1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "VPlanBuilder.h" 52 #include "llvm/ADT/APInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/DenseMap.h" 55 #include "llvm/ADT/DenseMapInfo.h" 56 #include "llvm/ADT/Hashing.h" 57 #include "llvm/ADT/MapVector.h" 58 #include "llvm/ADT/None.h" 59 #include "llvm/ADT/Optional.h" 60 #include "llvm/ADT/SCCIterator.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallPtrSet.h" 64 #include "llvm/ADT/SmallSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/Statistic.h" 67 #include "llvm/ADT/StringRef.h" 68 #include "llvm/ADT/Twine.h" 69 #include "llvm/ADT/iterator_range.h" 70 #include "llvm/Analysis/AssumptionCache.h" 71 #include "llvm/Analysis/BasicAliasAnalysis.h" 72 #include "llvm/Analysis/BlockFrequencyInfo.h" 73 #include "llvm/Analysis/CodeMetrics.h" 74 #include "llvm/Analysis/DemandedBits.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/LoopAccessAnalysis.h" 77 #include "llvm/Analysis/LoopAnalysisManager.h" 78 #include "llvm/Analysis/LoopInfo.h" 79 #include "llvm/Analysis/LoopIterator.h" 80 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 81 #include "llvm/Analysis/ScalarEvolution.h" 82 #include "llvm/Analysis/ScalarEvolutionExpander.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/TargetTransformInfo.h" 86 #include "llvm/Analysis/VectorUtils.h" 87 #include "llvm/IR/Attributes.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DebugInfoMetadata.h" 94 #include "llvm/IR/DebugLoc.h" 95 #include "llvm/IR/DerivedTypes.h" 96 #include "llvm/IR/DiagnosticInfo.h" 97 #include "llvm/IR/Dominators.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/IR/IRBuilder.h" 100 #include "llvm/IR/InstrTypes.h" 101 #include "llvm/IR/Instruction.h" 102 #include "llvm/IR/Instructions.h" 103 #include "llvm/IR/IntrinsicInst.h" 104 #include "llvm/IR/Intrinsics.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Metadata.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/Use.h" 111 #include "llvm/IR/User.h" 112 #include "llvm/IR/Value.h" 113 #include "llvm/IR/ValueHandle.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/Pass.h" 116 #include "llvm/Support/Casting.h" 117 #include "llvm/Support/CommandLine.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/MathExtras.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 124 #include "llvm/Transforms/Utils/LoopSimplify.h" 125 #include "llvm/Transforms/Utils/LoopUtils.h" 126 #include "llvm/Transforms/Utils/LoopVersioning.h" 127 #include <algorithm> 128 #include <cassert> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <functional> 132 #include <iterator> 133 #include <limits> 134 #include <memory> 135 #include <string> 136 #include <tuple> 137 #include <utility> 138 #include <vector> 139 140 using namespace llvm; 141 142 #define LV_NAME "loop-vectorize" 143 #define DEBUG_TYPE LV_NAME 144 145 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 146 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 147 148 static cl::opt<bool> 149 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 150 cl::desc("Enable if-conversion during vectorization.")); 151 152 /// Loops with a known constant trip count below this number are vectorized only 153 /// if no scalar iteration overheads are incurred. 154 static cl::opt<unsigned> TinyTripCountVectorThreshold( 155 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 156 cl::desc("Loops with a constant trip count that is smaller than this " 157 "value are vectorized only if no scalar iteration overheads " 158 "are incurred.")); 159 160 static cl::opt<bool> MaximizeBandwidth( 161 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 162 cl::desc("Maximize bandwidth when selecting vectorization factor which " 163 "will be determined by the smallest type in loop.")); 164 165 static cl::opt<bool> EnableInterleavedMemAccesses( 166 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 167 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 168 169 /// Maximum factor for an interleaved memory access. 170 static cl::opt<unsigned> MaxInterleaveGroupFactor( 171 "max-interleave-group-factor", cl::Hidden, 172 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 173 cl::init(8)); 174 175 /// We don't interleave loops with a known constant trip count below this 176 /// number. 177 static const unsigned TinyTripCountInterleaveThreshold = 128; 178 179 static cl::opt<unsigned> ForceTargetNumScalarRegs( 180 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's number of scalar registers.")); 182 183 static cl::opt<unsigned> ForceTargetNumVectorRegs( 184 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's number of vector registers.")); 186 187 /// Maximum vectorization interleave count. 188 static const unsigned MaxInterleaveFactor = 16; 189 190 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 191 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 192 cl::desc("A flag that overrides the target's max interleave factor for " 193 "scalar loops.")); 194 195 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 196 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 197 cl::desc("A flag that overrides the target's max interleave factor for " 198 "vectorized loops.")); 199 200 static cl::opt<unsigned> ForceTargetInstructionCost( 201 "force-target-instruction-cost", cl::init(0), cl::Hidden, 202 cl::desc("A flag that overrides the target's expected cost for " 203 "an instruction to a single constant value. Mostly " 204 "useful for getting consistent testing.")); 205 206 static cl::opt<unsigned> SmallLoopCost( 207 "small-loop-cost", cl::init(20), cl::Hidden, 208 cl::desc( 209 "The cost of a loop that is considered 'small' by the interleaver.")); 210 211 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 212 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 213 cl::desc("Enable the use of the block frequency analysis to access PGO " 214 "heuristics minimizing code growth in cold regions and being more " 215 "aggressive in hot regions.")); 216 217 // Runtime interleave loops for load/store throughput. 218 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 219 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 220 cl::desc( 221 "Enable runtime interleaving until load/store ports are saturated")); 222 223 /// The number of stores in a loop that are allowed to need predication. 224 static cl::opt<unsigned> NumberOfStoresToPredicate( 225 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 226 cl::desc("Max number of stores to be predicated behind an if.")); 227 228 static cl::opt<bool> EnableIndVarRegisterHeur( 229 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 230 cl::desc("Count the induction variable only once when interleaving")); 231 232 static cl::opt<bool> EnableCondStoresVectorization( 233 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 234 cl::desc("Enable if predication of stores during vectorization.")); 235 236 static cl::opt<unsigned> MaxNestedScalarReductionIC( 237 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 238 cl::desc("The maximum interleave count to use when interleaving a scalar " 239 "reduction in a nested loop.")); 240 241 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 242 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 243 cl::desc("The maximum allowed number of runtime memory checks with a " 244 "vectorize(enable) pragma.")); 245 246 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 247 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 248 cl::desc("The maximum number of SCEV checks allowed.")); 249 250 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 251 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 252 cl::desc("The maximum number of SCEV checks allowed with a " 253 "vectorize(enable) pragma")); 254 255 /// Create an analysis remark that explains why vectorization failed 256 /// 257 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 258 /// RemarkName is the identifier for the remark. If \p I is passed it is an 259 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 260 /// the location of the remark. \return the remark object that can be 261 /// streamed to. 262 static OptimizationRemarkAnalysis 263 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 264 Instruction *I = nullptr) { 265 Value *CodeRegion = TheLoop->getHeader(); 266 DebugLoc DL = TheLoop->getStartLoc(); 267 268 if (I) { 269 CodeRegion = I->getParent(); 270 // If there is no debug location attached to the instruction, revert back to 271 // using the loop's. 272 if (I->getDebugLoc()) 273 DL = I->getDebugLoc(); 274 } 275 276 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 277 R << "loop not vectorized: "; 278 return R; 279 } 280 281 namespace { 282 283 class LoopVectorizationLegality; 284 class LoopVectorizationCostModel; 285 class LoopVectorizationRequirements; 286 287 } // end anonymous namespace 288 289 /// Returns true if the given loop body has a cycle, excluding the loop 290 /// itself. 291 static bool hasCyclesInLoopBody(const Loop &L) { 292 if (!L.empty()) 293 return true; 294 295 for (const auto &SCC : 296 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 297 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 298 if (SCC.size() > 1) { 299 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 300 DEBUG(L.dump()); 301 return true; 302 } 303 } 304 return false; 305 } 306 307 /// A helper function for converting Scalar types to vector types. 308 /// If the incoming type is void, we return void. If the VF is 1, we return 309 /// the scalar type. 310 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 311 if (Scalar->isVoidTy() || VF == 1) 312 return Scalar; 313 return VectorType::get(Scalar, VF); 314 } 315 316 // FIXME: The following helper functions have multiple implementations 317 // in the project. They can be effectively organized in a common Load/Store 318 // utilities unit. 319 320 /// A helper function that returns the pointer operand of a load or store 321 /// instruction. 322 static Value *getPointerOperand(Value *I) { 323 if (auto *LI = dyn_cast<LoadInst>(I)) 324 return LI->getPointerOperand(); 325 if (auto *SI = dyn_cast<StoreInst>(I)) 326 return SI->getPointerOperand(); 327 return nullptr; 328 } 329 330 /// A helper function that returns the type of loaded or stored value. 331 static Type *getMemInstValueType(Value *I) { 332 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 333 "Expected Load or Store instruction"); 334 if (auto *LI = dyn_cast<LoadInst>(I)) 335 return LI->getType(); 336 return cast<StoreInst>(I)->getValueOperand()->getType(); 337 } 338 339 /// A helper function that returns the alignment of load or store instruction. 340 static unsigned getMemInstAlignment(Value *I) { 341 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 342 "Expected Load or Store instruction"); 343 if (auto *LI = dyn_cast<LoadInst>(I)) 344 return LI->getAlignment(); 345 return cast<StoreInst>(I)->getAlignment(); 346 } 347 348 /// A helper function that returns the address space of the pointer operand of 349 /// load or store instruction. 350 static unsigned getMemInstAddressSpace(Value *I) { 351 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 352 "Expected Load or Store instruction"); 353 if (auto *LI = dyn_cast<LoadInst>(I)) 354 return LI->getPointerAddressSpace(); 355 return cast<StoreInst>(I)->getPointerAddressSpace(); 356 } 357 358 /// A helper function that returns true if the given type is irregular. The 359 /// type is irregular if its allocated size doesn't equal the store size of an 360 /// element of the corresponding vector type at the given vectorization factor. 361 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 362 // Determine if an array of VF elements of type Ty is "bitcast compatible" 363 // with a <VF x Ty> vector. 364 if (VF > 1) { 365 auto *VectorTy = VectorType::get(Ty, VF); 366 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 367 } 368 369 // If the vectorization factor is one, we just check if an array of type Ty 370 // requires padding between elements. 371 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 372 } 373 374 /// A helper function that returns the reciprocal of the block probability of 375 /// predicated blocks. If we return X, we are assuming the predicated block 376 /// will execute once for for every X iterations of the loop header. 377 /// 378 /// TODO: We should use actual block probability here, if available. Currently, 379 /// we always assume predicated blocks have a 50% chance of executing. 380 static unsigned getReciprocalPredBlockProb() { return 2; } 381 382 /// A helper function that adds a 'fast' flag to floating-point operations. 383 static Value *addFastMathFlag(Value *V) { 384 if (isa<FPMathOperator>(V)) { 385 FastMathFlags Flags; 386 Flags.setFast(); 387 cast<Instruction>(V)->setFastMathFlags(Flags); 388 } 389 return V; 390 } 391 392 /// A helper function that returns an integer or floating-point constant with 393 /// value C. 394 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 395 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 396 : ConstantFP::get(Ty, C); 397 } 398 399 namespace llvm { 400 401 /// InnerLoopVectorizer vectorizes loops which contain only one basic 402 /// block to a specified vectorization factor (VF). 403 /// This class performs the widening of scalars into vectors, or multiple 404 /// scalars. This class also implements the following features: 405 /// * It inserts an epilogue loop for handling loops that don't have iteration 406 /// counts that are known to be a multiple of the vectorization factor. 407 /// * It handles the code generation for reduction variables. 408 /// * Scalarization (implementation using scalars) of un-vectorizable 409 /// instructions. 410 /// InnerLoopVectorizer does not perform any vectorization-legality 411 /// checks, and relies on the caller to check for the different legality 412 /// aspects. The InnerLoopVectorizer relies on the 413 /// LoopVectorizationLegality class to provide information about the induction 414 /// and reduction variables that were found to a given vectorization factor. 415 class InnerLoopVectorizer { 416 public: 417 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 418 LoopInfo *LI, DominatorTree *DT, 419 const TargetLibraryInfo *TLI, 420 const TargetTransformInfo *TTI, AssumptionCache *AC, 421 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 422 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 423 LoopVectorizationCostModel *CM) 424 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 425 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 426 Builder(PSE.getSE()->getContext()), 427 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 428 virtual ~InnerLoopVectorizer() = default; 429 430 /// Create a new empty loop. Unlink the old loop and connect the new one. 431 /// Return the pre-header block of the new loop. 432 BasicBlock *createVectorizedLoopSkeleton(); 433 434 /// Widen a single instruction within the innermost loop. 435 void widenInstruction(Instruction &I); 436 437 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 438 void fixVectorizedLoop(); 439 440 // Return true if any runtime check is added. 441 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 442 443 /// A type for vectorized values in the new loop. Each value from the 444 /// original loop, when vectorized, is represented by UF vector values in the 445 /// new unrolled loop, where UF is the unroll factor. 446 using VectorParts = SmallVector<Value *, 2>; 447 448 /// Vectorize a single PHINode in a block. This method handles the induction 449 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 450 /// arbitrary length vectors. 451 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 452 453 /// A helper function to scalarize a single Instruction in the innermost loop. 454 /// Generates a sequence of scalar instances for each lane between \p MinLane 455 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 456 /// inclusive.. 457 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 458 bool IfPredicateInstr); 459 460 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 461 /// is provided, the integer induction variable will first be truncated to 462 /// the corresponding type. 463 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 464 465 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 466 /// vector or scalar value on-demand if one is not yet available. When 467 /// vectorizing a loop, we visit the definition of an instruction before its 468 /// uses. When visiting the definition, we either vectorize or scalarize the 469 /// instruction, creating an entry for it in the corresponding map. (In some 470 /// cases, such as induction variables, we will create both vector and scalar 471 /// entries.) Then, as we encounter uses of the definition, we derive values 472 /// for each scalar or vector use unless such a value is already available. 473 /// For example, if we scalarize a definition and one of its uses is vector, 474 /// we build the required vector on-demand with an insertelement sequence 475 /// when visiting the use. Otherwise, if the use is scalar, we can use the 476 /// existing scalar definition. 477 /// 478 /// Return a value in the new loop corresponding to \p V from the original 479 /// loop at unroll index \p Part. If the value has already been vectorized, 480 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 481 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 482 /// a new vector value on-demand by inserting the scalar values into a vector 483 /// with an insertelement sequence. If the value has been neither vectorized 484 /// nor scalarized, it must be loop invariant, so we simply broadcast the 485 /// value into a vector. 486 Value *getOrCreateVectorValue(Value *V, unsigned Part); 487 488 /// Return a value in the new loop corresponding to \p V from the original 489 /// loop at unroll and vector indices \p Instance. If the value has been 490 /// vectorized but not scalarized, the necessary extractelement instruction 491 /// will be generated. 492 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 493 494 /// Construct the vector value of a scalarized value \p V one lane at a time. 495 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 496 497 /// Try to vectorize the interleaved access group that \p Instr belongs to. 498 void vectorizeInterleaveGroup(Instruction *Instr); 499 500 /// Vectorize Load and Store instructions, optionally masking the vector 501 /// operations if \p BlockInMask is non-null. 502 void vectorizeMemoryInstruction(Instruction *Instr, 503 VectorParts *BlockInMask = nullptr); 504 505 /// \brief Set the debug location in the builder using the debug location in 506 /// the instruction. 507 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 508 509 protected: 510 friend class LoopVectorizationPlanner; 511 512 /// A small list of PHINodes. 513 using PhiVector = SmallVector<PHINode *, 4>; 514 515 /// A type for scalarized values in the new loop. Each value from the 516 /// original loop, when scalarized, is represented by UF x VF scalar values 517 /// in the new unrolled loop, where UF is the unroll factor and VF is the 518 /// vectorization factor. 519 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 520 521 /// Set up the values of the IVs correctly when exiting the vector loop. 522 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 523 Value *CountRoundDown, Value *EndValue, 524 BasicBlock *MiddleBlock); 525 526 /// Create a new induction variable inside L. 527 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 528 Value *Step, Instruction *DL); 529 530 /// Handle all cross-iteration phis in the header. 531 void fixCrossIterationPHIs(); 532 533 /// Fix a first-order recurrence. This is the second phase of vectorizing 534 /// this phi node. 535 void fixFirstOrderRecurrence(PHINode *Phi); 536 537 /// Fix a reduction cross-iteration phi. This is the second phase of 538 /// vectorizing this phi node. 539 void fixReduction(PHINode *Phi); 540 541 /// \brief The Loop exit block may have single value PHI nodes with some 542 /// incoming value. While vectorizing we only handled real values 543 /// that were defined inside the loop and we should have one value for 544 /// each predecessor of its parent basic block. See PR14725. 545 void fixLCSSAPHIs(); 546 547 /// Iteratively sink the scalarized operands of a predicated instruction into 548 /// the block that was created for it. 549 void sinkScalarOperands(Instruction *PredInst); 550 551 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 552 /// represented as. 553 void truncateToMinimalBitwidths(); 554 555 /// Insert the new loop to the loop hierarchy and pass manager 556 /// and update the analysis passes. 557 void updateAnalysis(); 558 559 /// Create a broadcast instruction. This method generates a broadcast 560 /// instruction (shuffle) for loop invariant values and for the induction 561 /// value. If this is the induction variable then we extend it to N, N+1, ... 562 /// this is needed because each iteration in the loop corresponds to a SIMD 563 /// element. 564 virtual Value *getBroadcastInstrs(Value *V); 565 566 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 567 /// to each vector element of Val. The sequence starts at StartIndex. 568 /// \p Opcode is relevant for FP induction variable. 569 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 570 Instruction::BinaryOps Opcode = 571 Instruction::BinaryOpsEnd); 572 573 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 574 /// variable on which to base the steps, \p Step is the size of the step, and 575 /// \p EntryVal is the value from the original loop that maps to the steps. 576 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 577 /// can be a truncate instruction). 578 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 579 const InductionDescriptor &ID); 580 581 /// Create a vector induction phi node based on an existing scalar one. \p 582 /// EntryVal is the value from the original loop that maps to the vector phi 583 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 584 /// truncate instruction, instead of widening the original IV, we widen a 585 /// version of the IV truncated to \p EntryVal's type. 586 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 587 Value *Step, Instruction *EntryVal); 588 589 /// Returns true if an instruction \p I should be scalarized instead of 590 /// vectorized for the chosen vectorization factor. 591 bool shouldScalarizeInstruction(Instruction *I) const; 592 593 /// Returns true if we should generate a scalar version of \p IV. 594 bool needsScalarInduction(Instruction *IV) const; 595 596 /// If there is a cast involved in the induction variable \p ID, which should 597 /// be ignored in the vectorized loop body, this function records the 598 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 599 /// cast. We had already proved that the casted Phi is equal to the uncasted 600 /// Phi in the vectorized loop (under a runtime guard), and therefore 601 /// there is no need to vectorize the cast - the same value can be used in the 602 /// vector loop for both the Phi and the cast. 603 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 604 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 605 void recordVectorLoopValueForInductionCast (const InductionDescriptor &ID, 606 Value *VectorLoopValue, 607 unsigned Part, 608 unsigned Lane = UINT_MAX); 609 610 /// Generate a shuffle sequence that will reverse the vector Vec. 611 virtual Value *reverseVector(Value *Vec); 612 613 /// Returns (and creates if needed) the original loop trip count. 614 Value *getOrCreateTripCount(Loop *NewLoop); 615 616 /// Returns (and creates if needed) the trip count of the widened loop. 617 Value *getOrCreateVectorTripCount(Loop *NewLoop); 618 619 /// Returns a bitcasted value to the requested vector type. 620 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 621 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 622 const DataLayout &DL); 623 624 /// Emit a bypass check to see if the vector trip count is zero, including if 625 /// it overflows. 626 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 627 628 /// Emit a bypass check to see if all of the SCEV assumptions we've 629 /// had to make are correct. 630 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Emit bypass checks to check any memory assumptions we may have made. 633 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 634 635 /// Add additional metadata to \p To that was not present on \p Orig. 636 /// 637 /// Currently this is used to add the noalias annotations based on the 638 /// inserted memchecks. Use this for instructions that are *cloned* into the 639 /// vector loop. 640 void addNewMetadata(Instruction *To, const Instruction *Orig); 641 642 /// Add metadata from one instruction to another. 643 /// 644 /// This includes both the original MDs from \p From and additional ones (\see 645 /// addNewMetadata). Use this for *newly created* instructions in the vector 646 /// loop. 647 void addMetadata(Instruction *To, Instruction *From); 648 649 /// \brief Similar to the previous function but it adds the metadata to a 650 /// vector of instructions. 651 void addMetadata(ArrayRef<Value *> To, Instruction *From); 652 653 /// The original loop. 654 Loop *OrigLoop; 655 656 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 657 /// dynamic knowledge to simplify SCEV expressions and converts them to a 658 /// more usable form. 659 PredicatedScalarEvolution &PSE; 660 661 /// Loop Info. 662 LoopInfo *LI; 663 664 /// Dominator Tree. 665 DominatorTree *DT; 666 667 /// Alias Analysis. 668 AliasAnalysis *AA; 669 670 /// Target Library Info. 671 const TargetLibraryInfo *TLI; 672 673 /// Target Transform Info. 674 const TargetTransformInfo *TTI; 675 676 /// Assumption Cache. 677 AssumptionCache *AC; 678 679 /// Interface to emit optimization remarks. 680 OptimizationRemarkEmitter *ORE; 681 682 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 683 /// used. 684 /// 685 /// This is currently only used to add no-alias metadata based on the 686 /// memchecks. The actually versioning is performed manually. 687 std::unique_ptr<LoopVersioning> LVer; 688 689 /// The vectorization SIMD factor to use. Each vector will have this many 690 /// vector elements. 691 unsigned VF; 692 693 /// The vectorization unroll factor to use. Each scalar is vectorized to this 694 /// many different vector instructions. 695 unsigned UF; 696 697 /// The builder that we use 698 IRBuilder<> Builder; 699 700 // --- Vectorization state --- 701 702 /// The vector-loop preheader. 703 BasicBlock *LoopVectorPreHeader; 704 705 /// The scalar-loop preheader. 706 BasicBlock *LoopScalarPreHeader; 707 708 /// Middle Block between the vector and the scalar. 709 BasicBlock *LoopMiddleBlock; 710 711 /// The ExitBlock of the scalar loop. 712 BasicBlock *LoopExitBlock; 713 714 /// The vector loop body. 715 BasicBlock *LoopVectorBody; 716 717 /// The scalar loop body. 718 BasicBlock *LoopScalarBody; 719 720 /// A list of all bypass blocks. The first block is the entry of the loop. 721 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 722 723 /// The new Induction variable which was added to the new block. 724 PHINode *Induction = nullptr; 725 726 /// The induction variable of the old basic block. 727 PHINode *OldInduction = nullptr; 728 729 /// Maps values from the original loop to their corresponding values in the 730 /// vectorized loop. A key value can map to either vector values, scalar 731 /// values or both kinds of values, depending on whether the key was 732 /// vectorized and scalarized. 733 VectorizerValueMap VectorLoopValueMap; 734 735 /// Store instructions that were predicated. 736 SmallVector<Instruction *, 4> PredicatedInstructions; 737 738 /// Trip count of the original loop. 739 Value *TripCount = nullptr; 740 741 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 742 Value *VectorTripCount = nullptr; 743 744 /// The legality analysis. 745 LoopVectorizationLegality *Legal; 746 747 /// The profitablity analysis. 748 LoopVectorizationCostModel *Cost; 749 750 // Record whether runtime checks are added. 751 bool AddedSafetyChecks = false; 752 753 // Holds the end values for each induction variable. We save the end values 754 // so we can later fix-up the external users of the induction variables. 755 DenseMap<PHINode *, Value *> IVEndValues; 756 }; 757 758 class InnerLoopUnroller : public InnerLoopVectorizer { 759 public: 760 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 761 LoopInfo *LI, DominatorTree *DT, 762 const TargetLibraryInfo *TLI, 763 const TargetTransformInfo *TTI, AssumptionCache *AC, 764 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 765 LoopVectorizationLegality *LVL, 766 LoopVectorizationCostModel *CM) 767 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 768 UnrollFactor, LVL, CM) {} 769 770 private: 771 Value *getBroadcastInstrs(Value *V) override; 772 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 773 Instruction::BinaryOps Opcode = 774 Instruction::BinaryOpsEnd) override; 775 Value *reverseVector(Value *Vec) override; 776 }; 777 778 } // end namespace llvm 779 780 /// \brief Look for a meaningful debug location on the instruction or it's 781 /// operands. 782 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 783 if (!I) 784 return I; 785 786 DebugLoc Empty; 787 if (I->getDebugLoc() != Empty) 788 return I; 789 790 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 791 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 792 if (OpInst->getDebugLoc() != Empty) 793 return OpInst; 794 } 795 796 return I; 797 } 798 799 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 800 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 801 const DILocation *DIL = Inst->getDebugLoc(); 802 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 803 !isa<DbgInfoIntrinsic>(Inst)) 804 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 805 else 806 B.SetCurrentDebugLocation(DIL); 807 } else 808 B.SetCurrentDebugLocation(DebugLoc()); 809 } 810 811 #ifndef NDEBUG 812 /// \return string containing a file name and a line # for the given loop. 813 static std::string getDebugLocString(const Loop *L) { 814 std::string Result; 815 if (L) { 816 raw_string_ostream OS(Result); 817 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 818 LoopDbgLoc.print(OS); 819 else 820 // Just print the module name. 821 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 822 OS.flush(); 823 } 824 return Result; 825 } 826 #endif 827 828 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 829 const Instruction *Orig) { 830 // If the loop was versioned with memchecks, add the corresponding no-alias 831 // metadata. 832 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 833 LVer->annotateInstWithNoAlias(To, Orig); 834 } 835 836 void InnerLoopVectorizer::addMetadata(Instruction *To, 837 Instruction *From) { 838 propagateMetadata(To, From); 839 addNewMetadata(To, From); 840 } 841 842 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 843 Instruction *From) { 844 for (Value *V : To) { 845 if (Instruction *I = dyn_cast<Instruction>(V)) 846 addMetadata(I, From); 847 } 848 } 849 850 namespace llvm { 851 852 /// \brief The group of interleaved loads/stores sharing the same stride and 853 /// close to each other. 854 /// 855 /// Each member in this group has an index starting from 0, and the largest 856 /// index should be less than interleaved factor, which is equal to the absolute 857 /// value of the access's stride. 858 /// 859 /// E.g. An interleaved load group of factor 4: 860 /// for (unsigned i = 0; i < 1024; i+=4) { 861 /// a = A[i]; // Member of index 0 862 /// b = A[i+1]; // Member of index 1 863 /// d = A[i+3]; // Member of index 3 864 /// ... 865 /// } 866 /// 867 /// An interleaved store group of factor 4: 868 /// for (unsigned i = 0; i < 1024; i+=4) { 869 /// ... 870 /// A[i] = a; // Member of index 0 871 /// A[i+1] = b; // Member of index 1 872 /// A[i+2] = c; // Member of index 2 873 /// A[i+3] = d; // Member of index 3 874 /// } 875 /// 876 /// Note: the interleaved load group could have gaps (missing members), but 877 /// the interleaved store group doesn't allow gaps. 878 class InterleaveGroup { 879 public: 880 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 881 : Align(Align), InsertPos(Instr) { 882 assert(Align && "The alignment should be non-zero"); 883 884 Factor = std::abs(Stride); 885 assert(Factor > 1 && "Invalid interleave factor"); 886 887 Reverse = Stride < 0; 888 Members[0] = Instr; 889 } 890 891 bool isReverse() const { return Reverse; } 892 unsigned getFactor() const { return Factor; } 893 unsigned getAlignment() const { return Align; } 894 unsigned getNumMembers() const { return Members.size(); } 895 896 /// \brief Try to insert a new member \p Instr with index \p Index and 897 /// alignment \p NewAlign. The index is related to the leader and it could be 898 /// negative if it is the new leader. 899 /// 900 /// \returns false if the instruction doesn't belong to the group. 901 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 902 assert(NewAlign && "The new member's alignment should be non-zero"); 903 904 int Key = Index + SmallestKey; 905 906 // Skip if there is already a member with the same index. 907 if (Members.count(Key)) 908 return false; 909 910 if (Key > LargestKey) { 911 // The largest index is always less than the interleave factor. 912 if (Index >= static_cast<int>(Factor)) 913 return false; 914 915 LargestKey = Key; 916 } else if (Key < SmallestKey) { 917 // The largest index is always less than the interleave factor. 918 if (LargestKey - Key >= static_cast<int>(Factor)) 919 return false; 920 921 SmallestKey = Key; 922 } 923 924 // It's always safe to select the minimum alignment. 925 Align = std::min(Align, NewAlign); 926 Members[Key] = Instr; 927 return true; 928 } 929 930 /// \brief Get the member with the given index \p Index 931 /// 932 /// \returns nullptr if contains no such member. 933 Instruction *getMember(unsigned Index) const { 934 int Key = SmallestKey + Index; 935 if (!Members.count(Key)) 936 return nullptr; 937 938 return Members.find(Key)->second; 939 } 940 941 /// \brief Get the index for the given member. Unlike the key in the member 942 /// map, the index starts from 0. 943 unsigned getIndex(Instruction *Instr) const { 944 for (auto I : Members) 945 if (I.second == Instr) 946 return I.first - SmallestKey; 947 948 llvm_unreachable("InterleaveGroup contains no such member"); 949 } 950 951 Instruction *getInsertPos() const { return InsertPos; } 952 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 953 954 /// Add metadata (e.g. alias info) from the instructions in this group to \p 955 /// NewInst. 956 /// 957 /// FIXME: this function currently does not add noalias metadata a'la 958 /// addNewMedata. To do that we need to compute the intersection of the 959 /// noalias info from all members. 960 void addMetadata(Instruction *NewInst) const { 961 SmallVector<Value *, 4> VL; 962 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 963 [](std::pair<int, Instruction *> p) { return p.second; }); 964 propagateMetadata(NewInst, VL); 965 } 966 967 private: 968 unsigned Factor; // Interleave Factor. 969 bool Reverse; 970 unsigned Align; 971 DenseMap<int, Instruction *> Members; 972 int SmallestKey = 0; 973 int LargestKey = 0; 974 975 // To avoid breaking dependences, vectorized instructions of an interleave 976 // group should be inserted at either the first load or the last store in 977 // program order. 978 // 979 // E.g. %even = load i32 // Insert Position 980 // %add = add i32 %even // Use of %even 981 // %odd = load i32 982 // 983 // store i32 %even 984 // %odd = add i32 // Def of %odd 985 // store i32 %odd // Insert Position 986 Instruction *InsertPos; 987 }; 988 } // end namespace llvm 989 990 namespace { 991 992 /// \brief Drive the analysis of interleaved memory accesses in the loop. 993 /// 994 /// Use this class to analyze interleaved accesses only when we can vectorize 995 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 996 /// on interleaved accesses is unsafe. 997 /// 998 /// The analysis collects interleave groups and records the relationships 999 /// between the member and the group in a map. 1000 class InterleavedAccessInfo { 1001 public: 1002 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1003 DominatorTree *DT, LoopInfo *LI) 1004 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 1005 1006 ~InterleavedAccessInfo() { 1007 SmallSet<InterleaveGroup *, 4> DelSet; 1008 // Avoid releasing a pointer twice. 1009 for (auto &I : InterleaveGroupMap) 1010 DelSet.insert(I.second); 1011 for (auto *Ptr : DelSet) 1012 delete Ptr; 1013 } 1014 1015 /// \brief Analyze the interleaved accesses and collect them in interleave 1016 /// groups. Substitute symbolic strides using \p Strides. 1017 void analyzeInterleaving(const ValueToValueMap &Strides); 1018 1019 /// \brief Check if \p Instr belongs to any interleave group. 1020 bool isInterleaved(Instruction *Instr) const { 1021 return InterleaveGroupMap.count(Instr); 1022 } 1023 1024 /// \brief Get the interleave group that \p Instr belongs to. 1025 /// 1026 /// \returns nullptr if doesn't have such group. 1027 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1028 if (InterleaveGroupMap.count(Instr)) 1029 return InterleaveGroupMap.find(Instr)->second; 1030 return nullptr; 1031 } 1032 1033 /// \brief Returns true if an interleaved group that may access memory 1034 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1035 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1036 1037 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1038 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1039 1040 private: 1041 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1042 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1043 /// The interleaved access analysis can also add new predicates (for example 1044 /// by versioning strides of pointers). 1045 PredicatedScalarEvolution &PSE; 1046 1047 Loop *TheLoop; 1048 DominatorTree *DT; 1049 LoopInfo *LI; 1050 const LoopAccessInfo *LAI = nullptr; 1051 1052 /// True if the loop may contain non-reversed interleaved groups with 1053 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1054 /// out-of-bounds by executing at least one scalar epilogue iteration. 1055 bool RequiresScalarEpilogue = false; 1056 1057 /// Holds the relationships between the members and the interleave group. 1058 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1059 1060 /// Holds dependences among the memory accesses in the loop. It maps a source 1061 /// access to a set of dependent sink accesses. 1062 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1063 1064 /// \brief The descriptor for a strided memory access. 1065 struct StrideDescriptor { 1066 StrideDescriptor() = default; 1067 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1068 unsigned Align) 1069 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1070 1071 // The access's stride. It is negative for a reverse access. 1072 int64_t Stride = 0; 1073 1074 // The scalar expression of this access. 1075 const SCEV *Scev = nullptr; 1076 1077 // The size of the memory object. 1078 uint64_t Size = 0; 1079 1080 // The alignment of this access. 1081 unsigned Align = 0; 1082 }; 1083 1084 /// \brief A type for holding instructions and their stride descriptors. 1085 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1086 1087 /// \brief Create a new interleave group with the given instruction \p Instr, 1088 /// stride \p Stride and alignment \p Align. 1089 /// 1090 /// \returns the newly created interleave group. 1091 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1092 unsigned Align) { 1093 assert(!InterleaveGroupMap.count(Instr) && 1094 "Already in an interleaved access group"); 1095 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1096 return InterleaveGroupMap[Instr]; 1097 } 1098 1099 /// \brief Release the group and remove all the relationships. 1100 void releaseGroup(InterleaveGroup *Group) { 1101 for (unsigned i = 0; i < Group->getFactor(); i++) 1102 if (Instruction *Member = Group->getMember(i)) 1103 InterleaveGroupMap.erase(Member); 1104 1105 delete Group; 1106 } 1107 1108 /// \brief Collect all the accesses with a constant stride in program order. 1109 void collectConstStrideAccesses( 1110 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1111 const ValueToValueMap &Strides); 1112 1113 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1114 static bool isStrided(int Stride) { 1115 unsigned Factor = std::abs(Stride); 1116 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1117 } 1118 1119 /// \brief Returns true if \p BB is a predicated block. 1120 bool isPredicated(BasicBlock *BB) const { 1121 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1122 } 1123 1124 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1125 bool areDependencesValid() const { 1126 return LAI && LAI->getDepChecker().getDependences(); 1127 } 1128 1129 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1130 /// necessary, when constructing interleaved groups. 1131 /// 1132 /// \p A must precede \p B in program order. We return false if reordering is 1133 /// not necessary or is prevented because \p A and \p B may be dependent. 1134 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1135 StrideEntry *B) const { 1136 // Code motion for interleaved accesses can potentially hoist strided loads 1137 // and sink strided stores. The code below checks the legality of the 1138 // following two conditions: 1139 // 1140 // 1. Potentially moving a strided load (B) before any store (A) that 1141 // precedes B, or 1142 // 1143 // 2. Potentially moving a strided store (A) after any load or store (B) 1144 // that A precedes. 1145 // 1146 // It's legal to reorder A and B if we know there isn't a dependence from A 1147 // to B. Note that this determination is conservative since some 1148 // dependences could potentially be reordered safely. 1149 1150 // A is potentially the source of a dependence. 1151 auto *Src = A->first; 1152 auto SrcDes = A->second; 1153 1154 // B is potentially the sink of a dependence. 1155 auto *Sink = B->first; 1156 auto SinkDes = B->second; 1157 1158 // Code motion for interleaved accesses can't violate WAR dependences. 1159 // Thus, reordering is legal if the source isn't a write. 1160 if (!Src->mayWriteToMemory()) 1161 return true; 1162 1163 // At least one of the accesses must be strided. 1164 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1165 return true; 1166 1167 // If dependence information is not available from LoopAccessInfo, 1168 // conservatively assume the instructions can't be reordered. 1169 if (!areDependencesValid()) 1170 return false; 1171 1172 // If we know there is a dependence from source to sink, assume the 1173 // instructions can't be reordered. Otherwise, reordering is legal. 1174 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1175 } 1176 1177 /// \brief Collect the dependences from LoopAccessInfo. 