1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// We don't vectorize loops with a known constant trip count below this number. 118 static cl::opt<unsigned> TinyTripCountVectorThreshold( 119 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 120 cl::desc("Don't vectorize loops with a constant " 121 "trip count that is smaller than this " 122 "value.")); 123 124 static cl::opt<bool> MaximizeBandwidth( 125 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 126 cl::desc("Maximize bandwidth when selecting vectorization factor which " 127 "will be determined by the smallest type in loop.")); 128 129 static cl::opt<bool> EnableInterleavedMemAccesses( 130 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 131 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 132 133 /// Maximum factor for an interleaved memory access. 134 static cl::opt<unsigned> MaxInterleaveGroupFactor( 135 "max-interleave-group-factor", cl::Hidden, 136 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 137 cl::init(8)); 138 139 /// We don't interleave loops with a known constant trip count below this 140 /// number. 141 static const unsigned TinyTripCountInterleaveThreshold = 128; 142 143 static cl::opt<unsigned> ForceTargetNumScalarRegs( 144 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of scalar registers.")); 146 147 static cl::opt<unsigned> ForceTargetNumVectorRegs( 148 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of vector registers.")); 150 151 /// Maximum vectorization interleave count. 152 static const unsigned MaxInterleaveFactor = 16; 153 154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 155 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's max interleave factor for " 157 "scalar loops.")); 158 159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 160 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's max interleave factor for " 162 "vectorized loops.")); 163 164 static cl::opt<unsigned> ForceTargetInstructionCost( 165 "force-target-instruction-cost", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's expected cost for " 167 "an instruction to a single constant value. Mostly " 168 "useful for getting consistent testing.")); 169 170 static cl::opt<unsigned> SmallLoopCost( 171 "small-loop-cost", cl::init(20), cl::Hidden, 172 cl::desc( 173 "The cost of a loop that is considered 'small' by the interleaver.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime interleave loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 183 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 184 cl::desc( 185 "Enable runtime interleaving until load/store ports are saturated")); 186 187 /// The number of stores in a loop that are allowed to need predication. 188 static cl::opt<unsigned> NumberOfStoresToPredicate( 189 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 190 cl::desc("Max number of stores to be predicated behind an if.")); 191 192 static cl::opt<bool> EnableIndVarRegisterHeur( 193 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 194 cl::desc("Count the induction variable only once when interleaving")); 195 196 static cl::opt<bool> EnableCondStoresVectorization( 197 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 198 cl::desc("Enable if predication of stores during vectorization.")); 199 200 static cl::opt<unsigned> MaxNestedScalarReductionIC( 201 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 202 cl::desc("The maximum interleave count to use when interleaving a scalar " 203 "reduction in a nested loop.")); 204 205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 206 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 207 cl::desc("The maximum allowed number of runtime memory checks with a " 208 "vectorize(enable) pragma.")); 209 210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 211 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed.")); 213 214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 215 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed with a " 217 "vectorize(enable) pragma")); 218 219 /// Create an analysis remark that explains why vectorization failed 220 /// 221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 222 /// RemarkName is the identifier for the remark. If \p I is passed it is an 223 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 224 /// the location of the remark. \return the remark object that can be 225 /// streamed to. 226 static OptimizationRemarkAnalysis 227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 228 Instruction *I = nullptr) { 229 Value *CodeRegion = TheLoop->getHeader(); 230 DebugLoc DL = TheLoop->getStartLoc(); 231 232 if (I) { 233 CodeRegion = I->getParent(); 234 // If there is no debug location attached to the instruction, revert back to 235 // using the loop's. 236 if (I->getDebugLoc()) 237 DL = I->getDebugLoc(); 238 } 239 240 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 241 R << "loop not vectorized: "; 242 return R; 243 } 244 245 namespace { 246 247 // Forward declarations. 248 class LoopVectorizeHints; 249 class LoopVectorizationLegality; 250 class LoopVectorizationCostModel; 251 class LoopVectorizationRequirements; 252 253 /// Returns true if the given loop body has a cycle, excluding the loop 254 /// itself. 255 static bool hasCyclesInLoopBody(const Loop &L) { 256 if (!L.empty()) 257 return true; 258 259 for (const auto &SCC : 260 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 261 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 262 if (SCC.size() > 1) { 263 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 264 DEBUG(L.dump()); 265 return true; 266 } 267 } 268 return false; 269 } 270 271 /// A helper function for converting Scalar types to vector types. 272 /// If the incoming type is void, we return void. If the VF is 1, we return 273 /// the scalar type. 274 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 275 if (Scalar->isVoidTy() || VF == 1) 276 return Scalar; 277 return VectorType::get(Scalar, VF); 278 } 279 280 // FIXME: The following helper functions have multiple implementations 281 // in the project. They can be effectively organized in a common Load/Store 282 // utilities unit. 283 284 /// A helper function that returns the pointer operand of a load or store 285 /// instruction. 286 static Value *getPointerOperand(Value *I) { 287 if (auto *LI = dyn_cast<LoadInst>(I)) 288 return LI->getPointerOperand(); 289 if (auto *SI = dyn_cast<StoreInst>(I)) 290 return SI->getPointerOperand(); 291 return nullptr; 292 } 293 294 /// A helper function that returns the type of loaded or stored value. 295 static Type *getMemInstValueType(Value *I) { 296 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 297 "Expected Load or Store instruction"); 298 if (auto *LI = dyn_cast<LoadInst>(I)) 299 return LI->getType(); 300 return cast<StoreInst>(I)->getValueOperand()->getType(); 301 } 302 303 /// A helper function that returns the alignment of load or store instruction. 304 static unsigned getMemInstAlignment(Value *I) { 305 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 306 "Expected Load or Store instruction"); 307 if (auto *LI = dyn_cast<LoadInst>(I)) 308 return LI->getAlignment(); 309 return cast<StoreInst>(I)->getAlignment(); 310 } 311 312 /// A helper function that returns the address space of the pointer operand of 313 /// load or store instruction. 314 static unsigned getMemInstAddressSpace(Value *I) { 315 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 316 "Expected Load or Store instruction"); 317 if (auto *LI = dyn_cast<LoadInst>(I)) 318 return LI->getPointerAddressSpace(); 319 return cast<StoreInst>(I)->getPointerAddressSpace(); 320 } 321 322 /// A helper function that returns true if the given type is irregular. The 323 /// type is irregular if its allocated size doesn't equal the store size of an 324 /// element of the corresponding vector type at the given vectorization factor. 325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 326 327 // Determine if an array of VF elements of type Ty is "bitcast compatible" 328 // with a <VF x Ty> vector. 329 if (VF > 1) { 330 auto *VectorTy = VectorType::get(Ty, VF); 331 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 332 } 333 334 // If the vectorization factor is one, we just check if an array of type Ty 335 // requires padding between elements. 336 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 337 } 338 339 /// A helper function that returns the reciprocal of the block probability of 340 /// predicated blocks. If we return X, we are assuming the predicated block 341 /// will execute once for for every X iterations of the loop header. 342 /// 343 /// TODO: We should use actual block probability here, if available. Currently, 344 /// we always assume predicated blocks have a 50% chance of executing. 345 static unsigned getReciprocalPredBlockProb() { return 2; } 346 347 /// A helper function that adds a 'fast' flag to floating-point operations. 348 static Value *addFastMathFlag(Value *V) { 349 if (isa<FPMathOperator>(V)) { 350 FastMathFlags Flags; 351 Flags.setUnsafeAlgebra(); 352 cast<Instruction>(V)->setFastMathFlags(Flags); 353 } 354 return V; 355 } 356 357 /// A helper function that returns an integer or floating-point constant with 358 /// value C. 359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 360 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 361 : ConstantFP::get(Ty, C); 362 } 363 364 /// InnerLoopVectorizer vectorizes loops which contain only one basic 365 /// block to a specified vectorization factor (VF). 366 /// This class performs the widening of scalars into vectors, or multiple 367 /// scalars. This class also implements the following features: 368 /// * It inserts an epilogue loop for handling loops that don't have iteration 369 /// counts that are known to be a multiple of the vectorization factor. 370 /// * It handles the code generation for reduction variables. 371 /// * Scalarization (implementation using scalars) of un-vectorizable 372 /// instructions. 373 /// InnerLoopVectorizer does not perform any vectorization-legality 374 /// checks, and relies on the caller to check for the different legality 375 /// aspects. The InnerLoopVectorizer relies on the 376 /// LoopVectorizationLegality class to provide information about the induction 377 /// and reduction variables that were found to a given vectorization factor. 378 class InnerLoopVectorizer { 379 public: 380 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 381 LoopInfo *LI, DominatorTree *DT, 382 const TargetLibraryInfo *TLI, 383 const TargetTransformInfo *TTI, AssumptionCache *AC, 384 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 385 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 386 LoopVectorizationCostModel *CM) 387 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 388 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 389 Builder(PSE.getSE()->getContext()), Induction(nullptr), 390 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 391 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 392 AddedSafetyChecks(false) {} 393 394 /// Create a new empty loop. Unlink the old loop and connect the new one. 395 void createVectorizedLoopSkeleton(); 396 397 /// Vectorize a single instruction within the innermost loop. 398 void vectorizeInstruction(Instruction &I); 399 400 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 401 void fixVectorizedLoop(); 402 403 // Return true if any runtime check is added. 404 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 405 406 virtual ~InnerLoopVectorizer() {} 407 408 protected: 409 /// A small list of PHINodes. 410 typedef SmallVector<PHINode *, 4> PhiVector; 411 412 /// A type for vectorized values in the new loop. Each value from the 413 /// original loop, when vectorized, is represented by UF vector values in the 414 /// new unrolled loop, where UF is the unroll factor. 415 typedef SmallVector<Value *, 2> VectorParts; 416 417 /// A type for scalarized values in the new loop. Each value from the 418 /// original loop, when scalarized, is represented by UF x VF scalar values 419 /// in the new unrolled loop, where UF is the unroll factor and VF is the 420 /// vectorization factor. 421 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 422 423 // When we if-convert we need to create edge masks. We have to cache values 424 // so that we don't end up with exponential recursion/IR. 425 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 426 EdgeMaskCacheTy; 427 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 428 429 /// Set up the values of the IVs correctly when exiting the vector loop. 430 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 431 Value *CountRoundDown, Value *EndValue, 432 BasicBlock *MiddleBlock); 433 434 /// Create a new induction variable inside L. 435 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 436 Value *Step, Instruction *DL); 437 438 /// Handle all cross-iteration phis in the header. 439 void fixCrossIterationPHIs(); 440 441 /// Fix a first-order recurrence. This is the second phase of vectorizing 442 /// this phi node. 443 void fixFirstOrderRecurrence(PHINode *Phi); 444 445 /// Fix a reduction cross-iteration phi. This is the second phase of 446 /// vectorizing this phi node. 447 void fixReduction(PHINode *Phi); 448 449 /// \brief The Loop exit block may have single value PHI nodes with some 450 /// incoming value. While vectorizing we only handled real values 451 /// that were defined inside the loop and we should have one value for 452 /// each predecessor of its parent basic block. See PR14725. 453 void fixLCSSAPHIs(); 454 455 /// Iteratively sink the scalarized operands of a predicated instruction into 456 /// the block that was created for it. 457 void sinkScalarOperands(Instruction *PredInst); 458 459 /// Predicate conditional instructions that require predication on their 460 /// respective conditions. 461 void predicateInstructions(); 462 463 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 464 /// represented as. 465 void truncateToMinimalBitwidths(); 466 467 /// A helper function that computes the predicate of the block BB, assuming 468 /// that the header block of the loop is set to True. It returns the *entry* 469 /// mask for the block BB. 470 VectorParts createBlockInMask(BasicBlock *BB); 471 /// A helper function that computes the predicate of the edge between SRC 472 /// and DST. 473 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 474 475 /// Vectorize a single PHINode in a block. This method handles the induction 476 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 477 /// arbitrary length vectors. 478 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 479 480 /// Insert the new loop to the loop hierarchy and pass manager 481 /// and update the analysis passes. 482 void updateAnalysis(); 483 484 /// This instruction is un-vectorizable. Implement it as a sequence 485 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 486 /// scalarized instruction behind an if block predicated on the control 487 /// dependence of the instruction. 488 virtual void scalarizeInstruction(Instruction *Instr, 489 bool IfPredicateInstr = false); 490 491 /// Vectorize Load and Store instructions, 492 virtual void vectorizeMemoryInstruction(Instruction *Instr); 493 494 /// Create a broadcast instruction. This method generates a broadcast 495 /// instruction (shuffle) for loop invariant values and for the induction 496 /// value. If this is the induction variable then we extend it to N, N+1, ... 497 /// this is needed because each iteration in the loop corresponds to a SIMD 498 /// element. 499 virtual Value *getBroadcastInstrs(Value *V); 500 501 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 502 /// to each vector element of Val. The sequence starts at StartIndex. 503 /// \p Opcode is relevant for FP induction variable. 504 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 505 Instruction::BinaryOps Opcode = 506 Instruction::BinaryOpsEnd); 507 508 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 509 /// variable on which to base the steps, \p Step is the size of the step, and 510 /// \p EntryVal is the value from the original loop that maps to the steps. 511 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 512 /// can be a truncate instruction). 513 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 514 const InductionDescriptor &ID); 515 516 /// Create a vector induction phi node based on an existing scalar one. \p 517 /// EntryVal is the value from the original loop that maps to the vector phi 518 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 519 /// truncate instruction, instead of widening the original IV, we widen a 520 /// version of the IV truncated to \p EntryVal's type. 521 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 522 Value *Step, Instruction *EntryVal); 523 524 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 525 /// is provided, the integer induction variable will first be truncated to 526 /// the corresponding type. 527 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 528 529 /// Returns true if an instruction \p I should be scalarized instead of 530 /// vectorized for the chosen vectorization factor. 531 bool shouldScalarizeInstruction(Instruction *I) const; 532 533 /// Returns true if we should generate a scalar version of \p IV. 534 bool needsScalarInduction(Instruction *IV) const; 535 536 /// Return a constant reference to the VectorParts corresponding to \p V from 537 /// the original loop. If the value has already been vectorized, the 538 /// corresponding vector entry in VectorLoopValueMap is returned. If, 539 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 540 /// new vector values on-demand by inserting the scalar values into vectors 541 /// with an insertelement sequence. If the value has been neither vectorized 542 /// nor scalarized, it must be loop invariant, so we simply broadcast the 543 /// value into vectors. 544 const VectorParts &getVectorValue(Value *V); 545 546 /// Return a value in the new loop corresponding to \p V from the original 547 /// loop at unroll index \p Part and vector index \p Lane. If the value has 548 /// been vectorized but not scalarized, the necessary extractelement 549 /// instruction will be generated. 550 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 551 552 /// Try to vectorize the interleaved access group that \p Instr belongs to. 553 void vectorizeInterleaveGroup(Instruction *Instr); 554 555 /// Generate a shuffle sequence that will reverse the vector Vec. 556 virtual Value *reverseVector(Value *Vec); 557 558 /// Returns (and creates if needed) the original loop trip count. 559 Value *getOrCreateTripCount(Loop *NewLoop); 560 561 /// Returns (and creates if needed) the trip count of the widened loop. 562 Value *getOrCreateVectorTripCount(Loop *NewLoop); 563 564 /// Emit a bypass check to see if the trip count would overflow, or we 565 /// wouldn't have enough iterations to execute one vector loop. 566 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 567 /// Emit a bypass check to see if the vector trip count is nonzero. 568 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 569 /// Emit a bypass check to see if all of the SCEV assumptions we've 570 /// had to make are correct. 571 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 572 /// Emit bypass checks to check any memory assumptions we may have made. 573 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 574 575 /// Add additional metadata to \p To that was not present on \p Orig. 576 /// 577 /// Currently this is used to add the noalias annotations based on the 578 /// inserted memchecks. Use this for instructions that are *cloned* into the 579 /// vector loop. 580 void addNewMetadata(Instruction *To, const Instruction *Orig); 581 582 /// Add metadata from one instruction to another. 583 /// 584 /// This includes both the original MDs from \p From and additional ones (\see 585 /// addNewMetadata). Use this for *newly created* instructions in the vector 586 /// loop. 587 void addMetadata(Instruction *To, Instruction *From); 588 589 /// \brief Similar to the previous function but it adds the metadata to a 590 /// vector of instructions. 591 void addMetadata(ArrayRef<Value *> To, Instruction *From); 592 593 /// \brief Set the debug location in the builder using the debug location in 594 /// the instruction. 595 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 596 597 /// This is a helper class for maintaining vectorization state. It's used for 598 /// mapping values from the original loop to their corresponding values in 599 /// the new loop. Two mappings are maintained: one for vectorized values and 600 /// one for scalarized values. Vectorized values are represented with UF 601 /// vector values in the new loop, and scalarized values are represented with 602 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 603 /// vectorization factors, respectively. 604 /// 605 /// Entries can be added to either map with initVector and initScalar, which 606 /// initialize and return a constant reference to the new entry. If a 607 /// non-constant reference to a vector entry is required, getVector can be 608 /// used to retrieve a mutable entry. We currently directly modify the mapped 609 /// values during "fix-up" operations that occur once the first phase of 610 /// widening is complete. These operations include type truncation and the 611 /// second phase of recurrence widening. 612 /// 613 /// Otherwise, entries from either map should be accessed using the 614 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 615 /// getVectorValue and getScalarValue coordinate to generate a vector or 616 /// scalar value on-demand if one is not yet available. When vectorizing a 617 /// loop, we visit the definition of an instruction before its uses. When 618 /// visiting the definition, we either vectorize or scalarize the 619 /// instruction, creating an entry for it in the corresponding map. (In some 620 /// cases, such as induction variables, we will create both vector and scalar 621 /// entries.) Then, as we encounter uses of the definition, we derive values 622 /// for each scalar or vector use unless such a value is already available. 623 /// For example, if we scalarize a definition and one of its uses is vector, 624 /// we build the required vector on-demand with an insertelement sequence 625 /// when visiting the use. Otherwise, if the use is scalar, we can use the 626 /// existing scalar definition. 627 struct ValueMap { 628 629 /// Construct an empty map with the given unroll and vectorization factors. 630 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 631 : UF(UnrollFactor), VF(VecWidth) { 632 // The unroll and vectorization factors are only used in asserts builds 633 // to verify map entries are sized appropriately. 634 (void)UF; 635 (void)VF; 636 } 637 638 /// \return True if the map has a vector entry for \p Key. 639 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 640 641 /// \return True if the map has a scalar entry for \p Key. 642 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 643 644 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 645 /// constant reference to the new vector map entry. The given key should 646 /// not already be in the map, and the given VectorParts should be 647 /// correctly sized for the current unroll factor. 648 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 649 assert(!hasVector(Key) && "Vector entry already initialized"); 650 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 651 VectorMapStorage[Key] = Entry; 652 return VectorMapStorage[Key]; 653 } 654 655 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 656 /// constant reference to the new scalar map entry. The given key should 657 /// not already be in the map, and the given ScalarParts should be 658 /// correctly sized for the current unroll and vectorization factors. 659 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 660 assert(!hasScalar(Key) && "Scalar entry already initialized"); 661 assert(Entry.size() == UF && 662 all_of(make_range(Entry.begin(), Entry.end()), 663 [&](const SmallVectorImpl<Value *> &Values) -> bool { 664 return Values.size() == VF; 665 }) && 666 "ScalarParts has wrong dimensions"); 667 ScalarMapStorage[Key] = Entry; 668 return ScalarMapStorage[Key]; 669 } 670 671 /// \return A reference to the vector map entry corresponding to \p Key. 672 /// The key should already be in the map. This function should only be used 673 /// when it's necessary to update values that have already been vectorized. 674 /// This is the case for "fix-up" operations including type truncation and 675 /// the second phase of recurrence vectorization. If a non-const reference 676 /// isn't required, getVectorValue should be used instead. 677 VectorParts &getVector(Value *Key) { 678 assert(hasVector(Key) && "Vector entry not initialized"); 679 return VectorMapStorage.find(Key)->second; 680 } 681 682 /// Retrieve an entry from the vector or scalar maps. The preferred way to 683 /// access an existing mapped entry is with getVectorValue or 684 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 685 /// moved inside ValueMap, we have to declare them as friends. 686 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 687 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 688 unsigned Lane); 689 690 private: 691 /// The unroll factor. Each entry in the vector map contains UF vector 692 /// values. 693 unsigned UF; 694 695 /// The vectorization factor. Each entry in the scalar map contains UF x VF 696 /// scalar values. 697 unsigned VF; 698 699 /// The vector and scalar map storage. We use std::map and not DenseMap 700 /// because insertions to DenseMap invalidate its iterators. 701 std::map<Value *, VectorParts> VectorMapStorage; 702 std::map<Value *, ScalarParts> ScalarMapStorage; 703 }; 704 705 /// The original loop. 706 Loop *OrigLoop; 707 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 708 /// dynamic knowledge to simplify SCEV expressions and converts them to a 709 /// more usable form. 710 PredicatedScalarEvolution &PSE; 711 /// Loop Info. 712 LoopInfo *LI; 713 /// Dominator Tree. 714 DominatorTree *DT; 715 /// Alias Analysis. 716 AliasAnalysis *AA; 717 /// Target Library Info. 718 const TargetLibraryInfo *TLI; 719 /// Target Transform Info. 720 const TargetTransformInfo *TTI; 721 /// Assumption Cache. 722 AssumptionCache *AC; 723 /// Interface to emit optimization remarks. 724 OptimizationRemarkEmitter *ORE; 725 726 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 727 /// used. 728 /// 729 /// This is currently only used to add no-alias metadata based on the 730 /// memchecks. The actually versioning is performed manually. 731 std::unique_ptr<LoopVersioning> LVer; 732 733 /// The vectorization SIMD factor to use. Each vector will have this many 734 /// vector elements. 735 unsigned VF; 736 737 protected: 738 /// The vectorization unroll factor to use. Each scalar is vectorized to this 739 /// many different vector instructions. 740 unsigned UF; 741 742 /// The builder that we use 743 IRBuilder<> Builder; 744 745 // --- Vectorization state --- 746 747 /// The vector-loop preheader. 748 BasicBlock *LoopVectorPreHeader; 749 /// The scalar-loop preheader. 750 BasicBlock *LoopScalarPreHeader; 751 /// Middle Block between the vector and the scalar. 752 BasicBlock *LoopMiddleBlock; 753 /// The ExitBlock of the scalar loop. 754 BasicBlock *LoopExitBlock; 755 /// The vector loop body. 756 BasicBlock *LoopVectorBody; 757 /// The scalar loop body. 758 BasicBlock *LoopScalarBody; 759 /// A list of all bypass blocks. The first block is the entry of the loop. 760 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 761 762 /// The new Induction variable which was added to the new block. 763 PHINode *Induction; 764 /// The induction variable of the old basic block. 765 PHINode *OldInduction; 766 767 /// Maps values from the original loop to their corresponding values in the 768 /// vectorized loop. A key value can map to either vector values, scalar 769 /// values or both kinds of values, depending on whether the key was 770 /// vectorized and scalarized. 771 ValueMap VectorLoopValueMap; 772 773 /// Store instructions that should be predicated, as a pair 774 /// <StoreInst, Predicate> 775 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 776 EdgeMaskCacheTy EdgeMaskCache; 777 BlockMaskCacheTy BlockMaskCache; 778 /// Trip count of the original loop. 779 Value *TripCount; 780 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 781 Value *VectorTripCount; 782 783 /// The legality analysis. 784 LoopVectorizationLegality *Legal; 785 786 /// The profitablity analysis. 787 LoopVectorizationCostModel *Cost; 788 789 // Record whether runtime checks are added. 790 bool AddedSafetyChecks; 791 792 // Holds the end values for each induction variable. We save the end values 793 // so we can later fix-up the external users of the induction variables. 794 DenseMap<PHINode *, Value *> IVEndValues; 795 }; 796 797 class InnerLoopUnroller : public InnerLoopVectorizer { 798 public: 799 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 800 LoopInfo *LI, DominatorTree *DT, 801 const TargetLibraryInfo *TLI, 802 const TargetTransformInfo *TTI, AssumptionCache *AC, 803 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 804 LoopVectorizationLegality *LVL, 805 LoopVectorizationCostModel *CM) 806 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 807 UnrollFactor, LVL, CM) {} 808 809 private: 810 void vectorizeMemoryInstruction(Instruction *Instr) override; 811 Value *getBroadcastInstrs(Value *V) override; 812 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 813 Instruction::BinaryOps Opcode = 814 Instruction::BinaryOpsEnd) override; 815 Value *reverseVector(Value *Vec) override; 816 }; 817 818 /// \brief Look for a meaningful debug location on the instruction or it's 819 /// operands. 820 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 821 if (!I) 822 return I; 823 824 DebugLoc Empty; 825 if (I->getDebugLoc() != Empty) 826 return I; 827 828 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 829 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 830 if (OpInst->getDebugLoc() != Empty) 831 return OpInst; 832 } 833 834 return I; 835 } 836 837 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 838 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 839 const DILocation *DIL = Inst->getDebugLoc(); 840 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 841 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 842 else 843 B.SetCurrentDebugLocation(DIL); 844 } else 845 B.SetCurrentDebugLocation(DebugLoc()); 846 } 847 848 #ifndef NDEBUG 849 /// \return string containing a file name and a line # for the given loop. 850 static std::string getDebugLocString(const Loop *L) { 851 std::string Result; 852 if (L) { 853 raw_string_ostream OS(Result); 854 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 855 LoopDbgLoc.print(OS); 856 else 857 // Just print the module name. 858 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 859 OS.flush(); 860 } 861 return Result; 862 } 863 #endif 864 865 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 866 const Instruction *Orig) { 867 // If the loop was versioned with memchecks, add the corresponding no-alias 868 // metadata. 869 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 870 LVer->annotateInstWithNoAlias(To, Orig); 871 } 872 873 void InnerLoopVectorizer::addMetadata(Instruction *To, 874 Instruction *From) { 875 propagateMetadata(To, From); 876 addNewMetadata(To, From); 877 } 878 879 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 880 Instruction *From) { 881 for (Value *V : To) { 882 if (Instruction *I = dyn_cast<Instruction>(V)) 883 addMetadata(I, From); 884 } 885 } 886 887 /// \brief The group of interleaved loads/stores sharing the same stride and 888 /// close to each other. 889 /// 890 /// Each member in this group has an index starting from 0, and the largest 891 /// index should be less than interleaved factor, which is equal to the absolute 892 /// value of the access's stride. 893 /// 894 /// E.g. An interleaved load group of factor 4: 895 /// for (unsigned i = 0; i < 1024; i+=4) { 896 /// a = A[i]; // Member of index 0 897 /// b = A[i+1]; // Member of index 1 898 /// d = A[i+3]; // Member of index 3 899 /// ... 900 /// } 901 /// 902 /// An interleaved store group of factor 4: 903 /// for (unsigned i = 0; i < 1024; i+=4) { 904 /// ... 905 /// A[i] = a; // Member of index 0 906 /// A[i+1] = b; // Member of index 1 907 /// A[i+2] = c; // Member of index 2 908 /// A[i+3] = d; // Member of index 3 909 /// } 910 /// 911 /// Note: the interleaved load group could have gaps (missing members), but 912 /// the interleaved store group doesn't allow gaps. 913 class InterleaveGroup { 914 public: 915 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 916 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 917 assert(Align && "The alignment should be non-zero"); 918 919 Factor = std::abs(Stride); 920 assert(Factor > 1 && "Invalid interleave factor"); 921 922 Reverse = Stride < 0; 923 Members[0] = Instr; 924 } 925 926 bool isReverse() const { return Reverse; } 927 unsigned getFactor() const { return Factor; } 928 unsigned getAlignment() const { return Align; } 929 unsigned getNumMembers() const { return Members.size(); } 930 931 /// \brief Try to insert a new member \p Instr with index \p Index and 932 /// alignment \p NewAlign. The index is related to the leader and it could be 933 /// negative if it is the new leader. 934 /// 935 /// \returns false if the instruction doesn't belong to the group. 936 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 937 assert(NewAlign && "The new member's alignment should be non-zero"); 938 939 int Key = Index + SmallestKey; 940 941 // Skip if there is already a member with the same index. 942 if (Members.count(Key)) 943 return false; 944 945 if (Key > LargestKey) { 946 // The largest index is always less than the interleave factor. 947 if (Index >= static_cast<int>(Factor)) 948 return false; 949 950 LargestKey = Key; 951 } else if (Key < SmallestKey) { 952 // The largest index is always less than the interleave factor. 953 if (LargestKey - Key >= static_cast<int>(Factor)) 954 return false; 955 956 SmallestKey = Key; 957 } 958 959 // It's always safe to select the minimum alignment. 960 Align = std::min(Align, NewAlign); 961 Members[Key] = Instr; 962 return true; 963 } 964 965 /// \brief Get the member with the given index \p Index 966 /// 967 /// \returns nullptr if contains no such member. 968 Instruction *getMember(unsigned Index) const { 969 int Key = SmallestKey + Index; 970 if (!Members.count(Key)) 971 return nullptr; 972 973 return Members.find(Key)->second; 974 } 975 976 /// \brief Get the index for the given member. Unlike the key in the member 977 /// map, the index starts from 0. 978 unsigned getIndex(Instruction *Instr) const { 979 for (auto I : Members) 980 if (I.second == Instr) 981 return I.first - SmallestKey; 982 983 llvm_unreachable("InterleaveGroup contains no such member"); 984 } 985 986 Instruction *getInsertPos() const { return InsertPos; } 987 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 988 989 private: 990 unsigned Factor; // Interleave Factor. 991 bool Reverse; 992 unsigned Align; 993 DenseMap<int, Instruction *> Members; 994 int SmallestKey; 995 int LargestKey; 996 997 // To avoid breaking dependences, vectorized instructions of an interleave 998 // group should be inserted at either the first load or the last store in 999 // program order. 1000 // 1001 // E.g. %even = load i32 // Insert Position 1002 // %add = add i32 %even // Use of %even 1003 // %odd = load i32 1004 // 1005 // store i32 %even 1006 // %odd = add i32 // Def of %odd 1007 // store i32 %odd // Insert Position 1008 Instruction *InsertPos; 1009 }; 1010 1011 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1012 /// 1013 /// Use this class to analyze interleaved accesses only when we can vectorize 1014 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1015 /// on interleaved accesses is unsafe. 1016 /// 1017 /// The analysis collects interleave groups and records the relationships 1018 /// between the member and the group in a map. 1019 class InterleavedAccessInfo { 1020 public: 1021 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1022 DominatorTree *DT, LoopInfo *LI) 1023 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1024 RequiresScalarEpilogue(false) {} 1025 1026 ~InterleavedAccessInfo() { 1027 SmallSet<InterleaveGroup *, 4> DelSet; 1028 // Avoid releasing a pointer twice. 1029 for (auto &I : InterleaveGroupMap) 1030 DelSet.insert(I.second); 1031 for (auto *Ptr : DelSet) 1032 delete Ptr; 1033 } 1034 1035 /// \brief Analyze the interleaved accesses and collect them in interleave 1036 /// groups. Substitute symbolic strides using \p Strides. 1037 void analyzeInterleaving(const ValueToValueMap &Strides); 1038 1039 /// \brief Check if \p Instr belongs to any interleave group. 1040 bool isInterleaved(Instruction *Instr) const { 1041 return InterleaveGroupMap.count(Instr); 1042 } 1043 1044 /// \brief Return the maximum interleave factor of all interleaved groups. 1045 unsigned getMaxInterleaveFactor() const { 1046 unsigned MaxFactor = 1; 1047 for (auto &Entry : InterleaveGroupMap) 1048 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1049 return MaxFactor; 1050 } 1051 1052 /// \brief Get the interleave group that \p Instr belongs to. 1053 /// 1054 /// \returns nullptr if doesn't have such group. 1055 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1056 if (InterleaveGroupMap.count(Instr)) 1057 return InterleaveGroupMap.find(Instr)->second; 1058 return nullptr; 1059 } 1060 1061 /// \brief Returns true if an interleaved group that may access memory 1062 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1063 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1064 1065 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1066 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1067 1068 private: 1069 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1070 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1071 /// The interleaved access analysis can also add new predicates (for example 1072 /// by versioning strides of pointers). 1073 PredicatedScalarEvolution &PSE; 1074 Loop *TheLoop; 1075 DominatorTree *DT; 1076 LoopInfo *LI; 1077 const LoopAccessInfo *LAI; 1078 1079 /// True if the loop may contain non-reversed interleaved groups with 1080 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1081 /// out-of-bounds by executing at least one scalar epilogue iteration. 1082 bool RequiresScalarEpilogue; 1083 1084 /// Holds the relationships between the members and the interleave group. 1085 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1086 1087 /// Holds dependences among the memory accesses in the loop. It maps a source 1088 /// access to a set of dependent sink accesses. 1089 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1090 1091 /// \brief The descriptor for a strided memory access. 