1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/BlockFrequencyInfo.h" 59 #include "llvm/Analysis/LoopInfo.h" 60 #include "llvm/Analysis/LoopIterator.h" 61 #include "llvm/Analysis/LoopPass.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/ScalarEvolutionExpander.h" 64 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugInfo.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/DiagnosticInfo.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/PatternMatch.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/IR/ValueHandle.h" 83 #include "llvm/IR/Verifier.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/BranchProbability.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Scalar.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/VectorUtils.h" 93 #include <algorithm> 94 #include <map> 95 #include <tuple> 96 97 using namespace llvm; 98 using namespace llvm::PatternMatch; 99 100 #define LV_NAME "loop-vectorize" 101 #define DEBUG_TYPE LV_NAME 102 103 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 104 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 105 106 static cl::opt<unsigned> 107 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 108 cl::desc("Sets the SIMD width. Zero is autoselect.")); 109 110 static cl::opt<unsigned> 111 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 112 cl::desc("Sets the vectorization unroll count. " 113 "Zero is autoselect.")); 114 115 static cl::opt<bool> 116 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 117 cl::desc("Enable if-conversion during vectorization.")); 118 119 /// We don't vectorize loops with a known constant trip count below this number. 120 static cl::opt<unsigned> 121 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 122 cl::Hidden, 123 cl::desc("Don't vectorize loops with a constant " 124 "trip count that is smaller than this " 125 "value.")); 126 127 /// This enables versioning on the strides of symbolically striding memory 128 /// accesses in code like the following. 129 /// for (i = 0; i < N; ++i) 130 /// A[i * Stride1] += B[i * Stride2] ... 131 /// 132 /// Will be roughly translated to 133 /// if (Stride1 == 1 && Stride2 == 1) { 134 /// for (i = 0; i < N; i+=4) 135 /// A[i:i+3] += ... 136 /// } else 137 /// ... 138 static cl::opt<bool> EnableMemAccessVersioning( 139 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 140 cl::desc("Enable symblic stride memory access versioning")); 141 142 /// We don't unroll loops with a known constant trip count below this number. 143 static const unsigned TinyTripCountUnrollThreshold = 128; 144 145 /// When performing memory disambiguation checks at runtime do not make more 146 /// than this number of comparisons. 147 static const unsigned RuntimeMemoryCheckThreshold = 8; 148 149 /// Maximum simd width. 150 static const unsigned MaxVectorWidth = 64; 151 152 static cl::opt<unsigned> ForceTargetNumScalarRegs( 153 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 154 cl::desc("A flag that overrides the target's number of scalar registers.")); 155 156 static cl::opt<unsigned> ForceTargetNumVectorRegs( 157 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's number of vector registers.")); 159 160 /// Maximum vectorization unroll count. 161 static const unsigned MaxUnrollFactor = 16; 162 163 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 164 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's max unroll factor for scalar " 166 "loops.")); 167 168 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 169 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's max unroll factor for " 171 "vectorized loops.")); 172 173 static cl::opt<unsigned> ForceTargetInstructionCost( 174 "force-target-instruction-cost", cl::init(0), cl::Hidden, 175 cl::desc("A flag that overrides the target's expected cost for " 176 "an instruction to a single constant value. Mostly " 177 "useful for getting consistent testing.")); 178 179 static cl::opt<unsigned> SmallLoopCost( 180 "small-loop-cost", cl::init(20), cl::Hidden, 181 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 182 183 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 184 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 185 cl::desc("Enable the use of the block frequency analysis to access PGO " 186 "heuristics minimizing code growth in cold regions and being more " 187 "aggressive in hot regions.")); 188 189 // Runtime unroll loops for load/store throughput. 190 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 191 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 192 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 193 194 /// The number of stores in a loop that are allowed to need predication. 195 static cl::opt<unsigned> NumberOfStoresToPredicate( 196 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 197 cl::desc("Max number of stores to be predicated behind an if.")); 198 199 static cl::opt<bool> EnableIndVarRegisterHeur( 200 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 201 cl::desc("Count the induction variable only once when unrolling")); 202 203 static cl::opt<bool> EnableCondStoresVectorization( 204 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 205 cl::desc("Enable if predication of stores during vectorization.")); 206 207 namespace { 208 209 // Forward declarations. 210 class LoopVectorizationLegality; 211 class LoopVectorizationCostModel; 212 213 /// Optimization analysis message produced during vectorization. Messages inform 214 /// the user why vectorization did not occur. 215 class Report { 216 std::string Message; 217 raw_string_ostream Out; 218 Instruction *Instr; 219 220 public: 221 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 222 Out << "loop not vectorized: "; 223 } 224 225 template <typename A> Report &operator<<(const A &Value) { 226 Out << Value; 227 return *this; 228 } 229 230 Instruction *getInstr() { return Instr; } 231 232 std::string &str() { return Out.str(); } 233 operator Twine() { return Out.str(); } 234 }; 235 236 /// InnerLoopVectorizer vectorizes loops which contain only one basic 237 /// block to a specified vectorization factor (VF). 238 /// This class performs the widening of scalars into vectors, or multiple 239 /// scalars. This class also implements the following features: 240 /// * It inserts an epilogue loop for handling loops that don't have iteration 241 /// counts that are known to be a multiple of the vectorization factor. 242 /// * It handles the code generation for reduction variables. 243 /// * Scalarization (implementation using scalars) of un-vectorizable 244 /// instructions. 245 /// InnerLoopVectorizer does not perform any vectorization-legality 246 /// checks, and relies on the caller to check for the different legality 247 /// aspects. The InnerLoopVectorizer relies on the 248 /// LoopVectorizationLegality class to provide information about the induction 249 /// and reduction variables that were found to a given vectorization factor. 250 class InnerLoopVectorizer { 251 public: 252 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 253 DominatorTree *DT, const DataLayout *DL, 254 const TargetLibraryInfo *TLI, unsigned VecWidth, 255 unsigned UnrollFactor) 256 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 257 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 258 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 259 Legal(nullptr) {} 260 261 // Perform the actual loop widening (vectorization). 262 void vectorize(LoopVectorizationLegality *L) { 263 Legal = L; 264 // Create a new empty loop. Unlink the old loop and connect the new one. 265 createEmptyLoop(); 266 // Widen each instruction in the old loop to a new one in the new loop. 267 // Use the Legality module to find the induction and reduction variables. 268 vectorizeLoop(); 269 // Register the new loop and update the analysis passes. 270 updateAnalysis(); 271 } 272 273 virtual ~InnerLoopVectorizer() {} 274 275 protected: 276 /// A small list of PHINodes. 277 typedef SmallVector<PHINode*, 4> PhiVector; 278 /// When we unroll loops we have multiple vector values for each scalar. 279 /// This data structure holds the unrolled and vectorized values that 280 /// originated from one scalar instruction. 281 typedef SmallVector<Value*, 2> VectorParts; 282 283 // When we if-convert we need create edge masks. We have to cache values so 284 // that we don't end up with exponential recursion/IR. 285 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 286 VectorParts> EdgeMaskCache; 287 288 /// \brief Add code that checks at runtime if the accessed arrays overlap. 289 /// 290 /// Returns a pair of instructions where the first element is the first 291 /// instruction generated in possibly a sequence of instructions and the 292 /// second value is the final comparator value or NULL if no check is needed. 293 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 294 295 /// \brief Add checks for strides that where assumed to be 1. 296 /// 297 /// Returns the last check instruction and the first check instruction in the 298 /// pair as (first, last). 299 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 300 301 /// Create an empty loop, based on the loop ranges of the old loop. 302 void createEmptyLoop(); 303 /// Copy and widen the instructions from the old loop. 304 virtual void vectorizeLoop(); 305 306 /// \brief The Loop exit block may have single value PHI nodes where the 307 /// incoming value is 'Undef'. While vectorizing we only handled real values 308 /// that were defined inside the loop. Here we fix the 'undef case'. 309 /// See PR14725. 310 void fixLCSSAPHIs(); 311 312 /// A helper function that computes the predicate of the block BB, assuming 313 /// that the header block of the loop is set to True. It returns the *entry* 314 /// mask for the block BB. 315 VectorParts createBlockInMask(BasicBlock *BB); 316 /// A helper function that computes the predicate of the edge between SRC 317 /// and DST. 318 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 319 320 /// A helper function to vectorize a single BB within the innermost loop. 321 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 322 323 /// Vectorize a single PHINode in a block. This method handles the induction 324 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 325 /// arbitrary length vectors. 326 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 327 unsigned UF, unsigned VF, PhiVector *PV); 328 329 /// Insert the new loop to the loop hierarchy and pass manager 330 /// and update the analysis passes. 331 void updateAnalysis(); 332 333 /// This instruction is un-vectorizable. Implement it as a sequence 334 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 335 /// scalarized instruction behind an if block predicated on the control 336 /// dependence of the instruction. 337 virtual void scalarizeInstruction(Instruction *Instr, 338 bool IfPredicateStore=false); 339 340 /// Vectorize Load and Store instructions, 341 virtual void vectorizeMemoryInstruction(Instruction *Instr); 342 343 /// Create a broadcast instruction. This method generates a broadcast 344 /// instruction (shuffle) for loop invariant values and for the induction 345 /// value. If this is the induction variable then we extend it to N, N+1, ... 346 /// this is needed because each iteration in the loop corresponds to a SIMD 347 /// element. 348 virtual Value *getBroadcastInstrs(Value *V); 349 350 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 351 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 352 /// The sequence starts at StartIndex. 353 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 354 355 /// When we go over instructions in the basic block we rely on previous 356 /// values within the current basic block or on loop invariant values. 357 /// When we widen (vectorize) values we place them in the map. If the values 358 /// are not within the map, they have to be loop invariant, so we simply 359 /// broadcast them into a vector. 360 VectorParts &getVectorValue(Value *V); 361 362 /// Generate a shuffle sequence that will reverse the vector Vec. 363 virtual Value *reverseVector(Value *Vec); 364 365 /// This is a helper class that holds the vectorizer state. It maps scalar 366 /// instructions to vector instructions. When the code is 'unrolled' then 367 /// then a single scalar value is mapped to multiple vector parts. The parts 368 /// are stored in the VectorPart type. 369 struct ValueMap { 370 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 371 /// are mapped. 372 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 373 374 /// \return True if 'Key' is saved in the Value Map. 375 bool has(Value *Key) const { return MapStorage.count(Key); } 376 377 /// Initializes a new entry in the map. Sets all of the vector parts to the 378 /// save value in 'Val'. 379 /// \return A reference to a vector with splat values. 380 VectorParts &splat(Value *Key, Value *Val) { 381 VectorParts &Entry = MapStorage[Key]; 382 Entry.assign(UF, Val); 383 return Entry; 384 } 385 386 ///\return A reference to the value that is stored at 'Key'. 387 VectorParts &get(Value *Key) { 388 VectorParts &Entry = MapStorage[Key]; 389 if (Entry.empty()) 390 Entry.resize(UF); 391 assert(Entry.size() == UF); 392 return Entry; 393 } 394 395 private: 396 /// The unroll factor. Each entry in the map stores this number of vector 397 /// elements. 398 unsigned UF; 399 400 /// Map storage. We use std::map and not DenseMap because insertions to a 401 /// dense map invalidates its iterators. 402 std::map<Value *, VectorParts> MapStorage; 403 }; 404 405 /// The original loop. 406 Loop *OrigLoop; 407 /// Scev analysis to use. 408 ScalarEvolution *SE; 409 /// Loop Info. 410 LoopInfo *LI; 411 /// Dominator Tree. 412 DominatorTree *DT; 413 /// Alias Analysis. 414 AliasAnalysis *AA; 415 /// Data Layout. 416 const DataLayout *DL; 417 /// Target Library Info. 418 const TargetLibraryInfo *TLI; 419 420 /// The vectorization SIMD factor to use. Each vector will have this many 421 /// vector elements. 422 unsigned VF; 423 424 protected: 425 /// The vectorization unroll factor to use. Each scalar is vectorized to this 426 /// many different vector instructions. 427 unsigned UF; 428 429 /// The builder that we use 430 IRBuilder<> Builder; 431 432 // --- Vectorization state --- 433 434 /// The vector-loop preheader. 435 BasicBlock *LoopVectorPreHeader; 436 /// The scalar-loop preheader. 437 BasicBlock *LoopScalarPreHeader; 438 /// Middle Block between the vector and the scalar. 439 BasicBlock *LoopMiddleBlock; 440 ///The ExitBlock of the scalar loop. 441 BasicBlock *LoopExitBlock; 442 ///The vector loop body. 443 SmallVector<BasicBlock *, 4> LoopVectorBody; 444 ///The scalar loop body. 445 BasicBlock *LoopScalarBody; 446 /// A list of all bypass blocks. The first block is the entry of the loop. 447 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 448 449 /// The new Induction variable which was added to the new block. 450 PHINode *Induction; 451 /// The induction variable of the old basic block. 452 PHINode *OldInduction; 453 /// Holds the extended (to the widest induction type) start index. 454 Value *ExtendedIdx; 455 /// Maps scalars to widened vectors. 456 ValueMap WidenMap; 457 EdgeMaskCache MaskCache; 458 459 LoopVectorizationLegality *Legal; 460 }; 461 462 class InnerLoopUnroller : public InnerLoopVectorizer { 463 public: 464 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 465 DominatorTree *DT, const DataLayout *DL, 466 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 467 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 468 469 private: 470 void scalarizeInstruction(Instruction *Instr, 471 bool IfPredicateStore = false) override; 472 void vectorizeMemoryInstruction(Instruction *Instr) override; 473 Value *getBroadcastInstrs(Value *V) override; 474 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 475 Value *reverseVector(Value *Vec) override; 476 }; 477 478 /// \brief Look for a meaningful debug location on the instruction or it's 479 /// operands. 480 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 481 if (!I) 482 return I; 483 484 DebugLoc Empty; 485 if (I->getDebugLoc() != Empty) 486 return I; 487 488 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 489 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 490 if (OpInst->getDebugLoc() != Empty) 491 return OpInst; 492 } 493 494 return I; 495 } 496 497 /// \brief Set the debug location in the builder using the debug location in the 498 /// instruction. 499 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 500 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 501 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 502 else 503 B.SetCurrentDebugLocation(DebugLoc()); 504 } 505 506 #ifndef NDEBUG 507 /// \return string containing a file name and a line # for the given loop. 508 static std::string getDebugLocString(const Loop *L) { 509 std::string Result; 510 if (L) { 511 raw_string_ostream OS(Result); 512 const DebugLoc LoopDbgLoc = L->getStartLoc(); 513 if (!LoopDbgLoc.isUnknown()) 514 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 515 else 516 // Just print the module name. 517 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 518 OS.flush(); 519 } 520 return Result; 521 } 522 #endif 523 524 /// \brief Propagate known metadata from one instruction to another. 525 static void propagateMetadata(Instruction *To, const Instruction *From) { 526 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 527 From->getAllMetadataOtherThanDebugLoc(Metadata); 528 529 for (auto M : Metadata) { 530 unsigned Kind = M.first; 531 532 // These are safe to transfer (this is safe for TBAA, even when we 533 // if-convert, because should that metadata have had a control dependency 534 // on the condition, and thus actually aliased with some other 535 // non-speculated memory access when the condition was false, this would be 536 // caught by the runtime overlap checks). 537 if (Kind != LLVMContext::MD_tbaa && 538 Kind != LLVMContext::MD_fpmath) 539 continue; 540 541 To->setMetadata(Kind, M.second); 542 } 543 } 544 545 /// \brief Propagate known metadata from one instruction to a vector of others. 546 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 547 for (Value *V : To) 548 if (Instruction *I = dyn_cast<Instruction>(V)) 549 propagateMetadata(I, From); 550 } 551 552 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 553 /// to what vectorization factor. 554 /// This class does not look at the profitability of vectorization, only the 555 /// legality. This class has two main kinds of checks: 556 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 557 /// will change the order of memory accesses in a way that will change the 558 /// correctness of the program. 559 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 560 /// checks for a number of different conditions, such as the availability of a 561 /// single induction variable, that all types are supported and vectorize-able, 562 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 563 /// This class is also used by InnerLoopVectorizer for identifying 564 /// induction variable and the different reduction variables. 565 class LoopVectorizationLegality { 566 public: 567 unsigned NumLoads; 568 unsigned NumStores; 569 unsigned NumPredStores; 570 571 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 572 DominatorTree *DT, TargetLibraryInfo *TLI, 573 AliasAnalysis *AA, Function *F) 574 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 575 DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr), 576 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 577 } 578 579 /// This enum represents the kinds of reductions that we support. 580 enum ReductionKind { 581 RK_NoReduction, ///< Not a reduction. 582 RK_IntegerAdd, ///< Sum of integers. 583 RK_IntegerMult, ///< Product of integers. 584 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 585 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 586 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 587 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 588 RK_FloatAdd, ///< Sum of floats. 589 RK_FloatMult, ///< Product of floats. 590 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 591 }; 592 593 /// This enum represents the kinds of inductions that we support. 594 enum InductionKind { 595 IK_NoInduction, ///< Not an induction variable. 596 IK_IntInduction, ///< Integer induction variable. Step = 1. 597 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 598 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 599 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 600 }; 601 602 // This enum represents the kind of minmax reduction. 603 enum MinMaxReductionKind { 604 MRK_Invalid, 605 MRK_UIntMin, 606 MRK_UIntMax, 607 MRK_SIntMin, 608 MRK_SIntMax, 609 MRK_FloatMin, 610 MRK_FloatMax 611 }; 612 613 /// This struct holds information about reduction variables. 614 struct ReductionDescriptor { 615 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 616 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 617 618 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 619 MinMaxReductionKind MK) 620 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 621 622 // The starting value of the reduction. 623 // It does not have to be zero! 624 TrackingVH<Value> StartValue; 625 // The instruction who's value is used outside the loop. 626 Instruction *LoopExitInstr; 627 // The kind of the reduction. 628 ReductionKind Kind; 629 // If this a min/max reduction the kind of reduction. 630 MinMaxReductionKind MinMaxKind; 631 }; 632 633 /// This POD struct holds information about a potential reduction operation. 634 struct ReductionInstDesc { 635 ReductionInstDesc(bool IsRedux, Instruction *I) : 636 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 637 638 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 639 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 640 641 // Is this instruction a reduction candidate. 642 bool IsReduction; 643 // The last instruction in a min/max pattern (select of the select(icmp()) 644 // pattern), or the current reduction instruction otherwise. 645 Instruction *PatternLastInst; 646 // If this is a min/max pattern the comparison predicate. 647 MinMaxReductionKind MinMaxKind; 648 }; 649 650 /// This struct holds information about the memory runtime legality 651 /// check that a group of pointers do not overlap. 652 struct RuntimePointerCheck { 653 RuntimePointerCheck() : Need(false) {} 654 655 /// Reset the state of the pointer runtime information. 656 void reset() { 657 Need = false; 658 Pointers.clear(); 659 Starts.clear(); 660 Ends.clear(); 661 IsWritePtr.clear(); 662 DependencySetId.clear(); 663 AliasSetId.clear(); 664 } 665 666 /// Insert a pointer and calculate the start and end SCEVs. 667 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 668 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 669 670 /// This flag indicates if we need to add the runtime check. 671 bool Need; 672 /// Holds the pointers that we need to check. 673 SmallVector<TrackingVH<Value>, 2> Pointers; 674 /// Holds the pointer value at the beginning of the loop. 675 SmallVector<const SCEV*, 2> Starts; 676 /// Holds the pointer value at the end of the loop. 677 SmallVector<const SCEV*, 2> Ends; 678 /// Holds the information if this pointer is used for writing to memory. 679 SmallVector<bool, 2> IsWritePtr; 680 /// Holds the id of the set of pointers that could be dependent because of a 681 /// shared underlying object. 682 SmallVector<unsigned, 2> DependencySetId; 683 /// Holds the id of the disjoint alias set to which this pointer belongs. 684 SmallVector<unsigned, 2> AliasSetId; 685 }; 686 687 /// A struct for saving information about induction variables. 688 struct InductionInfo { 689 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 690 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 691 /// Start value. 692 TrackingVH<Value> StartValue; 693 /// Induction kind. 694 InductionKind IK; 695 }; 696 697 /// ReductionList contains the reduction descriptors for all 698 /// of the reductions that were found in the loop. 699 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 700 701 /// InductionList saves induction variables and maps them to the 702 /// induction descriptor. 703 typedef MapVector<PHINode*, InductionInfo> InductionList; 704 705 /// Returns true if it is legal to vectorize this loop. 706 /// This does not mean that it is profitable to vectorize this 707 /// loop, only that it is legal to do so. 708 bool canVectorize(); 709 710 /// Returns the Induction variable. 711 PHINode *getInduction() { return Induction; } 712 713 /// Returns the reduction variables found in the loop. 714 ReductionList *getReductionVars() { return &Reductions; } 715 716 /// Returns the induction variables found in the loop. 717 InductionList *getInductionVars() { return &Inductions; } 718 719 /// Returns the widest induction type. 720 Type *getWidestInductionType() { return WidestIndTy; } 721 722 /// Returns True if V is an induction variable in this loop. 723 bool isInductionVariable(const Value *V); 724 725 /// Return true if the block BB needs to be predicated in order for the loop 726 /// to be vectorized. 727 bool blockNeedsPredication(BasicBlock *BB); 728 729 /// Check if this pointer is consecutive when vectorizing. This happens 730 /// when the last index of the GEP is the induction variable, or that the 731 /// pointer itself is an induction variable. 732 /// This check allows us to vectorize A[idx] into a wide load/store. 733 /// Returns: 734 /// 0 - Stride is unknown or non-consecutive. 