1178 /// 1179 /// We process the dependences once during the interleaved access analysis to 1180 /// enable constant-time dependence queries. 1181 void collectDependences() { 1182 if (!areDependencesValid()) 1183 return; 1184 auto *Deps = LAI->getDepChecker().getDependences(); 1185 for (auto Dep : *Deps) 1186 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1187 } 1188 }; 1189 1190 /// Utility class for getting and setting loop vectorizer hints in the form 1191 /// of loop metadata. 1192 /// This class keeps a number of loop annotations locally (as member variables) 1193 /// and can, upon request, write them back as metadata on the loop. It will 1194 /// initially scan the loop for existing metadata, and will update the local 1195 /// values based on information in the loop. 1196 /// We cannot write all values to metadata, as the mere presence of some info, 1197 /// for example 'force', means a decision has been made. So, we need to be 1198 /// careful NOT to add them if the user hasn't specifically asked so. 1199 class LoopVectorizeHints { 1200 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1201 1202 /// Hint - associates name and validation with the hint value. 1203 struct Hint { 1204 const char *Name; 1205 unsigned Value; // This may have to change for non-numeric values. 1206 HintKind Kind; 1207 1208 Hint(const char *Name, unsigned Value, HintKind Kind) 1209 : Name(Name), Value(Value), Kind(Kind) {} 1210 1211 bool validate(unsigned Val) { 1212 switch (Kind) { 1213 case HK_WIDTH: 1214 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1215 case HK_UNROLL: 1216 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1217 case HK_FORCE: 1218 return (Val <= 1); 1219 case HK_ISVECTORIZED: 1220 return (Val==0 || Val==1); 1221 } 1222 return false; 1223 } 1224 }; 1225 1226 /// Vectorization width. 1227 Hint Width; 1228 1229 /// Vectorization interleave factor. 1230 Hint Interleave; 1231 1232 /// Vectorization forced 1233 Hint Force; 1234 1235 /// Already Vectorized 1236 Hint IsVectorized; 1237 1238 /// Return the loop metadata prefix. 1239 static StringRef Prefix() { return "llvm.loop."; } 1240 1241 /// True if there is any unsafe math in the loop. 1242 bool PotentiallyUnsafe = false; 1243 1244 public: 1245 enum ForceKind { 1246 FK_Undefined = -1, ///< Not selected. 1247 FK_Disabled = 0, ///< Forcing disabled. 1248 FK_Enabled = 1, ///< Forcing enabled. 1249 }; 1250 1251 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1252 OptimizationRemarkEmitter &ORE) 1253 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1254 HK_WIDTH), 1255 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1256 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1257 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1258 // Populate values with existing loop metadata. 1259 getHintsFromMetadata(); 1260 1261 // force-vector-interleave overrides DisableInterleaving. 1262 if (VectorizerParams::isInterleaveForced()) 1263 Interleave.Value = VectorizerParams::VectorizationInterleave; 1264 1265 if (IsVectorized.Value != 1) 1266 // If the vectorization width and interleaving count are both 1 then 1267 // consider the loop to have been already vectorized because there's 1268 // nothing more that we can do. 1269 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1270 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1271 << "LV: Interleaving disabled by the pass manager\n"); 1272 } 1273 1274 /// Mark the loop L as already vectorized by setting the width to 1. 1275 void setAlreadyVectorized() { 1276 IsVectorized.Value = 1; 1277 Hint Hints[] = {IsVectorized}; 1278 writeHintsToMetadata(Hints); 1279 } 1280 1281 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1282 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1283 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1284 emitRemarkWithHints(); 1285 return false; 1286 } 1287 1288 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1289 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1290 emitRemarkWithHints(); 1291 return false; 1292 } 1293 1294 if (getIsVectorized() == 1) { 1295 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1296 // FIXME: Add interleave.disable metadata. This will allow 1297 // vectorize.disable to be used without disabling the pass and errors 1298 // to differentiate between disabled vectorization and a width of 1. 1299 ORE.emit([&]() { 1300 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1301 "AllDisabled", L->getStartLoc(), 1302 L->getHeader()) 1303 << "loop not vectorized: vectorization and interleaving are " 1304 "explicitly disabled, or the loop has already been " 1305 "vectorized"; 1306 }); 1307 return false; 1308 } 1309 1310 return true; 1311 } 1312 1313 /// Dumps all the hint information. 1314 void emitRemarkWithHints() const { 1315 using namespace ore; 1316 1317 ORE.emit([&]() { 1318 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1319 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1320 TheLoop->getStartLoc(), 1321 TheLoop->getHeader()) 1322 << "loop not vectorized: vectorization is explicitly disabled"; 1323 else { 1324 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1325 TheLoop->getStartLoc(), 1326 TheLoop->getHeader()); 1327 R << "loop not vectorized"; 1328 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1329 R << " (Force=" << NV("Force", true); 1330 if (Width.Value != 0) 1331 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1332 if (Interleave.Value != 0) 1333 R << ", Interleave Count=" 1334 << NV("InterleaveCount", Interleave.Value); 1335 R << ")"; 1336 } 1337 return R; 1338 } 1339 }); 1340 } 1341 1342 unsigned getWidth() const { return Width.Value; } 1343 unsigned getInterleave() const { return Interleave.Value; } 1344 unsigned getIsVectorized() const { return IsVectorized.Value; } 1345 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1346 1347 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1348 /// pass name to force the frontend to print the diagnostic. 1349 const char *vectorizeAnalysisPassName() const { 1350 if (getWidth() == 1) 1351 return LV_NAME; 1352 if (getForce() == LoopVectorizeHints::FK_Disabled) 1353 return LV_NAME; 1354 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1355 return LV_NAME; 1356 return OptimizationRemarkAnalysis::AlwaysPrint; 1357 } 1358 1359 bool allowReordering() const { 1360 // When enabling loop hints are provided we allow the vectorizer to change 1361 // the order of operations that is given by the scalar loop. This is not 1362 // enabled by default because can be unsafe or inefficient. For example, 1363 // reordering floating-point operations will change the way round-off 1364 // error accumulates in the loop. 1365 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1366 } 1367 1368 bool isPotentiallyUnsafe() const { 1369 // Avoid FP vectorization if the target is unsure about proper support. 1370 // This may be related to the SIMD unit in the target not handling 1371 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1372 // Otherwise, a sequence of vectorized loops, even without reduction, 1373 // could lead to different end results on the destination vectors. 1374 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1375 } 1376 1377 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1378 1379 private: 1380 /// Find hints specified in the loop metadata and update local values. 1381 void getHintsFromMetadata() { 1382 MDNode *LoopID = TheLoop->getLoopID(); 1383 if (!LoopID) 1384 return; 1385 1386 // First operand should refer to the loop id itself. 1387 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1388 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1389 1390 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1391 const MDString *S = nullptr; 1392 SmallVector<Metadata *, 4> Args; 1393 1394 // The expected hint is either a MDString or a MDNode with the first 1395 // operand a MDString. 1396 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1397 if (!MD || MD->getNumOperands() == 0) 1398 continue; 1399 S = dyn_cast<MDString>(MD->getOperand(0)); 1400 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1401 Args.push_back(MD->getOperand(i)); 1402 } else { 1403 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1404 assert(Args.size() == 0 && "too many arguments for MDString"); 1405 } 1406 1407 if (!S) 1408 continue; 1409 1410 // Check if the hint starts with the loop metadata prefix. 1411 StringRef Name = S->getString(); 1412 if (Args.size() == 1) 1413 setHint(Name, Args[0]); 1414 } 1415 } 1416 1417 /// Checks string hint with one operand and set value if valid. 1418 void setHint(StringRef Name, Metadata *Arg) { 1419 if (!Name.startswith(Prefix())) 1420 return; 1421 Name = Name.substr(Prefix().size(), StringRef::npos); 1422 1423 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1424 if (!C) 1425 return; 1426 unsigned Val = C->getZExtValue(); 1427 1428 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1429 for (auto H : Hints) { 1430 if (Name == H->Name) { 1431 if (H->validate(Val)) 1432 H->Value = Val; 1433 else 1434 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1435 break; 1436 } 1437 } 1438 } 1439 1440 /// Create a new hint from name / value pair. 1441 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1442 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1443 Metadata *MDs[] = {MDString::get(Context, Name), 1444 ConstantAsMetadata::get( 1445 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1446 return MDNode::get(Context, MDs); 1447 } 1448 1449 /// Matches metadata with hint name. 1450 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1451 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1452 if (!Name) 1453 return false; 1454 1455 for (auto H : HintTypes) 1456 if (Name->getString().endswith(H.Name)) 1457 return true; 1458 return false; 1459 } 1460 1461 /// Sets current hints into loop metadata, keeping other values intact. 1462 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1463 if (HintTypes.empty()) 1464 return; 1465 1466 // Reserve the first element to LoopID (see below). 1467 SmallVector<Metadata *, 4> MDs(1); 1468 // If the loop already has metadata, then ignore the existing operands. 1469 MDNode *LoopID = TheLoop->getLoopID(); 1470 if (LoopID) { 1471 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1472 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1473 // If node in update list, ignore old value. 1474 if (!matchesHintMetadataName(Node, HintTypes)) 1475 MDs.push_back(Node); 1476 } 1477 } 1478 1479 // Now, add the missing hints. 1480 for (auto H : HintTypes) 1481 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1482 1483 // Replace current metadata node with new one. 1484 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1485 MDNode *NewLoopID = MDNode::get(Context, MDs); 1486 // Set operand 0 to refer to the loop id itself. 1487 NewLoopID->replaceOperandWith(0, NewLoopID); 1488 1489 TheLoop->setLoopID(NewLoopID); 1490 } 1491 1492 /// The loop these hints belong to. 1493 const Loop *TheLoop; 1494 1495 /// Interface to emit optimization remarks. 1496 OptimizationRemarkEmitter &ORE; 1497 }; 1498 1499 } // end anonymous namespace 1500 1501 static void emitMissedWarning(Function *F, Loop *L, 1502 const LoopVectorizeHints &LH, 1503 OptimizationRemarkEmitter *ORE) { 1504 LH.emitRemarkWithHints(); 1505 1506 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1507 if (LH.getWidth() != 1) 1508 ORE->emit(DiagnosticInfoOptimizationFailure( 1509 DEBUG_TYPE, "FailedRequestedVectorization", 1510 L->getStartLoc(), L->getHeader()) 1511 << "loop not vectorized: " 1512 << "failed explicitly specified loop vectorization"); 1513 else if (LH.getInterleave() != 1) 1514 ORE->emit(DiagnosticInfoOptimizationFailure( 1515 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1516 L->getHeader()) 1517 << "loop not interleaved: " 1518 << "failed explicitly specified loop interleaving"); 1519 } 1520 } 1521 1522 namespace { 1523 1524 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1525 /// to what vectorization factor. 1526 /// This class does not look at the profitability of vectorization, only the 1527 /// legality. This class has two main kinds of checks: 1528 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1529 /// will change the order of memory accesses in a way that will change the 1530 /// correctness of the program. 1531 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1532 /// checks for a number of different conditions, such as the availability of a 1533 /// single induction variable, that all types are supported and vectorize-able, 1534 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1535 /// This class is also used by InnerLoopVectorizer for identifying 1536 /// induction variable and the different reduction variables. 1537 class LoopVectorizationLegality { 1538 public: 1539 LoopVectorizationLegality( 1540 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1541 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1542 const TargetTransformInfo *TTI, 1543 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1544 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1545 LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC) 1546 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1547 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H), 1548 DB(DB), AC(AC) {} 1549 1550 /// ReductionList contains the reduction descriptors for all 1551 /// of the reductions that were found in the loop. 1552 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1553 1554 /// InductionList saves induction variables and maps them to the 1555 /// induction descriptor. 1556 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1557 1558 /// RecurrenceSet contains the phi nodes that are recurrences other than 1559 /// inductions and reductions. 1560 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1561 1562 /// Returns true if it is legal to vectorize this loop. 1563 /// This does not mean that it is profitable to vectorize this 1564 /// loop, only that it is legal to do so. 1565 bool canVectorize(); 1566 1567 /// Returns the primary induction variable. 1568 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1569 1570 /// Returns the reduction variables found in the loop. 1571 ReductionList *getReductionVars() { return &Reductions; } 1572 1573 /// Returns the induction variables found in the loop. 1574 InductionList *getInductionVars() { return &Inductions; } 1575 1576 /// Return the first-order recurrences found in the loop. 1577 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1578 1579 /// Return the set of instructions to sink to handle first-order recurrences. 1580 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1581 1582 /// Returns the widest induction type. 1583 Type *getWidestInductionType() { return WidestIndTy; } 1584 1585 /// Returns True if V is a Phi node of an induction variable in this loop. 1586 bool isInductionPhi(const Value *V); 1587 1588 /// Returns True if V is a cast that is part of an induction def-use chain, 1589 /// and had been proven to be redundant under a runtime guard (in other 1590 /// words, the cast has the same SCEV expression as the induction phi). 1591 bool isCastedInductionVariable(const Value *V); 1592 1593 /// Returns True if V can be considered as an induction variable in this 1594 /// loop. V can be the induction phi, or some redundant cast in the def-use 1595 /// chain of the inducion phi. 1596 bool isInductionVariable(const Value *V); 1597 1598 /// Returns True if PN is a reduction variable in this loop. 1599 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1600 1601 /// Returns True if Phi is a first-order recurrence in this loop. 1602 bool isFirstOrderRecurrence(const PHINode *Phi); 1603 1604 /// Return true if the block BB needs to be predicated in order for the loop 1605 /// to be vectorized. 1606 bool blockNeedsPredication(BasicBlock *BB); 1607 1608 /// Check if this pointer is consecutive when vectorizing. This happens 1609 /// when the last index of the GEP is the induction variable, or that the 1610 /// pointer itself is an induction variable. 1611 /// This check allows us to vectorize A[idx] into a wide load/store. 1612 /// Returns: 1613 /// 0 - Stride is unknown or non-consecutive. 1614 /// 1 - Address is consecutive. 1615 /// -1 - Address is consecutive, and decreasing. 1616 /// NOTE: This method must only be used before modifying the original scalar 1617 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1618 int isConsecutivePtr(Value *Ptr); 1619 1620 /// Returns true if the value V is uniform within the loop. 1621 bool isUniform(Value *V); 1622 1623 /// Returns the information that we collected about runtime memory check. 1624 const RuntimePointerChecking *getRuntimePointerChecking() const { 1625 return LAI->getRuntimePointerChecking(); 1626 } 1627 1628 const LoopAccessInfo *getLAI() const { return LAI; } 1629 1630 /// \brief Check if \p Instr belongs to any interleaved access group. 1631 bool isAccessInterleaved(Instruction *Instr) { 1632 return InterleaveInfo.isInterleaved(Instr); 1633 } 1634 1635 /// \brief Get the interleaved access group that \p Instr belongs to. 1636 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1637 return InterleaveInfo.getInterleaveGroup(Instr); 1638 } 1639 1640 /// \brief Returns true if an interleaved group requires a scalar iteration 1641 /// to handle accesses with gaps. 1642 bool requiresScalarEpilogue() const { 1643 return InterleaveInfo.requiresScalarEpilogue(); 1644 } 1645 1646 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1647 1648 uint64_t getMaxSafeRegisterWidth() const { 1649 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1650 } 1651 1652 bool hasStride(Value *V) { return LAI->hasStride(V); } 1653 1654 /// Returns true if the target machine supports masked store operation 1655 /// for the given \p DataType and kind of access to \p Ptr. 1656 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1657 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1658 } 1659 1660 /// Returns true if the target machine supports masked load operation 1661 /// for the given \p DataType and kind of access to \p Ptr. 1662 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1663 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1664 } 1665 1666 /// Returns true if the target machine supports masked scatter operation 1667 /// for the given \p DataType. 1668 bool isLegalMaskedScatter(Type *DataType) { 1669 return TTI->isLegalMaskedScatter(DataType); 1670 } 1671 1672 /// Returns true if the target machine supports masked gather operation 1673 /// for the given \p DataType. 1674 bool isLegalMaskedGather(Type *DataType) { 1675 return TTI->isLegalMaskedGather(DataType); 1676 } 1677 1678 /// Returns true if the target machine can represent \p V as a masked gather 1679 /// or scatter operation. 1680 bool isLegalGatherOrScatter(Value *V) { 1681 auto *LI = dyn_cast<LoadInst>(V); 1682 auto *SI = dyn_cast<StoreInst>(V); 1683 if (!LI && !SI) 1684 return false; 1685 auto *Ptr = getPointerOperand(V); 1686 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1687 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1688 } 1689 1690 /// Returns true if vector representation of the instruction \p I 1691 /// requires mask. 1692 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1693 1694 unsigned getNumStores() const { return LAI->getNumStores(); } 1695 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1696 unsigned getNumPredStores() const { return NumPredStores; } 1697 1698 /// Returns true if \p I is an instruction that will be scalarized with 1699 /// predication. Such instructions include conditional stores and 1700 /// instructions that may divide by zero. 1701 bool isScalarWithPredication(Instruction *I); 1702 1703 /// Returns true if \p I is a memory instruction with consecutive memory 1704 /// access that can be widened. 1705 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1706 1707 // Returns true if the NoNaN attribute is set on the function. 1708 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1709 1710 private: 1711 /// Check if a single basic block loop is vectorizable. 1712 /// At this point we know that this is a loop with a constant trip count 1713 /// and we only need to check individual instructions. 1714 bool canVectorizeInstrs(); 1715 1716 /// When we vectorize loops we may change the order in which 1717 /// we read and write from memory. This method checks if it is 1718 /// legal to vectorize the code, considering only memory constrains. 1719 /// Returns true if the loop is vectorizable 1720 bool canVectorizeMemory(); 1721 1722 /// Return true if we can vectorize this loop using the IF-conversion 1723 /// transformation. 1724 bool canVectorizeWithIfConvert(); 1725 1726 /// Return true if all of the instructions in the block can be speculatively 1727 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1728 /// and we know that we can read from them without segfault. 1729 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1730 1731 /// Updates the vectorization state by adding \p Phi to the inductions list. 1732 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1733 /// better choice for the main induction than the existing one. 1734 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1735 SmallPtrSetImpl<Value *> &AllowedExit); 1736 1737 /// Create an analysis remark that explains why vectorization failed 1738 /// 1739 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1740 /// an instruction that prevents vectorization. Otherwise the loop is used 1741 /// for the location of the remark. \return the remark object that can be 1742 /// streamed to. 1743 OptimizationRemarkAnalysis 1744 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1745 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1746 RemarkName, TheLoop, I); 1747 } 1748 1749 /// \brief If an access has a symbolic strides, this maps the pointer value to 1750 /// the stride symbol. 1751 const ValueToValueMap *getSymbolicStrides() { 1752 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1753 // it's collected. This happens from canVectorizeWithIfConvert, when the 1754 // pointer is checked to reference consecutive elements suitable for a 1755 // masked access. 1756 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1757 } 1758 1759 unsigned NumPredStores = 0; 1760 1761 /// The loop that we evaluate. 1762 Loop *TheLoop; 1763 1764 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1765 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1766 /// of existing SCEV assumptions. The analysis will also add a minimal set 1767 /// of new predicates if this is required to enable vectorization and 1768 /// unrolling. 1769 PredicatedScalarEvolution &PSE; 1770 1771 /// Target Library Info. 1772 TargetLibraryInfo *TLI; 1773 1774 /// Target Transform Info 1775 const TargetTransformInfo *TTI; 1776 1777 /// Dominator Tree. 1778 DominatorTree *DT; 1779 1780 // LoopAccess analysis. 1781 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1782 1783 // And the loop-accesses info corresponding to this loop. This pointer is 1784 // null until canVectorizeMemory sets it up. 1785 const LoopAccessInfo *LAI = nullptr; 1786 1787 /// Interface to emit optimization remarks. 1788 OptimizationRemarkEmitter *ORE; 1789 1790 /// The interleave access information contains groups of interleaved accesses 1791 /// with the same stride and close to each other. 1792 InterleavedAccessInfo InterleaveInfo; 1793 1794 // --- vectorization state --- // 1795 1796 /// Holds the primary induction variable. This is the counter of the 1797 /// loop. 1798 PHINode *PrimaryInduction = nullptr; 1799 1800 /// Holds the reduction variables. 1801 ReductionList Reductions; 1802 1803 /// Holds all of the induction variables that we found in the loop. 1804 /// Notice that inductions don't need to start at zero and that induction 1805 /// variables can be pointers. 1806 InductionList Inductions; 1807 1808 /// Holds all the casts that participate in the update chain of the induction 1809 /// variables, and that have been proven to be redundant (possibly under a 1810 /// runtime guard). These casts can be ignored when creating the vectorized 1811 /// loop body. 1812 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1813 1814 /// Holds the phi nodes that are first-order recurrences. 1815 RecurrenceSet FirstOrderRecurrences; 1816 1817 /// Holds instructions that need to sink past other instructions to handle 1818 /// first-order recurrences. 1819 DenseMap<Instruction *, Instruction *> SinkAfter; 1820 1821 /// Holds the widest induction type encountered. 1822 Type *WidestIndTy = nullptr; 1823 1824 /// Allowed outside users. This holds the induction and reduction 1825 /// vars which can be accessed from outside the loop. 1826 SmallPtrSet<Value *, 4> AllowedExit; 1827 1828 /// Can we assume the absence of NaNs. 1829 bool HasFunNoNaNAttr = false; 1830 1831 /// Vectorization requirements that will go through late-evaluation. 1832 LoopVectorizationRequirements *Requirements; 1833 1834 /// Used to emit an analysis of any legality issues. 1835 LoopVectorizeHints *Hints; 1836 1837 /// The demanded bits analsyis is used to compute the minimum type size in 1838 /// which a reduction can be computed. 1839 DemandedBits *DB; 1840 1841 /// The assumption cache analysis is used to compute the minimum type size in 1842 /// which a reduction can be computed. 1843 AssumptionCache *AC; 1844 1845 /// While vectorizing these instructions we have to generate a 1846 /// call to the appropriate masked intrinsic 1847 SmallPtrSet<const Instruction *, 8> MaskedOp; 1848 }; 1849 1850 /// LoopVectorizationCostModel - estimates the expected speedups due to 1851 /// vectorization. 1852 /// In many cases vectorization is not profitable. This can happen because of 1853 /// a number of reasons. In this class we mainly attempt to predict the 1854 /// expected speedup/slowdowns due to the supported instruction set. We use the 1855 /// TargetTransformInfo to query the different backends for the cost of 1856 /// different operations. 1857 class LoopVectorizationCostModel { 1858 public: 1859 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1860 LoopInfo *LI, LoopVectorizationLegality *Legal, 1861 const TargetTransformInfo &TTI, 1862 const TargetLibraryInfo *TLI, DemandedBits *DB, 1863 AssumptionCache *AC, 1864 OptimizationRemarkEmitter *ORE, const Function *F, 1865 const LoopVectorizeHints *Hints) 1866 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1867 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1868 1869 /// \return An upper bound for the vectorization factor, or None if 1870 /// vectorization should be avoided up front. 1871 Optional<unsigned> computeMaxVF(bool OptForSize); 1872 1873 /// Information about vectorization costs 1874 struct VectorizationFactor { 1875 // Vector width with best cost 1876 unsigned Width; 1877 1878 // Cost of the loop with that width 1879 unsigned Cost; 1880 }; 1881 1882 /// \return The most profitable vectorization factor and the cost of that VF. 1883 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1884 /// then this vectorization factor will be selected if vectorization is 1885 /// possible. 1886 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1887 1888 /// Setup cost-based decisions for user vectorization factor. 1889 void selectUserVectorizationFactor(unsigned UserVF) { 1890 collectUniformsAndScalars(UserVF); 1891 collectInstsToScalarize(UserVF); 1892 } 1893 1894 /// \return The size (in bits) of the smallest and widest types in the code 1895 /// that needs to be vectorized. We ignore values that remain scalar such as 1896 /// 64 bit loop indices. 1897 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1898 1899 /// \return The desired interleave count. 1900 /// If interleave count has been specified by metadata it will be returned. 1901 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1902 /// are the selected vectorization factor and the cost of the selected VF. 1903 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1904 unsigned LoopCost); 1905 1906 /// Memory access instruction may be vectorized in more than one way. 1907 /// Form of instruction after vectorization depends on cost. 1908 /// This function takes cost-based decisions for Load/Store instructions 1909 /// and collects them in a map. This decisions map is used for building 1910 /// the lists of loop-uniform and loop-scalar instructions. 1911 /// The calculated cost is saved with widening decision in order to 1912 /// avoid redundant calculations. 1913 void setCostBasedWideningDecision(unsigned VF); 1914 1915 /// \brief A struct that represents some properties of the register usage 1916 /// of a loop. 1917 struct RegisterUsage { 1918 /// Holds the number of loop invariant values that are used in the loop. 1919 unsigned LoopInvariantRegs; 1920 1921 /// Holds the maximum number of concurrent live intervals in the loop. 1922 unsigned MaxLocalUsers; 1923 1924 /// Holds the number of instructions in the loop. 1925 unsigned NumInstructions; 1926 }; 1927 1928 /// \return Returns information about the register usages of the loop for the 1929 /// given vectorization factors. 1930 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1931 1932 /// Collect values we want to ignore in the cost model. 1933 void collectValuesToIgnore(); 1934 1935 /// \returns The smallest bitwidth each instruction can be represented with. 1936 /// The vector equivalents of these instructions should be truncated to this 1937 /// type. 1938 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1939 return MinBWs; 1940 } 1941 1942 /// \returns True if it is more profitable to scalarize instruction \p I for 1943 /// vectorization factor \p VF. 1944 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1945 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1946 auto Scalars = InstsToScalarize.find(VF); 1947 assert(Scalars != InstsToScalarize.end() && 1948 "VF not yet analyzed for scalarization profitability"); 1949 return Scalars->second.count(I); 1950 } 1951 1952 /// Returns true if \p I is known to be uniform after vectorization. 1953 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1954 if (VF == 1) 1955 return true; 1956 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1957 auto UniformsPerVF = Uniforms.find(VF); 1958 return UniformsPerVF->second.count(I); 1959 } 1960 1961 /// Returns true if \p I is known to be scalar after vectorization. 1962 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1963 if (VF == 1) 1964 return true; 1965 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1966 auto ScalarsPerVF = Scalars.find(VF); 1967 return ScalarsPerVF->second.count(I); 1968 } 1969 1970 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1971 /// for vectorization factor \p VF. 1972 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1973 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1974 !isScalarAfterVectorization(I, VF); 1975 } 1976 1977 /// Decision that was taken during cost calculation for memory instruction. 1978 enum InstWidening { 1979 CM_Unknown, 1980 CM_Widen, // For consecutive accesses with stride +1. 1981 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1982 CM_Interleave, 1983 CM_GatherScatter, 1984 CM_Scalarize 1985 }; 1986 1987 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1988 /// instruction \p I and vector width \p VF. 1989 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1990 unsigned Cost) { 1991 assert(VF >= 2 && "Expected VF >=2"); 1992 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1993 } 1994 1995 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1996 /// interleaving group \p Grp and vector width \p VF. 1997 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1998 InstWidening W, unsigned Cost) { 1999 assert(VF >= 2 && "Expected VF >=2"); 2000 /// Broadcast this decicion to all instructions inside the group. 2001 /// But the cost will be assigned to one instruction only. 2002 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 2003 if (auto *I = Grp->getMember(i)) { 2004 if (Grp->getInsertPos() == I) 2005 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 2006 else 2007 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 2008 } 2009 } 2010 } 2011 2012 /// Return the cost model decision for the given instruction \p I and vector 2013 /// width \p VF. Return CM_Unknown if this instruction did not pass 2014 /// through the cost modeling. 2015 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 2016 assert(VF >= 2 && "Expected VF >=2"); 2017 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2018 auto Itr = WideningDecisions.find(InstOnVF); 2019 if (Itr == WideningDecisions.end()) 2020 return CM_Unknown; 2021 return Itr->second.first; 2022 } 2023 2024 /// Return the vectorization cost for the given instruction \p I and vector 2025 /// width \p VF. 2026 unsigned getWideningCost(Instruction *I, unsigned VF) { 2027 assert(VF >= 2 && "Expected VF >=2"); 2028 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2029 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2030 return WideningDecisions[InstOnVF].second; 2031 } 2032 2033 /// Return True if instruction \p I is an optimizable truncate whose operand 2034 /// is an induction variable. Such a truncate will be removed by adding a new 2035 /// induction variable with the destination type. 2036 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2037 // If the instruction is not a truncate, return false. 2038 auto *Trunc = dyn_cast<TruncInst>(I); 2039 if (!Trunc) 2040 return false; 2041 2042 // Get the source and destination types of the truncate. 2043 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2044 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2045 2046 // If the truncate is free for the given types, return false. Replacing a 2047 // free truncate with an induction variable would add an induction variable 2048 // update instruction to each iteration of the loop. We exclude from this 2049 // check the primary induction variable since it will need an update 2050 // instruction regardless. 2051 Value *Op = Trunc->getOperand(0); 2052 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2053 return false; 2054 2055 // If the truncated value is not an induction variable, return false. 2056 return Legal->isInductionPhi(Op); 2057 } 2058 2059 /// Collects the instructions to scalarize for each predicated instruction in 2060 /// the loop. 2061 void collectInstsToScalarize(unsigned VF); 2062 2063 /// Collect Uniform and Scalar values for the given \p VF. 2064 /// The sets depend on CM decision for Load/Store instructions 2065 /// that may be vectorized as interleave, gather-scatter or scalarized. 2066 void collectUniformsAndScalars(unsigned VF) { 2067 // Do the analysis once. 2068 if (VF == 1 || Uniforms.count(VF)) 2069 return; 2070 setCostBasedWideningDecision(VF); 2071 collectLoopUniforms(VF); 2072 collectLoopScalars(VF); 2073 } 2074 2075 private: 2076 /// \return An upper bound for the vectorization factor, larger than zero. 2077 /// One is returned if vectorization should best be avoided due to cost. 2078 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2079 2080 /// The vectorization cost is a combination of the cost itself and a boolean 2081 /// indicating whether any of the contributing operations will actually 2082 /// operate on 2083 /// vector values after type legalization in the backend. If this latter value 2084 /// is 2085 /// false, then all operations will be scalarized (i.e. no vectorization has 2086 /// actually taken place). 2087 using VectorizationCostTy = std::pair<unsigned, bool>; 2088 2089 /// Returns the expected execution cost. The unit of the cost does 2090 /// not matter because we use the 'cost' units to compare different 2091 /// vector widths. The cost that is returned is *not* normalized by 2092 /// the factor width. 2093 VectorizationCostTy expectedCost(unsigned VF); 2094 2095 /// Returns the execution time cost of an instruction for a given vector 2096 /// width. Vector width of one means scalar. 2097 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2098 2099 /// The cost-computation logic from getInstructionCost which provides 2100 /// the vector type as an output parameter. 2101 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2102 2103 /// Calculate vectorization cost of memory instruction \p I. 2104 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2105 2106 /// The cost computation for scalarized memory instruction. 2107 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2108 2109 /// The cost computation for interleaving group of memory instructions. 2110 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2111 2112 /// The cost computation for Gather/Scatter instruction. 2113 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2114 2115 /// The cost computation for widening instruction \p I with consecutive 2116 /// memory access. 2117 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2118 2119 /// The cost calculation for Load instruction \p I with uniform pointer - 2120 /// scalar load + broadcast. 2121 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2122 2123 /// Returns whether the instruction is a load or store and will be a emitted 2124 /// as a vector operation. 2125 bool isConsecutiveLoadOrStore(Instruction *I); 2126 2127 /// Create an analysis remark that explains why vectorization failed 2128 /// 2129 /// \p RemarkName is the identifier for the remark. \return the remark object 2130 /// that can be streamed to. 2131 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2132 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2133 RemarkName, TheLoop); 2134 } 2135 2136 /// Map of scalar integer values to the smallest bitwidth they can be legally 2137 /// represented as. The vector equivalents of these values should be truncated 2138 /// to this type. 2139 MapVector<Instruction *, uint64_t> MinBWs; 2140 2141 /// A type representing the costs for instructions if they were to be 2142 /// scalarized rather than vectorized. The entries are Instruction-Cost 2143 /// pairs. 2144 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2145 2146 /// A set containing all BasicBlocks that are known to present after 2147 /// vectorization as a predicated block. 2148 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2149 2150 /// A map holding scalar costs for different vectorization factors. The 2151 /// presence of a cost for an instruction in the mapping indicates that the 2152 /// instruction will be scalarized when vectorizing with the associated 2153 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2154 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2155 2156 /// Holds the instructions known to be uniform after vectorization. 2157 /// The data is collected per VF. 2158 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2159 2160 /// Holds the instructions known to be scalar after vectorization. 2161 /// The data is collected per VF. 2162 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2163 2164 /// Holds the instructions (address computations) that are forced to be 2165 /// scalarized. 2166 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2167 2168 /// Returns the expected difference in cost from scalarizing the expression 2169 /// feeding a predicated instruction \p PredInst. The instructions to 2170 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2171 /// non-negative return value implies the expression will be scalarized. 2172 /// Currently, only single-use chains are considered for scalarization. 2173 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2174 unsigned VF); 2175 2176 /// Collect the instructions that are uniform after vectorization. An 2177 /// instruction is uniform if we represent it with a single scalar value in 2178 /// the vectorized loop corresponding to each vector iteration. Examples of 2179 /// uniform instructions include pointer operands of consecutive or 2180 /// interleaved memory accesses. Note that although uniformity implies an 2181 /// instruction will be scalar, the reverse is not true. In general, a 2182 /// scalarized instruction will be represented by VF scalar values in the 2183 /// vectorized loop, each corresponding to an iteration of the original 2184 /// scalar loop. 2185 void collectLoopUniforms(unsigned VF); 2186 2187 /// Collect the instructions that are scalar after vectorization. An 2188 /// instruction is scalar if it is known to be uniform or will be scalarized 2189 /// during vectorization. Non-uniform scalarized instructions will be 2190 /// represented by VF values in the vectorized loop, each corresponding to an 2191 /// iteration of the original scalar loop. 2192 void collectLoopScalars(unsigned VF); 2193 2194 /// Keeps cost model vectorization decision and cost for instructions. 2195 /// Right now it is used for memory instructions only. 2196 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2197 std::pair<InstWidening, unsigned>>; 2198 2199 DecisionList WideningDecisions; 2200 2201 public: 2202 /// The loop that we evaluate. 2203 Loop *TheLoop; 2204 2205 /// Predicated scalar evolution analysis. 2206 PredicatedScalarEvolution &PSE; 2207 2208 /// Loop Info analysis. 2209 LoopInfo *LI; 2210 2211 /// Vectorization legality. 2212 LoopVectorizationLegality *Legal; 2213 2214 /// Vector target information. 2215 const TargetTransformInfo &TTI; 2216 2217 /// Target Library Info. 2218 const TargetLibraryInfo *TLI; 2219 2220 /// Demanded bits analysis. 2221 DemandedBits *DB; 2222 2223 /// Assumption cache. 2224 AssumptionCache *AC; 2225 2226 /// Interface to emit optimization remarks. 2227 OptimizationRemarkEmitter *ORE; 2228 2229 const Function *TheFunction; 2230 2231 /// Loop Vectorize Hint. 2232 const LoopVectorizeHints *Hints; 2233 2234 /// Values to ignore in the cost model. 2235 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2236 2237 /// Values to ignore in the cost model when VF > 1. 2238 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2239 }; 2240 2241 } // end anonymous namespace 2242 2243 namespace llvm { 2244 2245 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2246 /// LoopVectorizationPlanner - drives the vectorization process after having 2247 /// passed Legality checks. 2248 /// The planner builds and optimizes the Vectorization Plans which record the 2249 /// decisions how to vectorize the given loop. In particular, represent the 2250 /// control-flow of the vectorized version, the replication of instructions that 2251 /// are to be scalarized, and interleave access groups. 2252 class LoopVectorizationPlanner { 2253 /// The loop that we evaluate. 2254 Loop *OrigLoop; 2255 2256 /// Loop Info analysis. 2257 LoopInfo *LI; 2258 2259 /// Target Library Info. 2260 const TargetLibraryInfo *TLI; 2261 2262 /// Target Transform Info. 2263 const TargetTransformInfo *TTI; 2264 2265 /// The legality analysis. 2266 LoopVectorizationLegality *Legal; 2267 2268 /// The profitablity analysis. 