1092 struct StrideDescriptor { 1093 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1094 unsigned Align) 1095 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1096 1097 StrideDescriptor() = default; 1098 1099 // The access's stride. It is negative for a reverse access. 1100 int64_t Stride = 0; 1101 const SCEV *Scev = nullptr; // The scalar expression of this access 1102 uint64_t Size = 0; // The size of the memory object. 1103 unsigned Align = 0; // The alignment of this access. 1104 }; 1105 1106 /// \brief A type for holding instructions and their stride descriptors. 1107 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1108 1109 /// \brief Create a new interleave group with the given instruction \p Instr, 1110 /// stride \p Stride and alignment \p Align. 1111 /// 1112 /// \returns the newly created interleave group. 1113 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1114 unsigned Align) { 1115 assert(!InterleaveGroupMap.count(Instr) && 1116 "Already in an interleaved access group"); 1117 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1118 return InterleaveGroupMap[Instr]; 1119 } 1120 1121 /// \brief Release the group and remove all the relationships. 1122 void releaseGroup(InterleaveGroup *Group) { 1123 for (unsigned i = 0; i < Group->getFactor(); i++) 1124 if (Instruction *Member = Group->getMember(i)) 1125 InterleaveGroupMap.erase(Member); 1126 1127 delete Group; 1128 } 1129 1130 /// \brief Collect all the accesses with a constant stride in program order. 1131 void collectConstStrideAccesses( 1132 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1133 const ValueToValueMap &Strides); 1134 1135 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1136 static bool isStrided(int Stride) { 1137 unsigned Factor = std::abs(Stride); 1138 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1139 } 1140 1141 /// \brief Returns true if \p BB is a predicated block. 1142 bool isPredicated(BasicBlock *BB) const { 1143 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1144 } 1145 1146 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1147 bool areDependencesValid() const { 1148 return LAI && LAI->getDepChecker().getDependences(); 1149 } 1150 1151 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1152 /// necessary, when constructing interleaved groups. 1153 /// 1154 /// \p A must precede \p B in program order. We return false if reordering is 1155 /// not necessary or is prevented because \p A and \p B may be dependent. 1156 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1157 StrideEntry *B) const { 1158 1159 // Code motion for interleaved accesses can potentially hoist strided loads 1160 // and sink strided stores. The code below checks the legality of the 1161 // following two conditions: 1162 // 1163 // 1. Potentially moving a strided load (B) before any store (A) that 1164 // precedes B, or 1165 // 1166 // 2. Potentially moving a strided store (A) after any load or store (B) 1167 // that A precedes. 1168 // 1169 // It's legal to reorder A and B if we know there isn't a dependence from A 1170 // to B. Note that this determination is conservative since some 1171 // dependences could potentially be reordered safely. 1172 1173 // A is potentially the source of a dependence. 1174 auto *Src = A->first; 1175 auto SrcDes = A->second; 1176 1177 // B is potentially the sink of a dependence. 1178 auto *Sink = B->first; 1179 auto SinkDes = B->second; 1180 1181 // Code motion for interleaved accesses can't violate WAR dependences. 1182 // Thus, reordering is legal if the source isn't a write. 1183 if (!Src->mayWriteToMemory()) 1184 return true; 1185 1186 // At least one of the accesses must be strided. 1187 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1188 return true; 1189 1190 // If dependence information is not available from LoopAccessInfo, 1191 // conservatively assume the instructions can't be reordered. 1192 if (!areDependencesValid()) 1193 return false; 1194 1195 // If we know there is a dependence from source to sink, assume the 1196 // instructions can't be reordered. Otherwise, reordering is legal. 1197 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1198 } 1199 1200 /// \brief Collect the dependences from LoopAccessInfo. 1201 /// 1202 /// We process the dependences once during the interleaved access analysis to 1203 /// enable constant-time dependence queries. 1204 void collectDependences() { 1205 if (!areDependencesValid()) 1206 return; 1207 auto *Deps = LAI->getDepChecker().getDependences(); 1208 for (auto Dep : *Deps) 1209 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1210 } 1211 }; 1212 1213 /// Utility class for getting and setting loop vectorizer hints in the form 1214 /// of loop metadata. 1215 /// This class keeps a number of loop annotations locally (as member variables) 1216 /// and can, upon request, write them back as metadata on the loop. It will 1217 /// initially scan the loop for existing metadata, and will update the local 1218 /// values based on information in the loop. 1219 /// We cannot write all values to metadata, as the mere presence of some info, 1220 /// for example 'force', means a decision has been made. So, we need to be 1221 /// careful NOT to add them if the user hasn't specifically asked so. 1222 class LoopVectorizeHints { 1223 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1224 1225 /// Hint - associates name and validation with the hint value. 1226 struct Hint { 1227 const char *Name; 1228 unsigned Value; // This may have to change for non-numeric values. 1229 HintKind Kind; 1230 1231 Hint(const char *Name, unsigned Value, HintKind Kind) 1232 : Name(Name), Value(Value), Kind(Kind) {} 1233 1234 bool validate(unsigned Val) { 1235 switch (Kind) { 1236 case HK_WIDTH: 1237 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1238 case HK_UNROLL: 1239 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1240 case HK_FORCE: 1241 return (Val <= 1); 1242 } 1243 return false; 1244 } 1245 }; 1246 1247 /// Vectorization width. 1248 Hint Width; 1249 /// Vectorization interleave factor. 1250 Hint Interleave; 1251 /// Vectorization forced 1252 Hint Force; 1253 1254 /// Return the loop metadata prefix. 1255 static StringRef Prefix() { return "llvm.loop."; } 1256 1257 /// True if there is any unsafe math in the loop. 1258 bool PotentiallyUnsafe; 1259 1260 public: 1261 enum ForceKind { 1262 FK_Undefined = -1, ///< Not selected. 1263 FK_Disabled = 0, ///< Forcing disabled. 1264 FK_Enabled = 1, ///< Forcing enabled. 1265 }; 1266 1267 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1268 OptimizationRemarkEmitter &ORE) 1269 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1270 HK_WIDTH), 1271 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1272 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1273 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1274 // Populate values with existing loop metadata. 1275 getHintsFromMetadata(); 1276 1277 // force-vector-interleave overrides DisableInterleaving. 1278 if (VectorizerParams::isInterleaveForced()) 1279 Interleave.Value = VectorizerParams::VectorizationInterleave; 1280 1281 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1282 << "LV: Interleaving disabled by the pass manager\n"); 1283 } 1284 1285 /// Mark the loop L as already vectorized by setting the width to 1. 1286 void setAlreadyVectorized() { 1287 Width.Value = Interleave.Value = 1; 1288 Hint Hints[] = {Width, Interleave}; 1289 writeHintsToMetadata(Hints); 1290 } 1291 1292 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1293 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1294 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1295 emitRemarkWithHints(); 1296 return false; 1297 } 1298 1299 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1300 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1301 emitRemarkWithHints(); 1302 return false; 1303 } 1304 1305 if (getWidth() == 1 && getInterleave() == 1) { 1306 // FIXME: Add a separate metadata to indicate when the loop has already 1307 // been vectorized instead of setting width and count to 1. 1308 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1309 // FIXME: Add interleave.disable metadata. This will allow 1310 // vectorize.disable to be used without disabling the pass and errors 1311 // to differentiate between disabled vectorization and a width of 1. 1312 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1313 "AllDisabled", L->getStartLoc(), 1314 L->getHeader()) 1315 << "loop not vectorized: vectorization and interleaving are " 1316 "explicitly disabled, or vectorize width and interleave " 1317 "count are both set to 1"); 1318 return false; 1319 } 1320 1321 return true; 1322 } 1323 1324 /// Dumps all the hint information. 1325 void emitRemarkWithHints() const { 1326 using namespace ore; 1327 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1328 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1329 TheLoop->getStartLoc(), 1330 TheLoop->getHeader()) 1331 << "loop not vectorized: vectorization is explicitly disabled"); 1332 else { 1333 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1334 TheLoop->getStartLoc(), TheLoop->getHeader()); 1335 R << "loop not vectorized"; 1336 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1337 R << " (Force=" << NV("Force", true); 1338 if (Width.Value != 0) 1339 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1340 if (Interleave.Value != 0) 1341 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1342 R << ")"; 1343 } 1344 ORE.emit(R); 1345 } 1346 } 1347 1348 unsigned getWidth() const { return Width.Value; } 1349 unsigned getInterleave() const { return Interleave.Value; } 1350 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1351 1352 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1353 /// pass name to force the frontend to print the diagnostic. 1354 const char *vectorizeAnalysisPassName() const { 1355 if (getWidth() == 1) 1356 return LV_NAME; 1357 if (getForce() == LoopVectorizeHints::FK_Disabled) 1358 return LV_NAME; 1359 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1360 return LV_NAME; 1361 return OptimizationRemarkAnalysis::AlwaysPrint; 1362 } 1363 1364 bool allowReordering() const { 1365 // When enabling loop hints are provided we allow the vectorizer to change 1366 // the order of operations that is given by the scalar loop. This is not 1367 // enabled by default because can be unsafe or inefficient. For example, 1368 // reordering floating-point operations will change the way round-off 1369 // error accumulates in the loop. 1370 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1371 } 1372 1373 bool isPotentiallyUnsafe() const { 1374 // Avoid FP vectorization if the target is unsure about proper support. 1375 // This may be related to the SIMD unit in the target not handling 1376 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1377 // Otherwise, a sequence of vectorized loops, even without reduction, 1378 // could lead to different end results on the destination vectors. 1379 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1380 } 1381 1382 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1383 1384 private: 1385 /// Find hints specified in the loop metadata and update local values. 1386 void getHintsFromMetadata() { 1387 MDNode *LoopID = TheLoop->getLoopID(); 1388 if (!LoopID) 1389 return; 1390 1391 // First operand should refer to the loop id itself. 1392 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1393 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1394 1395 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1396 const MDString *S = nullptr; 1397 SmallVector<Metadata *, 4> Args; 1398 1399 // The expected hint is either a MDString or a MDNode with the first 1400 // operand a MDString. 1401 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1402 if (!MD || MD->getNumOperands() == 0) 1403 continue; 1404 S = dyn_cast<MDString>(MD->getOperand(0)); 1405 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1406 Args.push_back(MD->getOperand(i)); 1407 } else { 1408 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1409 assert(Args.size() == 0 && "too many arguments for MDString"); 1410 } 1411 1412 if (!S) 1413 continue; 1414 1415 // Check if the hint starts with the loop metadata prefix. 1416 StringRef Name = S->getString(); 1417 if (Args.size() == 1) 1418 setHint(Name, Args[0]); 1419 } 1420 } 1421 1422 /// Checks string hint with one operand and set value if valid. 1423 void setHint(StringRef Name, Metadata *Arg) { 1424 if (!Name.startswith(Prefix())) 1425 return; 1426 Name = Name.substr(Prefix().size(), StringRef::npos); 1427 1428 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1429 if (!C) 1430 return; 1431 unsigned Val = C->getZExtValue(); 1432 1433 Hint *Hints[] = {&Width, &Interleave, &Force}; 1434 for (auto H : Hints) { 1435 if (Name == H->Name) { 1436 if (H->validate(Val)) 1437 H->Value = Val; 1438 else 1439 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1440 break; 1441 } 1442 } 1443 } 1444 1445 /// Create a new hint from name / value pair. 1446 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1447 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1448 Metadata *MDs[] = {MDString::get(Context, Name), 1449 ConstantAsMetadata::get( 1450 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1451 return MDNode::get(Context, MDs); 1452 } 1453 1454 /// Matches metadata with hint name. 1455 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1456 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1457 if (!Name) 1458 return false; 1459 1460 for (auto H : HintTypes) 1461 if (Name->getString().endswith(H.Name)) 1462 return true; 1463 return false; 1464 } 1465 1466 /// Sets current hints into loop metadata, keeping other values intact. 1467 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1468 if (HintTypes.size() == 0) 1469 return; 1470 1471 // Reserve the first element to LoopID (see below). 1472 SmallVector<Metadata *, 4> MDs(1); 1473 // If the loop already has metadata, then ignore the existing operands. 1474 MDNode *LoopID = TheLoop->getLoopID(); 1475 if (LoopID) { 1476 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1477 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1478 // If node in update list, ignore old value. 1479 if (!matchesHintMetadataName(Node, HintTypes)) 1480 MDs.push_back(Node); 1481 } 1482 } 1483 1484 // Now, add the missing hints. 1485 for (auto H : HintTypes) 1486 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1487 1488 // Replace current metadata node with new one. 1489 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1490 MDNode *NewLoopID = MDNode::get(Context, MDs); 1491 // Set operand 0 to refer to the loop id itself. 1492 NewLoopID->replaceOperandWith(0, NewLoopID); 1493 1494 TheLoop->setLoopID(NewLoopID); 1495 } 1496 1497 /// The loop these hints belong to. 1498 const Loop *TheLoop; 1499 1500 /// Interface to emit optimization remarks. 1501 OptimizationRemarkEmitter &ORE; 1502 }; 1503 1504 static void emitMissedWarning(Function *F, Loop *L, 1505 const LoopVectorizeHints &LH, 1506 OptimizationRemarkEmitter *ORE) { 1507 LH.emitRemarkWithHints(); 1508 1509 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1510 if (LH.getWidth() != 1) 1511 ORE->emit(DiagnosticInfoOptimizationFailure( 1512 DEBUG_TYPE, "FailedRequestedVectorization", 1513 L->getStartLoc(), L->getHeader()) 1514 << "loop not vectorized: " 1515 << "failed explicitly specified loop vectorization"); 1516 else if (LH.getInterleave() != 1) 1517 ORE->emit(DiagnosticInfoOptimizationFailure( 1518 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1519 L->getHeader()) 1520 << "loop not interleaved: " 1521 << "failed explicitly specified loop interleaving"); 1522 } 1523 } 1524 1525 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1526 /// to what vectorization factor. 1527 /// This class does not look at the profitability of vectorization, only the 1528 /// legality. This class has two main kinds of checks: 1529 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1530 /// will change the order of memory accesses in a way that will change the 1531 /// correctness of the program. 1532 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1533 /// checks for a number of different conditions, such as the availability of a 1534 /// single induction variable, that all types are supported and vectorize-able, 1535 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1536 /// This class is also used by InnerLoopVectorizer for identifying 1537 /// induction variable and the different reduction variables. 1538 class LoopVectorizationLegality { 1539 public: 1540 LoopVectorizationLegality( 1541 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1542 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1543 const TargetTransformInfo *TTI, 1544 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1545 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1546 LoopVectorizeHints *H) 1547 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1548 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1549 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1550 Requirements(R), Hints(H) {} 1551 1552 /// ReductionList contains the reduction descriptors for all 1553 /// of the reductions that were found in the loop. 1554 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1555 1556 /// InductionList saves induction variables and maps them to the 1557 /// induction descriptor. 1558 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1559 1560 /// RecurrenceSet contains the phi nodes that are recurrences other than 1561 /// inductions and reductions. 1562 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1563 1564 /// Returns true if it is legal to vectorize this loop. 1565 /// This does not mean that it is profitable to vectorize this 1566 /// loop, only that it is legal to do so. 1567 bool canVectorize(); 1568 1569 /// Returns the primary induction variable. 1570 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1571 1572 /// Returns the reduction variables found in the loop. 1573 ReductionList *getReductionVars() { return &Reductions; } 1574 1575 /// Returns the induction variables found in the loop. 1576 InductionList *getInductionVars() { return &Inductions; } 1577 1578 /// Return the first-order recurrences found in the loop. 1579 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1580 1581 /// Returns the widest induction type. 1582 Type *getWidestInductionType() { return WidestIndTy; } 1583 1584 /// Returns True if V is an induction variable in this loop. 1585 bool isInductionVariable(const Value *V); 1586 1587 /// Returns True if PN is a reduction variable in this loop. 1588 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1589 1590 /// Returns True if Phi is a first-order recurrence in this loop. 1591 bool isFirstOrderRecurrence(const PHINode *Phi); 1592 1593 /// Return true if the block BB needs to be predicated in order for the loop 1594 /// to be vectorized. 1595 bool blockNeedsPredication(BasicBlock *BB); 1596 1597 /// Check if this pointer is consecutive when vectorizing. This happens 1598 /// when the last index of the GEP is the induction variable, or that the 1599 /// pointer itself is an induction variable. 1600 /// This check allows us to vectorize A[idx] into a wide load/store. 1601 /// Returns: 1602 /// 0 - Stride is unknown or non-consecutive. 1603 /// 1 - Address is consecutive. 1604 /// -1 - Address is consecutive, and decreasing. 1605 int isConsecutivePtr(Value *Ptr); 1606 1607 /// Returns true if the value V is uniform within the loop. 1608 bool isUniform(Value *V); 1609 1610 /// Returns the information that we collected about runtime memory check. 1611 const RuntimePointerChecking *getRuntimePointerChecking() const { 1612 return LAI->getRuntimePointerChecking(); 1613 } 1614 1615 const LoopAccessInfo *getLAI() const { return LAI; } 1616 1617 /// \brief Check if \p Instr belongs to any interleaved access group. 1618 bool isAccessInterleaved(Instruction *Instr) { 1619 return InterleaveInfo.isInterleaved(Instr); 1620 } 1621 1622 /// \brief Return the maximum interleave factor of all interleaved groups. 1623 unsigned getMaxInterleaveFactor() const { 1624 return InterleaveInfo.getMaxInterleaveFactor(); 1625 } 1626 1627 /// \brief Get the interleaved access group that \p Instr belongs to. 1628 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1629 return InterleaveInfo.getInterleaveGroup(Instr); 1630 } 1631 1632 /// \brief Returns true if an interleaved group requires a scalar iteration 1633 /// to handle accesses with gaps. 1634 bool requiresScalarEpilogue() const { 1635 return InterleaveInfo.requiresScalarEpilogue(); 1636 } 1637 1638 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1639 1640 bool hasStride(Value *V) { return LAI->hasStride(V); } 1641 1642 /// Returns true if the target machine supports masked store operation 1643 /// for the given \p DataType and kind of access to \p Ptr. 1644 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1645 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1646 } 1647 /// Returns true if the target machine supports masked load operation 1648 /// for the given \p DataType and kind of access to \p Ptr. 1649 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1650 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1651 } 1652 /// Returns true if the target machine supports masked scatter operation 1653 /// for the given \p DataType. 1654 bool isLegalMaskedScatter(Type *DataType) { 1655 return TTI->isLegalMaskedScatter(DataType); 1656 } 1657 /// Returns true if the target machine supports masked gather operation 1658 /// for the given \p DataType. 1659 bool isLegalMaskedGather(Type *DataType) { 1660 return TTI->isLegalMaskedGather(DataType); 1661 } 1662 /// Returns true if the target machine can represent \p V as a masked gather 1663 /// or scatter operation. 1664 bool isLegalGatherOrScatter(Value *V) { 1665 auto *LI = dyn_cast<LoadInst>(V); 1666 auto *SI = dyn_cast<StoreInst>(V); 1667 if (!LI && !SI) 1668 return false; 1669 auto *Ptr = getPointerOperand(V); 1670 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1671 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1672 } 1673 1674 /// Returns true if vector representation of the instruction \p I 1675 /// requires mask. 1676 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1677 unsigned getNumStores() const { return LAI->getNumStores(); } 1678 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1679 unsigned getNumPredStores() const { return NumPredStores; } 1680 1681 /// Returns true if \p I is an instruction that will be scalarized with 1682 /// predication. Such instructions include conditional stores and 1683 /// instructions that may divide by zero. 1684 bool isScalarWithPredication(Instruction *I); 1685 1686 /// Returns true if \p I is a memory instruction with consecutive memory 1687 /// access that can be widened. 1688 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1689 1690 // Returns true if the NoNaN attribute is set on the function. 1691 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1692 1693 private: 1694 /// Check if a single basic block loop is vectorizable. 1695 /// At this point we know that this is a loop with a constant trip count 1696 /// and we only need to check individual instructions. 1697 bool canVectorizeInstrs(); 1698 1699 /// When we vectorize loops we may change the order in which 1700 /// we read and write from memory. This method checks if it is 1701 /// legal to vectorize the code, considering only memory constrains. 1702 /// Returns true if the loop is vectorizable 1703 bool canVectorizeMemory(); 1704 1705 /// Return true if we can vectorize this loop using the IF-conversion 1706 /// transformation. 1707 bool canVectorizeWithIfConvert(); 1708 1709 /// Return true if all of the instructions in the block can be speculatively 1710 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1711 /// and we know that we can read from them without segfault. 1712 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1713 1714 /// Updates the vectorization state by adding \p Phi to the inductions list. 1715 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1716 /// better choice for the main induction than the existing one. 1717 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1718 SmallPtrSetImpl<Value *> &AllowedExit); 1719 1720 /// Create an analysis remark that explains why vectorization failed 1721 /// 1722 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1723 /// an instruction that prevents vectorization. Otherwise the loop is used 1724 /// for the location of the remark. \return the remark object that can be 1725 /// streamed to. 1726 OptimizationRemarkAnalysis 1727 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1728 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1729 RemarkName, TheLoop, I); 1730 } 1731 1732 /// \brief If an access has a symbolic strides, this maps the pointer value to 1733 /// the stride symbol. 1734 const ValueToValueMap *getSymbolicStrides() { 1735 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1736 // it's collected. This happens from canVectorizeWithIfConvert, when the 1737 // pointer is checked to reference consecutive elements suitable for a 1738 // masked access. 1739 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1740 } 1741 1742 unsigned NumPredStores; 1743 1744 /// The loop that we evaluate. 1745 Loop *TheLoop; 1746 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1747 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1748 /// of existing SCEV assumptions. The analysis will also add a minimal set 1749 /// of new predicates if this is required to enable vectorization and 1750 /// unrolling. 1751 PredicatedScalarEvolution &PSE; 1752 /// Target Library Info. 1753 TargetLibraryInfo *TLI; 1754 /// Target Transform Info 1755 const TargetTransformInfo *TTI; 1756 /// Dominator Tree. 1757 DominatorTree *DT; 1758 // LoopAccess analysis. 1759 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1760 // And the loop-accesses info corresponding to this loop. This pointer is 1761 // null until canVectorizeMemory sets it up. 1762 const LoopAccessInfo *LAI; 1763 /// Interface to emit optimization remarks. 1764 OptimizationRemarkEmitter *ORE; 1765 1766 /// The interleave access information contains groups of interleaved accesses 1767 /// with the same stride and close to each other. 1768 InterleavedAccessInfo InterleaveInfo; 1769 1770 // --- vectorization state --- // 1771 1772 /// Holds the primary induction variable. This is the counter of the 1773 /// loop. 1774 PHINode *PrimaryInduction; 1775 /// Holds the reduction variables. 1776 ReductionList Reductions; 1777 /// Holds all of the induction variables that we found in the loop. 1778 /// Notice that inductions don't need to start at zero and that induction 1779 /// variables can be pointers. 1780 InductionList Inductions; 1781 /// Holds the phi nodes that are first-order recurrences. 1782 RecurrenceSet FirstOrderRecurrences; 1783 /// Holds the widest induction type encountered. 1784 Type *WidestIndTy; 1785 1786 /// Allowed outside users. This holds the induction and reduction 1787 /// vars which can be accessed from outside the loop. 1788 SmallPtrSet<Value *, 4> AllowedExit; 1789 1790 /// Can we assume the absence of NaNs. 1791 bool HasFunNoNaNAttr; 1792 1793 /// Vectorization requirements that will go through late-evaluation. 1794 LoopVectorizationRequirements *Requirements; 1795 1796 /// Used to emit an analysis of any legality issues. 1797 LoopVectorizeHints *Hints; 1798 1799 /// While vectorizing these instructions we have to generate a 1800 /// call to the appropriate masked intrinsic 1801 SmallPtrSet<const Instruction *, 8> MaskedOp; 1802 }; 1803 1804 /// LoopVectorizationCostModel - estimates the expected speedups due to 1805 /// vectorization. 1806 /// In many cases vectorization is not profitable. This can happen because of 1807 /// a number of reasons. In this class we mainly attempt to predict the 1808 /// expected speedup/slowdowns due to the supported instruction set. We use the 1809 /// TargetTransformInfo to query the different backends for the cost of 1810 /// different operations. 1811 class LoopVectorizationCostModel { 1812 public: 1813 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1814 LoopInfo *LI, LoopVectorizationLegality *Legal, 1815 const TargetTransformInfo &TTI, 1816 const TargetLibraryInfo *TLI, DemandedBits *DB, 1817 AssumptionCache *AC, 1818 OptimizationRemarkEmitter *ORE, const Function *F, 1819 const LoopVectorizeHints *Hints) 1820 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1821 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1822 1823 /// \return An upper bound for the vectorization factor, or None if 1824 /// vectorization should be avoided up front. 1825 Optional<unsigned> computeMaxVF(bool OptForSize); 1826 1827 /// Information about vectorization costs 1828 struct VectorizationFactor { 1829 unsigned Width; // Vector width with best cost 1830 unsigned Cost; // Cost of the loop with that width 1831 }; 1832 /// \return The most profitable vectorization factor and the cost of that VF. 1833 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1834 /// then this vectorization factor will be selected if vectorization is 1835 /// possible. 1836 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1837 1838 /// Setup cost-based decisions for user vectorization factor. 1839 void selectUserVectorizationFactor(unsigned UserVF) { 1840 collectUniformsAndScalars(UserVF); 1841 collectInstsToScalarize(UserVF); 1842 } 1843 1844 /// \return The size (in bits) of the smallest and widest types in the code 1845 /// that needs to be vectorized. We ignore values that remain scalar such as 1846 /// 64 bit loop indices. 1847 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1848 1849 /// \return The desired interleave count. 1850 /// If interleave count has been specified by metadata it will be returned. 1851 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1852 /// are the selected vectorization factor and the cost of the selected VF. 1853 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1854 unsigned LoopCost); 1855 1856 /// Memory access instruction may be vectorized in more than one way. 1857 /// Form of instruction after vectorization depends on cost. 1858 /// This function takes cost-based decisions for Load/Store instructions 1859 /// and collects them in a map. This decisions map is used for building 1860 /// the lists of loop-uniform and loop-scalar instructions. 1861 /// The calculated cost is saved with widening decision in order to 1862 /// avoid redundant calculations. 1863 void setCostBasedWideningDecision(unsigned VF); 1864 1865 /// \brief A struct that represents some properties of the register usage 1866 /// of a loop. 1867 struct RegisterUsage { 1868 /// Holds the number of loop invariant values that are used in the loop. 1869 unsigned LoopInvariantRegs; 1870 /// Holds the maximum number of concurrent live intervals in the loop. 1871 unsigned MaxLocalUsers; 1872 /// Holds the number of instructions in the loop. 1873 unsigned NumInstructions; 1874 }; 1875 1876 /// \return Returns information about the register usages of the loop for the 1877 /// given vectorization factors. 1878 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1879 1880 /// Collect values we want to ignore in the cost model. 1881 void collectValuesToIgnore(); 1882 1883 /// \returns The smallest bitwidth each instruction can be represented with. 1884 /// The vector equivalents of these instructions should be truncated to this 1885 /// type. 1886 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1887 return MinBWs; 1888 } 1889 1890 /// \returns True if it is more profitable to scalarize instruction \p I for 1891 /// vectorization factor \p VF. 1892 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1893 auto Scalars = InstsToScalarize.find(VF); 1894 assert(Scalars != InstsToScalarize.end() && 1895 "VF not yet analyzed for scalarization profitability"); 1896 return Scalars->second.count(I); 1897 } 1898 1899 /// Returns true if \p I is known to be uniform after vectorization. 1900 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1901 if (VF == 1) 1902 return true; 1903 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1904 auto UniformsPerVF = Uniforms.find(VF); 1905 return UniformsPerVF->second.count(I); 1906 } 1907 1908 /// Returns true if \p I is known to be scalar after vectorization. 1909 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1910 if (VF == 1) 1911 return true; 1912 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1913 auto ScalarsPerVF = Scalars.find(VF); 1914 return ScalarsPerVF->second.count(I); 1915 } 1916 1917 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1918 /// for vectorization factor \p VF. 1919 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1920 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1921 !isScalarAfterVectorization(I, VF); 1922 } 1923 1924 /// Decision that was taken during cost calculation for memory instruction. 1925 enum InstWidening { 1926 CM_Unknown, 1927 CM_Widen, 1928 CM_Interleave, 1929 CM_GatherScatter, 1930 CM_Scalarize 1931 }; 1932 1933 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1934 /// instruction \p I and vector width \p VF. 1935 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1936 unsigned Cost) { 1937 assert(VF >= 2 && "Expected VF >=2"); 1938 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1939 } 1940 1941 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1942 /// interleaving group \p Grp and vector width \p VF. 1943 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1944 InstWidening W, unsigned Cost) { 1945 assert(VF >= 2 && "Expected VF >=2"); 1946 /// Broadcast this decicion to all instructions inside the group. 1947 /// But the cost will be assigned to one instruction only. 1948 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1949 if (auto *I = Grp->getMember(i)) { 1950 if (Grp->getInsertPos() == I) 1951 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1952 else 1953 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1954 } 1955 } 1956 } 1957 1958 /// Return the cost model decision for the given instruction \p I and vector 1959 /// width \p VF. Return CM_Unknown if this instruction did not pass 1960 /// through the cost modeling. 1961 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1962 assert(VF >= 2 && "Expected VF >=2"); 1963 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1964 auto Itr = WideningDecisions.find(InstOnVF); 1965 if (Itr == WideningDecisions.end()) 1966 return CM_Unknown; 1967 return Itr->second.first; 1968 } 1969 1970 /// Return the vectorization cost for the given instruction \p I and vector 1971 /// width \p VF. 1972 unsigned getWideningCost(Instruction *I, unsigned VF) { 1973 assert(VF >= 2 && "Expected VF >=2"); 1974 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1975 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1976 return WideningDecisions[InstOnVF].second; 1977 } 1978 1979 /// Return True if instruction \p I is an optimizable truncate whose operand 1980 /// is an induction variable. Such a truncate will be removed by adding a new 1981 /// induction variable with the destination type. 1982 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1983 1984 // If the instruction is not a truncate, return false. 1985 auto *Trunc = dyn_cast<TruncInst>(I); 1986 if (!Trunc) 1987 return false; 1988 1989 // Get the source and destination types of the truncate. 1990 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1991 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1992 1993 // If the truncate is free for the given types, return false. Replacing a 1994 // free truncate with an induction variable would add an induction variable 1995 // update instruction to each iteration of the loop. We exclude from this 1996 // check the primary induction variable since it will need an update 1997 // instruction regardless. 1998 Value *Op = Trunc->getOperand(0); 1999 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2000 return false; 2001 2002 // If the truncated value is not an induction variable, return false. 2003 return Legal->isInductionVariable(Op); 2004 } 2005 2006 private: 2007 /// \return An upper bound for the vectorization factor, larger than zero. 2008 /// One is returned if vectorization should best be avoided due to cost. 2009 unsigned computeFeasibleMaxVF(bool OptForSize); 2010 2011 /// The vectorization cost is a combination of the cost itself and a boolean 2012 /// indicating whether any of the contributing operations will actually 2013 /// operate on 2014 /// vector values after type legalization in the backend. If this latter value 2015 /// is 2016 /// false, then all operations will be scalarized (i.e. no vectorization has 2017 /// actually taken place). 2018 typedef std::pair<unsigned, bool> VectorizationCostTy; 2019 2020 /// Returns the expected execution cost. The unit of the cost does 2021 /// not matter because we use the 'cost' units to compare different 2022 /// vector widths. The cost that is returned is *not* normalized by 2023 /// the factor width. 2024 VectorizationCostTy expectedCost(unsigned VF); 2025 2026 /// Returns the execution time cost of an instruction for a given vector 2027 /// width. Vector width of one means scalar. 2028 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2029 2030 /// The cost-computation logic from getInstructionCost which provides 2031 /// the vector type as an output parameter. 2032 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2033 2034 /// Calculate vectorization cost of memory instruction \p I. 2035 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2036 2037 /// The cost computation for scalarized memory instruction. 2038 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2039 2040 /// The cost computation for interleaving group of memory instructions. 2041 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2042 2043 /// The cost computation for Gather/Scatter instruction. 2044 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2045 2046 /// The cost computation for widening instruction \p I with consecutive 2047 /// memory access. 2048 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2049 2050 /// The cost calculation for Load instruction \p I with uniform pointer - 2051 /// scalar load + broadcast. 2052 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2053 2054 /// Returns whether the instruction is a load or store and will be a emitted 2055 /// as a vector operation. 2056 bool isConsecutiveLoadOrStore(Instruction *I); 2057 2058 /// Create an analysis remark that explains why vectorization failed 2059 /// 2060 /// \p RemarkName is the identifier for the remark. \return the remark object 2061 /// that can be streamed to. 2062 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2063 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2064 RemarkName, TheLoop); 2065 } 2066 2067 /// Map of scalar integer values to the smallest bitwidth they can be legally 2068 /// represented as. The vector equivalents of these values should be truncated 2069 /// to this type. 2070 MapVector<Instruction *, uint64_t> MinBWs; 2071 2072 /// A type representing the costs for instructions if they were to be 2073 /// scalarized rather than vectorized. The entries are Instruction-Cost 2074 /// pairs. 