735 /// 1 - Address is consecutive. 736 /// -1 - Address is consecutive, and decreasing. 737 int isConsecutivePtr(Value *Ptr); 738 739 /// Returns true if the value V is uniform within the loop. 740 bool isUniform(Value *V); 741 742 /// Returns true if this instruction will remain scalar after vectorization. 743 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 744 745 /// Returns the information that we collected about runtime memory check. 746 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 747 748 /// This function returns the identity element (or neutral element) for 749 /// the operation K. 750 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 751 752 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 753 754 bool hasStride(Value *V) { return StrideSet.count(V); } 755 bool mustCheckStrides() { return !StrideSet.empty(); } 756 SmallPtrSet<Value *, 8>::iterator strides_begin() { 757 return StrideSet.begin(); 758 } 759 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 760 761 private: 762 /// Check if a single basic block loop is vectorizable. 763 /// At this point we know that this is a loop with a constant trip count 764 /// and we only need to check individual instructions. 765 bool canVectorizeInstrs(); 766 767 /// When we vectorize loops we may change the order in which 768 /// we read and write from memory. This method checks if it is 769 /// legal to vectorize the code, considering only memory constrains. 770 /// Returns true if the loop is vectorizable 771 bool canVectorizeMemory(); 772 773 /// Return true if we can vectorize this loop using the IF-conversion 774 /// transformation. 775 bool canVectorizeWithIfConvert(); 776 777 /// Collect the variables that need to stay uniform after vectorization. 778 void collectLoopUniforms(); 779 780 /// Return true if all of the instructions in the block can be speculatively 781 /// executed. \p SafePtrs is a list of addresses that are known to be legal 782 /// and we know that we can read from them without segfault. 783 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 784 785 /// Returns True, if 'Phi' is the kind of reduction variable for type 786 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 787 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 788 /// Returns a struct describing if the instruction 'I' can be a reduction 789 /// variable of type 'Kind'. If the reduction is a min/max pattern of 790 /// select(icmp()) this function advances the instruction pointer 'I' from the 791 /// compare instruction to the select instruction and stores this pointer in 792 /// 'PatternLastInst' member of the returned struct. 793 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 794 ReductionInstDesc &Desc); 795 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 796 /// pattern corresponding to a min(X, Y) or max(X, Y). 797 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 798 ReductionInstDesc &Prev); 799 /// Returns the induction kind of Phi. This function may return NoInduction 800 /// if the PHI is not an induction variable. 801 InductionKind isInductionVariable(PHINode *Phi); 802 803 /// \brief Collect memory access with loop invariant strides. 804 /// 805 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 806 /// invariant. 807 void collectStridedAcccess(Value *LoadOrStoreInst); 808 809 /// Report an analysis message to assist the user in diagnosing loops that are 810 /// not vectorized. 811 void emitAnalysis(Report &Message) { 812 DebugLoc DL = TheLoop->getStartLoc(); 813 if (Instruction *I = Message.getInstr()) 814 DL = I->getDebugLoc(); 815 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 816 *TheFunction, DL, Message.str()); 817 } 818 819 /// The loop that we evaluate. 820 Loop *TheLoop; 821 /// Scev analysis. 822 ScalarEvolution *SE; 823 /// DataLayout analysis. 824 const DataLayout *DL; 825 /// Dominators. 826 DominatorTree *DT; 827 /// Target Library Info. 828 TargetLibraryInfo *TLI; 829 /// Alias analysis. 830 AliasAnalysis *AA; 831 /// Parent function 832 Function *TheFunction; 833 834 // --- vectorization state --- // 835 836 /// Holds the integer induction variable. This is the counter of the 837 /// loop. 838 PHINode *Induction; 839 /// Holds the reduction variables. 840 ReductionList Reductions; 841 /// Holds all of the induction variables that we found in the loop. 842 /// Notice that inductions don't need to start at zero and that induction 843 /// variables can be pointers. 844 InductionList Inductions; 845 /// Holds the widest induction type encountered. 846 Type *WidestIndTy; 847 848 /// Allowed outside users. This holds the reduction 849 /// vars which can be accessed from outside the loop. 850 SmallPtrSet<Value*, 4> AllowedExit; 851 /// This set holds the variables which are known to be uniform after 852 /// vectorization. 853 SmallPtrSet<Instruction*, 4> Uniforms; 854 /// We need to check that all of the pointers in this list are disjoint 855 /// at runtime. 856 RuntimePointerCheck PtrRtCheck; 857 /// Can we assume the absence of NaNs. 858 bool HasFunNoNaNAttr; 859 860 unsigned MaxSafeDepDistBytes; 861 862 ValueToValueMap Strides; 863 SmallPtrSet<Value *, 8> StrideSet; 864 }; 865 866 /// LoopVectorizationCostModel - estimates the expected speedups due to 867 /// vectorization. 868 /// In many cases vectorization is not profitable. This can happen because of 869 /// a number of reasons. In this class we mainly attempt to predict the 870 /// expected speedup/slowdowns due to the supported instruction set. We use the 871 /// TargetTransformInfo to query the different backends for the cost of 872 /// different operations. 873 class LoopVectorizationCostModel { 874 public: 875 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 876 LoopVectorizationLegality *Legal, 877 const TargetTransformInfo &TTI, 878 const DataLayout *DL, const TargetLibraryInfo *TLI) 879 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 880 881 /// Information about vectorization costs 882 struct VectorizationFactor { 883 unsigned Width; // Vector width with best cost 884 unsigned Cost; // Cost of the loop with that width 885 }; 886 /// \return The most profitable vectorization factor and the cost of that VF. 887 /// This method checks every power of two up to VF. If UserVF is not ZERO 888 /// then this vectorization factor will be selected if vectorization is 889 /// possible. 890 VectorizationFactor selectVectorizationFactor(bool OptForSize, 891 unsigned UserVF, 892 bool ForceVectorization); 893 894 /// \return The size (in bits) of the widest type in the code that 895 /// needs to be vectorized. We ignore values that remain scalar such as 896 /// 64 bit loop indices. 897 unsigned getWidestType(); 898 899 /// \return The most profitable unroll factor. 900 /// If UserUF is non-zero then this method finds the best unroll-factor 901 /// based on register pressure and other parameters. 902 /// VF and LoopCost are the selected vectorization factor and the cost of the 903 /// selected VF. 904 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 905 unsigned LoopCost); 906 907 /// \brief A struct that represents some properties of the register usage 908 /// of a loop. 909 struct RegisterUsage { 910 /// Holds the number of loop invariant values that are used in the loop. 911 unsigned LoopInvariantRegs; 912 /// Holds the maximum number of concurrent live intervals in the loop. 913 unsigned MaxLocalUsers; 914 /// Holds the number of instructions in the loop. 915 unsigned NumInstructions; 916 }; 917 918 /// \return information about the register usage of the loop. 919 RegisterUsage calculateRegisterUsage(); 920 921 private: 922 /// Returns the expected execution cost. The unit of the cost does 923 /// not matter because we use the 'cost' units to compare different 924 /// vector widths. The cost that is returned is *not* normalized by 925 /// the factor width. 926 unsigned expectedCost(unsigned VF); 927 928 /// Returns the execution time cost of an instruction for a given vector 929 /// width. Vector width of one means scalar. 930 unsigned getInstructionCost(Instruction *I, unsigned VF); 931 932 /// A helper function for converting Scalar types to vector types. 933 /// If the incoming type is void, we return void. If the VF is 1, we return 934 /// the scalar type. 935 static Type* ToVectorTy(Type *Scalar, unsigned VF); 936 937 /// Returns whether the instruction is a load or store and will be a emitted 938 /// as a vector operation. 939 bool isConsecutiveLoadOrStore(Instruction *I); 940 941 /// The loop that we evaluate. 942 Loop *TheLoop; 943 /// Scev analysis. 944 ScalarEvolution *SE; 945 /// Loop Info analysis. 946 LoopInfo *LI; 947 /// Vectorization legality. 948 LoopVectorizationLegality *Legal; 949 /// Vector target information. 950 const TargetTransformInfo &TTI; 951 /// Target data layout information. 952 const DataLayout *DL; 953 /// Target Library Info. 954 const TargetLibraryInfo *TLI; 955 }; 956 957 /// Utility class for getting and setting loop vectorizer hints in the form 958 /// of loop metadata. 959 class LoopVectorizeHints { 960 public: 961 enum ForceKind { 962 FK_Undefined = -1, ///< Not selected. 963 FK_Disabled = 0, ///< Forcing disabled. 964 FK_Enabled = 1, ///< Forcing enabled. 965 }; 966 967 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 968 : Width(VectorizationFactor), 969 Unroll(DisableUnrolling), 970 Force(FK_Undefined), 971 LoopID(L->getLoopID()) { 972 getHints(L); 973 // force-vector-unroll overrides DisableUnrolling. 974 if (VectorizationUnroll.getNumOccurrences() > 0) 975 Unroll = VectorizationUnroll; 976 977 DEBUG(if (DisableUnrolling && Unroll == 1) dbgs() 978 << "LV: Unrolling disabled by the pass manager\n"); 979 } 980 981 /// Return the loop metadata prefix. 982 static StringRef Prefix() { return "llvm.loop."; } 983 984 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const { 985 SmallVector<Value*, 2> Vals; 986 Vals.push_back(MDString::get(Context, Name)); 987 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 988 return MDNode::get(Context, Vals); 989 } 990 991 /// Mark the loop L as already vectorized by setting the width to 1. 992 void setAlreadyVectorized(Loop *L) { 993 LLVMContext &Context = L->getHeader()->getContext(); 994 995 Width = 1; 996 997 // Create a new loop id with one more operand for the already_vectorized 998 // hint. If the loop already has a loop id then copy the existing operands. 999 SmallVector<Value*, 4> Vals(1); 1000 if (LoopID) 1001 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 1002 Vals.push_back(LoopID->getOperand(i)); 1003 1004 Vals.push_back( 1005 createHint(Context, Twine(Prefix(), "vectorize.width").str(), Width)); 1006 Vals.push_back( 1007 createHint(Context, Twine(Prefix(), "interleave.count").str(), 1)); 1008 1009 MDNode *NewLoopID = MDNode::get(Context, Vals); 1010 // Set operand 0 to refer to the loop id itself. 1011 NewLoopID->replaceOperandWith(0, NewLoopID); 1012 1013 L->setLoopID(NewLoopID); 1014 if (LoopID) 1015 LoopID->replaceAllUsesWith(NewLoopID); 1016 1017 LoopID = NewLoopID; 1018 } 1019 1020 std::string emitRemark() const { 1021 Report R; 1022 R << "vectorization "; 1023 switch (Force) { 1024 case LoopVectorizeHints::FK_Disabled: 1025 R << "is explicitly disabled"; 1026 break; 1027 case LoopVectorizeHints::FK_Enabled: 1028 R << "is explicitly enabled"; 1029 if (Width != 0 && Unroll != 0) 1030 R << " with width " << Width << " and interleave count " << Unroll; 1031 else if (Width != 0) 1032 R << " with width " << Width; 1033 else if (Unroll != 0) 1034 R << " with interleave count " << Unroll; 1035 break; 1036 case LoopVectorizeHints::FK_Undefined: 1037 R << "was not specified"; 1038 break; 1039 } 1040 return R.str(); 1041 } 1042 1043 unsigned getWidth() const { return Width; } 1044 unsigned getUnroll() const { return Unroll; } 1045 enum ForceKind getForce() const { return Force; } 1046 MDNode *getLoopID() const { return LoopID; } 1047 1048 private: 1049 /// Find hints specified in the loop metadata. 1050 void getHints(const Loop *L) { 1051 if (!LoopID) 1052 return; 1053 1054 // First operand should refer to the loop id itself. 1055 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1056 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1057 1058 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1059 const MDString *S = nullptr; 1060 SmallVector<Value*, 4> Args; 1061 1062 // The expected hint is either a MDString or a MDNode with the first 1063 // operand a MDString. 1064 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1065 if (!MD || MD->getNumOperands() == 0) 1066 continue; 1067 S = dyn_cast<MDString>(MD->getOperand(0)); 1068 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1069 Args.push_back(MD->getOperand(i)); 1070 } else { 1071 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1072 assert(Args.size() == 0 && "too many arguments for MDString"); 1073 } 1074 1075 if (!S) 1076 continue; 1077 1078 // Check if the hint starts with the loop metadata prefix. 1079 StringRef Hint = S->getString(); 1080 if (!Hint.startswith(Prefix())) 1081 continue; 1082 // Remove the prefix. 1083 Hint = Hint.substr(Prefix().size(), StringRef::npos); 1084 1085 if (Args.size() == 1) 1086 getHint(Hint, Args[0]); 1087 } 1088 } 1089 1090 // Check string hint with one operand. 1091 void getHint(StringRef Hint, Value *Arg) { 1092 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 1093 if (!C) return; 1094 unsigned Val = C->getZExtValue(); 1095 1096 if (Hint == "vectorize.width") { 1097 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 1098 Width = Val; 1099 else 1100 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 1101 } else if (Hint == "vectorize.enable") { 1102 if (C->getBitWidth() == 1) 1103 Force = Val == 1 ? LoopVectorizeHints::FK_Enabled 1104 : LoopVectorizeHints::FK_Disabled; 1105 else 1106 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 1107 } else if (Hint == "interleave.count") { 1108 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 1109 Unroll = Val; 1110 else 1111 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 1112 } else { 1113 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 1114 } 1115 } 1116 1117 /// Vectorization width. 1118 unsigned Width; 1119 /// Vectorization unroll factor. 1120 unsigned Unroll; 1121 /// Vectorization forced 1122 enum ForceKind Force; 1123 1124 MDNode *LoopID; 1125 }; 1126 1127 static void emitMissedWarning(Function *F, Loop *L, 1128 const LoopVectorizeHints &LH) { 1129 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1130 L->getStartLoc(), LH.emitRemark()); 1131 1132 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1133 if (LH.getWidth() != 1) 1134 emitLoopVectorizeWarning( 1135 F->getContext(), *F, L->getStartLoc(), 1136 "failed explicitly specified loop vectorization"); 1137 else if (LH.getUnroll() != 1) 1138 emitLoopInterleaveWarning( 1139 F->getContext(), *F, L->getStartLoc(), 1140 "failed explicitly specified loop interleaving"); 1141 } 1142 } 1143 1144 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1145 if (L.empty()) 1146 return V.push_back(&L); 1147 1148 for (Loop *InnerL : L) 1149 addInnerLoop(*InnerL, V); 1150 } 1151 1152 /// The LoopVectorize Pass. 1153 struct LoopVectorize : public FunctionPass { 1154 /// Pass identification, replacement for typeid 1155 static char ID; 1156 1157 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1158 : FunctionPass(ID), 1159 DisableUnrolling(NoUnrolling), 1160 AlwaysVectorize(AlwaysVectorize) { 1161 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1162 } 1163 1164 ScalarEvolution *SE; 1165 const DataLayout *DL; 1166 LoopInfo *LI; 1167 TargetTransformInfo *TTI; 1168 DominatorTree *DT; 1169 BlockFrequencyInfo *BFI; 1170 TargetLibraryInfo *TLI; 1171 AliasAnalysis *AA; 1172 bool DisableUnrolling; 1173 bool AlwaysVectorize; 1174 1175 BlockFrequency ColdEntryFreq; 1176 1177 bool runOnFunction(Function &F) override { 1178 SE = &getAnalysis<ScalarEvolution>(); 1179 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1180 DL = DLP ? &DLP->getDataLayout() : nullptr; 1181 LI = &getAnalysis<LoopInfo>(); 1182 TTI = &getAnalysis<TargetTransformInfo>(); 1183 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1184 BFI = &getAnalysis<BlockFrequencyInfo>(); 1185 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1186 AA = &getAnalysis<AliasAnalysis>(); 1187 1188 // Compute some weights outside of the loop over the loops. Compute this 1189 // using a BranchProbability to re-use its scaling math. 1190 const BranchProbability ColdProb(1, 5); // 20% 1191 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1192 1193 // If the target claims to have no vector registers don't attempt 1194 // vectorization. 1195 if (!TTI->getNumberOfRegisters(true)) 1196 return false; 1197 1198 if (!DL) { 1199 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1200 << ": Missing data layout\n"); 1201 return false; 1202 } 1203 1204 // Build up a worklist of inner-loops to vectorize. This is necessary as 1205 // the act of vectorizing or partially unrolling a loop creates new loops 1206 // and can invalidate iterators across the loops. 1207 SmallVector<Loop *, 8> Worklist; 1208 1209 for (Loop *L : *LI) 1210 addInnerLoop(*L, Worklist); 1211 1212 LoopsAnalyzed += Worklist.size(); 1213 1214 // Now walk the identified inner loops. 1215 bool Changed = false; 1216 while (!Worklist.empty()) 1217 Changed |= processLoop(Worklist.pop_back_val()); 1218 1219 // Process each loop nest in the function. 1220 return Changed; 1221 } 1222 1223 bool processLoop(Loop *L) { 1224 assert(L->empty() && "Only process inner loops."); 1225 1226 #ifndef NDEBUG 1227 const std::string DebugLocStr = getDebugLocString(L); 1228 #endif /* NDEBUG */ 1229 1230 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1231 << L->getHeader()->getParent()->getName() << "\" from " 1232 << DebugLocStr << "\n"); 1233 1234 LoopVectorizeHints Hints(L, DisableUnrolling); 1235 1236 DEBUG(dbgs() << "LV: Loop hints:" 1237 << " force=" 1238 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1239 ? "disabled" 1240 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1241 ? "enabled" 1242 : "?")) << " width=" << Hints.getWidth() 1243 << " unroll=" << Hints.getUnroll() << "\n"); 1244 1245 // Function containing loop 1246 Function *F = L->getHeader()->getParent(); 1247 1248 // Looking at the diagnostic output is the only way to determine if a loop 1249 // was vectorized (other than looking at the IR or machine code), so it 1250 // is important to generate an optimization remark for each loop. Most of 1251 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1252 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1253 // less verbose reporting vectorized loops and unvectorized loops that may 1254 // benefit from vectorization, respectively. 1255 1256 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1257 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1258 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1259 L->getStartLoc(), Hints.emitRemark()); 1260 return false; 1261 } 1262 1263 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1264 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1265 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1266 L->getStartLoc(), Hints.emitRemark()); 1267 return false; 1268 } 1269 1270 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) { 1271 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1272 emitOptimizationRemarkAnalysis( 1273 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1274 "loop not vectorized: vector width and interleave count are " 1275 "explicitly set to 1"); 1276 return false; 1277 } 1278 1279 // Check the loop for a trip count threshold: 1280 // do not vectorize loops with a tiny trip count. 1281 BasicBlock *Latch = L->getLoopLatch(); 1282 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 1283 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1284 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1285 << "This loop is not worth vectorizing."); 1286 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1287 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1288 else { 1289 DEBUG(dbgs() << "\n"); 1290 emitOptimizationRemarkAnalysis( 1291 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1292 "vectorization is not beneficial and is not explicitly forced"); 1293 return false; 1294 } 1295 } 1296 1297 // Check if it is legal to vectorize the loop. 1298 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F); 1299 if (!LVL.canVectorize()) { 1300 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1301 emitMissedWarning(F, L, Hints); 1302 return false; 1303 } 1304 1305 // Use the cost model. 1306 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 1307 1308 // Check the function attributes to find out if this function should be 1309 // optimized for size. 1310 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1311 F->hasFnAttribute(Attribute::OptimizeForSize); 1312 1313 // Compute the weighted frequency of this loop being executed and see if it 1314 // is less than 20% of the function entry baseline frequency. Note that we 1315 // always have a canonical loop here because we think we *can* vectoriez. 1316 // FIXME: This is hidden behind a flag due to pervasive problems with 1317 // exactly what block frequency models. 1318 if (LoopVectorizeWithBlockFrequency) { 1319 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1320 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1321 LoopEntryFreq < ColdEntryFreq) 1322 OptForSize = true; 1323 } 1324 1325 // Check the function attributes to see if implicit floats are allowed.a 1326 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1327 // an integer loop and the vector instructions selected are purely integer 1328 // vector instructions? 1329 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1330 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1331 "attribute is used.\n"); 1332 emitOptimizationRemarkAnalysis( 1333 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1334 "loop not vectorized due to NoImplicitFloat attribute"); 1335 emitMissedWarning(F, L, Hints); 1336 return false; 1337 } 1338 1339 // Select the optimal vectorization factor. 1340 const LoopVectorizationCostModel::VectorizationFactor VF = 1341 CM.selectVectorizationFactor(OptForSize, Hints.getWidth(), 1342 Hints.getForce() == 1343 LoopVectorizeHints::FK_Enabled); 1344 1345 // Select the unroll factor. 1346 const unsigned UF = 1347 CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost); 1348 1349 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1350 << DebugLocStr << '\n'); 1351 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1352 1353 if (VF.Width == 1) { 1354 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1355 1356 if (UF == 1) { 1357 emitOptimizationRemarkAnalysis( 1358 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1359 "not beneficial to vectorize and user disabled interleaving"); 1360 return false; 1361 } 1362 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1363 1364 // Report the unrolling decision. 1365 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1366 Twine("unrolled with interleaving factor " + 1367 Twine(UF) + 1368 " (vectorization not beneficial)")); 1369 1370 // We decided not to vectorize, but we may want to unroll. 1371 1372 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1373 Unroller.vectorize(&LVL); 1374 } else { 1375 // If we decided that it is *legal* to vectorize the loop then do it. 1376 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1377 LB.vectorize(&LVL); 1378 ++LoopsVectorized; 1379 1380 // Report the vectorization decision. 1381 emitOptimizationRemark( 1382 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1383 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1384 ", unrolling interleave factor: " + Twine(UF) + ")"); 1385 } 1386 1387 // Mark the loop as already vectorized to avoid vectorizing again. 1388 Hints.setAlreadyVectorized(L); 1389 1390 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1391 return true; 1392 } 1393 1394 void getAnalysisUsage(AnalysisUsage &AU) const override { 1395 AU.addRequiredID(LoopSimplifyID); 1396 AU.addRequiredID(LCSSAID); 1397 AU.addRequired<BlockFrequencyInfo>(); 1398 AU.addRequired<DominatorTreeWrapperPass>(); 1399 AU.addRequired<LoopInfo>(); 1400 AU.addRequired<ScalarEvolution>(); 1401 AU.addRequired<TargetTransformInfo>(); 1402 AU.addRequired<AliasAnalysis>(); 1403 AU.addPreserved<LoopInfo>(); 1404 AU.addPreserved<DominatorTreeWrapperPass>(); 1405 AU.addPreserved<AliasAnalysis>(); 1406 } 1407 1408 }; 1409 1410 } // end anonymous namespace 1411 1412 //===----------------------------------------------------------------------===// 1413 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1414 // LoopVectorizationCostModel. 1415 //===----------------------------------------------------------------------===// 1416 1417 static Value *stripIntegerCast(Value *V) { 1418 if (CastInst *CI = dyn_cast<CastInst>(V)) 1419 if (CI->getOperand(0)->getType()->isIntegerTy()) 1420 return CI->getOperand(0); 1421 return V; 1422 } 1423 1424 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1425 /// 1426 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1427 /// \p Ptr. 1428 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1429 ValueToValueMap &PtrToStride, 1430 Value *Ptr, Value *OrigPtr = nullptr) { 1431 1432 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1433 1434 // If there is an entry in the map return the SCEV of the pointer with the 1435 // symbolic stride replaced by one. 1436 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1437 if (SI != PtrToStride.end()) { 1438 Value *StrideVal = SI->second; 1439 1440 // Strip casts. 