2269 LoopVectorizationCostModel &CM; 2270 2271 using VPlanPtr = std::unique_ptr<VPlan>; 2272 2273 SmallVector<VPlanPtr, 4> VPlans; 2274 2275 /// This class is used to enable the VPlan to invoke a method of ILV. This is 2276 /// needed until the method is refactored out of ILV and becomes reusable. 2277 struct VPCallbackILV : public VPCallback { 2278 InnerLoopVectorizer &ILV; 2279 2280 VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} 2281 2282 Value *getOrCreateVectorValues(Value *V, unsigned Part) override { 2283 return ILV.getOrCreateVectorValue(V, Part); 2284 } 2285 }; 2286 2287 /// A builder used to construct the current plan. 2288 VPBuilder Builder; 2289 2290 /// When we if-convert we need to create edge masks. We have to cache values 2291 /// so that we don't end up with exponential recursion/IR. Note that 2292 /// if-conversion currently takes place during VPlan-construction, so these 2293 /// caches are only used at that stage. 2294 using EdgeMaskCacheTy = 2295 DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>; 2296 using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>; 2297 EdgeMaskCacheTy EdgeMaskCache; 2298 BlockMaskCacheTy BlockMaskCache; 2299 2300 unsigned BestVF = 0; 2301 unsigned BestUF = 0; 2302 2303 public: 2304 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2305 const TargetTransformInfo *TTI, 2306 LoopVectorizationLegality *Legal, 2307 LoopVectorizationCostModel &CM) 2308 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {} 2309 2310 /// Plan how to best vectorize, return the best VF and its cost. 2311 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2312 unsigned UserVF); 2313 2314 /// Finalize the best decision and dispose of all other VPlans. 2315 void setBestPlan(unsigned VF, unsigned UF); 2316 2317 /// Generate the IR code for the body of the vectorized loop according to the 2318 /// best selected VPlan. 2319 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2320 2321 void printPlans(raw_ostream &O) { 2322 for (const auto &Plan : VPlans) 2323 O << *Plan; 2324 } 2325 2326 protected: 2327 /// Collect the instructions from the original loop that would be trivially 2328 /// dead in the vectorized loop if generated. 2329 void collectTriviallyDeadInstructions( 2330 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2331 2332 /// A range of powers-of-2 vectorization factors with fixed start and 2333 /// adjustable end. The range includes start and excludes end, e.g.,: 2334 /// [1, 9) = {1, 2, 4, 8} 2335 struct VFRange { 2336 // A power of 2. 2337 const unsigned Start; 2338 2339 // Need not be a power of 2. If End <= Start range is empty. 2340 unsigned End; 2341 }; 2342 2343 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2344 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2345 /// returned value holds for the entire \p Range. 2346 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2347 VFRange &Range); 2348 2349 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2350 /// according to the information gathered by Legal when it checked if it is 2351 /// legal to vectorize the loop. 2352 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2353 2354 private: 2355 /// A helper function that computes the predicate of the block BB, assuming 2356 /// that the header block of the loop is set to True. It returns the *entry* 2357 /// mask for the block BB. 2358 VPValue *createBlockInMask(BasicBlock *BB, VPlanPtr &Plan); 2359 2360 /// A helper function that computes the predicate of the edge between SRC 2361 /// and DST. 2362 VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst, VPlanPtr &Plan); 2363 2364 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2365 /// \return true in the first returned value if so and false otherwise. 2366 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2367 /// for \p Range.Start, and provide it as the second returned value. 2368 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2369 /// \return value is <true, nullptr>, as it is handled by another recipe. 2370 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2371 /// to \p Range.End. 2372 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2373 2374 // Check if \I is a memory instruction to be widened for \p Range.Start and 2375 // potentially masked. Such instructions are handled by a recipe that takes an 2376 // additional VPInstruction for the mask. 2377 VPWidenMemoryInstructionRecipe *tryToWidenMemory(Instruction *I, 2378 VFRange &Range, 2379 VPlanPtr &Plan); 2380 2381 /// Check if an induction recipe should be constructed for \I within the given 2382 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2383 /// may be decreased to ensure same decision from \p Range.Start to 2384 /// \p Range.End. 2385 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2386 VFRange &Range); 2387 2388 /// Handle non-loop phi nodes. Currently all such phi nodes are turned into 2389 /// a sequence of select instructions as the vectorizer currently performs 2390 /// full if-conversion. 2391 VPBlendRecipe *tryToBlend(Instruction *I, VPlanPtr &Plan); 2392 2393 /// Check if \p I can be widened within the given VF \p Range. If \p I can be 2394 /// widened for \p Range.Start, check if the last recipe of \p VPBB can be 2395 /// extended to include \p I or else build a new VPWidenRecipe for it and 2396 /// append it to \p VPBB. Return true if \p I can be widened for Range.Start, 2397 /// false otherwise. Range.End may be decreased to ensure same decision from 2398 /// \p Range.Start to \p Range.End. 2399 bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range); 2400 2401 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2402 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2403 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2404 /// Region. Update the packing decision of predicated instructions if they 2405 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2406 /// \p Range.Start to \p Range.End. 2407 VPBasicBlock *handleReplication( 2408 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2409 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 2410 VPlanPtr &Plan); 2411 2412 /// Create a replicating region for instruction \p I that requires 2413 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2414 VPRegionBlock *createReplicateRegion(Instruction *I, VPRecipeBase *PredRecipe, 2415 VPlanPtr &Plan); 2416 2417 /// Build a VPlan according to the information gathered by Legal. \return a 2418 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2419 /// exclusive, possibly decreasing \p Range.End. 2420 VPlanPtr buildVPlan(VFRange &Range, 2421 const SmallPtrSetImpl<Value *> &NeedDef); 2422 }; 2423 2424 } // end namespace llvm 2425 2426 namespace { 2427 2428 /// \brief This holds vectorization requirements that must be verified late in 2429 /// the process. The requirements are set by legalize and costmodel. Once 2430 /// vectorization has been determined to be possible and profitable the 2431 /// requirements can be verified by looking for metadata or compiler options. 2432 /// For example, some loops require FP commutativity which is only allowed if 2433 /// vectorization is explicitly specified or if the fast-math compiler option 2434 /// has been provided. 2435 /// Late evaluation of these requirements allows helpful diagnostics to be 2436 /// composed that tells the user what need to be done to vectorize the loop. For 2437 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2438 /// evaluation should be used only when diagnostics can generated that can be 2439 /// followed by a non-expert user. 2440 class LoopVectorizationRequirements { 2441 public: 2442 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2443 2444 void addUnsafeAlgebraInst(Instruction *I) { 2445 // First unsafe algebra instruction. 2446 if (!UnsafeAlgebraInst) 2447 UnsafeAlgebraInst = I; 2448 } 2449 2450 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2451 2452 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2453 const char *PassName = Hints.vectorizeAnalysisPassName(); 2454 bool Failed = false; 2455 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2456 ORE.emit([&]() { 2457 return OptimizationRemarkAnalysisFPCommute( 2458 PassName, "CantReorderFPOps", 2459 UnsafeAlgebraInst->getDebugLoc(), 2460 UnsafeAlgebraInst->getParent()) 2461 << "loop not vectorized: cannot prove it is safe to reorder " 2462 "floating-point operations"; 2463 }); 2464 Failed = true; 2465 } 2466 2467 // Test if runtime memcheck thresholds are exceeded. 2468 bool PragmaThresholdReached = 2469 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2470 bool ThresholdReached = 2471 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2472 if ((ThresholdReached && !Hints.allowReordering()) || 2473 PragmaThresholdReached) { 2474 ORE.emit([&]() { 2475 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2476 L->getStartLoc(), 2477 L->getHeader()) 2478 << "loop not vectorized: cannot prove it is safe to reorder " 2479 "memory operations"; 2480 }); 2481 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2482 Failed = true; 2483 } 2484 2485 return Failed; 2486 } 2487 2488 private: 2489 unsigned NumRuntimePointerChecks = 0; 2490 Instruction *UnsafeAlgebraInst = nullptr; 2491 2492 /// Interface to emit optimization remarks. 2493 OptimizationRemarkEmitter &ORE; 2494 }; 2495 2496 } // end anonymous namespace 2497 2498 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2499 if (L.empty()) { 2500 if (!hasCyclesInLoopBody(L)) 2501 V.push_back(&L); 2502 return; 2503 } 2504 for (Loop *InnerL : L) 2505 addAcyclicInnerLoop(*InnerL, V); 2506 } 2507 2508 namespace { 2509 2510 /// The LoopVectorize Pass. 2511 struct LoopVectorize : public FunctionPass { 2512 /// Pass identification, replacement for typeid 2513 static char ID; 2514 2515 LoopVectorizePass Impl; 2516 2517 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2518 : FunctionPass(ID) { 2519 Impl.DisableUnrolling = NoUnrolling; 2520 Impl.AlwaysVectorize = AlwaysVectorize; 2521 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2522 } 2523 2524 bool runOnFunction(Function &F) override { 2525 if (skipFunction(F)) 2526 return false; 2527 2528 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2529 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2530 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2531 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2532 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2533 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2534 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2535 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2536 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2537 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2538 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2539 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2540 2541 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2542 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2543 2544 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2545 GetLAA, *ORE); 2546 } 2547 2548 void getAnalysisUsage(AnalysisUsage &AU) const override { 2549 AU.addRequired<AssumptionCacheTracker>(); 2550 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2551 AU.addRequired<DominatorTreeWrapperPass>(); 2552 AU.addRequired<LoopInfoWrapperPass>(); 2553 AU.addRequired<ScalarEvolutionWrapperPass>(); 2554 AU.addRequired<TargetTransformInfoWrapperPass>(); 2555 AU.addRequired<AAResultsWrapperPass>(); 2556 AU.addRequired<LoopAccessLegacyAnalysis>(); 2557 AU.addRequired<DemandedBitsWrapperPass>(); 2558 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2559 AU.addPreserved<LoopInfoWrapperPass>(); 2560 AU.addPreserved<DominatorTreeWrapperPass>(); 2561 AU.addPreserved<BasicAAWrapperPass>(); 2562 AU.addPreserved<GlobalsAAWrapperPass>(); 2563 } 2564 }; 2565 2566 } // end anonymous namespace 2567 2568 //===----------------------------------------------------------------------===// 2569 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2570 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2571 //===----------------------------------------------------------------------===// 2572 2573 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2574 // We need to place the broadcast of invariant variables outside the loop. 2575 Instruction *Instr = dyn_cast<Instruction>(V); 2576 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2577 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2578 2579 // Place the code for broadcasting invariant variables in the new preheader. 2580 IRBuilder<>::InsertPointGuard Guard(Builder); 2581 if (Invariant) 2582 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2583 2584 // Broadcast the scalar into all locations in the vector. 2585 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2586 2587 return Shuf; 2588 } 2589 2590 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2591 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2592 Value *Start = II.getStartValue(); 2593 2594 // Construct the initial value of the vector IV in the vector loop preheader 2595 auto CurrIP = Builder.saveIP(); 2596 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2597 if (isa<TruncInst>(EntryVal)) { 2598 assert(Start->getType()->isIntegerTy() && 2599 "Truncation requires an integer type"); 2600 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2601 Step = Builder.CreateTrunc(Step, TruncType); 2602 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2603 } 2604 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2605 Value *SteppedStart = 2606 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2607 2608 // We create vector phi nodes for both integer and floating-point induction 2609 // variables. Here, we determine the kind of arithmetic we will perform. 2610 Instruction::BinaryOps AddOp; 2611 Instruction::BinaryOps MulOp; 2612 if (Step->getType()->isIntegerTy()) { 2613 AddOp = Instruction::Add; 2614 MulOp = Instruction::Mul; 2615 } else { 2616 AddOp = II.getInductionOpcode(); 2617 MulOp = Instruction::FMul; 2618 } 2619 2620 // Multiply the vectorization factor by the step using integer or 2621 // floating-point arithmetic as appropriate. 2622 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2623 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2624 2625 // Create a vector splat to use in the induction update. 2626 // 2627 // FIXME: If the step is non-constant, we create the vector splat with 2628 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2629 // handle a constant vector splat. 2630 Value *SplatVF = isa<Constant>(Mul) 2631 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2632 : Builder.CreateVectorSplat(VF, Mul); 2633 Builder.restoreIP(CurrIP); 2634 2635 // We may need to add the step a number of times, depending on the unroll 2636 // factor. The last of those goes into the PHI. 2637 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2638 &*LoopVectorBody->getFirstInsertionPt()); 2639 Instruction *LastInduction = VecInd; 2640 for (unsigned Part = 0; Part < UF; ++Part) { 2641 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2642 2643 if (isa<TruncInst>(EntryVal)) 2644 addMetadata(LastInduction, EntryVal); 2645 else 2646 recordVectorLoopValueForInductionCast(II, LastInduction, Part); 2647 2648 LastInduction = cast<Instruction>(addFastMathFlag( 2649 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2650 } 2651 2652 // Move the last step to the end of the latch block. This ensures consistent 2653 // placement of all induction updates. 2654 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2655 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2656 auto *ICmp = cast<Instruction>(Br->getCondition()); 2657 LastInduction->moveBefore(ICmp); 2658 LastInduction->setName("vec.ind.next"); 2659 2660 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2661 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2662 } 2663 2664 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2665 return Cost->isScalarAfterVectorization(I, VF) || 2666 Cost->isProfitableToScalarize(I, VF); 2667 } 2668 2669 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2670 if (shouldScalarizeInstruction(IV)) 2671 return true; 2672 auto isScalarInst = [&](User *U) -> bool { 2673 auto *I = cast<Instruction>(U); 2674 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2675 }; 2676 return llvm::any_of(IV->users(), isScalarInst); 2677 } 2678 2679 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2680 const InductionDescriptor &ID, Value *VectorLoopVal, unsigned Part, 2681 unsigned Lane) { 2682 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2683 if (Casts.empty()) 2684 return; 2685 // Only the first Cast instruction in the Casts vector is of interest. 2686 // The rest of the Casts (if exist) have no uses outside the 2687 // induction update chain itself. 2688 Instruction *CastInst = *Casts.begin(); 2689 if (Lane < UINT_MAX) 2690 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2691 else 2692 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2693 } 2694 2695 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2696 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2697 "Primary induction variable must have an integer type"); 2698 2699 auto II = Legal->getInductionVars()->find(IV); 2700 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2701 2702 auto ID = II->second; 2703 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2704 2705 // The scalar value to broadcast. This will be derived from the canonical 2706 // induction variable. 2707 Value *ScalarIV = nullptr; 2708 2709 // The value from the original loop to which we are mapping the new induction 2710 // variable. 2711 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2712 2713 // True if we have vectorized the induction variable. 2714 auto VectorizedIV = false; 2715 2716 // Determine if we want a scalar version of the induction variable. This is 2717 // true if the induction variable itself is not widened, or if it has at 2718 // least one user in the loop that is not widened. 2719 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2720 2721 // Generate code for the induction step. Note that induction steps are 2722 // required to be loop-invariant 2723 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2724 "Induction step should be loop invariant"); 2725 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2726 Value *Step = nullptr; 2727 if (PSE.getSE()->isSCEVable(IV->getType())) { 2728 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2729 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2730 LoopVectorPreHeader->getTerminator()); 2731 } else { 2732 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2733 } 2734 2735 // Try to create a new independent vector induction variable. If we can't 2736 // create the phi node, we will splat the scalar induction variable in each 2737 // loop iteration. 2738 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2739 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2740 VectorizedIV = true; 2741 } 2742 2743 // If we haven't yet vectorized the induction variable, or if we will create 2744 // a scalar one, we need to define the scalar induction variable and step 2745 // values. If we were given a truncation type, truncate the canonical 2746 // induction variable and step. Otherwise, derive these values from the 2747 // induction descriptor. 2748 if (!VectorizedIV || NeedsScalarIV) { 2749 ScalarIV = Induction; 2750 if (IV != OldInduction) { 2751 ScalarIV = IV->getType()->isIntegerTy() 2752 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2753 : Builder.CreateCast(Instruction::SIToFP, Induction, 2754 IV->getType()); 2755 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2756 ScalarIV->setName("offset.idx"); 2757 } 2758 if (Trunc) { 2759 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2760 assert(Step->getType()->isIntegerTy() && 2761 "Truncation requires an integer step"); 2762 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2763 Step = Builder.CreateTrunc(Step, TruncType); 2764 } 2765 } 2766 2767 // If we haven't yet vectorized the induction variable, splat the scalar 2768 // induction variable, and build the necessary step vectors. 2769 // TODO: Don't do it unless the vectorized IV is really required. 2770 if (!VectorizedIV) { 2771 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2772 for (unsigned Part = 0; Part < UF; ++Part) { 2773 Value *EntryPart = 2774 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2775 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2776 if (Trunc) 2777 addMetadata(EntryPart, Trunc); 2778 else 2779 recordVectorLoopValueForInductionCast(ID, EntryPart, Part); 2780 } 2781 } 2782 2783 // If an induction variable is only used for counting loop iterations or 2784 // calculating addresses, it doesn't need to be widened. Create scalar steps 2785 // that can be used by instructions we will later scalarize. Note that the 2786 // addition of the scalar steps will not increase the number of instructions 2787 // in the loop in the common case prior to InstCombine. We will be trading 2788 // one vector extract for each scalar step. 2789 if (NeedsScalarIV) 2790 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2791 } 2792 2793 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2794 Instruction::BinaryOps BinOp) { 2795 // Create and check the types. 2796 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2797 int VLen = Val->getType()->getVectorNumElements(); 2798 2799 Type *STy = Val->getType()->getScalarType(); 2800 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2801 "Induction Step must be an integer or FP"); 2802 assert(Step->getType() == STy && "Step has wrong type"); 2803 2804 SmallVector<Constant *, 8> Indices; 2805 2806 if (STy->isIntegerTy()) { 2807 // Create a vector of consecutive numbers from zero to VF. 2808 for (int i = 0; i < VLen; ++i) 2809 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2810 2811 // Add the consecutive indices to the vector value. 2812 Constant *Cv = ConstantVector::get(Indices); 2813 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2814 Step = Builder.CreateVectorSplat(VLen, Step); 2815 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2816 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2817 // which can be found from the original scalar operations. 2818 Step = Builder.CreateMul(Cv, Step); 2819 return Builder.CreateAdd(Val, Step, "induction"); 2820 } 2821 2822 // Floating point induction. 2823 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2824 "Binary Opcode should be specified for FP induction"); 2825 // Create a vector of consecutive numbers from zero to VF. 2826 for (int i = 0; i < VLen; ++i) 2827 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2828 2829 // Add the consecutive indices to the vector value. 2830 Constant *Cv = ConstantVector::get(Indices); 2831 2832 Step = Builder.CreateVectorSplat(VLen, Step); 2833 2834 // Floating point operations had to be 'fast' to enable the induction. 2835 FastMathFlags Flags; 2836 Flags.setFast(); 2837 2838 Value *MulOp = Builder.CreateFMul(Cv, Step); 2839 if (isa<Instruction>(MulOp)) 2840 // Have to check, MulOp may be a constant 2841 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2842 2843 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2844 if (isa<Instruction>(BOp)) 2845 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2846 return BOp; 2847 } 2848 2849 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2850 Value *EntryVal, 2851 const InductionDescriptor &ID) { 2852 // We shouldn't have to build scalar steps if we aren't vectorizing. 2853 assert(VF > 1 && "VF should be greater than one"); 2854 2855 // Get the value type and ensure it and the step have the same integer type. 2856 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2857 assert(ScalarIVTy == Step->getType() && 2858 "Val and Step should have the same type"); 2859 2860 // We build scalar steps for both integer and floating-point induction 2861 // variables. Here, we determine the kind of arithmetic we will perform. 2862 Instruction::BinaryOps AddOp; 2863 Instruction::BinaryOps MulOp; 2864 if (ScalarIVTy->isIntegerTy()) { 2865 AddOp = Instruction::Add; 2866 MulOp = Instruction::Mul; 2867 } else { 2868 AddOp = ID.getInductionOpcode(); 2869 MulOp = Instruction::FMul; 2870 } 2871 2872 // Determine the number of scalars we need to generate for each unroll 2873 // iteration. If EntryVal is uniform, we only need to generate the first 2874 // lane. Otherwise, we generate all VF values. 2875 unsigned Lanes = 2876 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2877 : VF; 2878 // Compute the scalar steps and save the results in VectorLoopValueMap. 2879 for (unsigned Part = 0; Part < UF; ++Part) { 2880 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2881 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2882 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2883 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2884 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2885 recordVectorLoopValueForInductionCast(ID, Add, Part, Lane); 2886 } 2887 } 2888 } 2889 2890 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2891 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2892 ValueToValueMap(); 2893 2894 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2895 if (Stride == 1 || Stride == -1) 2896 return Stride; 2897 return 0; 2898 } 2899 2900 bool LoopVectorizationLegality::isUniform(Value *V) { 2901 return LAI->isUniform(V); 2902 } 2903 2904 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2905 assert(V != Induction && "The new induction variable should not be used."); 2906 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2907 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2908 2909 // If we have a stride that is replaced by one, do it here. 2910 if (Legal->hasStride(V)) 2911 V = ConstantInt::get(V->getType(), 1); 2912 2913 // If we have a vector mapped to this value, return it. 2914 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2915 return VectorLoopValueMap.getVectorValue(V, Part); 2916 2917 // If the value has not been vectorized, check if it has been scalarized 2918 // instead. If it has been scalarized, and we actually need the value in 2919 // vector form, we will construct the vector values on demand. 2920 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2921 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2922 2923 // If we've scalarized a value, that value should be an instruction. 2924 auto *I = cast<Instruction>(V); 2925 2926 // If we aren't vectorizing, we can just copy the scalar map values over to 2927 // the vector map. 2928 if (VF == 1) { 2929 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2930 return ScalarValue; 2931 } 2932 2933 // Get the last scalar instruction we generated for V and Part. If the value 2934 // is known to be uniform after vectorization, this corresponds to lane zero 2935 // of the Part unroll iteration. Otherwise, the last instruction is the one 2936 // we created for the last vector lane of the Part unroll iteration. 2937 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2938 auto *LastInst = cast<Instruction>( 2939 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2940 2941 // Set the insert point after the last scalarized instruction. This ensures 2942 // the insertelement sequence will directly follow the scalar definitions. 2943 auto OldIP = Builder.saveIP(); 2944 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2945 Builder.SetInsertPoint(&*NewIP); 2946 2947 // However, if we are vectorizing, we need to construct the vector values. 2948 // If the value is known to be uniform after vectorization, we can just 2949 // broadcast the scalar value corresponding to lane zero for each unroll 2950 // iteration. Otherwise, we construct the vector values using insertelement 2951 // instructions. Since the resulting vectors are stored in 2952 // VectorLoopValueMap, we will only generate the insertelements once. 2953 Value *VectorValue = nullptr; 2954 if (Cost->isUniformAfterVectorization(I, VF)) { 2955 VectorValue = getBroadcastInstrs(ScalarValue); 2956 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2957 } else { 2958 // Initialize packing with insertelements to start from undef. 2959 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2960 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2961 for (unsigned Lane = 0; Lane < VF; ++Lane) 2962 packScalarIntoVectorValue(V, {Part, Lane}); 2963 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2964 } 2965 Builder.restoreIP(OldIP); 2966 return VectorValue; 2967 } 2968 2969 // If this scalar is unknown, assume that it is a constant or that it is 2970 // loop invariant. Broadcast V and save the value for future uses. 2971 Value *B = getBroadcastInstrs(V); 2972 VectorLoopValueMap.setVectorValue(V, Part, B); 2973 return B; 2974 } 2975 2976 Value * 2977 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2978 const VPIteration &Instance) { 2979 // If the value is not an instruction contained in the loop, it should 2980 // already be scalar. 2981 if (OrigLoop->isLoopInvariant(V)) 2982 return V; 2983 2984 assert(Instance.Lane > 0 2985 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2986 : true && "Uniform values only have lane zero"); 2987 2988 // If the value from the original loop has not been vectorized, it is 2989 // represented by UF x VF scalar values in the new loop. Return the requested 2990 // scalar value. 2991 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2992 return VectorLoopValueMap.getScalarValue(V, Instance); 2993 2994 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2995 // for the given unroll part. If this entry is not a vector type (i.e., the 2996 // vectorization factor is one), there is no need to generate an 2997 // extractelement instruction. 2998 auto *U = getOrCreateVectorValue(V, Instance.Part); 2999 if (!U->getType()->isVectorTy()) { 3000 assert(VF == 1 && "Value not scalarized has non-vector type"); 3001 return U; 3002 } 3003 3004 // Otherwise, the value from the original loop has been vectorized and is 3005 // represented by UF vector values. Extract and return the requested scalar 3006 // value from the appropriate vector lane. 3007 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 3008 } 3009 3010 void InnerLoopVectorizer::packScalarIntoVectorValue( 3011 Value *V, const VPIteration &Instance) { 3012 assert(V != Induction && "The new induction variable should not be used."); 3013 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 3014 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 3015 3016 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 3017 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 3018 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 3019 Builder.getInt32(Instance.Lane)); 3020 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 3021 } 3022 3023 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 3024 assert(Vec->getType()->isVectorTy() && "Invalid type"); 3025 SmallVector<Constant *, 8> ShuffleMask; 3026 for (unsigned i = 0; i < VF; ++i) 3027 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 3028 3029 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 3030 ConstantVector::get(ShuffleMask), 3031 "reverse"); 3032 } 3033 3034 // Try to vectorize the interleave group that \p Instr belongs to. 3035 // 3036 // E.g. Translate following interleaved load group (factor = 3): 3037 // for (i = 0; i < N; i+=3) { 3038 // R = Pic[i]; // Member of index 0 3039 // G = Pic[i+1]; // Member of index 1 3040 // B = Pic[i+2]; // Member of index 2 3041 // ... // do something to R, G, B 3042 // } 3043 // To: 3044 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 3045 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 3046 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 3047 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 3048 // 3049 // Or translate following interleaved store group (factor = 3): 3050 // for (i = 0; i < N; i+=3) { 3051 // ... do something to R, G, B 3052 // Pic[i] = R; // Member of index 0 3053 // Pic[i+1] = G; // Member of index 1 3054 // Pic[i+2] = B; // Member of index 2 3055 // } 3056 // To: 3057 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 3058 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 3059 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 3060 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 3061 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 3062 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 3063 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 3064 assert(Group && "Fail to get an interleaved access group."); 3065 3066 // Skip if current instruction is not the insert position. 3067 if (Instr != Group->getInsertPos()) 3068 return; 3069 3070 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3071 Value *Ptr = getPointerOperand(Instr); 3072 3073 // Prepare for the vector type of the interleaved load/store. 3074 Type *ScalarTy = getMemInstValueType(Instr); 3075 unsigned InterleaveFactor = Group->getFactor(); 3076 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 3077 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 3078 3079 // Prepare for the new pointers. 3080 setDebugLocFromInst(Builder, Ptr); 3081 SmallVector<Value *, 2> NewPtrs; 3082 unsigned Index = Group->getIndex(Instr); 3083 3084 // If the group is reverse, adjust the index to refer to the last vector lane 3085 // instead of the first. We adjust the index from the first vector lane, 3086 // rather than directly getting the pointer for lane VF - 1, because the 3087 // pointer operand of the interleaved access is supposed to be uniform. For 3088 // uniform instructions, we're only required to generate a value for the 3089 // first vector lane in each unroll iteration. 3090 if (Group->isReverse()) 3091 Index += (VF - 1) * Group->getFactor(); 3092 3093 for (unsigned Part = 0; Part < UF; Part++) { 3094 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 3095 3096 // Notice current instruction could be any index. Need to adjust the address 3097 // to the member of index 0. 3098 // 3099 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 3100 // b = A[i]; // Member of index 0 3101 // Current pointer is pointed to A[i+1], adjust it to A[i]. 3102 // 3103 // E.g. A[i+1] = a; // Member of index 1 3104 // A[i] = b; // Member of index 0 3105 // A[i+2] = c; // Member of index 2 (Current instruction) 3106 // Current pointer is pointed to A[i+2], adjust it to A[i]. 3107 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 3108 3109 // Cast to the vector pointer type. 3110 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 3111 } 3112 3113 setDebugLocFromInst(Builder, Instr); 3114 Value *UndefVec = UndefValue::get(VecTy); 3115 3116 // Vectorize the interleaved load group. 3117 if (isa<LoadInst>(Instr)) { 3118 // For each unroll part, create a wide load for the group. 3119 SmallVector<Value *, 2> NewLoads; 3120 for (unsigned Part = 0; Part < UF; Part++) { 3121 auto *NewLoad = Builder.CreateAlignedLoad( 3122 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 3123 Group->addMetadata(NewLoad); 3124 NewLoads.push_back(NewLoad); 3125 } 3126 3127 // For each member in the group, shuffle out the appropriate data from the 3128 // wide loads. 3129 for (unsigned I = 0; I < InterleaveFactor; ++I) { 3130 Instruction *Member = Group->getMember(I); 3131 3132 // Skip the gaps in the group. 3133 if (!Member) 3134 continue; 3135 3136 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 3137 for (unsigned Part = 0; Part < UF; Part++) { 3138 Value *StridedVec = Builder.CreateShuffleVector( 3139 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 3140 3141 // If this member has different type, cast the result type. 3142 if (Member->getType() != ScalarTy) { 3143 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 3144 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 3145 } 3146 3147 if (Group->isReverse()) 3148 StridedVec = reverseVector(StridedVec); 3149 3150 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 3151 } 3152 } 3153 return; 3154 } 3155 3156 // The sub vector type for current instruction. 3157 VectorType *SubVT = VectorType::get(ScalarTy, VF); 3158 3159 // Vectorize the interleaved store group. 3160 for (unsigned Part = 0; Part < UF; Part++) { 3161 // Collect the stored vector from each member. 3162 SmallVector<Value *, 4> StoredVecs; 3163 for (unsigned i = 0; i < InterleaveFactor; i++) { 3164 // Interleaved store group doesn't allow a gap, so each index has a member 3165 Instruction *Member = Group->getMember(i); 3166 assert(Member && "Fail to get a member from an interleaved store group"); 3167 3168 Value *StoredVec = getOrCreateVectorValue( 3169 cast<StoreInst>(Member)->getValueOperand(), Part); 3170 if (Group->isReverse()) 3171 StoredVec = reverseVector(StoredVec); 3172 3173 // If this member has different type, cast it to a unified type. 3174 3175 if (StoredVec->getType() != SubVT) 3176 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 3177 3178 StoredVecs.push_back(StoredVec); 3179 } 3180 3181 // Concatenate all vectors into a wide vector. 3182 Value *WideVec = concatenateVectors(Builder, StoredVecs); 3183 3184 // Interleave the elements in the wide vector. 3185 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 3186 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 3187 "interleaved.vec"); 3188 3189 Instruction *NewStoreInstr = 3190 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 3191 3192 Group->addMetadata(NewStoreInstr); 3193 } 3194 } 3195 3196 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 3197 VectorParts *BlockInMask) { 3198 // Attempt to issue a wide load. 3199 LoadInst *LI = dyn_cast<LoadInst>(Instr); 3200 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3201 3202 assert((LI || SI) && "Invalid Load/Store instruction"); 3203 3204 LoopVectorizationCostModel::InstWidening Decision = 3205 Cost->getWideningDecision(Instr, VF); 3206 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3207 "CM decision should be taken at this point"); 3208 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3209 return vectorizeInterleaveGroup(Instr); 3210 3211 Type *ScalarDataTy = getMemInstValueType(Instr); 3212 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3213 Value *Ptr = getPointerOperand(Instr); 3214 unsigned Alignment = getMemInstAlignment(Instr); 3215 // An alignment of 0 means target abi alignment. We need to use the scalar's 3216 // target abi alignment in such a case. 3217 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3218 if (!Alignment) 3219 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3220 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3221 3222 // Determine if the pointer operand of the access is either consecutive or 3223 // reverse consecutive. 3224 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3225 bool ConsecutiveStride = 3226 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3227 bool CreateGatherScatter = 3228 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3229 3230 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3231 // gather/scatter. Otherwise Decision should have been to Scalarize. 3232 assert((ConsecutiveStride || CreateGatherScatter) && 3233 "The instruction should be scalarized"); 3234 3235 // Handle consecutive loads/stores. 3236 if (ConsecutiveStride) 3237 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3238 3239 VectorParts Mask; 3240 bool isMaskRequired = BlockInMask; 3241 if (isMaskRequired) 3242 Mask = *BlockInMask; 3243 3244 // Handle Stores: 3245 if (SI) { 3246 assert(!Legal->isUniform(SI->getPointerOperand()) && 3247 "We do not allow storing to uniform addresses"); 3248 setDebugLocFromInst(Builder, SI); 3249 3250 for (unsigned Part = 0; Part < UF; ++Part) { 3251 Instruction *NewSI = nullptr; 3252 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3253 if (CreateGatherScatter) { 3254 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3255 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3256 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3257 MaskPart); 3258 } else { 3259 // Calculate the pointer for the specific unroll-part. 3260 Value *PartPtr = 3261 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3262 3263 if (Reverse) { 3264 // If we store to reverse consecutive memory locations, then we need 3265 // to reverse the order of elements in the stored value. 3266 StoredVal = reverseVector(StoredVal); 3267 // We don't want to update the value in the map as it might be used in 3268 // another expression. So don't call resetVectorValue(StoredVal). 3269 3270 // If the address is consecutive but reversed, then the 3271 // wide store needs to start at the last vector element. 3272 PartPtr = 3273 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3274 PartPtr = 3275 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3276 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3277 Mask[Part] = reverseVector(Mask[Part]); 3278 } 3279 3280 Value *VecPtr = 3281 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3282 3283 if (isMaskRequired) 3284 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3285 Mask[Part]); 3286 else 3287 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3288 } 3289 addMetadata(NewSI, SI); 3290 } 3291 return; 3292 } 3293 3294 // Handle loads. 3295 assert(LI && "Must have a load instruction"); 3296 setDebugLocFromInst(Builder, LI); 3297 for (unsigned Part = 0; Part < UF; ++Part) { 3298 Value *NewLI; 3299 if (CreateGatherScatter) { 3300 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3301 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3302 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3303 nullptr, "wide.masked.gather"); 3304 addMetadata(NewLI, LI); 3305 } else { 3306 // Calculate the pointer for the specific unroll-part. 3307 Value *PartPtr = 3308 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3309 3310 if (Reverse) { 3311 // If the address is consecutive but reversed, then the 3312 // wide load needs to start at the last vector element. 3313 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3314 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3315 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3316 Mask[Part] = reverseVector(Mask[Part]); 3317 } 3318 3319 Value *VecPtr = 3320 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3321 if (isMaskRequired) 3322 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3323 UndefValue::get(DataTy), 3324 "wide.masked.load"); 3325 else 3326 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3327 3328 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3329 addMetadata(NewLI, LI); 3330 if (Reverse) 3331 NewLI = reverseVector(NewLI); 3332 } 3333 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3334 } 3335 } 3336 3337 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3338 const VPIteration &Instance, 3339 bool IfPredicateInstr) { 3340 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3341 3342 setDebugLocFromInst(Builder, Instr); 3343 3344 // Does this instruction return a value ? 