811 unsigned VF) { 5812 // Calculate scalar cost only. Vectorization cost should be ready at this 5813 // moment. 5814 if (VF == 1) { 5815 Type *ValTy = getMemInstValueType(I); 5816 unsigned Alignment = getMemInstAlignment(I); 5817 unsigned AS = getMemInstAddressSpace(I); 5818 5819 return TTI.getAddressComputationCost(ValTy) + 5820 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5821 } 5822 return getWideningCost(I, VF); 5823 } 5824 5825 LoopVectorizationCostModel::VectorizationCostTy 5826 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5827 // If we know that this instruction will remain uniform, check the cost of 5828 // the scalar version. 5829 if (isUniformAfterVectorization(I, VF)) 5830 VF = 1; 5831 5832 if (VF > 1 && isProfitableToScalarize(I, VF)) 5833 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5834 5835 // Forced scalars do not have any scalarization overhead. 5836 if (VF > 1 && ForcedScalars.count(VF) && 5837 ForcedScalars.find(VF)->second.count(I)) 5838 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5839 5840 Type *VectorTy; 5841 unsigned C = getInstructionCost(I, VF, VectorTy); 5842 5843 bool TypeNotScalarized = 5844 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5845 return VectorizationCostTy(C, TypeNotScalarized); 5846 } 5847 5848 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5849 if (VF == 1) 5850 return; 5851 NumPredStores = 0; 5852 for (BasicBlock *BB : TheLoop->blocks()) { 5853 // For each instruction in the old loop. 5854 for (Instruction &I : *BB) { 5855 Value *Ptr = getLoadStorePointerOperand(&I); 5856 if (!Ptr) 5857 continue; 5858 5859 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5860 NumPredStores++; 5861 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 5862 // Scalar load + broadcast 5863 unsigned Cost = getUniformMemOpCost(&I, VF); 5864 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5865 continue; 5866 } 5867 5868 // We assume that widening is the best solution when possible. 5869 if (memoryInstructionCanBeWidened(&I, VF)) { 5870 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5871 int ConsecutiveStride = 5872 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5873 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5874 "Expected consecutive stride."); 5875 InstWidening Decision = 5876 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5877 setWideningDecision(&I, VF, Decision, Cost); 5878 continue; 5879 } 5880 5881 // Choose between Interleaving, Gather/Scatter or Scalarization. 5882 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5883 unsigned NumAccesses = 1; 5884 if (isAccessInterleaved(&I)) { 5885 auto Group = getInterleavedAccessGroup(&I); 5886 assert(Group && "Fail to get an interleaved access group."); 5887 5888 // Make one decision for the whole group. 5889 if (getWideningDecision(&I, VF) != CM_Unknown) 5890 continue; 5891 5892 NumAccesses = Group->getNumMembers(); 5893 InterleaveCost = getInterleaveGroupCost(&I, VF); 5894 } 5895 5896 unsigned GatherScatterCost = 5897 isLegalGatherOrScatter(&I) 5898 ? getGatherScatterCost(&I, VF) * NumAccesses 5899 : std::numeric_limits<unsigned>::max(); 5900 5901 unsigned ScalarizationCost = 5902 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5903 5904 // Choose better solution for the current VF, 5905 // write down this decision and use it during vectorization. 5906 unsigned Cost; 5907 InstWidening Decision; 5908 if (InterleaveCost <= GatherScatterCost && 5909 InterleaveCost < ScalarizationCost) { 5910 Decision = CM_Interleave; 5911 Cost = InterleaveCost; 5912 } else if (GatherScatterCost < ScalarizationCost) { 5913 Decision = CM_GatherScatter; 5914 Cost = GatherScatterCost; 5915 } else { 5916 Decision = CM_Scalarize; 5917 Cost = ScalarizationCost; 5918 } 5919 // If the instructions belongs to an interleave group, the whole group 5920 // receives the same decision. The whole group receives the cost, but 5921 // the cost will actually be assigned to one instruction. 5922 if (auto Group = getInterleavedAccessGroup(&I)) 5923 setWideningDecision(Group, VF, Decision, Cost); 5924 else 5925 setWideningDecision(&I, VF, Decision, Cost); 5926 } 5927 } 5928 5929 // Make sure that any load of address and any other address computation 5930 // remains scalar unless there is gather/scatter support. This avoids 5931 // inevitable extracts into address registers, and also has the benefit of 5932 // activating LSR more, since that pass can't optimize vectorized 5933 // addresses. 5934 if (TTI.prefersVectorizedAddressing()) 5935 return; 5936 5937 // Start with all scalar pointer uses. 5938 SmallPtrSet<Instruction *, 8> AddrDefs; 5939 for (BasicBlock *BB : TheLoop->blocks()) 5940 for (Instruction &I : *BB) { 5941 Instruction *PtrDef = 5942 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5943 if (PtrDef && TheLoop->contains(PtrDef) && 5944 getWideningDecision(&I, VF) != CM_GatherScatter) 5945 AddrDefs.insert(PtrDef); 5946 } 5947 5948 // Add all instructions used to generate the addresses. 5949 SmallVector<Instruction *, 4> Worklist; 5950 for (auto *I : AddrDefs) 5951 Worklist.push_back(I); 5952 while (!Worklist.empty()) { 5953 Instruction *I = Worklist.pop_back_val(); 5954 for (auto &Op : I->operands()) 5955 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5956 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5957 AddrDefs.insert(InstOp).second) 5958 Worklist.push_back(InstOp); 5959 } 5960 5961 for (auto *I : AddrDefs) { 5962 if (isa<LoadInst>(I)) { 5963 // Setting the desired widening decision should ideally be handled in 5964 // by cost functions, but since this involves the task of finding out 5965 // if the loaded register is involved in an address computation, it is 5966 // instead changed here when we know this is the case. 5967 InstWidening Decision = getWideningDecision(I, VF); 5968 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5969 // Scalarize a widened load of address. 5970 setWideningDecision(I, VF, CM_Scalarize, 5971 (VF * getMemoryInstructionCost(I, 1))); 5972 else if (auto Group = getInterleavedAccessGroup(I)) { 5973 // Scalarize an interleave group of address loads. 5974 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5975 if (Instruction *Member = Group->getMember(I)) 5976 setWideningDecision(Member, VF, CM_Scalarize, 5977 (VF * getMemoryInstructionCost(Member, 1))); 5978 } 5979 } 5980 } else 5981 // Make sure I gets scalarized and a cost estimate without 5982 // scalarization overhead. 5983 ForcedScalars[VF].insert(I); 5984 } 5985 } 5986 5987 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5988 unsigned VF, 5989 Type *&VectorTy) { 5990 Type *RetTy = I->getType(); 5991 if (canTruncateToMinimalBitwidth(I, VF)) 5992 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5993 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5994 auto SE = PSE.getSE(); 5995 5996 // TODO: We need to estimate the cost of intrinsic calls. 5997 switch (I->getOpcode()) { 5998 case Instruction::GetElementPtr: 5999 // We mark this instruction as zero-cost because the cost of GEPs in 6000 // vectorized code depends on whether the corresponding memory instruction 6001 // is scalarized or not. Therefore, we handle GEPs with the memory 6002 // instruction cost. 6003 return 0; 6004 case Instruction::Br: { 6005 // In cases of scalarized and predicated instructions, there will be VF 6006 // predicated blocks in the vectorized loop. Each branch around these 6007 // blocks requires also an extract of its vector compare i1 element. 6008 bool ScalarPredicatedBB = false; 6009 BranchInst *BI = cast<BranchInst>(I); 6010 if (VF > 1 && BI->isConditional() && 6011 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6012 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6013 ScalarPredicatedBB = true; 6014 6015 if (ScalarPredicatedBB) { 6016 // Return cost for branches around scalarized and predicated blocks. 6017 Type *Vec_i1Ty = 6018 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6019 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6020 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6021 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6022 // The back-edge branch will remain, as will all scalar branches. 6023 return TTI.getCFInstrCost(Instruction::Br); 6024 else 6025 // This branch will be eliminated by if-conversion. 6026 return 0; 6027 // Note: We currently assume zero cost for an unconditional branch inside 6028 // a predicated block since it will become a fall-through, although we 6029 // may decide in the future to call TTI for all branches. 6030 } 6031 case Instruction::PHI: { 6032 auto *Phi = cast<PHINode>(I); 6033 6034 // First-order recurrences are replaced by vector shuffles inside the loop. 6035 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6036 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6037 VectorTy, VF - 1, VectorTy); 6038 6039 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6040 // converted into select instructions. We require N - 1 selects per phi 6041 // node, where N is the number of incoming values. 