1441 StrideVal = stripIntegerCast(StrideVal); 1442 1443 // Replace symbolic stride by one. 1444 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1445 ValueToValueMap RewriteMap; 1446 RewriteMap[StrideVal] = One; 1447 1448 const SCEV *ByOne = 1449 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1450 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1451 << "\n"); 1452 return ByOne; 1453 } 1454 1455 // Otherwise, just return the SCEV of the original pointer. 1456 return SE->getSCEV(Ptr); 1457 } 1458 1459 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1460 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1461 unsigned ASId, ValueToValueMap &Strides) { 1462 // Get the stride replaced scev. 1463 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1464 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1465 assert(AR && "Invalid addrec expression"); 1466 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1467 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1468 Pointers.push_back(Ptr); 1469 Starts.push_back(AR->getStart()); 1470 Ends.push_back(ScEnd); 1471 IsWritePtr.push_back(WritePtr); 1472 DependencySetId.push_back(DepSetId); 1473 AliasSetId.push_back(ASId); 1474 } 1475 1476 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1477 // We need to place the broadcast of invariant variables outside the loop. 1478 Instruction *Instr = dyn_cast<Instruction>(V); 1479 bool NewInstr = 1480 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1481 Instr->getParent()) != LoopVectorBody.end()); 1482 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1483 1484 // Place the code for broadcasting invariant variables in the new preheader. 1485 IRBuilder<>::InsertPointGuard Guard(Builder); 1486 if (Invariant) 1487 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1488 1489 // Broadcast the scalar into all locations in the vector. 1490 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1491 1492 return Shuf; 1493 } 1494 1495 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1496 bool Negate) { 1497 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1498 assert(Val->getType()->getScalarType()->isIntegerTy() && 1499 "Elem must be an integer"); 1500 // Create the types. 1501 Type *ITy = Val->getType()->getScalarType(); 1502 VectorType *Ty = cast<VectorType>(Val->getType()); 1503 int VLen = Ty->getNumElements(); 1504 SmallVector<Constant*, 8> Indices; 1505 1506 // Create a vector of consecutive numbers from zero to VF. 1507 for (int i = 0; i < VLen; ++i) { 1508 int64_t Idx = Negate ? (-i) : i; 1509 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1510 } 1511 1512 // Add the consecutive indices to the vector value. 1513 Constant *Cv = ConstantVector::get(Indices); 1514 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1515 return Builder.CreateAdd(Val, Cv, "induction"); 1516 } 1517 1518 /// \brief Find the operand of the GEP that should be checked for consecutive 1519 /// stores. This ignores trailing indices that have no effect on the final 1520 /// pointer. 1521 static unsigned getGEPInductionOperand(const DataLayout *DL, 1522 const GetElementPtrInst *Gep) { 1523 unsigned LastOperand = Gep->getNumOperands() - 1; 1524 unsigned GEPAllocSize = DL->getTypeAllocSize( 1525 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1526 1527 // Walk backwards and try to peel off zeros. 1528 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1529 // Find the type we're currently indexing into. 1530 gep_type_iterator GEPTI = gep_type_begin(Gep); 1531 std::advance(GEPTI, LastOperand - 1); 1532 1533 // If it's a type with the same allocation size as the result of the GEP we 1534 // can peel off the zero index. 1535 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1536 break; 1537 --LastOperand; 1538 } 1539 1540 return LastOperand; 1541 } 1542 1543 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1544 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1545 // Make sure that the pointer does not point to structs. 1546 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1547 return 0; 1548 1549 // If this value is a pointer induction variable we know it is consecutive. 1550 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1551 if (Phi && Inductions.count(Phi)) { 1552 InductionInfo II = Inductions[Phi]; 1553 if (IK_PtrInduction == II.IK) 1554 return 1; 1555 else if (IK_ReversePtrInduction == II.IK) 1556 return -1; 1557 } 1558 1559 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1560 if (!Gep) 1561 return 0; 1562 1563 unsigned NumOperands = Gep->getNumOperands(); 1564 Value *GpPtr = Gep->getPointerOperand(); 1565 // If this GEP value is a consecutive pointer induction variable and all of 1566 // the indices are constant then we know it is consecutive. We can 1567 Phi = dyn_cast<PHINode>(GpPtr); 1568 if (Phi && Inductions.count(Phi)) { 1569 1570 // Make sure that the pointer does not point to structs. 1571 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1572 if (GepPtrType->getElementType()->isAggregateType()) 1573 return 0; 1574 1575 // Make sure that all of the index operands are loop invariant. 1576 for (unsigned i = 1; i < NumOperands; ++i) 1577 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1578 return 0; 1579 1580 InductionInfo II = Inductions[Phi]; 1581 if (IK_PtrInduction == II.IK) 1582 return 1; 1583 else if (IK_ReversePtrInduction == II.IK) 1584 return -1; 1585 } 1586 1587 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1588 1589 // Check that all of the gep indices are uniform except for our induction 1590 // operand. 1591 for (unsigned i = 0; i != NumOperands; ++i) 1592 if (i != InductionOperand && 1593 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1594 return 0; 1595 1596 // We can emit wide load/stores only if the last non-zero index is the 1597 // induction variable. 1598 const SCEV *Last = nullptr; 1599 if (!Strides.count(Gep)) 1600 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1601 else { 1602 // Because of the multiplication by a stride we can have a s/zext cast. 1603 // We are going to replace this stride by 1 so the cast is safe to ignore. 1604 // 1605 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1606 // %0 = trunc i64 %indvars.iv to i32 1607 // %mul = mul i32 %0, %Stride1 1608 // %idxprom = zext i32 %mul to i64 << Safe cast. 1609 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1610 // 1611 Last = replaceSymbolicStrideSCEV(SE, Strides, 1612 Gep->getOperand(InductionOperand), Gep); 1613 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1614 Last = 1615 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1616 ? C->getOperand() 1617 : Last; 1618 } 1619 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1620 const SCEV *Step = AR->getStepRecurrence(*SE); 1621 1622 // The memory is consecutive because the last index is consecutive 1623 // and all other indices are loop invariant. 1624 if (Step->isOne()) 1625 return 1; 1626 if (Step->isAllOnesValue()) 1627 return -1; 1628 } 1629 1630 return 0; 1631 } 1632 1633 bool LoopVectorizationLegality::isUniform(Value *V) { 1634 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1635 } 1636 1637 InnerLoopVectorizer::VectorParts& 1638 InnerLoopVectorizer::getVectorValue(Value *V) { 1639 assert(V != Induction && "The new induction variable should not be used."); 1640 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1641 1642 // If we have a stride that is replaced by one, do it here. 1643 if (Legal->hasStride(V)) 1644 V = ConstantInt::get(V->getType(), 1); 1645 1646 // If we have this scalar in the map, return it. 1647 if (WidenMap.has(V)) 1648 return WidenMap.get(V); 1649 1650 // If this scalar is unknown, assume that it is a constant or that it is 1651 // loop invariant. Broadcast V and save the value for future uses. 1652 Value *B = getBroadcastInstrs(V); 1653 return WidenMap.splat(V, B); 1654 } 1655 1656 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1657 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1658 SmallVector<Constant*, 8> ShuffleMask; 1659 for (unsigned i = 0; i < VF; ++i) 1660 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1661 1662 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1663 ConstantVector::get(ShuffleMask), 1664 "reverse"); 1665 } 1666 1667 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1668 // Attempt to issue a wide load. 1669 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1670 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1671 1672 assert((LI || SI) && "Invalid Load/Store instruction"); 1673 1674 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1675 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1676 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1677 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1678 // An alignment of 0 means target abi alignment. We need to use the scalar's 1679 // target abi alignment in such a case. 1680 if (!Alignment) 1681 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1682 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1683 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1684 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1685 1686 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1687 return scalarizeInstruction(Instr, true); 1688 1689 if (ScalarAllocatedSize != VectorElementSize) 1690 return scalarizeInstruction(Instr); 1691 1692 // If the pointer is loop invariant or if it is non-consecutive, 1693 // scalarize the load. 1694 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1695 bool Reverse = ConsecutiveStride < 0; 1696 bool UniformLoad = LI && Legal->isUniform(Ptr); 1697 if (!ConsecutiveStride || UniformLoad) 1698 return scalarizeInstruction(Instr); 1699 1700 Constant *Zero = Builder.getInt32(0); 1701 VectorParts &Entry = WidenMap.get(Instr); 1702 1703 // Handle consecutive loads/stores. 1704 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1705 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1706 setDebugLocFromInst(Builder, Gep); 1707 Value *PtrOperand = Gep->getPointerOperand(); 1708 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1709 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1710 1711 // Create the new GEP with the new induction variable. 1712 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1713 Gep2->setOperand(0, FirstBasePtr); 1714 Gep2->setName("gep.indvar.base"); 1715 Ptr = Builder.Insert(Gep2); 1716 } else if (Gep) { 1717 setDebugLocFromInst(Builder, Gep); 1718 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1719 OrigLoop) && "Base ptr must be invariant"); 1720 1721 // The last index does not have to be the induction. It can be 1722 // consecutive and be a function of the index. For example A[I+1]; 1723 unsigned NumOperands = Gep->getNumOperands(); 1724 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1725 // Create the new GEP with the new induction variable. 1726 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1727 1728 for (unsigned i = 0; i < NumOperands; ++i) { 1729 Value *GepOperand = Gep->getOperand(i); 1730 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1731 1732 // Update last index or loop invariant instruction anchored in loop. 1733 if (i == InductionOperand || 1734 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1735 assert((i == InductionOperand || 1736 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1737 "Must be last index or loop invariant"); 1738 1739 VectorParts &GEPParts = getVectorValue(GepOperand); 1740 Value *Index = GEPParts[0]; 1741 Index = Builder.CreateExtractElement(Index, Zero); 1742 Gep2->setOperand(i, Index); 1743 Gep2->setName("gep.indvar.idx"); 1744 } 1745 } 1746 Ptr = Builder.Insert(Gep2); 1747 } else { 1748 // Use the induction element ptr. 1749 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1750 setDebugLocFromInst(Builder, Ptr); 1751 VectorParts &PtrVal = getVectorValue(Ptr); 1752 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1753 } 1754 1755 // Handle Stores: 1756 if (SI) { 1757 assert(!Legal->isUniform(SI->getPointerOperand()) && 1758 "We do not allow storing to uniform addresses"); 1759 setDebugLocFromInst(Builder, SI); 1760 // We don't want to update the value in the map as it might be used in 1761 // another expression. So don't use a reference type for "StoredVal". 1762 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1763 1764 for (unsigned Part = 0; Part < UF; ++Part) { 1765 // Calculate the pointer for the specific unroll-part. 1766 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1767 1768 if (Reverse) { 1769 // If we store to reverse consecutive memory locations then we need 1770 // to reverse the order of elements in the stored value. 1771 StoredVal[Part] = reverseVector(StoredVal[Part]); 1772 // If the address is consecutive but reversed, then the 1773 // wide store needs to start at the last vector element. 1774 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1775 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1776 } 1777 1778 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1779 DataTy->getPointerTo(AddressSpace)); 1780 StoreInst *NewSI = 1781 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1782 propagateMetadata(NewSI, SI); 1783 } 1784 return; 1785 } 1786 1787 // Handle loads. 1788 assert(LI && "Must have a load instruction"); 1789 setDebugLocFromInst(Builder, LI); 1790 for (unsigned Part = 0; Part < UF; ++Part) { 1791 // Calculate the pointer for the specific unroll-part. 1792 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1793 1794 if (Reverse) { 1795 // If the address is consecutive but reversed, then the 1796 // wide store needs to start at the last vector element. 1797 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1798 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1799 } 1800 1801 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1802 DataTy->getPointerTo(AddressSpace)); 1803 LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1804 propagateMetadata(NewLI, LI); 1805 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1806 } 1807 } 1808 1809 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1810 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1811 // Holds vector parameters or scalars, in case of uniform vals. 1812 SmallVector<VectorParts, 4> Params; 1813 1814 setDebugLocFromInst(Builder, Instr); 1815 1816 // Find all of the vectorized parameters. 1817 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1818 Value *SrcOp = Instr->getOperand(op); 1819 1820 // If we are accessing the old induction variable, use the new one. 1821 if (SrcOp == OldInduction) { 1822 Params.push_back(getVectorValue(SrcOp)); 1823 continue; 1824 } 1825 1826 // Try using previously calculated values. 1827 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1828 1829 // If the src is an instruction that appeared earlier in the basic block 1830 // then it should already be vectorized. 1831 if (SrcInst && OrigLoop->contains(SrcInst)) { 1832 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1833 // The parameter is a vector value from earlier. 1834 Params.push_back(WidenMap.get(SrcInst)); 1835 } else { 1836 // The parameter is a scalar from outside the loop. Maybe even a constant. 1837 VectorParts Scalars; 1838 Scalars.append(UF, SrcOp); 1839 Params.push_back(Scalars); 1840 } 1841 } 1842 1843 assert(Params.size() == Instr->getNumOperands() && 1844 "Invalid number of operands"); 1845 1846 // Does this instruction return a value ? 1847 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1848 1849 Value *UndefVec = IsVoidRetTy ? nullptr : 1850 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1851 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1852 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1853 1854 Instruction *InsertPt = Builder.GetInsertPoint(); 1855 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1856 BasicBlock *CondBlock = nullptr; 1857 1858 VectorParts Cond; 1859 Loop *VectorLp = nullptr; 1860 if (IfPredicateStore) { 1861 assert(Instr->getParent()->getSinglePredecessor() && 1862 "Only support single predecessor blocks"); 1863 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1864 Instr->getParent()); 1865 VectorLp = LI->getLoopFor(IfBlock); 1866 assert(VectorLp && "Must have a loop for this block"); 1867 } 1868 1869 // For each vector unroll 'part': 1870 for (unsigned Part = 0; Part < UF; ++Part) { 1871 // For each scalar that we create: 1872 for (unsigned Width = 0; Width < VF; ++Width) { 1873 1874 // Start if-block. 1875 Value *Cmp = nullptr; 1876 if (IfPredicateStore) { 1877 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1878 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1879 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1880 LoopVectorBody.push_back(CondBlock); 1881 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1882 // Update Builder with newly created basic block. 1883 Builder.SetInsertPoint(InsertPt); 1884 } 1885 1886 Instruction *Cloned = Instr->clone(); 1887 if (!IsVoidRetTy) 1888 Cloned->setName(Instr->getName() + ".cloned"); 1889 // Replace the operands of the cloned instructions with extracted scalars. 1890 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1891 Value *Op = Params[op][Part]; 1892 // Param is a vector. Need to extract the right lane. 1893 if (Op->getType()->isVectorTy()) 1894 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1895 Cloned->setOperand(op, Op); 1896 } 1897 1898 // Place the cloned scalar in the new loop. 1899 Builder.Insert(Cloned); 1900 1901 // If the original scalar returns a value we need to place it in a vector 1902 // so that future users will be able to use it. 1903 if (!IsVoidRetTy) 1904 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1905 Builder.getInt32(Width)); 1906 // End if-block. 1907 if (IfPredicateStore) { 1908 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1909 LoopVectorBody.push_back(NewIfBlock); 1910 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1911 Builder.SetInsertPoint(InsertPt); 1912 Instruction *OldBr = IfBlock->getTerminator(); 1913 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1914 OldBr->eraseFromParent(); 1915 IfBlock = NewIfBlock; 1916 } 1917 } 1918 } 1919 } 1920 1921 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1922 Instruction *Loc) { 1923 if (FirstInst) 1924 return FirstInst; 1925 if (Instruction *I = dyn_cast<Instruction>(V)) 1926 return I->getParent() == Loc->getParent() ? I : nullptr; 1927 return nullptr; 1928 } 1929 1930 std::pair<Instruction *, Instruction *> 1931 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1932 Instruction *tnullptr = nullptr; 1933 if (!Legal->mustCheckStrides()) 1934 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1935 1936 IRBuilder<> ChkBuilder(Loc); 1937 1938 // Emit checks. 1939 Value *Check = nullptr; 1940 Instruction *FirstInst = nullptr; 1941 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1942 SE = Legal->strides_end(); 1943 SI != SE; ++SI) { 1944 Value *Ptr = stripIntegerCast(*SI); 1945 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1946 "stride.chk"); 1947 // Store the first instruction we create. 1948 FirstInst = getFirstInst(FirstInst, C, Loc); 1949 if (Check) 1950 Check = ChkBuilder.CreateOr(Check, C); 1951 else 1952 Check = C; 1953 } 1954 1955 // We have to do this trickery because the IRBuilder might fold the check to a 1956 // constant expression in which case there is no Instruction anchored in a 1957 // the block. 1958 LLVMContext &Ctx = Loc->getContext(); 1959 Instruction *TheCheck = 1960 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1961 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1962 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1963 1964 return std::make_pair(FirstInst, TheCheck); 1965 } 1966 1967 std::pair<Instruction *, Instruction *> 1968 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1969 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1970 Legal->getRuntimePointerCheck(); 1971 1972 Instruction *tnullptr = nullptr; 1973 if (!PtrRtCheck->Need) 1974 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1975 1976 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1977 SmallVector<TrackingVH<Value> , 2> Starts; 1978 SmallVector<TrackingVH<Value> , 2> Ends; 1979 1980 LLVMContext &Ctx = Loc->getContext(); 1981 SCEVExpander Exp(*SE, "induction"); 1982 Instruction *FirstInst = nullptr; 1983 1984 for (unsigned i = 0; i < NumPointers; ++i) { 1985 Value *Ptr = PtrRtCheck->Pointers[i]; 1986 const SCEV *Sc = SE->getSCEV(Ptr); 1987 1988 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1989 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1990 *Ptr <<"\n"); 1991 Starts.push_back(Ptr); 1992 Ends.push_back(Ptr); 1993 } else { 1994 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1995 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1996 1997 // Use this type for pointer arithmetic. 1998 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1999 2000 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2001 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2002 Starts.push_back(Start); 2003 Ends.push_back(End); 2004 } 2005 } 2006 2007 IRBuilder<> ChkBuilder(Loc); 2008 // Our instructions might fold to a constant. 2009 Value *MemoryRuntimeCheck = nullptr; 2010 for (unsigned i = 0; i < NumPointers; ++i) { 2011 for (unsigned j = i+1; j < NumPointers; ++j) { 2012 // No need to check if two readonly pointers intersect. 2013 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2014 continue; 2015 2016 // Only need to check pointers between two different dependency sets. 2017 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2018 continue; 2019 // Only need to check pointers in the same alias set. 2020 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2021 continue; 2022 2023 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2024 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2025 2026 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2027 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2028 "Trying to bounds check pointers with different address spaces"); 2029 2030 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2031 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2032 2033 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2034 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2035 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2036 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2037 2038 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2039 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2040 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2041 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2042 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2043 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2044 if (MemoryRuntimeCheck) { 2045 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2046 "conflict.rdx"); 2047 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2048 } 2049 MemoryRuntimeCheck = IsConflict; 2050 } 2051 } 2052 2053 // We have to do this trickery because the IRBuilder might fold the check to a 2054 // constant expression in which case there is no Instruction anchored in a 2055 // the block. 2056 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2057 ConstantInt::getTrue(Ctx)); 2058 ChkBuilder.Insert(Check, "memcheck.conflict"); 2059 FirstInst = getFirstInst(FirstInst, Check, Loc); 2060 return std::make_pair(FirstInst, Check); 2061 } 2062 2063 void InnerLoopVectorizer::createEmptyLoop() { 2064 /* 2065 In this function we generate a new loop. The new loop will contain 2066 the vectorized instructions while the old loop will continue to run the 2067 scalar remainder. 2068 2069 [ ] <-- Back-edge taken count overflow check. 2070 / | 2071 / v 2072 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2073 | / | 2074 | / v 2075 || [ ] <-- vector pre header. 2076 || | 2077 || v 2078 || [ ] \ 2079 || [ ]_| <-- vector loop. 2080 || | 2081 | \ v 2082 | >[ ] <--- middle-block. 2083 | / | 2084 | / v 2085 -|- >[ ] <--- new preheader. 2086 | | 2087 | v 2088 | [ ] \ 2089 | [ ]_| <-- old scalar loop to handle remainder. 2090 \ | 2091 \ v 2092 >[ ] <-- exit block. 2093 ... 2094 */ 2095 2096 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2097 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2098 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2099 assert(BypassBlock && "Invalid loop structure"); 2100 assert(ExitBlock && "Must have an exit block"); 2101 2102 // Some loops have a single integer induction variable, while other loops 2103 // don't. One example is c++ iterators that often have multiple pointer 2104 // induction variables. In the code below we also support a case where we 2105 // don't have a single induction variable. 2106 OldInduction = Legal->getInduction(); 2107 Type *IdxTy = Legal->getWidestInductionType(); 2108 2109 // Find the loop boundaries. 2110 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2111 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2112 2113 // The exit count might have the type of i64 while the phi is i32. This can 2114 // happen if we have an induction variable that is sign extended before the 2115 // compare. The only way that we get a backedge taken count is that the 2116 // induction variable was signed and as such will not overflow. In such a case 2117 // truncation is legal. 2118 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2119 IdxTy->getPrimitiveSizeInBits()) 2120 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2121 2122 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2123 // Get the total trip count from the count by adding 1. 