3345 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3346 3347 Instruction *Cloned = Instr->clone(); 3348 if (!IsVoidRetTy) 3349 Cloned->setName(Instr->getName() + ".cloned"); 3350 3351 // Replace the operands of the cloned instructions with their scalar 3352 // equivalents in the new loop. 3353 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3354 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3355 Cloned->setOperand(op, NewOp); 3356 } 3357 addNewMetadata(Cloned, Instr); 3358 3359 // Place the cloned scalar in the new loop. 3360 Builder.Insert(Cloned); 3361 3362 // Add the cloned scalar to the scalar map entry. 3363 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3364 3365 // If we just cloned a new assumption, add it the assumption cache. 3366 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3367 if (II->getIntrinsicID() == Intrinsic::assume) 3368 AC->registerAssumption(II); 3369 3370 // End if-block. 3371 if (IfPredicateInstr) 3372 PredicatedInstructions.push_back(Cloned); 3373 } 3374 3375 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3376 Value *End, Value *Step, 3377 Instruction *DL) { 3378 BasicBlock *Header = L->getHeader(); 3379 BasicBlock *Latch = L->getLoopLatch(); 3380 // As we're just creating this loop, it's possible no latch exists 3381 // yet. If so, use the header as this will be a single block loop. 3382 if (!Latch) 3383 Latch = Header; 3384 3385 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3386 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3387 setDebugLocFromInst(Builder, OldInst); 3388 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3389 3390 Builder.SetInsertPoint(Latch->getTerminator()); 3391 setDebugLocFromInst(Builder, OldInst); 3392 3393 // Create i+1 and fill the PHINode. 3394 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3395 Induction->addIncoming(Start, L->getLoopPreheader()); 3396 Induction->addIncoming(Next, Latch); 3397 // Create the compare. 3398 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3399 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3400 3401 // Now we have two terminators. Remove the old one from the block. 3402 Latch->getTerminator()->eraseFromParent(); 3403 3404 return Induction; 3405 } 3406 3407 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3408 if (TripCount) 3409 return TripCount; 3410 3411 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3412 // Find the loop boundaries. 3413 ScalarEvolution *SE = PSE.getSE(); 3414 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3415 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3416 "Invalid loop count"); 3417 3418 Type *IdxTy = Legal->getWidestInductionType(); 3419 3420 // The exit count might have the type of i64 while the phi is i32. This can 3421 // happen if we have an induction variable that is sign extended before the 3422 // compare. The only way that we get a backedge taken count is that the 3423 // induction variable was signed and as such will not overflow. In such a case 3424 // truncation is legal. 3425 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3426 IdxTy->getPrimitiveSizeInBits()) 3427 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3428 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3429 3430 // Get the total trip count from the count by adding 1. 3431 const SCEV *ExitCount = SE->getAddExpr( 3432 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3433 3434 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3435 3436 // Expand the trip count and place the new instructions in the preheader. 3437 // Notice that the pre-header does not change, only the loop body. 3438 SCEVExpander Exp(*SE, DL, "induction"); 3439 3440 // Count holds the overall loop count (N). 3441 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3442 L->getLoopPreheader()->getTerminator()); 3443 3444 if (TripCount->getType()->isPointerTy()) 3445 TripCount = 3446 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3447 L->getLoopPreheader()->getTerminator()); 3448 3449 return TripCount; 3450 } 3451 3452 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3453 if (VectorTripCount) 3454 return VectorTripCount; 3455 3456 Value *TC = getOrCreateTripCount(L); 3457 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3458 3459 // Now we need to generate the expression for the part of the loop that the 3460 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3461 // iterations are not required for correctness, or N - Step, otherwise. Step 3462 // is equal to the vectorization factor (number of SIMD elements) times the 3463 // unroll factor (number of SIMD instructions). 3464 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3465 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3466 3467 // If there is a non-reversed interleaved group that may speculatively access 3468 // memory out-of-bounds, we need to ensure that there will be at least one 3469 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3470 // the trip count, we set the remainder to be equal to the step. If the step 3471 // does not evenly divide the trip count, no adjustment is necessary since 3472 // there will already be scalar iterations. Note that the minimum iterations 3473 // check ensures that N >= Step. 3474 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3475 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3476 R = Builder.CreateSelect(IsZero, Step, R); 3477 } 3478 3479 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3480 3481 return VectorTripCount; 3482 } 3483 3484 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3485 const DataLayout &DL) { 3486 // Verify that V is a vector type with same number of elements as DstVTy. 3487 unsigned VF = DstVTy->getNumElements(); 3488 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3489 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3490 Type *SrcElemTy = SrcVecTy->getElementType(); 3491 Type *DstElemTy = DstVTy->getElementType(); 3492 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3493 "Vector elements must have same size"); 3494 3495 // Do a direct cast if element types are castable. 3496 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3497 return Builder.CreateBitOrPointerCast(V, DstVTy); 3498 } 3499 // V cannot be directly casted to desired vector type. 3500 // May happen when V is a floating point vector but DstVTy is a vector of 3501 // pointers or vice-versa. Handle this using a two-step bitcast using an 3502 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3503 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3504 "Only one type should be a pointer type"); 3505 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3506 "Only one type should be a floating point type"); 3507 Type *IntTy = 3508 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3509 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3510 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3511 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3512 } 3513 3514 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3515 BasicBlock *Bypass) { 3516 Value *Count = getOrCreateTripCount(L); 3517 BasicBlock *BB = L->getLoopPreheader(); 3518 IRBuilder<> Builder(BB->getTerminator()); 3519 3520 // Generate code to check if the loop's trip count is less than VF * UF, or 3521 // equal to it in case a scalar epilogue is required; this implies that the 3522 // vector trip count is zero. This check also covers the case where adding one 3523 // to the backedge-taken count overflowed leading to an incorrect trip count 3524 // of zero. In this case we will also jump to the scalar loop. 3525 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3526 : ICmpInst::ICMP_ULT; 3527 Value *CheckMinIters = Builder.CreateICmp( 3528 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3529 3530 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3531 // Update dominator tree immediately if the generated block is a 3532 // LoopBypassBlock because SCEV expansions to generate loop bypass 3533 // checks may query it before the current function is finished. 3534 DT->addNewBlock(NewBB, BB); 3535 if (L->getParentLoop()) 3536 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3537 ReplaceInstWithInst(BB->getTerminator(), 3538 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3539 LoopBypassBlocks.push_back(BB); 3540 } 3541 3542 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3543 BasicBlock *BB = L->getLoopPreheader(); 3544 3545 // Generate the code to check that the SCEV assumptions that we made. 3546 // We want the new basic block to start at the first instruction in a 3547 // sequence of instructions that form a check. 3548 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3549 "scev.check"); 3550 Value *SCEVCheck = 3551 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3552 3553 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3554 if (C->isZero()) 3555 return; 3556 3557 // Create a new block containing the stride check. 3558 BB->setName("vector.scevcheck"); 3559 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3560 // Update dominator tree immediately if the generated block is a 3561 // LoopBypassBlock because SCEV expansions to generate loop bypass 3562 // checks may query it before the current function is finished. 3563 DT->addNewBlock(NewBB, BB); 3564 if (L->getParentLoop()) 3565 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3566 ReplaceInstWithInst(BB->getTerminator(), 3567 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3568 LoopBypassBlocks.push_back(BB); 3569 AddedSafetyChecks = true; 3570 } 3571 3572 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3573 BasicBlock *BB = L->getLoopPreheader(); 3574 3575 // Generate the code that checks in runtime if arrays overlap. We put the 3576 // checks into a separate block to make the more common case of few elements 3577 // faster. 3578 Instruction *FirstCheckInst; 3579 Instruction *MemRuntimeCheck; 3580 std::tie(FirstCheckInst, MemRuntimeCheck) = 3581 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3582 if (!MemRuntimeCheck) 3583 return; 3584 3585 // Create a new block containing the memory check. 3586 BB->setName("vector.memcheck"); 3587 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3588 // Update dominator tree immediately if the generated block is a 3589 // LoopBypassBlock because SCEV expansions to generate loop bypass 3590 // checks may query it before the current function is finished. 3591 DT->addNewBlock(NewBB, BB); 3592 if (L->getParentLoop()) 3593 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3594 ReplaceInstWithInst(BB->getTerminator(), 3595 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3596 LoopBypassBlocks.push_back(BB); 3597 AddedSafetyChecks = true; 3598 3599 // We currently don't use LoopVersioning for the actual loop cloning but we 3600 // still use it to add the noalias metadata. 3601 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3602 PSE.getSE()); 3603 LVer->prepareNoAliasMetadata(); 3604 } 3605 3606 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3607 /* 3608 In this function we generate a new loop. The new loop will contain 3609 the vectorized instructions while the old loop will continue to run the 3610 scalar remainder. 3611 3612 [ ] <-- loop iteration number check. 3613 / | 3614 / v 3615 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3616 | / | 3617 | / v 3618 || [ ] <-- vector pre header. 3619 |/ | 3620 | v 3621 | [ ] \ 3622 | [ ]_| <-- vector loop. 3623 | | 3624 | v 3625 | -[ ] <--- middle-block. 3626 | / | 3627 | / v 3628 -|- >[ ] <--- new preheader. 3629 | | 3630 | v 3631 | [ ] \ 3632 | [ ]_| <-- old scalar loop to handle remainder. 3633 \ | 3634 \ v 3635 >[ ] <-- exit block. 3636 ... 3637 */ 3638 3639 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3640 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3641 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3642 assert(VectorPH && "Invalid loop structure"); 3643 assert(ExitBlock && "Must have an exit block"); 3644 3645 // Some loops have a single integer induction variable, while other loops 3646 // don't. One example is c++ iterators that often have multiple pointer 3647 // induction variables. In the code below we also support a case where we 3648 // don't have a single induction variable. 3649 // 3650 // We try to obtain an induction variable from the original loop as hard 3651 // as possible. However if we don't find one that: 3652 // - is an integer 3653 // - counts from zero, stepping by one 3654 // - is the size of the widest induction variable type 3655 // then we create a new one. 3656 OldInduction = Legal->getPrimaryInduction(); 3657 Type *IdxTy = Legal->getWidestInductionType(); 3658 3659 // Split the single block loop into the two loop structure described above. 3660 BasicBlock *VecBody = 3661 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3662 BasicBlock *MiddleBlock = 3663 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3664 BasicBlock *ScalarPH = 3665 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3666 3667 // Create and register the new vector loop. 3668 Loop *Lp = LI->AllocateLoop(); 3669 Loop *ParentLoop = OrigLoop->getParentLoop(); 3670 3671 // Insert the new loop into the loop nest and register the new basic blocks 3672 // before calling any utilities such as SCEV that require valid LoopInfo. 3673 if (ParentLoop) { 3674 ParentLoop->addChildLoop(Lp); 3675 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3676 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3677 } else { 3678 LI->addTopLevelLoop(Lp); 3679 } 3680 Lp->addBasicBlockToLoop(VecBody, *LI); 3681 3682 // Find the loop boundaries. 3683 Value *Count = getOrCreateTripCount(Lp); 3684 3685 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3686 3687 // Now, compare the new count to zero. If it is zero skip the vector loop and 3688 // jump to the scalar loop. This check also covers the case where the 3689 // backedge-taken count is uint##_max: adding one to it will overflow leading 3690 // to an incorrect trip count of zero. In this (rare) case we will also jump 3691 // to the scalar loop. 3692 emitMinimumIterationCountCheck(Lp, ScalarPH); 3693 3694 // Generate the code to check any assumptions that we've made for SCEV 3695 // expressions. 3696 emitSCEVChecks(Lp, ScalarPH); 3697 3698 // Generate the code that checks in runtime if arrays overlap. We put the 3699 // checks into a separate block to make the more common case of few elements 3700 // faster. 3701 emitMemRuntimeChecks(Lp, ScalarPH); 3702 3703 // Generate the induction variable. 3704 // The loop step is equal to the vectorization factor (num of SIMD elements) 3705 // times the unroll factor (num of SIMD instructions). 3706 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3707 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3708 Induction = 3709 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3710 getDebugLocFromInstOrOperands(OldInduction)); 3711 3712 // We are going to resume the execution of the scalar loop. 3713 // Go over all of the induction variables that we found and fix the 3714 // PHIs that are left in the scalar version of the loop. 3715 // The starting values of PHI nodes depend on the counter of the last 3716 // iteration in the vectorized loop. 3717 // If we come from a bypass edge then we need to start from the original 3718 // start value. 3719 3720 // This variable saves the new starting index for the scalar loop. It is used 3721 // to test if there are any tail iterations left once the vector loop has 3722 // completed. 3723 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3724 for (auto &InductionEntry : *List) { 3725 PHINode *OrigPhi = InductionEntry.first; 3726 InductionDescriptor II = InductionEntry.second; 3727 3728 // Create phi nodes to merge from the backedge-taken check block. 3729 PHINode *BCResumeVal = PHINode::Create( 3730 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3731 Value *&EndValue = IVEndValues[OrigPhi]; 3732 if (OrigPhi == OldInduction) { 3733 // We know what the end value is. 3734 EndValue = CountRoundDown; 3735 } else { 3736 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3737 Type *StepType = II.getStep()->getType(); 3738 Instruction::CastOps CastOp = 3739 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3740 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3741 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3742 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3743 EndValue->setName("ind.end"); 3744 } 3745 3746 // The new PHI merges the original incoming value, in case of a bypass, 3747 // or the value at the end of the vectorized loop. 3748 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3749 3750 // Fix the scalar body counter (PHI node). 3751 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3752 3753 // The old induction's phi node in the scalar body needs the truncated 3754 // value. 3755 for (BasicBlock *BB : LoopBypassBlocks) 3756 BCResumeVal->addIncoming(II.getStartValue(), BB); 3757 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3758 } 3759 3760 // Add a check in the middle block to see if we have completed 3761 // all of the iterations in the first vector loop. 3762 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3763 Value *CmpN = 3764 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3765 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3766 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3767 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3768 3769 // Get ready to start creating new instructions into the vectorized body. 3770 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3771 3772 // Save the state. 3773 LoopVectorPreHeader = Lp->getLoopPreheader(); 3774 LoopScalarPreHeader = ScalarPH; 3775 LoopMiddleBlock = MiddleBlock; 3776 LoopExitBlock = ExitBlock; 3777 LoopVectorBody = VecBody; 3778 LoopScalarBody = OldBasicBlock; 3779 3780 // Keep all loop hints from the original loop on the vector loop (we'll 3781 // replace the vectorizer-specific hints below). 3782 if (MDNode *LID = OrigLoop->getLoopID()) 3783 Lp->setLoopID(LID); 3784 3785 LoopVectorizeHints Hints(Lp, true, *ORE); 3786 Hints.setAlreadyVectorized(); 3787 3788 return LoopVectorPreHeader; 3789 } 3790 3791 // Fix up external users of the induction variable. At this point, we are 3792 // in LCSSA form, with all external PHIs that use the IV having one input value, 3793 // coming from the remainder loop. We need those PHIs to also have a correct 3794 // value for the IV when arriving directly from the middle block. 3795 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3796 const InductionDescriptor &II, 3797 Value *CountRoundDown, Value *EndValue, 3798 BasicBlock *MiddleBlock) { 3799 // There are two kinds of external IV usages - those that use the value 3800 // computed in the last iteration (the PHI) and those that use the penultimate 3801 // value (the value that feeds into the phi from the loop latch). 3802 // We allow both, but they, obviously, have different values. 3803 3804 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3805 3806 DenseMap<Value *, Value *> MissingVals; 3807 3808 // An external user of the last iteration's value should see the value that 3809 // the remainder loop uses to initialize its own IV. 3810 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3811 for (User *U : PostInc->users()) { 3812 Instruction *UI = cast<Instruction>(U); 3813 if (!OrigLoop->contains(UI)) { 3814 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3815 MissingVals[UI] = EndValue; 3816 } 3817 } 3818 3819 // An external user of the penultimate value need to see EndValue - Step. 3820 // The simplest way to get this is to recompute it from the constituent SCEVs, 3821 // that is Start + (Step * (CRD - 1)). 3822 for (User *U : OrigPhi->users()) { 3823 auto *UI = cast<Instruction>(U); 3824 if (!OrigLoop->contains(UI)) { 3825 const DataLayout &DL = 3826 OrigLoop->getHeader()->getModule()->getDataLayout(); 3827 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3828 3829 IRBuilder<> B(MiddleBlock->getTerminator()); 3830 Value *CountMinusOne = B.CreateSub( 3831 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3832 Value *CMO = 3833 !II.getStep()->getType()->isIntegerTy() 3834 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3835 II.getStep()->getType()) 3836 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3837 CMO->setName("cast.cmo"); 3838 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3839 Escape->setName("ind.escape"); 3840 MissingVals[UI] = Escape; 3841 } 3842 } 3843 3844 for (auto &I : MissingVals) { 3845 PHINode *PHI = cast<PHINode>(I.first); 3846 // One corner case we have to handle is two IVs "chasing" each-other, 3847 // that is %IV2 = phi [...], [ %IV1, %latch ] 3848 // In this case, if IV1 has an external use, we need to avoid adding both 3849 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3850 // don't already have an incoming value for the middle block. 3851 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3852 PHI->addIncoming(I.second, MiddleBlock); 3853 } 3854 } 3855 3856 namespace { 3857 3858 struct CSEDenseMapInfo { 3859 static bool canHandle(const Instruction *I) { 3860 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3861 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3862 } 3863 3864 static inline Instruction *getEmptyKey() { 3865 return DenseMapInfo<Instruction *>::getEmptyKey(); 3866 } 3867 3868 static inline Instruction *getTombstoneKey() { 3869 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3870 } 3871 3872 static unsigned getHashValue(const Instruction *I) { 3873 assert(canHandle(I) && "Unknown instruction!"); 3874 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3875 I->value_op_end())); 3876 } 3877 3878 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3879 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3880 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3881 return LHS == RHS; 3882 return LHS->isIdenticalTo(RHS); 3883 } 3884 }; 3885 3886 } // end anonymous namespace 3887 3888 ///\brief Perform cse of induction variable instructions. 3889 static void cse(BasicBlock *BB) { 3890 // Perform simple cse. 3891 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3892 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3893 Instruction *In = &*I++; 3894 3895 if (!CSEDenseMapInfo::canHandle(In)) 3896 continue; 3897 3898 // Check if we can replace this instruction with any of the 3899 // visited instructions. 3900 if (Instruction *V = CSEMap.lookup(In)) { 3901 In->replaceAllUsesWith(V); 3902 In->eraseFromParent(); 3903 continue; 3904 } 3905 3906 CSEMap[In] = In; 3907 } 3908 } 3909 3910 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3911 /// convenience wrapper for the type-based getScalarizationOverhead API. 3912 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3913 const TargetTransformInfo &TTI) { 3914 if (VF == 1) 3915 return 0; 3916 3917 unsigned Cost = 0; 3918 Type *RetTy = ToVectorTy(I->getType(), VF); 3919 if (!RetTy->isVoidTy() && 3920 (!isa<LoadInst>(I) || 3921 !TTI.supportsEfficientVectorElementLoadStore())) 3922 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3923 3924 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3925 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3926 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3927 } 3928 else if (!isa<StoreInst>(I) || 3929 !TTI.supportsEfficientVectorElementLoadStore()) { 3930 SmallVector<const Value *, 4> Operands(I->operand_values()); 3931 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3932 } 3933 3934 return Cost; 3935 } 3936 3937 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3938 // Return the cost of the instruction, including scalarization overhead if it's 3939 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3940 // i.e. either vector version isn't available, or is too expensive. 3941 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3942 const TargetTransformInfo &TTI, 3943 const TargetLibraryInfo *TLI, 3944 bool &NeedToScalarize) { 3945 Function *F = CI->getCalledFunction(); 3946 StringRef FnName = CI->getCalledFunction()->getName(); 3947 Type *ScalarRetTy = CI->getType(); 3948 SmallVector<Type *, 4> Tys, ScalarTys; 3949 for (auto &ArgOp : CI->arg_operands()) 3950 ScalarTys.push_back(ArgOp->getType()); 3951 3952 // Estimate cost of scalarized vector call. The source operands are assumed 3953 // to be vectors, so we need to extract individual elements from there, 3954 // execute VF scalar calls, and then gather the result into the vector return 3955 // value. 3956 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3957 if (VF == 1) 3958 return ScalarCallCost; 3959 3960 // Compute corresponding vector type for return value and arguments. 3961 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3962 for (Type *ScalarTy : ScalarTys) 3963 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3964 3965 // Compute costs of unpacking argument values for the scalar calls and 3966 // packing the return values to a vector. 3967 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3968 3969 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3970 3971 // If we can't emit a vector call for this function, then the currently found 3972 // cost is the cost we need to return. 3973 NeedToScalarize = true; 3974 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3975 return Cost; 3976 3977 // If the corresponding vector cost is cheaper, return its cost. 3978 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3979 if (VectorCallCost < Cost) { 3980 NeedToScalarize = false; 3981 return VectorCallCost; 3982 } 3983 return Cost; 3984 } 3985 3986 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3987 // factor VF. Return the cost of the instruction, including scalarization 3988 // overhead if it's needed. 3989 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3990 const TargetTransformInfo &TTI, 3991 const TargetLibraryInfo *TLI) { 3992 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3993 assert(ID && "Expected intrinsic call!"); 3994 3995 FastMathFlags FMF; 3996 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3997 FMF = FPMO->getFastMathFlags(); 3998 3999 SmallVector<Value *, 4> Operands(CI->arg_operands()); 4000 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 4001 } 4002 4003 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 4004 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 4005 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 4006 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 4007 } 4008 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 4009 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 4010 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 4011 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 4012 } 4013 4014 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 4015 // For every instruction `I` in MinBWs, truncate the operands, create a 4016 // truncated version of `I` and reextend its result. InstCombine runs 4017 // later and will remove any ext/trunc pairs. 4018 SmallPtrSet<Value *, 4> Erased; 4019 for (const auto &KV : Cost->getMinimalBitwidths()) { 4020 // If the value wasn't vectorized, we must maintain the original scalar 4021 // type. The absence of the value from VectorLoopValueMap indicates that it 4022 // wasn't vectorized. 4023 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4024 continue; 4025 for (unsigned Part = 0; Part < UF; ++Part) { 4026 Value *I = getOrCreateVectorValue(KV.first, Part); 4027 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 4028 continue; 4029 Type *OriginalTy = I->getType(); 4030 Type *ScalarTruncatedTy = 4031 IntegerType::get(OriginalTy->getContext(), KV.second); 4032 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 4033 OriginalTy->getVectorNumElements()); 4034 if (TruncatedTy == OriginalTy) 4035 continue; 4036 4037 IRBuilder<> B(cast<Instruction>(I)); 4038 auto ShrinkOperand = [&](Value *V) -> Value * { 4039 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4040 if (ZI->getSrcTy() == TruncatedTy) 4041 return ZI->getOperand(0); 4042 return B.CreateZExtOrTrunc(V, TruncatedTy); 4043 }; 4044 4045 // The actual instruction modification depends on the instruction type, 4046 // unfortunately. 4047 Value *NewI = nullptr; 4048 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4049 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4050 ShrinkOperand(BO->getOperand(1))); 4051 4052 // Any wrapping introduced by shrinking this operation shouldn't be 4053 // considered undefined behavior. So, we can't unconditionally copy 4054 // arithmetic wrapping flags to NewI. 4055 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4056 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4057 NewI = 4058 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4059 ShrinkOperand(CI->getOperand(1))); 4060 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4061 NewI = B.CreateSelect(SI->getCondition(), 4062 ShrinkOperand(SI->getTrueValue()), 4063 ShrinkOperand(SI->getFalseValue())); 4064 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4065 switch (CI->getOpcode()) { 4066 default: 4067 llvm_unreachable("Unhandled cast!"); 4068 case Instruction::Trunc: 4069 NewI = ShrinkOperand(CI->getOperand(0)); 4070 break; 4071 case Instruction::SExt: 4072 NewI = B.CreateSExtOrTrunc( 4073 CI->getOperand(0), 4074 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4075 break; 4076 case Instruction::ZExt: 4077 NewI = B.CreateZExtOrTrunc( 4078 CI->getOperand(0), 4079 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4080 break; 4081 } 4082 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4083 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 4084 auto *O0 = B.CreateZExtOrTrunc( 4085 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4086 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 4087 auto *O1 = B.CreateZExtOrTrunc( 4088 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4089 4090 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 4091 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4092 // Don't do anything with the operands, just extend the result. 4093 continue; 4094 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4095 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 4096 auto *O0 = B.CreateZExtOrTrunc( 4097 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4098 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4099 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4100 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4101 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 4102 auto *O0 = B.CreateZExtOrTrunc( 4103 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4104 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4105 } else { 4106 // If we don't know what to do, be conservative and don't do anything. 4107 continue; 4108 } 4109 4110 // Lastly, extend the result. 4111 NewI->takeName(cast<Instruction>(I)); 4112 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4113 I->replaceAllUsesWith(Res); 4114 cast<Instruction>(I)->eraseFromParent(); 4115 Erased.insert(I); 4116 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 4117 } 4118 } 4119 4120 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4121 for (const auto &KV : Cost->getMinimalBitwidths()) { 4122 // If the value wasn't vectorized, we must maintain the original scalar 4123 // type. The absence of the value from VectorLoopValueMap indicates that it 4124 // wasn't vectorized. 4125 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4126 continue; 4127 for (unsigned Part = 0; Part < UF; ++Part) { 4128 Value *I = getOrCreateVectorValue(KV.first, Part); 4129 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4130 if (Inst && Inst->use_empty()) { 4131 Value *NewI = Inst->getOperand(0); 4132 Inst->eraseFromParent(); 4133 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 4134 } 4135 } 4136 } 4137 } 4138 4139 void InnerLoopVectorizer::fixVectorizedLoop() { 4140 // Insert truncates and extends for any truncated instructions as hints to 4141 // InstCombine. 4142 if (VF > 1) 4143 truncateToMinimalBitwidths(); 4144 4145 // At this point every instruction in the original loop is widened to a 4146 // vector form. Now we need to fix the recurrences in the loop. These PHI 4147 // nodes are currently empty because we did not want to introduce cycles. 4148 // This is the second stage of vectorizing recurrences. 4149 fixCrossIterationPHIs(); 4150 4151 // Update the dominator tree. 4152 // 4153 // FIXME: After creating the structure of the new loop, the dominator tree is 4154 // no longer up-to-date, and it remains that way until we update it 4155 // here. An out-of-date dominator tree is problematic for SCEV, 4156 // because SCEVExpander uses it to guide code generation. The 4157 // vectorizer use SCEVExpanders in several places. Instead, we should 4158 // keep the dominator tree up-to-date as we go. 4159 updateAnalysis(); 4160 4161 // Fix-up external users of the induction variables. 4162 for (auto &Entry : *Legal->getInductionVars()) 4163 fixupIVUsers(Entry.first, Entry.second, 4164 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4165 IVEndValues[Entry.first], LoopMiddleBlock); 4166 4167 fixLCSSAPHIs(); 4168 for (Instruction *PI : PredicatedInstructions) 4169 sinkScalarOperands(&*PI); 4170 4171 // Remove redundant induction instructions. 4172 cse(LoopVectorBody); 4173 } 4174 4175 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4176 // In order to support recurrences we need to be able to vectorize Phi nodes. 4177 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4178 // stage #2: We now need to fix the recurrences by adding incoming edges to 4179 // the currently empty PHI nodes. At this point every instruction in the 4180 // original loop is widened to a vector form so we can use them to construct 4181 // the incoming edges. 4182 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4183 // Handle first-order recurrences and reductions that need to be fixed. 4184 if (Legal->isFirstOrderRecurrence(&Phi)) 4185 fixFirstOrderRecurrence(&Phi); 4186 else if (Legal->isReductionVariable(&Phi)) 4187 fixReduction(&Phi); 4188 } 4189 } 4190 4191 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4192 // This is the second phase of vectorizing first-order recurrences. An 4193 // overview of the transformation is described below. Suppose we have the 4194 // following loop. 4195 // 4196 // for (int i = 0; i < n; ++i) 4197 // b[i] = a[i] - a[i - 1]; 4198 // 4199 // There is a first-order recurrence on "a". For this loop, the shorthand 4200 // scalar IR looks like: 4201 // 4202 // scalar.ph: 4203 // s_init = a[-1] 4204 // br scalar.body 4205 // 4206 // scalar.body: 4207 // i = phi [0, scalar.ph], [i+1, scalar.body] 4208 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4209 // s2 = a[i] 4210 // b[i] = s2 - s1 4211 // br cond, scalar.body, ... 4212 // 4213 // In this example, s1 is a recurrence because it's value depends on the 4214 // previous iteration. In the first phase of vectorization, we created a 4215 // temporary value for s1. We now complete the vectorization and produce the 4216 // shorthand vector IR shown below (for VF = 4, UF = 1). 4217 // 4218 // vector.ph: 4219 // v_init = vector(..., ..., ..., a[-1]) 4220 // br vector.body 4221 // 4222 // vector.body 4223 // i = phi [0, vector.ph], [i+4, vector.body] 4224 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4225 // v2 = a[i, i+1, i+2, i+3]; 4226 // v3 = vector(v1(3), v2(0, 1, 2)) 4227 // b[i, i+1, i+2, i+3] = v2 - v3 4228 // br cond, vector.body, middle.block 4229 // 4230 // middle.block: 4231 // x = v2(3) 4232 // br scalar.ph 4233 // 4234 // scalar.ph: 4235 // s_init = phi [x, middle.block], [a[-1], otherwise] 4236 // br scalar.body 4237 // 4238 // After execution completes the vector loop, we extract the next value of 4239 // the recurrence (x) to use as the initial value in the scalar loop. 4240 4241 // Get the original loop preheader and single loop latch. 4242 auto *Preheader = OrigLoop->getLoopPreheader(); 4243 auto *Latch = OrigLoop->getLoopLatch(); 4244 4245 // Get the initial and previous values of the scalar recurrence. 4246 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4247 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4248 4249 // Create a vector from the initial value. 4250 auto *VectorInit = ScalarInit; 4251 if (VF > 1) { 4252 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4253 VectorInit = Builder.CreateInsertElement( 4254 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4255 Builder.getInt32(VF - 1), "vector.recur.init"); 4256 } 4257 4258 // We constructed a temporary phi node in the first phase of vectorization. 4259 // This phi node will eventually be deleted. 4260 Builder.SetInsertPoint( 4261 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4262 4263 // Create a phi node for the new recurrence. The current value will either be 4264 // the initial value inserted into a vector or loop-varying vector value. 4265 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4266 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4267 4268 // Get the vectorized previous value of the last part UF - 1. It appears last 4269 // among all unrolled iterations, due to the order of their construction. 4270 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4271 4272 // Set the insertion point after the previous value if it is an instruction. 4273 // Note that the previous value may have been constant-folded so it is not 4274 // guaranteed to be an instruction in the vector loop. Also, if the previous 4275 // value is a phi node, we should insert after all the phi nodes to avoid 4276 // breaking basic block verification. 4277 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4278 isa<PHINode>(PreviousLastPart)) 4279 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4280 else 4281 Builder.SetInsertPoint( 4282 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4283 4284 // We will construct a vector for the recurrence by combining the values for 4285 // the current and previous iterations. This is the required shuffle mask. 4286 SmallVector<Constant *, 8> ShuffleMask(VF); 4287 ShuffleMask[0] = Builder.getInt32(VF - 1); 4288 for (unsigned I = 1; I < VF; ++I) 4289 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4290 4291 // The vector from which to take the initial value for the current iteration 4292 // (actual or unrolled). Initially, this is the vector phi node. 4293 Value *Incoming = VecPhi; 4294 4295 // Shuffle the current and previous vector and update the vector parts. 4296 for (unsigned Part = 0; Part < UF; ++Part) { 4297 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4298 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4299 auto *Shuffle = 4300 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4301 ConstantVector::get(ShuffleMask)) 4302 : Incoming; 4303 PhiPart->replaceAllUsesWith(Shuffle); 4304 cast<Instruction>(PhiPart)->eraseFromParent(); 4305 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4306 Incoming = PreviousPart; 4307 } 4308 4309 // Fix the latch value of the new recurrence in the vector loop. 4310 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4311 4312 // Extract the last vector element in the middle block. This will be the 4313 // initial value for the recurrence when jumping to the scalar loop. 4314 auto *ExtractForScalar = Incoming; 4315 if (VF > 1) { 4316 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4317 ExtractForScalar = Builder.CreateExtractElement( 4318 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4319 } 4320 // Extract the second last element in the middle block if the 4321 // Phi is used outside the loop. We need to extract the phi itself 4322 // and not the last element (the phi update in the current iteration). This 4323 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4324 // when the scalar loop is not run at all. 4325 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4326 if (VF > 1) 4327 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4328 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4329 // When loop is unrolled without vectorizing, initialize 4330 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4331 // `Incoming`. This is analogous to the vectorized case above: extracting the 4332 // second last element when VF > 1. 4333 else if (UF > 1) 4334 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4335 4336 // Fix the initial value of the original recurrence in the scalar loop. 4337 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4338 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4339 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4340 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4341 Start->addIncoming(Incoming, BB); 4342 } 4343 4344 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4345 Phi->setName("scalar.recur"); 4346 4347 // Finally, fix users of the recurrence outside the loop. The users will need 4348 // either the last value of the scalar recurrence or the last value of the 4349 // vector recurrence we extracted in the middle block. Since the loop is in 4350 // LCSSA form, we just need to find the phi node for the original scalar 4351 // recurrence in the exit block, and then add an edge for the middle block. 4352 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4353 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4354 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4355 break; 4356 } 4357 } 4358 } 4359 4360 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4361 Constant *Zero = Builder.getInt32(0); 4362 4363 // Get it's reduction variable descriptor. 4364 assert(Legal->isReductionVariable(Phi) && 4365 "Unable to find the reduction variable"); 4366 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4367 4368 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4369 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4370 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4371 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4372 RdxDesc.getMinMaxRecurrenceKind(); 4373 setDebugLocFromInst(Builder, ReductionStartValue); 4374 4375 // We need to generate a reduction vector from the incoming scalar. 4376 // To do so, we need to generate the 'identity' vector and override 4377 // one of the elements with the incoming scalar reduction. We need 4378 // to do it in the vector-loop preheader. 4379 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4380 4381 // This is the vector-clone of the value that leaves the loop. 4382 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4383 4384 // Find the reduction identity variable. Zero for addition, or, xor, 4385 // one for multiplication, -1 for And. 4386 Value *Identity; 4387 Value *VectorStart; 4388 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4389 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4390 // MinMax reduction have the start value as their identify. 