6042 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6043 return (Phi->getNumIncomingValues() - 1) * 6044 TTI.getCmpSelInstrCost( 6045 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6046 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6047 6048 return TTI.getCFInstrCost(Instruction::PHI); 6049 } 6050 case Instruction::UDiv: 6051 case Instruction::SDiv: 6052 case Instruction::URem: 6053 case Instruction::SRem: 6054 // If we have a predicated instruction, it may not be executed for each 6055 // vector lane. Get the scalarization cost and scale this amount by the 6056 // probability of executing the predicated block. If the instruction is not 6057 // predicated, we fall through to the next case. 6058 if (VF > 1 && isScalarWithPredication(I)) { 6059 unsigned Cost = 0; 6060 6061 // These instructions have a non-void type, so account for the phi nodes 6062 // that we will create. This cost is likely to be zero. The phi node 6063 // cost, if any, should be scaled by the block probability because it 6064 // models a copy at the end of each predicated block. 6065 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6066 6067 // The cost of the non-predicated instruction. 6068 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6069 6070 // The cost of insertelement and extractelement instructions needed for 6071 // scalarization. 6072 Cost += getScalarizationOverhead(I, VF, TTI); 6073 6074 // Scale the cost by the probability of executing the predicated blocks. 6075 // This assumes the predicated block for each vector lane is equally 6076 // likely. 6077 return Cost / getReciprocalPredBlockProb(); 6078 } 6079 LLVM_FALLTHROUGH; 6080 case Instruction::Add: 6081 case Instruction::FAdd: 6082 case Instruction::Sub: 6083 case Instruction::FSub: 6084 case Instruction::Mul: 6085 case Instruction::FMul: 6086 case Instruction::FDiv: 6087 case Instruction::FRem: 6088 case Instruction::Shl: 6089 case Instruction::LShr: 6090 case Instruction::AShr: 6091 case Instruction::And: 6092 case Instruction::Or: 6093 case Instruction::Xor: { 6094 // Since we will replace the stride by 1 the multiplication should go away. 6095 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6096 return 0; 6097 // Certain instructions can be cheaper to vectorize if they have a constant 6098 // second vector operand. One example of this are shifts on x86. 6099 TargetTransformInfo::OperandValueKind Op1VK = 6100 TargetTransformInfo::OK_AnyValue; 6101 TargetTransformInfo::OperandValueKind Op2VK = 6102 TargetTransformInfo::OK_AnyValue; 6103 TargetTransformInfo::OperandValueProperties Op1VP = 6104 TargetTransformInfo::OP_None; 6105 TargetTransformInfo::OperandValueProperties Op2VP = 6106 TargetTransformInfo::OP_None; 6107 Value *Op2 = I->getOperand(1); 6108 6109 // Check for a splat or for a non uniform vector of constants. 6110 if (isa<ConstantInt>(Op2)) { 6111 ConstantInt *CInt = cast<ConstantInt>(Op2); 6112 if (CInt && CInt->getValue().isPowerOf2()) 6113 Op2VP = TargetTransformInfo::OP_PowerOf2; 6114 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6115 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6116 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6117 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6118 if (SplatValue) { 6119 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6120 if (CInt && CInt->getValue().isPowerOf2()) 6121 Op2VP = TargetTransformInfo::OP_PowerOf2; 6122 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6123 } 6124 } else if (Legal->isUniform(Op2)) { 6125 Op2VK = TargetTransformInfo::OK_UniformValue; 6126 } 6127 SmallVector<const Value *, 4> Operands(I->operand_values()); 6128 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6129 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 6130 Op2VK, Op1VP, Op2VP, Operands); 6131 } 6132 case Instruction::Select: { 6133 SelectInst *SI = cast<SelectInst>(I); 6134 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6135 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6136 Type *CondTy = SI->getCondition()->getType(); 6137 if (!ScalarCond) 6138 CondTy = VectorType::get(CondTy, VF); 6139 6140 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6141 } 6142 case Instruction::ICmp: 6143 case Instruction::FCmp: { 6144 Type *ValTy = I->getOperand(0)->getType(); 6145 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6146 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6147 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6148 VectorTy = ToVectorTy(ValTy, VF); 6149 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6150 } 6151 case Instruction::Store: 6152 case Instruction::Load: { 6153 unsigned Width = VF; 6154 if (Width > 1) { 6155 InstWidening Decision = getWideningDecision(I, Width); 6156 assert(Decision != CM_Unknown && 6157 "CM decision should be taken at this point"); 6158 if (Decision == CM_Scalarize) 6159 Width = 1; 6160 } 6161 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6162 return getMemoryInstructionCost(I, VF); 6163 } 6164 case Instruction::ZExt: 6165 case Instruction::SExt: 6166 case Instruction::FPToUI: 6167 case Instruction::FPToSI: 6168 case Instruction::FPExt: 6169 case Instruction::PtrToInt: 6170 case Instruction::IntToPtr: 6171 case Instruction::SIToFP: 6172 case Instruction::UIToFP: 6173 case Instruction::Trunc: 6174 case Instruction::FPTrunc: 6175 case Instruction::BitCast: { 6176 // We optimize the truncation of induction variables having constant 6177 // integer steps. The cost of these truncations is the same as the scalar 6178 // operation. 6179 if (isOptimizableIVTruncate(I, VF)) { 6180 auto *Trunc = cast<TruncInst>(I); 6181 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6182 Trunc->getSrcTy(), Trunc); 6183 } 6184 6185 Type *SrcScalarTy = I->getOperand(0)->getType(); 6186 Type *SrcVecTy = 6187 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6188 if (canTruncateToMinimalBitwidth(I, VF)) { 6189 // This cast is going to be shrunk. This may remove the cast or it might 6190 // turn it into slightly different cast. For example, if MinBW == 16, 6191 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6192 // 6193 // Calculate the modified src and dest types. 6194 Type *MinVecTy = VectorTy; 6195 if (I->getOpcode() == Instruction::Trunc) { 6196 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6197 VectorTy = 6198 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6199 } else if (I->getOpcode() == Instruction::ZExt || 6200 I->getOpcode() == Instruction::SExt) { 6201 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6202 VectorTy = 6203 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6204 } 6205 } 6206 6207 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6208 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6209 } 6210 case Instruction::Call: { 6211 bool NeedToScalarize; 6212 CallInst *CI = cast<CallInst>(I); 6213 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6214 if (getVectorIntrinsicIDForCall(CI, TLI)) 6215 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6216 return CallCost; 6217 } 6218 default: 6219 // The cost of executing VF copies of the scalar instruction. This opcode 6220 // is unknown. Assume that it is the same as 'mul'. 6221 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6222 getScalarizationOverhead(I, VF, TTI); 6223 } // end of switch. 6224 } 6225 6226 char LoopVectorize::ID = 0; 6227 6228 static const char lv_name[] = "Loop Vectorization"; 6229 6230 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6231 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6232 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6233 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6234 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6235 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6236 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6237 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6238 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6239 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6240 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6241 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6242 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6243 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6244 6245 namespace llvm { 6246 6247 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6248 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6249 } 6250 6251 } // end namespace llvm 6252 6253 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6254 // Check if the pointer operand of a load or store instruction is 6255 // consecutive. 6256 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6257 return Legal->isConsecutivePtr(Ptr); 6258 return false; 6259 } 6260 6261 void LoopVectorizationCostModel::collectValuesToIgnore() { 6262 // Ignore ephemeral values. 6263 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6264 6265 // Ignore type-promoting instructions we identified during reduction 6266 // detection. 