2124 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2125 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2126 2127 // Expand the trip count and place the new instructions in the preheader. 2128 // Notice that the pre-header does not change, only the loop body. 2129 SCEVExpander Exp(*SE, "induction"); 2130 2131 // We need to test whether the backedge-taken count is uint##_max. Adding one 2132 // to it will cause overflow and an incorrect loop trip count in the vector 2133 // body. In case of overflow we want to directly jump to the scalar remainder 2134 // loop. 2135 Value *BackedgeCount = 2136 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2137 BypassBlock->getTerminator()); 2138 if (BackedgeCount->getType()->isPointerTy()) 2139 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2140 "backedge.ptrcnt.to.int", 2141 BypassBlock->getTerminator()); 2142 Instruction *CheckBCOverflow = 2143 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2144 Constant::getAllOnesValue(BackedgeCount->getType()), 2145 "backedge.overflow", BypassBlock->getTerminator()); 2146 2147 // The loop index does not have to start at Zero. Find the original start 2148 // value from the induction PHI node. If we don't have an induction variable 2149 // then we know that it starts at zero. 2150 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2151 Value *StartIdx = ExtendedIdx = OldInduction ? 2152 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2153 IdxTy): 2154 ConstantInt::get(IdxTy, 0); 2155 2156 // We need an instruction to anchor the overflow check on. StartIdx needs to 2157 // be defined before the overflow check branch. Because the scalar preheader 2158 // is going to merge the start index and so the overflow branch block needs to 2159 // contain a definition of the start index. 2160 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2161 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2162 BypassBlock->getTerminator()); 2163 2164 // Count holds the overall loop count (N). 2165 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2166 BypassBlock->getTerminator()); 2167 2168 LoopBypassBlocks.push_back(BypassBlock); 2169 2170 // Split the single block loop into the two loop structure described above. 2171 BasicBlock *VectorPH = 2172 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2173 BasicBlock *VecBody = 2174 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2175 BasicBlock *MiddleBlock = 2176 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2177 BasicBlock *ScalarPH = 2178 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2179 2180 // Create and register the new vector loop. 2181 Loop* Lp = new Loop(); 2182 Loop *ParentLoop = OrigLoop->getParentLoop(); 2183 2184 // Insert the new loop into the loop nest and register the new basic blocks 2185 // before calling any utilities such as SCEV that require valid LoopInfo. 2186 if (ParentLoop) { 2187 ParentLoop->addChildLoop(Lp); 2188 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2189 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2190 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2191 } else { 2192 LI->addTopLevelLoop(Lp); 2193 } 2194 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2195 2196 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2197 // inside the loop. 2198 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2199 2200 // Generate the induction variable. 2201 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2202 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2203 // The loop step is equal to the vectorization factor (num of SIMD elements) 2204 // times the unroll factor (num of SIMD instructions). 2205 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2206 2207 // This is the IR builder that we use to add all of the logic for bypassing 2208 // the new vector loop. 2209 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2210 setDebugLocFromInst(BypassBuilder, 2211 getDebugLocFromInstOrOperands(OldInduction)); 2212 2213 // We may need to extend the index in case there is a type mismatch. 2214 // We know that the count starts at zero and does not overflow. 2215 if (Count->getType() != IdxTy) { 2216 // The exit count can be of pointer type. Convert it to the correct 2217 // integer type. 2218 if (ExitCount->getType()->isPointerTy()) 2219 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2220 else 2221 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2222 } 2223 2224 // Add the start index to the loop count to get the new end index. 2225 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2226 2227 // Now we need to generate the expression for N - (N % VF), which is 2228 // the part that the vectorized body will execute. 2229 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2230 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2231 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2232 "end.idx.rnd.down"); 2233 2234 // Now, compare the new count to zero. If it is zero skip the vector loop and 2235 // jump to the scalar loop. 2236 Value *Cmp = 2237 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2238 2239 BasicBlock *LastBypassBlock = BypassBlock; 2240 2241 // Generate code to check that the loops trip count that we computed by adding 2242 // one to the backedge-taken count will not overflow. 2243 { 2244 auto PastOverflowCheck = 2245 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2246 BasicBlock *CheckBlock = 2247 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2248 if (ParentLoop) 2249 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2250 LoopBypassBlocks.push_back(CheckBlock); 2251 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2252 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2253 OldTerm->eraseFromParent(); 2254 LastBypassBlock = CheckBlock; 2255 } 2256 2257 // Generate the code to check that the strides we assumed to be one are really 2258 // one. We want the new basic block to start at the first instruction in a 2259 // sequence of instructions that form a check. 2260 Instruction *StrideCheck; 2261 Instruction *FirstCheckInst; 2262 std::tie(FirstCheckInst, StrideCheck) = 2263 addStrideCheck(LastBypassBlock->getTerminator()); 2264 if (StrideCheck) { 2265 // Create a new block containing the stride check. 2266 BasicBlock *CheckBlock = 2267 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2268 if (ParentLoop) 2269 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2270 LoopBypassBlocks.push_back(CheckBlock); 2271 2272 // Replace the branch into the memory check block with a conditional branch 2273 // for the "few elements case". 2274 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2275 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2276 OldTerm->eraseFromParent(); 2277 2278 Cmp = StrideCheck; 2279 LastBypassBlock = CheckBlock; 2280 } 2281 2282 // Generate the code that checks in runtime if arrays overlap. We put the 2283 // checks into a separate block to make the more common case of few elements 2284 // faster. 2285 Instruction *MemRuntimeCheck; 2286 std::tie(FirstCheckInst, MemRuntimeCheck) = 2287 addRuntimeCheck(LastBypassBlock->getTerminator()); 2288 if (MemRuntimeCheck) { 2289 // Create a new block containing the memory check. 2290 BasicBlock *CheckBlock = 2291 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2292 if (ParentLoop) 2293 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2294 LoopBypassBlocks.push_back(CheckBlock); 2295 2296 // Replace the branch into the memory check block with a conditional branch 2297 // for the "few elements case". 2298 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2299 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2300 OldTerm->eraseFromParent(); 2301 2302 Cmp = MemRuntimeCheck; 2303 LastBypassBlock = CheckBlock; 2304 } 2305 2306 LastBypassBlock->getTerminator()->eraseFromParent(); 2307 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2308 LastBypassBlock); 2309 2310 // We are going to resume the execution of the scalar loop. 2311 // Go over all of the induction variables that we found and fix the 2312 // PHIs that are left in the scalar version of the loop. 2313 // The starting values of PHI nodes depend on the counter of the last 2314 // iteration in the vectorized loop. 2315 // If we come from a bypass edge then we need to start from the original 2316 // start value. 2317 2318 // This variable saves the new starting index for the scalar loop. 2319 PHINode *ResumeIndex = nullptr; 2320 LoopVectorizationLegality::InductionList::iterator I, E; 2321 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2322 // Set builder to point to last bypass block. 2323 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2324 for (I = List->begin(), E = List->end(); I != E; ++I) { 2325 PHINode *OrigPhi = I->first; 2326 LoopVectorizationLegality::InductionInfo II = I->second; 2327 2328 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2329 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2330 MiddleBlock->getTerminator()); 2331 // We might have extended the type of the induction variable but we need a 2332 // truncated version for the scalar loop. 2333 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2334 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2335 MiddleBlock->getTerminator()) : nullptr; 2336 2337 // Create phi nodes to merge from the backedge-taken check block. 2338 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2339 ScalarPH->getTerminator()); 2340 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2341 2342 PHINode *BCTruncResumeVal = nullptr; 2343 if (OrigPhi == OldInduction) { 2344 BCTruncResumeVal = 2345 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2346 ScalarPH->getTerminator()); 2347 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2348 } 2349 2350 Value *EndValue = nullptr; 2351 switch (II.IK) { 2352 case LoopVectorizationLegality::IK_NoInduction: 2353 llvm_unreachable("Unknown induction"); 2354 case LoopVectorizationLegality::IK_IntInduction: { 2355 // Handle the integer induction counter. 2356 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2357 2358 // We have the canonical induction variable. 2359 if (OrigPhi == OldInduction) { 2360 // Create a truncated version of the resume value for the scalar loop, 2361 // we might have promoted the type to a larger width. 2362 EndValue = 2363 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2364 // The new PHI merges the original incoming value, in case of a bypass, 2365 // or the value at the end of the vectorized loop. 2366 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2367 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2368 TruncResumeVal->addIncoming(EndValue, VecBody); 2369 2370 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2371 2372 // We know what the end value is. 2373 EndValue = IdxEndRoundDown; 2374 // We also know which PHI node holds it. 2375 ResumeIndex = ResumeVal; 2376 break; 2377 } 2378 2379 // Not the canonical induction variable - add the vector loop count to the 2380 // start value. 2381 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2382 II.StartValue->getType(), 2383 "cast.crd"); 2384 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2385 break; 2386 } 2387 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2388 // Convert the CountRoundDown variable to the PHI size. 2389 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2390 II.StartValue->getType(), 2391 "cast.crd"); 2392 // Handle reverse integer induction counter. 2393 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2394 break; 2395 } 2396 case LoopVectorizationLegality::IK_PtrInduction: { 2397 // For pointer induction variables, calculate the offset using 2398 // the end index. 2399 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2400 "ptr.ind.end"); 2401 break; 2402 } 2403 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2404 // The value at the end of the loop for the reverse pointer is calculated 2405 // by creating a GEP with a negative index starting from the start value. 2406 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2407 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2408 "rev.ind.end"); 2409 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2410 "rev.ptr.ind.end"); 2411 break; 2412 } 2413 }// end of case 2414 2415 // The new PHI merges the original incoming value, in case of a bypass, 2416 // or the value at the end of the vectorized loop. 2417 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2418 if (OrigPhi == OldInduction) 2419 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2420 else 2421 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2422 } 2423 ResumeVal->addIncoming(EndValue, VecBody); 2424 2425 // Fix the scalar body counter (PHI node). 2426 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2427 2428 // The old induction's phi node in the scalar body needs the truncated 2429 // value. 2430 if (OrigPhi == OldInduction) { 2431 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2432 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2433 } else { 2434 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2435 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2436 } 2437 } 2438 2439 // If we are generating a new induction variable then we also need to 2440 // generate the code that calculates the exit value. This value is not 2441 // simply the end of the counter because we may skip the vectorized body 2442 // in case of a runtime check. 2443 if (!OldInduction){ 2444 assert(!ResumeIndex && "Unexpected resume value found"); 2445 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2446 MiddleBlock->getTerminator()); 2447 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2448 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2449 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2450 } 2451 2452 // Make sure that we found the index where scalar loop needs to continue. 2453 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2454 "Invalid resume Index"); 2455 2456 // Add a check in the middle block to see if we have completed 2457 // all of the iterations in the first vector loop. 2458 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2459 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2460 ResumeIndex, "cmp.n", 2461 MiddleBlock->getTerminator()); 2462 2463 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2464 // Remove the old terminator. 2465 MiddleBlock->getTerminator()->eraseFromParent(); 2466 2467 // Create i+1 and fill the PHINode. 2468 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2469 Induction->addIncoming(StartIdx, VectorPH); 2470 Induction->addIncoming(NextIdx, VecBody); 2471 // Create the compare. 2472 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2473 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2474 2475 // Now we have two terminators. Remove the old one from the block. 2476 VecBody->getTerminator()->eraseFromParent(); 2477 2478 // Get ready to start creating new instructions into the vectorized body. 2479 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2480 2481 // Save the state. 2482 LoopVectorPreHeader = VectorPH; 2483 LoopScalarPreHeader = ScalarPH; 2484 LoopMiddleBlock = MiddleBlock; 2485 LoopExitBlock = ExitBlock; 2486 LoopVectorBody.push_back(VecBody); 2487 LoopScalarBody = OldBasicBlock; 2488 2489 LoopVectorizeHints Hints(Lp, true); 2490 Hints.setAlreadyVectorized(Lp); 2491 } 2492 2493 /// This function returns the identity element (or neutral element) for 2494 /// the operation K. 2495 Constant* 2496 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2497 switch (K) { 2498 case RK_IntegerXor: 2499 case RK_IntegerAdd: 2500 case RK_IntegerOr: 2501 // Adding, Xoring, Oring zero to a number does not change it. 2502 return ConstantInt::get(Tp, 0); 2503 case RK_IntegerMult: 2504 // Multiplying a number by 1 does not change it. 2505 return ConstantInt::get(Tp, 1); 2506 case RK_IntegerAnd: 2507 // AND-ing a number with an all-1 value does not change it. 2508 return ConstantInt::get(Tp, -1, true); 2509 case RK_FloatMult: 2510 // Multiplying a number by 1 does not change it. 2511 return ConstantFP::get(Tp, 1.0L); 2512 case RK_FloatAdd: 2513 // Adding zero to a number does not change it. 2514 return ConstantFP::get(Tp, 0.0L); 2515 default: 2516 llvm_unreachable("Unknown reduction kind"); 2517 } 2518 } 2519 2520 /// This function translates the reduction kind to an LLVM binary operator. 2521 static unsigned 2522 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2523 switch (Kind) { 2524 case LoopVectorizationLegality::RK_IntegerAdd: 2525 return Instruction::Add; 2526 case LoopVectorizationLegality::RK_IntegerMult: 2527 return Instruction::Mul; 2528 case LoopVectorizationLegality::RK_IntegerOr: 2529 return Instruction::Or; 2530 case LoopVectorizationLegality::RK_IntegerAnd: 2531 return Instruction::And; 2532 case LoopVectorizationLegality::RK_IntegerXor: 2533 return Instruction::Xor; 2534 case LoopVectorizationLegality::RK_FloatMult: 2535 return Instruction::FMul; 2536 case LoopVectorizationLegality::RK_FloatAdd: 2537 return Instruction::FAdd; 2538 case LoopVectorizationLegality::RK_IntegerMinMax: 2539 return Instruction::ICmp; 2540 case LoopVectorizationLegality::RK_FloatMinMax: 2541 return Instruction::FCmp; 2542 default: 2543 llvm_unreachable("Unknown reduction operation"); 2544 } 2545 } 2546 2547 Value *createMinMaxOp(IRBuilder<> &Builder, 2548 LoopVectorizationLegality::MinMaxReductionKind RK, 2549 Value *Left, 2550 Value *Right) { 2551 CmpInst::Predicate P = CmpInst::ICMP_NE; 2552 switch (RK) { 2553 default: 2554 llvm_unreachable("Unknown min/max reduction kind"); 2555 case LoopVectorizationLegality::MRK_UIntMin: 2556 P = CmpInst::ICMP_ULT; 2557 break; 2558 case LoopVectorizationLegality::MRK_UIntMax: 2559 P = CmpInst::ICMP_UGT; 2560 break; 2561 case LoopVectorizationLegality::MRK_SIntMin: 2562 P = CmpInst::ICMP_SLT; 2563 break; 2564 case LoopVectorizationLegality::MRK_SIntMax: 2565 P = CmpInst::ICMP_SGT; 2566 break; 2567 case LoopVectorizationLegality::MRK_FloatMin: 2568 P = CmpInst::FCMP_OLT; 2569 break; 2570 case LoopVectorizationLegality::MRK_FloatMax: 2571 P = CmpInst::FCMP_OGT; 2572 break; 2573 } 2574 2575 Value *Cmp; 2576 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2577 RK == LoopVectorizationLegality::MRK_FloatMax) 2578 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2579 else 2580 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2581 2582 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2583 return Select; 2584 } 2585 2586 namespace { 2587 struct CSEDenseMapInfo { 2588 static bool canHandle(Instruction *I) { 2589 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2590 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2591 } 2592 static inline Instruction *getEmptyKey() { 2593 return DenseMapInfo<Instruction *>::getEmptyKey(); 2594 } 2595 static inline Instruction *getTombstoneKey() { 2596 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2597 } 2598 static unsigned getHashValue(Instruction *I) { 2599 assert(canHandle(I) && "Unknown instruction!"); 2600 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2601 I->value_op_end())); 2602 } 2603 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2604 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2605 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2606 return LHS == RHS; 2607 return LHS->isIdenticalTo(RHS); 2608 } 2609 }; 2610 } 2611 2612 /// \brief Check whether this block is a predicated block. 2613 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2614 /// = ...; " blocks. We start with one vectorized basic block. For every 2615 /// conditional block we split this vectorized block. Therefore, every second 2616 /// block will be a predicated one. 2617 static bool isPredicatedBlock(unsigned BlockNum) { 2618 return BlockNum % 2; 2619 } 2620 2621 ///\brief Perform cse of induction variable instructions. 2622 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2623 // Perform simple cse. 2624 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2625 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2626 BasicBlock *BB = BBs[i]; 2627 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2628 Instruction *In = I++; 2629 2630 if (!CSEDenseMapInfo::canHandle(In)) 2631 continue; 2632 2633 // Check if we can replace this instruction with any of the 2634 // visited instructions. 2635 if (Instruction *V = CSEMap.lookup(In)) { 2636 In->replaceAllUsesWith(V); 2637 In->eraseFromParent(); 2638 continue; 2639 } 2640 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2641 // ...;" blocks for predicated stores. Every second block is a predicated 2642 // block. 2643 if (isPredicatedBlock(i)) 2644 continue; 2645 2646 CSEMap[In] = In; 2647 } 2648 } 2649 } 2650 2651 /// \brief Adds a 'fast' flag to floating point operations. 2652 static Value *addFastMathFlag(Value *V) { 2653 if (isa<FPMathOperator>(V)){ 2654 FastMathFlags Flags; 2655 Flags.setUnsafeAlgebra(); 2656 cast<Instruction>(V)->setFastMathFlags(Flags); 2657 } 2658 return V; 2659 } 2660 2661 void InnerLoopVectorizer::vectorizeLoop() { 2662 //===------------------------------------------------===// 2663 // 2664 // Notice: any optimization or new instruction that go 2665 // into the code below should be also be implemented in 2666 // the cost-model. 2667 // 2668 //===------------------------------------------------===// 2669 Constant *Zero = Builder.getInt32(0); 2670 2671 // In order to support reduction variables we need to be able to vectorize 2672 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2673 // stages. First, we create a new vector PHI node with no incoming edges. 2674 // We use this value when we vectorize all of the instructions that use the 2675 // PHI. Next, after all of the instructions in the block are complete we 2676 // add the new incoming edges to the PHI. At this point all of the 2677 // instructions in the basic block are vectorized, so we can use them to 2678 // construct the PHI. 2679 PhiVector RdxPHIsToFix; 2680 2681 // Scan the loop in a topological order to ensure that defs are vectorized 2682 // before users. 2683 LoopBlocksDFS DFS(OrigLoop); 2684 DFS.perform(LI); 2685 2686 // Vectorize all of the blocks in the original loop. 2687 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2688 be = DFS.endRPO(); bb != be; ++bb) 2689 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2690 2691 // At this point every instruction in the original loop is widened to 2692 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2693 // that we vectorized. The PHI nodes are currently empty because we did 2694 // not want to introduce cycles. Notice that the remaining PHI nodes 2695 // that we need to fix are reduction variables. 2696 2697 // Create the 'reduced' values for each of the induction vars. 2698 // The reduced values are the vector values that we scalarize and combine 2699 // after the loop is finished. 2700 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2701 it != e; ++it) { 2702 PHINode *RdxPhi = *it; 2703 assert(RdxPhi && "Unable to recover vectorized PHI"); 2704 2705 // Find the reduction variable descriptor. 2706 assert(Legal->getReductionVars()->count(RdxPhi) && 2707 "Unable to find the reduction variable"); 2708 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2709 (*Legal->getReductionVars())[RdxPhi]; 2710 2711 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2712 2713 // We need to generate a reduction vector from the incoming scalar. 2714 // To do so, we need to generate the 'identity' vector and override 2715 // one of the elements with the incoming scalar reduction. We need 2716 // to do it in the vector-loop preheader. 2717 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2718 2719 // This is the vector-clone of the value that leaves the loop. 2720 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2721 Type *VecTy = VectorExit[0]->getType(); 2722 2723 // Find the reduction identity variable. Zero for addition, or, xor, 2724 // one for multiplication, -1 for And. 2725 Value *Identity; 2726 Value *VectorStart; 2727 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2728 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2729 // MinMax reduction have the start value as their identify. 2730 if (VF == 1) { 2731 VectorStart = Identity = RdxDesc.StartValue; 2732 } else { 2733 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2734 RdxDesc.StartValue, 2735 "minmax.ident"); 2736 } 2737 } else { 2738 // Handle other reduction kinds: 2739 Constant *Iden = 2740 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2741 VecTy->getScalarType()); 2742 if (VF == 1) { 2743 Identity = Iden; 2744 // This vector is the Identity vector where the first element is the 2745 // incoming scalar reduction. 2746 VectorStart = RdxDesc.StartValue; 2747 } else { 2748 Identity = ConstantVector::getSplat(VF, Iden); 2749 2750 // This vector is the Identity vector where the first element is the 2751 // incoming scalar reduction. 2752 VectorStart = Builder.CreateInsertElement(Identity, 2753 RdxDesc.StartValue, Zero); 2754 } 2755 } 2756 2757 // Fix the vector-loop phi. 2758 // We created the induction variable so we know that the 2759 // preheader is the first entry. 2760 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2761 2762 // Reductions do not have to start at zero. They can start with 2763 // any loop invariant values. 