4391 if (VF == 1) { 4392 VectorStart = Identity = ReductionStartValue; 4393 } else { 4394 VectorStart = Identity = 4395 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4396 } 4397 } else { 4398 // Handle other reduction kinds: 4399 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4400 RK, VecTy->getScalarType()); 4401 if (VF == 1) { 4402 Identity = Iden; 4403 // This vector is the Identity vector where the first element is the 4404 // incoming scalar reduction. 4405 VectorStart = ReductionStartValue; 4406 } else { 4407 Identity = ConstantVector::getSplat(VF, Iden); 4408 4409 // This vector is the Identity vector where the first element is the 4410 // incoming scalar reduction. 4411 VectorStart = 4412 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4413 } 4414 } 4415 4416 // Fix the vector-loop phi. 4417 4418 // Reductions do not have to start at zero. They can start with 4419 // any loop invariant values. 4420 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4421 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4422 for (unsigned Part = 0; Part < UF; ++Part) { 4423 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4424 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4425 // Make sure to add the reduction stat value only to the 4426 // first unroll part. 4427 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4428 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4429 cast<PHINode>(VecRdxPhi) 4430 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4431 } 4432 4433 // Before each round, move the insertion point right between 4434 // the PHIs and the values we are going to write. 4435 // This allows us to write both PHINodes and the extractelement 4436 // instructions. 4437 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4438 4439 setDebugLocFromInst(Builder, LoopExitInst); 4440 4441 // If the vector reduction can be performed in a smaller type, we truncate 4442 // then extend the loop exit value to enable InstCombine to evaluate the 4443 // entire expression in the smaller type. 4444 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4445 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4446 Builder.SetInsertPoint( 4447 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4448 VectorParts RdxParts(UF); 4449 for (unsigned Part = 0; Part < UF; ++Part) { 4450 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4451 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4452 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4453 : Builder.CreateZExt(Trunc, VecTy); 4454 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4455 UI != RdxParts[Part]->user_end();) 4456 if (*UI != Trunc) { 4457 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4458 RdxParts[Part] = Extnd; 4459 } else { 4460 ++UI; 4461 } 4462 } 4463 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4464 for (unsigned Part = 0; Part < UF; ++Part) { 4465 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4466 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4467 } 4468 } 4469 4470 // Reduce all of the unrolled parts into a single vector. 4471 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4472 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4473 setDebugLocFromInst(Builder, ReducedPartRdx); 4474 for (unsigned Part = 1; Part < UF; ++Part) { 4475 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4476 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4477 // Floating point operations had to be 'fast' to enable the reduction. 4478 ReducedPartRdx = addFastMathFlag( 4479 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4480 ReducedPartRdx, "bin.rdx")); 4481 else 4482 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4483 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4484 } 4485 4486 if (VF > 1) { 4487 bool NoNaN = Legal->hasFunNoNaNAttr(); 4488 ReducedPartRdx = 4489 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4490 // If the reduction can be performed in a smaller type, we need to extend 4491 // the reduction to the wider type before we branch to the original loop. 4492 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4493 ReducedPartRdx = 4494 RdxDesc.isSigned() 4495 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4496 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4497 } 4498 4499 // Create a phi node that merges control-flow from the backedge-taken check 4500 // block and the middle block. 4501 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4502 LoopScalarPreHeader->getTerminator()); 4503 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4504 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4505 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4506 4507 // Now, we need to fix the users of the reduction variable 4508 // inside and outside of the scalar remainder loop. 4509 // We know that the loop is in LCSSA form. We need to update the 4510 // PHI nodes in the exit blocks. 4511 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4512 // All PHINodes need to have a single entry edge, or two if 4513 // we already fixed them. 4514 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4515 4516 // We found a reduction value exit-PHI. Update it with the 4517 // incoming bypass edge. 4518 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4519 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4520 } // end of the LCSSA phi scan. 4521 4522 // Fix the scalar loop reduction variable with the incoming reduction sum 4523 // from the vector body and from the backedge value. 4524 int IncomingEdgeBlockIdx = 4525 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4526 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4527 // Pick the other block. 4528 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4529 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4530 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4531 } 4532 4533 void InnerLoopVectorizer::fixLCSSAPHIs() { 4534 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4535 if (LCSSAPhi.getNumIncomingValues() == 1) { 4536 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4537 "Incoming value isn't loop invariant"); 4538 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4539 } 4540 } 4541 } 4542 4543 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4544 // The basic block and loop containing the predicated instruction. 4545 auto *PredBB = PredInst->getParent(); 4546 auto *VectorLoop = LI->getLoopFor(PredBB); 4547 4548 // Initialize a worklist with the operands of the predicated instruction. 4549 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4550 4551 // Holds instructions that we need to analyze again. An instruction may be 4552 // reanalyzed if we don't yet know if we can sink it or not. 4553 SmallVector<Instruction *, 8> InstsToReanalyze; 4554 4555 // Returns true if a given use occurs in the predicated block. Phi nodes use 4556 // their operands in their corresponding predecessor blocks. 4557 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4558 auto *I = cast<Instruction>(U.getUser()); 4559 BasicBlock *BB = I->getParent(); 4560 if (auto *Phi = dyn_cast<PHINode>(I)) 4561 BB = Phi->getIncomingBlock( 4562 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4563 return BB == PredBB; 4564 }; 4565 4566 // Iteratively sink the scalarized operands of the predicated instruction 4567 // into the block we created for it. When an instruction is sunk, it's 4568 // operands are then added to the worklist. The algorithm ends after one pass 4569 // through the worklist doesn't sink a single instruction. 4570 bool Changed; 4571 do { 4572 // Add the instructions that need to be reanalyzed to the worklist, and 4573 // reset the changed indicator. 4574 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4575 InstsToReanalyze.clear(); 4576 Changed = false; 4577 4578 while (!Worklist.empty()) { 4579 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4580 4581 // We can't sink an instruction if it is a phi node, is already in the 4582 // predicated block, is not in the loop, or may have side effects. 4583 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4584 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4585 continue; 4586 4587 // It's legal to sink the instruction if all its uses occur in the 4588 // predicated block. Otherwise, there's nothing to do yet, and we may 4589 // need to reanalyze the instruction. 4590 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4591 InstsToReanalyze.push_back(I); 4592 continue; 4593 } 4594 4595 // Move the instruction to the beginning of the predicated block, and add 4596 // it's operands to the worklist. 4597 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4598 Worklist.insert(I->op_begin(), I->op_end()); 4599 4600 // The sinking may have enabled other instructions to be sunk, so we will 4601 // need to iterate. 4602 Changed = true; 4603 } 4604 } while (Changed); 4605 } 4606 4607 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4608 unsigned VF) { 4609 assert(PN->getParent() == OrigLoop->getHeader() && 4610 "Non-header phis should have been handled elsewhere"); 4611 4612 PHINode *P = cast<PHINode>(PN); 4613 // In order to support recurrences we need to be able to vectorize Phi nodes. 4614 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4615 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4616 // this value when we vectorize all of the instructions that use the PHI. 4617 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4618 for (unsigned Part = 0; Part < UF; ++Part) { 4619 // This is phase one of vectorizing PHIs. 4620 Type *VecTy = 4621 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4622 Value *EntryPart = PHINode::Create( 4623 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4624 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4625 } 4626 return; 4627 } 4628 4629 setDebugLocFromInst(Builder, P); 4630 4631 // This PHINode must be an induction variable. 4632 // Make sure that we know about it. 4633 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4634 4635 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4636 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4637 4638 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4639 // which can be found from the original scalar operations. 4640 switch (II.getKind()) { 4641 case InductionDescriptor::IK_NoInduction: 4642 llvm_unreachable("Unknown induction"); 4643 case InductionDescriptor::IK_IntInduction: 4644 case InductionDescriptor::IK_FpInduction: 4645 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4646 case InductionDescriptor::IK_PtrInduction: { 4647 // Handle the pointer induction variable case. 4648 assert(P->getType()->isPointerTy() && "Unexpected type."); 4649 // This is the normalized GEP that starts counting at zero. 4650 Value *PtrInd = Induction; 4651 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4652 // Determine the number of scalars we need to generate for each unroll 4653 // iteration. If the instruction is uniform, we only need to generate the 4654 // first lane. Otherwise, we generate all VF values. 4655 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4656 // These are the scalar results. Notice that we don't generate vector GEPs 4657 // because scalar GEPs result in better code. 4658 for (unsigned Part = 0; Part < UF; ++Part) { 4659 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4660 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4661 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4662 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4663 SclrGep->setName("next.gep"); 4664 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4665 } 4666 } 4667 return; 4668 } 4669 } 4670 } 4671 4672 /// A helper function for checking whether an integer division-related 4673 /// instruction may divide by zero (in which case it must be predicated if 4674 /// executed conditionally in the scalar code). 4675 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4676 /// Non-zero divisors that are non compile-time constants will not be 4677 /// converted into multiplication, so we will still end up scalarizing 4678 /// the division, but can do so w/o predication. 4679 static bool mayDivideByZero(Instruction &I) { 4680 assert((I.getOpcode() == Instruction::UDiv || 4681 I.getOpcode() == Instruction::SDiv || 4682 I.getOpcode() == Instruction::URem || 4683 I.getOpcode() == Instruction::SRem) && 4684 "Unexpected instruction"); 4685 Value *Divisor = I.getOperand(1); 4686 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4687 return !CInt || CInt->isZero(); 4688 } 4689 4690 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4691 switch (I.getOpcode()) { 4692 case Instruction::Br: 4693 case Instruction::PHI: 4694 llvm_unreachable("This instruction is handled by a different recipe."); 4695 case Instruction::GetElementPtr: { 4696 // Construct a vector GEP by widening the operands of the scalar GEP as 4697 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4698 // results in a vector of pointers when at least one operand of the GEP 4699 // is vector-typed. Thus, to keep the representation compact, we only use 4700 // vector-typed operands for loop-varying values. 4701 auto *GEP = cast<GetElementPtrInst>(&I); 4702 4703 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4704 // If we are vectorizing, but the GEP has only loop-invariant operands, 4705 // the GEP we build (by only using vector-typed operands for 4706 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4707 // produce a vector of pointers, we need to either arbitrarily pick an 4708 // operand to broadcast, or broadcast a clone of the original GEP. 4709 // Here, we broadcast a clone of the original. 4710 // 4711 // TODO: If at some point we decide to scalarize instructions having 4712 // loop-invariant operands, this special case will no longer be 4713 // required. We would add the scalarization decision to 4714 // collectLoopScalars() and teach getVectorValue() to broadcast 4715 // the lane-zero scalar value. 4716 auto *Clone = Builder.Insert(GEP->clone()); 4717 for (unsigned Part = 0; Part < UF; ++Part) { 4718 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4719 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4720 addMetadata(EntryPart, GEP); 4721 } 4722 } else { 4723 // If the GEP has at least one loop-varying operand, we are sure to 4724 // produce a vector of pointers. But if we are only unrolling, we want 4725 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4726 // produce with the code below will be scalar (if VF == 1) or vector 4727 // (otherwise). Note that for the unroll-only case, we still maintain 4728 // values in the vector mapping with initVector, as we do for other 4729 // instructions. 4730 for (unsigned Part = 0; Part < UF; ++Part) { 4731 // The pointer operand of the new GEP. If it's loop-invariant, we 4732 // won't broadcast it. 4733 auto *Ptr = 4734 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4735 ? GEP->getPointerOperand() 4736 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4737 4738 // Collect all the indices for the new GEP. If any index is 4739 // loop-invariant, we won't broadcast it. 4740 SmallVector<Value *, 4> Indices; 4741 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4742 if (OrigLoop->isLoopInvariant(U.get())) 4743 Indices.push_back(U.get()); 4744 else 4745 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4746 } 4747 4748 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4749 // but it should be a vector, otherwise. 4750 auto *NewGEP = GEP->isInBounds() 4751 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4752 : Builder.CreateGEP(Ptr, Indices); 4753 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4754 "NewGEP is not a pointer vector"); 4755 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4756 addMetadata(NewGEP, GEP); 4757 } 4758 } 4759 4760 break; 4761 } 4762 case Instruction::UDiv: 4763 case Instruction::SDiv: 4764 case Instruction::SRem: 4765 case Instruction::URem: 4766 case Instruction::Add: 4767 case Instruction::FAdd: 4768 case Instruction::Sub: 4769 case Instruction::FSub: 4770 case Instruction::Mul: 4771 case Instruction::FMul: 4772 case Instruction::FDiv: 4773 case Instruction::FRem: 4774 case Instruction::Shl: 4775 case Instruction::LShr: 4776 case Instruction::AShr: 4777 case Instruction::And: 4778 case Instruction::Or: 4779 case Instruction::Xor: { 4780 // Just widen binops. 4781 auto *BinOp = cast<BinaryOperator>(&I); 4782 setDebugLocFromInst(Builder, BinOp); 4783 4784 for (unsigned Part = 0; Part < UF; ++Part) { 4785 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4786 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4787 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4788 4789 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4790 VecOp->copyIRFlags(BinOp); 4791 4792 // Use this vector value for all users of the original instruction. 4793 VectorLoopValueMap.setVectorValue(&I, Part, V); 4794 addMetadata(V, BinOp); 4795 } 4796 4797 break; 4798 } 4799 case Instruction::Select: { 4800 // Widen selects. 4801 // If the selector is loop invariant we can create a select 4802 // instruction with a scalar condition. Otherwise, use vector-select. 4803 auto *SE = PSE.getSE(); 4804 bool InvariantCond = 4805 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4806 setDebugLocFromInst(Builder, &I); 4807 4808 // The condition can be loop invariant but still defined inside the 4809 // loop. This means that we can't just use the original 'cond' value. 4810 // We have to take the 'vectorized' value and pick the first lane. 4811 // Instcombine will make this a no-op. 4812 4813 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4814 4815 for (unsigned Part = 0; Part < UF; ++Part) { 4816 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4817 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4818 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4819 Value *Sel = 4820 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4821 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4822 addMetadata(Sel, &I); 4823 } 4824 4825 break; 4826 } 4827 4828 case Instruction::ICmp: 4829 case Instruction::FCmp: { 4830 // Widen compares. Generate vector compares. 4831 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4832 auto *Cmp = dyn_cast<CmpInst>(&I); 4833 setDebugLocFromInst(Builder, Cmp); 4834 for (unsigned Part = 0; Part < UF; ++Part) { 4835 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4836 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4837 Value *C = nullptr; 4838 if (FCmp) { 4839 // Propagate fast math flags. 4840 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4841 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4842 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4843 } else { 4844 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4845 } 4846 VectorLoopValueMap.setVectorValue(&I, Part, C); 4847 addMetadata(C, &I); 4848 } 4849 4850 break; 4851 } 4852 4853 case Instruction::ZExt: 4854 case Instruction::SExt: 4855 case Instruction::FPToUI: 4856 case Instruction::FPToSI: 4857 case Instruction::FPExt: 4858 case Instruction::PtrToInt: 4859 case Instruction::IntToPtr: 4860 case Instruction::SIToFP: 4861 case Instruction::UIToFP: 4862 case Instruction::Trunc: 4863 case Instruction::FPTrunc: 4864 case Instruction::BitCast: { 4865 auto *CI = dyn_cast<CastInst>(&I); 4866 setDebugLocFromInst(Builder, CI); 4867 4868 /// Vectorize casts. 4869 Type *DestTy = 4870 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4871 4872 for (unsigned Part = 0; Part < UF; ++Part) { 4873 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4874 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4875 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4876 addMetadata(Cast, &I); 4877 } 4878 break; 4879 } 4880 4881 case Instruction::Call: { 4882 // Ignore dbg intrinsics. 4883 if (isa<DbgInfoIntrinsic>(I)) 4884 break; 4885 setDebugLocFromInst(Builder, &I); 4886 4887 Module *M = I.getParent()->getParent()->getParent(); 4888 auto *CI = cast<CallInst>(&I); 4889 4890 StringRef FnName = CI->getCalledFunction()->getName(); 4891 Function *F = CI->getCalledFunction(); 4892 Type *RetTy = ToVectorTy(CI->getType(), VF); 4893 SmallVector<Type *, 4> Tys; 4894 for (Value *ArgOperand : CI->arg_operands()) 4895 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4896 4897 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4898 4899 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4900 // version of the instruction. 4901 // Is it beneficial to perform intrinsic call compared to lib call? 4902 bool NeedToScalarize; 4903 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4904 bool UseVectorIntrinsic = 4905 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4906 assert((UseVectorIntrinsic || !NeedToScalarize) && 4907 "Instruction should be scalarized elsewhere."); 4908 4909 for (unsigned Part = 0; Part < UF; ++Part) { 4910 SmallVector<Value *, 4> Args; 4911 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4912 Value *Arg = CI->getArgOperand(i); 4913 // Some intrinsics have a scalar argument - don't replace it with a 4914 // vector. 4915 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4916 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4917 Args.push_back(Arg); 4918 } 4919 4920 Function *VectorF; 4921 if (UseVectorIntrinsic) { 4922 // Use vector version of the intrinsic. 4923 Type *TysForDecl[] = {CI->getType()}; 4924 if (VF > 1) 4925 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4926 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4927 } else { 4928 // Use vector version of the library call. 4929 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4930 assert(!VFnName.empty() && "Vector function name is empty."); 4931 VectorF = M->getFunction(VFnName); 4932 if (!VectorF) { 4933 // Generate a declaration 4934 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4935 VectorF = 4936 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4937 VectorF->copyAttributesFrom(F); 4938 } 4939 } 4940 assert(VectorF && "Can't create vector function."); 4941 4942 SmallVector<OperandBundleDef, 1> OpBundles; 4943 CI->getOperandBundlesAsDefs(OpBundles); 4944 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4945 4946 if (isa<FPMathOperator>(V)) 4947 V->copyFastMathFlags(CI); 4948 4949 VectorLoopValueMap.setVectorValue(&I, Part, V); 4950 addMetadata(V, &I); 4951 } 4952 4953 break; 4954 } 4955 4956 default: 4957 // This instruction is not vectorized by simple widening. 4958 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4959 llvm_unreachable("Unhandled instruction!"); 4960 } // end of switch. 4961 } 4962 4963 void InnerLoopVectorizer::updateAnalysis() { 4964 // Forget the original basic block. 4965 PSE.getSE()->forgetLoop(OrigLoop); 4966 4967 // Update the dominator tree information. 4968 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4969 "Entry does not dominate exit."); 4970 4971 DT->addNewBlock(LoopMiddleBlock, 4972 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4973 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4974 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4975 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4976 DEBUG(DT->verifyDomTree()); 4977 } 4978 4979 /// \brief Check whether it is safe to if-convert this phi node. 4980 /// 4981 /// Phi nodes with constant expressions that can trap are not safe to if 4982 /// convert. 4983 static bool canIfConvertPHINodes(BasicBlock *BB) { 4984 for (PHINode &Phi : BB->phis()) { 4985 for (Value *V : Phi.incoming_values()) 4986 if (auto *C = dyn_cast<Constant>(V)) 4987 if (C->canTrap()) 4988 return false; 4989 } 4990 return true; 4991 } 4992 4993 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4994 if (!EnableIfConversion) { 4995 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4996 << "if-conversion is disabled"); 4997 return false; 4998 } 4999 5000 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5001 5002 // A list of pointers that we can safely read and write to. 5003 SmallPtrSet<Value *, 8> SafePointes; 5004 5005 // Collect safe addresses. 5006 for (BasicBlock *BB : TheLoop->blocks()) { 5007 if (blockNeedsPredication(BB)) 5008 continue; 5009 5010 for (Instruction &I : *BB) 5011 if (auto *Ptr = getPointerOperand(&I)) 5012 SafePointes.insert(Ptr); 5013 } 5014 5015 // Collect the blocks that need predication. 5016 BasicBlock *Header = TheLoop->getHeader(); 5017 for (BasicBlock *BB : TheLoop->blocks()) { 5018 // We don't support switch statements inside loops. 5019 if (!isa<BranchInst>(BB->getTerminator())) { 5020 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5021 << "loop contains a switch statement"); 5022 return false; 5023 } 5024 5025 // We must be able to predicate all blocks that need to be predicated. 5026 if (blockNeedsPredication(BB)) { 5027 if (!blockCanBePredicated(BB, SafePointes)) { 5028 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5029 << "control flow cannot be substituted for a select"); 5030 return false; 5031 } 5032 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5033 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5034 << "control flow cannot be substituted for a select"); 5035 return false; 5036 } 5037 } 5038 5039 // We can if-convert this loop. 5040 return true; 5041 } 5042 5043 bool LoopVectorizationLegality::canVectorize() { 5044 // Store the result and return it at the end instead of exiting early, in case 5045 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5046 bool Result = true; 5047 5048 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 5049 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5050 // be canonicalized. 5051 if (!TheLoop->getLoopPreheader()) { 5052 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 5053 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5054 << "loop control flow is not understood by vectorizer"); 5055 if (DoExtraAnalysis) 5056 Result = false; 5057 else 5058 return false; 5059 } 5060 5061 // FIXME: The code is currently dead, since the loop gets sent to 5062 // LoopVectorizationLegality is already an innermost loop. 5063 // 5064 // We can only vectorize innermost loops. 5065 if (!TheLoop->empty()) { 5066 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5067 << "loop is not the innermost loop"); 5068 if (DoExtraAnalysis) 5069 Result = false; 5070 else 5071 return false; 5072 } 5073 5074 // We must have a single backedge. 5075 if (TheLoop->getNumBackEdges() != 1) { 5076 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5077 << "loop control flow is not understood by vectorizer"); 5078 if (DoExtraAnalysis) 5079 Result = false; 5080 else 5081 return false; 5082 } 5083 5084 // We must have a single exiting block. 5085 if (!TheLoop->getExitingBlock()) { 5086 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5087 << "loop control flow is not understood by vectorizer"); 5088 if (DoExtraAnalysis) 5089 Result = false; 5090 else 5091 return false; 5092 } 5093 5094 // We only handle bottom-tested loops, i.e. loop in which the condition is 5095 // checked at the end of each iteration. With that we can assume that all 5096 // instructions in the loop are executed the same number of times. 5097 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5098 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5099 << "loop control flow is not understood by vectorizer"); 5100 if (DoExtraAnalysis) 5101 Result = false; 5102 else 5103 return false; 5104 } 5105 5106 // We need to have a loop header. 5107 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5108 << '\n'); 5109 5110 // Check if we can if-convert non-single-bb loops. 5111 unsigned NumBlocks = TheLoop->getNumBlocks(); 5112 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5113 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5114 if (DoExtraAnalysis) 5115 Result = false; 5116 else 5117 return false; 5118 } 5119 5120 // Check if we can vectorize the instructions and CFG in this loop. 5121 if (!canVectorizeInstrs()) { 5122 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5123 if (DoExtraAnalysis) 5124 Result = false; 5125 else 5126 return false; 5127 } 5128 5129 // Go over each instruction and look at memory deps. 5130 if (!canVectorizeMemory()) { 5131 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5132 if (DoExtraAnalysis) 5133 Result = false; 5134 else 5135 return false; 5136 } 5137 5138 DEBUG(dbgs() << "LV: We can vectorize this loop" 5139 << (LAI->getRuntimePointerChecking()->Need 5140 ? " (with a runtime bound check)" 5141 : "") 5142 << "!\n"); 5143 5144 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5145 5146 // If an override option has been passed in for interleaved accesses, use it. 5147 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5148 UseInterleaved = EnableInterleavedMemAccesses; 5149 5150 // Analyze interleaved memory accesses. 5151 if (UseInterleaved) 5152 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5153 5154 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5155 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5156 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5157 5158 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5159 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5160 << "Too many SCEV assumptions need to be made and checked " 5161 << "at runtime"); 5162 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5163 if (DoExtraAnalysis) 5164 Result = false; 5165 else 5166 return false; 5167 } 5168 5169 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5170 // we can vectorize, and at this point we don't have any other mem analysis 5171 // which may limit our maximum vectorization factor, so just return true with 5172 // no restrictions. 5173 return Result; 5174 } 5175 5176 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5177 if (Ty->isPointerTy()) 5178 return DL.getIntPtrType(Ty); 5179 5180 // It is possible that char's or short's overflow when we ask for the loop's 5181 // trip count, work around this by changing the type size. 5182 if (Ty->getScalarSizeInBits() < 32) 5183 return Type::getInt32Ty(Ty->getContext()); 5184 5185 return Ty; 5186 } 5187 5188 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5189 Ty0 = convertPointerToIntegerType(DL, Ty0); 5190 Ty1 = convertPointerToIntegerType(DL, Ty1); 5191 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5192 return Ty0; 5193 return Ty1; 5194 } 5195 5196 /// \brief Check that the instruction has outside loop users and is not an 5197 /// identified reduction variable. 5198 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5199 SmallPtrSetImpl<Value *> &AllowedExit) { 5200 // Reduction and Induction instructions are allowed to have exit users. All 5201 // other instructions must not have external users. 5202 if (!AllowedExit.count(Inst)) 5203 // Check that all of the users of the loop are inside the BB. 5204 for (User *U : Inst->users()) { 5205 Instruction *UI = cast<Instruction>(U); 5206 // This user may be a reduction exit value. 5207 if (!TheLoop->contains(UI)) { 5208 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5209 return true; 5210 } 5211 } 5212 return false; 5213 } 5214 5215 void LoopVectorizationLegality::addInductionPhi( 5216 PHINode *Phi, const InductionDescriptor &ID, 5217 SmallPtrSetImpl<Value *> &AllowedExit) { 5218 Inductions[Phi] = ID; 5219 5220 // In case this induction also comes with casts that we know we can ignore 5221 // in the vectorized loop body, record them here. All casts could be recorded 5222 // here for ignoring, but suffices to record only the first (as it is the 5223 // only one that may bw used outside the cast sequence). 5224 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5225 if (!Casts.empty()) 5226 InductionCastsToIgnore.insert(*Casts.begin()); 5227 5228 Type *PhiTy = Phi->getType(); 5229 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5230 5231 // Get the widest type. 5232 if (!PhiTy->isFloatingPointTy()) { 5233 if (!WidestIndTy) 5234 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5235 else 5236 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5237 } 5238 5239 // Int inductions are special because we only allow one IV. 5240 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5241 ID.getConstIntStepValue() && 5242 ID.getConstIntStepValue()->isOne() && 5243 isa<Constant>(ID.getStartValue()) && 5244 cast<Constant>(ID.getStartValue())->isNullValue()) { 5245 5246 // Use the phi node with the widest type as induction. Use the last 5247 // one if there are multiple (no good reason for doing this other 5248 // than it is expedient). We've checked that it begins at zero and 5249 // steps by one, so this is a canonical induction variable. 5250 if (!PrimaryInduction || PhiTy == WidestIndTy) 5251 PrimaryInduction = Phi; 5252 } 5253 5254 // Both the PHI node itself, and the "post-increment" value feeding 5255 // back into the PHI node may have external users. 5256 // We can allow those uses, except if the SCEVs we have for them rely 5257 // on predicates that only hold within the loop, since allowing the exit 5258 // currently means re-using this SCEV outside the loop. 5259 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5260 AllowedExit.insert(Phi); 5261 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5262 } 5263 5264 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5265 } 5266 5267 bool LoopVectorizationLegality::canVectorizeInstrs() { 5268 BasicBlock *Header = TheLoop->getHeader(); 5269 5270 // Look for the attribute signaling the absence of NaNs. 5271 Function &F = *Header->getParent(); 5272 HasFunNoNaNAttr = 5273 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5274 5275 // For each block in the loop. 5276 for (BasicBlock *BB : TheLoop->blocks()) { 5277 // Scan the instructions in the block and look for hazards. 5278 for (Instruction &I : *BB) { 5279 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5280 Type *PhiTy = Phi->getType(); 5281 // Check that this PHI type is allowed. 5282 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5283 !PhiTy->isPointerTy()) { 5284 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5285 << "loop control flow is not understood by vectorizer"); 5286 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5287 return false; 5288 } 5289 5290 // If this PHINode is not in the header block, then we know that we 5291 // can convert it to select during if-conversion. No need to check if 5292 // the PHIs in this block are induction or reduction variables. 5293 if (BB != Header) { 5294 // Check that this instruction has no outside users or is an 5295 // identified reduction value with an outside user. 5296 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5297 continue; 5298 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5299 << "value could not be identified as " 5300 "an induction or reduction variable"); 5301 return false; 5302 } 5303 5304 // We only allow if-converted PHIs with exactly two incoming values. 5305 if (Phi->getNumIncomingValues() != 2) { 5306 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5307 << "control flow not understood by vectorizer"); 5308 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5309 return false; 5310 } 5311 5312 RecurrenceDescriptor RedDes; 5313 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 5314 DT)) { 5315 if (RedDes.hasUnsafeAlgebra()) 5316 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5317 AllowedExit.insert(RedDes.getLoopExitInstr()); 5318 Reductions[Phi] = RedDes; 5319 continue; 5320 } 5321 5322 InductionDescriptor ID; 5323 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5324 addInductionPhi(Phi, ID, AllowedExit); 5325 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5326 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5327 continue; 5328 } 5329 5330 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5331 SinkAfter, DT)) { 5332 FirstOrderRecurrences.insert(Phi); 5333 continue; 5334 } 5335 5336 // As a last resort, coerce the PHI to a AddRec expression 5337 // and re-try classifying it a an induction PHI. 5338 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5339 addInductionPhi(Phi, ID, AllowedExit); 5340 continue; 5341 } 5342 5343 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5344 << "value that could not be identified as " 5345 "reduction is used outside the loop"); 5346 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5347 return false; 5348 } // end of PHI handling 5349 5350 // We handle calls that: 5351 // * Are debug info intrinsics. 5352 // * Have a mapping to an IR intrinsic. 5353 // * Have a vector version available. 5354 auto *CI = dyn_cast<CallInst>(&I); 5355 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5356 !isa<DbgInfoIntrinsic>(CI) && 5357 !(CI->getCalledFunction() && TLI && 5358 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5359 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5360 << "call instruction cannot be vectorized"); 5361 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5362 return false; 5363 } 5364 5365 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5366 // second argument is the same (i.e. loop invariant) 5367 if (CI && hasVectorInstrinsicScalarOpd( 5368 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5369 auto *SE = PSE.getSE(); 5370 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5371 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5372 << "intrinsic instruction cannot be vectorized"); 5373 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5374 return false; 5375 } 5376 } 5377 5378 // Check that the instruction return type is vectorizable. 5379 // Also, we can't vectorize extractelement instructions. 5380 if ((!VectorType::isValidElementType(I.getType()) && 5381 !I.getType()->isVoidTy()) || 5382 isa<ExtractElementInst>(I)) { 5383 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5384 << "instruction return type cannot be vectorized"); 5385 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5386 return false; 5387 } 5388 5389 // Check that the stored type is vectorizable. 5390 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5391 Type *T = ST->getValueOperand()->getType(); 5392 if (!VectorType::isValidElementType(T)) { 5393 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5394 << "store instruction cannot be vectorized"); 5395 return false; 5396 } 5397 5398 // FP instructions can allow unsafe algebra, thus vectorizable by 5399 // non-IEEE-754 compliant SIMD units. 5400 // This applies to floating-point math operations and calls, not memory 5401 // operations, shuffles, or casts, as they don't change precision or 5402 // semantics. 5403 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5404 !I.isFast()) { 5405 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5406 Hints->setPotentiallyUnsafe(); 5407 } 5408 5409 // Reduction instructions are allowed to have exit users. 5410 // All other instructions must not have external users. 5411 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5412 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5413 << "value cannot be used outside the loop"); 5414 return false; 5415 } 5416 } // next instr. 5417 } 5418 5419 if (!PrimaryInduction) { 5420 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5421 if (Inductions.empty()) { 5422 ORE->emit(createMissedAnalysis("NoInductionVariable") 5423 << "loop induction variable could not be identified"); 5424 return false; 5425 } 5426 } 5427 5428 // Now we know the widest induction type, check if our found induction 5429 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5430 // will create another. 5431 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5432 PrimaryInduction = nullptr; 5433 5434 return true; 5435 } 5436 5437 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5438 // We should not collect Scalars more than once per VF. Right now, this 5439 // function is called from collectUniformsAndScalars(), which already does 5440 // this check. Collecting Scalars for VF=1 does not make any sense. 5441 assert(VF >= 2 && !Scalars.count(VF) && 5442 "This function should not be visited twice for the same VF"); 5443 5444 SmallSetVector<Instruction *, 8> Worklist; 5445 5446 // These sets are used to seed the analysis with pointers used by memory 5447 // accesses that will remain scalar. 5448 SmallSetVector<Instruction *, 8> ScalarPtrs; 5449 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5450 5451 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5452 // The pointer operands of loads and stores will be scalar as long as the 5453 // memory access is not a gather or scatter operation. The value operand of a 5454 // store will remain scalar if the store is scalarized. 5455 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5456 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5457 assert(WideningDecision != CM_Unknown && 5458 "Widening decision should be ready at this moment"); 5459 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5460 if (Ptr == Store->getValueOperand()) 5461 return WideningDecision == CM_Scalarize; 5462 assert(Ptr == getPointerOperand(MemAccess) && 5463 "Ptr is neither a value or pointer operand"); 5464 return WideningDecision != CM_GatherScatter; 5465 }; 5466 5467 // A helper that returns true if the given value is a bitcast or 5468 // getelementptr instruction contained in the loop. 5469 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5470 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5471 isa<GetElementPtrInst>(V)) && 5472 !TheLoop->isLoopInvariant(V); 5473 }; 5474 5475 // A helper that evaluates a memory access's use of a pointer. If the use 5476 // will be a scalar use, and the pointer is only used by memory accesses, we 5477 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5478 // PossibleNonScalarPtrs. 5479 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5480 // We only care about bitcast and getelementptr instructions contained in 5481 // the loop. 5482 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5483 return; 5484 5485 // If the pointer has already been identified as scalar (e.g., if it was 5486 // also identified as uniform), there's nothing to do. 5487 auto *I = cast<Instruction>(Ptr); 5488 if (Worklist.count(I)) 5489 return; 5490 5491 // If the use of the pointer will be a scalar use, and all users of the 5492 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5493 // place the pointer in PossibleNonScalarPtrs. 5494 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5495 return isa<LoadInst>(U) || isa<StoreInst>(U); 5496 })) 5497 ScalarPtrs.insert(I); 5498 else 5499 PossibleNonScalarPtrs.insert(I); 5500 }; 5501 5502 // We seed the scalars analysis with three classes of instructions: (1) 5503 // instructions marked uniform-after-vectorization, (2) bitcast and 5504 // getelementptr instructions used by memory accesses requiring a scalar use, 5505 // and (3) pointer induction variables and their update instructions (we 5506 // currently only scalarize these). 