6267 for (auto &Reduction : *Legal->getReductionVars()) { 6268 RecurrenceDescriptor &RedDes = Reduction.second; 6269 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6270 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6271 } 6272 // Ignore type-casting instructions we identified during induction 6273 // detection. 6274 for (auto &Induction : *Legal->getInductionVars()) { 6275 InductionDescriptor &IndDes = Induction.second; 6276 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6277 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6278 } 6279 } 6280 6281 VectorizationFactor 6282 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6283 unsigned UserVF) { 6284 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6285 const VectorizationFactor NoVectorization = {1U, 0U}; 6286 6287 // Outer loop handling: They may require CFG and instruction level 6288 // transformations before even evaluating whether vectorization is profitable. 6289 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6290 // the vectorization pipeline. 6291 if (!OrigLoop->empty()) { 6292 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6293 // This won't be necessary when UserVF is not required in the VPlan-native 6294 // path. 6295 if (VPlanBuildStressTest && !UserVF) 6296 UserVF = 4; 6297 6298 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6299 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6300 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6301 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6302 buildVPlans(UserVF, UserVF); 6303 6304 // For VPlan build stress testing, we bail out after VPlan construction. 6305 if (VPlanBuildStressTest) 6306 return NoVectorization; 6307 6308 return {UserVF, 0}; 6309 } 6310 6311 LLVM_DEBUG( 6312 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6313 "VPlan-native path.\n"); 6314 return NoVectorization; 6315 } 6316 6317 VectorizationFactor 6318 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6319 assert(OrigLoop->empty() && "Inner loop expected."); 6320 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6321 const VectorizationFactor NoVectorization = {1U, 0U}; 6322 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6323 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6324 return NoVectorization; 6325 6326 if (UserVF) { 6327 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6328 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6329 // Collect the instructions (and their associated costs) that will be more 6330 // profitable to scalarize. 6331 CM.selectUserVectorizationFactor(UserVF); 6332 buildVPlansWithVPRecipes(UserVF, UserVF); 6333 LLVM_DEBUG(printPlans(dbgs())); 6334 return {UserVF, 0}; 6335 } 6336 6337 unsigned MaxVF = MaybeMaxVF.getValue(); 6338 assert(MaxVF != 0 && "MaxVF is zero."); 6339 6340 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6341 // Collect Uniform and Scalar instructions after vectorization with VF. 6342 CM.collectUniformsAndScalars(VF); 6343 6344 // Collect the instructions (and their associated costs) that will be more 6345 // profitable to scalarize. 6346 if (VF > 1) 6347 CM.collectInstsToScalarize(VF); 6348 } 6349 6350 buildVPlansWithVPRecipes(1, MaxVF); 6351 LLVM_DEBUG(printPlans(dbgs())); 6352 if (MaxVF == 1) 6353 return NoVectorization; 6354 6355 // Select the optimal vectorization factor. 6356 return CM.selectVectorizationFactor(MaxVF); 6357 } 6358 6359 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6360 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6361 << '\n'); 6362 BestVF = VF; 6363 BestUF = UF; 6364 6365 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6366 return !Plan->hasVF(VF); 6367 }); 6368 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6369 } 6370 6371 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6372 DominatorTree *DT) { 6373 // Perform the actual loop transformation. 6374 6375 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6376 VPCallbackILV CallbackILV(ILV); 6377 6378 VPTransformState State{BestVF, BestUF, LI, 6379 DT, ILV.Builder, ILV.VectorLoopValueMap, 6380 &ILV, CallbackILV}; 6381 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6382 6383 //===------------------------------------------------===// 6384 // 6385 // Notice: any optimization or new instruction that go 6386 // into the code below should also be implemented in 6387 // the cost-model. 6388 // 6389 //===------------------------------------------------===// 6390 6391 // 2. Copy and widen instructions from the old loop into the new loop. 6392 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6393 VPlans.front()->execute(&State); 6394 6395 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6396 // predication, updating analyses. 6397 ILV.fixVectorizedLoop(); 6398 } 6399 6400 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6401 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6402 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6403 6404 // We create new control-flow for the vectorized loop, so the original 6405 // condition will be dead after vectorization if it's only used by the 6406 // branch. 6407 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6408 if (Cmp && Cmp->hasOneUse()) 6409 DeadInstructions.insert(Cmp); 6410 6411 // We create new "steps" for induction variable updates to which the original 6412 // induction variables map. An original update instruction will be dead if 6413 // all its users except the induction variable are dead. 6414 for (auto &Induction : *Legal->getInductionVars()) { 6415 PHINode *Ind = Induction.first; 6416 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6417 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6418 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6419 })) 6420 DeadInstructions.insert(IndUpdate); 6421 6422 // We record as "Dead" also the type-casting instructions we had identified 6423 // during induction analysis. We don't need any handling for them in the 6424 // vectorized loop because we have proven that, under a proper runtime 6425 // test guarding the vectorized loop, the value of the phi, and the casted 6426 // value of the phi, are the same. The last instruction in this casting chain 6427 // will get its scalar/vector/widened def from the scalar/vector/widened def 6428 // of the respective phi node. Any other casts in the induction def-use chain 6429 // have no other uses outside the phi update chain, and will be ignored. 6430 InductionDescriptor &IndDes = Induction.second; 6431 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6432 DeadInstructions.insert(Casts.begin(), Casts.end()); 6433 } 6434 } 6435 6436 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6437 6438 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6439 6440 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6441 Instruction::BinaryOps BinOp) { 6442 // When unrolling and the VF is 1, we only need to add a simple scalar. 6443 Type *Ty = Val->getType(); 6444 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6445 6446 if (Ty->isFloatingPointTy()) { 6447 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6448 6449 // Floating point operations had to be 'fast' to enable the unrolling. 6450 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6451 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6452 } 6453 Constant *C = ConstantInt::get(Ty, StartIdx); 6454 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6455 } 6456 6457 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6458 SmallVector<Metadata *, 4> MDs; 6459 // Reserve first location for self reference to the LoopID metadata node. 6460 MDs.push_back(nullptr); 6461 bool IsUnrollMetadata = false; 6462 MDNode *LoopID = L->getLoopID(); 6463 if (LoopID) { 6464 // First find existing loop unrolling disable metadata. 6465 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6466 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6467 if (MD) { 6468 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6469 IsUnrollMetadata = 6470 S && S->getString().startswith("llvm.loop.unroll.disable"); 6471 } 6472 MDs.push_back(LoopID->getOperand(i)); 6473 } 6474 } 6475 6476 if (!IsUnrollMetadata) { 6477 // Add runtime unroll disable metadata. 6478 LLVMContext &Context = L->getHeader()->getContext(); 6479 SmallVector<Metadata *, 1> DisableOperands; 6480 DisableOperands.push_back( 6481 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6482 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6483 MDs.push_back(DisableNode); 6484 MDNode *NewLoopID = MDNode::get(Context, MDs); 6485 // Set operand 0 to refer to the loop id itself. 