2075 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2076 2077 /// A set containing all BasicBlocks that are known to present after 2078 /// vectorization as a predicated block. 2079 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2080 2081 /// A map holding scalar costs for different vectorization factors. The 2082 /// presence of a cost for an instruction in the mapping indicates that the 2083 /// instruction will be scalarized when vectorizing with the associated 2084 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2085 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2086 2087 /// Holds the instructions known to be uniform after vectorization. 2088 /// The data is collected per VF. 2089 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2090 2091 /// Holds the instructions known to be scalar after vectorization. 2092 /// The data is collected per VF. 2093 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2094 2095 /// Holds the instructions (address computations) that are forced to be 2096 /// scalarized. 2097 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2098 2099 /// Returns the expected difference in cost from scalarizing the expression 2100 /// feeding a predicated instruction \p PredInst. The instructions to 2101 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2102 /// non-negative return value implies the expression will be scalarized. 2103 /// Currently, only single-use chains are considered for scalarization. 2104 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2105 unsigned VF); 2106 2107 /// Collects the instructions to scalarize for each predicated instruction in 2108 /// the loop. 2109 void collectInstsToScalarize(unsigned VF); 2110 2111 /// Collect the instructions that are uniform after vectorization. An 2112 /// instruction is uniform if we represent it with a single scalar value in 2113 /// the vectorized loop corresponding to each vector iteration. Examples of 2114 /// uniform instructions include pointer operands of consecutive or 2115 /// interleaved memory accesses. Note that although uniformity implies an 2116 /// instruction will be scalar, the reverse is not true. In general, a 2117 /// scalarized instruction will be represented by VF scalar values in the 2118 /// vectorized loop, each corresponding to an iteration of the original 2119 /// scalar loop. 2120 void collectLoopUniforms(unsigned VF); 2121 2122 /// Collect the instructions that are scalar after vectorization. An 2123 /// instruction is scalar if it is known to be uniform or will be scalarized 2124 /// during vectorization. Non-uniform scalarized instructions will be 2125 /// represented by VF values in the vectorized loop, each corresponding to an 2126 /// iteration of the original scalar loop. 2127 void collectLoopScalars(unsigned VF); 2128 2129 /// Collect Uniform and Scalar values for the given \p VF. 2130 /// The sets depend on CM decision for Load/Store instructions 2131 /// that may be vectorized as interleave, gather-scatter or scalarized. 2132 void collectUniformsAndScalars(unsigned VF) { 2133 // Do the analysis once. 2134 if (VF == 1 || Uniforms.count(VF)) 2135 return; 2136 setCostBasedWideningDecision(VF); 2137 collectLoopUniforms(VF); 2138 collectLoopScalars(VF); 2139 } 2140 2141 /// Keeps cost model vectorization decision and cost for instructions. 2142 /// Right now it is used for memory instructions only. 2143 typedef DenseMap<std::pair<Instruction *, unsigned>, 2144 std::pair<InstWidening, unsigned>> 2145 DecisionList; 2146 2147 DecisionList WideningDecisions; 2148 2149 public: 2150 /// The loop that we evaluate. 2151 Loop *TheLoop; 2152 /// Predicated scalar evolution analysis. 2153 PredicatedScalarEvolution &PSE; 2154 /// Loop Info analysis. 2155 LoopInfo *LI; 2156 /// Vectorization legality. 2157 LoopVectorizationLegality *Legal; 2158 /// Vector target information. 2159 const TargetTransformInfo &TTI; 2160 /// Target Library Info. 2161 const TargetLibraryInfo *TLI; 2162 /// Demanded bits analysis. 2163 DemandedBits *DB; 2164 /// Assumption cache. 2165 AssumptionCache *AC; 2166 /// Interface to emit optimization remarks. 2167 OptimizationRemarkEmitter *ORE; 2168 2169 const Function *TheFunction; 2170 /// Loop Vectorize Hint. 2171 const LoopVectorizeHints *Hints; 2172 /// Values to ignore in the cost model. 2173 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2174 /// Values to ignore in the cost model when VF > 1. 2175 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2176 }; 2177 2178 /// LoopVectorizationPlanner - drives the vectorization process after having 2179 /// passed Legality checks. 2180 class LoopVectorizationPlanner { 2181 public: 2182 LoopVectorizationPlanner(Loop *OrigLoop, LoopInfo *LI, 2183 LoopVectorizationLegality *Legal, 2184 LoopVectorizationCostModel &CM) 2185 : OrigLoop(OrigLoop), LI(LI), Legal(Legal), CM(CM) {} 2186 2187 ~LoopVectorizationPlanner() {} 2188 2189 /// Plan how to best vectorize, return the best VF and its cost. 2190 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2191 unsigned UserVF); 2192 2193 /// Generate the IR code for the vectorized loop. 2194 void executePlan(InnerLoopVectorizer &ILV); 2195 2196 protected: 2197 /// Collect the instructions from the original loop that would be trivially 2198 /// dead in the vectorized loop if generated. 2199 void collectTriviallyDeadInstructions( 2200 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2201 2202 private: 2203 /// The loop that we evaluate. 2204 Loop *OrigLoop; 2205 2206 /// Loop Info analysis. 2207 LoopInfo *LI; 2208 2209 /// The legality analysis. 2210 LoopVectorizationLegality *Legal; 2211 2212 /// The profitablity analysis. 2213 LoopVectorizationCostModel &CM; 2214 }; 2215 2216 /// \brief This holds vectorization requirements that must be verified late in 2217 /// the process. The requirements are set by legalize and costmodel. Once 2218 /// vectorization has been determined to be possible and profitable the 2219 /// requirements can be verified by looking for metadata or compiler options. 2220 /// For example, some loops require FP commutativity which is only allowed if 2221 /// vectorization is explicitly specified or if the fast-math compiler option 2222 /// has been provided. 2223 /// Late evaluation of these requirements allows helpful diagnostics to be 2224 /// composed that tells the user what need to be done to vectorize the loop. For 2225 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2226 /// evaluation should be used only when diagnostics can generated that can be 2227 /// followed by a non-expert user. 2228 class LoopVectorizationRequirements { 2229 public: 2230 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2231 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2232 2233 void addUnsafeAlgebraInst(Instruction *I) { 2234 // First unsafe algebra instruction. 2235 if (!UnsafeAlgebraInst) 2236 UnsafeAlgebraInst = I; 2237 } 2238 2239 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2240 2241 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2242 const char *PassName = Hints.vectorizeAnalysisPassName(); 2243 bool Failed = false; 2244 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2245 ORE.emit( 2246 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2247 UnsafeAlgebraInst->getDebugLoc(), 2248 UnsafeAlgebraInst->getParent()) 2249 << "loop not vectorized: cannot prove it is safe to reorder " 2250 "floating-point operations"); 2251 Failed = true; 2252 } 2253 2254 // Test if runtime memcheck thresholds are exceeded. 2255 bool PragmaThresholdReached = 2256 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2257 bool ThresholdReached = 2258 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2259 if ((ThresholdReached && !Hints.allowReordering()) || 2260 PragmaThresholdReached) { 2261 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2262 L->getStartLoc(), 2263 L->getHeader()) 2264 << "loop not vectorized: cannot prove it is safe to reorder " 2265 "memory operations"); 2266 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2267 Failed = true; 2268 } 2269 2270 return Failed; 2271 } 2272 2273 private: 2274 unsigned NumRuntimePointerChecks; 2275 Instruction *UnsafeAlgebraInst; 2276 2277 /// Interface to emit optimization remarks. 2278 OptimizationRemarkEmitter &ORE; 2279 }; 2280 2281 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2282 if (L.empty()) { 2283 if (!hasCyclesInLoopBody(L)) 2284 V.push_back(&L); 2285 return; 2286 } 2287 for (Loop *InnerL : L) 2288 addAcyclicInnerLoop(*InnerL, V); 2289 } 2290 2291 /// The LoopVectorize Pass. 2292 struct LoopVectorize : public FunctionPass { 2293 /// Pass identification, replacement for typeid 2294 static char ID; 2295 2296 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2297 : FunctionPass(ID) { 2298 Impl.DisableUnrolling = NoUnrolling; 2299 Impl.AlwaysVectorize = AlwaysVectorize; 2300 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2301 } 2302 2303 LoopVectorizePass Impl; 2304 2305 bool runOnFunction(Function &F) override { 2306 if (skipFunction(F)) 2307 return false; 2308 2309 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2310 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2311 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2312 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2313 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2314 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2315 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2316 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2317 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2318 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2319 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2320 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2321 2322 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2323 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2324 2325 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2326 GetLAA, *ORE); 2327 } 2328 2329 void getAnalysisUsage(AnalysisUsage &AU) const override { 2330 AU.addRequired<AssumptionCacheTracker>(); 2331 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2332 AU.addRequired<DominatorTreeWrapperPass>(); 2333 AU.addRequired<LoopInfoWrapperPass>(); 2334 AU.addRequired<ScalarEvolutionWrapperPass>(); 2335 AU.addRequired<TargetTransformInfoWrapperPass>(); 2336 AU.addRequired<AAResultsWrapperPass>(); 2337 AU.addRequired<LoopAccessLegacyAnalysis>(); 2338 AU.addRequired<DemandedBitsWrapperPass>(); 2339 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2340 AU.addPreserved<LoopInfoWrapperPass>(); 2341 AU.addPreserved<DominatorTreeWrapperPass>(); 2342 AU.addPreserved<BasicAAWrapperPass>(); 2343 AU.addPreserved<GlobalsAAWrapperPass>(); 2344 } 2345 }; 2346 2347 } // end anonymous namespace 2348 2349 //===----------------------------------------------------------------------===// 2350 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2351 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2352 //===----------------------------------------------------------------------===// 2353 2354 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2355 // We need to place the broadcast of invariant variables outside the loop. 2356 Instruction *Instr = dyn_cast<Instruction>(V); 2357 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2358 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2359 2360 // Place the code for broadcasting invariant variables in the new preheader. 2361 IRBuilder<>::InsertPointGuard Guard(Builder); 2362 if (Invariant) 2363 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2364 2365 // Broadcast the scalar into all locations in the vector. 2366 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2367 2368 return Shuf; 2369 } 2370 2371 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2372 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2373 Value *Start = II.getStartValue(); 2374 2375 // Construct the initial value of the vector IV in the vector loop preheader 2376 auto CurrIP = Builder.saveIP(); 2377 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2378 if (isa<TruncInst>(EntryVal)) { 2379 assert(Start->getType()->isIntegerTy() && 2380 "Truncation requires an integer type"); 2381 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2382 Step = Builder.CreateTrunc(Step, TruncType); 2383 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2384 } 2385 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2386 Value *SteppedStart = 2387 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2388 2389 // We create vector phi nodes for both integer and floating-point induction 2390 // variables. Here, we determine the kind of arithmetic we will perform. 2391 Instruction::BinaryOps AddOp; 2392 Instruction::BinaryOps MulOp; 2393 if (Step->getType()->isIntegerTy()) { 2394 AddOp = Instruction::Add; 2395 MulOp = Instruction::Mul; 2396 } else { 2397 AddOp = II.getInductionOpcode(); 2398 MulOp = Instruction::FMul; 2399 } 2400 2401 // Multiply the vectorization factor by the step using integer or 2402 // floating-point arithmetic as appropriate. 2403 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2404 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2405 2406 // Create a vector splat to use in the induction update. 2407 // 2408 // FIXME: If the step is non-constant, we create the vector splat with 2409 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2410 // handle a constant vector splat. 2411 Value *SplatVF = isa<Constant>(Mul) 2412 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2413 : Builder.CreateVectorSplat(VF, Mul); 2414 Builder.restoreIP(CurrIP); 2415 2416 // We may need to add the step a number of times, depending on the unroll 2417 // factor. The last of those goes into the PHI. 2418 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2419 &*LoopVectorBody->getFirstInsertionPt()); 2420 Instruction *LastInduction = VecInd; 2421 VectorParts Entry(UF); 2422 for (unsigned Part = 0; Part < UF; ++Part) { 2423 Entry[Part] = LastInduction; 2424 LastInduction = cast<Instruction>(addFastMathFlag( 2425 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2426 } 2427 VectorLoopValueMap.initVector(EntryVal, Entry); 2428 if (isa<TruncInst>(EntryVal)) 2429 addMetadata(Entry, EntryVal); 2430 2431 // Move the last step to the end of the latch block. This ensures consistent 2432 // placement of all induction updates. 2433 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2434 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2435 auto *ICmp = cast<Instruction>(Br->getCondition()); 2436 LastInduction->moveBefore(ICmp); 2437 LastInduction->setName("vec.ind.next"); 2438 2439 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2440 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2441 } 2442 2443 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2444 return Cost->isScalarAfterVectorization(I, VF) || 2445 Cost->isProfitableToScalarize(I, VF); 2446 } 2447 2448 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2449 if (shouldScalarizeInstruction(IV)) 2450 return true; 2451 auto isScalarInst = [&](User *U) -> bool { 2452 auto *I = cast<Instruction>(U); 2453 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2454 }; 2455 return any_of(IV->users(), isScalarInst); 2456 } 2457 2458 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2459 2460 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2461 "Primary induction variable must have an integer type"); 2462 2463 auto II = Legal->getInductionVars()->find(IV); 2464 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2465 2466 auto ID = II->second; 2467 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2468 2469 // The scalar value to broadcast. This will be derived from the canonical 2470 // induction variable. 2471 Value *ScalarIV = nullptr; 2472 2473 // The value from the original loop to which we are mapping the new induction 2474 // variable. 2475 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2476 2477 // True if we have vectorized the induction variable. 2478 auto VectorizedIV = false; 2479 2480 // Determine if we want a scalar version of the induction variable. This is 2481 // true if the induction variable itself is not widened, or if it has at 2482 // least one user in the loop that is not widened. 2483 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2484 2485 // Generate code for the induction step. Note that induction steps are 2486 // required to be loop-invariant 2487 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2488 "Induction step should be loop invariant"); 2489 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2490 Value *Step = nullptr; 2491 if (PSE.getSE()->isSCEVable(IV->getType())) { 2492 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2493 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2494 LoopVectorPreHeader->getTerminator()); 2495 } else { 2496 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2497 } 2498 2499 // Try to create a new independent vector induction variable. If we can't 2500 // create the phi node, we will splat the scalar induction variable in each 2501 // loop iteration. 2502 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2503 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2504 VectorizedIV = true; 2505 } 2506 2507 // If we haven't yet vectorized the induction variable, or if we will create 2508 // a scalar one, we need to define the scalar induction variable and step 2509 // values. If we were given a truncation type, truncate the canonical 2510 // induction variable and step. Otherwise, derive these values from the 2511 // induction descriptor. 2512 if (!VectorizedIV || NeedsScalarIV) { 2513 ScalarIV = Induction; 2514 if (IV != OldInduction) { 2515 ScalarIV = IV->getType()->isIntegerTy() 2516 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2517 : Builder.CreateCast(Instruction::SIToFP, Induction, 2518 IV->getType()); 2519 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2520 ScalarIV->setName("offset.idx"); 2521 } 2522 if (Trunc) { 2523 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2524 assert(Step->getType()->isIntegerTy() && 2525 "Truncation requires an integer step"); 2526 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2527 Step = Builder.CreateTrunc(Step, TruncType); 2528 } 2529 } 2530 2531 // If we haven't yet vectorized the induction variable, splat the scalar 2532 // induction variable, and build the necessary step vectors. 2533 if (!VectorizedIV) { 2534 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2535 VectorParts Entry(UF); 2536 for (unsigned Part = 0; Part < UF; ++Part) 2537 Entry[Part] = 2538 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2539 VectorLoopValueMap.initVector(EntryVal, Entry); 2540 if (Trunc) 2541 addMetadata(Entry, Trunc); 2542 } 2543 2544 // If an induction variable is only used for counting loop iterations or 2545 // calculating addresses, it doesn't need to be widened. Create scalar steps 2546 // that can be used by instructions we will later scalarize. Note that the 2547 // addition of the scalar steps will not increase the number of instructions 2548 // in the loop in the common case prior to InstCombine. We will be trading 2549 // one vector extract for each scalar step. 2550 if (NeedsScalarIV) 2551 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2552 } 2553 2554 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2555 Instruction::BinaryOps BinOp) { 2556 // Create and check the types. 2557 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2558 int VLen = Val->getType()->getVectorNumElements(); 2559 2560 Type *STy = Val->getType()->getScalarType(); 2561 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2562 "Induction Step must be an integer or FP"); 2563 assert(Step->getType() == STy && "Step has wrong type"); 2564 2565 SmallVector<Constant *, 8> Indices; 2566 2567 if (STy->isIntegerTy()) { 2568 // Create a vector of consecutive numbers from zero to VF. 2569 for (int i = 0; i < VLen; ++i) 2570 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2571 2572 // Add the consecutive indices to the vector value. 2573 Constant *Cv = ConstantVector::get(Indices); 2574 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2575 Step = Builder.CreateVectorSplat(VLen, Step); 2576 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2577 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2578 // which can be found from the original scalar operations. 2579 Step = Builder.CreateMul(Cv, Step); 2580 return Builder.CreateAdd(Val, Step, "induction"); 2581 } 2582 2583 // Floating point induction. 2584 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2585 "Binary Opcode should be specified for FP induction"); 2586 // Create a vector of consecutive numbers from zero to VF. 2587 for (int i = 0; i < VLen; ++i) 2588 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2589 2590 // Add the consecutive indices to the vector value. 2591 Constant *Cv = ConstantVector::get(Indices); 2592 2593 Step = Builder.CreateVectorSplat(VLen, Step); 2594 2595 // Floating point operations had to be 'fast' to enable the induction. 2596 FastMathFlags Flags; 2597 Flags.setUnsafeAlgebra(); 2598 2599 Value *MulOp = Builder.CreateFMul(Cv, Step); 2600 if (isa<Instruction>(MulOp)) 2601 // Have to check, MulOp may be a constant 2602 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2603 2604 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2605 if (isa<Instruction>(BOp)) 2606 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2607 return BOp; 2608 } 2609 2610 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2611 Value *EntryVal, 2612 const InductionDescriptor &ID) { 2613 2614 // We shouldn't have to build scalar steps if we aren't vectorizing. 2615 assert(VF > 1 && "VF should be greater than one"); 2616 2617 // Get the value type and ensure it and the step have the same integer type. 2618 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2619 assert(ScalarIVTy == Step->getType() && 2620 "Val and Step should have the same type"); 2621 2622 // We build scalar steps for both integer and floating-point induction 2623 // variables. Here, we determine the kind of arithmetic we will perform. 2624 Instruction::BinaryOps AddOp; 2625 Instruction::BinaryOps MulOp; 2626 if (ScalarIVTy->isIntegerTy()) { 2627 AddOp = Instruction::Add; 2628 MulOp = Instruction::Mul; 2629 } else { 2630 AddOp = ID.getInductionOpcode(); 2631 MulOp = Instruction::FMul; 2632 } 2633 2634 // Determine the number of scalars we need to generate for each unroll 2635 // iteration. If EntryVal is uniform, we only need to generate the first 2636 // lane. Otherwise, we generate all VF values. 2637 unsigned Lanes = 2638 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2639 2640 // Compute the scalar steps and save the results in VectorLoopValueMap. 2641 ScalarParts Entry(UF); 2642 for (unsigned Part = 0; Part < UF; ++Part) { 2643 Entry[Part].resize(VF); 2644 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2645 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2646 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2647 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2648 Entry[Part][Lane] = Add; 2649 } 2650 } 2651 VectorLoopValueMap.initScalar(EntryVal, Entry); 2652 } 2653 2654 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2655 2656 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2657 ValueToValueMap(); 2658 2659 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2660 if (Stride == 1 || Stride == -1) 2661 return Stride; 2662 return 0; 2663 } 2664 2665 bool LoopVectorizationLegality::isUniform(Value *V) { 2666 return LAI->isUniform(V); 2667 } 2668 2669 const InnerLoopVectorizer::VectorParts & 2670 InnerLoopVectorizer::getVectorValue(Value *V) { 2671 assert(V != Induction && "The new induction variable should not be used."); 2672 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2673 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2674 2675 // If we have a stride that is replaced by one, do it here. 2676 if (Legal->hasStride(V)) 2677 V = ConstantInt::get(V->getType(), 1); 2678 2679 // If we have this scalar in the map, return it. 2680 if (VectorLoopValueMap.hasVector(V)) 2681 return VectorLoopValueMap.VectorMapStorage[V]; 2682 2683 // If the value has not been vectorized, check if it has been scalarized 2684 // instead. If it has been scalarized, and we actually need the value in 2685 // vector form, we will construct the vector values on demand. 2686 if (VectorLoopValueMap.hasScalar(V)) { 2687 2688 // Initialize a new vector map entry. 2689 VectorParts Entry(UF); 2690 2691 // If we've scalarized a value, that value should be an instruction. 2692 auto *I = cast<Instruction>(V); 2693 2694 // If we aren't vectorizing, we can just copy the scalar map values over to 2695 // the vector map. 2696 if (VF == 1) { 2697 for (unsigned Part = 0; Part < UF; ++Part) 2698 Entry[Part] = getScalarValue(V, Part, 0); 2699 return VectorLoopValueMap.initVector(V, Entry); 2700 } 2701 2702 // Get the last scalar instruction we generated for V. If the value is 2703 // known to be uniform after vectorization, this corresponds to lane zero 2704 // of the last unroll iteration. Otherwise, the last instruction is the one 2705 // we created for the last vector lane of the last unroll iteration. 2706 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2707 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2708 2709 // Set the insert point after the last scalarized instruction. This ensures 2710 // the insertelement sequence will directly follow the scalar definitions. 2711 auto OldIP = Builder.saveIP(); 2712 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2713 Builder.SetInsertPoint(&*NewIP); 2714 2715 // However, if we are vectorizing, we need to construct the vector values. 2716 // If the value is known to be uniform after vectorization, we can just 2717 // broadcast the scalar value corresponding to lane zero for each unroll 2718 // iteration. Otherwise, we construct the vector values using insertelement 2719 // instructions. Since the resulting vectors are stored in 2720 // VectorLoopValueMap, we will only generate the insertelements once. 2721 for (unsigned Part = 0; Part < UF; ++Part) { 2722 Value *VectorValue = nullptr; 2723 if (Cost->isUniformAfterVectorization(I, VF)) { 2724 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2725 } else { 2726 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2727 for (unsigned Lane = 0; Lane < VF; ++Lane) 2728 VectorValue = Builder.CreateInsertElement( 2729 VectorValue, getScalarValue(V, Part, Lane), 2730 Builder.getInt32(Lane)); 2731 } 2732 Entry[Part] = VectorValue; 2733 } 2734 Builder.restoreIP(OldIP); 2735 return VectorLoopValueMap.initVector(V, Entry); 2736 } 2737 2738 // If this scalar is unknown, assume that it is a constant or that it is 2739 // loop invariant. Broadcast V and save the value for future uses. 2740 Value *B = getBroadcastInstrs(V); 2741 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2742 } 2743 2744 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2745 unsigned Lane) { 2746 2747 // If the value is not an instruction contained in the loop, it should 2748 // already be scalar. 2749 if (OrigLoop->isLoopInvariant(V)) 2750 return V; 2751 2752 assert(Lane > 0 ? 2753 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2754 : true && "Uniform values only have lane zero"); 2755 2756 // If the value from the original loop has not been vectorized, it is 2757 // represented by UF x VF scalar values in the new loop. Return the requested 2758 // scalar value. 2759 if (VectorLoopValueMap.hasScalar(V)) 2760 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2761 2762 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2763 // for the given unroll part. If this entry is not a vector type (i.e., the 2764 // vectorization factor is one), there is no need to generate an 2765 // extractelement instruction. 2766 auto *U = getVectorValue(V)[Part]; 2767 if (!U->getType()->isVectorTy()) { 2768 assert(VF == 1 && "Value not scalarized has non-vector type"); 2769 return U; 2770 } 2771 2772 // Otherwise, the value from the original loop has been vectorized and is 2773 // represented by UF vector values. Extract and return the requested scalar 2774 // value from the appropriate vector lane. 2775 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2776 } 2777 2778 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2779 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2780 SmallVector<Constant *, 8> ShuffleMask; 2781 for (unsigned i = 0; i < VF; ++i) 2782 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2783 2784 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2785 ConstantVector::get(ShuffleMask), 2786 "reverse"); 2787 } 2788 2789 // Try to vectorize the interleave group that \p Instr belongs to. 2790 // 2791 // E.g. Translate following interleaved load group (factor = 3): 2792 // for (i = 0; i < N; i+=3) { 2793 // R = Pic[i]; // Member of index 0 2794 // G = Pic[i+1]; // Member of index 1 2795 // B = Pic[i+2]; // Member of index 2 2796 // ... // do something to R, G, B 2797 // } 2798 // To: 2799 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2800 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2801 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2802 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2803 // 2804 // Or translate following interleaved store group (factor = 3): 2805 // for (i = 0; i < N; i+=3) { 2806 // ... do something to R, G, B 2807 // Pic[i] = R; // Member of index 0 2808 // Pic[i+1] = G; // Member of index 1 2809 // Pic[i+2] = B; // Member of index 2 2810 // } 2811 // To: 2812 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2813 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2814 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2815 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2816 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2817 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2818 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2819 assert(Group && "Fail to get an interleaved access group."); 2820 2821 // Skip if current instruction is not the insert position. 2822 if (Instr != Group->getInsertPos()) 2823 return; 2824 2825 Value *Ptr = getPointerOperand(Instr); 2826 2827 // Prepare for the vector type of the interleaved load/store. 2828 Type *ScalarTy = getMemInstValueType(Instr); 2829 unsigned InterleaveFactor = Group->getFactor(); 2830 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2831 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2832 2833 // Prepare for the new pointers. 2834 setDebugLocFromInst(Builder, Ptr); 2835 SmallVector<Value *, 2> NewPtrs; 2836 unsigned Index = Group->getIndex(Instr); 2837 2838 // If the group is reverse, adjust the index to refer to the last vector lane 2839 // instead of the first. We adjust the index from the first vector lane, 2840 // rather than directly getting the pointer for lane VF - 1, because the 2841 // pointer operand of the interleaved access is supposed to be uniform. For 2842 // uniform instructions, we're only required to generate a value for the 2843 // first vector lane in each unroll iteration. 2844 if (Group->isReverse()) 2845 Index += (VF - 1) * Group->getFactor(); 2846 2847 for (unsigned Part = 0; Part < UF; Part++) { 2848 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2849 2850 // Notice current instruction could be any index. Need to adjust the address 2851 // to the member of index 0. 2852 // 2853 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2854 // b = A[i]; // Member of index 0 2855 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2856 // 2857 // E.g. A[i+1] = a; // Member of index 1 2858 // A[i] = b; // Member of index 0 2859 // A[i+2] = c; // Member of index 2 (Current instruction) 2860 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2861 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2862 2863 // Cast to the vector pointer type. 2864 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2865 } 2866 2867 setDebugLocFromInst(Builder, Instr); 2868 Value *UndefVec = UndefValue::get(VecTy); 2869 2870 // Vectorize the interleaved load group. 2871 if (isa<LoadInst>(Instr)) { 2872 2873 // For each unroll part, create a wide load for the group. 2874 SmallVector<Value *, 2> NewLoads; 2875 for (unsigned Part = 0; Part < UF; Part++) { 2876 auto *NewLoad = Builder.CreateAlignedLoad( 2877 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2878 addMetadata(NewLoad, Instr); 2879 NewLoads.push_back(NewLoad); 2880 } 2881 2882 // For each member in the group, shuffle out the appropriate data from the 2883 // wide loads. 2884 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2885 Instruction *Member = Group->getMember(I); 2886 2887 // Skip the gaps in the group. 2888 if (!Member) 2889 continue; 2890 2891 VectorParts Entry(UF); 2892 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2893 for (unsigned Part = 0; Part < UF; Part++) { 2894 Value *StridedVec = Builder.CreateShuffleVector( 2895 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2896 2897 // If this member has different type, cast the result type. 2898 if (Member->getType() != ScalarTy) { 2899 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2900 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2901 } 2902 2903 Entry[Part] = 2904 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2905 } 2906 VectorLoopValueMap.initVector(Member, Entry); 2907 } 2908 return; 2909 } 2910 2911 // The sub vector type for current instruction. 2912 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2913 2914 // Vectorize the interleaved store group. 2915 for (unsigned Part = 0; Part < UF; Part++) { 2916 // Collect the stored vector from each member. 2917 SmallVector<Value *, 4> StoredVecs; 2918 for (unsigned i = 0; i < InterleaveFactor; i++) { 2919 // Interleaved store group doesn't allow a gap, so each index has a member 2920 Instruction *Member = Group->getMember(i); 2921 assert(Member && "Fail to get a member from an interleaved store group"); 2922 2923 Value *StoredVec = 2924 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2925 if (Group->isReverse()) 2926 StoredVec = reverseVector(StoredVec); 2927 2928 // If this member has different type, cast it to an unified type. 2929 if (StoredVec->getType() != SubVT) 2930 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2931 2932 StoredVecs.push_back(StoredVec); 2933 } 2934 2935 // Concatenate all vectors into a wide vector. 2936 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2937 2938 // Interleave the elements in the wide vector. 2939 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2940 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2941 "interleaved.vec"); 2942 2943 Instruction *NewStoreInstr = 2944 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2945 addMetadata(NewStoreInstr, Instr); 2946 } 2947 } 2948 2949 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2950 // Attempt to issue a wide load. 2951 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2952 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2953 2954 assert((LI || SI) && "Invalid Load/Store instruction"); 2955 2956 LoopVectorizationCostModel::InstWidening Decision = 2957 Cost->getWideningDecision(Instr, VF); 2958 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2959 "CM decision should be taken at this point"); 2960 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2961 return vectorizeInterleaveGroup(Instr); 2962 2963 Type *ScalarDataTy = getMemInstValueType(Instr); 2964 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2965 Value *Ptr = getPointerOperand(Instr); 2966 unsigned Alignment = getMemInstAlignment(Instr); 2967 // An alignment of 0 means target abi alignment. We need to use the scalar's 2968 // target abi alignment in such a case. 2969 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2970 if (!Alignment) 2971 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2972 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2973 2974 // Scalarize the memory instruction if necessary. 2975 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2976 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2977 2978 // Determine if the pointer operand of the access is either consecutive or 2979 // reverse consecutive. 2980 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2981 bool Reverse = ConsecutiveStride < 0; 2982 bool CreateGatherScatter = 2983 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2984 2985 VectorParts VectorGep; 2986 2987 // Handle consecutive loads/stores. 2988 if (ConsecutiveStride) { 2989 Ptr = getScalarValue(Ptr, 0, 0); 2990 } else { 2991 // At this point we should vector version of GEP for Gather or Scatter 2992 assert(CreateGatherScatter && "The instruction should be scalarized"); 2993 VectorGep = getVectorValue(Ptr); 2994 } 2995 2996 VectorParts Mask = createBlockInMask(Instr->getParent()); 2997 // Handle Stores: 2998 if (SI) { 2999 assert(!Legal->isUniform(SI->getPointerOperand()) && 3000 "We do not allow storing to uniform addresses"); 3001 setDebugLocFromInst(Builder, SI); 3002 // We don't want to update the value in the map as it might be used in 3003 // another expression. So don't use a reference type for "StoredVal". 3004 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 3005 3006 for (unsigned Part = 0; Part < UF; ++Part) { 3007 Instruction *NewSI = nullptr; 3008 if (CreateGatherScatter) { 3009 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3010 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 3011 Alignment, MaskPart); 3012 } else { 3013 // Calculate the pointer for the specific unroll-part. 3014 Value *PartPtr = 3015 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3016 3017 if (Reverse) { 3018 // If we store to reverse consecutive memory locations, then we need 3019 // to reverse the order of elements in the stored value. 3020 StoredVal[Part] = reverseVector(StoredVal[Part]); 3021 // If the address is consecutive but reversed, then the 3022 // wide store needs to start at the last vector element. 3023 PartPtr = 3024 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3025 PartPtr = 3026 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3027 Mask[Part] = reverseVector(Mask[Part]); 3028 } 3029 3030 Value *VecPtr = 3031 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3032 3033 if (Legal->isMaskRequired(SI)) 3034 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3035 Mask[Part]); 3036 else 3037 NewSI = 3038 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3039 } 3040 addMetadata(NewSI, SI); 3041 } 3042 return; 3043 } 3044 3045 // Handle loads. 3046 assert(LI && "Must have a load instruction"); 3047 setDebugLocFromInst(Builder, LI); 3048 VectorParts Entry(UF); 3049 for (unsigned Part = 0; Part < UF; ++Part) { 3050 Instruction *NewLI; 3051 if (CreateGatherScatter) { 3052 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3053 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3054 nullptr, "wide.masked.gather"); 3055 Entry[Part] = NewLI; 3056 } else { 3057 // Calculate the pointer for the specific unroll-part. 3058 Value *PartPtr = 3059 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3060 3061 if (Reverse) { 3062 // If the address is consecutive but reversed, then the 3063 // wide load needs to start at the last vector element. 