5507 // 5508 // (1) Add to the worklist all instructions that have been identified as 5509 // uniform-after-vectorization. 5510 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5511 5512 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5513 // memory accesses requiring a scalar use. The pointer operands of loads and 5514 // stores will be scalar as long as the memory accesses is not a gather or 5515 // scatter operation. The value operand of a store will remain scalar if the 5516 // store is scalarized. 5517 for (auto *BB : TheLoop->blocks()) 5518 for (auto &I : *BB) { 5519 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5520 evaluatePtrUse(Load, Load->getPointerOperand()); 5521 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5522 evaluatePtrUse(Store, Store->getPointerOperand()); 5523 evaluatePtrUse(Store, Store->getValueOperand()); 5524 } 5525 } 5526 for (auto *I : ScalarPtrs) 5527 if (!PossibleNonScalarPtrs.count(I)) { 5528 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5529 Worklist.insert(I); 5530 } 5531 5532 // (3) Add to the worklist all pointer induction variables and their update 5533 // instructions. 5534 // 5535 // TODO: Once we are able to vectorize pointer induction variables we should 5536 // no longer insert them into the worklist here. 5537 auto *Latch = TheLoop->getLoopLatch(); 5538 for (auto &Induction : *Legal->getInductionVars()) { 5539 auto *Ind = Induction.first; 5540 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5541 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5542 continue; 5543 Worklist.insert(Ind); 5544 Worklist.insert(IndUpdate); 5545 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5546 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5547 } 5548 5549 // Insert the forced scalars. 5550 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5551 // induction variable when the PHI user is scalarized. 5552 if (ForcedScalars.count(VF)) 5553 for (auto *I : ForcedScalars.find(VF)->second) 5554 Worklist.insert(I); 5555 5556 // Expand the worklist by looking through any bitcasts and getelementptr 5557 // instructions we've already identified as scalar. This is similar to the 5558 // expansion step in collectLoopUniforms(); however, here we're only 5559 // expanding to include additional bitcasts and getelementptr instructions. 5560 unsigned Idx = 0; 5561 while (Idx != Worklist.size()) { 5562 Instruction *Dst = Worklist[Idx++]; 5563 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5564 continue; 5565 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5566 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5567 auto *J = cast<Instruction>(U); 5568 return !TheLoop->contains(J) || Worklist.count(J) || 5569 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5570 isScalarUse(J, Src)); 5571 })) { 5572 Worklist.insert(Src); 5573 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5574 } 5575 } 5576 5577 // An induction variable will remain scalar if all users of the induction 5578 // variable and induction variable update remain scalar. 5579 for (auto &Induction : *Legal->getInductionVars()) { 5580 auto *Ind = Induction.first; 5581 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5582 5583 // We already considered pointer induction variables, so there's no reason 5584 // to look at their users again. 5585 // 5586 // TODO: Once we are able to vectorize pointer induction variables we 5587 // should no longer skip over them here. 5588 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5589 continue; 5590 5591 // Determine if all users of the induction variable are scalar after 5592 // vectorization. 5593 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5594 auto *I = cast<Instruction>(U); 5595 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5596 }); 5597 if (!ScalarInd) 5598 continue; 5599 5600 // Determine if all users of the induction variable update instruction are 5601 // scalar after vectorization. 5602 auto ScalarIndUpdate = 5603 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5604 auto *I = cast<Instruction>(U); 5605 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5606 }); 5607 if (!ScalarIndUpdate) 5608 continue; 5609 5610 // The induction variable and its update instruction will remain scalar. 5611 Worklist.insert(Ind); 5612 Worklist.insert(IndUpdate); 5613 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5614 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5615 } 5616 5617 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5618 } 5619 5620 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5621 if (!blockNeedsPredication(I->getParent())) 5622 return false; 5623 switch(I->getOpcode()) { 5624 default: 5625 break; 5626 case Instruction::Store: 5627 return !isMaskRequired(I); 5628 case Instruction::UDiv: 5629 case Instruction::SDiv: 5630 case Instruction::SRem: 5631 case Instruction::URem: 5632 return mayDivideByZero(*I); 5633 } 5634 return false; 5635 } 5636 5637 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5638 unsigned VF) { 5639 // Get and ensure we have a valid memory instruction. 5640 LoadInst *LI = dyn_cast<LoadInst>(I); 5641 StoreInst *SI = dyn_cast<StoreInst>(I); 5642 assert((LI || SI) && "Invalid memory instruction"); 5643 5644 auto *Ptr = getPointerOperand(I); 5645 5646 // In order to be widened, the pointer should be consecutive, first of all. 5647 if (!isConsecutivePtr(Ptr)) 5648 return false; 5649 5650 // If the instruction is a store located in a predicated block, it will be 5651 // scalarized. 5652 if (isScalarWithPredication(I)) 5653 return false; 5654 5655 // If the instruction's allocated size doesn't equal it's type size, it 5656 // requires padding and will be scalarized. 5657 auto &DL = I->getModule()->getDataLayout(); 5658 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5659 if (hasIrregularType(ScalarTy, DL, VF)) 5660 return false; 5661 5662 return true; 5663 } 5664 5665 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5666 // We should not collect Uniforms more than once per VF. Right now, 5667 // this function is called from collectUniformsAndScalars(), which 5668 // already does this check. Collecting Uniforms for VF=1 does not make any 5669 // sense. 5670 5671 assert(VF >= 2 && !Uniforms.count(VF) && 5672 "This function should not be visited twice for the same VF"); 5673 5674 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5675 // not analyze again. Uniforms.count(VF) will return 1. 5676 Uniforms[VF].clear(); 5677 5678 // We now know that the loop is vectorizable! 5679 // Collect instructions inside the loop that will remain uniform after 5680 // vectorization. 5681 5682 // Global values, params and instructions outside of current loop are out of 5683 // scope. 5684 auto isOutOfScope = [&](Value *V) -> bool { 5685 Instruction *I = dyn_cast<Instruction>(V); 5686 return (!I || !TheLoop->contains(I)); 5687 }; 5688 5689 SetVector<Instruction *> Worklist; 5690 BasicBlock *Latch = TheLoop->getLoopLatch(); 5691 5692 // Start with the conditional branch. If the branch condition is an 5693 // instruction contained in the loop that is only used by the branch, it is 5694 // uniform. 5695 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5696 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5697 Worklist.insert(Cmp); 5698 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5699 } 5700 5701 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5702 // are pointers that are treated like consecutive pointers during 5703 // vectorization. The pointer operands of interleaved accesses are an 5704 // example. 5705 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5706 5707 // Holds pointer operands of instructions that are possibly non-uniform. 5708 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5709 5710 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5711 InstWidening WideningDecision = getWideningDecision(I, VF); 5712 assert(WideningDecision != CM_Unknown && 5713 "Widening decision should be ready at this moment"); 5714 5715 return (WideningDecision == CM_Widen || 5716 WideningDecision == CM_Widen_Reverse || 5717 WideningDecision == CM_Interleave); 5718 }; 5719 // Iterate over the instructions in the loop, and collect all 5720 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5721 // that a consecutive-like pointer operand will be scalarized, we collect it 5722 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5723 // getelementptr instruction can be used by both vectorized and scalarized 5724 // memory instructions. For example, if a loop loads and stores from the same 5725 // location, but the store is conditional, the store will be scalarized, and 5726 // the getelementptr won't remain uniform. 5727 for (auto *BB : TheLoop->blocks()) 5728 for (auto &I : *BB) { 5729 // If there's no pointer operand, there's nothing to do. 5730 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5731 if (!Ptr) 5732 continue; 5733 5734 // True if all users of Ptr are memory accesses that have Ptr as their 5735 // pointer operand. 5736 auto UsersAreMemAccesses = 5737 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5738 return getPointerOperand(U) == Ptr; 5739 }); 5740 5741 // Ensure the memory instruction will not be scalarized or used by 5742 // gather/scatter, making its pointer operand non-uniform. If the pointer 5743 // operand is used by any instruction other than a memory access, we 5744 // conservatively assume the pointer operand may be non-uniform. 5745 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5746 PossibleNonUniformPtrs.insert(Ptr); 5747 5748 // If the memory instruction will be vectorized and its pointer operand 5749 // is consecutive-like, or interleaving - the pointer operand should 5750 // remain uniform. 5751 else 5752 ConsecutiveLikePtrs.insert(Ptr); 5753 } 5754 5755 // Add to the Worklist all consecutive and consecutive-like pointers that 5756 // aren't also identified as possibly non-uniform. 5757 for (auto *V : ConsecutiveLikePtrs) 5758 if (!PossibleNonUniformPtrs.count(V)) { 5759 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5760 Worklist.insert(V); 5761 } 5762 5763 // Expand Worklist in topological order: whenever a new instruction 5764 // is added , its users should be either already inside Worklist, or 5765 // out of scope. It ensures a uniform instruction will only be used 5766 // by uniform instructions or out of scope instructions. 5767 unsigned idx = 0; 5768 while (idx != Worklist.size()) { 5769 Instruction *I = Worklist[idx++]; 5770 5771 for (auto OV : I->operand_values()) { 5772 if (isOutOfScope(OV)) 5773 continue; 5774 auto *OI = cast<Instruction>(OV); 5775 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5776 auto *J = cast<Instruction>(U); 5777 return !TheLoop->contains(J) || Worklist.count(J) || 5778 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5779 })) { 5780 Worklist.insert(OI); 5781 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5782 } 5783 } 5784 } 5785 5786 // Returns true if Ptr is the pointer operand of a memory access instruction 5787 // I, and I is known to not require scalarization. 5788 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5789 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5790 }; 5791 5792 // For an instruction to be added into Worklist above, all its users inside 5793 // the loop should also be in Worklist. However, this condition cannot be 5794 // true for phi nodes that form a cyclic dependence. We must process phi 5795 // nodes separately. An induction variable will remain uniform if all users 5796 // of the induction variable and induction variable update remain uniform. 5797 // The code below handles both pointer and non-pointer induction variables. 5798 for (auto &Induction : *Legal->getInductionVars()) { 5799 auto *Ind = Induction.first; 5800 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5801 5802 // Determine if all users of the induction variable are uniform after 5803 // vectorization. 5804 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5805 auto *I = cast<Instruction>(U); 5806 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5807 isVectorizedMemAccessUse(I, Ind); 5808 }); 5809 if (!UniformInd) 5810 continue; 5811 5812 // Determine if all users of the induction variable update instruction are 5813 // uniform after vectorization. 5814 auto UniformIndUpdate = 5815 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5816 auto *I = cast<Instruction>(U); 5817 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5818 isVectorizedMemAccessUse(I, IndUpdate); 5819 }); 5820 if (!UniformIndUpdate) 5821 continue; 5822 5823 // The induction variable and its update instruction will remain uniform. 5824 Worklist.insert(Ind); 5825 Worklist.insert(IndUpdate); 5826 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5827 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5828 } 5829 5830 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5831 } 5832 5833 bool LoopVectorizationLegality::canVectorizeMemory() { 5834 LAI = &(*GetLAA)(*TheLoop); 5835 InterleaveInfo.setLAI(LAI); 5836 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5837 if (LAR) { 5838 ORE->emit([&]() { 5839 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5840 "loop not vectorized: ", *LAR); 5841 }); 5842 } 5843 if (!LAI->canVectorizeMemory()) 5844 return false; 5845 5846 if (LAI->hasStoreToLoopInvariantAddress()) { 5847 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5848 << "write to a loop invariant address could not be vectorized"); 5849 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5850 return false; 5851 } 5852 5853 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5854 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5855 5856 return true; 5857 } 5858 5859 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5860 Value *In0 = const_cast<Value *>(V); 5861 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5862 if (!PN) 5863 return false; 5864 5865 return Inductions.count(PN); 5866 } 5867 5868 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5869 auto *Inst = dyn_cast<Instruction>(V); 5870 return (Inst && InductionCastsToIgnore.count(Inst)); 5871 } 5872 5873 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5874 return isInductionPhi(V) || isCastedInductionVariable(V); 5875 } 5876 5877 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5878 return FirstOrderRecurrences.count(Phi); 5879 } 5880 5881 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5882 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5883 } 5884 5885 bool LoopVectorizationLegality::blockCanBePredicated( 5886 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5887 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5888 5889 for (Instruction &I : *BB) { 5890 // Check that we don't have a constant expression that can trap as operand. 5891 for (Value *Operand : I.operands()) { 5892 if (auto *C = dyn_cast<Constant>(Operand)) 5893 if (C->canTrap()) 5894 return false; 5895 } 5896 // We might be able to hoist the load. 5897 if (I.mayReadFromMemory()) { 5898 auto *LI = dyn_cast<LoadInst>(&I); 5899 if (!LI) 5900 return false; 5901 if (!SafePtrs.count(LI->getPointerOperand())) { 5902 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5903 isLegalMaskedGather(LI->getType())) { 5904 MaskedOp.insert(LI); 5905 continue; 5906 } 5907 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5908 if (IsAnnotatedParallel) 5909 continue; 5910 return false; 5911 } 5912 } 5913 5914 if (I.mayWriteToMemory()) { 5915 auto *SI = dyn_cast<StoreInst>(&I); 5916 // We only support predication of stores in basic blocks with one 5917 // predecessor. 5918 if (!SI) 5919 return false; 5920 5921 // Build a masked store if it is legal for the target. 5922 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5923 SI->getPointerOperand()) || 5924 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5925 MaskedOp.insert(SI); 5926 continue; 5927 } 5928 5929 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5930 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5931 5932 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5933 !isSinglePredecessor) 5934 return false; 5935 } 5936 if (I.mayThrow()) 5937 return false; 5938 } 5939 5940 return true; 5941 } 5942 5943 void InterleavedAccessInfo::collectConstStrideAccesses( 5944 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5945 const ValueToValueMap &Strides) { 5946 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5947 5948 // Since it's desired that the load/store instructions be maintained in 5949 // "program order" for the interleaved access analysis, we have to visit the 5950 // blocks in the loop in reverse postorder (i.e., in a topological order). 5951 // Such an ordering will ensure that any load/store that may be executed 5952 // before a second load/store will precede the second load/store in 5953 // AccessStrideInfo. 5954 LoopBlocksDFS DFS(TheLoop); 5955 DFS.perform(LI); 5956 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5957 for (auto &I : *BB) { 5958 auto *LI = dyn_cast<LoadInst>(&I); 5959 auto *SI = dyn_cast<StoreInst>(&I); 5960 if (!LI && !SI) 5961 continue; 5962 5963 Value *Ptr = getPointerOperand(&I); 5964 // We don't check wrapping here because we don't know yet if Ptr will be 5965 // part of a full group or a group with gaps. Checking wrapping for all 5966 // pointers (even those that end up in groups with no gaps) will be overly 5967 // conservative. For full groups, wrapping should be ok since if we would 5968 // wrap around the address space we would do a memory access at nullptr 5969 // even without the transformation. The wrapping checks are therefore 5970 // deferred until after we've formed the interleaved groups. 5971 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5972 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5973 5974 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5975 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5976 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5977 5978 // An alignment of 0 means target ABI alignment. 5979 unsigned Align = getMemInstAlignment(&I); 5980 if (!Align) 5981 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5982 5983 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5984 } 5985 } 5986 5987 // Analyze interleaved accesses and collect them into interleaved load and 5988 // store groups. 5989 // 5990 // When generating code for an interleaved load group, we effectively hoist all 5991 // loads in the group to the location of the first load in program order. When 5992 // generating code for an interleaved store group, we sink all stores to the 5993 // location of the last store. This code motion can change the order of load 5994 // and store instructions and may break dependences. 5995 // 5996 // The code generation strategy mentioned above ensures that we won't violate 5997 // any write-after-read (WAR) dependences. 5998 // 5999 // E.g., for the WAR dependence: a = A[i]; // (1) 6000 // A[i] = b; // (2) 6001 // 6002 // The store group of (2) is always inserted at or below (2), and the load 6003 // group of (1) is always inserted at or above (1). Thus, the instructions will 6004 // never be reordered. All other dependences are checked to ensure the 6005 // correctness of the instruction reordering. 6006 // 6007 // The algorithm visits all memory accesses in the loop in bottom-up program 6008 // order. Program order is established by traversing the blocks in the loop in 6009 // reverse postorder when collecting the accesses. 6010 // 6011 // We visit the memory accesses in bottom-up order because it can simplify the 6012 // construction of store groups in the presence of write-after-write (WAW) 6013 // dependences. 6014 // 6015 // E.g., for the WAW dependence: A[i] = a; // (1) 6016 // A[i] = b; // (2) 6017 // A[i + 1] = c; // (3) 6018 // 6019 // We will first create a store group with (3) and (2). (1) can't be added to 6020 // this group because it and (2) are dependent. However, (1) can be grouped 6021 // with other accesses that may precede it in program order. Note that a 6022 // bottom-up order does not imply that WAW dependences should not be checked. 6023 void InterleavedAccessInfo::analyzeInterleaving( 6024 const ValueToValueMap &Strides) { 6025 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6026 6027 // Holds all accesses with a constant stride. 6028 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6029 collectConstStrideAccesses(AccessStrideInfo, Strides); 6030 6031 if (AccessStrideInfo.empty()) 6032 return; 6033 6034 // Collect the dependences in the loop. 6035 collectDependences(); 6036 6037 // Holds all interleaved store groups temporarily. 6038 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6039 // Holds all interleaved load groups temporarily. 6040 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6041 6042 // Search in bottom-up program order for pairs of accesses (A and B) that can 6043 // form interleaved load or store groups. In the algorithm below, access A 6044 // precedes access B in program order. We initialize a group for B in the 6045 // outer loop of the algorithm, and then in the inner loop, we attempt to 6046 // insert each A into B's group if: 6047 // 6048 // 1. A and B have the same stride, 6049 // 2. A and B have the same memory object size, and 6050 // 3. A belongs in B's group according to its distance from B. 6051 // 6052 // Special care is taken to ensure group formation will not break any 6053 // dependences. 6054 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6055 BI != E; ++BI) { 6056 Instruction *B = BI->first; 6057 StrideDescriptor DesB = BI->second; 6058 6059 // Initialize a group for B if it has an allowable stride. Even if we don't 6060 // create a group for B, we continue with the bottom-up algorithm to ensure 6061 // we don't break any of B's dependences. 6062 InterleaveGroup *Group = nullptr; 6063 if (isStrided(DesB.Stride)) { 6064 Group = getInterleaveGroup(B); 6065 if (!Group) { 6066 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6067 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6068 } 6069 if (B->mayWriteToMemory()) 6070 StoreGroups.insert(Group); 6071 else 6072 LoadGroups.insert(Group); 6073 } 6074 6075 for (auto AI = std::next(BI); AI != E; ++AI) { 6076 Instruction *A = AI->first; 6077 StrideDescriptor DesA = AI->second; 6078 6079 // Our code motion strategy implies that we can't have dependences 6080 // between accesses in an interleaved group and other accesses located 6081 // between the first and last member of the group. Note that this also 6082 // means that a group can't have more than one member at a given offset. 6083 // The accesses in a group can have dependences with other accesses, but 6084 // we must ensure we don't extend the boundaries of the group such that 6085 // we encompass those dependent accesses. 6086 // 6087 // For example, assume we have the sequence of accesses shown below in a 6088 // stride-2 loop: 6089 // 6090 // (1, 2) is a group | A[i] = a; // (1) 6091 // | A[i-1] = b; // (2) | 6092 // A[i-3] = c; // (3) 6093 // A[i] = d; // (4) | (2, 4) is not a group 6094 // 6095 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6096 // but not with (4). If we did, the dependent access (3) would be within 6097 // the boundaries of the (2, 4) group. 6098 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6099 // If a dependence exists and A is already in a group, we know that A 6100 // must be a store since A precedes B and WAR dependences are allowed. 6101 // Thus, A would be sunk below B. We release A's group to prevent this 6102 // illegal code motion. A will then be free to form another group with 6103 // instructions that precede it. 6104 if (isInterleaved(A)) { 6105 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6106 StoreGroups.remove(StoreGroup); 6107 releaseGroup(StoreGroup); 6108 } 6109 6110 // If a dependence exists and A is not already in a group (or it was 6111 // and we just released it), B might be hoisted above A (if B is a 6112 // load) or another store might be sunk below A (if B is a store). In 6113 // either case, we can't add additional instructions to B's group. B 6114 // will only form a group with instructions that it precedes. 6115 break; 6116 } 6117 6118 // At this point, we've checked for illegal code motion. If either A or B 6119 // isn't strided, there's nothing left to do. 6120 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6121 continue; 6122 6123 // Ignore A if it's already in a group or isn't the same kind of memory 6124 // operation as B. 6125 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6126 continue; 6127 6128 // Check rules 1 and 2. Ignore A if its stride or size is different from 6129 // that of B. 6130 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6131 continue; 6132 6133 // Ignore A if the memory object of A and B don't belong to the same 6134 // address space 6135 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6136 continue; 6137 6138 // Calculate the distance from A to B. 6139 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6140 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6141 if (!DistToB) 6142 continue; 6143 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6144 6145 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6146 // size. 6147 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6148 continue; 6149 6150 // Ignore A if either A or B is in a predicated block. Although we 6151 // currently prevent group formation for predicated accesses, we may be 6152 // able to relax this limitation in the future once we handle more 6153 // complicated blocks. 6154 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6155 continue; 6156 6157 // The index of A is the index of B plus A's distance to B in multiples 6158 // of the size. 6159 int IndexA = 6160 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6161 6162 // Try to insert A into B's group. 6163 if (Group->insertMember(A, IndexA, DesA.Align)) { 6164 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6165 << " into the interleave group with" << *B << '\n'); 6166 InterleaveGroupMap[A] = Group; 6167 6168 // Set the first load in program order as the insert position. 6169 if (A->mayReadFromMemory()) 6170 Group->setInsertPos(A); 6171 } 6172 } // Iteration over A accesses. 6173 } // Iteration over B accesses. 6174 6175 // Remove interleaved store groups with gaps. 6176 for (InterleaveGroup *Group : StoreGroups) 6177 if (Group->getNumMembers() != Group->getFactor()) { 6178 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 6179 "to gaps.\n"); 6180 releaseGroup(Group); 6181 } 6182 // Remove interleaved groups with gaps (currently only loads) whose memory 6183 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6184 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6185 // not check wrapping (see documentation there). 6186 // FORNOW we use Assume=false; 6187 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6188 // of runtime SCEV assumptions checks (thereby potentially failing to 6189 // vectorize altogether). 6190 // Additional optional optimizations: 6191 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6192 // wrap then we can deduce that all pointers in the group don't wrap. 6193 // This means that we can forcefully peel the loop in order to only have to 6194 // check the first pointer for no-wrap. When we'll change to use Assume=true 6195 // we'll only need at most one runtime check per interleaved group. 6196 for (InterleaveGroup *Group : LoadGroups) { 6197 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6198 // load would wrap around the address space we would do a memory access at 6199 // nullptr even without the transformation. 6200 if (Group->getNumMembers() == Group->getFactor()) 6201 continue; 6202 6203 // Case 2: If first and last members of the group don't wrap this implies 6204 // that all the pointers in the group don't wrap. 6205 // So we check only group member 0 (which is always guaranteed to exist), 6206 // and group member Factor - 1; If the latter doesn't exist we rely on 6207 // peeling (if it is a non-reveresed accsess -- see Case 3). 6208 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6209 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6210 /*ShouldCheckWrap=*/true)) { 6211 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6212 "first group member potentially pointer-wrapping.\n"); 6213 releaseGroup(Group); 6214 continue; 6215 } 6216 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6217 if (LastMember) { 6218 Value *LastMemberPtr = getPointerOperand(LastMember); 6219 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6220 /*ShouldCheckWrap=*/true)) { 6221 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6222 "last group member potentially pointer-wrapping.\n"); 6223 releaseGroup(Group); 6224 } 6225 } else { 6226 // Case 3: A non-reversed interleaved load group with gaps: We need 6227 // to execute at least one scalar epilogue iteration. This will ensure 6228 // we don't speculatively access memory out-of-bounds. We only need 6229 // to look for a member at index factor - 1, since every group must have 6230 // a member at index zero. 6231 if (Group->isReverse()) { 6232 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6233 "a reverse access with gaps.\n"); 6234 releaseGroup(Group); 6235 continue; 6236 } 6237 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6238 RequiresScalarEpilogue = true; 6239 } 6240 } 6241 } 6242 6243 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6244 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6245 ORE->emit(createMissedAnalysis("ConditionalStore") 6246 << "store that is conditionally executed prevents vectorization"); 6247 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6248 return None; 6249 } 6250 6251 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6252 // TODO: It may by useful to do since it's still likely to be dynamically 6253 // uniform if the target can skip. 6254 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6255 6256 ORE->emit( 6257 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6258 << "runtime pointer checks needed. Not enabled for divergent target"); 6259 6260 return None; 6261 } 6262 6263 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6264 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6265 return computeFeasibleMaxVF(OptForSize, TC); 6266 6267 if (Legal->getRuntimePointerChecking()->Need) { 6268 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6269 << "runtime pointer checks needed. Enable vectorization of this " 6270 "loop with '#pragma clang loop vectorize(enable)' when " 6271 "compiling with -Os/-Oz"); 6272 DEBUG(dbgs() 6273 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6274 return None; 6275 } 6276 6277 // If we optimize the program for size, avoid creating the tail loop. 6278 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6279 6280 // If we don't know the precise trip count, don't try to vectorize. 6281 if (TC < 2) { 6282 ORE->emit( 6283 createMissedAnalysis("UnknownLoopCountComplexCFG") 6284 << "unable to calculate the loop count due to complex control flow"); 6285 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6286 return None; 6287 } 6288 6289 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6290 6291 if (TC % MaxVF != 0) { 6292 // If the trip count that we found modulo the vectorization factor is not 6293 // zero then we require a tail. 6294 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6295 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6296 // smaller MaxVF that does not require a scalar epilog. 6297 6298 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6299 << "cannot optimize for size and vectorize at the " 6300 "same time. Enable vectorization of this loop " 6301 "with '#pragma clang loop vectorize(enable)' " 6302 "when compiling with -Os/-Oz"); 6303 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6304 return None; 6305 } 6306 6307 return MaxVF; 6308 } 6309 6310 unsigned 6311 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6312 unsigned ConstTripCount) { 6313 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6314 unsigned SmallestType, WidestType; 6315 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6316 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6317 6318 // Get the maximum safe dependence distance in bits computed by LAA. 6319 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6320 // the memory accesses that is most restrictive (involved in the smallest 6321 // dependence distance). 6322 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6323 6324 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6325 6326 unsigned MaxVectorSize = WidestRegister / WidestType; 6327 6328 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6329 << WidestType << " bits.\n"); 6330 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6331 << " bits.\n"); 6332 6333 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6334 " into one vector!"); 6335 if (MaxVectorSize == 0) { 6336 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6337 MaxVectorSize = 1; 6338 return MaxVectorSize; 6339 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6340 isPowerOf2_32(ConstTripCount)) { 6341 // We need to clamp the VF to be the ConstTripCount. There is no point in 6342 // choosing a higher viable VF as done in the loop below. 6343 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6344 << ConstTripCount << "\n"); 6345 MaxVectorSize = ConstTripCount; 6346 return MaxVectorSize; 6347 } 6348 6349 unsigned MaxVF = MaxVectorSize; 6350 if (MaximizeBandwidth && !OptForSize) { 6351 // Collect all viable vectorization factors larger than the default MaxVF 6352 // (i.e. MaxVectorSize). 6353 SmallVector<unsigned, 8> VFs; 6354 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6355 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6356 VFs.push_back(VS); 6357 6358 // For each VF calculate its register usage. 6359 auto RUs = calculateRegisterUsage(VFs); 6360 6361 // Select the largest VF which doesn't require more registers than existing 6362 // ones. 6363 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6364 for (int i = RUs.size() - 1; i >= 0; --i) { 6365 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6366 MaxVF = VFs[i]; 6367 break; 6368 } 6369 } 6370 } 6371 return MaxVF; 6372 } 6373 6374 LoopVectorizationCostModel::VectorizationFactor 6375 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6376 float Cost = expectedCost(1).first; 6377 #ifndef NDEBUG 6378 const float ScalarCost = Cost; 6379 #endif /* NDEBUG */ 6380 unsigned Width = 1; 6381 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6382 6383 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6384 // Ignore scalar width, because the user explicitly wants vectorization. 6385 if (ForceVectorization && MaxVF > 1) { 6386 Width = 2; 6387 Cost = expectedCost(Width).first / (float)Width; 6388 } 6389 6390 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6391 // Notice that the vector loop needs to be executed less times, so 6392 // we need to divide the cost of the vector loops by the width of 6393 // the vector elements. 6394 VectorizationCostTy C = expectedCost(i); 6395 float VectorCost = C.first / (float)i; 6396 DEBUG(dbgs() << "LV: Vector loop of width " << i 6397 << " costs: " << (int)VectorCost << ".\n"); 6398 if (!C.second && !ForceVectorization) { 6399 DEBUG( 6400 dbgs() << "LV: Not considering vector loop of width " << i 6401 << " because it will not generate any vector instructions.\n"); 6402 continue; 6403 } 6404 if (VectorCost < Cost) { 6405 Cost = VectorCost; 6406 Width = i; 6407 } 6408 } 6409 6410 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6411 << "LV: Vectorization seems to be not beneficial, " 6412 << "but was forced by a user.\n"); 6413 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6414 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6415 return Factor; 6416 } 6417 6418 std::pair<unsigned, unsigned> 6419 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6420 unsigned MinWidth = -1U; 6421 unsigned MaxWidth = 8; 6422 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6423 6424 // For each block. 6425 for (BasicBlock *BB : TheLoop->blocks()) { 6426 // For each instruction in the loop. 6427 for (Instruction &I : *BB) { 6428 Type *T = I.getType(); 6429 6430 // Skip ignored values. 6431 if (ValuesToIgnore.count(&I)) 6432 continue; 6433 6434 // Only examine Loads, Stores and PHINodes. 6435 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6436 continue; 6437 6438 // Examine PHI nodes that are reduction variables. Update the type to 6439 // account for the recurrence type. 6440 if (auto *PN = dyn_cast<PHINode>(&I)) { 6441 if (!Legal->isReductionVariable(PN)) 6442 continue; 6443 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6444 T = RdxDesc.getRecurrenceType(); 6445 } 6446 6447 // Examine the stored values. 6448 if (auto *ST = dyn_cast<StoreInst>(&I)) 6449 T = ST->getValueOperand()->getType(); 6450 6451 // Ignore loaded pointer types and stored pointer types that are not 6452 // vectorizable. 6453 // 6454 // FIXME: The check here attempts to predict whether a load or store will 6455 // be vectorized. We only know this for certain after a VF has 6456 // been selected. Here, we assume that if an access can be 6457 // vectorized, it will be. We should also look at extending this 6458 // optimization to non-pointer types. 6459 // 6460 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6461 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6462 continue; 6463 6464 MinWidth = std::min(MinWidth, 6465 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6466 MaxWidth = std::max(MaxWidth, 6467 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6468 } 6469 } 6470 6471 return {MinWidth, MaxWidth}; 6472 } 6473 6474 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6475 unsigned VF, 6476 unsigned LoopCost) { 6477 // -- The interleave heuristics -- 6478 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6479 // There are many micro-architectural considerations that we can't predict 6480 // at this level. For example, frontend pressure (on decode or fetch) due to 6481 // code size, or the number and capabilities of the execution ports. 6482 // 6483 // We use the following heuristics to select the interleave count: 6484 // 1. If the code has reductions, then we interleave to break the cross 6485 // iteration dependency. 6486 // 2. If the loop is really small, then we interleave to reduce the loop 6487 // overhead. 6488 // 3. We don't interleave if we think that we will spill registers to memory 6489 // due to the increased register pressure. 6490 6491 // When we optimize for size, we don't interleave. 6492 if (OptForSize) 6493 return 1; 6494 6495 // We used the distance for the interleave count. 6496 if (Legal->getMaxSafeDepDistBytes() != -1U) 6497 return 1; 6498 6499 // Do not interleave loops with a relatively small trip count. 6500 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6501 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6502 return 1; 6503 6504 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6505 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6506 << " registers\n"); 6507 6508 if (VF == 1) { 6509 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6510 TargetNumRegisters = ForceTargetNumScalarRegs; 6511 } else { 6512 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6513 TargetNumRegisters = ForceTargetNumVectorRegs; 6514 } 6515 6516 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6517 // We divide by these constants so assume that we have at least one 6518 // instruction that uses at least one register. 6519 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6520 R.NumInstructions = std::max(R.NumInstructions, 1U); 6521 6522 // We calculate the interleave count using the following formula. 6523 // Subtract the number of loop invariants from the number of available 6524 // registers. These registers are used by all of the interleaved instances. 6525 // Next, divide the remaining registers by the number of registers that is 6526 // required by the loop, in order to estimate how many parallel instances 6527 // fit without causing spills. All of this is rounded down if necessary to be 6528 // a power of two. We want power of two interleave count to simplify any 6529 // addressing operations or alignment considerations. 6530 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6531 R.MaxLocalUsers); 6532 6533 // Don't count the induction variable as interleaved. 6534 if (EnableIndVarRegisterHeur) 6535 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6536 std::max(1U, (R.MaxLocalUsers - 1))); 6537 6538 // Clamp the interleave ranges to reasonable counts. 6539 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6540 6541 // Check if the user has overridden the max. 6542 if (VF == 1) { 6543 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6544 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6545 } else { 6546 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6547 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6548 } 6549 6550 // If we did not calculate the cost for VF (because the user selected the VF) 6551 // then we calculate the cost of VF here. 6552 if (LoopCost == 0) 6553 LoopCost = expectedCost(VF).first; 6554 6555 // Clamp the calculated IC to be between the 1 and the max interleave count 6556 // that the target allows. 6557 if (IC > MaxInterleaveCount) 6558 IC = MaxInterleaveCount; 6559 else if (IC < 1) 6560 IC = 1; 6561 6562 // Interleave if we vectorized this loop and there is a reduction that could 6563 // benefit from interleaving. 6564 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6565 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6566 return IC; 6567 } 6568 6569 // Note that if we've already vectorized the loop we will have done the 6570 // runtime check and so interleaving won't require further checks. 6571 bool InterleavingRequiresRuntimePointerCheck = 6572 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6573 6574 // We want to interleave small loops in order to reduce the loop overhead and 6575 // potentially expose ILP opportunities. 6576 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6577 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6578 // We assume that the cost overhead is 1 and we use the cost model 6579 // to estimate the cost of the loop and interleave until the cost of the 6580 // loop overhead is about 5% of the cost of the loop. 6581 unsigned SmallIC = 6582 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6583 6584 // Interleave until store/load ports (estimated by max interleave count) are 6585 // saturated. 6586 unsigned NumStores = Legal->getNumStores(); 6587 unsigned NumLoads = Legal->getNumLoads(); 6588 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6589 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6590 6591 // If we have a scalar reduction (vector reductions are already dealt with 6592 // by this point), we can increase the critical path length if the loop 6593 // we're interleaving is inside another loop. Limit, by default to 2, so the 6594 // critical path only gets increased by one reduction operation. 