6486 NewLoopID->replaceOperandWith(0, NewLoopID); 6487 L->setLoopID(NewLoopID); 6488 } 6489 } 6490 6491 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6492 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6493 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6494 bool PredicateAtRangeStart = Predicate(Range.Start); 6495 6496 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6497 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6498 Range.End = TmpVF; 6499 break; 6500 } 6501 6502 return PredicateAtRangeStart; 6503 } 6504 6505 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6506 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6507 /// of VF's starting at a given VF and extending it as much as possible. Each 6508 /// vectorization decision can potentially shorten this sub-range during 6509 /// buildVPlan(). 6510 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6511 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6512 VFRange SubRange = {VF, MaxVF + 1}; 6513 VPlans.push_back(buildVPlan(SubRange)); 6514 VF = SubRange.End; 6515 } 6516 } 6517 6518 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6519 VPlanPtr &Plan) { 6520 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6521 6522 // Look for cached value. 6523 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6524 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6525 if (ECEntryIt != EdgeMaskCache.end()) 6526 return ECEntryIt->second; 6527 6528 VPValue *SrcMask = createBlockInMask(Src, Plan); 6529 6530 // The terminator has to be a branch inst! 6531 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6532 assert(BI && "Unexpected terminator found"); 6533 6534 if (!BI->isConditional()) 6535 return EdgeMaskCache[Edge] = SrcMask; 6536 6537 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6538 assert(EdgeMask && "No Edge Mask found for condition"); 6539 6540 if (BI->getSuccessor(0) != Dst) 6541 EdgeMask = Builder.createNot(EdgeMask); 6542 6543 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6544 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6545 6546 return EdgeMaskCache[Edge] = EdgeMask; 6547 } 6548 6549 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6550 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6551 6552 // Look for cached value. 6553 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6554 if (BCEntryIt != BlockMaskCache.end()) 6555 return BCEntryIt->second; 6556 6557 // All-one mask is modelled as no-mask following the convention for masked 6558 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6559 VPValue *BlockMask = nullptr; 6560 6561 // Loop incoming mask is all-one. 6562 if (OrigLoop->getHeader() == BB) 6563 return BlockMaskCache[BB] = BlockMask; 6564 6565 // This is the block mask. We OR all incoming edges. 6566 for (auto *Predecessor : predecessors(BB)) { 6567 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6568 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6569 return BlockMaskCache[BB] = EdgeMask; 6570 6571 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6572 BlockMask = EdgeMask; 6573 continue; 6574 } 6575 6576 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6577 } 6578 6579 return BlockMaskCache[BB] = BlockMask; 6580 } 6581 6582 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6583 VFRange &Range) { 6584 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 6585 if (!IG) 6586 return nullptr; 6587 6588 // Now check if IG is relevant for VF's in the given range. 6589 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6590 return [=](unsigned VF) -> bool { 6591 return (VF >= 2 && // Query is illegal for VF == 1 6592 CM.getWideningDecision(I, VF) == 6593 LoopVectorizationCostModel::CM_Interleave); 6594 }; 6595 }; 6596 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6597 return nullptr; 6598 6599 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6600 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6601 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6602 assert(I == IG->getInsertPos() && 6603 "Generating a recipe for an adjunct member of an interleave group"); 6604 6605 return new VPInterleaveRecipe(IG); 6606 } 6607 6608 VPWidenMemoryInstructionRecipe * 6609 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6610 VPlanPtr &Plan) { 6611 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6612 return nullptr; 6613 6614 auto willWiden = [&](unsigned VF) -> bool { 6615 if (VF == 1) 6616 return false; 6617 if (CM.isScalarAfterVectorization(I, VF) || 6618 CM.isProfitableToScalarize(I, VF)) 6619 return false; 6620 LoopVectorizationCostModel::InstWidening Decision = 6621 CM.getWideningDecision(I, VF); 6622 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6623 "CM decision should be taken at this point."); 6624 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6625 "Interleave memory opportunity should be caught earlier."); 6626 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6627 }; 6628 6629 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6630 return nullptr; 6631 6632 VPValue *Mask = nullptr; 6633 if (Legal->isMaskRequired(I)) 6634 Mask = createBlockInMask(I->getParent(), Plan); 6635 6636 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6637 } 6638 6639 VPWidenIntOrFpInductionRecipe * 6640 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6641 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6642 // Check if this is an integer or fp induction. If so, build the recipe that 6643 // produces its scalar and vector values. 6644 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6645 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6646 II.getKind() == InductionDescriptor::IK_FpInduction) 6647 return new VPWidenIntOrFpInductionRecipe(Phi); 6648 6649 return nullptr; 6650 } 6651 6652 // Optimize the special case where the source is a constant integer 6653 // induction variable. Notice that we can only optimize the 'trunc' case 6654 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6655 // (c) other casts depend on pointer size. 6656 6657 // Determine whether \p K is a truncation based on an induction variable that 6658 // can be optimized. 6659 auto isOptimizableIVTruncate = 6660 [&](Instruction *K) -> std::function<bool(unsigned)> { 6661 return 6662 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6663 }; 6664 6665 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6666 isOptimizableIVTruncate(I), Range)) 6667 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6668 cast<TruncInst>(I)); 6669 return nullptr; 6670 } 6671 6672 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6673 PHINode *Phi = dyn_cast<PHINode>(I); 6674 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6675 return nullptr; 6676 6677 // We know that all PHIs in non-header blocks are converted into selects, so 6678 // we don't have to worry about the insertion order and we can just use the 6679 // builder. At this point we generate the predication tree. There may be 6680 // duplications since this is a simple recursive scan, but future 6681 // optimizations will clean it up. 6682 6683 SmallVector<VPValue *, 2> Masks; 6684 unsigned NumIncoming = Phi->getNumIncomingValues(); 6685 for (unsigned In = 0; In < NumIncoming; In++) { 6686 VPValue *EdgeMask = 6687 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6688 assert((EdgeMask || NumIncoming == 1) && 6689 "Multiple predecessors with one having a full mask"); 6690 if (EdgeMask) 6691 Masks.push_back(EdgeMask); 6692 } 6693 return new VPBlendRecipe(Phi, Masks); 6694 } 6695 6696 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6697 VFRange &Range) { 6698 if (CM.isScalarWithPredication(I)) 6699 return false; 6700 6701 auto IsVectorizableOpcode = [](unsigned Opcode) { 6702 switch (Opcode) { 6703 case Instruction::Add: 6704 case Instruction::And: 6705 case Instruction::AShr: 6706 case Instruction::BitCast: 6707 case Instruction::Br: 6708 case Instruction::Call: 6709 case Instruction::FAdd: 6710 case Instruction::FCmp: 6711 case Instruction::FDiv: 6712 case Instruction::FMul: 6713 case Instruction::FPExt: 6714 case Instruction::FPToSI: 6715 case Instruction::FPToUI: 6716 case Instruction::FPTrunc: 6717 case Instruction::FRem: 6718 case Instruction::FSub: 6719 case Instruction::GetElementPtr: 6720 case Instruction::ICmp: 6721 case Instruction::IntToPtr: 6722 case Instruction::Load: 6723 case Instruction::LShr: 6724 case Instruction::Mul: 6725 case Instruction::Or: 6726 case Instruction::PHI: 6727 case Instruction::PtrToInt: 6728 case Instruction::SDiv: 6729 case Instruction::Select: 6730 case Instruction::SExt: 6731 case Instruction::Shl: 6732 case Instruction::SIToFP: 6733 case Instruction::SRem: 6734 case Instruction::Store: 6735 case Instruction::Sub: 6736 case Instruction::Trunc: 6737 case Instruction::UDiv: 6738 case Instruction::UIToFP: 6739 case Instruction::URem: 6740 case Instruction::Xor: 6741 case Instruction::ZExt: 6742 return true; 6743 } 6744 return false; 6745 }; 6746 6747 if (!IsVectorizableOpcode(I->getOpcode())) 6748 return false; 6749 6750 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6751 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6752 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6753 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6754 return false; 6755 } 6756 6757 auto willWiden = [&](unsigned VF) -> bool { 6758 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6759 CM.isProfitableToScalarize(I, VF))) 6760 return false; 6761 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6762 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6763 // The following case may be scalarized depending on the VF. 6764 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6765 // version of the instruction. 