3064 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3065 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3066 Mask[Part] = reverseVector(Mask[Part]); 3067 } 3068 3069 Value *VecPtr = 3070 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3071 if (Legal->isMaskRequired(LI)) 3072 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3073 UndefValue::get(DataTy), 3074 "wide.masked.load"); 3075 else 3076 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3077 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3078 } 3079 addMetadata(NewLI, LI); 3080 } 3081 VectorLoopValueMap.initVector(Instr, Entry); 3082 } 3083 3084 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3085 bool IfPredicateInstr) { 3086 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3087 DEBUG(dbgs() << "LV: Scalarizing" 3088 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3089 << '\n'); 3090 // Holds vector parameters or scalars, in case of uniform vals. 3091 SmallVector<VectorParts, 4> Params; 3092 3093 setDebugLocFromInst(Builder, Instr); 3094 3095 // Does this instruction return a value ? 3096 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3097 3098 // Initialize a new scalar map entry. 3099 ScalarParts Entry(UF); 3100 3101 VectorParts Cond; 3102 if (IfPredicateInstr) 3103 Cond = createBlockInMask(Instr->getParent()); 3104 3105 // Determine the number of scalars we need to generate for each unroll 3106 // iteration. If the instruction is uniform, we only need to generate the 3107 // first lane. Otherwise, we generate all VF values. 3108 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3109 3110 // For each vector unroll 'part': 3111 for (unsigned Part = 0; Part < UF; ++Part) { 3112 Entry[Part].resize(VF); 3113 // For each scalar that we create: 3114 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3115 3116 // Start if-block. 3117 Value *Cmp = nullptr; 3118 if (IfPredicateInstr) { 3119 Cmp = Cond[Part]; 3120 if (Cmp->getType()->isVectorTy()) 3121 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3122 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3123 ConstantInt::get(Cmp->getType(), 1)); 3124 } 3125 3126 Instruction *Cloned = Instr->clone(); 3127 if (!IsVoidRetTy) 3128 Cloned->setName(Instr->getName() + ".cloned"); 3129 3130 // Replace the operands of the cloned instructions with their scalar 3131 // equivalents in the new loop. 3132 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3133 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3134 Cloned->setOperand(op, NewOp); 3135 } 3136 addNewMetadata(Cloned, Instr); 3137 3138 // Place the cloned scalar in the new loop. 3139 Builder.Insert(Cloned); 3140 3141 // Add the cloned scalar to the scalar map entry. 3142 Entry[Part][Lane] = Cloned; 3143 3144 // If we just cloned a new assumption, add it the assumption cache. 3145 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3146 if (II->getIntrinsicID() == Intrinsic::assume) 3147 AC->registerAssumption(II); 3148 3149 // End if-block. 3150 if (IfPredicateInstr) 3151 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3152 } 3153 } 3154 VectorLoopValueMap.initScalar(Instr, Entry); 3155 } 3156 3157 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3158 Value *End, Value *Step, 3159 Instruction *DL) { 3160 BasicBlock *Header = L->getHeader(); 3161 BasicBlock *Latch = L->getLoopLatch(); 3162 // As we're just creating this loop, it's possible no latch exists 3163 // yet. If so, use the header as this will be a single block loop. 3164 if (!Latch) 3165 Latch = Header; 3166 3167 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3168 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3169 setDebugLocFromInst(Builder, OldInst); 3170 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3171 3172 Builder.SetInsertPoint(Latch->getTerminator()); 3173 setDebugLocFromInst(Builder, OldInst); 3174 3175 // Create i+1 and fill the PHINode. 3176 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3177 Induction->addIncoming(Start, L->getLoopPreheader()); 3178 Induction->addIncoming(Next, Latch); 3179 // Create the compare. 3180 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3181 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3182 3183 // Now we have two terminators. Remove the old one from the block. 3184 Latch->getTerminator()->eraseFromParent(); 3185 3186 return Induction; 3187 } 3188 3189 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3190 if (TripCount) 3191 return TripCount; 3192 3193 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3194 // Find the loop boundaries. 3195 ScalarEvolution *SE = PSE.getSE(); 3196 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3197 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3198 "Invalid loop count"); 3199 3200 Type *IdxTy = Legal->getWidestInductionType(); 3201 3202 // The exit count might have the type of i64 while the phi is i32. This can 3203 // happen if we have an induction variable that is sign extended before the 3204 // compare. The only way that we get a backedge taken count is that the 3205 // induction variable was signed and as such will not overflow. In such a case 3206 // truncation is legal. 3207 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3208 IdxTy->getPrimitiveSizeInBits()) 3209 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3210 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3211 3212 // Get the total trip count from the count by adding 1. 3213 const SCEV *ExitCount = SE->getAddExpr( 3214 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3215 3216 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3217 3218 // Expand the trip count and place the new instructions in the preheader. 3219 // Notice that the pre-header does not change, only the loop body. 3220 SCEVExpander Exp(*SE, DL, "induction"); 3221 3222 // Count holds the overall loop count (N). 3223 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3224 L->getLoopPreheader()->getTerminator()); 3225 3226 if (TripCount->getType()->isPointerTy()) 3227 TripCount = 3228 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3229 L->getLoopPreheader()->getTerminator()); 3230 3231 return TripCount; 3232 } 3233 3234 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3235 if (VectorTripCount) 3236 return VectorTripCount; 3237 3238 Value *TC = getOrCreateTripCount(L); 3239 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3240 3241 // Now we need to generate the expression for the part of the loop that the 3242 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3243 // iterations are not required for correctness, or N - Step, otherwise. Step 3244 // is equal to the vectorization factor (number of SIMD elements) times the 3245 // unroll factor (number of SIMD instructions). 3246 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3247 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3248 3249 // If there is a non-reversed interleaved group that may speculatively access 3250 // memory out-of-bounds, we need to ensure that there will be at least one 3251 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3252 // the trip count, we set the remainder to be equal to the step. If the step 3253 // does not evenly divide the trip count, no adjustment is necessary since 3254 // there will already be scalar iterations. Note that the minimum iterations 3255 // check ensures that N >= Step. 3256 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3257 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3258 R = Builder.CreateSelect(IsZero, Step, R); 3259 } 3260 3261 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3262 3263 return VectorTripCount; 3264 } 3265 3266 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3267 BasicBlock *Bypass) { 3268 Value *Count = getOrCreateTripCount(L); 3269 BasicBlock *BB = L->getLoopPreheader(); 3270 IRBuilder<> Builder(BB->getTerminator()); 3271 3272 // Generate code to check that the loop's trip count that we computed by 3273 // adding one to the backedge-taken count will not overflow. 3274 Value *CheckMinIters = Builder.CreateICmpULT( 3275 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3276 3277 BasicBlock *NewBB = 3278 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3279 // Update dominator tree immediately if the generated block is a 3280 // LoopBypassBlock because SCEV expansions to generate loop bypass 3281 // checks may query it before the current function is finished. 3282 DT->addNewBlock(NewBB, BB); 3283 if (L->getParentLoop()) 3284 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3285 ReplaceInstWithInst(BB->getTerminator(), 3286 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3287 LoopBypassBlocks.push_back(BB); 3288 } 3289 3290 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3291 BasicBlock *Bypass) { 3292 Value *TC = getOrCreateVectorTripCount(L); 3293 BasicBlock *BB = L->getLoopPreheader(); 3294 IRBuilder<> Builder(BB->getTerminator()); 3295 3296 // Now, compare the new count to zero. If it is zero skip the vector loop and 3297 // jump to the scalar loop. 3298 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3299 "cmp.zero"); 3300 3301 // Generate code to check that the loop's trip count that we computed by 3302 // adding one to the backedge-taken count will not overflow. 3303 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3304 // Update dominator tree immediately if the generated block is a 3305 // LoopBypassBlock because SCEV expansions to generate loop bypass 3306 // checks may query it before the current function is finished. 3307 DT->addNewBlock(NewBB, BB); 3308 if (L->getParentLoop()) 3309 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3310 ReplaceInstWithInst(BB->getTerminator(), 3311 BranchInst::Create(Bypass, NewBB, Cmp)); 3312 LoopBypassBlocks.push_back(BB); 3313 } 3314 3315 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3316 BasicBlock *BB = L->getLoopPreheader(); 3317 3318 // Generate the code to check that the SCEV assumptions that we made. 3319 // We want the new basic block to start at the first instruction in a 3320 // sequence of instructions that form a check. 3321 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3322 "scev.check"); 3323 Value *SCEVCheck = 3324 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3325 3326 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3327 if (C->isZero()) 3328 return; 3329 3330 // Create a new block containing the stride check. 3331 BB->setName("vector.scevcheck"); 3332 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3333 // Update dominator tree immediately if the generated block is a 3334 // LoopBypassBlock because SCEV expansions to generate loop bypass 3335 // checks may query it before the current function is finished. 3336 DT->addNewBlock(NewBB, BB); 3337 if (L->getParentLoop()) 3338 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3339 ReplaceInstWithInst(BB->getTerminator(), 3340 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3341 LoopBypassBlocks.push_back(BB); 3342 AddedSafetyChecks = true; 3343 } 3344 3345 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3346 BasicBlock *BB = L->getLoopPreheader(); 3347 3348 // Generate the code that checks in runtime if arrays overlap. We put the 3349 // checks into a separate block to make the more common case of few elements 3350 // faster. 3351 Instruction *FirstCheckInst; 3352 Instruction *MemRuntimeCheck; 3353 std::tie(FirstCheckInst, MemRuntimeCheck) = 3354 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3355 if (!MemRuntimeCheck) 3356 return; 3357 3358 // Create a new block containing the memory check. 3359 BB->setName("vector.memcheck"); 3360 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3361 // Update dominator tree immediately if the generated block is a 3362 // LoopBypassBlock because SCEV expansions to generate loop bypass 3363 // checks may query it before the current function is finished. 3364 DT->addNewBlock(NewBB, BB); 3365 if (L->getParentLoop()) 3366 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3367 ReplaceInstWithInst(BB->getTerminator(), 3368 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3369 LoopBypassBlocks.push_back(BB); 3370 AddedSafetyChecks = true; 3371 3372 // We currently don't use LoopVersioning for the actual loop cloning but we 3373 // still use it to add the noalias metadata. 3374 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3375 PSE.getSE()); 3376 LVer->prepareNoAliasMetadata(); 3377 } 3378 3379 void InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3380 /* 3381 In this function we generate a new loop. The new loop will contain 3382 the vectorized instructions while the old loop will continue to run the 3383 scalar remainder. 3384 3385 [ ] <-- loop iteration number check. 3386 / | 3387 / v 3388 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3389 | / | 3390 | / v 3391 || [ ] <-- vector pre header. 3392 |/ | 3393 | v 3394 | [ ] \ 3395 | [ ]_| <-- vector loop. 3396 | | 3397 | v 3398 | -[ ] <--- middle-block. 3399 | / | 3400 | / v 3401 -|- >[ ] <--- new preheader. 3402 | | 3403 | v 3404 | [ ] \ 3405 | [ ]_| <-- old scalar loop to handle remainder. 3406 \ | 3407 \ v 3408 >[ ] <-- exit block. 3409 ... 3410 */ 3411 3412 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3413 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3414 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3415 assert(VectorPH && "Invalid loop structure"); 3416 assert(ExitBlock && "Must have an exit block"); 3417 3418 // Some loops have a single integer induction variable, while other loops 3419 // don't. One example is c++ iterators that often have multiple pointer 3420 // induction variables. In the code below we also support a case where we 3421 // don't have a single induction variable. 3422 // 3423 // We try to obtain an induction variable from the original loop as hard 3424 // as possible. However if we don't find one that: 3425 // - is an integer 3426 // - counts from zero, stepping by one 3427 // - is the size of the widest induction variable type 3428 // then we create a new one. 3429 OldInduction = Legal->getPrimaryInduction(); 3430 Type *IdxTy = Legal->getWidestInductionType(); 3431 3432 // Split the single block loop into the two loop structure described above. 3433 BasicBlock *VecBody = 3434 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3435 BasicBlock *MiddleBlock = 3436 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3437 BasicBlock *ScalarPH = 3438 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3439 3440 // Create and register the new vector loop. 3441 Loop *Lp = new Loop(); 3442 Loop *ParentLoop = OrigLoop->getParentLoop(); 3443 3444 // Insert the new loop into the loop nest and register the new basic blocks 3445 // before calling any utilities such as SCEV that require valid LoopInfo. 3446 if (ParentLoop) { 3447 ParentLoop->addChildLoop(Lp); 3448 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3449 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3450 } else { 3451 LI->addTopLevelLoop(Lp); 3452 } 3453 Lp->addBasicBlockToLoop(VecBody, *LI); 3454 3455 // Find the loop boundaries. 3456 Value *Count = getOrCreateTripCount(Lp); 3457 3458 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3459 3460 // We need to test whether the backedge-taken count is uint##_max. Adding one 3461 // to it will cause overflow and an incorrect loop trip count in the vector 3462 // body. In case of overflow we want to directly jump to the scalar remainder 3463 // loop. 3464 emitMinimumIterationCountCheck(Lp, ScalarPH); 3465 // Now, compare the new count to zero. If it is zero skip the vector loop and 3466 // jump to the scalar loop. 3467 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3468 // Generate the code to check any assumptions that we've made for SCEV 3469 // expressions. 3470 emitSCEVChecks(Lp, ScalarPH); 3471 3472 // Generate the code that checks in runtime if arrays overlap. We put the 3473 // checks into a separate block to make the more common case of few elements 3474 // faster. 3475 emitMemRuntimeChecks(Lp, ScalarPH); 3476 3477 // Generate the induction variable. 3478 // The loop step is equal to the vectorization factor (num of SIMD elements) 3479 // times the unroll factor (num of SIMD instructions). 3480 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3481 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3482 Induction = 3483 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3484 getDebugLocFromInstOrOperands(OldInduction)); 3485 3486 // We are going to resume the execution of the scalar loop. 3487 // Go over all of the induction variables that we found and fix the 3488 // PHIs that are left in the scalar version of the loop. 3489 // The starting values of PHI nodes depend on the counter of the last 3490 // iteration in the vectorized loop. 3491 // If we come from a bypass edge then we need to start from the original 3492 // start value. 3493 3494 // This variable saves the new starting index for the scalar loop. It is used 3495 // to test if there are any tail iterations left once the vector loop has 3496 // completed. 3497 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3498 for (auto &InductionEntry : *List) { 3499 PHINode *OrigPhi = InductionEntry.first; 3500 InductionDescriptor II = InductionEntry.second; 3501 3502 // Create phi nodes to merge from the backedge-taken check block. 3503 PHINode *BCResumeVal = PHINode::Create( 3504 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3505 Value *&EndValue = IVEndValues[OrigPhi]; 3506 if (OrigPhi == OldInduction) { 3507 // We know what the end value is. 3508 EndValue = CountRoundDown; 3509 } else { 3510 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3511 Type *StepType = II.getStep()->getType(); 3512 Instruction::CastOps CastOp = 3513 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3514 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3515 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3516 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3517 EndValue->setName("ind.end"); 3518 } 3519 3520 // The new PHI merges the original incoming value, in case of a bypass, 3521 // or the value at the end of the vectorized loop. 3522 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3523 3524 // Fix the scalar body counter (PHI node). 3525 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3526 3527 // The old induction's phi node in the scalar body needs the truncated 3528 // value. 3529 for (BasicBlock *BB : LoopBypassBlocks) 3530 BCResumeVal->addIncoming(II.getStartValue(), BB); 3531 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3532 } 3533 3534 // Add a check in the middle block to see if we have completed 3535 // all of the iterations in the first vector loop. 3536 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3537 Value *CmpN = 3538 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3539 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3540 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3541 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3542 3543 // Get ready to start creating new instructions into the vectorized body. 3544 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3545 3546 // Save the state. 3547 LoopVectorPreHeader = Lp->getLoopPreheader(); 3548 LoopScalarPreHeader = ScalarPH; 3549 LoopMiddleBlock = MiddleBlock; 3550 LoopExitBlock = ExitBlock; 3551 LoopVectorBody = VecBody; 3552 LoopScalarBody = OldBasicBlock; 3553 3554 // Keep all loop hints from the original loop on the vector loop (we'll 3555 // replace the vectorizer-specific hints below). 3556 if (MDNode *LID = OrigLoop->getLoopID()) 3557 Lp->setLoopID(LID); 3558 3559 LoopVectorizeHints Hints(Lp, true, *ORE); 3560 Hints.setAlreadyVectorized(); 3561 } 3562 3563 // Fix up external users of the induction variable. At this point, we are 3564 // in LCSSA form, with all external PHIs that use the IV having one input value, 3565 // coming from the remainder loop. We need those PHIs to also have a correct 3566 // value for the IV when arriving directly from the middle block. 3567 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3568 const InductionDescriptor &II, 3569 Value *CountRoundDown, Value *EndValue, 3570 BasicBlock *MiddleBlock) { 3571 // There are two kinds of external IV usages - those that use the value 3572 // computed in the last iteration (the PHI) and those that use the penultimate 3573 // value (the value that feeds into the phi from the loop latch). 3574 // We allow both, but they, obviously, have different values. 3575 3576 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3577 3578 DenseMap<Value *, Value *> MissingVals; 3579 3580 // An external user of the last iteration's value should see the value that 3581 // the remainder loop uses to initialize its own IV. 3582 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3583 for (User *U : PostInc->users()) { 3584 Instruction *UI = cast<Instruction>(U); 3585 if (!OrigLoop->contains(UI)) { 3586 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3587 MissingVals[UI] = EndValue; 3588 } 3589 } 3590 3591 // An external user of the penultimate value need to see EndValue - Step. 3592 // The simplest way to get this is to recompute it from the constituent SCEVs, 3593 // that is Start + (Step * (CRD - 1)). 3594 for (User *U : OrigPhi->users()) { 3595 auto *UI = cast<Instruction>(U); 3596 if (!OrigLoop->contains(UI)) { 3597 const DataLayout &DL = 3598 OrigLoop->getHeader()->getModule()->getDataLayout(); 3599 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3600 3601 IRBuilder<> B(MiddleBlock->getTerminator()); 3602 Value *CountMinusOne = B.CreateSub( 3603 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3604 Value *CMO = 3605 !II.getStep()->getType()->isIntegerTy() 3606 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3607 II.getStep()->getType()) 3608 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3609 CMO->setName("cast.cmo"); 3610 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3611 Escape->setName("ind.escape"); 3612 MissingVals[UI] = Escape; 3613 } 3614 } 3615 3616 for (auto &I : MissingVals) { 3617 PHINode *PHI = cast<PHINode>(I.first); 3618 // One corner case we have to handle is two IVs "chasing" each-other, 3619 // that is %IV2 = phi [...], [ %IV1, %latch ] 3620 // In this case, if IV1 has an external use, we need to avoid adding both 3621 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3622 // don't already have an incoming value for the middle block. 3623 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3624 PHI->addIncoming(I.second, MiddleBlock); 3625 } 3626 } 3627 3628 namespace { 3629 struct CSEDenseMapInfo { 3630 static bool canHandle(const Instruction *I) { 3631 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3632 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3633 } 3634 static inline Instruction *getEmptyKey() { 3635 return DenseMapInfo<Instruction *>::getEmptyKey(); 3636 } 3637 static inline Instruction *getTombstoneKey() { 3638 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3639 } 3640 static unsigned getHashValue(const Instruction *I) { 3641 assert(canHandle(I) && "Unknown instruction!"); 3642 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3643 I->value_op_end())); 3644 } 3645 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3646 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3647 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3648 return LHS == RHS; 3649 return LHS->isIdenticalTo(RHS); 3650 } 3651 }; 3652 } 3653 3654 ///\brief Perform cse of induction variable instructions. 3655 static void cse(BasicBlock *BB) { 3656 // Perform simple cse. 3657 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3658 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3659 Instruction *In = &*I++; 3660 3661 if (!CSEDenseMapInfo::canHandle(In)) 3662 continue; 3663 3664 // Check if we can replace this instruction with any of the 3665 // visited instructions. 3666 if (Instruction *V = CSEMap.lookup(In)) { 3667 In->replaceAllUsesWith(V); 3668 In->eraseFromParent(); 3669 continue; 3670 } 3671 3672 CSEMap[In] = In; 3673 } 3674 } 3675 3676 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3677 /// convenience wrapper for the type-based getScalarizationOverhead API. 3678 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3679 const TargetTransformInfo &TTI) { 3680 if (VF == 1) 3681 return 0; 3682 3683 unsigned Cost = 0; 3684 Type *RetTy = ToVectorTy(I->getType(), VF); 3685 if (!RetTy->isVoidTy() && 3686 (!isa<LoadInst>(I) || 3687 !TTI.supportsEfficientVectorElementLoadStore())) 3688 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3689 3690 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3691 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3692 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3693 } 3694 else if (!isa<StoreInst>(I) || 3695 !TTI.supportsEfficientVectorElementLoadStore()) { 3696 SmallVector<const Value *, 4> Operands(I->operand_values()); 3697 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3698 } 3699 3700 return Cost; 3701 } 3702 3703 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3704 // Return the cost of the instruction, including scalarization overhead if it's 3705 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3706 // i.e. either vector version isn't available, or is too expensive. 3707 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3708 const TargetTransformInfo &TTI, 3709 const TargetLibraryInfo *TLI, 3710 bool &NeedToScalarize) { 3711 Function *F = CI->getCalledFunction(); 3712 StringRef FnName = CI->getCalledFunction()->getName(); 3713 Type *ScalarRetTy = CI->getType(); 3714 SmallVector<Type *, 4> Tys, ScalarTys; 3715 for (auto &ArgOp : CI->arg_operands()) 3716 ScalarTys.push_back(ArgOp->getType()); 3717 3718 // Estimate cost of scalarized vector call. The source operands are assumed 3719 // to be vectors, so we need to extract individual elements from there, 3720 // execute VF scalar calls, and then gather the result into the vector return 3721 // value. 3722 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3723 if (VF == 1) 3724 return ScalarCallCost; 3725 3726 // Compute corresponding vector type for return value and arguments. 3727 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3728 for (Type *ScalarTy : ScalarTys) 3729 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3730 3731 // Compute costs of unpacking argument values for the scalar calls and 3732 // packing the return values to a vector. 3733 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3734 3735 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3736 3737 // If we can't emit a vector call for this function, then the currently found 3738 // cost is the cost we need to return. 3739 NeedToScalarize = true; 3740 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3741 return Cost; 3742 3743 // If the corresponding vector cost is cheaper, return its cost. 3744 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3745 if (VectorCallCost < Cost) { 3746 NeedToScalarize = false; 3747 return VectorCallCost; 3748 } 3749 return Cost; 3750 } 3751 3752 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3753 // factor VF. Return the cost of the instruction, including scalarization 3754 // overhead if it's needed. 3755 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3756 const TargetTransformInfo &TTI, 3757 const TargetLibraryInfo *TLI) { 3758 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3759 assert(ID && "Expected intrinsic call!"); 3760 3761 FastMathFlags FMF; 3762 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3763 FMF = FPMO->getFastMathFlags(); 3764 3765 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3766 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3767 } 3768 3769 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3770 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3771 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3772 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3773 } 3774 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3775 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3776 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3777 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3778 } 3779 3780 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3781 // For every instruction `I` in MinBWs, truncate the operands, create a 3782 // truncated version of `I` and reextend its result. InstCombine runs 3783 // later and will remove any ext/trunc pairs. 3784 // 3785 SmallPtrSet<Value *, 4> Erased; 3786 for (const auto &KV : Cost->getMinimalBitwidths()) { 3787 // If the value wasn't vectorized, we must maintain the original scalar 3788 // type. The absence of the value from VectorLoopValueMap indicates that it 3789 // wasn't vectorized. 3790 if (!VectorLoopValueMap.hasVector(KV.first)) 3791 continue; 3792 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3793 for (Value *&I : Parts) { 3794 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3795 continue; 3796 Type *OriginalTy = I->getType(); 3797 Type *ScalarTruncatedTy = 3798 IntegerType::get(OriginalTy->getContext(), KV.second); 3799 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3800 OriginalTy->getVectorNumElements()); 3801 if (TruncatedTy == OriginalTy) 3802 continue; 3803 3804 IRBuilder<> B(cast<Instruction>(I)); 3805 auto ShrinkOperand = [&](Value *V) -> Value * { 3806 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3807 if (ZI->getSrcTy() == TruncatedTy) 3808 return ZI->getOperand(0); 3809 return B.CreateZExtOrTrunc(V, TruncatedTy); 3810 }; 3811 3812 // The actual instruction modification depends on the instruction type, 3813 // unfortunately. 3814 Value *NewI = nullptr; 3815 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3816 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3817 ShrinkOperand(BO->getOperand(1))); 3818 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3819 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3820 NewI = 3821 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3822 ShrinkOperand(CI->getOperand(1))); 3823 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3824 NewI = B.CreateSelect(SI->getCondition(), 3825 ShrinkOperand(SI->getTrueValue()), 3826 ShrinkOperand(SI->getFalseValue())); 3827 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3828 switch (CI->getOpcode()) { 3829 default: 3830 llvm_unreachable("Unhandled cast!"); 3831 case Instruction::Trunc: 3832 NewI = ShrinkOperand(CI->getOperand(0)); 3833 break; 3834 case Instruction::SExt: 3835 NewI = B.CreateSExtOrTrunc( 3836 CI->getOperand(0), 3837 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3838 break; 3839 case Instruction::ZExt: 3840 NewI = B.CreateZExtOrTrunc( 3841 CI->getOperand(0), 3842 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3843 break; 3844 } 3845 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3846 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3847 auto *O0 = B.CreateZExtOrTrunc( 3848 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3849 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3850 auto *O1 = B.CreateZExtOrTrunc( 3851 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3852 3853 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3854 } else if (isa<LoadInst>(I)) { 3855 // Don't do anything with the operands, just extend the result. 3856 continue; 3857 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3858 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3859 auto *O0 = B.CreateZExtOrTrunc( 3860 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3861 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3862 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3863 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3864 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3865 auto *O0 = B.CreateZExtOrTrunc( 3866 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3867 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3868 } else { 3869 llvm_unreachable("Unhandled instruction type!"); 3870 } 3871 3872 // Lastly, extend the result. 3873 NewI->takeName(cast<Instruction>(I)); 3874 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3875 I->replaceAllUsesWith(Res); 3876 cast<Instruction>(I)->eraseFromParent(); 3877 Erased.insert(I); 3878 I = Res; 3879 } 3880 } 3881 3882 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3883 for (const auto &KV : Cost->getMinimalBitwidths()) { 3884 // If the value wasn't vectorized, we must maintain the original scalar 3885 // type. The absence of the value from VectorLoopValueMap indicates that it 3886 // wasn't vectorized. 3887 if (!VectorLoopValueMap.hasVector(KV.first)) 3888 continue; 3889 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3890 for (Value *&I : Parts) { 3891 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3892 if (Inst && Inst->use_empty()) { 3893 Value *NewI = Inst->getOperand(0); 3894 Inst->eraseFromParent(); 3895 I = NewI; 3896 } 3897 } 3898 } 3899 } 3900 3901 void InnerLoopVectorizer::fixVectorizedLoop() { 3902 // Insert truncates and extends for any truncated instructions as hints to 3903 // InstCombine. 3904 if (VF > 1) 3905 truncateToMinimalBitwidths(); 3906 3907 // At this point every instruction in the original loop is widened to a 3908 // vector form. Now we need to fix the recurrences in the loop. These PHI 3909 // nodes are currently empty because we did not want to introduce cycles. 3910 // This is the second stage of vectorizing recurrences. 3911 fixCrossIterationPHIs(); 3912 3913 // Update the dominator tree. 3914 // 3915 // FIXME: After creating the structure of the new loop, the dominator tree is 3916 // no longer up-to-date, and it remains that way until we update it 3917 // here. An out-of-date dominator tree is problematic for SCEV, 3918 // because SCEVExpander uses it to guide code generation. The 3919 // vectorizer use SCEVExpanders in several places. Instead, we should 3920 // keep the dominator tree up-to-date as we go. 3921 updateAnalysis(); 3922 3923 // Fix-up external users of the induction variables. 3924 for (auto &Entry : *Legal->getInductionVars()) 3925 fixupIVUsers(Entry.first, Entry.second, 3926 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3927 IVEndValues[Entry.first], LoopMiddleBlock); 3928 3929 fixLCSSAPHIs(); 3930 predicateInstructions(); 3931 3932 // Remove redundant induction instructions. 3933 cse(LoopVectorBody); 3934 } 3935 3936 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3937 // In order to support recurrences we need to be able to vectorize Phi nodes. 3938 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3939 // stage #2: We now need to fix the recurrences by adding incoming edges to 3940 // the currently empty PHI nodes. At this point every instruction in the 3941 // original loop is widened to a vector form so we can use them to construct 3942 // the incoming edges. 3943 for (Instruction &I : *OrigLoop->getHeader()) { 3944 PHINode *Phi = dyn_cast<PHINode>(&I); 3945 if (!Phi) 3946 break; 3947 // Handle first-order recurrences and reductions that need to be fixed. 3948 if (Legal->isFirstOrderRecurrence(Phi)) 3949 fixFirstOrderRecurrence(Phi); 3950 else if (Legal->isReductionVariable(Phi)) 3951 fixReduction(Phi); 3952 } 3953 } 3954 3955 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3956 3957 // This is the second phase of vectorizing first-order recurrences. An 3958 // overview of the transformation is described below. Suppose we have the 3959 // following loop. 3960 // 3961 // for (int i = 0; i < n; ++i) 3962 // b[i] = a[i] - a[i - 1]; 3963 // 3964 // There is a first-order recurrence on "a". For this loop, the shorthand 3965 // scalar IR looks like: 3966 // 3967 // scalar.ph: 3968 // s_init = a[-1] 3969 // br scalar.body 3970 // 3971 // scalar.body: 3972 // i = phi [0, scalar.ph], [i+1, scalar.body] 3973 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3974 // s2 = a[i] 3975 // b[i] = s2 - s1 3976 // br cond, scalar.body, ... 3977 // 3978 // In this example, s1 is a recurrence because it's value depends on the 3979 // previous iteration. In the first phase of vectorization, we created a 3980 // temporary value for s1. We now complete the vectorization and produce the 3981 // shorthand vector IR shown below (for VF = 4, UF = 1). 3982 // 3983 // vector.ph: 3984 // v_init = vector(..., ..., ..., a[-1]) 3985 // br vector.body 3986 // 3987 // vector.body 3988 // i = phi [0, vector.ph], [i+4, vector.body] 3989 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3990 // v2 = a[i, i+1, i+2, i+3]; 3991 // v3 = vector(v1(3), v2(0, 1, 2)) 3992 // b[i, i+1, i+2, i+3] = v2 - v3 3993 // br cond, vector.body, middle.block 3994 // 3995 // middle.block: 3996 // x = v2(3) 3997 // br scalar.ph 3998 // 3999 // scalar.ph: 4000 // s_init = phi [x, middle.block], [a[-1], otherwise] 4001 // br scalar.body 4002 // 4003 // After execution completes the vector loop, we extract the next value of 4004 // the recurrence (x) to use as the initial value in the scalar loop. 4005 4006 // Get the original loop preheader and single loop latch. 4007 auto *Preheader = OrigLoop->getLoopPreheader(); 4008 auto *Latch = OrigLoop->getLoopLatch(); 4009 4010 // Get the initial and previous values of the scalar recurrence. 4011 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4012 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4013 4014 // Create a vector from the initial value. 4015 auto *VectorInit = ScalarInit; 4016 if (VF > 1) { 4017 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4018 VectorInit = Builder.CreateInsertElement( 4019 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4020 Builder.getInt32(VF - 1), "vector.recur.init"); 4021 } 4022 4023 // We constructed a temporary phi node in the first phase of vectorization. 4024 // This phi node will eventually be deleted. 4025 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4026 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4027 4028 // Create a phi node for the new recurrence. The current value will either be 4029 // the initial value inserted into a vector or loop-varying vector value. 4030 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4031 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4032 4033 // Get the vectorized previous value. 4034 auto &PreviousParts = getVectorValue(Previous); 4035 4036 // Set the insertion point after the previous value if it is an instruction. 4037 // Note that the previous value may have been constant-folded so it is not 4038 // guaranteed to be an instruction in the vector loop. Also, if the previous 4039 // value is a phi node, we should insert after all the phi nodes to avoid 4040 // breaking basic block verification. 