6595 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6596 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6597 SmallIC = std::min(SmallIC, F); 6598 StoresIC = std::min(StoresIC, F); 6599 LoadsIC = std::min(LoadsIC, F); 6600 } 6601 6602 if (EnableLoadStoreRuntimeInterleave && 6603 std::max(StoresIC, LoadsIC) > SmallIC) { 6604 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6605 return std::max(StoresIC, LoadsIC); 6606 } 6607 6608 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6609 return SmallIC; 6610 } 6611 6612 // Interleave if this is a large loop (small loops are already dealt with by 6613 // this point) that could benefit from interleaving. 6614 bool HasReductions = !Legal->getReductionVars()->empty(); 6615 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6616 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6617 return IC; 6618 } 6619 6620 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6621 return 1; 6622 } 6623 6624 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6625 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6626 // This function calculates the register usage by measuring the highest number 6627 // of values that are alive at a single location. Obviously, this is a very 6628 // rough estimation. We scan the loop in a topological order in order and 6629 // assign a number to each instruction. We use RPO to ensure that defs are 6630 // met before their users. We assume that each instruction that has in-loop 6631 // users starts an interval. We record every time that an in-loop value is 6632 // used, so we have a list of the first and last occurrences of each 6633 // instruction. Next, we transpose this data structure into a multi map that 6634 // holds the list of intervals that *end* at a specific location. This multi 6635 // map allows us to perform a linear search. We scan the instructions linearly 6636 // and record each time that a new interval starts, by placing it in a set. 6637 // If we find this value in the multi-map then we remove it from the set. 6638 // The max register usage is the maximum size of the set. 6639 // We also search for instructions that are defined outside the loop, but are 6640 // used inside the loop. We need this number separately from the max-interval 6641 // usage number because when we unroll, loop-invariant values do not take 6642 // more register. 6643 LoopBlocksDFS DFS(TheLoop); 6644 DFS.perform(LI); 6645 6646 RegisterUsage RU; 6647 RU.NumInstructions = 0; 6648 6649 // Each 'key' in the map opens a new interval. The values 6650 // of the map are the index of the 'last seen' usage of the 6651 // instruction that is the key. 6652 using IntervalMap = DenseMap<Instruction *, unsigned>; 6653 6654 // Maps instruction to its index. 6655 DenseMap<unsigned, Instruction *> IdxToInstr; 6656 // Marks the end of each interval. 6657 IntervalMap EndPoint; 6658 // Saves the list of instruction indices that are used in the loop. 6659 SmallSet<Instruction *, 8> Ends; 6660 // Saves the list of values that are used in the loop but are 6661 // defined outside the loop, such as arguments and constants. 6662 SmallPtrSet<Value *, 8> LoopInvariants; 6663 6664 unsigned Index = 0; 6665 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6666 RU.NumInstructions += BB->size(); 6667 for (Instruction &I : *BB) { 6668 IdxToInstr[Index++] = &I; 6669 6670 // Save the end location of each USE. 6671 for (Value *U : I.operands()) { 6672 auto *Instr = dyn_cast<Instruction>(U); 6673 6674 // Ignore non-instruction values such as arguments, constants, etc. 6675 if (!Instr) 6676 continue; 6677 6678 // If this instruction is outside the loop then record it and continue. 6679 if (!TheLoop->contains(Instr)) { 6680 LoopInvariants.insert(Instr); 6681 continue; 6682 } 6683 6684 // Overwrite previous end points. 6685 EndPoint[Instr] = Index; 6686 Ends.insert(Instr); 6687 } 6688 } 6689 } 6690 6691 // Saves the list of intervals that end with the index in 'key'. 6692 using InstrList = SmallVector<Instruction *, 2>; 6693 DenseMap<unsigned, InstrList> TransposeEnds; 6694 6695 // Transpose the EndPoints to a list of values that end at each index. 6696 for (auto &Interval : EndPoint) 6697 TransposeEnds[Interval.second].push_back(Interval.first); 6698 6699 SmallSet<Instruction *, 8> OpenIntervals; 6700 6701 // Get the size of the widest register. 6702 unsigned MaxSafeDepDist = -1U; 6703 if (Legal->getMaxSafeDepDistBytes() != -1U) 6704 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6705 unsigned WidestRegister = 6706 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6707 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6708 6709 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6710 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6711 6712 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6713 6714 // A lambda that gets the register usage for the given type and VF. 6715 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6716 if (Ty->isTokenTy()) 6717 return 0U; 6718 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6719 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6720 }; 6721 6722 for (unsigned int i = 0; i < Index; ++i) { 6723 Instruction *I = IdxToInstr[i]; 6724 6725 // Remove all of the instructions that end at this location. 6726 InstrList &List = TransposeEnds[i]; 6727 for (Instruction *ToRemove : List) 6728 OpenIntervals.erase(ToRemove); 6729 6730 // Ignore instructions that are never used within the loop. 6731 if (!Ends.count(I)) 6732 continue; 6733 6734 // Skip ignored values. 6735 if (ValuesToIgnore.count(I)) 6736 continue; 6737 6738 // For each VF find the maximum usage of registers. 6739 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6740 if (VFs[j] == 1) { 6741 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6742 continue; 6743 } 6744 collectUniformsAndScalars(VFs[j]); 6745 // Count the number of live intervals. 6746 unsigned RegUsage = 0; 6747 for (auto Inst : OpenIntervals) { 6748 // Skip ignored values for VF > 1. 6749 if (VecValuesToIgnore.count(Inst) || 6750 isScalarAfterVectorization(Inst, VFs[j])) 6751 continue; 6752 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6753 } 6754 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6755 } 6756 6757 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6758 << OpenIntervals.size() << '\n'); 6759 6760 // Add the current instruction to the list of open intervals. 6761 OpenIntervals.insert(I); 6762 } 6763 6764 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6765 unsigned Invariant = 0; 6766 if (VFs[i] == 1) 6767 Invariant = LoopInvariants.size(); 6768 else { 6769 for (auto Inst : LoopInvariants) 6770 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6771 } 6772 6773 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6774 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6775 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6776 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6777 6778 RU.LoopInvariantRegs = Invariant; 6779 RU.MaxLocalUsers = MaxUsages[i]; 6780 RUs[i] = RU; 6781 } 6782 6783 return RUs; 6784 } 6785 6786 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6787 // If we aren't vectorizing the loop, or if we've already collected the 6788 // instructions to scalarize, there's nothing to do. Collection may already 6789 // have occurred if we have a user-selected VF and are now computing the 6790 // expected cost for interleaving. 6791 if (VF < 2 || InstsToScalarize.count(VF)) 6792 return; 6793 6794 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6795 // not profitable to scalarize any instructions, the presence of VF in the 6796 // map will indicate that we've analyzed it already. 6797 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6798 6799 // Find all the instructions that are scalar with predication in the loop and 6800 // determine if it would be better to not if-convert the blocks they are in. 6801 // If so, we also record the instructions to scalarize. 6802 for (BasicBlock *BB : TheLoop->blocks()) { 6803 if (!Legal->blockNeedsPredication(BB)) 6804 continue; 6805 for (Instruction &I : *BB) 6806 if (Legal->isScalarWithPredication(&I)) { 6807 ScalarCostsTy ScalarCosts; 6808 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6809 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6810 6811 // Remember that BB will remain after vectorization. 6812 PredicatedBBsAfterVectorization.insert(BB); 6813 } 6814 } 6815 } 6816 6817 int LoopVectorizationCostModel::computePredInstDiscount( 6818 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6819 unsigned VF) { 6820 assert(!isUniformAfterVectorization(PredInst, VF) && 6821 "Instruction marked uniform-after-vectorization will be predicated"); 6822 6823 // Initialize the discount to zero, meaning that the scalar version and the 6824 // vector version cost the same. 6825 int Discount = 0; 6826 6827 // Holds instructions to analyze. The instructions we visit are mapped in 6828 // ScalarCosts. Those instructions are the ones that would be scalarized if 6829 // we find that the scalar version costs less. 6830 SmallVector<Instruction *, 8> Worklist; 6831 6832 // Returns true if the given instruction can be scalarized. 6833 auto canBeScalarized = [&](Instruction *I) -> bool { 6834 // We only attempt to scalarize instructions forming a single-use chain 6835 // from the original predicated block that would otherwise be vectorized. 6836 // Although not strictly necessary, we give up on instructions we know will 6837 // already be scalar to avoid traversing chains that are unlikely to be 6838 // beneficial. 6839 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6840 isScalarAfterVectorization(I, VF)) 6841 return false; 6842 6843 // If the instruction is scalar with predication, it will be analyzed 6844 // separately. We ignore it within the context of PredInst. 6845 if (Legal->isScalarWithPredication(I)) 6846 return false; 6847 6848 // If any of the instruction's operands are uniform after vectorization, 6849 // the instruction cannot be scalarized. This prevents, for example, a 6850 // masked load from being scalarized. 6851 // 6852 // We assume we will only emit a value for lane zero of an instruction 6853 // marked uniform after vectorization, rather than VF identical values. 6854 // Thus, if we scalarize an instruction that uses a uniform, we would 6855 // create uses of values corresponding to the lanes we aren't emitting code 6856 // for. This behavior can be changed by allowing getScalarValue to clone 6857 // the lane zero values for uniforms rather than asserting. 6858 for (Use &U : I->operands()) 6859 if (auto *J = dyn_cast<Instruction>(U.get())) 6860 if (isUniformAfterVectorization(J, VF)) 6861 return false; 6862 6863 // Otherwise, we can scalarize the instruction. 6864 return true; 6865 }; 6866 6867 // Returns true if an operand that cannot be scalarized must be extracted 6868 // from a vector. We will account for this scalarization overhead below. Note 6869 // that the non-void predicated instructions are placed in their own blocks, 6870 // and their return values are inserted into vectors. Thus, an extract would 6871 // still be required. 6872 auto needsExtract = [&](Instruction *I) -> bool { 6873 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6874 }; 6875 6876 // Compute the expected cost discount from scalarizing the entire expression 6877 // feeding the predicated instruction. We currently only consider expressions 6878 // that are single-use instruction chains. 6879 Worklist.push_back(PredInst); 6880 while (!Worklist.empty()) { 6881 Instruction *I = Worklist.pop_back_val(); 6882 6883 // If we've already analyzed the instruction, there's nothing to do. 6884 if (ScalarCosts.count(I)) 6885 continue; 6886 6887 // Compute the cost of the vector instruction. Note that this cost already 6888 // includes the scalarization overhead of the predicated instruction. 6889 unsigned VectorCost = getInstructionCost(I, VF).first; 6890 6891 // Compute the cost of the scalarized instruction. This cost is the cost of 6892 // the instruction as if it wasn't if-converted and instead remained in the 6893 // predicated block. We will scale this cost by block probability after 6894 // computing the scalarization overhead. 6895 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6896 6897 // Compute the scalarization overhead of needed insertelement instructions 6898 // and phi nodes. 6899 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6900 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6901 true, false); 6902 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6903 } 6904 6905 // Compute the scalarization overhead of needed extractelement 6906 // instructions. For each of the instruction's operands, if the operand can 6907 // be scalarized, add it to the worklist; otherwise, account for the 6908 // overhead. 6909 for (Use &U : I->operands()) 6910 if (auto *J = dyn_cast<Instruction>(U.get())) { 6911 assert(VectorType::isValidElementType(J->getType()) && 6912 "Instruction has non-scalar type"); 6913 if (canBeScalarized(J)) 6914 Worklist.push_back(J); 6915 else if (needsExtract(J)) 6916 ScalarCost += TTI.getScalarizationOverhead( 6917 ToVectorTy(J->getType(),VF), false, true); 6918 } 6919 6920 // Scale the total scalar cost by block probability. 6921 ScalarCost /= getReciprocalPredBlockProb(); 6922 6923 // Compute the discount. A non-negative discount means the vector version 6924 // of the instruction costs more, and scalarizing would be beneficial. 6925 Discount += VectorCost - ScalarCost; 6926 ScalarCosts[I] = ScalarCost; 6927 } 6928 6929 return Discount; 6930 } 6931 6932 LoopVectorizationCostModel::VectorizationCostTy 6933 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6934 VectorizationCostTy Cost; 6935 6936 // For each block. 6937 for (BasicBlock *BB : TheLoop->blocks()) { 6938 VectorizationCostTy BlockCost; 6939 6940 // For each instruction in the old loop. 6941 for (Instruction &I : *BB) { 6942 // Skip dbg intrinsics. 6943 if (isa<DbgInfoIntrinsic>(I)) 6944 continue; 6945 6946 // Skip ignored values. 6947 if (ValuesToIgnore.count(&I) || 6948 (VF > 1 && VecValuesToIgnore.count(&I))) 6949 continue; 6950 6951 VectorizationCostTy C = getInstructionCost(&I, VF); 6952 6953 // Check if we should override the cost. 6954 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6955 C.first = ForceTargetInstructionCost; 6956 6957 BlockCost.first += C.first; 6958 BlockCost.second |= C.second; 6959 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6960 << VF << " For instruction: " << I << '\n'); 6961 } 6962 6963 // If we are vectorizing a predicated block, it will have been 6964 // if-converted. This means that the block's instructions (aside from 6965 // stores and instructions that may divide by zero) will now be 6966 // unconditionally executed. For the scalar case, we may not always execute 6967 // the predicated block. Thus, scale the block's cost by the probability of 6968 // executing it. 6969 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6970 BlockCost.first /= getReciprocalPredBlockProb(); 6971 6972 Cost.first += BlockCost.first; 6973 Cost.second |= BlockCost.second; 6974 } 6975 6976 return Cost; 6977 } 6978 6979 /// \brief Gets Address Access SCEV after verifying that the access pattern 6980 /// is loop invariant except the induction variable dependence. 6981 /// 6982 /// This SCEV can be sent to the Target in order to estimate the address 6983 /// calculation cost. 6984 static const SCEV *getAddressAccessSCEV( 6985 Value *Ptr, 6986 LoopVectorizationLegality *Legal, 6987 PredicatedScalarEvolution &PSE, 6988 const Loop *TheLoop) { 6989 6990 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6991 if (!Gep) 6992 return nullptr; 6993 6994 // We are looking for a gep with all loop invariant indices except for one 6995 // which should be an induction variable. 6996 auto SE = PSE.getSE(); 6997 unsigned NumOperands = Gep->getNumOperands(); 6998 for (unsigned i = 1; i < NumOperands; ++i) { 6999 Value *Opd = Gep->getOperand(i); 7000 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7001 !Legal->isInductionVariable(Opd)) 7002 return nullptr; 7003 } 7004 7005 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7006 return PSE.getSCEV(Ptr); 7007 } 7008 7009 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7010 return Legal->hasStride(I->getOperand(0)) || 7011 Legal->hasStride(I->getOperand(1)); 7012 } 7013 7014 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7015 unsigned VF) { 7016 Type *ValTy = getMemInstValueType(I); 7017 auto SE = PSE.getSE(); 7018 7019 unsigned Alignment = getMemInstAlignment(I); 7020 unsigned AS = getMemInstAddressSpace(I); 7021 Value *Ptr = getPointerOperand(I); 7022 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7023 7024 // Figure out whether the access is strided and get the stride value 7025 // if it's known in compile time 7026 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7027 7028 // Get the cost of the scalar memory instruction and address computation. 7029 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7030 7031 Cost += VF * 7032 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7033 AS, I); 7034 7035 // Get the overhead of the extractelement and insertelement instructions 7036 // we might create due to scalarization. 7037 Cost += getScalarizationOverhead(I, VF, TTI); 7038 7039 // If we have a predicated store, it may not be executed for each vector 7040 // lane. Scale the cost by the probability of executing the predicated 7041 // block. 7042 if (Legal->isScalarWithPredication(I)) 7043 Cost /= getReciprocalPredBlockProb(); 7044 7045 return Cost; 7046 } 7047 7048 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7049 unsigned VF) { 7050 Type *ValTy = getMemInstValueType(I); 7051 Type *VectorTy = ToVectorTy(ValTy, VF); 7052 unsigned Alignment = getMemInstAlignment(I); 7053 Value *Ptr = getPointerOperand(I); 7054 unsigned AS = getMemInstAddressSpace(I); 7055 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7056 7057 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7058 "Stride should be 1 or -1 for consecutive memory access"); 7059 unsigned Cost = 0; 7060 if (Legal->isMaskRequired(I)) 7061 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7062 else 7063 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7064 7065 bool Reverse = ConsecutiveStride < 0; 7066 if (Reverse) 7067 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7068 return Cost; 7069 } 7070 7071 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7072 unsigned VF) { 7073 LoadInst *LI = cast<LoadInst>(I); 7074 Type *ValTy = LI->getType(); 7075 Type *VectorTy = ToVectorTy(ValTy, VF); 7076 unsigned Alignment = LI->getAlignment(); 7077 unsigned AS = LI->getPointerAddressSpace(); 7078 7079 return TTI.getAddressComputationCost(ValTy) + 7080 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7081 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7082 } 7083 7084 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7085 unsigned VF) { 7086 Type *ValTy = getMemInstValueType(I); 7087 Type *VectorTy = ToVectorTy(ValTy, VF); 7088 unsigned Alignment = getMemInstAlignment(I); 7089 Value *Ptr = getPointerOperand(I); 7090 7091 return TTI.getAddressComputationCost(VectorTy) + 7092 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7093 Legal->isMaskRequired(I), Alignment); 7094 } 7095 7096 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7097 unsigned VF) { 7098 Type *ValTy = getMemInstValueType(I); 7099 Type *VectorTy = ToVectorTy(ValTy, VF); 7100 unsigned AS = getMemInstAddressSpace(I); 7101 7102 auto Group = Legal->getInterleavedAccessGroup(I); 7103 assert(Group && "Fail to get an interleaved access group."); 7104 7105 unsigned InterleaveFactor = Group->getFactor(); 7106 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7107 7108 // Holds the indices of existing members in an interleaved load group. 7109 // An interleaved store group doesn't need this as it doesn't allow gaps. 7110 SmallVector<unsigned, 4> Indices; 7111 if (isa<LoadInst>(I)) { 7112 for (unsigned i = 0; i < InterleaveFactor; i++) 7113 if (Group->getMember(i)) 7114 Indices.push_back(i); 7115 } 7116 7117 // Calculate the cost of the whole interleaved group. 7118 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7119 Group->getFactor(), Indices, 7120 Group->getAlignment(), AS); 7121 7122 if (Group->isReverse()) 7123 Cost += Group->getNumMembers() * 7124 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7125 return Cost; 7126 } 7127 7128 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7129 unsigned VF) { 7130 // Calculate scalar cost only. Vectorization cost should be ready at this 7131 // moment. 7132 if (VF == 1) { 7133 Type *ValTy = getMemInstValueType(I); 7134 unsigned Alignment = getMemInstAlignment(I); 7135 unsigned AS = getMemInstAddressSpace(I); 7136 7137 return TTI.getAddressComputationCost(ValTy) + 7138 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7139 } 7140 return getWideningCost(I, VF); 7141 } 7142 7143 LoopVectorizationCostModel::VectorizationCostTy 7144 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7145 // If we know that this instruction will remain uniform, check the cost of 7146 // the scalar version. 7147 if (isUniformAfterVectorization(I, VF)) 7148 VF = 1; 7149 7150 if (VF > 1 && isProfitableToScalarize(I, VF)) 7151 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7152 7153 // Forced scalars do not have any scalarization overhead. 7154 if (VF > 1 && ForcedScalars.count(VF) && 7155 ForcedScalars.find(VF)->second.count(I)) 7156 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7157 7158 Type *VectorTy; 7159 unsigned C = getInstructionCost(I, VF, VectorTy); 7160 7161 bool TypeNotScalarized = 7162 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7163 return VectorizationCostTy(C, TypeNotScalarized); 7164 } 7165 7166 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7167 if (VF == 1) 7168 return; 7169 for (BasicBlock *BB : TheLoop->blocks()) { 7170 // For each instruction in the old loop. 7171 for (Instruction &I : *BB) { 7172 Value *Ptr = getPointerOperand(&I); 7173 if (!Ptr) 7174 continue; 7175 7176 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7177 // Scalar load + broadcast 7178 unsigned Cost = getUniformMemOpCost(&I, VF); 7179 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7180 continue; 7181 } 7182 7183 // We assume that widening is the best solution when possible. 7184 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7185 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7186 int ConsecutiveStride = Legal->isConsecutivePtr(getPointerOperand(&I)); 7187 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7188 "Expected consecutive stride."); 7189 InstWidening Decision = 7190 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7191 setWideningDecision(&I, VF, Decision, Cost); 7192 continue; 7193 } 7194 7195 // Choose between Interleaving, Gather/Scatter or Scalarization. 7196 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7197 unsigned NumAccesses = 1; 7198 if (Legal->isAccessInterleaved(&I)) { 7199 auto Group = Legal->getInterleavedAccessGroup(&I); 7200 assert(Group && "Fail to get an interleaved access group."); 7201 7202 // Make one decision for the whole group. 7203 if (getWideningDecision(&I, VF) != CM_Unknown) 7204 continue; 7205 7206 NumAccesses = Group->getNumMembers(); 7207 InterleaveCost = getInterleaveGroupCost(&I, VF); 7208 } 7209 7210 unsigned GatherScatterCost = 7211 Legal->isLegalGatherOrScatter(&I) 7212 ? getGatherScatterCost(&I, VF) * NumAccesses 7213 : std::numeric_limits<unsigned>::max(); 7214 7215 unsigned ScalarizationCost = 7216 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7217 7218 // Choose better solution for the current VF, 7219 // write down this decision and use it during vectorization. 7220 unsigned Cost; 7221 InstWidening Decision; 7222 if (InterleaveCost <= GatherScatterCost && 7223 InterleaveCost < ScalarizationCost) { 7224 Decision = CM_Interleave; 7225 Cost = InterleaveCost; 7226 } else if (GatherScatterCost < ScalarizationCost) { 7227 Decision = CM_GatherScatter; 7228 Cost = GatherScatterCost; 7229 } else { 7230 Decision = CM_Scalarize; 7231 Cost = ScalarizationCost; 7232 } 7233 // If the instructions belongs to an interleave group, the whole group 7234 // receives the same decision. The whole group receives the cost, but 7235 // the cost will actually be assigned to one instruction. 7236 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7237 setWideningDecision(Group, VF, Decision, Cost); 7238 else 7239 setWideningDecision(&I, VF, Decision, Cost); 7240 } 7241 } 7242 7243 // Make sure that any load of address and any other address computation 7244 // remains scalar unless there is gather/scatter support. This avoids 7245 // inevitable extracts into address registers, and also has the benefit of 7246 // activating LSR more, since that pass can't optimize vectorized 7247 // addresses. 7248 if (TTI.prefersVectorizedAddressing()) 7249 return; 7250 7251 // Start with all scalar pointer uses. 7252 SmallPtrSet<Instruction *, 8> AddrDefs; 7253 for (BasicBlock *BB : TheLoop->blocks()) 7254 for (Instruction &I : *BB) { 7255 Instruction *PtrDef = 7256 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7257 if (PtrDef && TheLoop->contains(PtrDef) && 7258 getWideningDecision(&I, VF) != CM_GatherScatter) 7259 AddrDefs.insert(PtrDef); 7260 } 7261 7262 // Add all instructions used to generate the addresses. 7263 SmallVector<Instruction *, 4> Worklist; 7264 for (auto *I : AddrDefs) 7265 Worklist.push_back(I); 7266 while (!Worklist.empty()) { 7267 Instruction *I = Worklist.pop_back_val(); 7268 for (auto &Op : I->operands()) 7269 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7270 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7271 AddrDefs.insert(InstOp).second) 7272 Worklist.push_back(InstOp); 7273 } 7274 7275 for (auto *I : AddrDefs) { 7276 if (isa<LoadInst>(I)) { 7277 // Setting the desired widening decision should ideally be handled in 7278 // by cost functions, but since this involves the task of finding out 7279 // if the loaded register is involved in an address computation, it is 7280 // instead changed here when we know this is the case. 7281 InstWidening Decision = getWideningDecision(I, VF); 7282 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7283 // Scalarize a widened load of address. 7284 setWideningDecision(I, VF, CM_Scalarize, 7285 (VF * getMemoryInstructionCost(I, 1))); 7286 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7287 // Scalarize an interleave group of address loads. 7288 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7289 if (Instruction *Member = Group->getMember(I)) 7290 setWideningDecision(Member, VF, CM_Scalarize, 7291 (VF * getMemoryInstructionCost(Member, 1))); 7292 } 7293 } 7294 } else 7295 // Make sure I gets scalarized and a cost estimate without 7296 // scalarization overhead. 7297 ForcedScalars[VF].insert(I); 7298 } 7299 } 7300 7301 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7302 unsigned VF, 7303 Type *&VectorTy) { 7304 Type *RetTy = I->getType(); 7305 if (canTruncateToMinimalBitwidth(I, VF)) 7306 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7307 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7308 auto SE = PSE.getSE(); 7309 7310 // TODO: We need to estimate the cost of intrinsic calls. 7311 switch (I->getOpcode()) { 7312 case Instruction::GetElementPtr: 7313 // We mark this instruction as zero-cost because the cost of GEPs in 7314 // vectorized code depends on whether the corresponding memory instruction 7315 // is scalarized or not. Therefore, we handle GEPs with the memory 7316 // instruction cost. 7317 return 0; 7318 case Instruction::Br: { 7319 // In cases of scalarized and predicated instructions, there will be VF 7320 // predicated blocks in the vectorized loop. Each branch around these 7321 // blocks requires also an extract of its vector compare i1 element. 7322 bool ScalarPredicatedBB = false; 7323 BranchInst *BI = cast<BranchInst>(I); 7324 if (VF > 1 && BI->isConditional() && 7325 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7326 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7327 ScalarPredicatedBB = true; 7328 7329 if (ScalarPredicatedBB) { 7330 // Return cost for branches around scalarized and predicated blocks. 7331 Type *Vec_i1Ty = 7332 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7333 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7334 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7335 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7336 // The back-edge branch will remain, as will all scalar branches. 7337 return TTI.getCFInstrCost(Instruction::Br); 7338 else 7339 // This branch will be eliminated by if-conversion. 7340 return 0; 7341 // Note: We currently assume zero cost for an unconditional branch inside 7342 // a predicated block since it will become a fall-through, although we 7343 // may decide in the future to call TTI for all branches. 7344 } 7345 case Instruction::PHI: { 7346 auto *Phi = cast<PHINode>(I); 7347 7348 // First-order recurrences are replaced by vector shuffles inside the loop. 7349 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7350 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7351 VectorTy, VF - 1, VectorTy); 7352 7353 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7354 // converted into select instructions. We require N - 1 selects per phi 7355 // node, where N is the number of incoming values. 7356 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7357 return (Phi->getNumIncomingValues() - 1) * 7358 TTI.getCmpSelInstrCost( 7359 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7360 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7361 7362 return TTI.getCFInstrCost(Instruction::PHI); 7363 } 7364 case Instruction::UDiv: 7365 case Instruction::SDiv: 7366 case Instruction::URem: 7367 case Instruction::SRem: 7368 // If we have a predicated instruction, it may not be executed for each 7369 // vector lane. Get the scalarization cost and scale this amount by the 7370 // probability of executing the predicated block. If the instruction is not 7371 // predicated, we fall through to the next case. 7372 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7373 unsigned Cost = 0; 7374 7375 // These instructions have a non-void type, so account for the phi nodes 7376 // that we will create. This cost is likely to be zero. The phi node 7377 // cost, if any, should be scaled by the block probability because it 7378 // models a copy at the end of each predicated block. 7379 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7380 7381 // The cost of the non-predicated instruction. 7382 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7383 7384 // The cost of insertelement and extractelement instructions needed for 7385 // scalarization. 7386 Cost += getScalarizationOverhead(I, VF, TTI); 7387 7388 // Scale the cost by the probability of executing the predicated blocks. 7389 // This assumes the predicated block for each vector lane is equally 7390 // likely. 7391 return Cost / getReciprocalPredBlockProb(); 7392 } 7393 LLVM_FALLTHROUGH; 7394 case Instruction::Add: 7395 case Instruction::FAdd: 7396 case Instruction::Sub: 7397 case Instruction::FSub: 7398 case Instruction::Mul: 7399 case Instruction::FMul: 7400 case Instruction::FDiv: 7401 case Instruction::FRem: 7402 case Instruction::Shl: 7403 case Instruction::LShr: 7404 case Instruction::AShr: 7405 case Instruction::And: 7406 case Instruction::Or: 7407 case Instruction::Xor: { 7408 // Since we will replace the stride by 1 the multiplication should go away. 7409 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7410 return 0; 7411 // Certain instructions can be cheaper to vectorize if they have a constant 7412 // second vector operand. One example of this are shifts on x86. 7413 TargetTransformInfo::OperandValueKind Op1VK = 7414 TargetTransformInfo::OK_AnyValue; 7415 TargetTransformInfo::OperandValueKind Op2VK = 7416 TargetTransformInfo::OK_AnyValue; 7417 TargetTransformInfo::OperandValueProperties Op1VP = 7418 TargetTransformInfo::OP_None; 7419 TargetTransformInfo::OperandValueProperties Op2VP = 7420 TargetTransformInfo::OP_None; 7421 Value *Op2 = I->getOperand(1); 7422 7423 // Check for a splat or for a non uniform vector of constants. 7424 if (isa<ConstantInt>(Op2)) { 7425 ConstantInt *CInt = cast<ConstantInt>(Op2); 7426 if (CInt && CInt->getValue().isPowerOf2()) 7427 Op2VP = TargetTransformInfo::OP_PowerOf2; 7428 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7429 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7430 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7431 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7432 if (SplatValue) { 7433 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7434 if (CInt && CInt->getValue().isPowerOf2()) 7435 Op2VP = TargetTransformInfo::OP_PowerOf2; 7436 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7437 } 7438 } else if (Legal->isUniform(Op2)) { 7439 Op2VK = TargetTransformInfo::OK_UniformValue; 7440 } 7441 SmallVector<const Value *, 4> Operands(I->operand_values()); 7442 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7443 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7444 Op2VK, Op1VP, Op2VP, Operands); 7445 } 7446 case Instruction::Select: { 7447 SelectInst *SI = cast<SelectInst>(I); 7448 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7449 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7450 Type *CondTy = SI->getCondition()->getType(); 7451 if (!ScalarCond) 7452 CondTy = VectorType::get(CondTy, VF); 7453 7454 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7455 } 7456 case Instruction::ICmp: 7457 case Instruction::FCmp: { 7458 Type *ValTy = I->getOperand(0)->getType(); 7459 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7460 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7461 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7462 VectorTy = ToVectorTy(ValTy, VF); 7463 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7464 } 7465 case Instruction::Store: 7466 case Instruction::Load: { 7467 unsigned Width = VF; 7468 if (Width > 1) { 7469 InstWidening Decision = getWideningDecision(I, Width); 7470 assert(Decision != CM_Unknown && 7471 "CM decision should be taken at this point"); 7472 if (Decision == CM_Scalarize) 7473 Width = 1; 7474 } 7475 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7476 return getMemoryInstructionCost(I, VF); 7477 } 7478 case Instruction::ZExt: 7479 case Instruction::SExt: 7480 case Instruction::FPToUI: 7481 case Instruction::FPToSI: 7482 case Instruction::FPExt: 7483 case Instruction::PtrToInt: 7484 case Instruction::IntToPtr: 7485 case Instruction::SIToFP: 7486 case Instruction::UIToFP: 7487 case Instruction::Trunc: 7488 case Instruction::FPTrunc: 7489 case Instruction::BitCast: { 7490 // We optimize the truncation of induction variables having constant 7491 // integer steps. The cost of these truncations is the same as the scalar 7492 // operation. 7493 if (isOptimizableIVTruncate(I, VF)) { 7494 auto *Trunc = cast<TruncInst>(I); 7495 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7496 Trunc->getSrcTy(), Trunc); 7497 } 7498 7499 Type *SrcScalarTy = I->getOperand(0)->getType(); 7500 Type *SrcVecTy = 7501 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7502 if (canTruncateToMinimalBitwidth(I, VF)) { 7503 // This cast is going to be shrunk. This may remove the cast or it might 7504 // turn it into slightly different cast. For example, if MinBW == 16, 7505 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7506 // 7507 // Calculate the modified src and dest types. 7508 Type *MinVecTy = VectorTy; 7509 if (I->getOpcode() == Instruction::Trunc) { 7510 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7511 VectorTy = 7512 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7513 } else if (I->getOpcode() == Instruction::ZExt || 7514 I->getOpcode() == Instruction::SExt) { 7515 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7516 VectorTy = 7517 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7518 } 7519 } 7520 7521 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7522 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7523 } 7524 case Instruction::Call: { 7525 bool NeedToScalarize; 7526 CallInst *CI = cast<CallInst>(I); 7527 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7528 if (getVectorIntrinsicIDForCall(CI, TLI)) 7529 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7530 return CallCost; 7531 } 7532 default: 7533 // The cost of executing VF copies of the scalar instruction. This opcode 7534 // is unknown. Assume that it is the same as 'mul'. 7535 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7536 getScalarizationOverhead(I, VF, TTI); 7537 } // end of switch. 7538 } 7539 7540 char LoopVectorize::ID = 0; 7541 7542 static const char lv_name[] = "Loop Vectorization"; 7543 7544 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7545 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7546 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7547 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7548 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7549 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7550 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7551 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7552 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7553 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7554 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7555 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7556 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7557 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7558 7559 namespace llvm { 7560 7561 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7562 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7563 } 7564 7565 } // end namespace llvm 7566 7567 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7568 // Check if the pointer operand of a load or store instruction is 7569 // consecutive. 7570 if (auto *Ptr = getPointerOperand(Inst)) 7571 return Legal->isConsecutivePtr(Ptr); 7572 return false; 7573 } 7574 7575 void LoopVectorizationCostModel::collectValuesToIgnore() { 7576 // Ignore ephemeral values. 7577 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7578 7579 // Ignore type-promoting instructions we identified during reduction 7580 // detection. 7581 for (auto &Reduction : *Legal->getReductionVars()) { 7582 RecurrenceDescriptor &RedDes = Reduction.second; 7583 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7584 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7585 } 7586 // Ignore type-casting instructions we identified during induction 7587 // detection. 7588 for (auto &Induction : *Legal->getInductionVars()) { 7589 InductionDescriptor &IndDes = Induction.second; 7590 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7591 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7592 } 7593 } 7594 7595 LoopVectorizationCostModel::VectorizationFactor 7596 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7597 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7598 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7599 0U}; 7600 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7601 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7602 return NoVectorization; 7603 7604 if (UserVF) { 7605 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7606 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7607 // Collect the instructions (and their associated costs) that will be more 7608 // profitable to scalarize. 7609 CM.selectUserVectorizationFactor(UserVF); 7610 buildVPlans(UserVF, UserVF); 7611 DEBUG(printPlans(dbgs())); 7612 return {UserVF, 0}; 7613 } 7614 7615 unsigned MaxVF = MaybeMaxVF.getValue(); 7616 assert(MaxVF != 0 && "MaxVF is zero."); 7617 7618 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7619 // Collect Uniform and Scalar instructions after vectorization with VF. 7620 CM.collectUniformsAndScalars(VF); 7621 7622 // Collect the instructions (and their associated costs) that will be more 7623 // profitable to scalarize. 7624 if (VF > 1) 7625 CM.collectInstsToScalarize(VF); 7626 } 7627 7628 buildVPlans(1, MaxVF); 7629 DEBUG(printPlans(dbgs())); 7630 if (MaxVF == 1) 7631 return NoVectorization; 7632 7633 // Select the optimal vectorization factor. 7634 return CM.selectVectorizationFactor(MaxVF); 7635 } 7636 7637 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7638 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7639 BestVF = VF; 7640 BestUF = UF; 7641 7642 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7643 return !Plan->hasVF(VF); 7644 }); 7645 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7646 } 7647 7648 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7649 DominatorTree *DT) { 7650 // Perform the actual loop transformation. 7651 7652 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7653 VPCallbackILV CallbackILV(ILV); 7654 7655 VPTransformState State{BestVF, BestUF, LI, 7656 DT, ILV.Builder, ILV.VectorLoopValueMap, 7657 &ILV, CallbackILV}; 7658 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7659 7660 //===------------------------------------------------===// 7661 // 7662 // Notice: any optimization or new instruction that go 7663 // into the code below should also be implemented in 7664 // the cost-model. 7665 // 7666 //===------------------------------------------------===// 7667 7668 // 2. Copy and widen instructions from the old loop into the new loop. 7669 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7670 VPlans.front()->execute(&State); 7671 7672 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7673 // predication, updating analyses. 7674 ILV.fixVectorizedLoop(); 7675 } 7676 7677 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7678 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7679 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7680 7681 // We create new control-flow for the vectorized loop, so the original 7682 // condition will be dead after vectorization if it's only used by the 7683 // branch. 7684 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7685 if (Cmp && Cmp->hasOneUse()) 7686 DeadInstructions.insert(Cmp); 7687 7688 // We create new "steps" for induction variable updates to which the original 7689 // induction variables map. An original update instruction will be dead if 7690 // all its users except the induction variable are dead. 7691 for (auto &Induction : *Legal->getInductionVars()) { 7692 PHINode *Ind = Induction.first; 7693 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7694 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7695 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7696 })) 7697 DeadInstructions.insert(IndUpdate); 7698 7699 // We record as "Dead" also the type-casting instructions we had identified 7700 // during induction analysis. We don't need any handling for them in the 7701 // vectorized loop because we have proven that, under a proper runtime 7702 // test guarding the vectorized loop, the value of the phi, and the casted 7703 // value of the phi, are the same. The last instruction in this casting chain 7704 // will get its scalar/vector/widened def from the scalar/vector/widened def 7705 // of the respective phi node. Any other casts in the induction def-use chain 7706 // have no other uses outside the phi update chain, and will be ignored. 