6766 // Is it beneficial to perform intrinsic call compared to lib call? 6767 bool NeedToScalarize; 6768 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6769 bool UseVectorIntrinsic = 6770 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6771 return UseVectorIntrinsic || !NeedToScalarize; 6772 } 6773 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6774 assert(CM.getWideningDecision(I, VF) == 6775 LoopVectorizationCostModel::CM_Scalarize && 6776 "Memory widening decisions should have been taken care by now"); 6777 return false; 6778 } 6779 return true; 6780 }; 6781 6782 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6783 return false; 6784 6785 // Success: widen this instruction. We optimize the common case where 6786 // consecutive instructions can be represented by a single recipe. 6787 if (!VPBB->empty()) { 6788 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6789 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6790 return true; 6791 } 6792 6793 VPBB->appendRecipe(new VPWidenRecipe(I)); 6794 return true; 6795 } 6796 6797 VPBasicBlock *VPRecipeBuilder::handleReplication( 6798 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6799 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6800 VPlanPtr &Plan) { 6801 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6802 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6803 Range); 6804 6805 bool IsPredicated = CM.isScalarWithPredication(I); 6806 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6807 6808 // Find if I uses a predicated instruction. If so, it will use its scalar 6809 // value. Avoid hoisting the insert-element which packs the scalar value into 6810 // a vector value, as that happens iff all users use the vector value. 6811 for (auto &Op : I->operands()) 6812 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6813 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6814 PredInst2Recipe[PredInst]->setAlsoPack(false); 6815 6816 // Finalize the recipe for Instr, first if it is not predicated. 6817 if (!IsPredicated) { 6818 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6819 VPBB->appendRecipe(Recipe); 6820 return VPBB; 6821 } 6822 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6823 assert(VPBB->getSuccessors().empty() && 6824 "VPBB has successors when handling predicated replication."); 6825 // Record predicated instructions for above packing optimizations. 6826 PredInst2Recipe[I] = Recipe; 6827 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6828 VPBlockUtils::insertBlockAfter(Region, VPBB); 6829 auto *RegSucc = new VPBasicBlock(); 6830 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6831 return RegSucc; 6832 } 6833 6834 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6835 VPRecipeBase *PredRecipe, 6836 VPlanPtr &Plan) { 6837 // Instructions marked for predication are replicated and placed under an 6838 // if-then construct to prevent side-effects. 6839 6840 // Generate recipes to compute the block mask for this region. 6841 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6842 6843 // Build the triangular if-then region. 6844 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6845 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6846 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6847 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6848 auto *PHIRecipe = 6849 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6850 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6851 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6852 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6853 6854 // Note: first set Entry as region entry and then connect successors starting 6855 // from it in order, to propagate the "parent" of each VPBasicBlock. 6856 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6857 VPBlockUtils::connectBlocks(Pred, Exit); 6858 6859 return Region; 6860 } 6861 6862 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6863 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6864 VPRecipeBase *Recipe = nullptr; 6865 // Check if Instr should belong to an interleave memory recipe, or already 6866 // does. In the latter case Instr is irrelevant. 6867 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 6868 VPBB->appendRecipe(Recipe); 6869 return true; 6870 } 6871 6872 // Check if Instr is a memory operation that should be widened. 6873 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6874 VPBB->appendRecipe(Recipe); 6875 return true; 6876 } 6877 6878 // Check if Instr should form some PHI recipe. 6879 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6880 VPBB->appendRecipe(Recipe); 6881 return true; 6882 } 6883 if ((Recipe = tryToBlend(Instr, Plan))) { 6884 VPBB->appendRecipe(Recipe); 6885 return true; 6886 } 6887 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6888 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6889 return true; 6890 } 6891 6892 // Check if Instr is to be widened by a general VPWidenRecipe, after 6893 // having first checked for specific widening recipes that deal with 6894 // Interleave Groups, Inductions and Phi nodes. 6895 if (tryToWiden(Instr, VPBB, Range)) 6896 return true; 6897 6898 return false; 6899 } 6900 6901 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6902 unsigned MaxVF) { 6903 assert(OrigLoop->empty() && "Inner loop expected."); 6904 6905 // Collect conditions feeding internal conditional branches; they need to be 6906 // represented in VPlan for it to model masking. 6907 SmallPtrSet<Value *, 1> NeedDef; 6908 6909 auto *Latch = OrigLoop->getLoopLatch(); 6910 for (BasicBlock *BB : OrigLoop->blocks()) { 6911 if (BB == Latch) 6912 continue; 6913 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6914 if (Branch && Branch->isConditional()) 6915 NeedDef.insert(Branch->getCondition()); 6916 } 6917 6918 // Collect instructions from the original loop that will become trivially dead 6919 // in the vectorized loop. We don't need to vectorize these instructions. For 6920 // example, original induction update instructions can become dead because we 6921 // separately emit induction "steps" when generating code for the new loop. 6922 // Similarly, we create a new latch condition when setting up the structure 6923 // of the new loop, so the old one can become dead. 6924 SmallPtrSet<Instruction *, 4> DeadInstructions; 6925 collectTriviallyDeadInstructions(DeadInstructions); 6926 6927 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6928 VFRange SubRange = {VF, MaxVF + 1}; 6929 VPlans.push_back( 6930 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6931 VF = SubRange.End; 6932 } 6933 } 6934 6935 LoopVectorizationPlanner::VPlanPtr 6936 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6937 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6938 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6939 // Hold a mapping from predicated instructions to their recipes, in order to 6940 // fix their AlsoPack behavior if a user is determined to replicate and use a 6941 // scalar instead of vector value. 6942 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6943 6944 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6945 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6946 6947 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6948 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6949 auto Plan = llvm::make_unique<VPlan>(VPBB); 6950 6951 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6952 // Represent values that will have defs inside VPlan. 6953 for (Value *V : NeedDef) 6954 Plan->addVPValue(V); 6955 6956 // Scan the body of the loop in a topological order to visit each basic block 6957 // after having visited its predecessor basic blocks. 6958 LoopBlocksDFS DFS(OrigLoop); 6959 DFS.perform(LI); 6960 6961 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6962 // Relevant instructions from basic block BB will be grouped into VPRecipe 6963 // ingredients and fill a new VPBasicBlock. 6964 unsigned VPBBsForBB = 0; 6965 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6966 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6967 VPBB = FirstVPBBForBB; 6968 Builder.setInsertPoint(VPBB); 6969 6970 std::vector<Instruction *> Ingredients; 6971 6972 // Organize the ingredients to vectorize from current basic block in the 6973 // right order. 