4041 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1]) || 4042 isa<PHINode>(PreviousParts[UF - 1])) 4043 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4044 else 4045 Builder.SetInsertPoint( 4046 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4047 4048 // We will construct a vector for the recurrence by combining the values for 4049 // the current and previous iterations. This is the required shuffle mask. 4050 SmallVector<Constant *, 8> ShuffleMask(VF); 4051 ShuffleMask[0] = Builder.getInt32(VF - 1); 4052 for (unsigned I = 1; I < VF; ++I) 4053 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4054 4055 // The vector from which to take the initial value for the current iteration 4056 // (actual or unrolled). Initially, this is the vector phi node. 4057 Value *Incoming = VecPhi; 4058 4059 // Shuffle the current and previous vector and update the vector parts. 4060 for (unsigned Part = 0; Part < UF; ++Part) { 4061 auto *Shuffle = 4062 VF > 1 4063 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4064 ConstantVector::get(ShuffleMask)) 4065 : Incoming; 4066 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4067 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4068 PhiParts[Part] = Shuffle; 4069 Incoming = PreviousParts[Part]; 4070 } 4071 4072 // Fix the latch value of the new recurrence in the vector loop. 4073 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4074 4075 // Extract the last vector element in the middle block. This will be the 4076 // initial value for the recurrence when jumping to the scalar loop. 4077 auto *ExtractForScalar = Incoming; 4078 if (VF > 1) { 4079 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4080 ExtractForScalar = Builder.CreateExtractElement( 4081 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4082 } 4083 // Extract the second last element in the middle block if the 4084 // Phi is used outside the loop. We need to extract the phi itself 4085 // and not the last element (the phi update in the current iteration). This 4086 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4087 // when the scalar loop is not run at all. 4088 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4089 if (VF > 1) 4090 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4091 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4092 // When loop is unrolled without vectorizing, initialize 4093 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4094 // `Incoming`. This is analogous to the vectorized case above: extracting the 4095 // second last element when VF > 1. 4096 else if (UF > 1) 4097 ExtractForPhiUsedOutsideLoop = PreviousParts[UF - 2]; 4098 4099 // Fix the initial value of the original recurrence in the scalar loop. 4100 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4101 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4102 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4103 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4104 Start->addIncoming(Incoming, BB); 4105 } 4106 4107 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4108 Phi->setName("scalar.recur"); 4109 4110 // Finally, fix users of the recurrence outside the loop. The users will need 4111 // either the last value of the scalar recurrence or the last value of the 4112 // vector recurrence we extracted in the middle block. Since the loop is in 4113 // LCSSA form, we just need to find the phi node for the original scalar 4114 // recurrence in the exit block, and then add an edge for the middle block. 4115 for (auto &I : *LoopExitBlock) { 4116 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4117 if (!LCSSAPhi) 4118 break; 4119 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4120 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4121 break; 4122 } 4123 } 4124 } 4125 4126 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4127 Constant *Zero = Builder.getInt32(0); 4128 4129 // Get it's reduction variable descriptor. 4130 assert(Legal->isReductionVariable(Phi) && 4131 "Unable to find the reduction variable"); 4132 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4133 4134 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4135 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4136 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4137 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4138 RdxDesc.getMinMaxRecurrenceKind(); 4139 setDebugLocFromInst(Builder, ReductionStartValue); 4140 4141 // We need to generate a reduction vector from the incoming scalar. 4142 // To do so, we need to generate the 'identity' vector and override 4143 // one of the elements with the incoming scalar reduction. We need 4144 // to do it in the vector-loop preheader. 4145 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4146 4147 // This is the vector-clone of the value that leaves the loop. 4148 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 4149 Type *VecTy = VectorExit[0]->getType(); 4150 4151 // Find the reduction identity variable. Zero for addition, or, xor, 4152 // one for multiplication, -1 for And. 4153 Value *Identity; 4154 Value *VectorStart; 4155 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4156 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4157 // MinMax reduction have the start value as their identify. 4158 if (VF == 1) { 4159 VectorStart = Identity = ReductionStartValue; 4160 } else { 4161 VectorStart = Identity = 4162 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4163 } 4164 } else { 4165 // Handle other reduction kinds: 4166 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4167 RK, VecTy->getScalarType()); 4168 if (VF == 1) { 4169 Identity = Iden; 4170 // This vector is the Identity vector where the first element is the 4171 // incoming scalar reduction. 4172 VectorStart = ReductionStartValue; 4173 } else { 4174 Identity = ConstantVector::getSplat(VF, Iden); 4175 4176 // This vector is the Identity vector where the first element is the 4177 // incoming scalar reduction. 4178 VectorStart = 4179 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4180 } 4181 } 4182 4183 // Fix the vector-loop phi. 4184 4185 // Reductions do not have to start at zero. They can start with 4186 // any loop invariant values. 4187 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4188 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4189 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4190 const VectorParts &Val = getVectorValue(LoopVal); 4191 for (unsigned part = 0; part < UF; ++part) { 4192 // Make sure to add the reduction stat value only to the 4193 // first unroll part. 4194 Value *StartVal = (part == 0) ? VectorStart : Identity; 4195 cast<PHINode>(VecRdxPhi[part]) 4196 ->addIncoming(StartVal, LoopVectorPreHeader); 4197 cast<PHINode>(VecRdxPhi[part]) 4198 ->addIncoming(Val[part], LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4199 } 4200 4201 // Before each round, move the insertion point right between 4202 // the PHIs and the values we are going to write. 4203 // This allows us to write both PHINodes and the extractelement 4204 // instructions. 4205 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4206 4207 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4208 setDebugLocFromInst(Builder, LoopExitInst); 4209 4210 // If the vector reduction can be performed in a smaller type, we truncate 4211 // then extend the loop exit value to enable InstCombine to evaluate the 4212 // entire expression in the smaller type. 4213 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4214 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4215 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4216 for (unsigned part = 0; part < UF; ++part) { 4217 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4218 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4219 : Builder.CreateZExt(Trunc, VecTy); 4220 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4221 UI != RdxParts[part]->user_end();) 4222 if (*UI != Trunc) { 4223 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4224 RdxParts[part] = Extnd; 4225 } else { 4226 ++UI; 4227 } 4228 } 4229 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4230 for (unsigned part = 0; part < UF; ++part) 4231 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4232 } 4233 4234 // Reduce all of the unrolled parts into a single vector. 4235 Value *ReducedPartRdx = RdxParts[0]; 4236 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4237 setDebugLocFromInst(Builder, ReducedPartRdx); 4238 for (unsigned part = 1; part < UF; ++part) { 4239 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4240 // Floating point operations had to be 'fast' to enable the reduction. 4241 ReducedPartRdx = addFastMathFlag( 4242 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4243 ReducedPartRdx, "bin.rdx")); 4244 else 4245 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4246 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4247 } 4248 4249 if (VF > 1) { 4250 bool NoNaN = Legal->hasFunNoNaNAttr(); 4251 ReducedPartRdx = 4252 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4253 // If the reduction can be performed in a smaller type, we need to extend 4254 // the reduction to the wider type before we branch to the original loop. 4255 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4256 ReducedPartRdx = 4257 RdxDesc.isSigned() 4258 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4259 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4260 } 4261 4262 // Create a phi node that merges control-flow from the backedge-taken check 4263 // block and the middle block. 4264 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4265 LoopScalarPreHeader->getTerminator()); 4266 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4267 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4268 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4269 4270 // Now, we need to fix the users of the reduction variable 4271 // inside and outside of the scalar remainder loop. 4272 // We know that the loop is in LCSSA form. We need to update the 4273 // PHI nodes in the exit blocks. 4274 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4275 LEE = LoopExitBlock->end(); 4276 LEI != LEE; ++LEI) { 4277 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4278 if (!LCSSAPhi) 4279 break; 4280 4281 // All PHINodes need to have a single entry edge, or two if 4282 // we already fixed them. 4283 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4284 4285 // We found a reduction value exit-PHI. Update it with the 4286 // incoming bypass edge. 4287 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4288 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4289 } // end of the LCSSA phi scan. 4290 4291 // Fix the scalar loop reduction variable with the incoming reduction sum 4292 // from the vector body and from the backedge value. 4293 int IncomingEdgeBlockIdx = 4294 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4295 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4296 // Pick the other block. 4297 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4298 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4299 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4300 } 4301 4302 void InnerLoopVectorizer::fixLCSSAPHIs() { 4303 for (Instruction &LEI : *LoopExitBlock) { 4304 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4305 if (!LCSSAPhi) 4306 break; 4307 if (LCSSAPhi->getNumIncomingValues() == 1) { 4308 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4309 "Incoming value isn't loop invariant"); 4310 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4311 } 4312 } 4313 } 4314 4315 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4316 4317 // The basic block and loop containing the predicated instruction. 4318 auto *PredBB = PredInst->getParent(); 4319 auto *VectorLoop = LI->getLoopFor(PredBB); 4320 4321 // Initialize a worklist with the operands of the predicated instruction. 4322 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4323 4324 // Holds instructions that we need to analyze again. An instruction may be 4325 // reanalyzed if we don't yet know if we can sink it or not. 4326 SmallVector<Instruction *, 8> InstsToReanalyze; 4327 4328 // Returns true if a given use occurs in the predicated block. Phi nodes use 4329 // their operands in their corresponding predecessor blocks. 4330 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4331 auto *I = cast<Instruction>(U.getUser()); 4332 BasicBlock *BB = I->getParent(); 4333 if (auto *Phi = dyn_cast<PHINode>(I)) 4334 BB = Phi->getIncomingBlock( 4335 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4336 return BB == PredBB; 4337 }; 4338 4339 // Iteratively sink the scalarized operands of the predicated instruction 4340 // into the block we created for it. When an instruction is sunk, it's 4341 // operands are then added to the worklist. The algorithm ends after one pass 4342 // through the worklist doesn't sink a single instruction. 4343 bool Changed; 4344 do { 4345 4346 // Add the instructions that need to be reanalyzed to the worklist, and 4347 // reset the changed indicator. 4348 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4349 InstsToReanalyze.clear(); 4350 Changed = false; 4351 4352 while (!Worklist.empty()) { 4353 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4354 4355 // We can't sink an instruction if it is a phi node, is already in the 4356 // predicated block, is not in the loop, or may have side effects. 4357 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4358 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4359 continue; 4360 4361 // It's legal to sink the instruction if all its uses occur in the 4362 // predicated block. Otherwise, there's nothing to do yet, and we may 4363 // need to reanalyze the instruction. 4364 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4365 InstsToReanalyze.push_back(I); 4366 continue; 4367 } 4368 4369 // Move the instruction to the beginning of the predicated block, and add 4370 // it's operands to the worklist. 4371 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4372 Worklist.insert(I->op_begin(), I->op_end()); 4373 4374 // The sinking may have enabled other instructions to be sunk, so we will 4375 // need to iterate. 4376 Changed = true; 4377 } 4378 } while (Changed); 4379 } 4380 4381 void InnerLoopVectorizer::predicateInstructions() { 4382 4383 // For each instruction I marked for predication on value C, split I into its 4384 // own basic block to form an if-then construct over C. Since I may be fed by 4385 // an extractelement instruction or other scalar operand, we try to 4386 // iteratively sink its scalar operands into the predicated block. If I feeds 4387 // an insertelement instruction, we try to move this instruction into the 4388 // predicated block as well. For non-void types, a phi node will be created 4389 // for the resulting value (either vector or scalar). 4390 // 4391 // So for some predicated instruction, e.g. the conditional sdiv in: 4392 // 4393 // for.body: 4394 // ... 4395 // %add = add nsw i32 %mul, %0 4396 // %cmp5 = icmp sgt i32 %2, 7 4397 // br i1 %cmp5, label %if.then, label %if.end 4398 // 4399 // if.then: 4400 // %div = sdiv i32 %0, %1 4401 // br label %if.end 4402 // 4403 // if.end: 4404 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4405 // 4406 // the sdiv at this point is scalarized and if-converted using a select. 4407 // The inactive elements in the vector are not used, but the predicated 4408 // instruction is still executed for all vector elements, essentially: 4409 // 4410 // vector.body: 4411 // ... 4412 // %17 = add nsw <2 x i32> %16, %wide.load 4413 // %29 = extractelement <2 x i32> %wide.load, i32 0 4414 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4415 // %31 = sdiv i32 %29, %30 4416 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4417 // %35 = extractelement <2 x i32> %wide.load, i32 1 4418 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4419 // %37 = sdiv i32 %35, %36 4420 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4421 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4422 // 4423 // Predication will now re-introduce the original control flow to avoid false 4424 // side-effects by the sdiv instructions on the inactive elements, yielding 4425 // (after cleanup): 4426 // 4427 // vector.body: 4428 // ... 4429 // %5 = add nsw <2 x i32> %4, %wide.load 4430 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4431 // %9 = extractelement <2 x i1> %8, i32 0 4432 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4433 // 4434 // pred.sdiv.if: 4435 // %10 = extractelement <2 x i32> %wide.load, i32 0 4436 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4437 // %12 = sdiv i32 %10, %11 4438 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4439 // br label %pred.sdiv.continue 4440 // 4441 // pred.sdiv.continue: 4442 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4443 // %15 = extractelement <2 x i1> %8, i32 1 4444 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4445 // 4446 // pred.sdiv.if54: 4447 // %16 = extractelement <2 x i32> %wide.load, i32 1 4448 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4449 // %18 = sdiv i32 %16, %17 4450 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4451 // br label %pred.sdiv.continue55 4452 // 4453 // pred.sdiv.continue55: 4454 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4455 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4456 4457 for (auto KV : PredicatedInstructions) { 4458 BasicBlock::iterator I(KV.first); 4459 BasicBlock *Head = I->getParent(); 4460 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4461 /*BranchWeights=*/nullptr, DT, LI); 4462 I->moveBefore(T); 4463 sinkScalarOperands(&*I); 4464 4465 BasicBlock *PredicatedBlock = I->getParent(); 4466 Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName(); 4467 PredicatedBlock->setName(BBNamePrefix + ".if"); 4468 PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue"); 4469 4470 // If the instruction is non-void create a Phi node at reconvergence point. 4471 if (!I->getType()->isVoidTy()) { 4472 Value *IncomingTrue = nullptr; 4473 Value *IncomingFalse = nullptr; 4474 4475 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4476 // If the predicated instruction is feeding an insert-element, move it 4477 // into the Then block; Phi node will be created for the vector. 4478 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4479 IEI->moveBefore(T); 4480 IncomingTrue = IEI; // the new vector with the inserted element. 4481 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4482 } else { 4483 // Phi node will be created for the scalar predicated instruction. 4484 IncomingTrue = &*I; 4485 IncomingFalse = UndefValue::get(I->getType()); 4486 } 4487 4488 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4489 assert(PostDom && "Then block has multiple successors"); 4490 PHINode *Phi = 4491 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4492 IncomingTrue->replaceAllUsesWith(Phi); 4493 Phi->addIncoming(IncomingFalse, Head); 4494 Phi->addIncoming(IncomingTrue, I->getParent()); 4495 } 4496 } 4497 4498 DEBUG(DT->verifyDomTree()); 4499 } 4500 4501 InnerLoopVectorizer::VectorParts 4502 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4503 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4504 4505 // Look for cached value. 4506 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4507 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4508 if (ECEntryIt != EdgeMaskCache.end()) 4509 return ECEntryIt->second; 4510 4511 VectorParts SrcMask = createBlockInMask(Src); 4512 4513 // The terminator has to be a branch inst! 4514 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4515 assert(BI && "Unexpected terminator found"); 4516 4517 if (BI->isConditional()) { 4518 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4519 4520 if (BI->getSuccessor(0) != Dst) 4521 for (unsigned part = 0; part < UF; ++part) 4522 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4523 4524 for (unsigned part = 0; part < UF; ++part) 4525 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4526 4527 EdgeMaskCache[Edge] = EdgeMask; 4528 return EdgeMask; 4529 } 4530 4531 EdgeMaskCache[Edge] = SrcMask; 4532 return SrcMask; 4533 } 4534 4535 InnerLoopVectorizer::VectorParts 4536 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4537 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4538 4539 // Look for cached value. 4540 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4541 if (BCEntryIt != BlockMaskCache.end()) 4542 return BCEntryIt->second; 4543 4544 // Loop incoming mask is all-one. 4545 if (OrigLoop->getHeader() == BB) { 4546 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4547 const VectorParts &BlockMask = getVectorValue(C); 4548 BlockMaskCache[BB] = BlockMask; 4549 return BlockMask; 4550 } 4551 4552 // This is the block mask. We OR all incoming edges, and with zero. 4553 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4554 VectorParts BlockMask = getVectorValue(Zero); 4555 4556 // For each pred: 4557 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4558 VectorParts EM = createEdgeMask(*it, BB); 4559 for (unsigned part = 0; part < UF; ++part) 4560 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4561 } 4562 4563 BlockMaskCache[BB] = BlockMask; 4564 return BlockMask; 4565 } 4566 4567 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4568 unsigned VF) { 4569 PHINode *P = cast<PHINode>(PN); 4570 // In order to support recurrences we need to be able to vectorize Phi nodes. 4571 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4572 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4573 // this value when we vectorize all of the instructions that use the PHI. 4574 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4575 VectorParts Entry(UF); 4576 for (unsigned part = 0; part < UF; ++part) { 4577 // This is phase one of vectorizing PHIs. 4578 Type *VecTy = 4579 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4580 Entry[part] = PHINode::Create( 4581 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4582 } 4583 VectorLoopValueMap.initVector(P, Entry); 4584 return; 4585 } 4586 4587 setDebugLocFromInst(Builder, P); 4588 // Check for PHI nodes that are lowered to vector selects. 4589 if (P->getParent() != OrigLoop->getHeader()) { 4590 // We know that all PHIs in non-header blocks are converted into 4591 // selects, so we don't have to worry about the insertion order and we 4592 // can just use the builder. 4593 // At this point we generate the predication tree. There may be 4594 // duplications since this is a simple recursive scan, but future 4595 // optimizations will clean it up. 4596 4597 unsigned NumIncoming = P->getNumIncomingValues(); 4598 4599 // Generate a sequence of selects of the form: 4600 // SELECT(Mask3, In3, 4601 // SELECT(Mask2, In2, 4602 // ( ...))) 4603 VectorParts Entry(UF); 4604 for (unsigned In = 0; In < NumIncoming; In++) { 4605 VectorParts Cond = 4606 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4607 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4608 4609 for (unsigned part = 0; part < UF; ++part) { 4610 // We might have single edge PHIs (blocks) - use an identity 4611 // 'select' for the first PHI operand. 4612 if (In == 0) 4613 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4614 else 4615 // Select between the current value and the previous incoming edge 4616 // based on the incoming mask. 4617 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4618 "predphi"); 4619 } 4620 } 4621 VectorLoopValueMap.initVector(P, Entry); 4622 return; 4623 } 4624 4625 // This PHINode must be an induction variable. 4626 // Make sure that we know about it. 4627 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4628 4629 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4630 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4631 4632 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4633 // which can be found from the original scalar operations. 4634 switch (II.getKind()) { 4635 case InductionDescriptor::IK_NoInduction: 4636 llvm_unreachable("Unknown induction"); 4637 case InductionDescriptor::IK_IntInduction: 4638 case InductionDescriptor::IK_FpInduction: 4639 return widenIntOrFpInduction(P); 4640 case InductionDescriptor::IK_PtrInduction: { 4641 // Handle the pointer induction variable case. 4642 assert(P->getType()->isPointerTy() && "Unexpected type."); 4643 // This is the normalized GEP that starts counting at zero. 4644 Value *PtrInd = Induction; 4645 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4646 // Determine the number of scalars we need to generate for each unroll 4647 // iteration. If the instruction is uniform, we only need to generate the 4648 // first lane. Otherwise, we generate all VF values. 4649 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4650 // These are the scalar results. Notice that we don't generate vector GEPs 4651 // because scalar GEPs result in better code. 4652 ScalarParts Entry(UF); 4653 for (unsigned Part = 0; Part < UF; ++Part) { 4654 Entry[Part].resize(VF); 4655 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4656 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4657 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4658 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4659 SclrGep->setName("next.gep"); 4660 Entry[Part][Lane] = SclrGep; 4661 } 4662 } 4663 VectorLoopValueMap.initScalar(P, Entry); 4664 return; 4665 } 4666 } 4667 } 4668 4669 /// A helper function for checking whether an integer division-related 4670 /// instruction may divide by zero (in which case it must be predicated if 4671 /// executed conditionally in the scalar code). 4672 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4673 /// Non-zero divisors that are non compile-time constants will not be 4674 /// converted into multiplication, so we will still end up scalarizing 4675 /// the division, but can do so w/o predication. 4676 static bool mayDivideByZero(Instruction &I) { 4677 assert((I.getOpcode() == Instruction::UDiv || 4678 I.getOpcode() == Instruction::SDiv || 4679 I.getOpcode() == Instruction::URem || 4680 I.getOpcode() == Instruction::SRem) && 4681 "Unexpected instruction"); 4682 Value *Divisor = I.getOperand(1); 4683 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4684 return !CInt || CInt->isZero(); 4685 } 4686 4687 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4688 // Scalarize instructions that should remain scalar after vectorization. 4689 if (VF > 1 && 4690 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4691 shouldScalarizeInstruction(&I)) { 4692 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4693 return; 4694 } 4695 4696 switch (I.getOpcode()) { 4697 case Instruction::Br: 4698 // Nothing to do for PHIs and BR, since we already took care of the 4699 // loop control flow instructions. 4700 break; 4701 case Instruction::PHI: { 4702 // Vectorize PHINodes. 4703 widenPHIInstruction(&I, UF, VF); 4704 break; 4705 } // End of PHI. 4706 case Instruction::GetElementPtr: { 4707 // Construct a vector GEP by widening the operands of the scalar GEP as 4708 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4709 // results in a vector of pointers when at least one operand of the GEP 4710 // is vector-typed. Thus, to keep the representation compact, we only use 4711 // vector-typed operands for loop-varying values. 4712 auto *GEP = cast<GetElementPtrInst>(&I); 4713 VectorParts Entry(UF); 4714 4715 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4716 // If we are vectorizing, but the GEP has only loop-invariant operands, 4717 // the GEP we build (by only using vector-typed operands for 4718 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4719 // produce a vector of pointers, we need to either arbitrarily pick an 4720 // operand to broadcast, or broadcast a clone of the original GEP. 4721 // Here, we broadcast a clone of the original. 4722 // 4723 // TODO: If at some point we decide to scalarize instructions having 4724 // loop-invariant operands, this special case will no longer be 4725 // required. We would add the scalarization decision to 4726 // collectLoopScalars() and teach getVectorValue() to broadcast 4727 // the lane-zero scalar value. 4728 auto *Clone = Builder.Insert(GEP->clone()); 4729 for (unsigned Part = 0; Part < UF; ++Part) 4730 Entry[Part] = Builder.CreateVectorSplat(VF, Clone); 4731 } else { 4732 // If the GEP has at least one loop-varying operand, we are sure to 4733 // produce a vector of pointers. But if we are only unrolling, we want 4734 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4735 // produce with the code below will be scalar (if VF == 1) or vector 4736 // (otherwise). Note that for the unroll-only case, we still maintain 4737 // values in the vector mapping with initVector, as we do for other 4738 // instructions. 4739 for (unsigned Part = 0; Part < UF; ++Part) { 4740 4741 // The pointer operand of the new GEP. If it's loop-invariant, we 4742 // won't broadcast it. 4743 auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4744 ? GEP->getPointerOperand() 4745 : getVectorValue(GEP->getPointerOperand())[Part]; 4746 4747 // Collect all the indices for the new GEP. If any index is 4748 // loop-invariant, we won't broadcast it. 4749 SmallVector<Value *, 4> Indices; 4750 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4751 if (OrigLoop->isLoopInvariant(U.get())) 4752 Indices.push_back(U.get()); 4753 else 4754 Indices.push_back(getVectorValue(U.get())[Part]); 4755 } 4756 4757 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4758 // but it should be a vector, otherwise. 4759 auto *NewGEP = GEP->isInBounds() 4760 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4761 : Builder.CreateGEP(Ptr, Indices); 4762 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4763 "NewGEP is not a pointer vector"); 4764 Entry[Part] = NewGEP; 4765 } 4766 } 4767 4768 VectorLoopValueMap.initVector(&I, Entry); 4769 addMetadata(Entry, GEP); 4770 break; 4771 } 4772 case Instruction::UDiv: 4773 case Instruction::SDiv: 4774 case Instruction::SRem: 4775 case Instruction::URem: 4776 // Scalarize with predication if this instruction may divide by zero and 4777 // block execution is conditional, otherwise fallthrough. 4778 if (Legal->isScalarWithPredication(&I)) { 4779 scalarizeInstruction(&I, true); 4780 break; 4781 } 4782 LLVM_FALLTHROUGH; 4783 case Instruction::Add: 4784 case Instruction::FAdd: 4785 case Instruction::Sub: 4786 case Instruction::FSub: 4787 case Instruction::Mul: 4788 case Instruction::FMul: 4789 case Instruction::FDiv: 4790 case Instruction::FRem: 4791 case Instruction::Shl: 4792 case Instruction::LShr: 4793 case Instruction::AShr: 4794 case Instruction::And: 4795 case Instruction::Or: 4796 case Instruction::Xor: { 4797 // Just widen binops. 4798 auto *BinOp = cast<BinaryOperator>(&I); 4799 setDebugLocFromInst(Builder, BinOp); 4800 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4801 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4802 4803 // Use this vector value for all users of the original instruction. 4804 VectorParts Entry(UF); 4805 for (unsigned Part = 0; Part < UF; ++Part) { 4806 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4807 4808 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4809 VecOp->copyIRFlags(BinOp); 4810 4811 Entry[Part] = V; 4812 } 4813 4814 VectorLoopValueMap.initVector(&I, Entry); 4815 addMetadata(Entry, BinOp); 4816 break; 4817 } 4818 case Instruction::Select: { 4819 // Widen selects. 4820 // If the selector is loop invariant we can create a select 4821 // instruction with a scalar condition. Otherwise, use vector-select. 4822 auto *SE = PSE.getSE(); 4823 bool InvariantCond = 4824 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4825 setDebugLocFromInst(Builder, &I); 4826 4827 // The condition can be loop invariant but still defined inside the 4828 // loop. This means that we can't just use the original 'cond' value. 4829 // We have to take the 'vectorized' value and pick the first lane. 4830 // Instcombine will make this a no-op. 4831 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4832 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4833 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4834 4835 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4836 4837 VectorParts Entry(UF); 4838 for (unsigned Part = 0; Part < UF; ++Part) { 4839 Entry[Part] = Builder.CreateSelect( 4840 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4841 } 4842 4843 VectorLoopValueMap.initVector(&I, Entry); 4844 addMetadata(Entry, &I); 4845 break; 4846 } 4847 4848 case Instruction::ICmp: 4849 case Instruction::FCmp: { 4850 // Widen compares. Generate vector compares. 4851 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4852 auto *Cmp = dyn_cast<CmpInst>(&I); 4853 setDebugLocFromInst(Builder, Cmp); 4854 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4855 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4856 VectorParts Entry(UF); 4857 for (unsigned Part = 0; Part < UF; ++Part) { 4858 Value *C = nullptr; 4859 if (FCmp) { 4860 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4861 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4862 } else { 4863 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4864 } 4865 Entry[Part] = C; 4866 } 4867 4868 VectorLoopValueMap.initVector(&I, Entry); 4869 addMetadata(Entry, &I); 4870 break; 4871 } 4872 4873 case Instruction::Store: 4874 case Instruction::Load: 4875 vectorizeMemoryInstruction(&I); 4876 break; 4877 case Instruction::ZExt: 4878 case Instruction::SExt: 4879 case Instruction::FPToUI: 4880 case Instruction::FPToSI: 4881 case Instruction::FPExt: 4882 case Instruction::PtrToInt: 4883 case Instruction::IntToPtr: 4884 case Instruction::SIToFP: 4885 case Instruction::UIToFP: 4886 case Instruction::Trunc: 4887 case Instruction::FPTrunc: 4888 case Instruction::BitCast: { 4889 auto *CI = dyn_cast<CastInst>(&I); 4890 setDebugLocFromInst(Builder, CI); 4891 4892 // Optimize the special case where the source is a constant integer 4893 // induction variable. Notice that we can only optimize the 'trunc' case 4894 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4895 // (c) other casts depend on pointer size. 4896 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4897 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4898 cast<TruncInst>(CI)); 4899 break; 4900 } 4901 4902 /// Vectorize casts. 4903 Type *DestTy = 4904 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4905 4906 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4907 VectorParts Entry(UF); 4908 for (unsigned Part = 0; Part < UF; ++Part) 4909 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4910 VectorLoopValueMap.initVector(&I, Entry); 4911 addMetadata(Entry, &I); 4912 break; 4913 } 4914 4915 case Instruction::Call: { 4916 // Ignore dbg intrinsics. 4917 if (isa<DbgInfoIntrinsic>(I)) 4918 break; 4919 setDebugLocFromInst(Builder, &I); 4920 4921 Module *M = I.getParent()->getParent()->getParent(); 4922 auto *CI = cast<CallInst>(&I); 4923 4924 StringRef FnName = CI->getCalledFunction()->getName(); 4925 Function *F = CI->getCalledFunction(); 4926 Type *RetTy = ToVectorTy(CI->getType(), VF); 4927 SmallVector<Type *, 4> Tys; 4928 for (Value *ArgOperand : CI->arg_operands()) 4929 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4930 4931 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4932 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4933 ID == Intrinsic::lifetime_start)) { 4934 scalarizeInstruction(&I); 4935 break; 4936 } 4937 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4938 // version of the instruction. 4939 // Is it beneficial to perform intrinsic call compared to lib call? 4940 bool NeedToScalarize; 4941 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4942 bool UseVectorIntrinsic = 4943 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4944 if (!UseVectorIntrinsic && NeedToScalarize) { 4945 scalarizeInstruction(&I); 4946 break; 4947 } 4948 4949 VectorParts Entry(UF); 4950 for (unsigned Part = 0; Part < UF; ++Part) { 4951 SmallVector<Value *, 4> Args; 4952 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4953 Value *Arg = CI->getArgOperand(i); 4954 // Some intrinsics have a scalar argument - don't replace it with a 4955 // vector. 4956 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4957 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4958 Arg = VectorArg[Part]; 4959 } 4960 Args.push_back(Arg); 4961 } 4962 4963 Function *VectorF; 4964 if (UseVectorIntrinsic) { 4965 // Use vector version of the intrinsic. 4966 Type *TysForDecl[] = {CI->getType()}; 4967 if (VF > 1) 4968 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4969 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4970 } else { 4971 // Use vector version of the library call. 4972 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4973 assert(!VFnName.empty() && "Vector function name is empty."); 4974 VectorF = M->getFunction(VFnName); 4975 if (!VectorF) { 4976 // Generate a declaration 4977 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4978 VectorF = 4979 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4980 VectorF->copyAttributesFrom(F); 4981 } 4982 } 4983 assert(VectorF && "Can't create vector function."); 4984 4985 SmallVector<OperandBundleDef, 1> OpBundles; 4986 CI->getOperandBundlesAsDefs(OpBundles); 4987 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4988 4989 if (isa<FPMathOperator>(V)) 4990 V->copyFastMathFlags(CI); 4991 4992 Entry[Part] = V; 4993 } 4994 4995 VectorLoopValueMap.initVector(&I, Entry); 4996 addMetadata(Entry, &I); 4997 break; 4998 } 4999 5000 default: 5001 // All other instructions are unsupported. Scalarize them. 5002 scalarizeInstruction(&I); 5003 break; 5004 } // end of switch. 5005 } 5006 5007 void InnerLoopVectorizer::updateAnalysis() { 5008 // Forget the original basic block. 5009 PSE.getSE()->forgetLoop(OrigLoop); 5010 5011 // Update the dominator tree information. 5012 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5013 "Entry does not dominate exit."); 5014 5015 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5016 LoopVectorPreHeader); 5017 DT->addNewBlock(LoopMiddleBlock, 5018 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5019 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5020 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5021 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5022 5023 DEBUG(DT->verifyDomTree()); 5024 } 5025 5026 /// \brief Check whether it is safe to if-convert this phi node. 5027 /// 5028 /// Phi nodes with constant expressions that can trap are not safe to if 5029 /// convert. 5030 static bool canIfConvertPHINodes(BasicBlock *BB) { 5031 for (Instruction &I : *BB) { 5032 auto *Phi = dyn_cast<PHINode>(&I); 5033 if (!Phi) 5034 return true; 5035 for (Value *V : Phi->incoming_values()) 5036 if (auto *C = dyn_cast<Constant>(V)) 5037 if (C->canTrap()) 5038 return false; 5039 } 5040 return true; 5041 } 5042 5043 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5044 if (!EnableIfConversion) { 5045 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5046 << "if-conversion is disabled"); 5047 return false; 5048 } 5049 5050 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5051 5052 // A list of pointers that we can safely read and write to. 5053 SmallPtrSet<Value *, 8> SafePointes; 5054 5055 // Collect safe addresses. 5056 for (BasicBlock *BB : TheLoop->blocks()) { 5057 if (blockNeedsPredication(BB)) 5058 continue; 5059 5060 for (Instruction &I : *BB) 5061 if (auto *Ptr = getPointerOperand(&I)) 5062 SafePointes.insert(Ptr); 5063 } 5064 5065 // Collect the blocks that need predication. 