2764 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2765 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2766 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2767 VectorParts &Val = getVectorValue(LoopVal); 2768 for (unsigned part = 0; part < UF; ++part) { 2769 // Make sure to add the reduction stat value only to the 2770 // first unroll part. 2771 Value *StartVal = (part == 0) ? VectorStart : Identity; 2772 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2773 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2774 LoopVectorBody.back()); 2775 } 2776 2777 // Before each round, move the insertion point right between 2778 // the PHIs and the values we are going to write. 2779 // This allows us to write both PHINodes and the extractelement 2780 // instructions. 2781 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2782 2783 VectorParts RdxParts; 2784 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2785 for (unsigned part = 0; part < UF; ++part) { 2786 // This PHINode contains the vectorized reduction variable, or 2787 // the initial value vector, if we bypass the vector loop. 2788 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2789 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2790 Value *StartVal = (part == 0) ? VectorStart : Identity; 2791 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2792 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2793 NewPhi->addIncoming(RdxExitVal[part], 2794 LoopVectorBody.back()); 2795 RdxParts.push_back(NewPhi); 2796 } 2797 2798 // Reduce all of the unrolled parts into a single vector. 2799 Value *ReducedPartRdx = RdxParts[0]; 2800 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2801 setDebugLocFromInst(Builder, ReducedPartRdx); 2802 for (unsigned part = 1; part < UF; ++part) { 2803 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2804 // Floating point operations had to be 'fast' to enable the reduction. 2805 ReducedPartRdx = addFastMathFlag( 2806 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2807 ReducedPartRdx, "bin.rdx")); 2808 else 2809 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2810 ReducedPartRdx, RdxParts[part]); 2811 } 2812 2813 if (VF > 1) { 2814 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2815 // and vector ops, reducing the set of values being computed by half each 2816 // round. 2817 assert(isPowerOf2_32(VF) && 2818 "Reduction emission only supported for pow2 vectors!"); 2819 Value *TmpVec = ReducedPartRdx; 2820 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2821 for (unsigned i = VF; i != 1; i >>= 1) { 2822 // Move the upper half of the vector to the lower half. 2823 for (unsigned j = 0; j != i/2; ++j) 2824 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2825 2826 // Fill the rest of the mask with undef. 2827 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2828 UndefValue::get(Builder.getInt32Ty())); 2829 2830 Value *Shuf = 2831 Builder.CreateShuffleVector(TmpVec, 2832 UndefValue::get(TmpVec->getType()), 2833 ConstantVector::get(ShuffleMask), 2834 "rdx.shuf"); 2835 2836 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2837 // Floating point operations had to be 'fast' to enable the reduction. 2838 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2839 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2840 else 2841 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2842 } 2843 2844 // The result is in the first element of the vector. 2845 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2846 Builder.getInt32(0)); 2847 } 2848 2849 // Create a phi node that merges control-flow from the backedge-taken check 2850 // block and the middle block. 2851 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2852 LoopScalarPreHeader->getTerminator()); 2853 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2854 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2855 2856 // Now, we need to fix the users of the reduction variable 2857 // inside and outside of the scalar remainder loop. 2858 // We know that the loop is in LCSSA form. We need to update the 2859 // PHI nodes in the exit blocks. 2860 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2861 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2862 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2863 if (!LCSSAPhi) break; 2864 2865 // All PHINodes need to have a single entry edge, or two if 2866 // we already fixed them. 2867 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2868 2869 // We found our reduction value exit-PHI. Update it with the 2870 // incoming bypass edge. 2871 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2872 // Add an edge coming from the bypass. 2873 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2874 break; 2875 } 2876 }// end of the LCSSA phi scan. 2877 2878 // Fix the scalar loop reduction variable with the incoming reduction sum 2879 // from the vector body and from the backedge value. 2880 int IncomingEdgeBlockIdx = 2881 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2882 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2883 // Pick the other block. 2884 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2885 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2886 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2887 }// end of for each redux variable. 2888 2889 fixLCSSAPHIs(); 2890 2891 // Remove redundant induction instructions. 2892 cse(LoopVectorBody); 2893 } 2894 2895 void InnerLoopVectorizer::fixLCSSAPHIs() { 2896 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2897 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2898 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2899 if (!LCSSAPhi) break; 2900 if (LCSSAPhi->getNumIncomingValues() == 1) 2901 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2902 LoopMiddleBlock); 2903 } 2904 } 2905 2906 InnerLoopVectorizer::VectorParts 2907 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2908 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2909 "Invalid edge"); 2910 2911 // Look for cached value. 2912 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2913 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2914 if (ECEntryIt != MaskCache.end()) 2915 return ECEntryIt->second; 2916 2917 VectorParts SrcMask = createBlockInMask(Src); 2918 2919 // The terminator has to be a branch inst! 2920 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2921 assert(BI && "Unexpected terminator found"); 2922 2923 if (BI->isConditional()) { 2924 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2925 2926 if (BI->getSuccessor(0) != Dst) 2927 for (unsigned part = 0; part < UF; ++part) 2928 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2929 2930 for (unsigned part = 0; part < UF; ++part) 2931 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2932 2933 MaskCache[Edge] = EdgeMask; 2934 return EdgeMask; 2935 } 2936 2937 MaskCache[Edge] = SrcMask; 2938 return SrcMask; 2939 } 2940 2941 InnerLoopVectorizer::VectorParts 2942 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2943 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2944 2945 // Loop incoming mask is all-one. 2946 if (OrigLoop->getHeader() == BB) { 2947 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2948 return getVectorValue(C); 2949 } 2950 2951 // This is the block mask. We OR all incoming edges, and with zero. 2952 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2953 VectorParts BlockMask = getVectorValue(Zero); 2954 2955 // For each pred: 2956 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2957 VectorParts EM = createEdgeMask(*it, BB); 2958 for (unsigned part = 0; part < UF; ++part) 2959 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2960 } 2961 2962 return BlockMask; 2963 } 2964 2965 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2966 InnerLoopVectorizer::VectorParts &Entry, 2967 unsigned UF, unsigned VF, PhiVector *PV) { 2968 PHINode* P = cast<PHINode>(PN); 2969 // Handle reduction variables: 2970 if (Legal->getReductionVars()->count(P)) { 2971 for (unsigned part = 0; part < UF; ++part) { 2972 // This is phase one of vectorizing PHIs. 2973 Type *VecTy = (VF == 1) ? PN->getType() : 2974 VectorType::get(PN->getType(), VF); 2975 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2976 LoopVectorBody.back()-> getFirstInsertionPt()); 2977 } 2978 PV->push_back(P); 2979 return; 2980 } 2981 2982 setDebugLocFromInst(Builder, P); 2983 // Check for PHI nodes that are lowered to vector selects. 2984 if (P->getParent() != OrigLoop->getHeader()) { 2985 // We know that all PHIs in non-header blocks are converted into 2986 // selects, so we don't have to worry about the insertion order and we 2987 // can just use the builder. 2988 // At this point we generate the predication tree. There may be 2989 // duplications since this is a simple recursive scan, but future 2990 // optimizations will clean it up. 2991 2992 unsigned NumIncoming = P->getNumIncomingValues(); 2993 2994 // Generate a sequence of selects of the form: 2995 // SELECT(Mask3, In3, 2996 // SELECT(Mask2, In2, 2997 // ( ...))) 2998 for (unsigned In = 0; In < NumIncoming; In++) { 2999 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3000 P->getParent()); 3001 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3002 3003 for (unsigned part = 0; part < UF; ++part) { 3004 // We might have single edge PHIs (blocks) - use an identity 3005 // 'select' for the first PHI operand. 3006 if (In == 0) 3007 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3008 In0[part]); 3009 else 3010 // Select between the current value and the previous incoming edge 3011 // based on the incoming mask. 3012 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3013 Entry[part], "predphi"); 3014 } 3015 } 3016 return; 3017 } 3018 3019 // This PHINode must be an induction variable. 3020 // Make sure that we know about it. 3021 assert(Legal->getInductionVars()->count(P) && 3022 "Not an induction variable"); 3023 3024 LoopVectorizationLegality::InductionInfo II = 3025 Legal->getInductionVars()->lookup(P); 3026 3027 switch (II.IK) { 3028 case LoopVectorizationLegality::IK_NoInduction: 3029 llvm_unreachable("Unknown induction"); 3030 case LoopVectorizationLegality::IK_IntInduction: { 3031 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3032 Type *PhiTy = P->getType(); 3033 Value *Broadcasted; 3034 if (P == OldInduction) { 3035 // Handle the canonical induction variable. We might have had to 3036 // extend the type. 3037 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3038 } else { 3039 // Handle other induction variables that are now based on the 3040 // canonical one. 3041 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3042 "normalized.idx"); 3043 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3044 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 3045 "offset.idx"); 3046 } 3047 Broadcasted = getBroadcastInstrs(Broadcasted); 3048 // After broadcasting the induction variable we need to make the vector 3049 // consecutive by adding 0, 1, 2, etc. 3050 for (unsigned part = 0; part < UF; ++part) 3051 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3052 return; 3053 } 3054 case LoopVectorizationLegality::IK_ReverseIntInduction: 3055 case LoopVectorizationLegality::IK_PtrInduction: 3056 case LoopVectorizationLegality::IK_ReversePtrInduction: 3057 // Handle reverse integer and pointer inductions. 3058 Value *StartIdx = ExtendedIdx; 3059 // This is the normalized GEP that starts counting at zero. 3060 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3061 "normalized.idx"); 3062 3063 // Handle the reverse integer induction variable case. 3064 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3065 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3066 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3067 "resize.norm.idx"); 3068 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3069 "reverse.idx"); 3070 3071 // This is a new value so do not hoist it out. 3072 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3073 // After broadcasting the induction variable we need to make the 3074 // vector consecutive by adding ... -3, -2, -1, 0. 3075 for (unsigned part = 0; part < UF; ++part) 3076 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3077 true); 3078 return; 3079 } 3080 3081 // Handle the pointer induction variable case. 3082 assert(P->getType()->isPointerTy() && "Unexpected type."); 3083 3084 // Is this a reverse induction ptr or a consecutive induction ptr. 3085 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3086 II.IK); 3087 3088 // This is the vector of results. Notice that we don't generate 3089 // vector geps because scalar geps result in better code. 3090 for (unsigned part = 0; part < UF; ++part) { 3091 if (VF == 1) { 3092 int EltIndex = (part) * (Reverse ? -1 : 1); 3093 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3094 Value *GlobalIdx; 3095 if (Reverse) 3096 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3097 else 3098 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3099 3100 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3101 "next.gep"); 3102 Entry[part] = SclrGep; 3103 continue; 3104 } 3105 3106 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3107 for (unsigned int i = 0; i < VF; ++i) { 3108 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3109 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3110 Value *GlobalIdx; 3111 if (!Reverse) 3112 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3113 else 3114 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3115 3116 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3117 "next.gep"); 3118 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3119 Builder.getInt32(i), 3120 "insert.gep"); 3121 } 3122 Entry[part] = VecVal; 3123 } 3124 return; 3125 } 3126 } 3127 3128 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3129 // For each instruction in the old loop. 3130 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3131 VectorParts &Entry = WidenMap.get(it); 3132 switch (it->getOpcode()) { 3133 case Instruction::Br: 3134 // Nothing to do for PHIs and BR, since we already took care of the 3135 // loop control flow instructions. 3136 continue; 3137 case Instruction::PHI:{ 3138 // Vectorize PHINodes. 3139 widenPHIInstruction(it, Entry, UF, VF, PV); 3140 continue; 3141 }// End of PHI. 3142 3143 case Instruction::Add: 3144 case Instruction::FAdd: 3145 case Instruction::Sub: 3146 case Instruction::FSub: 3147 case Instruction::Mul: 3148 case Instruction::FMul: 3149 case Instruction::UDiv: 3150 case Instruction::SDiv: 3151 case Instruction::FDiv: 3152 case Instruction::URem: 3153 case Instruction::SRem: 3154 case Instruction::FRem: 3155 case Instruction::Shl: 3156 case Instruction::LShr: 3157 case Instruction::AShr: 3158 case Instruction::And: 3159 case Instruction::Or: 3160 case Instruction::Xor: { 3161 // Just widen binops. 3162 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3163 setDebugLocFromInst(Builder, BinOp); 3164 VectorParts &A = getVectorValue(it->getOperand(0)); 3165 VectorParts &B = getVectorValue(it->getOperand(1)); 3166 3167 // Use this vector value for all users of the original instruction. 3168 for (unsigned Part = 0; Part < UF; ++Part) { 3169 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3170 3171 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 3172 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 3173 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 3174 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 3175 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 3176 } 3177 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 3178 VecOp->setIsExact(BinOp->isExact()); 3179 3180 // Copy the fast-math flags. 3181 if (VecOp && isa<FPMathOperator>(V)) 3182 VecOp->setFastMathFlags(it->getFastMathFlags()); 3183 3184 Entry[Part] = V; 3185 } 3186 3187 propagateMetadata(Entry, it); 3188 break; 3189 } 3190 case Instruction::Select: { 3191 // Widen selects. 3192 // If the selector is loop invariant we can create a select 3193 // instruction with a scalar condition. Otherwise, use vector-select. 3194 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3195 OrigLoop); 3196 setDebugLocFromInst(Builder, it); 3197 3198 // The condition can be loop invariant but still defined inside the 3199 // loop. This means that we can't just use the original 'cond' value. 3200 // We have to take the 'vectorized' value and pick the first lane. 3201 // Instcombine will make this a no-op. 3202 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3203 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3204 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3205 3206 Value *ScalarCond = (VF == 1) ? Cond[0] : 3207 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3208 3209 for (unsigned Part = 0; Part < UF; ++Part) { 3210 Entry[Part] = Builder.CreateSelect( 3211 InvariantCond ? ScalarCond : Cond[Part], 3212 Op0[Part], 3213 Op1[Part]); 3214 } 3215 3216 propagateMetadata(Entry, it); 3217 break; 3218 } 3219 3220 case Instruction::ICmp: 3221 case Instruction::FCmp: { 3222 // Widen compares. Generate vector compares. 3223 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3224 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3225 setDebugLocFromInst(Builder, it); 3226 VectorParts &A = getVectorValue(it->getOperand(0)); 3227 VectorParts &B = getVectorValue(it->getOperand(1)); 3228 for (unsigned Part = 0; Part < UF; ++Part) { 3229 Value *C = nullptr; 3230 if (FCmp) 3231 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3232 else 3233 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3234 Entry[Part] = C; 3235 } 3236 3237 propagateMetadata(Entry, it); 3238 break; 3239 } 3240 3241 case Instruction::Store: 3242 case Instruction::Load: 3243 vectorizeMemoryInstruction(it); 3244 break; 3245 case Instruction::ZExt: 3246 case Instruction::SExt: 3247 case Instruction::FPToUI: 3248 case Instruction::FPToSI: 3249 case Instruction::FPExt: 3250 case Instruction::PtrToInt: 3251 case Instruction::IntToPtr: 3252 case Instruction::SIToFP: 3253 case Instruction::UIToFP: 3254 case Instruction::Trunc: 3255 case Instruction::FPTrunc: 3256 case Instruction::BitCast: { 3257 CastInst *CI = dyn_cast<CastInst>(it); 3258 setDebugLocFromInst(Builder, it); 3259 /// Optimize the special case where the source is the induction 3260 /// variable. Notice that we can only optimize the 'trunc' case 3261 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3262 /// c. other casts depend on pointer size. 3263 if (CI->getOperand(0) == OldInduction && 3264 it->getOpcode() == Instruction::Trunc) { 3265 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3266 CI->getType()); 3267 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3268 for (unsigned Part = 0; Part < UF; ++Part) 3269 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3270 propagateMetadata(Entry, it); 3271 break; 3272 } 3273 /// Vectorize casts. 3274 Type *DestTy = (VF == 1) ? CI->getType() : 3275 VectorType::get(CI->getType(), VF); 3276 3277 VectorParts &A = getVectorValue(it->getOperand(0)); 3278 for (unsigned Part = 0; Part < UF; ++Part) 3279 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3280 propagateMetadata(Entry, it); 3281 break; 3282 } 3283 3284 case Instruction::Call: { 3285 // Ignore dbg intrinsics. 3286 if (isa<DbgInfoIntrinsic>(it)) 3287 break; 3288 setDebugLocFromInst(Builder, it); 3289 3290 Module *M = BB->getParent()->getParent(); 3291 CallInst *CI = cast<CallInst>(it); 3292 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3293 assert(ID && "Not an intrinsic call!"); 3294 switch (ID) { 3295 case Intrinsic::lifetime_end: 3296 case Intrinsic::lifetime_start: 3297 scalarizeInstruction(it); 3298 break; 3299 default: 3300 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3301 for (unsigned Part = 0; Part < UF; ++Part) { 3302 SmallVector<Value *, 4> Args; 3303 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3304 if (HasScalarOpd && i == 1) { 3305 Args.push_back(CI->getArgOperand(i)); 3306 continue; 3307 } 3308 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3309 Args.push_back(Arg[Part]); 3310 } 3311 Type *Tys[] = {CI->getType()}; 3312 if (VF > 1) 3313 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3314 3315 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3316 Entry[Part] = Builder.CreateCall(F, Args); 3317 } 3318 3319 propagateMetadata(Entry, it); 3320 break; 3321 } 3322 break; 3323 } 3324 3325 default: 3326 // All other instructions are unsupported. Scalarize them. 3327 scalarizeInstruction(it); 3328 break; 3329 }// end of switch. 3330 }// end of for_each instr. 3331 } 3332 3333 void InnerLoopVectorizer::updateAnalysis() { 3334 // Forget the original basic block. 3335 SE->forgetLoop(OrigLoop); 3336 3337 // Update the dominator tree information. 3338 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3339 "Entry does not dominate exit."); 3340 3341 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3342 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3343 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3344 3345 // Due to if predication of stores we might create a sequence of "if(pred) 3346 // a[i] = ...; " blocks. 3347 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3348 if (i == 0) 3349 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3350 else if (isPredicatedBlock(i)) { 3351 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3352 } else { 3353 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3354 } 3355 } 3356 3357 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3358 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3359 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3360 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3361 3362 DEBUG(DT->verifyDomTree()); 3363 } 3364 3365 /// \brief Check whether it is safe to if-convert this phi node. 3366 /// 3367 /// Phi nodes with constant expressions that can trap are not safe to if 3368 /// convert. 3369 static bool canIfConvertPHINodes(BasicBlock *BB) { 3370 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3371 PHINode *Phi = dyn_cast<PHINode>(I); 3372 if (!Phi) 3373 return true; 3374 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3375 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3376 if (C->canTrap()) 3377 return false; 3378 } 3379 return true; 3380 } 3381 3382 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3383 if (!EnableIfConversion) { 3384 emitAnalysis(Report() << "if-conversion is disabled"); 3385 return false; 3386 } 3387 3388 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3389 3390 // A list of pointers that we can safely read and write to. 3391 SmallPtrSet<Value *, 8> SafePointes; 3392 3393 // Collect safe addresses. 3394 for (Loop::block_iterator BI = TheLoop->block_begin(), 3395 BE = TheLoop->block_end(); BI != BE; ++BI) { 3396 BasicBlock *BB = *BI; 3397 3398 if (blockNeedsPredication(BB)) 3399 continue; 3400 3401 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3402 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3403 SafePointes.insert(LI->getPointerOperand()); 3404 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3405 SafePointes.insert(SI->getPointerOperand()); 3406 } 3407 } 3408 3409 // Collect the blocks that need predication. 3410 BasicBlock *Header = TheLoop->getHeader(); 3411 for (Loop::block_iterator BI = TheLoop->block_begin(), 3412 BE = TheLoop->block_end(); BI != BE; ++BI) { 3413 BasicBlock *BB = *BI; 3414 3415 // We don't support switch statements inside loops. 3416 if (!isa<BranchInst>(BB->getTerminator())) { 3417 emitAnalysis(Report(BB->getTerminator()) 3418 << "loop contains a switch statement"); 3419 return false; 3420 } 3421 3422 // We must be able to predicate all blocks that need to be predicated. 3423 if (blockNeedsPredication(BB)) { 3424 if (!blockCanBePredicated(BB, SafePointes)) { 3425 emitAnalysis(Report(BB->getTerminator()) 3426 << "control flow cannot be substituted for a select"); 3427 return false; 3428 } 3429 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3430 emitAnalysis(Report(BB->getTerminator()) 3431 << "control flow cannot be substituted for a select"); 3432 return false; 3433 } 3434 } 3435 3436 // We can if-convert this loop. 3437 return true; 3438 } 3439 3440 bool LoopVectorizationLegality::canVectorize() { 3441 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3442 // be canonicalized. 3443 if (!TheLoop->getLoopPreheader()) { 3444 emitAnalysis( 3445 Report() << "loop control flow is not understood by vectorizer"); 3446 return false; 3447 } 3448 3449 // We can only vectorize innermost loops. 3450 if (TheLoop->getSubLoopsVector().size()) { 3451 emitAnalysis(Report() << "loop is not the innermost loop"); 3452 return false; 3453 } 3454 3455 // We must have a single backedge. 3456 if (TheLoop->getNumBackEdges() != 1) { 3457 emitAnalysis( 3458 Report() << "loop control flow is not understood by vectorizer"); 3459 return false; 3460 } 3461 3462 // We must have a single exiting block. 3463 if (!TheLoop->getExitingBlock()) { 3464 emitAnalysis( 3465 Report() << "loop control flow is not understood by vectorizer"); 3466 return false; 3467 } 3468 3469 // We only handle bottom-tested loops, i.e. loop in which the condition is 3470 // checked at the end of each iteration. With that we can assume that all 3471 // instructions in the loop are executed the same number of times. 3472 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3473 emitAnalysis( 3474 Report() << "loop control flow is not understood by vectorizer"); 3475 return false; 3476 } 3477 3478 // We need to have a loop header. 3479 DEBUG(dbgs() << "LV: Found a loop: " << 3480 TheLoop->getHeader()->getName() << '\n'); 3481 3482 // Check if we can if-convert non-single-bb loops. 