6974 for (Instruction &I : BB->instructionsWithoutDebug()) { 6975 Instruction *Instr = &I; 6976 6977 // First filter out irrelevant instructions, to ensure no recipes are 6978 // built for them. 6979 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 6980 continue; 6981 6982 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6983 // member of the IG, do not construct any Recipe for it. 6984 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 6985 if (IG && Instr != IG->getInsertPos() && 6986 Range.Start >= 2 && // Query is illegal for VF == 1 6987 CM.getWideningDecision(Instr, Range.Start) == 6988 LoopVectorizationCostModel::CM_Interleave) { 6989 if (SinkAfterInverse.count(Instr)) 6990 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 6991 continue; 6992 } 6993 6994 // Move instructions to handle first-order recurrences, step 1: avoid 6995 // handling this instruction until after we've handled the instruction it 6996 // should follow. 6997 auto SAIt = SinkAfter.find(Instr); 6998 if (SAIt != SinkAfter.end()) { 6999 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 7000 << *SAIt->second 7001 << " to vectorize a 1st order recurrence.\n"); 7002 SinkAfterInverse[SAIt->second] = Instr; 7003 continue; 7004 } 7005 7006 Ingredients.push_back(Instr); 7007 7008 // Move instructions to handle first-order recurrences, step 2: push the 7009 // instruction to be sunk at its insertion point. 7010 auto SAInvIt = SinkAfterInverse.find(Instr); 7011 if (SAInvIt != SinkAfterInverse.end()) 7012 Ingredients.push_back(SAInvIt->second); 7013 } 7014 7015 // Introduce each ingredient into VPlan. 7016 for (Instruction *Instr : Ingredients) { 7017 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7018 continue; 7019 7020 // Otherwise, if all widening options failed, Instruction is to be 7021 // replicated. This may create a successor for VPBB. 7022 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7023 Instr, Range, VPBB, PredInst2Recipe, Plan); 7024 if (NextVPBB != VPBB) { 7025 VPBB = NextVPBB; 7026 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7027 : ""); 7028 } 7029 } 7030 } 7031 7032 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7033 // may also be empty, such as the last one VPBB, reflecting original 7034 // basic-blocks with no recipes. 7035 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7036 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7037 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7038 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7039 delete PreEntry; 7040 7041 std::string PlanName; 7042 raw_string_ostream RSO(PlanName); 7043 unsigned VF = Range.Start; 7044 Plan->addVF(VF); 7045 RSO << "Initial VPlan for VF={" << VF; 7046 for (VF *= 2; VF < Range.End; VF *= 2) { 7047 Plan->addVF(VF); 7048 RSO << "," << VF; 7049 } 7050 RSO << "},UF>=1"; 7051 RSO.flush(); 7052 Plan->setName(PlanName); 7053 7054 return Plan; 7055 } 7056 7057 LoopVectorizationPlanner::VPlanPtr 7058 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7059 // Outer loop handling: They may require CFG and instruction level 7060 // transformations before even evaluating whether vectorization is profitable. 7061 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7062 // the vectorization pipeline. 7063 assert(!OrigLoop->empty()); 7064 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7065 7066 // Create new empty VPlan 7067 auto Plan = llvm::make_unique<VPlan>(); 7068 7069 // Build hierarchical CFG 7070 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7071 HCFGBuilder.buildHierarchicalCFG(); 7072 7073 return Plan; 7074 } 7075 7076 Value* LoopVectorizationPlanner::VPCallbackILV:: 7077 getOrCreateVectorValues(Value *V, unsigned Part) { 7078 return ILV.getOrCreateVectorValue(V, Part); 7079 } 7080 7081 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7082 O << " +\n" 7083 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7084 IG->getInsertPos()->printAsOperand(O, false); 7085 O << "\\l\""; 7086 for (unsigned i = 0; i < IG->getFactor(); ++i) 7087 if (Instruction *I = IG->getMember(i)) 7088 O << " +\n" 7089 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7090 } 7091 7092 void VPWidenRecipe::execute(VPTransformState &State) { 7093 for (auto &Instr : make_range(Begin, End)) 7094 State.ILV->widenInstruction(Instr); 7095 } 7096 7097 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7098 assert(!State.Instance && "Int or FP induction being replicated."); 7099 State.ILV->widenIntOrFpInduction(IV, Trunc); 7100 } 7101 7102 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7103 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7104 } 7105 7106 void VPBlendRecipe::execute(VPTransformState &State) { 7107 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7108 // We know that all PHIs in non-header blocks are converted into 7109 // selects, so we don't have to worry about the insertion order and we 7110 // can just use the builder. 7111 // At this point we generate the predication tree. There may be 7112 // duplications since this is a simple recursive scan, but future 7113 // optimizations will clean it up. 7114 7115 unsigned NumIncoming = Phi->getNumIncomingValues(); 7116 7117 assert((User || NumIncoming == 1) && 7118 "Multiple predecessors with predecessors having a full mask"); 7119 // Generate a sequence of selects of the form: 7120 // SELECT(Mask3, In3, 7121 // SELECT(Mask2, In2, 7122 // ( ...))) 7123 InnerLoopVectorizer::VectorParts Entry(State.UF); 7124 for (unsigned In = 0; In < NumIncoming; ++In) { 7125 for (unsigned Part = 0; Part < State.UF; ++Part) { 7126 // We might have single edge PHIs (blocks) - use an identity 7127 // 'select' for the first PHI operand. 7128 Value *In0 = 7129 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7130 if (In == 0) 7131 Entry[Part] = In0; // Initialize with the first incoming value. 7132 else { 7133 // Select between the current value and the previous incoming edge 7134 // based on the incoming mask. 7135 Value *Cond = State.get(User->getOperand(In), Part); 7136 Entry[Part] = 7137 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7138 } 7139 } 7140 } 7141 for (unsigned Part = 0; Part < State.UF; ++Part) 7142 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7143 } 7144 7145 void VPInterleaveRecipe::execute(VPTransformState &State) { 7146 assert(!State.Instance && "Interleave group being replicated."); 7147 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7148 } 7149 7150 void VPReplicateRecipe::execute(VPTransformState &State) { 7151 if (State.Instance) { // Generate a single instance. 7152 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7153 // Insert scalar instance packing it into a vector. 7154 if (AlsoPack && State.VF > 1) { 7155 // If we're constructing lane 0, initialize to start from undef. 7156 if (State.Instance->Lane == 0) { 7157 Value *Undef = 7158 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7159 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7160 } 7161 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7162 } 7163 return; 7164 } 7165 7166 // Generate scalar instances for all VF lanes of all UF parts, unless the 7167 // instruction is uniform inwhich case generate only the first lane for each 7168 // of the UF parts. 7169 unsigned EndLane = IsUniform ? 1 : State.VF; 7170 for (unsigned Part = 0; Part < State.UF; ++Part) 7171 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7172 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7173 } 7174 7175 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7176 assert(State.Instance && "Branch on Mask works only on single instance."); 7177 7178 unsigned Part = State.Instance->Part; 7179 unsigned Lane = State.Instance->Lane; 7180 7181 Value *ConditionBit = nullptr; 7182 if (!User) // Block in mask is all-one. 7183 ConditionBit = State.Builder.getTrue(); 7184 else { 7185 VPValue *BlockInMask = User->getOperand(0); 7186 ConditionBit = State.get(BlockInMask, Part); 7187 if (ConditionBit->getType()->isVectorTy()) 7188 ConditionBit = State.Builder.CreateExtractElement( 7189 ConditionBit, State.Builder.getInt32(Lane)); 7190 } 7191 7192 // Replace the temporary unreachable terminator with a new conditional branch, 7193 // whose two destinations will be set later when they are created. 7194 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7195 assert(isa<UnreachableInst>(CurrentTerminator) && 7196 "Expected to replace unreachable terminator with conditional branch."); 7197 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7198 CondBr->setSuccessor(0, nullptr); 7199 ReplaceInstWithInst(CurrentTerminator, CondBr); 7200 } 7201 7202 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7203 assert(State.Instance && "Predicated instruction PHI works per instance."); 7204 Instruction *ScalarPredInst = cast<Instruction>( 7205 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7206 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7207 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7208 assert(PredicatingBB && "Predicated block has no single predecessor."); 7209 7210 // By current pack/unpack logic we need to generate only a single phi node: if 7211 // a vector value for the predicated instruction exists at this point it means 7212 // the instruction has vector users only, and a phi for the vector value is 7213 // needed. In this case the recipe of the predicated instruction is marked to 7214 // also do that packing, thereby "hoisting" the insert-element sequence. 