5066 BasicBlock *Header = TheLoop->getHeader(); 5067 for (BasicBlock *BB : TheLoop->blocks()) { 5068 // We don't support switch statements inside loops. 5069 if (!isa<BranchInst>(BB->getTerminator())) { 5070 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5071 << "loop contains a switch statement"); 5072 return false; 5073 } 5074 5075 // We must be able to predicate all blocks that need to be predicated. 5076 if (blockNeedsPredication(BB)) { 5077 if (!blockCanBePredicated(BB, SafePointes)) { 5078 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5079 << "control flow cannot be substituted for a select"); 5080 return false; 5081 } 5082 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5083 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5084 << "control flow cannot be substituted for a select"); 5085 return false; 5086 } 5087 } 5088 5089 // We can if-convert this loop. 5090 return true; 5091 } 5092 5093 bool LoopVectorizationLegality::canVectorize() { 5094 // Store the result and return it at the end instead of exiting early, in case 5095 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5096 bool Result = true; 5097 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5098 // be canonicalized. 5099 if (!TheLoop->getLoopPreheader()) { 5100 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5101 << "loop control flow is not understood by vectorizer"); 5102 if (ORE->allowExtraAnalysis()) 5103 Result = false; 5104 else 5105 return false; 5106 } 5107 5108 // FIXME: The code is currently dead, since the loop gets sent to 5109 // LoopVectorizationLegality is already an innermost loop. 5110 // 5111 // We can only vectorize innermost loops. 5112 if (!TheLoop->empty()) { 5113 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5114 << "loop is not the innermost loop"); 5115 if (ORE->allowExtraAnalysis()) 5116 Result = false; 5117 else 5118 return false; 5119 } 5120 5121 // We must have a single backedge. 5122 if (TheLoop->getNumBackEdges() != 1) { 5123 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5124 << "loop control flow is not understood by vectorizer"); 5125 if (ORE->allowExtraAnalysis()) 5126 Result = false; 5127 else 5128 return false; 5129 } 5130 5131 // We must have a single exiting block. 5132 if (!TheLoop->getExitingBlock()) { 5133 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5134 << "loop control flow is not understood by vectorizer"); 5135 if (ORE->allowExtraAnalysis()) 5136 Result = false; 5137 else 5138 return false; 5139 } 5140 5141 // We only handle bottom-tested loops, i.e. loop in which the condition is 5142 // checked at the end of each iteration. With that we can assume that all 5143 // instructions in the loop are executed the same number of times. 5144 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5145 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5146 << "loop control flow is not understood by vectorizer"); 5147 if (ORE->allowExtraAnalysis()) 5148 Result = false; 5149 else 5150 return false; 5151 } 5152 5153 // We need to have a loop header. 5154 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5155 << '\n'); 5156 5157 // Check if we can if-convert non-single-bb loops. 5158 unsigned NumBlocks = TheLoop->getNumBlocks(); 5159 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5160 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5161 if (ORE->allowExtraAnalysis()) 5162 Result = false; 5163 else 5164 return false; 5165 } 5166 5167 // Check if we can vectorize the instructions and CFG in this loop. 5168 if (!canVectorizeInstrs()) { 5169 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5170 if (ORE->allowExtraAnalysis()) 5171 Result = false; 5172 else 5173 return false; 5174 } 5175 5176 // Go over each instruction and look at memory deps. 5177 if (!canVectorizeMemory()) { 5178 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5179 if (ORE->allowExtraAnalysis()) 5180 Result = false; 5181 else 5182 return false; 5183 } 5184 5185 DEBUG(dbgs() << "LV: We can vectorize this loop" 5186 << (LAI->getRuntimePointerChecking()->Need 5187 ? " (with a runtime bound check)" 5188 : "") 5189 << "!\n"); 5190 5191 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5192 5193 // If an override option has been passed in for interleaved accesses, use it. 5194 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5195 UseInterleaved = EnableInterleavedMemAccesses; 5196 5197 // Analyze interleaved memory accesses. 5198 if (UseInterleaved) 5199 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5200 5201 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5202 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5203 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5204 5205 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5206 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5207 << "Too many SCEV assumptions need to be made and checked " 5208 << "at runtime"); 5209 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5210 if (ORE->allowExtraAnalysis()) 5211 Result = false; 5212 else 5213 return false; 5214 } 5215 5216 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5217 // we can vectorize, and at this point we don't have any other mem analysis 5218 // which may limit our maximum vectorization factor, so just return true with 5219 // no restrictions. 5220 return Result; 5221 } 5222 5223 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5224 if (Ty->isPointerTy()) 5225 return DL.getIntPtrType(Ty); 5226 5227 // It is possible that char's or short's overflow when we ask for the loop's 5228 // trip count, work around this by changing the type size. 5229 if (Ty->getScalarSizeInBits() < 32) 5230 return Type::getInt32Ty(Ty->getContext()); 5231 5232 return Ty; 5233 } 5234 5235 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5236 Ty0 = convertPointerToIntegerType(DL, Ty0); 5237 Ty1 = convertPointerToIntegerType(DL, Ty1); 5238 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5239 return Ty0; 5240 return Ty1; 5241 } 5242 5243 /// \brief Check that the instruction has outside loop users and is not an 5244 /// identified reduction variable. 5245 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5246 SmallPtrSetImpl<Value *> &AllowedExit) { 5247 // Reduction and Induction instructions are allowed to have exit users. All 5248 // other instructions must not have external users. 5249 if (!AllowedExit.count(Inst)) 5250 // Check that all of the users of the loop are inside the BB. 5251 for (User *U : Inst->users()) { 5252 Instruction *UI = cast<Instruction>(U); 5253 // This user may be a reduction exit value. 5254 if (!TheLoop->contains(UI)) { 5255 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5256 return true; 5257 } 5258 } 5259 return false; 5260 } 5261 5262 void LoopVectorizationLegality::addInductionPhi( 5263 PHINode *Phi, const InductionDescriptor &ID, 5264 SmallPtrSetImpl<Value *> &AllowedExit) { 5265 Inductions[Phi] = ID; 5266 Type *PhiTy = Phi->getType(); 5267 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5268 5269 // Get the widest type. 5270 if (!PhiTy->isFloatingPointTy()) { 5271 if (!WidestIndTy) 5272 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5273 else 5274 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5275 } 5276 5277 // Int inductions are special because we only allow one IV. 5278 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5279 ID.getConstIntStepValue() && 5280 ID.getConstIntStepValue()->isOne() && 5281 isa<Constant>(ID.getStartValue()) && 5282 cast<Constant>(ID.getStartValue())->isNullValue()) { 5283 5284 // Use the phi node with the widest type as induction. Use the last 5285 // one if there are multiple (no good reason for doing this other 5286 // than it is expedient). We've checked that it begins at zero and 5287 // steps by one, so this is a canonical induction variable. 5288 if (!PrimaryInduction || PhiTy == WidestIndTy) 5289 PrimaryInduction = Phi; 5290 } 5291 5292 // Both the PHI node itself, and the "post-increment" value feeding 5293 // back into the PHI node may have external users. 5294 AllowedExit.insert(Phi); 5295 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5296 5297 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5298 return; 5299 } 5300 5301 bool LoopVectorizationLegality::canVectorizeInstrs() { 5302 BasicBlock *Header = TheLoop->getHeader(); 5303 5304 // Look for the attribute signaling the absence of NaNs. 5305 Function &F = *Header->getParent(); 5306 HasFunNoNaNAttr = 5307 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5308 5309 // For each block in the loop. 5310 for (BasicBlock *BB : TheLoop->blocks()) { 5311 // Scan the instructions in the block and look for hazards. 5312 for (Instruction &I : *BB) { 5313 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5314 Type *PhiTy = Phi->getType(); 5315 // Check that this PHI type is allowed. 5316 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5317 !PhiTy->isPointerTy()) { 5318 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5319 << "loop control flow is not understood by vectorizer"); 5320 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5321 return false; 5322 } 5323 5324 // If this PHINode is not in the header block, then we know that we 5325 // can convert it to select during if-conversion. No need to check if 5326 // the PHIs in this block are induction or reduction variables. 5327 if (BB != Header) { 5328 // Check that this instruction has no outside users or is an 5329 // identified reduction value with an outside user. 5330 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5331 continue; 5332 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5333 << "value could not be identified as " 5334 "an induction or reduction variable"); 5335 return false; 5336 } 5337 5338 // We only allow if-converted PHIs with exactly two incoming values. 5339 if (Phi->getNumIncomingValues() != 2) { 5340 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5341 << "control flow not understood by vectorizer"); 5342 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5343 return false; 5344 } 5345 5346 RecurrenceDescriptor RedDes; 5347 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5348 if (RedDes.hasUnsafeAlgebra()) 5349 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5350 AllowedExit.insert(RedDes.getLoopExitInstr()); 5351 Reductions[Phi] = RedDes; 5352 continue; 5353 } 5354 5355 InductionDescriptor ID; 5356 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5357 addInductionPhi(Phi, ID, AllowedExit); 5358 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5359 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5360 continue; 5361 } 5362 5363 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5364 FirstOrderRecurrences.insert(Phi); 5365 continue; 5366 } 5367 5368 // As a last resort, coerce the PHI to a AddRec expression 5369 // and re-try classifying it a an induction PHI. 5370 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5371 addInductionPhi(Phi, ID, AllowedExit); 5372 continue; 5373 } 5374 5375 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5376 << "value that could not be identified as " 5377 "reduction is used outside the loop"); 5378 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5379 return false; 5380 } // end of PHI handling 5381 5382 // We handle calls that: 5383 // * Are debug info intrinsics. 5384 // * Have a mapping to an IR intrinsic. 5385 // * Have a vector version available. 5386 auto *CI = dyn_cast<CallInst>(&I); 5387 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5388 !isa<DbgInfoIntrinsic>(CI) && 5389 !(CI->getCalledFunction() && TLI && 5390 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5391 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5392 << "call instruction cannot be vectorized"); 5393 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5394 return false; 5395 } 5396 5397 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5398 // second argument is the same (i.e. loop invariant) 5399 if (CI && hasVectorInstrinsicScalarOpd( 5400 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5401 auto *SE = PSE.getSE(); 5402 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5403 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5404 << "intrinsic instruction cannot be vectorized"); 5405 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5406 return false; 5407 } 5408 } 5409 5410 // Check that the instruction return type is vectorizable. 5411 // Also, we can't vectorize extractelement instructions. 5412 if ((!VectorType::isValidElementType(I.getType()) && 5413 !I.getType()->isVoidTy()) || 5414 isa<ExtractElementInst>(I)) { 5415 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5416 << "instruction return type cannot be vectorized"); 5417 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5418 return false; 5419 } 5420 5421 // Check that the stored type is vectorizable. 5422 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5423 Type *T = ST->getValueOperand()->getType(); 5424 if (!VectorType::isValidElementType(T)) { 5425 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5426 << "store instruction cannot be vectorized"); 5427 return false; 5428 } 5429 5430 // FP instructions can allow unsafe algebra, thus vectorizable by 5431 // non-IEEE-754 compliant SIMD units. 5432 // This applies to floating-point math operations and calls, not memory 5433 // operations, shuffles, or casts, as they don't change precision or 5434 // semantics. 5435 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5436 !I.hasUnsafeAlgebra()) { 5437 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5438 Hints->setPotentiallyUnsafe(); 5439 } 5440 5441 // Reduction instructions are allowed to have exit users. 5442 // All other instructions must not have external users. 5443 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5444 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5445 << "value cannot be used outside the loop"); 5446 return false; 5447 } 5448 5449 } // next instr. 5450 } 5451 5452 if (!PrimaryInduction) { 5453 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5454 if (Inductions.empty()) { 5455 ORE->emit(createMissedAnalysis("NoInductionVariable") 5456 << "loop induction variable could not be identified"); 5457 return false; 5458 } 5459 } 5460 5461 // Now we know the widest induction type, check if our found induction 5462 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5463 // will create another. 5464 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5465 PrimaryInduction = nullptr; 5466 5467 return true; 5468 } 5469 5470 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5471 5472 // We should not collect Scalars more than once per VF. Right now, this 5473 // function is called from collectUniformsAndScalars(), which already does 5474 // this check. Collecting Scalars for VF=1 does not make any sense. 5475 assert(VF >= 2 && !Scalars.count(VF) && 5476 "This function should not be visited twice for the same VF"); 5477 5478 SmallSetVector<Instruction *, 8> Worklist; 5479 5480 // These sets are used to seed the analysis with pointers used by memory 5481 // accesses that will remain scalar. 5482 SmallSetVector<Instruction *, 8> ScalarPtrs; 5483 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5484 5485 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5486 // The pointer operands of loads and stores will be scalar as long as the 5487 // memory access is not a gather or scatter operation. The value operand of a 5488 // store will remain scalar if the store is scalarized. 5489 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5490 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5491 assert(WideningDecision != CM_Unknown && 5492 "Widening decision should be ready at this moment"); 5493 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5494 if (Ptr == Store->getValueOperand()) 5495 return WideningDecision == CM_Scalarize; 5496 assert(Ptr == getPointerOperand(MemAccess) && 5497 "Ptr is neither a value or pointer operand"); 5498 return WideningDecision != CM_GatherScatter; 5499 }; 5500 5501 // A helper that returns true if the given value is a bitcast or 5502 // getelementptr instruction contained in the loop. 5503 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5504 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5505 isa<GetElementPtrInst>(V)) && 5506 !TheLoop->isLoopInvariant(V); 5507 }; 5508 5509 // A helper that evaluates a memory access's use of a pointer. If the use 5510 // will be a scalar use, and the pointer is only used by memory accesses, we 5511 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5512 // PossibleNonScalarPtrs. 5513 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5514 5515 // We only care about bitcast and getelementptr instructions contained in 5516 // the loop. 5517 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5518 return; 5519 5520 // If the pointer has already been identified as scalar (e.g., if it was 5521 // also identified as uniform), there's nothing to do. 5522 auto *I = cast<Instruction>(Ptr); 5523 if (Worklist.count(I)) 5524 return; 5525 5526 // If the use of the pointer will be a scalar use, and all users of the 5527 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5528 // place the pointer in PossibleNonScalarPtrs. 5529 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5530 return isa<LoadInst>(U) || isa<StoreInst>(U); 5531 })) 5532 ScalarPtrs.insert(I); 5533 else 5534 PossibleNonScalarPtrs.insert(I); 5535 }; 5536 5537 // We seed the scalars analysis with three classes of instructions: (1) 5538 // instructions marked uniform-after-vectorization, (2) bitcast and 5539 // getelementptr instructions used by memory accesses requiring a scalar use, 5540 // and (3) pointer induction variables and their update instructions (we 5541 // currently only scalarize these). 5542 // 5543 // (1) Add to the worklist all instructions that have been identified as 5544 // uniform-after-vectorization. 5545 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5546 5547 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5548 // memory accesses requiring a scalar use. The pointer operands of loads and 5549 // stores will be scalar as long as the memory accesses is not a gather or 5550 // scatter operation. The value operand of a store will remain scalar if the 5551 // store is scalarized. 5552 for (auto *BB : TheLoop->blocks()) 5553 for (auto &I : *BB) { 5554 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5555 evaluatePtrUse(Load, Load->getPointerOperand()); 5556 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5557 evaluatePtrUse(Store, Store->getPointerOperand()); 5558 evaluatePtrUse(Store, Store->getValueOperand()); 5559 } 5560 } 5561 for (auto *I : ScalarPtrs) 5562 if (!PossibleNonScalarPtrs.count(I)) { 5563 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5564 Worklist.insert(I); 5565 } 5566 5567 // (3) Add to the worklist all pointer induction variables and their update 5568 // instructions. 5569 // 5570 // TODO: Once we are able to vectorize pointer induction variables we should 5571 // no longer insert them into the worklist here. 5572 auto *Latch = TheLoop->getLoopLatch(); 5573 for (auto &Induction : *Legal->getInductionVars()) { 5574 auto *Ind = Induction.first; 5575 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5576 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5577 continue; 5578 Worklist.insert(Ind); 5579 Worklist.insert(IndUpdate); 5580 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5581 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5582 } 5583 5584 // Insert the forced scalars. 5585 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5586 // induction variable when the PHI user is scalarized. 5587 if (ForcedScalars.count(VF)) 5588 for (auto *I : ForcedScalars.find(VF)->second) 5589 Worklist.insert(I); 5590 5591 // Expand the worklist by looking through any bitcasts and getelementptr 5592 // instructions we've already identified as scalar. This is similar to the 5593 // expansion step in collectLoopUniforms(); however, here we're only 5594 // expanding to include additional bitcasts and getelementptr instructions. 5595 unsigned Idx = 0; 5596 while (Idx != Worklist.size()) { 5597 Instruction *Dst = Worklist[Idx++]; 5598 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5599 continue; 5600 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5601 if (all_of(Src->users(), [&](User *U) -> bool { 5602 auto *J = cast<Instruction>(U); 5603 return !TheLoop->contains(J) || Worklist.count(J) || 5604 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5605 isScalarUse(J, Src)); 5606 })) { 5607 Worklist.insert(Src); 5608 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5609 } 5610 } 5611 5612 // An induction variable will remain scalar if all users of the induction 5613 // variable and induction variable update remain scalar. 5614 for (auto &Induction : *Legal->getInductionVars()) { 5615 auto *Ind = Induction.first; 5616 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5617 5618 // We already considered pointer induction variables, so there's no reason 5619 // to look at their users again. 5620 // 5621 // TODO: Once we are able to vectorize pointer induction variables we 5622 // should no longer skip over them here. 5623 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5624 continue; 5625 5626 // Determine if all users of the induction variable are scalar after 5627 // vectorization. 5628 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5629 auto *I = cast<Instruction>(U); 5630 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5631 }); 5632 if (!ScalarInd) 5633 continue; 5634 5635 // Determine if all users of the induction variable update instruction are 5636 // scalar after vectorization. 5637 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5638 auto *I = cast<Instruction>(U); 5639 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5640 }); 5641 if (!ScalarIndUpdate) 5642 continue; 5643 5644 // The induction variable and its update instruction will remain scalar. 5645 Worklist.insert(Ind); 5646 Worklist.insert(IndUpdate); 5647 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5648 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5649 } 5650 5651 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5652 } 5653 5654 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5655 if (!blockNeedsPredication(I->getParent())) 5656 return false; 5657 switch(I->getOpcode()) { 5658 default: 5659 break; 5660 case Instruction::Store: 5661 return !isMaskRequired(I); 5662 case Instruction::UDiv: 5663 case Instruction::SDiv: 5664 case Instruction::SRem: 5665 case Instruction::URem: 5666 return mayDivideByZero(*I); 5667 } 5668 return false; 5669 } 5670 5671 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5672 unsigned VF) { 5673 // Get and ensure we have a valid memory instruction. 5674 LoadInst *LI = dyn_cast<LoadInst>(I); 5675 StoreInst *SI = dyn_cast<StoreInst>(I); 5676 assert((LI || SI) && "Invalid memory instruction"); 5677 5678 auto *Ptr = getPointerOperand(I); 5679 5680 // In order to be widened, the pointer should be consecutive, first of all. 5681 if (!isConsecutivePtr(Ptr)) 5682 return false; 5683 5684 // If the instruction is a store located in a predicated block, it will be 5685 // scalarized. 5686 if (isScalarWithPredication(I)) 5687 return false; 5688 5689 // If the instruction's allocated size doesn't equal it's type size, it 5690 // requires padding and will be scalarized. 5691 auto &DL = I->getModule()->getDataLayout(); 5692 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5693 if (hasIrregularType(ScalarTy, DL, VF)) 5694 return false; 5695 5696 return true; 5697 } 5698 5699 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5700 5701 // We should not collect Uniforms more than once per VF. Right now, 5702 // this function is called from collectUniformsAndScalars(), which 5703 // already does this check. Collecting Uniforms for VF=1 does not make any 5704 // sense. 5705 5706 assert(VF >= 2 && !Uniforms.count(VF) && 5707 "This function should not be visited twice for the same VF"); 5708 5709 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5710 // not analyze again. Uniforms.count(VF) will return 1. 5711 Uniforms[VF].clear(); 5712 5713 // We now know that the loop is vectorizable! 5714 // Collect instructions inside the loop that will remain uniform after 5715 // vectorization. 5716 5717 // Global values, params and instructions outside of current loop are out of 5718 // scope. 5719 auto isOutOfScope = [&](Value *V) -> bool { 5720 Instruction *I = dyn_cast<Instruction>(V); 5721 return (!I || !TheLoop->contains(I)); 5722 }; 5723 5724 SetVector<Instruction *> Worklist; 5725 BasicBlock *Latch = TheLoop->getLoopLatch(); 5726 5727 // Start with the conditional branch. If the branch condition is an 5728 // instruction contained in the loop that is only used by the branch, it is 5729 // uniform. 5730 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5731 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5732 Worklist.insert(Cmp); 5733 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5734 } 5735 5736 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5737 // are pointers that are treated like consecutive pointers during 5738 // vectorization. The pointer operands of interleaved accesses are an 5739 // example. 5740 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5741 5742 // Holds pointer operands of instructions that are possibly non-uniform. 5743 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5744 5745 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5746 InstWidening WideningDecision = getWideningDecision(I, VF); 5747 assert(WideningDecision != CM_Unknown && 5748 "Widening decision should be ready at this moment"); 5749 5750 return (WideningDecision == CM_Widen || 5751 WideningDecision == CM_Interleave); 5752 }; 5753 // Iterate over the instructions in the loop, and collect all 5754 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5755 // that a consecutive-like pointer operand will be scalarized, we collect it 5756 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5757 // getelementptr instruction can be used by both vectorized and scalarized 5758 // memory instructions. For example, if a loop loads and stores from the same 5759 // location, but the store is conditional, the store will be scalarized, and 5760 // the getelementptr won't remain uniform. 5761 for (auto *BB : TheLoop->blocks()) 5762 for (auto &I : *BB) { 5763 5764 // If there's no pointer operand, there's nothing to do. 5765 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5766 if (!Ptr) 5767 continue; 5768 5769 // True if all users of Ptr are memory accesses that have Ptr as their 5770 // pointer operand. 5771 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5772 return getPointerOperand(U) == Ptr; 5773 }); 5774 5775 // Ensure the memory instruction will not be scalarized or used by 5776 // gather/scatter, making its pointer operand non-uniform. If the pointer 5777 // operand is used by any instruction other than a memory access, we 5778 // conservatively assume the pointer operand may be non-uniform. 5779 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5780 PossibleNonUniformPtrs.insert(Ptr); 5781 5782 // If the memory instruction will be vectorized and its pointer operand 5783 // is consecutive-like, or interleaving - the pointer operand should 5784 // remain uniform. 5785 else 5786 ConsecutiveLikePtrs.insert(Ptr); 5787 } 5788 5789 // Add to the Worklist all consecutive and consecutive-like pointers that 5790 // aren't also identified as possibly non-uniform. 5791 for (auto *V : ConsecutiveLikePtrs) 5792 if (!PossibleNonUniformPtrs.count(V)) { 5793 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5794 Worklist.insert(V); 5795 } 5796 5797 // Expand Worklist in topological order: whenever a new instruction 5798 // is added , its users should be either already inside Worklist, or 5799 // out of scope. It ensures a uniform instruction will only be used 5800 // by uniform instructions or out of scope instructions. 5801 unsigned idx = 0; 5802 while (idx != Worklist.size()) { 5803 Instruction *I = Worklist[idx++]; 5804 5805 for (auto OV : I->operand_values()) { 5806 if (isOutOfScope(OV)) 5807 continue; 5808 auto *OI = cast<Instruction>(OV); 5809 if (all_of(OI->users(), [&](User *U) -> bool { 5810 auto *J = cast<Instruction>(U); 5811 return !TheLoop->contains(J) || Worklist.count(J) || 5812 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5813 })) { 5814 Worklist.insert(OI); 5815 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5816 } 5817 } 5818 } 5819 5820 // Returns true if Ptr is the pointer operand of a memory access instruction 5821 // I, and I is known to not require scalarization. 5822 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5823 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5824 }; 5825 5826 // For an instruction to be added into Worklist above, all its users inside 5827 // the loop should also be in Worklist. However, this condition cannot be 5828 // true for phi nodes that form a cyclic dependence. We must process phi 5829 // nodes separately. An induction variable will remain uniform if all users 5830 // of the induction variable and induction variable update remain uniform. 5831 // The code below handles both pointer and non-pointer induction variables. 5832 for (auto &Induction : *Legal->getInductionVars()) { 5833 auto *Ind = Induction.first; 5834 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5835 5836 // Determine if all users of the induction variable are uniform after 5837 // vectorization. 5838 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5839 auto *I = cast<Instruction>(U); 5840 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5841 isVectorizedMemAccessUse(I, Ind); 5842 }); 5843 if (!UniformInd) 5844 continue; 5845 5846 // Determine if all users of the induction variable update instruction are 5847 // uniform after vectorization. 5848 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5849 auto *I = cast<Instruction>(U); 5850 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5851 isVectorizedMemAccessUse(I, IndUpdate); 5852 }); 5853 if (!UniformIndUpdate) 5854 continue; 5855 5856 // The induction variable and its update instruction will remain uniform. 5857 Worklist.insert(Ind); 5858 Worklist.insert(IndUpdate); 5859 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5860 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5861 } 5862 5863 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5864 } 5865 5866 bool LoopVectorizationLegality::canVectorizeMemory() { 5867 LAI = &(*GetLAA)(*TheLoop); 5868 InterleaveInfo.setLAI(LAI); 5869 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5870 if (LAR) { 5871 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5872 "loop not vectorized: ", *LAR); 5873 ORE->emit(VR); 5874 } 5875 if (!LAI->canVectorizeMemory()) 5876 return false; 5877 5878 if (LAI->hasStoreToLoopInvariantAddress()) { 5879 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5880 << "write to a loop invariant address could not be vectorized"); 5881 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5882 return false; 5883 } 5884 5885 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5886 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5887 5888 return true; 5889 } 5890 5891 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5892 Value *In0 = const_cast<Value *>(V); 5893 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5894 if (!PN) 5895 return false; 5896 5897 return Inductions.count(PN); 5898 } 5899 5900 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5901 return FirstOrderRecurrences.count(Phi); 5902 } 5903 5904 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5905 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5906 } 5907 5908 bool LoopVectorizationLegality::blockCanBePredicated( 5909 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5910 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5911 5912 for (Instruction &I : *BB) { 5913 // Check that we don't have a constant expression that can trap as operand. 5914 for (Value *Operand : I.operands()) { 5915 if (auto *C = dyn_cast<Constant>(Operand)) 5916 if (C->canTrap()) 5917 return false; 5918 } 5919 // We might be able to hoist the load. 5920 if (I.mayReadFromMemory()) { 5921 auto *LI = dyn_cast<LoadInst>(&I); 5922 if (!LI) 5923 return false; 5924 if (!SafePtrs.count(LI->getPointerOperand())) { 5925 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5926 isLegalMaskedGather(LI->getType())) { 5927 MaskedOp.insert(LI); 5928 continue; 5929 } 5930 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5931 if (IsAnnotatedParallel) 5932 continue; 5933 return false; 5934 } 5935 } 5936 5937 if (I.mayWriteToMemory()) { 5938 auto *SI = dyn_cast<StoreInst>(&I); 5939 // We only support predication of stores in basic blocks with one 5940 // predecessor. 5941 if (!SI) 5942 return false; 5943 5944 // Build a masked store if it is legal for the target. 5945 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5946 SI->getPointerOperand()) || 5947 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5948 MaskedOp.insert(SI); 5949 continue; 5950 } 5951 5952 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5953 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5954 5955 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5956 !isSinglePredecessor) 5957 return false; 5958 } 5959 if (I.mayThrow()) 5960 return false; 5961 } 5962 5963 return true; 5964 } 5965 5966 void InterleavedAccessInfo::collectConstStrideAccesses( 5967 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5968 const ValueToValueMap &Strides) { 5969 5970 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5971 5972 // Since it's desired that the load/store instructions be maintained in 5973 // "program order" for the interleaved access analysis, we have to visit the 5974 // blocks in the loop in reverse postorder (i.e., in a topological order). 5975 // Such an ordering will ensure that any load/store that may be executed 5976 // before a second load/store will precede the second load/store in 5977 // AccessStrideInfo. 5978 LoopBlocksDFS DFS(TheLoop); 5979 DFS.perform(LI); 5980 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5981 for (auto &I : *BB) { 5982 auto *LI = dyn_cast<LoadInst>(&I); 5983 auto *SI = dyn_cast<StoreInst>(&I); 5984 if (!LI && !SI) 5985 continue; 5986 5987 Value *Ptr = getPointerOperand(&I); 5988 // We don't check wrapping here because we don't know yet if Ptr will be 5989 // part of a full group or a group with gaps. Checking wrapping for all 5990 // pointers (even those that end up in groups with no gaps) will be overly 5991 // conservative. For full groups, wrapping should be ok since if we would 5992 // wrap around the address space we would do a memory access at nullptr 5993 // even without the transformation. The wrapping checks are therefore 5994 // deferred until after we've formed the interleaved groups. 5995 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5996 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5997 5998 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5999 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6000 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6001 6002 // An alignment of 0 means target ABI alignment. 6003 unsigned Align = getMemInstAlignment(&I); 6004 if (!Align) 6005 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6006 6007 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6008 } 6009 } 6010 6011 // Analyze interleaved accesses and collect them into interleaved load and 6012 // store groups. 6013 // 6014 // When generating code for an interleaved load group, we effectively hoist all 6015 // loads in the group to the location of the first load in program order. When 6016 // generating code for an interleaved store group, we sink all stores to the 6017 // location of the last store. This code motion can change the order of load 6018 // and store instructions and may break dependences. 6019 // 6020 // The code generation strategy mentioned above ensures that we won't violate 6021 // any write-after-read (WAR) dependences. 6022 // 6023 // E.g., for the WAR dependence: a = A[i]; // (1) 6024 // A[i] = b; // (2) 6025 // 6026 // The store group of (2) is always inserted at or below (2), and the load 6027 // group of (1) is always inserted at or above (1). Thus, the instructions will 6028 // never be reordered. All other dependences are checked to ensure the 6029 // correctness of the instruction reordering. 6030 // 6031 // The algorithm visits all memory accesses in the loop in bottom-up program 6032 // order. Program order is established by traversing the blocks in the loop in 6033 // reverse postorder when collecting the accesses. 6034 // 6035 // We visit the memory accesses in bottom-up order because it can simplify the 6036 // construction of store groups in the presence of write-after-write (WAW) 6037 // dependences. 6038 // 6039 // E.g., for the WAW dependence: A[i] = a; // (1) 6040 // A[i] = b; // (2) 6041 // A[i + 1] = c; // (3) 6042 // 6043 // We will first create a store group with (3) and (2). (1) can't be added to 6044 // this group because it and (2) are dependent. However, (1) can be grouped 6045 // with other accesses that may precede it in program order. Note that a 6046 // bottom-up order does not imply that WAW dependences should not be checked. 6047 void InterleavedAccessInfo::analyzeInterleaving( 6048 const ValueToValueMap &Strides) { 6049 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6050 6051 // Holds all accesses with a constant stride. 6052 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6053 collectConstStrideAccesses(AccessStrideInfo, Strides); 6054 6055 if (AccessStrideInfo.empty()) 6056 return; 6057 6058 // Collect the dependences in the loop. 6059 collectDependences(); 6060 6061 // Holds all interleaved store groups temporarily. 6062 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6063 // Holds all interleaved load groups temporarily. 6064 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6065 6066 // Search in bottom-up program order for pairs of accesses (A and B) that can 6067 // form interleaved load or store groups. In the algorithm below, access A 6068 // precedes access B in program order. We initialize a group for B in the 6069 // outer loop of the algorithm, and then in the inner loop, we attempt to 6070 // insert each A into B's group if: 6071 // 6072 // 1. A and B have the same stride, 6073 // 2. A and B have the same memory object size, and 6074 // 3. A belongs in B's group according to its distance from B. 6075 // 6076 // Special care is taken to ensure group formation will not break any 6077 // dependences. 6078 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6079 BI != E; ++BI) { 6080 Instruction *B = BI->first; 6081 StrideDescriptor DesB = BI->second; 6082 6083 // Initialize a group for B if it has an allowable stride. Even if we don't 6084 // create a group for B, we continue with the bottom-up algorithm to ensure 6085 // we don't break any of B's dependences. 