3483 unsigned NumBlocks = TheLoop->getNumBlocks(); 3484 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3485 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3486 return false; 3487 } 3488 3489 // ScalarEvolution needs to be able to find the exit count. 3490 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3491 if (ExitCount == SE->getCouldNotCompute()) { 3492 emitAnalysis(Report() << "could not determine number of loop iterations"); 3493 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3494 return false; 3495 } 3496 3497 // Check if we can vectorize the instructions and CFG in this loop. 3498 if (!canVectorizeInstrs()) { 3499 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3500 return false; 3501 } 3502 3503 // Go over each instruction and look at memory deps. 3504 if (!canVectorizeMemory()) { 3505 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3506 return false; 3507 } 3508 3509 // Collect all of the variables that remain uniform after vectorization. 3510 collectLoopUniforms(); 3511 3512 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3513 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3514 <<"!\n"); 3515 3516 // Okay! We can vectorize. At this point we don't have any other mem analysis 3517 // which may limit our maximum vectorization factor, so just return true with 3518 // no restrictions. 3519 return true; 3520 } 3521 3522 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3523 if (Ty->isPointerTy()) 3524 return DL.getIntPtrType(Ty); 3525 3526 // It is possible that char's or short's overflow when we ask for the loop's 3527 // trip count, work around this by changing the type size. 3528 if (Ty->getScalarSizeInBits() < 32) 3529 return Type::getInt32Ty(Ty->getContext()); 3530 3531 return Ty; 3532 } 3533 3534 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3535 Ty0 = convertPointerToIntegerType(DL, Ty0); 3536 Ty1 = convertPointerToIntegerType(DL, Ty1); 3537 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3538 return Ty0; 3539 return Ty1; 3540 } 3541 3542 /// \brief Check that the instruction has outside loop users and is not an 3543 /// identified reduction variable. 3544 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3545 SmallPtrSet<Value *, 4> &Reductions) { 3546 // Reduction instructions are allowed to have exit users. All other 3547 // instructions must not have external users. 3548 if (!Reductions.count(Inst)) 3549 //Check that all of the users of the loop are inside the BB. 3550 for (User *U : Inst->users()) { 3551 Instruction *UI = cast<Instruction>(U); 3552 // This user may be a reduction exit value. 3553 if (!TheLoop->contains(UI)) { 3554 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3555 return true; 3556 } 3557 } 3558 return false; 3559 } 3560 3561 bool LoopVectorizationLegality::canVectorizeInstrs() { 3562 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3563 BasicBlock *Header = TheLoop->getHeader(); 3564 3565 // Look for the attribute signaling the absence of NaNs. 3566 Function &F = *Header->getParent(); 3567 if (F.hasFnAttribute("no-nans-fp-math")) 3568 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3569 AttributeSet::FunctionIndex, 3570 "no-nans-fp-math").getValueAsString() == "true"; 3571 3572 // For each block in the loop. 3573 for (Loop::block_iterator bb = TheLoop->block_begin(), 3574 be = TheLoop->block_end(); bb != be; ++bb) { 3575 3576 // Scan the instructions in the block and look for hazards. 3577 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3578 ++it) { 3579 3580 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3581 Type *PhiTy = Phi->getType(); 3582 // Check that this PHI type is allowed. 3583 if (!PhiTy->isIntegerTy() && 3584 !PhiTy->isFloatingPointTy() && 3585 !PhiTy->isPointerTy()) { 3586 emitAnalysis(Report(it) 3587 << "loop control flow is not understood by vectorizer"); 3588 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3589 return false; 3590 } 3591 3592 // If this PHINode is not in the header block, then we know that we 3593 // can convert it to select during if-conversion. No need to check if 3594 // the PHIs in this block are induction or reduction variables. 3595 if (*bb != Header) { 3596 // Check that this instruction has no outside users or is an 3597 // identified reduction value with an outside user. 3598 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3599 continue; 3600 emitAnalysis(Report(it) << "value that could not be identified as " 3601 "reduction is used outside the loop"); 3602 return false; 3603 } 3604 3605 // We only allow if-converted PHIs with more than two incoming values. 3606 if (Phi->getNumIncomingValues() != 2) { 3607 emitAnalysis(Report(it) 3608 << "control flow not understood by vectorizer"); 3609 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3610 return false; 3611 } 3612 3613 // This is the value coming from the preheader. 3614 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3615 // Check if this is an induction variable. 3616 InductionKind IK = isInductionVariable(Phi); 3617 3618 if (IK_NoInduction != IK) { 3619 // Get the widest type. 3620 if (!WidestIndTy) 3621 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3622 else 3623 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3624 3625 // Int inductions are special because we only allow one IV. 3626 if (IK == IK_IntInduction) { 3627 // Use the phi node with the widest type as induction. Use the last 3628 // one if there are multiple (no good reason for doing this other 3629 // than it is expedient). 3630 if (!Induction || PhiTy == WidestIndTy) 3631 Induction = Phi; 3632 } 3633 3634 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3635 Inductions[Phi] = InductionInfo(StartValue, IK); 3636 3637 // Until we explicitly handle the case of an induction variable with 3638 // an outside loop user we have to give up vectorizing this loop. 3639 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3640 emitAnalysis(Report(it) << "use of induction value outside of the " 3641 "loop is not handled by vectorizer"); 3642 return false; 3643 } 3644 3645 continue; 3646 } 3647 3648 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3649 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3650 continue; 3651 } 3652 if (AddReductionVar(Phi, RK_IntegerMult)) { 3653 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3654 continue; 3655 } 3656 if (AddReductionVar(Phi, RK_IntegerOr)) { 3657 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3658 continue; 3659 } 3660 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3661 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3662 continue; 3663 } 3664 if (AddReductionVar(Phi, RK_IntegerXor)) { 3665 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3666 continue; 3667 } 3668 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3669 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3670 continue; 3671 } 3672 if (AddReductionVar(Phi, RK_FloatMult)) { 3673 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3674 continue; 3675 } 3676 if (AddReductionVar(Phi, RK_FloatAdd)) { 3677 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3678 continue; 3679 } 3680 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3681 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3682 "\n"); 3683 continue; 3684 } 3685 3686 emitAnalysis(Report(it) << "unvectorizable operation"); 3687 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3688 return false; 3689 }// end of PHI handling 3690 3691 // We still don't handle functions. However, we can ignore dbg intrinsic 3692 // calls and we do handle certain intrinsic and libm functions. 3693 CallInst *CI = dyn_cast<CallInst>(it); 3694 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3695 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3696 DEBUG(dbgs() << "LV: Found a call site.\n"); 3697 return false; 3698 } 3699 3700 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3701 // second argument is the same (i.e. loop invariant) 3702 if (CI && 3703 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3704 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3705 emitAnalysis(Report(it) 3706 << "intrinsic instruction cannot be vectorized"); 3707 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3708 return false; 3709 } 3710 } 3711 3712 // Check that the instruction return type is vectorizable. 3713 // Also, we can't vectorize extractelement instructions. 3714 if ((!VectorType::isValidElementType(it->getType()) && 3715 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3716 emitAnalysis(Report(it) 3717 << "instruction return type cannot be vectorized"); 3718 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3719 return false; 3720 } 3721 3722 // Check that the stored type is vectorizable. 3723 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3724 Type *T = ST->getValueOperand()->getType(); 3725 if (!VectorType::isValidElementType(T)) { 3726 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3727 return false; 3728 } 3729 if (EnableMemAccessVersioning) 3730 collectStridedAcccess(ST); 3731 } 3732 3733 if (EnableMemAccessVersioning) 3734 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3735 collectStridedAcccess(LI); 3736 3737 // Reduction instructions are allowed to have exit users. 3738 // All other instructions must not have external users. 3739 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3740 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3741 return false; 3742 } 3743 3744 } // next instr. 3745 3746 } 3747 3748 if (!Induction) { 3749 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3750 if (Inductions.empty()) { 3751 emitAnalysis(Report() 3752 << "loop induction variable could not be identified"); 3753 return false; 3754 } 3755 } 3756 3757 return true; 3758 } 3759 3760 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3761 /// return the induction operand of the gep pointer. 3762 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3763 const DataLayout *DL, Loop *Lp) { 3764 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3765 if (!GEP) 3766 return Ptr; 3767 3768 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3769 3770 // Check that all of the gep indices are uniform except for our induction 3771 // operand. 3772 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3773 if (i != InductionOperand && 3774 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3775 return Ptr; 3776 return GEP->getOperand(InductionOperand); 3777 } 3778 3779 ///\brief Look for a cast use of the passed value. 3780 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3781 Value *UniqueCast = nullptr; 3782 for (User *U : Ptr->users()) { 3783 CastInst *CI = dyn_cast<CastInst>(U); 3784 if (CI && CI->getType() == Ty) { 3785 if (!UniqueCast) 3786 UniqueCast = CI; 3787 else 3788 return nullptr; 3789 } 3790 } 3791 return UniqueCast; 3792 } 3793 3794 ///\brief Get the stride of a pointer access in a loop. 3795 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3796 /// pointer to the Value, or null otherwise. 3797 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3798 const DataLayout *DL, Loop *Lp) { 3799 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3800 if (!PtrTy || PtrTy->isAggregateType()) 3801 return nullptr; 3802 3803 // Try to remove a gep instruction to make the pointer (actually index at this 3804 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3805 // pointer, otherwise, we are analyzing the index. 3806 Value *OrigPtr = Ptr; 3807 3808 // The size of the pointer access. 3809 int64_t PtrAccessSize = 1; 3810 3811 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3812 const SCEV *V = SE->getSCEV(Ptr); 3813 3814 if (Ptr != OrigPtr) 3815 // Strip off casts. 3816 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3817 V = C->getOperand(); 3818 3819 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3820 if (!S) 3821 return nullptr; 3822 3823 V = S->getStepRecurrence(*SE); 3824 if (!V) 3825 return nullptr; 3826 3827 // Strip off the size of access multiplication if we are still analyzing the 3828 // pointer. 3829 if (OrigPtr == Ptr) { 3830 DL->getTypeAllocSize(PtrTy->getElementType()); 3831 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3832 if (M->getOperand(0)->getSCEVType() != scConstant) 3833 return nullptr; 3834 3835 const APInt &APStepVal = 3836 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3837 3838 // Huge step value - give up. 3839 if (APStepVal.getBitWidth() > 64) 3840 return nullptr; 3841 3842 int64_t StepVal = APStepVal.getSExtValue(); 3843 if (PtrAccessSize != StepVal) 3844 return nullptr; 3845 V = M->getOperand(1); 3846 } 3847 } 3848 3849 // Strip off casts. 3850 Type *StripedOffRecurrenceCast = nullptr; 3851 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3852 StripedOffRecurrenceCast = C->getType(); 3853 V = C->getOperand(); 3854 } 3855 3856 // Look for the loop invariant symbolic value. 3857 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3858 if (!U) 3859 return nullptr; 3860 3861 Value *Stride = U->getValue(); 3862 if (!Lp->isLoopInvariant(Stride)) 3863 return nullptr; 3864 3865 // If we have stripped off the recurrence cast we have to make sure that we 3866 // return the value that is used in this loop so that we can replace it later. 3867 if (StripedOffRecurrenceCast) 3868 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3869 3870 return Stride; 3871 } 3872 3873 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3874 Value *Ptr = nullptr; 3875 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3876 Ptr = LI->getPointerOperand(); 3877 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3878 Ptr = SI->getPointerOperand(); 3879 else 3880 return; 3881 3882 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3883 if (!Stride) 3884 return; 3885 3886 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3887 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3888 Strides[Ptr] = Stride; 3889 StrideSet.insert(Stride); 3890 } 3891 3892 void LoopVectorizationLegality::collectLoopUniforms() { 3893 // We now know that the loop is vectorizable! 3894 // Collect variables that will remain uniform after vectorization. 3895 std::vector<Value*> Worklist; 3896 BasicBlock *Latch = TheLoop->getLoopLatch(); 3897 3898 // Start with the conditional branch and walk up the block. 3899 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3900 3901 // Also add all consecutive pointer values; these values will be uniform 3902 // after vectorization (and subsequent cleanup) and, until revectorization is 3903 // supported, all dependencies must also be uniform. 3904 for (Loop::block_iterator B = TheLoop->block_begin(), 3905 BE = TheLoop->block_end(); B != BE; ++B) 3906 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3907 I != IE; ++I) 3908 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3909 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3910 3911 while (Worklist.size()) { 3912 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3913 Worklist.pop_back(); 3914 3915 // Look at instructions inside this loop. 3916 // Stop when reaching PHI nodes. 3917 // TODO: we need to follow values all over the loop, not only in this block. 3918 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3919 continue; 3920 3921 // This is a known uniform. 3922 Uniforms.insert(I); 3923 3924 // Insert all operands. 3925 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3926 } 3927 } 3928 3929 namespace { 3930 /// \brief Analyses memory accesses in a loop. 3931 /// 3932 /// Checks whether run time pointer checks are needed and builds sets for data 3933 /// dependence checking. 3934 class AccessAnalysis { 3935 public: 3936 /// \brief Read or write access location. 3937 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3938 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3939 3940 /// \brief Set of potential dependent memory accesses. 3941 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3942 3943 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 3944 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 3945 3946 /// \brief Register a load and whether it is only read from. 3947 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 3948 Value *Ptr = const_cast<Value*>(Loc.Ptr); 3949 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.TBAATag); 3950 Accesses.insert(MemAccessInfo(Ptr, false)); 3951 if (IsReadOnly) 3952 ReadOnlyPtr.insert(Ptr); 3953 } 3954 3955 /// \brief Register a store. 3956 void addStore(AliasAnalysis::Location &Loc) { 3957 Value *Ptr = const_cast<Value*>(Loc.Ptr); 3958 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.TBAATag); 3959 Accesses.insert(MemAccessInfo(Ptr, true)); 3960 } 3961 3962 /// \brief Check whether we can check the pointers at runtime for 3963 /// non-intersection. 3964 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3965 unsigned &NumComparisons, ScalarEvolution *SE, 3966 Loop *TheLoop, ValueToValueMap &Strides, 3967 bool ShouldCheckStride = false); 3968 3969 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3970 /// and builds sets of dependent accesses. 3971 void buildDependenceSets() { 3972 processMemAccesses(); 3973 } 3974 3975 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3976 3977 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3978 void resetDepChecks() { CheckDeps.clear(); } 3979 3980 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3981 3982 private: 3983 typedef SetVector<MemAccessInfo> PtrAccessSet; 3984 3985 /// \brief Go over all memory access and check whether runtime pointer checks 3986 /// are needed /// and build sets of dependency check candidates. 3987 void processMemAccesses(); 3988 3989 /// Set of all accesses. 3990 PtrAccessSet Accesses; 3991 3992 /// Set of accesses that need a further dependence check. 3993 MemAccessInfoSet CheckDeps; 3994 3995 /// Set of pointers that are read only. 3996 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3997 3998 const DataLayout *DL; 3999 4000 /// An alias set tracker to partition the access set by underlying object and 4001 //intrinsic property (such as TBAA metadata). 4002 AliasSetTracker AST; 4003 4004 /// Sets of potentially dependent accesses - members of one set share an 4005 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4006 /// dependence check. 4007 DepCandidates &DepCands; 4008 4009 bool IsRTCheckNeeded; 4010 }; 4011 4012 } // end anonymous namespace 4013 4014 /// \brief Check whether a pointer can participate in a runtime bounds check. 4015 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 4016 Value *Ptr) { 4017 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4018 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4019 if (!AR) 4020 return false; 4021 4022 return AR->isAffine(); 4023 } 4024 4025 /// \brief Check the stride of the pointer and ensure that it does not wrap in 4026 /// the address space. 4027 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4028 const Loop *Lp, ValueToValueMap &StridesMap); 4029 4030 bool AccessAnalysis::canCheckPtrAtRT( 4031 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4032 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 4033 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 4034 // Find pointers with computable bounds. We are going to use this information 4035 // to place a runtime bound check. 4036 bool CanDoRT = true; 4037 4038 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 4039 NumComparisons = 0; 4040 4041 // We assign a consecutive id to access from different alias sets. 4042 // Accesses between different groups doesn't need to be checked. 4043 unsigned ASId = 1; 4044 for (auto &AS : AST) { 4045 unsigned NumReadPtrChecks = 0; 4046 unsigned NumWritePtrChecks = 0; 4047 4048 // We assign consecutive id to access from different dependence sets. 4049 // Accesses within the same set don't need a runtime check. 4050 unsigned RunningDepId = 1; 4051 DenseMap<Value *, unsigned> DepSetId; 4052 4053 for (auto A : AS) { 4054 Value *Ptr = A.getValue(); 4055 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 4056 MemAccessInfo Access(Ptr, IsWrite); 4057 4058 if (IsWrite) 4059 ++NumWritePtrChecks; 4060 else 4061 ++NumReadPtrChecks; 4062 4063 if (hasComputableBounds(SE, StridesMap, Ptr) && 4064 // When we run after a failing dependency check we have to make sure we 4065 // don't have wrapping pointers. 4066 (!ShouldCheckStride || 4067 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4068 // The id of the dependence set. 4069 unsigned DepId; 4070 4071 if (IsDepCheckNeeded) { 4072 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4073 unsigned &LeaderId = DepSetId[Leader]; 4074 if (!LeaderId) 4075 LeaderId = RunningDepId++; 4076 DepId = LeaderId; 4077 } else 4078 // Each access has its own dependence set. 4079 DepId = RunningDepId++; 4080 4081 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 4082 4083 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4084 } else { 4085 CanDoRT = false; 4086 } 4087 } 4088 4089 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4090 NumComparisons += 0; // Only one dependence set. 4091 else { 4092 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 4093 NumWritePtrChecks - 1)); 4094 } 4095 4096 ++ASId; 4097 } 4098 4099 // If the pointers that we would use for the bounds comparison have different 4100 // address spaces, assume the values aren't directly comparable, so we can't 4101 // use them for the runtime check. We also have to assume they could 4102 // overlap. In the future there should be metadata for whether address spaces 4103 // are disjoint. 4104 unsigned NumPointers = RtCheck.Pointers.size(); 4105 for (unsigned i = 0; i < NumPointers; ++i) { 4106 for (unsigned j = i + 1; j < NumPointers; ++j) { 4107 // Only need to check pointers between two different dependency sets. 4108 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4109 continue; 4110 // Only need to check pointers in the same alias set. 4111 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 4112 continue; 4113 4114 Value *PtrI = RtCheck.Pointers[i]; 4115 Value *PtrJ = RtCheck.Pointers[j]; 4116 4117 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4118 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4119 if (ASi != ASj) { 4120 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4121 " different address spaces\n"); 4122 return false; 4123 } 4124 } 4125 } 4126 4127 return CanDoRT; 4128 } 4129 4130 void AccessAnalysis::processMemAccesses() { 4131 // We process the set twice: first we process read-write pointers, last we 4132 // process read-only pointers. This allows us to skip dependence tests for 4133 // read-only pointers. 4134 4135 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 4136 DEBUG(dbgs() << " AST: "; AST.dump()); 4137 DEBUG(dbgs() << "LV: Accesses:\n"); 4138 DEBUG({ 4139 for (auto A : Accesses) 4140 dbgs() << "\t" << *A.getPointer() << " (" << 4141 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 4142 "read-only" : "read")) << ")\n"; 4143 }); 4144 4145 // The AliasSetTracker has nicely partitioned our pointers by metadata 4146 // compatibility and potential for underlying-object overlap. As a result, we 4147 // only need to check for potential pointer dependencies within each alias 4148 // set. 4149 for (auto &AS : AST) { 4150 // Note that both the alias-set tracker and the alias sets themselves used 4151 // linked lists internally and so the iteration order here is deterministic 4152 // (matching the original instruction order within each set). 4153 4154 bool SetHasWrite = false; 4155 4156 // Map of pointers to last access encountered. 4157 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 4158 UnderlyingObjToAccessMap ObjToLastAccess; 4159 4160 // Set of access to check after all writes have been processed. 4161 PtrAccessSet DeferredAccesses; 4162 4163 // Iterate over each alias set twice, once to process read/write pointers, 4164 // and then to process read-only pointers. 4165 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 4166 bool UseDeferred = SetIteration > 0; 4167 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4168 4169 for (auto A : AS) { 4170 Value *Ptr = A.getValue(); 4171 bool IsWrite = S.count(MemAccessInfo(Ptr, true)); 4172 4173 // If we're using the deferred access set, then it contains only reads. 4174 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4175 if (UseDeferred && !IsReadOnlyPtr) 4176 continue; 4177 // Otherwise, the pointer must be in the PtrAccessSet, either as a read 4178 // or a write. 4179 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 4180 S.count(MemAccessInfo(Ptr, false))) && 4181 "Alias-set pointer not in the access set?"); 4182 4183 MemAccessInfo Access(Ptr, IsWrite); 4184 DepCands.insert(Access); 4185 4186 // Memorize read-only pointers for later processing and skip them in the 4187 // first round (they need to be checked after we have seen all write 4188 // pointers). Note: we also mark pointer that are not consecutive as 4189 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need 4190 // the second check for "!IsWrite". 4191 if (!UseDeferred && IsReadOnlyPtr) { 4192 DeferredAccesses.insert(Access); 4193 continue; 4194 } 4195 4196 // If this is a write - check other reads and writes for conflicts. If 4197 // this is a read only check other writes for conflicts (but only if 4198 // there is no other write to the ptr - this is an optimization to 4199 // catch "a[i] = a[i] + " without having to do a dependence check). 