7215 // Otherwise, a phi node for the scalar value is needed. 7216 unsigned Part = State.Instance->Part; 7217 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7218 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7219 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7220 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7221 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7222 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7223 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7224 } else { 7225 Type *PredInstType = PredInst->getType(); 7226 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7227 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7228 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7229 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7230 } 7231 } 7232 7233 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7234 if (!User) 7235 return State.ILV->vectorizeMemoryInstruction(&Instr); 7236 7237 // Last (and currently only) operand is a mask. 7238 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7239 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7240 for (unsigned Part = 0; Part < State.UF; ++Part) 7241 MaskValues[Part] = State.get(Mask, Part); 7242 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7243 } 7244 7245 // Process the loop in the VPlan-native vectorization path. This path builds 7246 // VPlan upfront in the vectorization pipeline, which allows to apply 7247 // VPlan-to-VPlan transformations from the very beginning without modifying the 7248 // input LLVM IR. 7249 static bool processLoopInVPlanNativePath( 7250 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7251 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7252 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7253 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7254 7255 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7256 Function *F = L->getHeader()->getParent(); 7257 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7258 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7259 &Hints, IAI); 7260 // Use the planner for outer loop vectorization. 7261 // TODO: CM is not used at this point inside the planner. Turn CM into an 7262 // optional argument if we don't need it in the future. 7263 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7264 7265 // Get user vectorization factor. 7266 unsigned UserVF = Hints.getWidth(); 7267 7268 // Check the function attributes to find out if this function should be 7269 // optimized for size. 7270 bool OptForSize = 7271 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7272 7273 // Plan how to best vectorize, return the best VF and its cost. 7274 LVP.planInVPlanNativePath(OptForSize, UserVF); 7275 7276 // Returning false. We are currently not generating vector code in the VPlan 7277 // native path. 7278 return false; 7279 } 7280 7281 bool LoopVectorizePass::processLoop(Loop *L) { 7282 assert((EnableVPlanNativePath || L->empty()) && 7283 "VPlan-native path is not enabled. Only process inner loops."); 7284 7285 #ifndef NDEBUG 7286 const std::string DebugLocStr = getDebugLocString(L); 7287 #endif /* NDEBUG */ 7288 7289 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7290 << L->getHeader()->getParent()->getName() << "\" from " 7291 << DebugLocStr << "\n"); 7292 7293 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7294 7295 LLVM_DEBUG( 7296 dbgs() << "LV: Loop hints:" 7297 << " force=" 7298 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7299 ? "disabled" 7300 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7301 ? "enabled" 7302 : "?")) 7303 << " width=" << Hints.getWidth() 7304 << " unroll=" << Hints.getInterleave() << "\n"); 7305 7306 // Function containing loop 7307 Function *F = L->getHeader()->getParent(); 7308 7309 // Looking at the diagnostic output is the only way to determine if a loop 7310 // was vectorized (other than looking at the IR or machine code), so it 7311 // is important to generate an optimization remark for each loop. Most of 7312 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7313 // generated as OptimizationRemark and OptimizationRemarkMissed are 7314 // less verbose reporting vectorized loops and unvectorized loops that may 7315 // benefit from vectorization, respectively. 7316 7317 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7318 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7319 return false; 7320 } 7321 7322 PredicatedScalarEvolution PSE(*SE, *L); 7323 7324 // Check if it is legal to vectorize the loop. 7325 LoopVectorizationRequirements Requirements(*ORE); 7326 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7327 &Requirements, &Hints, DB, AC); 7328 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7329 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7330 emitMissedWarning(F, L, Hints, ORE); 7331 return false; 7332 } 7333 7334 // Check the function attributes to find out if this function should be 7335 // optimized for size. 7336 bool OptForSize = 7337 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7338 7339 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7340 // here. They may require CFG and instruction level transformations before 7341 // even evaluating whether vectorization is profitable. Since we cannot modify 7342 // the incoming IR, we need to build VPlan upfront in the vectorization 7343 // pipeline. 7344 if (!L->empty()) 7345 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7346 ORE, Hints); 7347 7348 assert(L->empty() && "Inner loop expected."); 7349 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7350 // count by optimizing for size, to minimize overheads. 7351 // Prefer constant trip counts over profile data, over upper bound estimate. 7352 unsigned ExpectedTC = 0; 7353 bool HasExpectedTC = false; 7354 if (const SCEVConstant *ConstExits = 7355 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7356 const APInt &ExitsCount = ConstExits->getAPInt(); 7357 // We are interested in small values for ExpectedTC. Skip over those that 7358 // can't fit an unsigned. 7359 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7360 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7361 HasExpectedTC = true; 7362 } 7363 } 7364 // ExpectedTC may be large because it's bound by a variable. Check 7365 // profiling information to validate we should vectorize. 7366 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7367 auto EstimatedTC = getLoopEstimatedTripCount(L); 7368 if (EstimatedTC) { 7369 ExpectedTC = *EstimatedTC; 7370 HasExpectedTC = true; 7371 } 7372 } 7373 if (!HasExpectedTC) { 7374 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7375 HasExpectedTC = (ExpectedTC > 0); 7376 } 7377 7378 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7379 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7380 << "This loop is worth vectorizing only if no scalar " 7381 << "iteration overheads are incurred."); 7382 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7383 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7384 else { 7385 LLVM_DEBUG(dbgs() << "\n"); 7386 // Loops with a very small trip count are considered for vectorization 7387 // under OptForSize, thereby making sure the cost of their loop body is 7388 // dominant, free of runtime guards and scalar iteration overheads. 7389 OptForSize = true; 7390 } 7391 } 7392 7393 // Check the function attributes to see if implicit floats are allowed. 7394 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7395 // an integer loop and the vector instructions selected are purely integer 7396 // vector instructions? 7397 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7398 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7399 "attribute is used.\n"); 7400 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7401 "NoImplicitFloat", L) 7402 << "loop not vectorized due to NoImplicitFloat attribute"); 7403 emitMissedWarning(F, L, Hints, ORE); 7404 return false; 7405 } 7406 7407 // Check if the target supports potentially unsafe FP vectorization. 7408 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7409 // for the target we're vectorizing for, to make sure none of the 7410 // additional fp-math flags can help. 7411 if (Hints.isPotentiallyUnsafe() && 7412 TTI->isFPVectorizationPotentiallyUnsafe()) { 7413 LLVM_DEBUG( 7414 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7415 ORE->emit( 7416 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7417 << "loop not vectorized due to unsafe FP support."); 7418 emitMissedWarning(F, L, Hints, ORE); 7419 return false; 7420 } 7421 7422 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7423 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7424 7425 // If an override option has been passed in for interleaved accesses, use it. 7426 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7427 UseInterleaved = EnableInterleavedMemAccesses; 7428 7429 // Analyze interleaved memory accesses. 