7707 InductionDescriptor &IndDes = Induction.second; 7708 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7709 DeadInstructions.insert(Casts.begin(), Casts.end()); 7710 } 7711 } 7712 7713 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7714 7715 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7716 7717 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7718 Instruction::BinaryOps BinOp) { 7719 // When unrolling and the VF is 1, we only need to add a simple scalar. 7720 Type *Ty = Val->getType(); 7721 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7722 7723 if (Ty->isFloatingPointTy()) { 7724 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7725 7726 // Floating point operations had to be 'fast' to enable the unrolling. 7727 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7728 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7729 } 7730 Constant *C = ConstantInt::get(Ty, StartIdx); 7731 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7732 } 7733 7734 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7735 SmallVector<Metadata *, 4> MDs; 7736 // Reserve first location for self reference to the LoopID metadata node. 7737 MDs.push_back(nullptr); 7738 bool IsUnrollMetadata = false; 7739 MDNode *LoopID = L->getLoopID(); 7740 if (LoopID) { 7741 // First find existing loop unrolling disable metadata. 7742 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7743 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7744 if (MD) { 7745 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7746 IsUnrollMetadata = 7747 S && S->getString().startswith("llvm.loop.unroll.disable"); 7748 } 7749 MDs.push_back(LoopID->getOperand(i)); 7750 } 7751 } 7752 7753 if (!IsUnrollMetadata) { 7754 // Add runtime unroll disable metadata. 7755 LLVMContext &Context = L->getHeader()->getContext(); 7756 SmallVector<Metadata *, 1> DisableOperands; 7757 DisableOperands.push_back( 7758 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7759 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7760 MDs.push_back(DisableNode); 7761 MDNode *NewLoopID = MDNode::get(Context, MDs); 7762 // Set operand 0 to refer to the loop id itself. 7763 NewLoopID->replaceOperandWith(0, NewLoopID); 7764 L->setLoopID(NewLoopID); 7765 } 7766 } 7767 7768 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7769 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7770 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7771 bool PredicateAtRangeStart = Predicate(Range.Start); 7772 7773 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7774 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7775 Range.End = TmpVF; 7776 break; 7777 } 7778 7779 return PredicateAtRangeStart; 7780 } 7781 7782 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7783 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7784 /// of VF's starting at a given VF and extending it as much as possible. Each 7785 /// vectorization decision can potentially shorten this sub-range during 7786 /// buildVPlan(). 7787 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7788 7789 // Collect conditions feeding internal conditional branches; they need to be 7790 // represented in VPlan for it to model masking. 7791 SmallPtrSet<Value *, 1> NeedDef; 7792 7793 auto *Latch = OrigLoop->getLoopLatch(); 7794 for (BasicBlock *BB : OrigLoop->blocks()) { 7795 if (BB == Latch) 7796 continue; 7797 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7798 if (Branch && Branch->isConditional()) 7799 NeedDef.insert(Branch->getCondition()); 7800 } 7801 7802 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7803 VFRange SubRange = {VF, MaxVF + 1}; 7804 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7805 VF = SubRange.End; 7806 } 7807 } 7808 7809 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7810 BasicBlock *Dst, 7811 VPlanPtr &Plan) { 7812 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7813 7814 // Look for cached value. 7815 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7816 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7817 if (ECEntryIt != EdgeMaskCache.end()) 7818 return ECEntryIt->second; 7819 7820 VPValue *SrcMask = createBlockInMask(Src, Plan); 7821 7822 // The terminator has to be a branch inst! 7823 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7824 assert(BI && "Unexpected terminator found"); 7825 7826 if (!BI->isConditional()) 7827 return EdgeMaskCache[Edge] = SrcMask; 7828 7829 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7830 assert(EdgeMask && "No Edge Mask found for condition"); 7831 7832 if (BI->getSuccessor(0) != Dst) 7833 EdgeMask = Builder.createNot(EdgeMask); 7834 7835 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7836 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7837 7838 return EdgeMaskCache[Edge] = EdgeMask; 7839 } 7840 7841 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7842 VPlanPtr &Plan) { 7843 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7844 7845 // Look for cached value. 7846 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7847 if (BCEntryIt != BlockMaskCache.end()) 7848 return BCEntryIt->second; 7849 7850 // All-one mask is modelled as no-mask following the convention for masked 7851 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7852 VPValue *BlockMask = nullptr; 7853 7854 // Loop incoming mask is all-one. 7855 if (OrigLoop->getHeader() == BB) 7856 return BlockMaskCache[BB] = BlockMask; 7857 7858 // This is the block mask. We OR all incoming edges. 7859 for (auto *Predecessor : predecessors(BB)) { 7860 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7861 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7862 return BlockMaskCache[BB] = EdgeMask; 7863 7864 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7865 BlockMask = EdgeMask; 7866 continue; 7867 } 7868 7869 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7870 } 7871 7872 return BlockMaskCache[BB] = BlockMask; 7873 } 7874 7875 VPInterleaveRecipe * 7876 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7877 VFRange &Range) { 7878 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7879 if (!IG) 7880 return nullptr; 7881 7882 // Now check if IG is relevant for VF's in the given range. 7883 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7884 return [=](unsigned VF) -> bool { 7885 return (VF >= 2 && // Query is illegal for VF == 1 7886 CM.getWideningDecision(I, VF) == 7887 LoopVectorizationCostModel::CM_Interleave); 7888 }; 7889 }; 7890 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7891 return nullptr; 7892 7893 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7894 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7895 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7896 assert(I == IG->getInsertPos() && 7897 "Generating a recipe for an adjunct member of an interleave group"); 7898 7899 return new VPInterleaveRecipe(IG); 7900 } 7901 7902 VPWidenMemoryInstructionRecipe * 7903 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7904 VPlanPtr &Plan) { 7905 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7906 return nullptr; 7907 7908 auto willWiden = [&](unsigned VF) -> bool { 7909 if (VF == 1) 7910 return false; 7911 if (CM.isScalarAfterVectorization(I, VF) || 7912 CM.isProfitableToScalarize(I, VF)) 7913 return false; 7914 LoopVectorizationCostModel::InstWidening Decision = 7915 CM.getWideningDecision(I, VF); 7916 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7917 "CM decision should be taken at this point."); 7918 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7919 "Interleave memory opportunity should be caught earlier."); 7920 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7921 }; 7922 7923 if (!getDecisionAndClampRange(willWiden, Range)) 7924 return nullptr; 7925 7926 VPValue *Mask = nullptr; 7927 if (Legal->isMaskRequired(I)) 7928 Mask = createBlockInMask(I->getParent(), Plan); 7929 7930 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7931 } 7932 7933 VPWidenIntOrFpInductionRecipe * 7934 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7935 VFRange &Range) { 7936 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7937 // Check if this is an integer or fp induction. If so, build the recipe that 7938 // produces its scalar and vector values. 7939 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7940 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7941 II.getKind() == InductionDescriptor::IK_FpInduction) 7942 return new VPWidenIntOrFpInductionRecipe(Phi); 7943 7944 return nullptr; 7945 } 7946 7947 // Optimize the special case where the source is a constant integer 7948 // induction variable. Notice that we can only optimize the 'trunc' case 7949 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7950 // (c) other casts depend on pointer size. 7951 7952 // Determine whether \p K is a truncation based on an induction variable that 7953 // can be optimized. 7954 auto isOptimizableIVTruncate = 7955 [&](Instruction *K) -> std::function<bool(unsigned)> { 7956 return 7957 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7958 }; 7959 7960 if (isa<TruncInst>(I) && 7961 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7962 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7963 cast<TruncInst>(I)); 7964 return nullptr; 7965 } 7966 7967 VPBlendRecipe * 7968 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7969 PHINode *Phi = dyn_cast<PHINode>(I); 7970 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7971 return nullptr; 7972 7973 // We know that all PHIs in non-header blocks are converted into selects, so 7974 // we don't have to worry about the insertion order and we can just use the 7975 // builder. At this point we generate the predication tree. There may be 7976 // duplications since this is a simple recursive scan, but future 7977 // optimizations will clean it up. 7978 7979 SmallVector<VPValue *, 2> Masks; 7980 unsigned NumIncoming = Phi->getNumIncomingValues(); 7981 for (unsigned In = 0; In < NumIncoming; In++) { 7982 VPValue *EdgeMask = 7983 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7984 assert((EdgeMask || NumIncoming == 1) && 7985 "Multiple predecessors with one having a full mask"); 7986 if (EdgeMask) 7987 Masks.push_back(EdgeMask); 7988 } 7989 return new VPBlendRecipe(Phi, Masks); 7990 } 7991 7992 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7993 VFRange &Range) { 7994 if (Legal->isScalarWithPredication(I)) 7995 return false; 7996 7997 auto IsVectorizableOpcode = [](unsigned Opcode) { 7998 switch (Opcode) { 7999 case Instruction::Add: 8000 case Instruction::And: 8001 case Instruction::AShr: 8002 case Instruction::BitCast: 8003 case Instruction::Br: 8004 case Instruction::Call: 8005 case Instruction::FAdd: 8006 case Instruction::FCmp: 8007 case Instruction::FDiv: 8008 case Instruction::FMul: 8009 case Instruction::FPExt: 8010 case Instruction::FPToSI: 8011 case Instruction::FPToUI: 8012 case Instruction::FPTrunc: 8013 case Instruction::FRem: 8014 case Instruction::FSub: 8015 case Instruction::GetElementPtr: 8016 case Instruction::ICmp: 8017 case Instruction::IntToPtr: 8018 case Instruction::Load: 8019 case Instruction::LShr: 8020 case Instruction::Mul: 8021 case Instruction::Or: 8022 case Instruction::PHI: 8023 case Instruction::PtrToInt: 8024 case Instruction::SDiv: 8025 case Instruction::Select: 8026 case Instruction::SExt: 8027 case Instruction::Shl: 8028 case Instruction::SIToFP: 8029 case Instruction::SRem: 8030 case Instruction::Store: 8031 case Instruction::Sub: 8032 case Instruction::Trunc: 8033 case Instruction::UDiv: 8034 case Instruction::UIToFP: 8035 case Instruction::URem: 8036 case Instruction::Xor: 8037 case Instruction::ZExt: 8038 return true; 8039 } 8040 return false; 8041 }; 8042 8043 if (!IsVectorizableOpcode(I->getOpcode())) 8044 return false; 8045 8046 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8047 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8048 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8049 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 8050 return false; 8051 } 8052 8053 auto willWiden = [&](unsigned VF) -> bool { 8054 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8055 CM.isProfitableToScalarize(I, VF))) 8056 return false; 8057 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8058 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8059 // The following case may be scalarized depending on the VF. 8060 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8061 // version of the instruction. 8062 // Is it beneficial to perform intrinsic call compared to lib call? 8063 bool NeedToScalarize; 8064 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8065 bool UseVectorIntrinsic = 8066 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8067 return UseVectorIntrinsic || !NeedToScalarize; 8068 } 8069 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8070 assert(CM.getWideningDecision(I, VF) == 8071 LoopVectorizationCostModel::CM_Scalarize && 8072 "Memory widening decisions should have been taken care by now"); 8073 return false; 8074 } 8075 return true; 8076 }; 8077 8078 if (!getDecisionAndClampRange(willWiden, Range)) 8079 return false; 8080 8081 // Success: widen this instruction. We optimize the common case where 8082 // consecutive instructions can be represented by a single recipe. 8083 if (!VPBB->empty()) { 8084 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 8085 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8086 return true; 8087 } 8088 8089 VPBB->appendRecipe(new VPWidenRecipe(I)); 8090 return true; 8091 } 8092 8093 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8094 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8095 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8096 VPlanPtr &Plan) { 8097 bool IsUniform = getDecisionAndClampRange( 8098 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8099 Range); 8100 8101 bool IsPredicated = Legal->isScalarWithPredication(I); 8102 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8103 8104 // Find if I uses a predicated instruction. If so, it will use its scalar 8105 // value. Avoid hoisting the insert-element which packs the scalar value into 8106 // a vector value, as that happens iff all users use the vector value. 8107 for (auto &Op : I->operands()) 8108 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8109 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8110 PredInst2Recipe[PredInst]->setAlsoPack(false); 8111 8112 // Finalize the recipe for Instr, first if it is not predicated. 8113 if (!IsPredicated) { 8114 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8115 VPBB->appendRecipe(Recipe); 8116 return VPBB; 8117 } 8118 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8119 assert(VPBB->getSuccessors().empty() && 8120 "VPBB has successors when handling predicated replication."); 8121 // Record predicated instructions for above packing optimizations. 8122 PredInst2Recipe[I] = Recipe; 8123 VPBlockBase *Region = 8124 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 8125 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8126 } 8127 8128 VPRegionBlock * 8129 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8130 VPRecipeBase *PredRecipe, 8131 VPlanPtr &Plan) { 8132 // Instructions marked for predication are replicated and placed under an 8133 // if-then construct to prevent side-effects. 8134 8135 // Generate recipes to compute the block mask for this region. 8136 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8137 8138 // Build the triangular if-then region. 8139 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8140 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8141 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8142 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8143 auto *PHIRecipe = 8144 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8145 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8146 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8147 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8148 8149 // Note: first set Entry as region entry and then connect successors starting 8150 // from it in order, to propagate the "parent" of each VPBasicBlock. 8151 Entry->setTwoSuccessors(Pred, Exit); 8152 Pred->setOneSuccessor(Exit); 8153 8154 return Region; 8155 } 8156 8157 LoopVectorizationPlanner::VPlanPtr 8158 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 8159 const SmallPtrSetImpl<Value *> &NeedDef) { 8160 EdgeMaskCache.clear(); 8161 BlockMaskCache.clear(); 8162 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8163 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8164 8165 // Collect instructions from the original loop that will become trivially dead 8166 // in the vectorized loop. We don't need to vectorize these instructions. For 8167 // example, original induction update instructions can become dead because we 8168 // separately emit induction "steps" when generating code for the new loop. 8169 // Similarly, we create a new latch condition when setting up the structure 8170 // of the new loop, so the old one can become dead. 8171 SmallPtrSet<Instruction *, 4> DeadInstructions; 8172 collectTriviallyDeadInstructions(DeadInstructions); 8173 8174 // Hold a mapping from predicated instructions to their recipes, in order to 8175 // fix their AlsoPack behavior if a user is determined to replicate and use a 8176 // scalar instead of vector value. 8177 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8178 8179 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8180 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8181 auto Plan = llvm::make_unique<VPlan>(VPBB); 8182 8183 // Represent values that will have defs inside VPlan. 8184 for (Value *V : NeedDef) 8185 Plan->addVPValue(V); 8186 8187 // Scan the body of the loop in a topological order to visit each basic block 8188 // after having visited its predecessor basic blocks. 8189 LoopBlocksDFS DFS(OrigLoop); 8190 DFS.perform(LI); 8191 8192 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8193 // Relevant instructions from basic block BB will be grouped into VPRecipe 8194 // ingredients and fill a new VPBasicBlock. 8195 unsigned VPBBsForBB = 0; 8196 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8197 VPBB->setOneSuccessor(FirstVPBBForBB); 8198 VPBB = FirstVPBBForBB; 8199 Builder.setInsertPoint(VPBB); 8200 8201 std::vector<Instruction *> Ingredients; 8202 8203 // Organize the ingredients to vectorize from current basic block in the 8204 // right order. 8205 for (Instruction &I : *BB) { 8206 Instruction *Instr = &I; 8207 8208 // First filter out irrelevant instructions, to ensure no recipes are 8209 // built for them. 8210 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8211 DeadInstructions.count(Instr)) 8212 continue; 8213 8214 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8215 // member of the IG, do not construct any Recipe for it. 8216 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8217 if (IG && Instr != IG->getInsertPos() && 8218 Range.Start >= 2 && // Query is illegal for VF == 1 8219 CM.getWideningDecision(Instr, Range.Start) == 8220 LoopVectorizationCostModel::CM_Interleave) { 8221 if (SinkAfterInverse.count(Instr)) 8222 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8223 continue; 8224 } 8225 8226 // Move instructions to handle first-order recurrences, step 1: avoid 8227 // handling this instruction until after we've handled the instruction it 8228 // should follow. 8229 auto SAIt = SinkAfter.find(Instr); 8230 if (SAIt != SinkAfter.end()) { 8231 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8232 << " to vectorize a 1st order recurrence.\n"); 8233 SinkAfterInverse[SAIt->second] = Instr; 8234 continue; 8235 } 8236 8237 Ingredients.push_back(Instr); 8238 8239 // Move instructions to handle first-order recurrences, step 2: push the 8240 // instruction to be sunk at its insertion point. 8241 auto SAInvIt = SinkAfterInverse.find(Instr); 8242 if (SAInvIt != SinkAfterInverse.end()) 8243 Ingredients.push_back(SAInvIt->second); 8244 } 8245 8246 // Introduce each ingredient into VPlan. 8247 for (Instruction *Instr : Ingredients) { 8248 VPRecipeBase *Recipe = nullptr; 8249 8250 // Check if Instr should belong to an interleave memory recipe, or already 8251 // does. In the latter case Instr is irrelevant. 8252 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8253 VPBB->appendRecipe(Recipe); 8254 continue; 8255 } 8256 8257 // Check if Instr is a memory operation that should be widened. 8258 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8259 VPBB->appendRecipe(Recipe); 8260 continue; 8261 } 8262 8263 // Check if Instr should form some PHI recipe. 8264 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8265 VPBB->appendRecipe(Recipe); 8266 continue; 8267 } 8268 if ((Recipe = tryToBlend(Instr, Plan))) { 8269 VPBB->appendRecipe(Recipe); 8270 continue; 8271 } 8272 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8273 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8274 continue; 8275 } 8276 8277 // Check if Instr is to be widened by a general VPWidenRecipe, after 8278 // having first checked for specific widening recipes that deal with 8279 // Interleave Groups, Inductions and Phi nodes. 8280 if (tryToWiden(Instr, VPBB, Range)) 8281 continue; 8282 8283 // Otherwise, if all widening options failed, Instruction is to be 8284 // replicated. This may create a successor for VPBB. 8285 VPBasicBlock *NextVPBB = 8286 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8287 if (NextVPBB != VPBB) { 8288 VPBB = NextVPBB; 8289 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8290 : ""); 8291 } 8292 } 8293 } 8294 8295 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8296 // may also be empty, such as the last one VPBB, reflecting original 8297 // basic-blocks with no recipes. 8298 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8299 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8300 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8301 PreEntry->disconnectSuccessor(Entry); 8302 delete PreEntry; 8303 8304 std::string PlanName; 8305 raw_string_ostream RSO(PlanName); 8306 unsigned VF = Range.Start; 8307 Plan->addVF(VF); 8308 RSO << "Initial VPlan for VF={" << VF; 8309 for (VF *= 2; VF < Range.End; VF *= 2) { 8310 Plan->addVF(VF); 8311 RSO << "," << VF; 8312 } 8313 RSO << "},UF>=1"; 8314 RSO.flush(); 8315 Plan->setName(PlanName); 8316 8317 return Plan; 8318 } 8319 8320 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8321 O << " +\n" 8322 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8323 IG->getInsertPos()->printAsOperand(O, false); 8324 O << "\\l\""; 8325 for (unsigned i = 0; i < IG->getFactor(); ++i) 8326 if (Instruction *I = IG->getMember(i)) 8327 O << " +\n" 8328 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8329 } 8330 8331 void VPWidenRecipe::execute(VPTransformState &State) { 8332 for (auto &Instr : make_range(Begin, End)) 8333 State.ILV->widenInstruction(Instr); 8334 } 8335 8336 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8337 assert(!State.Instance && "Int or FP induction being replicated."); 8338 State.ILV->widenIntOrFpInduction(IV, Trunc); 8339 } 8340 8341 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8342 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8343 } 8344 8345 void VPBlendRecipe::execute(VPTransformState &State) { 8346 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8347 // We know that all PHIs in non-header blocks are converted into 8348 // selects, so we don't have to worry about the insertion order and we 8349 // can just use the builder. 8350 // At this point we generate the predication tree. There may be 8351 // duplications since this is a simple recursive scan, but future 8352 // optimizations will clean it up. 8353 8354 unsigned NumIncoming = Phi->getNumIncomingValues(); 8355 8356 assert((User || NumIncoming == 1) && 8357 "Multiple predecessors with predecessors having a full mask"); 8358 // Generate a sequence of selects of the form: 8359 // SELECT(Mask3, In3, 8360 // SELECT(Mask2, In2, 8361 // ( ...))) 8362 InnerLoopVectorizer::VectorParts Entry(State.UF); 8363 for (unsigned In = 0; In < NumIncoming; ++In) { 8364 for (unsigned Part = 0; Part < State.UF; ++Part) { 8365 // We might have single edge PHIs (blocks) - use an identity 8366 // 'select' for the first PHI operand. 8367 Value *In0 = 8368 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8369 if (In == 0) 8370 Entry[Part] = In0; // Initialize with the first incoming value. 8371 else { 8372 // Select between the current value and the previous incoming edge 8373 // based on the incoming mask. 8374 Value *Cond = State.get(User->getOperand(In), Part); 8375 Entry[Part] = 8376 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8377 } 8378 } 8379 } 8380 for (unsigned Part = 0; Part < State.UF; ++Part) 8381 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8382 } 8383 8384 void VPInterleaveRecipe::execute(VPTransformState &State) { 8385 assert(!State.Instance && "Interleave group being replicated."); 8386 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8387 } 8388 8389 void VPReplicateRecipe::execute(VPTransformState &State) { 8390 if (State.Instance) { // Generate a single instance. 8391 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8392 // Insert scalar instance packing it into a vector. 8393 if (AlsoPack && State.VF > 1) { 8394 // If we're constructing lane 0, initialize to start from undef. 8395 if (State.Instance->Lane == 0) { 8396 Value *Undef = 8397 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8398 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8399 } 8400 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8401 } 8402 return; 8403 } 8404 8405 // Generate scalar instances for all VF lanes of all UF parts, unless the 8406 // instruction is uniform inwhich case generate only the first lane for each 8407 // of the UF parts. 8408 unsigned EndLane = IsUniform ? 1 : State.VF; 8409 for (unsigned Part = 0; Part < State.UF; ++Part) 8410 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8411 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8412 } 8413 8414 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8415 assert(State.Instance && "Branch on Mask works only on single instance."); 8416 8417 unsigned Part = State.Instance->Part; 8418 unsigned Lane = State.Instance->Lane; 8419 8420 Value *ConditionBit = nullptr; 8421 if (!User) // Block in mask is all-one. 8422 ConditionBit = State.Builder.getTrue(); 8423 else { 8424 VPValue *BlockInMask = User->getOperand(0); 8425 ConditionBit = State.get(BlockInMask, Part); 8426 if (ConditionBit->getType()->isVectorTy()) 8427 ConditionBit = State.Builder.CreateExtractElement( 8428 ConditionBit, State.Builder.getInt32(Lane)); 8429 } 8430 8431 // Replace the temporary unreachable terminator with a new conditional branch, 8432 // whose two destinations will be set later when they are created. 8433 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8434 assert(isa<UnreachableInst>(CurrentTerminator) && 8435 "Expected to replace unreachable terminator with conditional branch."); 8436 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8437 CondBr->setSuccessor(0, nullptr); 8438 ReplaceInstWithInst(CurrentTerminator, CondBr); 8439 } 8440 8441 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8442 assert(State.Instance && "Predicated instruction PHI works per instance."); 8443 Instruction *ScalarPredInst = cast<Instruction>( 8444 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8445 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8446 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8447 assert(PredicatingBB && "Predicated block has no single predecessor."); 8448 8449 // By current pack/unpack logic we need to generate only a single phi node: if 8450 // a vector value for the predicated instruction exists at this point it means 8451 // the instruction has vector users only, and a phi for the vector value is 8452 // needed. In this case the recipe of the predicated instruction is marked to 8453 // also do that packing, thereby "hoisting" the insert-element sequence. 8454 // Otherwise, a phi node for the scalar value is needed. 8455 unsigned Part = State.Instance->Part; 8456 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8457 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8458 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8459 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8460 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8461 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8462 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8463 } else { 8464 Type *PredInstType = PredInst->getType(); 8465 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8466 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8467 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8468 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8469 } 8470 } 8471 8472 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8473 if (!User) 8474 return State.ILV->vectorizeMemoryInstruction(&Instr); 8475 8476 // Last (and currently only) operand is a mask. 8477 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8478 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8479 for (unsigned Part = 0; Part < State.UF; ++Part) 8480 MaskValues[Part] = State.get(Mask, Part); 8481 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8482 } 8483 8484 bool LoopVectorizePass::processLoop(Loop *L) { 8485 assert(L->empty() && "Only process inner loops."); 8486 8487 #ifndef NDEBUG 8488 const std::string DebugLocStr = getDebugLocString(L); 8489 #endif /* NDEBUG */ 8490 8491 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8492 << L->getHeader()->getParent()->getName() << "\" from " 8493 << DebugLocStr << "\n"); 8494 8495 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8496 8497 DEBUG(dbgs() << "LV: Loop hints:" 8498 << " force=" 8499 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8500 ? "disabled" 8501 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8502 ? "enabled" 8503 : "?")) 8504 << " width=" << Hints.getWidth() 8505 << " unroll=" << Hints.getInterleave() << "\n"); 8506 8507 // Function containing loop 8508 Function *F = L->getHeader()->getParent(); 8509 8510 // Looking at the diagnostic output is the only way to determine if a loop 8511 // was vectorized (other than looking at the IR or machine code), so it 8512 // is important to generate an optimization remark for each loop. Most of 8513 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8514 // generated as OptimizationRemark and OptimizationRemarkMissed are 8515 // less verbose reporting vectorized loops and unvectorized loops that may 8516 // benefit from vectorization, respectively. 8517 8518 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8519 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8520 return false; 8521 } 8522 8523 PredicatedScalarEvolution PSE(*SE, *L); 8524 8525 // Check if it is legal to vectorize the loop. 8526 LoopVectorizationRequirements Requirements(*ORE); 8527 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8528 &Requirements, &Hints, DB, AC); 8529 if (!LVL.canVectorize()) { 8530 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8531 emitMissedWarning(F, L, Hints, ORE); 8532 return false; 8533 } 8534 8535 // Check the function attributes to find out if this function should be 8536 // optimized for size. 8537 bool OptForSize = 8538 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8539 8540 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8541 // count by optimizing for size, to minimize overheads. 8542 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8543 bool HasExpectedTC = (ExpectedTC > 0); 8544 8545 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8546 auto EstimatedTC = getLoopEstimatedTripCount(L); 8547 if (EstimatedTC) { 8548 ExpectedTC = *EstimatedTC; 8549 HasExpectedTC = true; 8550 } 8551 } 8552 8553 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8554 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8555 << "This loop is worth vectorizing only if no scalar " 8556 << "iteration overheads are incurred."); 8557 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8558 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8559 else { 8560 DEBUG(dbgs() << "\n"); 8561 // Loops with a very small trip count are considered for vectorization 8562 // under OptForSize, thereby making sure the cost of their loop body is 8563 // dominant, free of runtime guards and scalar iteration overheads. 8564 OptForSize = true; 8565 } 8566 } 8567 8568 // Check the function attributes to see if implicit floats are allowed. 8569 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8570 // an integer loop and the vector instructions selected are purely integer 8571 // vector instructions? 8572 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8573 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8574 "attribute is used.\n"); 8575 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8576 "NoImplicitFloat", L) 8577 << "loop not vectorized due to NoImplicitFloat attribute"); 8578 emitMissedWarning(F, L, Hints, ORE); 8579 return false; 8580 } 8581 8582 // Check if the target supports potentially unsafe FP vectorization. 8583 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8584 // for the target we're vectorizing for, to make sure none of the 8585 // additional fp-math flags can help. 8586 if (Hints.isPotentiallyUnsafe() && 8587 TTI->isFPVectorizationPotentiallyUnsafe()) { 8588 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8589 ORE->emit( 8590 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8591 << "loop not vectorized due to unsafe FP support."); 8592 emitMissedWarning(F, L, Hints, ORE); 8593 return false; 8594 } 8595 8596 // Use the cost model. 8597 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8598 &Hints); 8599 CM.collectValuesToIgnore(); 8600 8601 // Use the planner for vectorization. 8602 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8603 8604 // Get user vectorization factor. 8605 unsigned UserVF = Hints.getWidth(); 8606 8607 // Plan how to best vectorize, return the best VF and its cost. 8608 LoopVectorizationCostModel::VectorizationFactor VF = 8609 LVP.plan(OptForSize, UserVF); 8610 8611 // Select the interleave count. 8612 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8613 8614 // Get user interleave count. 8615 unsigned UserIC = Hints.getInterleave(); 8616 8617 // Identify the diagnostic messages that should be produced. 8618 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8619 bool VectorizeLoop = true, InterleaveLoop = true; 8620 if (Requirements.doesNotMeet(F, L, Hints)) { 8621 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8622 "requirements.\n"); 8623 emitMissedWarning(F, L, Hints, ORE); 8624 return false; 8625 } 8626 8627 if (VF.Width == 1) { 8628 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8629 VecDiagMsg = std::make_pair( 8630 "VectorizationNotBeneficial", 8631 "the cost-model indicates that vectorization is not beneficial"); 8632 VectorizeLoop = false; 8633 } 8634 8635 if (IC == 1 && UserIC <= 1) { 8636 // Tell the user interleaving is not beneficial. 8637 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8638 IntDiagMsg = std::make_pair( 8639 "InterleavingNotBeneficial", 8640 "the cost-model indicates that interleaving is not beneficial"); 8641 InterleaveLoop = false; 8642 if (UserIC == 1) { 8643 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8644 IntDiagMsg.second += 8645 " and is explicitly disabled or interleave count is set to 1"; 8646 } 8647 } else if (IC > 1 && UserIC == 1) { 8648 // Tell the user interleaving is beneficial, but it explicitly disabled. 8649 DEBUG(dbgs() 8650 << "LV: Interleaving is beneficial but is explicitly disabled."); 8651 IntDiagMsg = std::make_pair( 8652 "InterleavingBeneficialButDisabled", 8653 "the cost-model indicates that interleaving is beneficial " 8654 "but is explicitly disabled or interleave count is set to 1"); 8655 InterleaveLoop = false; 8656 } 8657 8658 // Override IC if user provided an interleave count. 8659 IC = UserIC > 0 ? UserIC : IC; 8660 8661 // Emit diagnostic messages, if any. 8662 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8663 if (!VectorizeLoop && !InterleaveLoop) { 8664 // Do not vectorize or interleaving the loop. 8665 ORE->emit([&]() { 8666 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8667 L->getStartLoc(), L->getHeader()) 8668 << VecDiagMsg.second; 8669 }); 8670 ORE->emit([&]() { 8671 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8672 L->getStartLoc(), L->getHeader()) 8673 << IntDiagMsg.second; 8674 }); 8675 return false; 8676 } else if (!VectorizeLoop && InterleaveLoop) { 8677 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8678 ORE->emit([&]() { 8679 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8680 L->getStartLoc(), L->getHeader()) 8681 << VecDiagMsg.second; 8682 }); 8683 } else if (VectorizeLoop && !InterleaveLoop) { 8684 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8685 << DebugLocStr << '\n'); 8686 ORE->emit([&]() { 8687 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8688 L->getStartLoc(), L->getHeader()) 8689 << IntDiagMsg.second; 8690 }); 8691 } else if (VectorizeLoop && InterleaveLoop) { 8692 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8693 << DebugLocStr << '\n'); 8694 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8695 } 8696 8697 LVP.setBestPlan(VF.Width, IC); 8698 8699 using namespace ore; 8700 8701 if (!VectorizeLoop) { 8702 assert(IC > 1 && "interleave count should not be 1 or 0"); 8703 // If we decided that it is not legal to vectorize the loop, then 8704 // interleave it. 8705 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8706 &CM); 8707 LVP.executePlan(Unroller, DT); 8708 8709 ORE->emit([&]() { 8710 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8711 L->getHeader()) 8712 << "interleaved loop (interleaved count: " 8713 << NV("InterleaveCount", IC) << ")"; 8714 }); 8715 } else { 8716 // If we decided that it is *legal* to vectorize the loop, then do it. 8717 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8718 &LVL, &CM); 8719 LVP.executePlan(LB, DT); 8720 ++LoopsVectorized; 8721 8722 // Add metadata to disable runtime unrolling a scalar loop when there are 8723 // no runtime checks about strides and memory. A scalar loop that is 8724 // rarely used is not worth unrolling. 8725 if (!LB.areSafetyChecksAdded()) 8726 AddRuntimeUnrollDisableMetaData(L); 8727 8728 // Report the vectorization decision. 8729 ORE->emit([&]() { 8730 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8731 L->getHeader()) 8732 << "vectorized loop (vectorization width: " 8733 << NV("VectorizationFactor", VF.Width) 8734 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8735 }); 8736 } 8737 8738 // Mark the loop as already vectorized to avoid vectorizing again. 8739 Hints.setAlreadyVectorized(); 8740 8741 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8742 return true; 8743 } 8744 8745 bool LoopVectorizePass::runImpl( 8746 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8747 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8748 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8749 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8750 OptimizationRemarkEmitter &ORE_) { 8751 SE = &SE_; 8752 LI = &LI_; 8753 TTI = &TTI_; 8754 DT = &DT_; 8755 BFI = &BFI_; 8756 TLI = TLI_; 8757 AA = &AA_; 8758 AC = &AC_; 8759 GetLAA = &GetLAA_; 8760 DB = &DB_; 8761 ORE = &ORE_; 8762 8763 // Don't attempt if 8764 // 1. the target claims to have no vector registers, and 8765 // 2. interleaving won't help ILP. 8766 // 8767 // The second condition is necessary because, even if the target has no 8768 // vector registers, loop vectorization may still enable scalar 8769 // interleaving. 8770 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8771 return false; 8772 8773 bool Changed = false; 8774 8775 // The vectorizer requires loops to be in simplified form. 8776 // Since simplification may add new inner loops, it has to run before the 8777 // legality and profitability checks. This means running the loop vectorizer 8778 // will simplify all loops, regardless of whether anything end up being 8779 // vectorized. 8780 for (auto &L : *LI) 8781 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8782 8783 // Build up a worklist of inner-loops to vectorize. This is necessary as 8784 // the act of vectorizing or partially unrolling a loop creates new loops 8785 // and can invalidate iterators across the loops. 8786 SmallVector<Loop *, 8> Worklist; 8787 8788 for (Loop *L : *LI) 8789 addAcyclicInnerLoop(*L, Worklist); 8790 8791 LoopsAnalyzed += Worklist.size(); 8792 8793 // Now walk the identified inner loops. 8794 while (!Worklist.empty()) { 8795 Loop *L = Worklist.pop_back_val(); 8796 8797 // For the inner loops we actually process, form LCSSA to simplify the 8798 // transform. 8799 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8800 8801 Changed |= processLoop(L); 8802 } 8803 8804 // Process each loop nest in the function. 8805 return Changed; 8806 } 8807 8808 PreservedAnalyses LoopVectorizePass::run(Function &F, 8809 FunctionAnalysisManager &AM) { 8810 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8811 auto &LI = AM.getResult<LoopAnalysis>(F); 8812 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8813 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8814 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8815 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8816 auto &AA = AM.getResult<AAManager>(F); 8817 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8818 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8819 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8820 8821 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8822 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8823 [&](Loop &L) -> const LoopAccessInfo & { 8824 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8825 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8826 }; 8827 bool Changed = 8828 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8829 if (!Changed) 8830 return PreservedAnalyses::all(); 8831 PreservedAnalyses PA; 8832 PA.preserve<LoopAnalysis>(); 8833 PA.preserve<DominatorTreeAnalysis>(); 8834 PA.preserve<BasicAA>(); 8835 PA.preserve<GlobalsAA>(); 8836 return PA; 8837 } 8838