6086 InterleaveGroup *Group = nullptr; 6087 if (isStrided(DesB.Stride)) { 6088 Group = getInterleaveGroup(B); 6089 if (!Group) { 6090 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6091 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6092 } 6093 if (B->mayWriteToMemory()) 6094 StoreGroups.insert(Group); 6095 else 6096 LoadGroups.insert(Group); 6097 } 6098 6099 for (auto AI = std::next(BI); AI != E; ++AI) { 6100 Instruction *A = AI->first; 6101 StrideDescriptor DesA = AI->second; 6102 6103 // Our code motion strategy implies that we can't have dependences 6104 // between accesses in an interleaved group and other accesses located 6105 // between the first and last member of the group. Note that this also 6106 // means that a group can't have more than one member at a given offset. 6107 // The accesses in a group can have dependences with other accesses, but 6108 // we must ensure we don't extend the boundaries of the group such that 6109 // we encompass those dependent accesses. 6110 // 6111 // For example, assume we have the sequence of accesses shown below in a 6112 // stride-2 loop: 6113 // 6114 // (1, 2) is a group | A[i] = a; // (1) 6115 // | A[i-1] = b; // (2) | 6116 // A[i-3] = c; // (3) 6117 // A[i] = d; // (4) | (2, 4) is not a group 6118 // 6119 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6120 // but not with (4). If we did, the dependent access (3) would be within 6121 // the boundaries of the (2, 4) group. 6122 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6123 6124 // If a dependence exists and A is already in a group, we know that A 6125 // must be a store since A precedes B and WAR dependences are allowed. 6126 // Thus, A would be sunk below B. We release A's group to prevent this 6127 // illegal code motion. A will then be free to form another group with 6128 // instructions that precede it. 6129 if (isInterleaved(A)) { 6130 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6131 StoreGroups.remove(StoreGroup); 6132 releaseGroup(StoreGroup); 6133 } 6134 6135 // If a dependence exists and A is not already in a group (or it was 6136 // and we just released it), B might be hoisted above A (if B is a 6137 // load) or another store might be sunk below A (if B is a store). In 6138 // either case, we can't add additional instructions to B's group. B 6139 // will only form a group with instructions that it precedes. 6140 break; 6141 } 6142 6143 // At this point, we've checked for illegal code motion. If either A or B 6144 // isn't strided, there's nothing left to do. 6145 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6146 continue; 6147 6148 // Ignore A if it's already in a group or isn't the same kind of memory 6149 // operation as B. 6150 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6151 continue; 6152 6153 // Check rules 1 and 2. Ignore A if its stride or size is different from 6154 // that of B. 6155 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6156 continue; 6157 6158 // Ignore A if the memory object of A and B don't belong to the same 6159 // address space 6160 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6161 continue; 6162 6163 // Calculate the distance from A to B. 6164 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6165 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6166 if (!DistToB) 6167 continue; 6168 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6169 6170 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6171 // size. 6172 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6173 continue; 6174 6175 // Ignore A if either A or B is in a predicated block. Although we 6176 // currently prevent group formation for predicated accesses, we may be 6177 // able to relax this limitation in the future once we handle more 6178 // complicated blocks. 6179 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6180 continue; 6181 6182 // The index of A is the index of B plus A's distance to B in multiples 6183 // of the size. 6184 int IndexA = 6185 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6186 6187 // Try to insert A into B's group. 6188 if (Group->insertMember(A, IndexA, DesA.Align)) { 6189 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6190 << " into the interleave group with" << *B << '\n'); 6191 InterleaveGroupMap[A] = Group; 6192 6193 // Set the first load in program order as the insert position. 6194 if (A->mayReadFromMemory()) 6195 Group->setInsertPos(A); 6196 } 6197 } // Iteration over A accesses. 6198 } // Iteration over B accesses. 6199 6200 // Remove interleaved store groups with gaps. 6201 for (InterleaveGroup *Group : StoreGroups) 6202 if (Group->getNumMembers() != Group->getFactor()) 6203 releaseGroup(Group); 6204 6205 // Remove interleaved groups with gaps (currently only loads) whose memory 6206 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6207 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6208 // not check wrapping (see documentation there). 6209 // FORNOW we use Assume=false; 6210 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6211 // of runtime SCEV assumptions checks (thereby potentially failing to 6212 // vectorize altogether). 6213 // Additional optional optimizations: 6214 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6215 // wrap then we can deduce that all pointers in the group don't wrap. 6216 // This means that we can forcefully peel the loop in order to only have to 6217 // check the first pointer for no-wrap. When we'll change to use Assume=true 6218 // we'll only need at most one runtime check per interleaved group. 6219 // 6220 for (InterleaveGroup *Group : LoadGroups) { 6221 6222 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6223 // load would wrap around the address space we would do a memory access at 6224 // nullptr even without the transformation. 6225 if (Group->getNumMembers() == Group->getFactor()) 6226 continue; 6227 6228 // Case 2: If first and last members of the group don't wrap this implies 6229 // that all the pointers in the group don't wrap. 6230 // So we check only group member 0 (which is always guaranteed to exist), 6231 // and group member Factor - 1; If the latter doesn't exist we rely on 6232 // peeling (if it is a non-reveresed accsess -- see Case 3). 6233 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6234 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6235 /*ShouldCheckWrap=*/true)) { 6236 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6237 "first group member potentially pointer-wrapping.\n"); 6238 releaseGroup(Group); 6239 continue; 6240 } 6241 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6242 if (LastMember) { 6243 Value *LastMemberPtr = getPointerOperand(LastMember); 6244 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6245 /*ShouldCheckWrap=*/true)) { 6246 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6247 "last group member potentially pointer-wrapping.\n"); 6248 releaseGroup(Group); 6249 } 6250 } else { 6251 // Case 3: A non-reversed interleaved load group with gaps: We need 6252 // to execute at least one scalar epilogue iteration. This will ensure 6253 // we don't speculatively access memory out-of-bounds. We only need 6254 // to look for a member at index factor - 1, since every group must have 6255 // a member at index zero. 6256 if (Group->isReverse()) { 6257 releaseGroup(Group); 6258 continue; 6259 } 6260 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6261 RequiresScalarEpilogue = true; 6262 } 6263 } 6264 } 6265 6266 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6267 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6268 ORE->emit(createMissedAnalysis("ConditionalStore") 6269 << "store that is conditionally executed prevents vectorization"); 6270 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6271 return None; 6272 } 6273 6274 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6275 return computeFeasibleMaxVF(OptForSize); 6276 6277 if (Legal->getRuntimePointerChecking()->Need) { 6278 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6279 << "runtime pointer checks needed. Enable vectorization of this " 6280 "loop with '#pragma clang loop vectorize(enable)' when " 6281 "compiling with -Os/-Oz"); 6282 DEBUG(dbgs() 6283 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6284 return None; 6285 } 6286 6287 // If we optimize the program for size, avoid creating the tail loop. 6288 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6289 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6290 6291 // If we don't know the precise trip count, don't try to vectorize. 6292 if (TC < 2) { 6293 ORE->emit( 6294 createMissedAnalysis("UnknownLoopCountComplexCFG") 6295 << "unable to calculate the loop count due to complex control flow"); 6296 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6297 return None; 6298 } 6299 6300 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6301 6302 if (TC % MaxVF != 0) { 6303 // If the trip count that we found modulo the vectorization factor is not 6304 // zero then we require a tail. 6305 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6306 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6307 // smaller MaxVF that does not require a scalar epilog. 6308 6309 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6310 << "cannot optimize for size and vectorize at the " 6311 "same time. Enable vectorization of this loop " 6312 "with '#pragma clang loop vectorize(enable)' " 6313 "when compiling with -Os/-Oz"); 6314 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6315 return None; 6316 } 6317 6318 return MaxVF; 6319 } 6320 6321 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6322 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6323 unsigned SmallestType, WidestType; 6324 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6325 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6326 unsigned MaxSafeDepDist = -1U; 6327 6328 // Get the maximum safe dependence distance in bits computed by LAA. If the 6329 // loop contains any interleaved accesses, we divide the dependence distance 6330 // by the maximum interleave factor of all interleaved groups. Note that 6331 // although the division ensures correctness, this is a fairly conservative 6332 // computation because the maximum distance computed by LAA may not involve 6333 // any of the interleaved accesses. 6334 if (Legal->getMaxSafeDepDistBytes() != -1U) 6335 MaxSafeDepDist = 6336 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6337 6338 WidestRegister = 6339 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6340 unsigned MaxVectorSize = WidestRegister / WidestType; 6341 6342 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6343 << WidestType << " bits.\n"); 6344 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6345 << " bits.\n"); 6346 6347 if (MaxVectorSize == 0) { 6348 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6349 MaxVectorSize = 1; 6350 } 6351 6352 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6353 " into one vector!"); 6354 6355 unsigned MaxVF = MaxVectorSize; 6356 if (MaximizeBandwidth && !OptForSize) { 6357 // Collect all viable vectorization factors. 6358 SmallVector<unsigned, 8> VFs; 6359 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6360 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6361 VFs.push_back(VS); 6362 6363 // For each VF calculate its register usage. 6364 auto RUs = calculateRegisterUsage(VFs); 6365 6366 // Select the largest VF which doesn't require more registers than existing 6367 // ones. 6368 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6369 for (int i = RUs.size() - 1; i >= 0; --i) { 6370 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6371 MaxVF = VFs[i]; 6372 break; 6373 } 6374 } 6375 } 6376 return MaxVF; 6377 } 6378 6379 LoopVectorizationCostModel::VectorizationFactor 6380 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6381 float Cost = expectedCost(1).first; 6382 #ifndef NDEBUG 6383 const float ScalarCost = Cost; 6384 #endif /* NDEBUG */ 6385 unsigned Width = 1; 6386 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6387 6388 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6389 // Ignore scalar width, because the user explicitly wants vectorization. 6390 if (ForceVectorization && MaxVF > 1) { 6391 Width = 2; 6392 Cost = expectedCost(Width).first / (float)Width; 6393 } 6394 6395 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6396 // Notice that the vector loop needs to be executed less times, so 6397 // we need to divide the cost of the vector loops by the width of 6398 // the vector elements. 6399 VectorizationCostTy C = expectedCost(i); 6400 float VectorCost = C.first / (float)i; 6401 DEBUG(dbgs() << "LV: Vector loop of width " << i 6402 << " costs: " << (int)VectorCost << ".\n"); 6403 if (!C.second && !ForceVectorization) { 6404 DEBUG( 6405 dbgs() << "LV: Not considering vector loop of width " << i 6406 << " because it will not generate any vector instructions.\n"); 6407 continue; 6408 } 6409 if (VectorCost < Cost) { 6410 Cost = VectorCost; 6411 Width = i; 6412 } 6413 } 6414 6415 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6416 << "LV: Vectorization seems to be not beneficial, " 6417 << "but was forced by a user.\n"); 6418 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6419 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6420 return Factor; 6421 } 6422 6423 std::pair<unsigned, unsigned> 6424 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6425 unsigned MinWidth = -1U; 6426 unsigned MaxWidth = 8; 6427 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6428 6429 // For each block. 6430 for (BasicBlock *BB : TheLoop->blocks()) { 6431 // For each instruction in the loop. 6432 for (Instruction &I : *BB) { 6433 Type *T = I.getType(); 6434 6435 // Skip ignored values. 6436 if (ValuesToIgnore.count(&I)) 6437 continue; 6438 6439 // Only examine Loads, Stores and PHINodes. 6440 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6441 continue; 6442 6443 // Examine PHI nodes that are reduction variables. Update the type to 6444 // account for the recurrence type. 6445 if (auto *PN = dyn_cast<PHINode>(&I)) { 6446 if (!Legal->isReductionVariable(PN)) 6447 continue; 6448 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6449 T = RdxDesc.getRecurrenceType(); 6450 } 6451 6452 // Examine the stored values. 6453 if (auto *ST = dyn_cast<StoreInst>(&I)) 6454 T = ST->getValueOperand()->getType(); 6455 6456 // Ignore loaded pointer types and stored pointer types that are not 6457 // vectorizable. 6458 // 6459 // FIXME: The check here attempts to predict whether a load or store will 6460 // be vectorized. We only know this for certain after a VF has 6461 // been selected. Here, we assume that if an access can be 6462 // vectorized, it will be. We should also look at extending this 6463 // optimization to non-pointer types. 6464 // 6465 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6466 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6467 continue; 6468 6469 MinWidth = std::min(MinWidth, 6470 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6471 MaxWidth = std::max(MaxWidth, 6472 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6473 } 6474 } 6475 6476 return {MinWidth, MaxWidth}; 6477 } 6478 6479 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6480 unsigned VF, 6481 unsigned LoopCost) { 6482 6483 // -- The interleave heuristics -- 6484 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6485 // There are many micro-architectural considerations that we can't predict 6486 // at this level. For example, frontend pressure (on decode or fetch) due to 6487 // code size, or the number and capabilities of the execution ports. 6488 // 6489 // We use the following heuristics to select the interleave count: 6490 // 1. If the code has reductions, then we interleave to break the cross 6491 // iteration dependency. 6492 // 2. If the loop is really small, then we interleave to reduce the loop 6493 // overhead. 6494 // 3. We don't interleave if we think that we will spill registers to memory 6495 // due to the increased register pressure. 6496 6497 // When we optimize for size, we don't interleave. 6498 if (OptForSize) 6499 return 1; 6500 6501 // We used the distance for the interleave count. 6502 if (Legal->getMaxSafeDepDistBytes() != -1U) 6503 return 1; 6504 6505 // Do not interleave loops with a relatively small trip count. 6506 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6507 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6508 return 1; 6509 6510 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6511 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6512 << " registers\n"); 6513 6514 if (VF == 1) { 6515 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6516 TargetNumRegisters = ForceTargetNumScalarRegs; 6517 } else { 6518 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6519 TargetNumRegisters = ForceTargetNumVectorRegs; 6520 } 6521 6522 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6523 // We divide by these constants so assume that we have at least one 6524 // instruction that uses at least one register. 6525 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6526 R.NumInstructions = std::max(R.NumInstructions, 1U); 6527 6528 // We calculate the interleave count using the following formula. 6529 // Subtract the number of loop invariants from the number of available 6530 // registers. These registers are used by all of the interleaved instances. 6531 // Next, divide the remaining registers by the number of registers that is 6532 // required by the loop, in order to estimate how many parallel instances 6533 // fit without causing spills. All of this is rounded down if necessary to be 6534 // a power of two. We want power of two interleave count to simplify any 6535 // addressing operations or alignment considerations. 6536 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6537 R.MaxLocalUsers); 6538 6539 // Don't count the induction variable as interleaved. 6540 if (EnableIndVarRegisterHeur) 6541 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6542 std::max(1U, (R.MaxLocalUsers - 1))); 6543 6544 // Clamp the interleave ranges to reasonable counts. 6545 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6546 6547 // Check if the user has overridden the max. 6548 if (VF == 1) { 6549 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6550 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6551 } else { 6552 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6553 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6554 } 6555 6556 // If we did not calculate the cost for VF (because the user selected the VF) 6557 // then we calculate the cost of VF here. 6558 if (LoopCost == 0) 6559 LoopCost = expectedCost(VF).first; 6560 6561 // Clamp the calculated IC to be between the 1 and the max interleave count 6562 // that the target allows. 6563 if (IC > MaxInterleaveCount) 6564 IC = MaxInterleaveCount; 6565 else if (IC < 1) 6566 IC = 1; 6567 6568 // Interleave if we vectorized this loop and there is a reduction that could 6569 // benefit from interleaving. 6570 if (VF > 1 && Legal->getReductionVars()->size()) { 6571 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6572 return IC; 6573 } 6574 6575 // Note that if we've already vectorized the loop we will have done the 6576 // runtime check and so interleaving won't require further checks. 6577 bool InterleavingRequiresRuntimePointerCheck = 6578 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6579 6580 // We want to interleave small loops in order to reduce the loop overhead and 6581 // potentially expose ILP opportunities. 6582 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6583 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6584 // We assume that the cost overhead is 1 and we use the cost model 6585 // to estimate the cost of the loop and interleave until the cost of the 6586 // loop overhead is about 5% of the cost of the loop. 6587 unsigned SmallIC = 6588 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6589 6590 // Interleave until store/load ports (estimated by max interleave count) are 6591 // saturated. 6592 unsigned NumStores = Legal->getNumStores(); 6593 unsigned NumLoads = Legal->getNumLoads(); 6594 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6595 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6596 6597 // If we have a scalar reduction (vector reductions are already dealt with 6598 // by this point), we can increase the critical path length if the loop 6599 // we're interleaving is inside another loop. Limit, by default to 2, so the 6600 // critical path only gets increased by one reduction operation. 6601 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6602 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6603 SmallIC = std::min(SmallIC, F); 6604 StoresIC = std::min(StoresIC, F); 6605 LoadsIC = std::min(LoadsIC, F); 6606 } 6607 6608 if (EnableLoadStoreRuntimeInterleave && 6609 std::max(StoresIC, LoadsIC) > SmallIC) { 6610 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6611 return std::max(StoresIC, LoadsIC); 6612 } 6613 6614 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6615 return SmallIC; 6616 } 6617 6618 // Interleave if this is a large loop (small loops are already dealt with by 6619 // this point) that could benefit from interleaving. 6620 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6621 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6622 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6623 return IC; 6624 } 6625 6626 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6627 return 1; 6628 } 6629 6630 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6631 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6632 // This function calculates the register usage by measuring the highest number 6633 // of values that are alive at a single location. Obviously, this is a very 6634 // rough estimation. We scan the loop in a topological order in order and 6635 // assign a number to each instruction. We use RPO to ensure that defs are 6636 // met before their users. We assume that each instruction that has in-loop 6637 // users starts an interval. We record every time that an in-loop value is 6638 // used, so we have a list of the first and last occurrences of each 6639 // instruction. Next, we transpose this data structure into a multi map that 6640 // holds the list of intervals that *end* at a specific location. This multi 6641 // map allows us to perform a linear search. We scan the instructions linearly 6642 // and record each time that a new interval starts, by placing it in a set. 6643 // If we find this value in the multi-map then we remove it from the set. 6644 // The max register usage is the maximum size of the set. 6645 // We also search for instructions that are defined outside the loop, but are 6646 // used inside the loop. We need this number separately from the max-interval 6647 // usage number because when we unroll, loop-invariant values do not take 6648 // more register. 6649 LoopBlocksDFS DFS(TheLoop); 6650 DFS.perform(LI); 6651 6652 RegisterUsage RU; 6653 RU.NumInstructions = 0; 6654 6655 // Each 'key' in the map opens a new interval. The values 6656 // of the map are the index of the 'last seen' usage of the 6657 // instruction that is the key. 6658 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6659 // Maps instruction to its index. 6660 DenseMap<unsigned, Instruction *> IdxToInstr; 6661 // Marks the end of each interval. 6662 IntervalMap EndPoint; 6663 // Saves the list of instruction indices that are used in the loop. 6664 SmallSet<Instruction *, 8> Ends; 6665 // Saves the list of values that are used in the loop but are 6666 // defined outside the loop, such as arguments and constants. 6667 SmallPtrSet<Value *, 8> LoopInvariants; 6668 6669 unsigned Index = 0; 6670 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6671 RU.NumInstructions += BB->size(); 6672 for (Instruction &I : *BB) { 6673 IdxToInstr[Index++] = &I; 6674 6675 // Save the end location of each USE. 6676 for (Value *U : I.operands()) { 6677 auto *Instr = dyn_cast<Instruction>(U); 6678 6679 // Ignore non-instruction values such as arguments, constants, etc. 6680 if (!Instr) 6681 continue; 6682 6683 // If this instruction is outside the loop then record it and continue. 6684 if (!TheLoop->contains(Instr)) { 6685 LoopInvariants.insert(Instr); 6686 continue; 6687 } 6688 6689 // Overwrite previous end points. 6690 EndPoint[Instr] = Index; 6691 Ends.insert(Instr); 6692 } 6693 } 6694 } 6695 6696 // Saves the list of intervals that end with the index in 'key'. 6697 typedef SmallVector<Instruction *, 2> InstrList; 6698 DenseMap<unsigned, InstrList> TransposeEnds; 6699 6700 // Transpose the EndPoints to a list of values that end at each index. 6701 for (auto &Interval : EndPoint) 6702 TransposeEnds[Interval.second].push_back(Interval.first); 6703 6704 SmallSet<Instruction *, 8> OpenIntervals; 6705 6706 // Get the size of the widest register. 6707 unsigned MaxSafeDepDist = -1U; 6708 if (Legal->getMaxSafeDepDistBytes() != -1U) 6709 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6710 unsigned WidestRegister = 6711 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6712 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6713 6714 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6715 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6716 6717 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6718 6719 // A lambda that gets the register usage for the given type and VF. 6720 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6721 if (Ty->isTokenTy()) 6722 return 0U; 6723 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6724 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6725 }; 6726 6727 for (unsigned int i = 0; i < Index; ++i) { 6728 Instruction *I = IdxToInstr[i]; 6729 6730 // Remove all of the instructions that end at this location. 6731 InstrList &List = TransposeEnds[i]; 6732 for (Instruction *ToRemove : List) 6733 OpenIntervals.erase(ToRemove); 6734 6735 // Ignore instructions that are never used within the loop. 6736 if (!Ends.count(I)) 6737 continue; 6738 6739 // Skip ignored values. 6740 if (ValuesToIgnore.count(I)) 6741 continue; 6742 6743 // For each VF find the maximum usage of registers. 6744 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6745 if (VFs[j] == 1) { 6746 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6747 continue; 6748 } 6749 collectUniformsAndScalars(VFs[j]); 6750 // Count the number of live intervals. 6751 unsigned RegUsage = 0; 6752 for (auto Inst : OpenIntervals) { 6753 // Skip ignored values for VF > 1. 6754 if (VecValuesToIgnore.count(Inst) || 6755 isScalarAfterVectorization(Inst, VFs[j])) 6756 continue; 6757 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6758 } 6759 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6760 } 6761 6762 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6763 << OpenIntervals.size() << '\n'); 6764 6765 // Add the current instruction to the list of open intervals. 6766 OpenIntervals.insert(I); 6767 } 6768 6769 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6770 unsigned Invariant = 0; 6771 if (VFs[i] == 1) 6772 Invariant = LoopInvariants.size(); 6773 else { 6774 for (auto Inst : LoopInvariants) 6775 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6776 } 6777 6778 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6779 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6780 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6781 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6782 6783 RU.LoopInvariantRegs = Invariant; 6784 RU.MaxLocalUsers = MaxUsages[i]; 6785 RUs[i] = RU; 6786 } 6787 6788 return RUs; 6789 } 6790 6791 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6792 6793 // If we aren't vectorizing the loop, or if we've already collected the 6794 // instructions to scalarize, there's nothing to do. Collection may already 6795 // have occurred if we have a user-selected VF and are now computing the 6796 // expected cost for interleaving. 6797 if (VF < 2 || InstsToScalarize.count(VF)) 6798 return; 6799 6800 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6801 // not profitable to scalarize any instructions, the presence of VF in the 6802 // map will indicate that we've analyzed it already. 6803 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6804 6805 // Find all the instructions that are scalar with predication in the loop and 6806 // determine if it would be better to not if-convert the blocks they are in. 6807 // If so, we also record the instructions to scalarize. 6808 for (BasicBlock *BB : TheLoop->blocks()) { 6809 if (!Legal->blockNeedsPredication(BB)) 6810 continue; 6811 for (Instruction &I : *BB) 6812 if (Legal->isScalarWithPredication(&I)) { 6813 ScalarCostsTy ScalarCosts; 6814 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6815 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6816 6817 // Remember that BB will remain after vectorization. 6818 PredicatedBBsAfterVectorization.insert(BB); 6819 } 6820 } 6821 } 6822 6823 int LoopVectorizationCostModel::computePredInstDiscount( 6824 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6825 unsigned VF) { 6826 6827 assert(!isUniformAfterVectorization(PredInst, VF) && 6828 "Instruction marked uniform-after-vectorization will be predicated"); 6829 6830 // Initialize the discount to zero, meaning that the scalar version and the 6831 // vector version cost the same. 6832 int Discount = 0; 6833 6834 // Holds instructions to analyze. The instructions we visit are mapped in 6835 // ScalarCosts. Those instructions are the ones that would be scalarized if 6836 // we find that the scalar version costs less. 6837 SmallVector<Instruction *, 8> Worklist; 6838 6839 // Returns true if the given instruction can be scalarized. 6840 auto canBeScalarized = [&](Instruction *I) -> bool { 6841 6842 // We only attempt to scalarize instructions forming a single-use chain 6843 // from the original predicated block that would otherwise be vectorized. 6844 // Although not strictly necessary, we give up on instructions we know will 6845 // already be scalar to avoid traversing chains that are unlikely to be 6846 // beneficial. 6847 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6848 isScalarAfterVectorization(I, VF)) 6849 return false; 6850 6851 // If the instruction is scalar with predication, it will be analyzed 6852 // separately. We ignore it within the context of PredInst. 6853 if (Legal->isScalarWithPredication(I)) 6854 return false; 6855 6856 // If any of the instruction's operands are uniform after vectorization, 6857 // the instruction cannot be scalarized. This prevents, for example, a 6858 // masked load from being scalarized. 6859 // 6860 // We assume we will only emit a value for lane zero of an instruction 6861 // marked uniform after vectorization, rather than VF identical values. 6862 // Thus, if we scalarize an instruction that uses a uniform, we would 6863 // create uses of values corresponding to the lanes we aren't emitting code 6864 // for. This behavior can be changed by allowing getScalarValue to clone 6865 // the lane zero values for uniforms rather than asserting. 6866 for (Use &U : I->operands()) 6867 if (auto *J = dyn_cast<Instruction>(U.get())) 6868 if (isUniformAfterVectorization(J, VF)) 6869 return false; 6870 6871 // Otherwise, we can scalarize the instruction. 6872 return true; 6873 }; 6874 6875 // Returns true if an operand that cannot be scalarized must be extracted 6876 // from a vector. We will account for this scalarization overhead below. Note 6877 // that the non-void predicated instructions are placed in their own blocks, 6878 // and their return values are inserted into vectors. Thus, an extract would 6879 // still be required. 6880 auto needsExtract = [&](Instruction *I) -> bool { 6881 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6882 }; 6883 6884 // Compute the expected cost discount from scalarizing the entire expression 6885 // feeding the predicated instruction. We currently only consider expressions 6886 // that are single-use instruction chains. 6887 Worklist.push_back(PredInst); 6888 while (!Worklist.empty()) { 6889 Instruction *I = Worklist.pop_back_val(); 6890 6891 // If we've already analyzed the instruction, there's nothing to do. 6892 if (ScalarCosts.count(I)) 6893 continue; 6894 6895 // Compute the cost of the vector instruction. Note that this cost already 6896 // includes the scalarization overhead of the predicated instruction. 6897 unsigned VectorCost = getInstructionCost(I, VF).first; 6898 6899 // Compute the cost of the scalarized instruction. This cost is the cost of 6900 // the instruction as if it wasn't if-converted and instead remained in the 6901 // predicated block. We will scale this cost by block probability after 6902 // computing the scalarization overhead. 6903 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6904 6905 // Compute the scalarization overhead of needed insertelement instructions 6906 // and phi nodes. 6907 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6908 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6909 true, false); 6910 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6911 } 6912 6913 // Compute the scalarization overhead of needed extractelement 6914 // instructions. For each of the instruction's operands, if the operand can 6915 // be scalarized, add it to the worklist; otherwise, account for the 6916 // overhead. 6917 for (Use &U : I->operands()) 6918 if (auto *J = dyn_cast<Instruction>(U.get())) { 6919 assert(VectorType::isValidElementType(J->getType()) && 6920 "Instruction has non-scalar type"); 6921 if (canBeScalarized(J)) 6922 Worklist.push_back(J); 6923 else if (needsExtract(J)) 6924 ScalarCost += TTI.getScalarizationOverhead( 6925 ToVectorTy(J->getType(),VF), false, true); 6926 } 6927 6928 // Scale the total scalar cost by block probability. 6929 ScalarCost /= getReciprocalPredBlockProb(); 6930 6931 // Compute the discount. A non-negative discount means the vector version 6932 // of the instruction costs more, and scalarizing would be beneficial. 6933 Discount += VectorCost - ScalarCost; 6934 ScalarCosts[I] = ScalarCost; 6935 } 6936 6937 return Discount; 6938 } 6939 6940 LoopVectorizationCostModel::VectorizationCostTy 6941 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6942 VectorizationCostTy Cost; 6943 6944 // Collect Uniform and Scalar instructions after vectorization with VF. 6945 collectUniformsAndScalars(VF); 6946 6947 // Collect the instructions (and their associated costs) that will be more 6948 // profitable to scalarize. 6949 collectInstsToScalarize(VF); 6950 6951 // For each block. 6952 for (BasicBlock *BB : TheLoop->blocks()) { 6953 VectorizationCostTy BlockCost; 6954 6955 // For each instruction in the old loop. 6956 for (Instruction &I : *BB) { 6957 // Skip dbg intrinsics. 6958 if (isa<DbgInfoIntrinsic>(I)) 6959 continue; 6960 6961 // Skip ignored values. 6962 if (ValuesToIgnore.count(&I)) 6963 continue; 6964 6965 VectorizationCostTy C = getInstructionCost(&I, VF); 6966 6967 // Check if we should override the cost. 6968 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6969 C.first = ForceTargetInstructionCost; 6970 6971 BlockCost.first += C.first; 6972 BlockCost.second |= C.second; 6973 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6974 << VF << " For instruction: " << I << '\n'); 6975 } 6976 6977 // If we are vectorizing a predicated block, it will have been 6978 // if-converted. This means that the block's instructions (aside from 6979 // stores and instructions that may divide by zero) will now be 6980 // unconditionally executed. For the scalar case, we may not always execute 6981 // the predicated block. Thus, scale the block's cost by the probability of 6982 // executing it. 6983 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6984 BlockCost.first /= getReciprocalPredBlockProb(); 6985 6986 Cost.first += BlockCost.first; 6987 Cost.second |= BlockCost.second; 6988 } 6989 6990 return Cost; 6991 } 6992 6993 /// \brief Gets Address Access SCEV after verifying that the access pattern 6994 /// is loop invariant except the induction variable dependence. 6995 /// 6996 /// This SCEV can be sent to the Target in order to estimate the address 6997 /// calculation cost. 6998 static const SCEV *getAddressAccessSCEV( 6999 Value *Ptr, 7000 LoopVectorizationLegality *Legal, 7001 ScalarEvolution *SE, 7002 const Loop *TheLoop) { 7003 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7004 if (!Gep) 7005 return nullptr; 7006 7007 // We are looking for a gep with all loop invariant indices except for one 7008 // which should be an induction variable. 7009 unsigned NumOperands = Gep->getNumOperands(); 7010 for (unsigned i = 1; i < NumOperands; ++i) { 7011 Value *Opd = Gep->getOperand(i); 7012 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7013 !Legal->isInductionVariable(Opd)) 7014 return nullptr; 7015 } 7016 7017 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7018 return SE->getSCEV(Ptr); 7019 } 7020 7021 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7022 return Legal->hasStride(I->getOperand(0)) || 7023 Legal->hasStride(I->getOperand(1)); 7024 } 7025 7026 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7027 unsigned VF) { 7028 Type *ValTy = getMemInstValueType(I); 7029 auto SE = PSE.getSE(); 7030 7031 unsigned Alignment = getMemInstAlignment(I); 7032 unsigned AS = getMemInstAddressSpace(I); 7033 Value *Ptr = getPointerOperand(I); 7034 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7035 7036 // Figure out whether the access is strided and get the stride value 7037 // if it's known in compile time 7038 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7039 7040 // Get the cost of the scalar memory instruction and address computation. 7041 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7042 7043 Cost += VF * 7044 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7045 AS, I); 7046 7047 // Get the overhead of the extractelement and insertelement instructions 7048 // we might create due to scalarization. 7049 Cost += getScalarizationOverhead(I, VF, TTI); 7050 7051 // If we have a predicated store, it may not be executed for each vector 7052 // lane. Scale the cost by the probability of executing the predicated 7053 // block. 