4200 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 4201 CheckDeps.insert(Access); 4202 IsRTCheckNeeded = true; 4203 } 4204 4205 if (IsWrite) 4206 SetHasWrite = true; 4207 4208 // Create sets of pointers connected by a shared alias set and 4209 // underlying object. 4210 typedef SmallVector<Value*, 16> ValueVector; 4211 ValueVector TempObjects; 4212 GetUnderlyingObjects(Ptr, TempObjects, DL); 4213 for (Value *UnderlyingObj : TempObjects) { 4214 UnderlyingObjToAccessMap::iterator Prev = 4215 ObjToLastAccess.find(UnderlyingObj); 4216 if (Prev != ObjToLastAccess.end()) 4217 DepCands.unionSets(Access, Prev->second); 4218 4219 ObjToLastAccess[UnderlyingObj] = Access; 4220 } 4221 } 4222 } 4223 } 4224 } 4225 4226 namespace { 4227 /// \brief Checks memory dependences among accesses to the same underlying 4228 /// object to determine whether there vectorization is legal or not (and at 4229 /// which vectorization factor). 4230 /// 4231 /// This class works under the assumption that we already checked that memory 4232 /// locations with different underlying pointers are "must-not alias". 4233 /// We use the ScalarEvolution framework to symbolically evalutate access 4234 /// functions pairs. Since we currently don't restructure the loop we can rely 4235 /// on the program order of memory accesses to determine their safety. 4236 /// At the moment we will only deem accesses as safe for: 4237 /// * A negative constant distance assuming program order. 4238 /// 4239 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4240 /// a[i] = tmp; y = a[i]; 4241 /// 4242 /// The latter case is safe because later checks guarantuee that there can't 4243 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4244 /// the same variable: a header phi can only be an induction or a reduction, a 4245 /// reduction can't have a memory sink, an induction can't have a memory 4246 /// source). This is important and must not be violated (or we have to 4247 /// resort to checking for cycles through memory). 4248 /// 4249 /// * A positive constant distance assuming program order that is bigger 4250 /// than the biggest memory access. 4251 /// 4252 /// tmp = a[i] OR b[i] = x 4253 /// a[i+2] = tmp y = b[i+2]; 4254 /// 4255 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4256 /// 4257 /// * Zero distances and all accesses have the same size. 4258 /// 4259 class MemoryDepChecker { 4260 public: 4261 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4262 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4263 4264 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4265 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4266 ShouldRetryWithRuntimeCheck(false) {} 4267 4268 /// \brief Register the location (instructions are given increasing numbers) 4269 /// of a write access. 4270 void addAccess(StoreInst *SI) { 4271 Value *Ptr = SI->getPointerOperand(); 4272 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4273 InstMap.push_back(SI); 4274 ++AccessIdx; 4275 } 4276 4277 /// \brief Register the location (instructions are given increasing numbers) 4278 /// of a write access. 4279 void addAccess(LoadInst *LI) { 4280 Value *Ptr = LI->getPointerOperand(); 4281 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4282 InstMap.push_back(LI); 4283 ++AccessIdx; 4284 } 4285 4286 /// \brief Check whether the dependencies between the accesses are safe. 4287 /// 4288 /// Only checks sets with elements in \p CheckDeps. 4289 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4290 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4291 4292 /// \brief The maximum number of bytes of a vector register we can vectorize 4293 /// the accesses safely with. 4294 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4295 4296 /// \brief In same cases when the dependency check fails we can still 4297 /// vectorize the loop with a dynamic array access check. 4298 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4299 4300 private: 4301 ScalarEvolution *SE; 4302 const DataLayout *DL; 4303 const Loop *InnermostLoop; 4304 4305 /// \brief Maps access locations (ptr, read/write) to program order. 4306 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4307 4308 /// \brief Memory access instructions in program order. 4309 SmallVector<Instruction *, 16> InstMap; 4310 4311 /// \brief The program order index to be used for the next instruction. 4312 unsigned AccessIdx; 4313 4314 // We can access this many bytes in parallel safely. 4315 unsigned MaxSafeDepDistBytes; 4316 4317 /// \brief If we see a non-constant dependence distance we can still try to 4318 /// vectorize this loop with runtime checks. 4319 bool ShouldRetryWithRuntimeCheck; 4320 4321 /// \brief Check whether there is a plausible dependence between the two 4322 /// accesses. 4323 /// 4324 /// Access \p A must happen before \p B in program order. The two indices 4325 /// identify the index into the program order map. 4326 /// 4327 /// This function checks whether there is a plausible dependence (or the 4328 /// absence of such can't be proved) between the two accesses. If there is a 4329 /// plausible dependence but the dependence distance is bigger than one 4330 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4331 /// distance is smaller than any other distance encountered so far). 4332 /// Otherwise, this function returns true signaling a possible dependence. 4333 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4334 const MemAccessInfo &B, unsigned BIdx, 4335 ValueToValueMap &Strides); 4336 4337 /// \brief Check whether the data dependence could prevent store-load 4338 /// forwarding. 4339 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4340 }; 4341 4342 } // end anonymous namespace 4343 4344 static bool isInBoundsGep(Value *Ptr) { 4345 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4346 return GEP->isInBounds(); 4347 return false; 4348 } 4349 4350 /// \brief Check whether the access through \p Ptr has a constant stride. 4351 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4352 const Loop *Lp, ValueToValueMap &StridesMap) { 4353 const Type *Ty = Ptr->getType(); 4354 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4355 4356 // Make sure that the pointer does not point to aggregate types. 4357 const PointerType *PtrTy = cast<PointerType>(Ty); 4358 if (PtrTy->getElementType()->isAggregateType()) { 4359 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4360 "\n"); 4361 return 0; 4362 } 4363 4364 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4365 4366 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4367 if (!AR) { 4368 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4369 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4370 return 0; 4371 } 4372 4373 // The accesss function must stride over the innermost loop. 4374 if (Lp != AR->getLoop()) { 4375 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4376 *Ptr << " SCEV: " << *PtrScev << "\n"); 4377 } 4378 4379 // The address calculation must not wrap. Otherwise, a dependence could be 4380 // inverted. 4381 // An inbounds getelementptr that is a AddRec with a unit stride 4382 // cannot wrap per definition. The unit stride requirement is checked later. 4383 // An getelementptr without an inbounds attribute and unit stride would have 4384 // to access the pointer value "0" which is undefined behavior in address 4385 // space 0, therefore we can also vectorize this case. 4386 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4387 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4388 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4389 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4390 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4391 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4392 return 0; 4393 } 4394 4395 // Check the step is constant. 4396 const SCEV *Step = AR->getStepRecurrence(*SE); 4397 4398 // Calculate the pointer stride and check if it is consecutive. 4399 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4400 if (!C) { 4401 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4402 " SCEV: " << *PtrScev << "\n"); 4403 return 0; 4404 } 4405 4406 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4407 const APInt &APStepVal = C->getValue()->getValue(); 4408 4409 // Huge step value - give up. 4410 if (APStepVal.getBitWidth() > 64) 4411 return 0; 4412 4413 int64_t StepVal = APStepVal.getSExtValue(); 4414 4415 // Strided access. 4416 int64_t Stride = StepVal / Size; 4417 int64_t Rem = StepVal % Size; 4418 if (Rem) 4419 return 0; 4420 4421 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4422 // know we can't "wrap around the address space". In case of address space 4423 // zero we know that this won't happen without triggering undefined behavior. 4424 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4425 Stride != 1 && Stride != -1) 4426 return 0; 4427 4428 return Stride; 4429 } 4430 4431 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4432 unsigned TypeByteSize) { 4433 // If loads occur at a distance that is not a multiple of a feasible vector 4434 // factor store-load forwarding does not take place. 4435 // Positive dependences might cause troubles because vectorizing them might 4436 // prevent store-load forwarding making vectorized code run a lot slower. 4437 // a[i] = a[i-3] ^ a[i-8]; 4438 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4439 // hence on your typical architecture store-load forwarding does not take 4440 // place. Vectorizing in such cases does not make sense. 4441 // Store-load forwarding distance. 4442 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4443 // Maximum vector factor. 4444 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4445 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4446 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4447 4448 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4449 vf *= 2) { 4450 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4451 MaxVFWithoutSLForwardIssues = (vf >>=1); 4452 break; 4453 } 4454 } 4455 4456 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4457 DEBUG(dbgs() << "LV: Distance " << Distance << 4458 " that could cause a store-load forwarding conflict\n"); 4459 return true; 4460 } 4461 4462 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4463 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4464 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4465 return false; 4466 } 4467 4468 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4469 const MemAccessInfo &B, unsigned BIdx, 4470 ValueToValueMap &Strides) { 4471 assert (AIdx < BIdx && "Must pass arguments in program order"); 4472 4473 Value *APtr = A.getPointer(); 4474 Value *BPtr = B.getPointer(); 4475 bool AIsWrite = A.getInt(); 4476 bool BIsWrite = B.getInt(); 4477 4478 // Two reads are independent. 4479 if (!AIsWrite && !BIsWrite) 4480 return false; 4481 4482 // We cannot check pointers in different address spaces. 4483 if (APtr->getType()->getPointerAddressSpace() != 4484 BPtr->getType()->getPointerAddressSpace()) 4485 return true; 4486 4487 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4488 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4489 4490 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4491 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4492 4493 const SCEV *Src = AScev; 4494 const SCEV *Sink = BScev; 4495 4496 // If the induction step is negative we have to invert source and sink of the 4497 // dependence. 4498 if (StrideAPtr < 0) { 4499 //Src = BScev; 4500 //Sink = AScev; 4501 std::swap(APtr, BPtr); 4502 std::swap(Src, Sink); 4503 std::swap(AIsWrite, BIsWrite); 4504 std::swap(AIdx, BIdx); 4505 std::swap(StrideAPtr, StrideBPtr); 4506 } 4507 4508 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4509 4510 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4511 << "(Induction step: " << StrideAPtr << ")\n"); 4512 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4513 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4514 4515 // Need consecutive accesses. We don't want to vectorize 4516 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4517 // the address space. 4518 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4519 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4520 return true; 4521 } 4522 4523 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4524 if (!C) { 4525 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4526 ShouldRetryWithRuntimeCheck = true; 4527 return true; 4528 } 4529 4530 Type *ATy = APtr->getType()->getPointerElementType(); 4531 Type *BTy = BPtr->getType()->getPointerElementType(); 4532 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4533 4534 // Negative distances are not plausible dependencies. 4535 const APInt &Val = C->getValue()->getValue(); 4536 if (Val.isNegative()) { 4537 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4538 if (IsTrueDataDependence && 4539 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4540 ATy != BTy)) 4541 return true; 4542 4543 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4544 return false; 4545 } 4546 4547 // Write to the same location with the same size. 4548 // Could be improved to assert type sizes are the same (i32 == float, etc). 4549 if (Val == 0) { 4550 if (ATy == BTy) 4551 return false; 4552 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4553 return true; 4554 } 4555 4556 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4557 4558 // Positive distance bigger than max vectorization factor. 4559 if (ATy != BTy) { 4560 DEBUG(dbgs() << 4561 "LV: ReadWrite-Write positive dependency with different types\n"); 4562 return false; 4563 } 4564 4565 unsigned Distance = (unsigned) Val.getZExtValue(); 4566 4567 // Bail out early if passed-in parameters make vectorization not feasible. 4568 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4569 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4570 4571 // The distance must be bigger than the size needed for a vectorized version 4572 // of the operation and the size of the vectorized operation must not be 4573 // bigger than the currrent maximum size. 4574 if (Distance < 2*TypeByteSize || 4575 2*TypeByteSize > MaxSafeDepDistBytes || 4576 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4577 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4578 << Val.getSExtValue() << '\n'); 4579 return true; 4580 } 4581 4582 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4583 Distance : MaxSafeDepDistBytes; 4584 4585 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4586 if (IsTrueDataDependence && 4587 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4588 return true; 4589 4590 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4591 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4592 4593 return false; 4594 } 4595 4596 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4597 MemAccessInfoSet &CheckDeps, 4598 ValueToValueMap &Strides) { 4599 4600 MaxSafeDepDistBytes = -1U; 4601 while (!CheckDeps.empty()) { 4602 MemAccessInfo CurAccess = *CheckDeps.begin(); 4603 4604 // Get the relevant memory access set. 4605 EquivalenceClasses<MemAccessInfo>::iterator I = 4606 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4607 4608 // Check accesses within this set. 4609 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4610 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4611 4612 // Check every access pair. 4613 while (AI != AE) { 4614 CheckDeps.erase(*AI); 4615 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4616 while (OI != AE) { 4617 // Check every accessing instruction pair in program order. 4618 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4619 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4620 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4621 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4622 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4623 return false; 4624 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4625 return false; 4626 } 4627 ++OI; 4628 } 4629 AI++; 4630 } 4631 } 4632 return true; 4633 } 4634 4635 bool LoopVectorizationLegality::canVectorizeMemory() { 4636 4637 typedef SmallVector<Value*, 16> ValueVector; 4638 typedef SmallPtrSet<Value*, 16> ValueSet; 4639 4640 // Holds the Load and Store *instructions*. 4641 ValueVector Loads; 4642 ValueVector Stores; 4643 4644 // Holds all the different accesses in the loop. 4645 unsigned NumReads = 0; 4646 unsigned NumReadWrites = 0; 4647 4648 PtrRtCheck.Pointers.clear(); 4649 PtrRtCheck.Need = false; 4650 4651 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4652 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4653 4654 // For each block. 4655 for (Loop::block_iterator bb = TheLoop->block_begin(), 4656 be = TheLoop->block_end(); bb != be; ++bb) { 4657 4658 // Scan the BB and collect legal loads and stores. 4659 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4660 ++it) { 4661 4662 // If this is a load, save it. If this instruction can read from memory 4663 // but is not a load, then we quit. Notice that we don't handle function 4664 // calls that read or write. 4665 if (it->mayReadFromMemory()) { 4666 // Many math library functions read the rounding mode. We will only 4667 // vectorize a loop if it contains known function calls that don't set 4668 // the flag. Therefore, it is safe to ignore this read from memory. 4669 CallInst *Call = dyn_cast<CallInst>(it); 4670 if (Call && getIntrinsicIDForCall(Call, TLI)) 4671 continue; 4672 4673 LoadInst *Ld = dyn_cast<LoadInst>(it); 4674 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4675 emitAnalysis(Report(Ld) 4676 << "read with atomic ordering or volatile read"); 4677 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4678 return false; 4679 } 4680 NumLoads++; 4681 Loads.push_back(Ld); 4682 DepChecker.addAccess(Ld); 4683 continue; 4684 } 4685 4686 // Save 'store' instructions. Abort if other instructions write to memory. 4687 if (it->mayWriteToMemory()) { 4688 StoreInst *St = dyn_cast<StoreInst>(it); 4689 if (!St) { 4690 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4691 return false; 4692 } 4693 if (!St->isSimple() && !IsAnnotatedParallel) { 4694 emitAnalysis(Report(St) 4695 << "write with atomic ordering or volatile write"); 4696 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4697 return false; 4698 } 4699 NumStores++; 4700 Stores.push_back(St); 4701 DepChecker.addAccess(St); 4702 } 4703 } // Next instr. 4704 } // Next block. 4705 4706 // Now we have two lists that hold the loads and the stores. 4707 // Next, we find the pointers that they use. 4708 4709 // Check if we see any stores. If there are no stores, then we don't 4710 // care if the pointers are *restrict*. 4711 if (!Stores.size()) { 4712 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4713 return true; 4714 } 4715 4716 AccessAnalysis::DepCandidates DependentAccesses; 4717 AccessAnalysis Accesses(DL, AA, DependentAccesses); 4718 4719 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4720 // multiple times on the same object. If the ptr is accessed twice, once 4721 // for read and once for write, it will only appear once (on the write 4722 // list). This is okay, since we are going to check for conflicts between 4723 // writes and between reads and writes, but not between reads and reads. 4724 ValueSet Seen; 4725 4726 ValueVector::iterator I, IE; 4727 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4728 StoreInst *ST = cast<StoreInst>(*I); 4729 Value* Ptr = ST->getPointerOperand(); 4730 4731 if (isUniform(Ptr)) { 4732 emitAnalysis( 4733 Report(ST) 4734 << "write to a loop invariant address could not be vectorized"); 4735 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4736 return false; 4737 } 4738 4739 // If we did *not* see this pointer before, insert it to the read-write 4740 // list. At this phase it is only a 'write' list. 4741 if (Seen.insert(Ptr)) { 4742 ++NumReadWrites; 4743 4744 AliasAnalysis::Location Loc = AA->getLocation(ST); 4745 // The TBAA metadata could have a control dependency on the predication 4746 // condition, so we cannot rely on it when determining whether or not we 4747 // need runtime pointer checks. 4748 if (blockNeedsPredication(ST->getParent())) 4749 Loc.TBAATag = nullptr; 4750 4751 Accesses.addStore(Loc); 4752 } 4753 } 4754 4755 if (IsAnnotatedParallel) { 4756 DEBUG(dbgs() 4757 << "LV: A loop annotated parallel, ignore memory dependency " 4758 << "checks.\n"); 4759 return true; 4760 } 4761 4762 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4763 LoadInst *LD = cast<LoadInst>(*I); 4764 Value* Ptr = LD->getPointerOperand(); 4765 // If we did *not* see this pointer before, insert it to the 4766 // read list. If we *did* see it before, then it is already in 4767 // the read-write list. This allows us to vectorize expressions 4768 // such as A[i] += x; Because the address of A[i] is a read-write 4769 // pointer. This only works if the index of A[i] is consecutive. 4770 // If the address of i is unknown (for example A[B[i]]) then we may 4771 // read a few words, modify, and write a few words, and some of the 4772 // words may be written to the same address. 4773 bool IsReadOnlyPtr = false; 4774 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4775 ++NumReads; 4776 IsReadOnlyPtr = true; 4777 } 4778 4779 AliasAnalysis::Location Loc = AA->getLocation(LD); 4780 // The TBAA metadata could have a control dependency on the predication 4781 // condition, so we cannot rely on it when determining whether or not we 4782 // need runtime pointer checks. 4783 if (blockNeedsPredication(LD->getParent())) 4784 Loc.TBAATag = nullptr; 4785 4786 Accesses.addLoad(Loc, IsReadOnlyPtr); 4787 } 4788 4789 // If we write (or read-write) to a single destination and there are no 4790 // other reads in this loop then is it safe to vectorize. 4791 if (NumReadWrites == 1 && NumReads == 0) { 4792 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4793 return true; 4794 } 4795 4796 // Build dependence sets and check whether we need a runtime pointer bounds 4797 // check. 4798 Accesses.buildDependenceSets(); 4799 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4800 4801 // Find pointers with computable bounds. We are going to use this information 4802 // to place a runtime bound check. 4803 unsigned NumComparisons = 0; 4804 bool CanDoRT = false; 4805 if (NeedRTCheck) 4806 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4807 Strides); 4808 4809 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4810 " pointer comparisons.\n"); 4811 4812 // If we only have one set of dependences to check pointers among we don't 4813 // need a runtime check. 4814 if (NumComparisons == 0 && NeedRTCheck) 4815 NeedRTCheck = false; 4816 4817 // Check that we did not collect too many pointers or found an unsizeable 4818 // pointer. 4819 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4820 PtrRtCheck.reset(); 4821 CanDoRT = false; 4822 } 4823 4824 if (CanDoRT) { 4825 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4826 } 4827 4828 if (NeedRTCheck && !CanDoRT) { 4829 emitAnalysis(Report() << "cannot identify array bounds"); 4830 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4831 "the array bounds.\n"); 4832 PtrRtCheck.reset(); 4833 return false; 4834 } 4835 4836 PtrRtCheck.Need = NeedRTCheck; 4837 4838 bool CanVecMem = true; 4839 if (Accesses.isDependencyCheckNeeded()) { 4840 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4841 CanVecMem = DepChecker.areDepsSafe( 4842 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4843 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4844 4845 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4846 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4847 NeedRTCheck = true; 4848 4849 // Clear the dependency checks. We assume they are not needed. 4850 Accesses.resetDepChecks(); 4851 4852 PtrRtCheck.reset(); 4853 PtrRtCheck.Need = true; 4854 4855 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4856 TheLoop, Strides, true); 4857 // Check that we did not collect too many pointers or found an unsizeable 4858 // pointer. 4859 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4860 if (!CanDoRT && NumComparisons > 0) 4861 emitAnalysis(Report() 4862 << "cannot check memory dependencies at runtime"); 4863 else 4864 emitAnalysis(Report() 4865 << NumComparisons << " exceeds limit of " 4866 << RuntimeMemoryCheckThreshold 4867 << " dependent memory operations checked at runtime"); 4868 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4869 PtrRtCheck.reset(); 4870 return false; 4871 } 4872 4873 CanVecMem = true; 4874 } 4875 } 4876 4877 if (!CanVecMem) 4878 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4879 4880 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4881 " need a runtime memory check.\n"); 4882 4883 return CanVecMem; 4884 } 4885 4886 static bool hasMultipleUsesOf(Instruction *I, 4887 SmallPtrSet<Instruction *, 8> &Insts) { 4888 unsigned NumUses = 0; 4889 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4890 if (Insts.count(dyn_cast<Instruction>(*Use))) 4891 ++NumUses; 4892 if (NumUses > 1) 4893 return true; 4894 } 4895 4896 return false; 4897 } 4898 4899 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 4900 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4901 if (!Set.count(dyn_cast<Instruction>(*Use))) 4902 return false; 4903 return true; 4904 } 4905 4906 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4907 ReductionKind Kind) { 4908 if (Phi->getNumIncomingValues() != 2) 4909 return false; 4910 4911 // Reduction variables are only found in the loop header block. 4912 if (Phi->getParent() != TheLoop->getHeader()) 4913 return false; 4914 4915 // Obtain the reduction start value from the value that comes from the loop 4916 // preheader. 