7430 if (UseInterleaved) { 7431 IAI.analyzeInterleaving(); 7432 } 7433 7434 // Use the cost model. 7435 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7436 &Hints, IAI); 7437 CM.collectValuesToIgnore(); 7438 7439 // Use the planner for vectorization. 7440 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7441 7442 // Get user vectorization factor. 7443 unsigned UserVF = Hints.getWidth(); 7444 7445 // Plan how to best vectorize, return the best VF and its cost. 7446 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7447 7448 // Select the interleave count. 7449 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7450 7451 // Get user interleave count. 7452 unsigned UserIC = Hints.getInterleave(); 7453 7454 // Identify the diagnostic messages that should be produced. 7455 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7456 bool VectorizeLoop = true, InterleaveLoop = true; 7457 if (Requirements.doesNotMeet(F, L, Hints)) { 7458 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7459 "requirements.\n"); 7460 emitMissedWarning(F, L, Hints, ORE); 7461 return false; 7462 } 7463 7464 if (VF.Width == 1) { 7465 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7466 VecDiagMsg = std::make_pair( 7467 "VectorizationNotBeneficial", 7468 "the cost-model indicates that vectorization is not beneficial"); 7469 VectorizeLoop = false; 7470 } 7471 7472 if (IC == 1 && UserIC <= 1) { 7473 // Tell the user interleaving is not beneficial. 7474 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7475 IntDiagMsg = std::make_pair( 7476 "InterleavingNotBeneficial", 7477 "the cost-model indicates that interleaving is not beneficial"); 7478 InterleaveLoop = false; 7479 if (UserIC == 1) { 7480 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7481 IntDiagMsg.second += 7482 " and is explicitly disabled or interleave count is set to 1"; 7483 } 7484 } else if (IC > 1 && UserIC == 1) { 7485 // Tell the user interleaving is beneficial, but it explicitly disabled. 7486 LLVM_DEBUG( 7487 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7488 IntDiagMsg = std::make_pair( 7489 "InterleavingBeneficialButDisabled", 7490 "the cost-model indicates that interleaving is beneficial " 7491 "but is explicitly disabled or interleave count is set to 1"); 7492 InterleaveLoop = false; 7493 } 7494 7495 // Override IC if user provided an interleave count. 7496 IC = UserIC > 0 ? UserIC : IC; 7497 7498 // Emit diagnostic messages, if any. 7499 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7500 if (!VectorizeLoop && !InterleaveLoop) { 7501 // Do not vectorize or interleaving the loop. 7502 ORE->emit([&]() { 7503 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7504 L->getStartLoc(), L->getHeader()) 7505 << VecDiagMsg.second; 7506 }); 7507 ORE->emit([&]() { 7508 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7509 L->getStartLoc(), L->getHeader()) 7510 << IntDiagMsg.second; 7511 }); 7512 return false; 7513 } else if (!VectorizeLoop && InterleaveLoop) { 7514 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7515 ORE->emit([&]() { 7516 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7517 L->getStartLoc(), L->getHeader()) 7518 << VecDiagMsg.second; 7519 }); 7520 } else if (VectorizeLoop && !InterleaveLoop) { 7521 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7522 << ") in " << DebugLocStr << '\n'); 7523 ORE->emit([&]() { 7524 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7525 L->getStartLoc(), L->getHeader()) 7526 << IntDiagMsg.second; 7527 }); 7528 } else if (VectorizeLoop && InterleaveLoop) { 7529 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7530 << ") in " << DebugLocStr << '\n'); 7531 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7532 } 7533 7534 LVP.setBestPlan(VF.Width, IC); 7535 7536 using namespace ore; 7537 7538 if (!VectorizeLoop) { 7539 assert(IC > 1 && "interleave count should not be 1 or 0"); 7540 // If we decided that it is not legal to vectorize the loop, then 7541 // interleave it. 7542 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7543 &CM); 7544 LVP.executePlan(Unroller, DT); 7545 7546 ORE->emit([&]() { 7547 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7548 L->getHeader()) 7549 << "interleaved loop (interleaved count: " 7550 << NV("InterleaveCount", IC) << ")"; 7551 }); 7552 } else { 7553 // If we decided that it is *legal* to vectorize the loop, then do it. 7554 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7555 &LVL, &CM); 7556 LVP.executePlan(LB, DT); 7557 ++LoopsVectorized; 7558 7559 // Add metadata to disable runtime unrolling a scalar loop when there are 7560 // no runtime checks about strides and memory. A scalar loop that is 7561 // rarely used is not worth unrolling. 7562 if (!LB.areSafetyChecksAdded()) 7563 AddRuntimeUnrollDisableMetaData(L); 7564 7565 // Report the vectorization decision. 7566 ORE->emit([&]() { 7567 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7568 L->getHeader()) 7569 << "vectorized loop (vectorization width: " 7570 << NV("VectorizationFactor", VF.Width) 7571 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7572 }); 7573 } 7574 7575 // Mark the loop as already vectorized to avoid vectorizing again. 7576 Hints.setAlreadyVectorized(); 7577 7578 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7579 return true; 7580 } 7581 7582 bool LoopVectorizePass::runImpl( 7583 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7584 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7585 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7586 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7587 OptimizationRemarkEmitter &ORE_) { 7588 SE = &SE_; 7589 LI = &LI_; 7590 TTI = &TTI_; 7591 DT = &DT_; 7592 BFI = &BFI_; 7593 TLI = TLI_; 7594 AA = &AA_; 7595 AC = &AC_; 7596 GetLAA = &GetLAA_; 7597 DB = &DB_; 7598 ORE = &ORE_; 7599 7600 // Don't attempt if 7601 // 1. the target claims to have no vector registers, and 7602 // 2. interleaving won't help ILP. 7603 // 7604 // The second condition is necessary because, even if the target has no 7605 // vector registers, loop vectorization may still enable scalar 7606 // interleaving. 7607 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7608 return false; 7609 7610 bool Changed = false; 7611 7612 // The vectorizer requires loops to be in simplified form. 7613 // Since simplification may add new inner loops, it has to run before the 7614 // legality and profitability checks. This means running the loop vectorizer 7615 // will simplify all loops, regardless of whether anything end up being 7616 // vectorized. 7617 for (auto &L : *LI) 7618 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7619 7620 // Build up a worklist of inner-loops to vectorize. This is necessary as 7621 // the act of vectorizing or partially unrolling a loop creates new loops 7622 // and can invalidate iterators across the loops. 7623 SmallVector<Loop *, 8> Worklist; 7624 7625 for (Loop *L : *LI) 7626 collectSupportedLoops(*L, LI, ORE, Worklist); 7627 7628 LoopsAnalyzed += Worklist.size(); 7629 7630 // Now walk the identified inner loops. 7631 while (!Worklist.empty()) { 7632 Loop *L = Worklist.pop_back_val(); 7633 7634 // For the inner loops we actually process, form LCSSA to simplify the 7635 // transform. 7636 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7637 7638 Changed |= processLoop(L); 7639 } 7640 7641 // Process each loop nest in the function. 7642 return Changed; 7643 } 7644 7645 PreservedAnalyses LoopVectorizePass::run(Function &F, 7646 FunctionAnalysisManager &AM) { 7647 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7648 auto &LI = AM.getResult<LoopAnalysis>(F); 7649 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7650 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7651 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7652 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7653 auto &AA = AM.getResult<AAManager>(F); 7654 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7655 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7656 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7657 7658 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7659 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7660 [&](Loop &L) -> const LoopAccessInfo & { 7661 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7662 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7663 }; 7664 bool Changed = 7665 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7666 if (!Changed) 7667 return PreservedAnalyses::all(); 7668 PreservedAnalyses PA; 7669 PA.preserve<LoopAnalysis>(); 7670 PA.preserve<DominatorTreeAnalysis>(); 7671 PA.preserve<BasicAA>(); 7672 PA.preserve<GlobalsAA>(); 7673 return PA; 7674 } 7675