7054 if (Legal->isScalarWithPredication(I)) 7055 Cost /= getReciprocalPredBlockProb(); 7056 7057 return Cost; 7058 } 7059 7060 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7061 unsigned VF) { 7062 Type *ValTy = getMemInstValueType(I); 7063 Type *VectorTy = ToVectorTy(ValTy, VF); 7064 unsigned Alignment = getMemInstAlignment(I); 7065 Value *Ptr = getPointerOperand(I); 7066 unsigned AS = getMemInstAddressSpace(I); 7067 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7068 7069 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7070 "Stride should be 1 or -1 for consecutive memory access"); 7071 unsigned Cost = 0; 7072 if (Legal->isMaskRequired(I)) 7073 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7074 else 7075 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7076 7077 bool Reverse = ConsecutiveStride < 0; 7078 if (Reverse) 7079 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7080 return Cost; 7081 } 7082 7083 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7084 unsigned VF) { 7085 LoadInst *LI = cast<LoadInst>(I); 7086 Type *ValTy = LI->getType(); 7087 Type *VectorTy = ToVectorTy(ValTy, VF); 7088 unsigned Alignment = LI->getAlignment(); 7089 unsigned AS = LI->getPointerAddressSpace(); 7090 7091 return TTI.getAddressComputationCost(ValTy) + 7092 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7093 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7094 } 7095 7096 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7097 unsigned VF) { 7098 Type *ValTy = getMemInstValueType(I); 7099 Type *VectorTy = ToVectorTy(ValTy, VF); 7100 unsigned Alignment = getMemInstAlignment(I); 7101 Value *Ptr = getPointerOperand(I); 7102 7103 return TTI.getAddressComputationCost(VectorTy) + 7104 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7105 Legal->isMaskRequired(I), Alignment); 7106 } 7107 7108 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7109 unsigned VF) { 7110 Type *ValTy = getMemInstValueType(I); 7111 Type *VectorTy = ToVectorTy(ValTy, VF); 7112 unsigned AS = getMemInstAddressSpace(I); 7113 7114 auto Group = Legal->getInterleavedAccessGroup(I); 7115 assert(Group && "Fail to get an interleaved access group."); 7116 7117 unsigned InterleaveFactor = Group->getFactor(); 7118 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7119 7120 // Holds the indices of existing members in an interleaved load group. 7121 // An interleaved store group doesn't need this as it doesn't allow gaps. 7122 SmallVector<unsigned, 4> Indices; 7123 if (isa<LoadInst>(I)) { 7124 for (unsigned i = 0; i < InterleaveFactor; i++) 7125 if (Group->getMember(i)) 7126 Indices.push_back(i); 7127 } 7128 7129 // Calculate the cost of the whole interleaved group. 7130 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7131 Group->getFactor(), Indices, 7132 Group->getAlignment(), AS); 7133 7134 if (Group->isReverse()) 7135 Cost += Group->getNumMembers() * 7136 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7137 return Cost; 7138 } 7139 7140 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7141 unsigned VF) { 7142 7143 // Calculate scalar cost only. Vectorization cost should be ready at this 7144 // moment. 7145 if (VF == 1) { 7146 Type *ValTy = getMemInstValueType(I); 7147 unsigned Alignment = getMemInstAlignment(I); 7148 unsigned AS = getMemInstAddressSpace(I); 7149 7150 return TTI.getAddressComputationCost(ValTy) + 7151 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7152 } 7153 return getWideningCost(I, VF); 7154 } 7155 7156 LoopVectorizationCostModel::VectorizationCostTy 7157 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7158 // If we know that this instruction will remain uniform, check the cost of 7159 // the scalar version. 7160 if (isUniformAfterVectorization(I, VF)) 7161 VF = 1; 7162 7163 if (VF > 1 && isProfitableToScalarize(I, VF)) 7164 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7165 7166 // Forced scalars do not have any scalarization overhead. 7167 if (VF > 1 && ForcedScalars.count(VF) && 7168 ForcedScalars.find(VF)->second.count(I)) 7169 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7170 7171 Type *VectorTy; 7172 unsigned C = getInstructionCost(I, VF, VectorTy); 7173 7174 bool TypeNotScalarized = 7175 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7176 return VectorizationCostTy(C, TypeNotScalarized); 7177 } 7178 7179 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7180 if (VF == 1) 7181 return; 7182 for (BasicBlock *BB : TheLoop->blocks()) { 7183 // For each instruction in the old loop. 7184 for (Instruction &I : *BB) { 7185 Value *Ptr = getPointerOperand(&I); 7186 if (!Ptr) 7187 continue; 7188 7189 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7190 // Scalar load + broadcast 7191 unsigned Cost = getUniformMemOpCost(&I, VF); 7192 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7193 continue; 7194 } 7195 7196 // We assume that widening is the best solution when possible. 7197 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7198 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7199 setWideningDecision(&I, VF, CM_Widen, Cost); 7200 continue; 7201 } 7202 7203 // Choose between Interleaving, Gather/Scatter or Scalarization. 7204 unsigned InterleaveCost = UINT_MAX; 7205 unsigned NumAccesses = 1; 7206 if (Legal->isAccessInterleaved(&I)) { 7207 auto Group = Legal->getInterleavedAccessGroup(&I); 7208 assert(Group && "Fail to get an interleaved access group."); 7209 7210 // Make one decision for the whole group. 7211 if (getWideningDecision(&I, VF) != CM_Unknown) 7212 continue; 7213 7214 NumAccesses = Group->getNumMembers(); 7215 InterleaveCost = getInterleaveGroupCost(&I, VF); 7216 } 7217 7218 unsigned GatherScatterCost = 7219 Legal->isLegalGatherOrScatter(&I) 7220 ? getGatherScatterCost(&I, VF) * NumAccesses 7221 : UINT_MAX; 7222 7223 unsigned ScalarizationCost = 7224 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7225 7226 // Choose better solution for the current VF, 7227 // write down this decision and use it during vectorization. 7228 unsigned Cost; 7229 InstWidening Decision; 7230 if (InterleaveCost <= GatherScatterCost && 7231 InterleaveCost < ScalarizationCost) { 7232 Decision = CM_Interleave; 7233 Cost = InterleaveCost; 7234 } else if (GatherScatterCost < ScalarizationCost) { 7235 Decision = CM_GatherScatter; 7236 Cost = GatherScatterCost; 7237 } else { 7238 Decision = CM_Scalarize; 7239 Cost = ScalarizationCost; 7240 } 7241 // If the instructions belongs to an interleave group, the whole group 7242 // receives the same decision. The whole group receives the cost, but 7243 // the cost will actually be assigned to one instruction. 7244 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7245 setWideningDecision(Group, VF, Decision, Cost); 7246 else 7247 setWideningDecision(&I, VF, Decision, Cost); 7248 } 7249 } 7250 7251 // Make sure that any load of address and any other address computation 7252 // remains scalar unless there is gather/scatter support. This avoids 7253 // inevitable extracts into address registers, and also has the benefit of 7254 // activating LSR more, since that pass can't optimize vectorized 7255 // addresses. 7256 if (TTI.prefersVectorizedAddressing()) 7257 return; 7258 7259 // Start with all scalar pointer uses. 7260 SmallPtrSet<Instruction *, 8> AddrDefs; 7261 for (BasicBlock *BB : TheLoop->blocks()) 7262 for (Instruction &I : *BB) { 7263 Instruction *PtrDef = 7264 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7265 if (PtrDef && TheLoop->contains(PtrDef) && 7266 getWideningDecision(&I, VF) != CM_GatherScatter) 7267 AddrDefs.insert(PtrDef); 7268 } 7269 7270 // Add all instructions used to generate the addresses. 7271 SmallVector<Instruction *, 4> Worklist; 7272 for (auto *I : AddrDefs) 7273 Worklist.push_back(I); 7274 while (!Worklist.empty()) { 7275 Instruction *I = Worklist.pop_back_val(); 7276 for (auto &Op : I->operands()) 7277 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7278 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7279 AddrDefs.insert(InstOp).second == true) 7280 Worklist.push_back(InstOp); 7281 } 7282 7283 for (auto *I : AddrDefs) { 7284 if (isa<LoadInst>(I)) { 7285 // Setting the desired widening decision should ideally be handled in 7286 // by cost functions, but since this involves the task of finding out 7287 // if the loaded register is involved in an address computation, it is 7288 // instead changed here when we know this is the case. 7289 if (getWideningDecision(I, VF) == CM_Widen) 7290 // Scalarize a widened load of address. 7291 setWideningDecision(I, VF, CM_Scalarize, 7292 (VF * getMemoryInstructionCost(I, 1))); 7293 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7294 // Scalarize an interleave group of address loads. 7295 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7296 if (Instruction *Member = Group->getMember(I)) 7297 setWideningDecision(Member, VF, CM_Scalarize, 7298 (VF * getMemoryInstructionCost(Member, 1))); 7299 } 7300 } 7301 } else 7302 // Make sure I gets scalarized and a cost estimate without 7303 // scalarization overhead. 7304 ForcedScalars[VF].insert(I); 7305 } 7306 } 7307 7308 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7309 unsigned VF, 7310 Type *&VectorTy) { 7311 Type *RetTy = I->getType(); 7312 if (canTruncateToMinimalBitwidth(I, VF)) 7313 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7314 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7315 auto SE = PSE.getSE(); 7316 7317 // TODO: We need to estimate the cost of intrinsic calls. 7318 switch (I->getOpcode()) { 7319 case Instruction::GetElementPtr: 7320 // We mark this instruction as zero-cost because the cost of GEPs in 7321 // vectorized code depends on whether the corresponding memory instruction 7322 // is scalarized or not. Therefore, we handle GEPs with the memory 7323 // instruction cost. 7324 return 0; 7325 case Instruction::Br: { 7326 // In cases of scalarized and predicated instructions, there will be VF 7327 // predicated blocks in the vectorized loop. Each branch around these 7328 // blocks requires also an extract of its vector compare i1 element. 7329 bool ScalarPredicatedBB = false; 7330 BranchInst *BI = cast<BranchInst>(I); 7331 if (VF > 1 && BI->isConditional() && 7332 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7333 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7334 ScalarPredicatedBB = true; 7335 7336 if (ScalarPredicatedBB) { 7337 // Return cost for branches around scalarized and predicated blocks. 7338 Type *Vec_i1Ty = 7339 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7340 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7341 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7342 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7343 // The back-edge branch will remain, as will all scalar branches. 7344 return TTI.getCFInstrCost(Instruction::Br); 7345 else 7346 // This branch will be eliminated by if-conversion. 7347 return 0; 7348 // Note: We currently assume zero cost for an unconditional branch inside 7349 // a predicated block since it will become a fall-through, although we 7350 // may decide in the future to call TTI for all branches. 7351 } 7352 case Instruction::PHI: { 7353 auto *Phi = cast<PHINode>(I); 7354 7355 // First-order recurrences are replaced by vector shuffles inside the loop. 7356 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7357 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7358 VectorTy, VF - 1, VectorTy); 7359 7360 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7361 // converted into select instructions. We require N - 1 selects per phi 7362 // node, where N is the number of incoming values. 7363 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7364 return (Phi->getNumIncomingValues() - 1) * 7365 TTI.getCmpSelInstrCost( 7366 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7367 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7368 7369 return TTI.getCFInstrCost(Instruction::PHI); 7370 } 7371 case Instruction::UDiv: 7372 case Instruction::SDiv: 7373 case Instruction::URem: 7374 case Instruction::SRem: 7375 // If we have a predicated instruction, it may not be executed for each 7376 // vector lane. Get the scalarization cost and scale this amount by the 7377 // probability of executing the predicated block. If the instruction is not 7378 // predicated, we fall through to the next case. 7379 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7380 unsigned Cost = 0; 7381 7382 // These instructions have a non-void type, so account for the phi nodes 7383 // that we will create. This cost is likely to be zero. The phi node 7384 // cost, if any, should be scaled by the block probability because it 7385 // models a copy at the end of each predicated block. 7386 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7387 7388 // The cost of the non-predicated instruction. 7389 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7390 7391 // The cost of insertelement and extractelement instructions needed for 7392 // scalarization. 7393 Cost += getScalarizationOverhead(I, VF, TTI); 7394 7395 // Scale the cost by the probability of executing the predicated blocks. 7396 // This assumes the predicated block for each vector lane is equally 7397 // likely. 7398 return Cost / getReciprocalPredBlockProb(); 7399 } 7400 LLVM_FALLTHROUGH; 7401 case Instruction::Add: 7402 case Instruction::FAdd: 7403 case Instruction::Sub: 7404 case Instruction::FSub: 7405 case Instruction::Mul: 7406 case Instruction::FMul: 7407 case Instruction::FDiv: 7408 case Instruction::FRem: 7409 case Instruction::Shl: 7410 case Instruction::LShr: 7411 case Instruction::AShr: 7412 case Instruction::And: 7413 case Instruction::Or: 7414 case Instruction::Xor: { 7415 // Since we will replace the stride by 1 the multiplication should go away. 7416 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7417 return 0; 7418 // Certain instructions can be cheaper to vectorize if they have a constant 7419 // second vector operand. One example of this are shifts on x86. 7420 TargetTransformInfo::OperandValueKind Op1VK = 7421 TargetTransformInfo::OK_AnyValue; 7422 TargetTransformInfo::OperandValueKind Op2VK = 7423 TargetTransformInfo::OK_AnyValue; 7424 TargetTransformInfo::OperandValueProperties Op1VP = 7425 TargetTransformInfo::OP_None; 7426 TargetTransformInfo::OperandValueProperties Op2VP = 7427 TargetTransformInfo::OP_None; 7428 Value *Op2 = I->getOperand(1); 7429 7430 // Check for a splat or for a non uniform vector of constants. 7431 if (isa<ConstantInt>(Op2)) { 7432 ConstantInt *CInt = cast<ConstantInt>(Op2); 7433 if (CInt && CInt->getValue().isPowerOf2()) 7434 Op2VP = TargetTransformInfo::OP_PowerOf2; 7435 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7436 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7437 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7438 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7439 if (SplatValue) { 7440 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7441 if (CInt && CInt->getValue().isPowerOf2()) 7442 Op2VP = TargetTransformInfo::OP_PowerOf2; 7443 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7444 } 7445 } else if (Legal->isUniform(Op2)) { 7446 Op2VK = TargetTransformInfo::OK_UniformValue; 7447 } 7448 SmallVector<const Value *, 4> Operands(I->operand_values()); 7449 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7450 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7451 Op2VK, Op1VP, Op2VP, Operands); 7452 } 7453 case Instruction::Select: { 7454 SelectInst *SI = cast<SelectInst>(I); 7455 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7456 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7457 Type *CondTy = SI->getCondition()->getType(); 7458 if (!ScalarCond) 7459 CondTy = VectorType::get(CondTy, VF); 7460 7461 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7462 } 7463 case Instruction::ICmp: 7464 case Instruction::FCmp: { 7465 Type *ValTy = I->getOperand(0)->getType(); 7466 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7467 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7468 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7469 VectorTy = ToVectorTy(ValTy, VF); 7470 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7471 } 7472 case Instruction::Store: 7473 case Instruction::Load: { 7474 unsigned Width = VF; 7475 if (Width > 1) { 7476 InstWidening Decision = getWideningDecision(I, Width); 7477 assert(Decision != CM_Unknown && 7478 "CM decision should be taken at this point"); 7479 if (Decision == CM_Scalarize) 7480 Width = 1; 7481 } 7482 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7483 return getMemoryInstructionCost(I, VF); 7484 } 7485 case Instruction::ZExt: 7486 case Instruction::SExt: 7487 case Instruction::FPToUI: 7488 case Instruction::FPToSI: 7489 case Instruction::FPExt: 7490 case Instruction::PtrToInt: 7491 case Instruction::IntToPtr: 7492 case Instruction::SIToFP: 7493 case Instruction::UIToFP: 7494 case Instruction::Trunc: 7495 case Instruction::FPTrunc: 7496 case Instruction::BitCast: { 7497 // We optimize the truncation of induction variables having constant 7498 // integer steps. The cost of these truncations is the same as the scalar 7499 // operation. 7500 if (isOptimizableIVTruncate(I, VF)) { 7501 auto *Trunc = cast<TruncInst>(I); 7502 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7503 Trunc->getSrcTy(), Trunc); 7504 } 7505 7506 Type *SrcScalarTy = I->getOperand(0)->getType(); 7507 Type *SrcVecTy = 7508 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7509 if (canTruncateToMinimalBitwidth(I, VF)) { 7510 // This cast is going to be shrunk. This may remove the cast or it might 7511 // turn it into slightly different cast. For example, if MinBW == 16, 7512 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7513 // 7514 // Calculate the modified src and dest types. 7515 Type *MinVecTy = VectorTy; 7516 if (I->getOpcode() == Instruction::Trunc) { 7517 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7518 VectorTy = 7519 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7520 } else if (I->getOpcode() == Instruction::ZExt || 7521 I->getOpcode() == Instruction::SExt) { 7522 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7523 VectorTy = 7524 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7525 } 7526 } 7527 7528 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7529 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7530 } 7531 case Instruction::Call: { 7532 bool NeedToScalarize; 7533 CallInst *CI = cast<CallInst>(I); 7534 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7535 if (getVectorIntrinsicIDForCall(CI, TLI)) 7536 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7537 return CallCost; 7538 } 7539 default: 7540 // The cost of executing VF copies of the scalar instruction. This opcode 7541 // is unknown. Assume that it is the same as 'mul'. 7542 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7543 getScalarizationOverhead(I, VF, TTI); 7544 } // end of switch. 7545 } 7546 7547 char LoopVectorize::ID = 0; 7548 static const char lv_name[] = "Loop Vectorization"; 7549 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7550 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7551 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7552 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7553 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7554 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7555 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7556 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7557 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7558 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7559 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7560 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7561 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7562 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7563 7564 namespace llvm { 7565 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7566 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7567 } 7568 } 7569 7570 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7571 7572 // Check if the pointer operand of a load or store instruction is 7573 // consecutive. 7574 if (auto *Ptr = getPointerOperand(Inst)) 7575 return Legal->isConsecutivePtr(Ptr); 7576 return false; 7577 } 7578 7579 void LoopVectorizationCostModel::collectValuesToIgnore() { 7580 // Ignore ephemeral values. 7581 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7582 7583 // Ignore type-promoting instructions we identified during reduction 7584 // detection. 7585 for (auto &Reduction : *Legal->getReductionVars()) { 7586 RecurrenceDescriptor &RedDes = Reduction.second; 7587 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7588 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7589 } 7590 } 7591 7592 LoopVectorizationCostModel::VectorizationFactor 7593 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7594 7595 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7596 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7597 0U}; 7598 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7599 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7600 return NoVectorization; 7601 7602 if (UserVF) { 7603 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7604 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7605 // Collect the instructions (and their associated costs) that will be more 7606 // profitable to scalarize. 7607 CM.selectUserVectorizationFactor(UserVF); 7608 return {UserVF, 0}; 7609 } 7610 7611 unsigned MaxVF = MaybeMaxVF.getValue(); 7612 assert(MaxVF != 0 && "MaxVF is zero."); 7613 if (MaxVF == 1) 7614 return NoVectorization; 7615 7616 // Select the optimal vectorization factor. 7617 return CM.selectVectorizationFactor(MaxVF); 7618 } 7619 7620 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV) { 7621 // Perform the actual loop transformation. 7622 7623 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7624 ILV.createVectorizedLoopSkeleton(); 7625 7626 //===------------------------------------------------===// 7627 // 7628 // Notice: any optimization or new instruction that go 7629 // into the code below should also be implemented in 7630 // the cost-model. 7631 // 7632 //===------------------------------------------------===// 7633 7634 // 2. Copy and widen instructions from the old loop into the new loop. 7635 7636 // Collect instructions from the original loop that will become trivially dead 7637 // in the vectorized loop. We don't need to vectorize these instructions. For 7638 // example, original induction update instructions can become dead because we 7639 // separately emit induction "steps" when generating code for the new loop. 7640 // Similarly, we create a new latch condition when setting up the structure 7641 // of the new loop, so the old one can become dead. 7642 SmallPtrSet<Instruction *, 4> DeadInstructions; 7643 collectTriviallyDeadInstructions(DeadInstructions); 7644 7645 // Scan the loop in a topological order to ensure that defs are vectorized 7646 // before users. 7647 LoopBlocksDFS DFS(OrigLoop); 7648 DFS.perform(LI); 7649 7650 // Vectorize all instructions in the original loop that will not become 7651 // trivially dead when vectorized. 7652 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 7653 for (Instruction &I : *BB) 7654 if (!DeadInstructions.count(&I)) 7655 ILV.vectorizeInstruction(I); 7656 7657 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7658 // predication, updating analyses. 7659 ILV.fixVectorizedLoop(); 7660 } 7661 7662 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7663 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7664 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7665 7666 // We create new control-flow for the vectorized loop, so the original 7667 // condition will be dead after vectorization if it's only used by the 7668 // branch. 7669 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7670 if (Cmp && Cmp->hasOneUse()) 7671 DeadInstructions.insert(Cmp); 7672 7673 // We create new "steps" for induction variable updates to which the original 7674 // induction variables map. An original update instruction will be dead if 7675 // all its users except the induction variable are dead. 7676 for (auto &Induction : *Legal->getInductionVars()) { 7677 PHINode *Ind = Induction.first; 7678 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7679 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7680 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7681 })) 7682 DeadInstructions.insert(IndUpdate); 7683 } 7684 } 7685 7686 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7687 auto *SI = dyn_cast<StoreInst>(Instr); 7688 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7689 7690 return scalarizeInstruction(Instr, IfPredicateInstr); 7691 } 7692 7693 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7694 7695 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7696 7697 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7698 Instruction::BinaryOps BinOp) { 7699 // When unrolling and the VF is 1, we only need to add a simple scalar. 7700 Type *Ty = Val->getType(); 7701 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7702 7703 if (Ty->isFloatingPointTy()) { 7704 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7705 7706 // Floating point operations had to be 'fast' to enable the unrolling. 7707 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7708 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7709 } 7710 Constant *C = ConstantInt::get(Ty, StartIdx); 7711 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7712 } 7713 7714 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7715 SmallVector<Metadata *, 4> MDs; 7716 // Reserve first location for self reference to the LoopID metadata node. 7717 MDs.push_back(nullptr); 7718 bool IsUnrollMetadata = false; 7719 MDNode *LoopID = L->getLoopID(); 7720 if (LoopID) { 7721 // First find existing loop unrolling disable metadata. 7722 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7723 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7724 if (MD) { 7725 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7726 IsUnrollMetadata = 7727 S && S->getString().startswith("llvm.loop.unroll.disable"); 7728 } 7729 MDs.push_back(LoopID->getOperand(i)); 7730 } 7731 } 7732 7733 if (!IsUnrollMetadata) { 7734 // Add runtime unroll disable metadata. 7735 LLVMContext &Context = L->getHeader()->getContext(); 7736 SmallVector<Metadata *, 1> DisableOperands; 7737 DisableOperands.push_back( 7738 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7739 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7740 MDs.push_back(DisableNode); 7741 MDNode *NewLoopID = MDNode::get(Context, MDs); 7742 // Set operand 0 to refer to the loop id itself. 7743 NewLoopID->replaceOperandWith(0, NewLoopID); 7744 L->setLoopID(NewLoopID); 7745 } 7746 } 7747 7748 bool LoopVectorizePass::processLoop(Loop *L) { 7749 assert(L->empty() && "Only process inner loops."); 7750 7751 #ifndef NDEBUG 7752 const std::string DebugLocStr = getDebugLocString(L); 7753 #endif /* NDEBUG */ 7754 7755 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7756 << L->getHeader()->getParent()->getName() << "\" from " 7757 << DebugLocStr << "\n"); 7758 7759 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7760 7761 DEBUG(dbgs() << "LV: Loop hints:" 7762 << " force=" 7763 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7764 ? "disabled" 7765 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7766 ? "enabled" 7767 : "?")) 7768 << " width=" << Hints.getWidth() 7769 << " unroll=" << Hints.getInterleave() << "\n"); 7770 7771 // Function containing loop 7772 Function *F = L->getHeader()->getParent(); 7773 7774 // Looking at the diagnostic output is the only way to determine if a loop 7775 // was vectorized (other than looking at the IR or machine code), so it 7776 // is important to generate an optimization remark for each loop. Most of 7777 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7778 // generated as OptimizationRemark and OptimizationRemarkMissed are 7779 // less verbose reporting vectorized loops and unvectorized loops that may 7780 // benefit from vectorization, respectively. 7781 7782 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7783 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7784 return false; 7785 } 7786 7787 // Check the loop for a trip count threshold: 7788 // do not vectorize loops with a tiny trip count. 7789 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7790 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7791 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7792 << "This loop is not worth vectorizing."); 7793 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7794 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7795 else { 7796 DEBUG(dbgs() << "\n"); 7797 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7798 "NotBeneficial", L) 7799 << "vectorization is not beneficial " 7800 "and is not explicitly forced"); 7801 return false; 7802 } 7803 } 7804 7805 PredicatedScalarEvolution PSE(*SE, *L); 7806 7807 // Check if it is legal to vectorize the loop. 7808 LoopVectorizationRequirements Requirements(*ORE); 7809 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7810 &Requirements, &Hints); 7811 if (!LVL.canVectorize()) { 7812 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7813 emitMissedWarning(F, L, Hints, ORE); 7814 return false; 7815 } 7816 7817 // Check the function attributes to find out if this function should be 7818 // optimized for size. 7819 bool OptForSize = 7820 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7821 7822 // Compute the weighted frequency of this loop being executed and see if it 7823 // is less than 20% of the function entry baseline frequency. Note that we 7824 // always have a canonical loop here because we think we *can* vectorize. 7825 // FIXME: This is hidden behind a flag due to pervasive problems with 7826 // exactly what block frequency models. 7827 if (LoopVectorizeWithBlockFrequency) { 7828 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7829 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7830 LoopEntryFreq < ColdEntryFreq) 7831 OptForSize = true; 7832 } 7833 7834 // Check the function attributes to see if implicit floats are allowed. 7835 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7836 // an integer loop and the vector instructions selected are purely integer 7837 // vector instructions? 7838 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7839 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7840 "attribute is used.\n"); 7841 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7842 "NoImplicitFloat", L) 7843 << "loop not vectorized due to NoImplicitFloat attribute"); 7844 emitMissedWarning(F, L, Hints, ORE); 7845 return false; 7846 } 7847 7848 // Check if the target supports potentially unsafe FP vectorization. 7849 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7850 // for the target we're vectorizing for, to make sure none of the 7851 // additional fp-math flags can help. 7852 if (Hints.isPotentiallyUnsafe() && 7853 TTI->isFPVectorizationPotentiallyUnsafe()) { 7854 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7855 ORE->emit( 7856 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7857 << "loop not vectorized due to unsafe FP support."); 7858 emitMissedWarning(F, L, Hints, ORE); 7859 return false; 7860 } 7861 7862 // Use the cost model. 7863 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7864 &Hints); 7865 CM.collectValuesToIgnore(); 7866 7867 // Use the planner for vectorization. 7868 LoopVectorizationPlanner LVP(L, LI, &LVL, CM); 7869 7870 // Get user vectorization factor. 7871 unsigned UserVF = Hints.getWidth(); 7872 7873 // Plan how to best vectorize, return the best VF and its cost. 7874 LoopVectorizationCostModel::VectorizationFactor VF = 7875 LVP.plan(OptForSize, UserVF); 7876 7877 // Select the interleave count. 7878 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7879 7880 // Get user interleave count. 7881 unsigned UserIC = Hints.getInterleave(); 7882 7883 // Identify the diagnostic messages that should be produced. 7884 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7885 bool VectorizeLoop = true, InterleaveLoop = true; 7886 if (Requirements.doesNotMeet(F, L, Hints)) { 7887 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7888 "requirements.\n"); 7889 emitMissedWarning(F, L, Hints, ORE); 7890 return false; 7891 } 7892 7893 if (VF.Width == 1) { 7894 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7895 VecDiagMsg = std::make_pair( 7896 "VectorizationNotBeneficial", 7897 "the cost-model indicates that vectorization is not beneficial"); 7898 VectorizeLoop = false; 7899 } 7900 7901 if (IC == 1 && UserIC <= 1) { 7902 // Tell the user interleaving is not beneficial. 7903 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7904 IntDiagMsg = std::make_pair( 7905 "InterleavingNotBeneficial", 7906 "the cost-model indicates that interleaving is not beneficial"); 7907 InterleaveLoop = false; 7908 if (UserIC == 1) { 7909 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7910 IntDiagMsg.second += 7911 " and is explicitly disabled or interleave count is set to 1"; 7912 } 7913 } else if (IC > 1 && UserIC == 1) { 7914 // Tell the user interleaving is beneficial, but it explicitly disabled. 7915 DEBUG(dbgs() 7916 << "LV: Interleaving is beneficial but is explicitly disabled."); 7917 IntDiagMsg = std::make_pair( 7918 "InterleavingBeneficialButDisabled", 7919 "the cost-model indicates that interleaving is beneficial " 7920 "but is explicitly disabled or interleave count is set to 1"); 7921 InterleaveLoop = false; 7922 } 7923 7924 // Override IC if user provided an interleave count. 7925 IC = UserIC > 0 ? UserIC : IC; 7926 7927 // Emit diagnostic messages, if any. 7928 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7929 if (!VectorizeLoop && !InterleaveLoop) { 7930 // Do not vectorize or interleaving the loop. 7931 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7932 L->getStartLoc(), L->getHeader()) 7933 << VecDiagMsg.second); 7934 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7935 L->getStartLoc(), L->getHeader()) 7936 << IntDiagMsg.second); 7937 return false; 7938 } else if (!VectorizeLoop && InterleaveLoop) { 7939 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7940 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7941 L->getStartLoc(), L->getHeader()) 7942 << VecDiagMsg.second); 7943 } else if (VectorizeLoop && !InterleaveLoop) { 7944 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7945 << DebugLocStr << '\n'); 7946 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7947 L->getStartLoc(), L->getHeader()) 7948 << IntDiagMsg.second); 7949 } else if (VectorizeLoop && InterleaveLoop) { 7950 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7951 << DebugLocStr << '\n'); 7952 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7953 } 7954 7955 using namespace ore; 7956 if (!VectorizeLoop) { 7957 assert(IC > 1 && "interleave count should not be 1 or 0"); 7958 // If we decided that it is not legal to vectorize the loop, then 7959 // interleave it. 7960 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7961 &CM); 7962 LVP.executePlan(Unroller); 7963 7964 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7965 L->getHeader()) 7966 << "interleaved loop (interleaved count: " 7967 << NV("InterleaveCount", IC) << ")"); 7968 } else { 7969 // If we decided that it is *legal* to vectorize the loop, then do it. 7970 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7971 &LVL, &CM); 7972 LVP.executePlan(LB); 7973 ++LoopsVectorized; 7974 7975 // Add metadata to disable runtime unrolling a scalar loop when there are 7976 // no runtime checks about strides and memory. A scalar loop that is 7977 // rarely used is not worth unrolling. 7978 if (!LB.areSafetyChecksAdded()) 7979 AddRuntimeUnrollDisableMetaData(L); 7980 7981 // Report the vectorization decision. 7982 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7983 L->getHeader()) 7984 << "vectorized loop (vectorization width: " 7985 << NV("VectorizationFactor", VF.Width) 7986 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7987 } 7988 7989 // Mark the loop as already vectorized to avoid vectorizing again. 7990 Hints.setAlreadyVectorized(); 7991 7992 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7993 return true; 7994 } 7995 7996 bool LoopVectorizePass::runImpl( 7997 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7998 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7999 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8000 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8001 OptimizationRemarkEmitter &ORE_) { 8002 8003 SE = &SE_; 8004 LI = &LI_; 8005 TTI = &TTI_; 8006 DT = &DT_; 8007 BFI = &BFI_; 8008 TLI = TLI_; 8009 AA = &AA_; 8010 AC = &AC_; 8011 GetLAA = &GetLAA_; 8012 DB = &DB_; 8013 ORE = &ORE_; 8014 8015 // Compute some weights outside of the loop over the loops. Compute this 8016 // using a BranchProbability to re-use its scaling math. 8017 const BranchProbability ColdProb(1, 5); // 20% 8018 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 8019 8020 // Don't attempt if 8021 // 1. the target claims to have no vector registers, and 8022 // 2. interleaving won't help ILP. 8023 // 8024 // The second condition is necessary because, even if the target has no 8025 // vector registers, loop vectorization may still enable scalar 8026 // interleaving. 8027 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8028 return false; 8029 8030 bool Changed = false; 8031 8032 // The vectorizer requires loops to be in simplified form. 8033 // Since simplification may add new inner loops, it has to run before the 8034 // legality and profitability checks. This means running the loop vectorizer 8035 // will simplify all loops, regardless of whether anything end up being 8036 // vectorized. 8037 for (auto &L : *LI) 8038 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8039 8040 // Build up a worklist of inner-loops to vectorize. This is necessary as 8041 // the act of vectorizing or partially unrolling a loop creates new loops 8042 // and can invalidate iterators across the loops. 8043 SmallVector<Loop *, 8> Worklist; 8044 8045 for (Loop *L : *LI) 8046 addAcyclicInnerLoop(*L, Worklist); 8047 8048 LoopsAnalyzed += Worklist.size(); 8049 8050 // Now walk the identified inner loops. 8051 while (!Worklist.empty()) { 8052 Loop *L = Worklist.pop_back_val(); 8053 8054 // For the inner loops we actually process, form LCSSA to simplify the 8055 // transform. 8056 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8057 8058 Changed |= processLoop(L); 8059 } 8060 8061 // Process each loop nest in the function. 8062 return Changed; 8063 8064 } 8065 8066 8067 PreservedAnalyses LoopVectorizePass::run(Function &F, 8068 FunctionAnalysisManager &AM) { 8069 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8070 auto &LI = AM.getResult<LoopAnalysis>(F); 8071 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8072 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8073 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8074 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8075 auto &AA = AM.getResult<AAManager>(F); 8076 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8077 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8078 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8079 8080 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8081 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8082 [&](Loop &L) -> const LoopAccessInfo & { 8083 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8084 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8085 }; 8086 bool Changed = 8087 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8088 if (!Changed) 8089 return PreservedAnalyses::all(); 8090 PreservedAnalyses PA; 8091 PA.preserve<LoopAnalysis>(); 8092 PA.preserve<DominatorTreeAnalysis>(); 8093 PA.preserve<BasicAA>(); 8094 PA.preserve<GlobalsAA>(); 8095 return PA; 8096 } 8097