4917 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4918 4919 // ExitInstruction is the single value which is used outside the loop. 4920 // We only allow for a single reduction value to be used outside the loop. 4921 // This includes users of the reduction, variables (which form a cycle 4922 // which ends in the phi node). 4923 Instruction *ExitInstruction = nullptr; 4924 // Indicates that we found a reduction operation in our scan. 4925 bool FoundReduxOp = false; 4926 4927 // We start with the PHI node and scan for all of the users of this 4928 // instruction. All users must be instructions that can be used as reduction 4929 // variables (such as ADD). We must have a single out-of-block user. The cycle 4930 // must include the original PHI. 4931 bool FoundStartPHI = false; 4932 4933 // To recognize min/max patterns formed by a icmp select sequence, we store 4934 // the number of instruction we saw from the recognized min/max pattern, 4935 // to make sure we only see exactly the two instructions. 4936 unsigned NumCmpSelectPatternInst = 0; 4937 ReductionInstDesc ReduxDesc(false, nullptr); 4938 4939 SmallPtrSet<Instruction *, 8> VisitedInsts; 4940 SmallVector<Instruction *, 8> Worklist; 4941 Worklist.push_back(Phi); 4942 VisitedInsts.insert(Phi); 4943 4944 // A value in the reduction can be used: 4945 // - By the reduction: 4946 // - Reduction operation: 4947 // - One use of reduction value (safe). 4948 // - Multiple use of reduction value (not safe). 4949 // - PHI: 4950 // - All uses of the PHI must be the reduction (safe). 4951 // - Otherwise, not safe. 4952 // - By one instruction outside of the loop (safe). 4953 // - By further instructions outside of the loop (not safe). 4954 // - By an instruction that is not part of the reduction (not safe). 4955 // This is either: 4956 // * An instruction type other than PHI or the reduction operation. 4957 // * A PHI in the header other than the initial PHI. 4958 while (!Worklist.empty()) { 4959 Instruction *Cur = Worklist.back(); 4960 Worklist.pop_back(); 4961 4962 // No Users. 4963 // If the instruction has no users then this is a broken chain and can't be 4964 // a reduction variable. 4965 if (Cur->use_empty()) 4966 return false; 4967 4968 bool IsAPhi = isa<PHINode>(Cur); 4969 4970 // A header PHI use other than the original PHI. 4971 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4972 return false; 4973 4974 // Reductions of instructions such as Div, and Sub is only possible if the 4975 // LHS is the reduction variable. 4976 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4977 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4978 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4979 return false; 4980 4981 // Any reduction instruction must be of one of the allowed kinds. 4982 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4983 if (!ReduxDesc.IsReduction) 4984 return false; 4985 4986 // A reduction operation must only have one use of the reduction value. 4987 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4988 hasMultipleUsesOf(Cur, VisitedInsts)) 4989 return false; 4990 4991 // All inputs to a PHI node must be a reduction value. 4992 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4993 return false; 4994 4995 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4996 isa<SelectInst>(Cur))) 4997 ++NumCmpSelectPatternInst; 4998 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4999 isa<SelectInst>(Cur))) 5000 ++NumCmpSelectPatternInst; 5001 5002 // Check whether we found a reduction operator. 5003 FoundReduxOp |= !IsAPhi; 5004 5005 // Process users of current instruction. Push non-PHI nodes after PHI nodes 5006 // onto the stack. This way we are going to have seen all inputs to PHI 5007 // nodes once we get to them. 5008 SmallVector<Instruction *, 8> NonPHIs; 5009 SmallVector<Instruction *, 8> PHIs; 5010 for (User *U : Cur->users()) { 5011 Instruction *UI = cast<Instruction>(U); 5012 5013 // Check if we found the exit user. 5014 BasicBlock *Parent = UI->getParent(); 5015 if (!TheLoop->contains(Parent)) { 5016 // Exit if you find multiple outside users or if the header phi node is 5017 // being used. In this case the user uses the value of the previous 5018 // iteration, in which case we would loose "VF-1" iterations of the 5019 // reduction operation if we vectorize. 5020 if (ExitInstruction != nullptr || Cur == Phi) 5021 return false; 5022 5023 // The instruction used by an outside user must be the last instruction 5024 // before we feed back to the reduction phi. Otherwise, we loose VF-1 5025 // operations on the value. 5026 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 5027 return false; 5028 5029 ExitInstruction = Cur; 5030 continue; 5031 } 5032 5033 // Process instructions only once (termination). Each reduction cycle 5034 // value must only be used once, except by phi nodes and min/max 5035 // reductions which are represented as a cmp followed by a select. 5036 ReductionInstDesc IgnoredVal(false, nullptr); 5037 if (VisitedInsts.insert(UI)) { 5038 if (isa<PHINode>(UI)) 5039 PHIs.push_back(UI); 5040 else 5041 NonPHIs.push_back(UI); 5042 } else if (!isa<PHINode>(UI) && 5043 ((!isa<FCmpInst>(UI) && 5044 !isa<ICmpInst>(UI) && 5045 !isa<SelectInst>(UI)) || 5046 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 5047 return false; 5048 5049 // Remember that we completed the cycle. 5050 if (UI == Phi) 5051 FoundStartPHI = true; 5052 } 5053 Worklist.append(PHIs.begin(), PHIs.end()); 5054 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 5055 } 5056 5057 // This means we have seen one but not the other instruction of the 5058 // pattern or more than just a select and cmp. 5059 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 5060 NumCmpSelectPatternInst != 2) 5061 return false; 5062 5063 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 5064 return false; 5065 5066 // We found a reduction var if we have reached the original phi node and we 5067 // only have a single instruction with out-of-loop users. 5068 5069 // This instruction is allowed to have out-of-loop users. 5070 AllowedExit.insert(ExitInstruction); 5071 5072 // Save the description of this reduction variable. 5073 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 5074 ReduxDesc.MinMaxKind); 5075 Reductions[Phi] = RD; 5076 // We've ended the cycle. This is a reduction variable if we have an 5077 // outside user and it has a binary op. 5078 5079 return true; 5080 } 5081 5082 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 5083 /// pattern corresponding to a min(X, Y) or max(X, Y). 5084 LoopVectorizationLegality::ReductionInstDesc 5085 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 5086 ReductionInstDesc &Prev) { 5087 5088 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 5089 "Expect a select instruction"); 5090 Instruction *Cmp = nullptr; 5091 SelectInst *Select = nullptr; 5092 5093 // We must handle the select(cmp()) as a single instruction. Advance to the 5094 // select. 5095 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5096 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5097 return ReductionInstDesc(false, I); 5098 return ReductionInstDesc(Select, Prev.MinMaxKind); 5099 } 5100 5101 // Only handle single use cases for now. 5102 if (!(Select = dyn_cast<SelectInst>(I))) 5103 return ReductionInstDesc(false, I); 5104 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5105 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5106 return ReductionInstDesc(false, I); 5107 if (!Cmp->hasOneUse()) 5108 return ReductionInstDesc(false, I); 5109 5110 Value *CmpLeft; 5111 Value *CmpRight; 5112 5113 // Look for a min/max pattern. 5114 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5115 return ReductionInstDesc(Select, MRK_UIntMin); 5116 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5117 return ReductionInstDesc(Select, MRK_UIntMax); 5118 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5119 return ReductionInstDesc(Select, MRK_SIntMax); 5120 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5121 return ReductionInstDesc(Select, MRK_SIntMin); 5122 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5123 return ReductionInstDesc(Select, MRK_FloatMin); 5124 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5125 return ReductionInstDesc(Select, MRK_FloatMax); 5126 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5127 return ReductionInstDesc(Select, MRK_FloatMin); 5128 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5129 return ReductionInstDesc(Select, MRK_FloatMax); 5130 5131 return ReductionInstDesc(false, I); 5132 } 5133 5134 LoopVectorizationLegality::ReductionInstDesc 5135 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5136 ReductionKind Kind, 5137 ReductionInstDesc &Prev) { 5138 bool FP = I->getType()->isFloatingPointTy(); 5139 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 5140 switch (I->getOpcode()) { 5141 default: 5142 return ReductionInstDesc(false, I); 5143 case Instruction::PHI: 5144 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5145 Kind != RK_FloatMinMax)) 5146 return ReductionInstDesc(false, I); 5147 return ReductionInstDesc(I, Prev.MinMaxKind); 5148 case Instruction::Sub: 5149 case Instruction::Add: 5150 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5151 case Instruction::Mul: 5152 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5153 case Instruction::And: 5154 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5155 case Instruction::Or: 5156 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5157 case Instruction::Xor: 5158 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5159 case Instruction::FMul: 5160 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5161 case Instruction::FAdd: 5162 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5163 case Instruction::FCmp: 5164 case Instruction::ICmp: 5165 case Instruction::Select: 5166 if (Kind != RK_IntegerMinMax && 5167 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5168 return ReductionInstDesc(false, I); 5169 return isMinMaxSelectCmpPattern(I, Prev); 5170 } 5171 } 5172 5173 LoopVectorizationLegality::InductionKind 5174 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5175 Type *PhiTy = Phi->getType(); 5176 // We only handle integer and pointer inductions variables. 5177 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5178 return IK_NoInduction; 5179 5180 // Check that the PHI is consecutive. 5181 const SCEV *PhiScev = SE->getSCEV(Phi); 5182 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5183 if (!AR) { 5184 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5185 return IK_NoInduction; 5186 } 5187 const SCEV *Step = AR->getStepRecurrence(*SE); 5188 5189 // Integer inductions need to have a stride of one. 5190 if (PhiTy->isIntegerTy()) { 5191 if (Step->isOne()) 5192 return IK_IntInduction; 5193 if (Step->isAllOnesValue()) 5194 return IK_ReverseIntInduction; 5195 return IK_NoInduction; 5196 } 5197 5198 // Calculate the pointer stride and check if it is consecutive. 5199 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5200 if (!C) 5201 return IK_NoInduction; 5202 5203 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5204 Type *PointerElementType = PhiTy->getPointerElementType(); 5205 // The pointer stride cannot be determined if the pointer element type is not 5206 // sized. 5207 if (!PointerElementType->isSized()) 5208 return IK_NoInduction; 5209 5210 uint64_t Size = DL->getTypeAllocSize(PointerElementType); 5211 if (C->getValue()->equalsInt(Size)) 5212 return IK_PtrInduction; 5213 else if (C->getValue()->equalsInt(0 - Size)) 5214 return IK_ReversePtrInduction; 5215 5216 return IK_NoInduction; 5217 } 5218 5219 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5220 Value *In0 = const_cast<Value*>(V); 5221 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5222 if (!PN) 5223 return false; 5224 5225 return Inductions.count(PN); 5226 } 5227 5228 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5229 assert(TheLoop->contains(BB) && "Unknown block used"); 5230 5231 // Blocks that do not dominate the latch need predication. 5232 BasicBlock* Latch = TheLoop->getLoopLatch(); 5233 return !DT->dominates(BB, Latch); 5234 } 5235 5236 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5237 SmallPtrSet<Value *, 8>& SafePtrs) { 5238 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5239 // We might be able to hoist the load. 5240 if (it->mayReadFromMemory()) { 5241 LoadInst *LI = dyn_cast<LoadInst>(it); 5242 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 5243 return false; 5244 } 5245 5246 // We don't predicate stores at the moment. 5247 if (it->mayWriteToMemory()) { 5248 StoreInst *SI = dyn_cast<StoreInst>(it); 5249 // We only support predication of stores in basic blocks with one 5250 // predecessor. 5251 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 5252 !SafePtrs.count(SI->getPointerOperand()) || 5253 !SI->getParent()->getSinglePredecessor()) 5254 return false; 5255 } 5256 if (it->mayThrow()) 5257 return false; 5258 5259 // Check that we don't have a constant expression that can trap as operand. 5260 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5261 OI != OE; ++OI) { 5262 if (Constant *C = dyn_cast<Constant>(*OI)) 5263 if (C->canTrap()) 5264 return false; 5265 } 5266 5267 // The instructions below can trap. 5268 switch (it->getOpcode()) { 5269 default: continue; 5270 case Instruction::UDiv: 5271 case Instruction::SDiv: 5272 case Instruction::URem: 5273 case Instruction::SRem: 5274 return false; 5275 } 5276 } 5277 5278 return true; 5279 } 5280 5281 LoopVectorizationCostModel::VectorizationFactor 5282 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 5283 unsigned UserVF, 5284 bool ForceVectorization) { 5285 // Width 1 means no vectorize 5286 VectorizationFactor Factor = { 1U, 0U }; 5287 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5288 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5289 return Factor; 5290 } 5291 5292 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5293 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5294 return Factor; 5295 } 5296 5297 // Find the trip count. 5298 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 5299 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5300 5301 unsigned WidestType = getWidestType(); 5302 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5303 unsigned MaxSafeDepDist = -1U; 5304 if (Legal->getMaxSafeDepDistBytes() != -1U) 5305 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5306 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5307 WidestRegister : MaxSafeDepDist); 5308 unsigned MaxVectorSize = WidestRegister / WidestType; 5309 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5310 DEBUG(dbgs() << "LV: The Widest register is: " 5311 << WidestRegister << " bits.\n"); 5312 5313 if (MaxVectorSize == 0) { 5314 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5315 MaxVectorSize = 1; 5316 } 5317 5318 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5319 " into one vector!"); 5320 5321 unsigned VF = MaxVectorSize; 5322 5323 // If we optimize the program for size, avoid creating the tail loop. 5324 if (OptForSize) { 5325 // If we are unable to calculate the trip count then don't try to vectorize. 5326 if (TC < 2) { 5327 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5328 return Factor; 5329 } 5330 5331 // Find the maximum SIMD width that can fit within the trip count. 5332 VF = TC % MaxVectorSize; 5333 5334 if (VF == 0) 5335 VF = MaxVectorSize; 5336 5337 // If the trip count that we found modulo the vectorization factor is not 5338 // zero then we require a tail. 5339 if (VF < 2) { 5340 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5341 return Factor; 5342 } 5343 } 5344 5345 if (UserVF != 0) { 5346 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5347 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5348 5349 Factor.Width = UserVF; 5350 return Factor; 5351 } 5352 5353 float Cost = expectedCost(1); 5354 #ifndef NDEBUG 5355 const float ScalarCost = Cost; 5356 #endif /* NDEBUG */ 5357 unsigned Width = 1; 5358 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5359 5360 // Ignore scalar width, because the user explicitly wants vectorization. 5361 if (ForceVectorization && VF > 1) { 5362 Width = 2; 5363 Cost = expectedCost(Width) / (float)Width; 5364 } 5365 5366 for (unsigned i=2; i <= VF; i*=2) { 5367 // Notice that the vector loop needs to be executed less times, so 5368 // we need to divide the cost of the vector loops by the width of 5369 // the vector elements. 5370 float VectorCost = expectedCost(i) / (float)i; 5371 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5372 (int)VectorCost << ".\n"); 5373 if (VectorCost < Cost) { 5374 Cost = VectorCost; 5375 Width = i; 5376 } 5377 } 5378 5379 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5380 << "LV: Vectorization seems to be not beneficial, " 5381 << "but was forced by a user.\n"); 5382 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5383 Factor.Width = Width; 5384 Factor.Cost = Width * Cost; 5385 return Factor; 5386 } 5387 5388 unsigned LoopVectorizationCostModel::getWidestType() { 5389 unsigned MaxWidth = 8; 5390 5391 // For each block. 5392 for (Loop::block_iterator bb = TheLoop->block_begin(), 5393 be = TheLoop->block_end(); bb != be; ++bb) { 5394 BasicBlock *BB = *bb; 5395 5396 // For each instruction in the loop. 5397 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5398 Type *T = it->getType(); 5399 5400 // Only examine Loads, Stores and PHINodes. 5401 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5402 continue; 5403 5404 // Examine PHI nodes that are reduction variables. 5405 if (PHINode *PN = dyn_cast<PHINode>(it)) 5406 if (!Legal->getReductionVars()->count(PN)) 5407 continue; 5408 5409 // Examine the stored values. 5410 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5411 T = ST->getValueOperand()->getType(); 5412 5413 // Ignore loaded pointer types and stored pointer types that are not 5414 // consecutive. However, we do want to take consecutive stores/loads of 5415 // pointer vectors into account. 5416 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5417 continue; 5418 5419 MaxWidth = std::max(MaxWidth, 5420 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5421 } 5422 } 5423 5424 return MaxWidth; 5425 } 5426 5427 unsigned 5428 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5429 unsigned UserUF, 5430 unsigned VF, 5431 unsigned LoopCost) { 5432 5433 // -- The unroll heuristics -- 5434 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5435 // There are many micro-architectural considerations that we can't predict 5436 // at this level. For example frontend pressure (on decode or fetch) due to 5437 // code size, or the number and capabilities of the execution ports. 5438 // 5439 // We use the following heuristics to select the unroll factor: 5440 // 1. If the code has reductions the we unroll in order to break the cross 5441 // iteration dependency. 5442 // 2. If the loop is really small then we unroll in order to reduce the loop 5443 // overhead. 5444 // 3. We don't unroll if we think that we will spill registers to memory due 5445 // to the increased register pressure. 5446 5447 // Use the user preference, unless 'auto' is selected. 5448 if (UserUF != 0) 5449 return UserUF; 5450 5451 // When we optimize for size we don't unroll. 5452 if (OptForSize) 5453 return 1; 5454 5455 // We used the distance for the unroll factor. 5456 if (Legal->getMaxSafeDepDistBytes() != -1U) 5457 return 1; 5458 5459 // Do not unroll loops with a relatively small trip count. 5460 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5461 TheLoop->getLoopLatch()); 5462 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5463 return 1; 5464 5465 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5466 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5467 " registers\n"); 5468 5469 if (VF == 1) { 5470 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5471 TargetNumRegisters = ForceTargetNumScalarRegs; 5472 } else { 5473 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5474 TargetNumRegisters = ForceTargetNumVectorRegs; 5475 } 5476 5477 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5478 // We divide by these constants so assume that we have at least one 5479 // instruction that uses at least one register. 5480 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5481 R.NumInstructions = std::max(R.NumInstructions, 1U); 5482 5483 // We calculate the unroll factor using the following formula. 5484 // Subtract the number of loop invariants from the number of available 5485 // registers. These registers are used by all of the unrolled instances. 5486 // Next, divide the remaining registers by the number of registers that is 5487 // required by the loop, in order to estimate how many parallel instances 5488 // fit without causing spills. All of this is rounded down if necessary to be 5489 // a power of two. We want power of two unroll factors to simplify any 5490 // addressing operations or alignment considerations. 5491 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5492 R.MaxLocalUsers); 5493 5494 // Don't count the induction variable as unrolled. 5495 if (EnableIndVarRegisterHeur) 5496 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5497 std::max(1U, (R.MaxLocalUsers - 1))); 5498 5499 // Clamp the unroll factor ranges to reasonable factors. 5500 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5501 5502 // Check if the user has overridden the unroll max. 5503 if (VF == 1) { 5504 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5505 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5506 } else { 5507 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5508 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5509 } 5510 5511 // If we did not calculate the cost for VF (because the user selected the VF) 5512 // then we calculate the cost of VF here. 5513 if (LoopCost == 0) 5514 LoopCost = expectedCost(VF); 5515 5516 // Clamp the calculated UF to be between the 1 and the max unroll factor 5517 // that the target allows. 5518 if (UF > MaxUnrollSize) 5519 UF = MaxUnrollSize; 5520 else if (UF < 1) 5521 UF = 1; 5522 5523 // Unroll if we vectorized this loop and there is a reduction that could 5524 // benefit from unrolling. 5525 if (VF > 1 && Legal->getReductionVars()->size()) { 5526 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5527 return UF; 5528 } 5529 5530 // Note that if we've already vectorized the loop we will have done the 5531 // runtime check and so unrolling won't require further checks. 5532 bool UnrollingRequiresRuntimePointerCheck = 5533 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5534 5535 // We want to unroll small loops in order to reduce the loop overhead and 5536 // potentially expose ILP opportunities. 5537 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5538 if (!UnrollingRequiresRuntimePointerCheck && 5539 LoopCost < SmallLoopCost) { 5540 // We assume that the cost overhead is 1 and we use the cost model 5541 // to estimate the cost of the loop and unroll until the cost of the 5542 // loop overhead is about 5% of the cost of the loop. 5543 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5544 5545 // Unroll until store/load ports (estimated by max unroll factor) are 5546 // saturated. 5547 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5548 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5549 5550 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5551 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5552 return std::max(StoresUF, LoadsUF); 5553 } 5554 5555 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5556 return SmallUF; 5557 } 5558 5559 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5560 return 1; 5561 } 5562 5563 LoopVectorizationCostModel::RegisterUsage 5564 LoopVectorizationCostModel::calculateRegisterUsage() { 5565 // This function calculates the register usage by measuring the highest number 5566 // of values that are alive at a single location. Obviously, this is a very 5567 // rough estimation. We scan the loop in a topological order in order and 5568 // assign a number to each instruction. We use RPO to ensure that defs are 5569 // met before their users. We assume that each instruction that has in-loop 5570 // users starts an interval. We record every time that an in-loop value is 5571 // used, so we have a list of the first and last occurrences of each 5572 // instruction. Next, we transpose this data structure into a multi map that 5573 // holds the list of intervals that *end* at a specific location. This multi 5574 // map allows us to perform a linear search. We scan the instructions linearly 5575 // and record each time that a new interval starts, by placing it in a set. 5576 // If we find this value in the multi-map then we remove it from the set. 5577 // The max register usage is the maximum size of the set. 5578 // We also search for instructions that are defined outside the loop, but are 5579 // used inside the loop. We need this number separately from the max-interval 5580 // usage number because when we unroll, loop-invariant values do not take 5581 // more register. 5582 LoopBlocksDFS DFS(TheLoop); 5583 DFS.perform(LI); 5584 5585 RegisterUsage R; 5586 R.NumInstructions = 0; 5587 5588 // Each 'key' in the map opens a new interval. The values 5589 // of the map are the index of the 'last seen' usage of the 5590 // instruction that is the key. 5591 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5592 // Maps instruction to its index. 5593 DenseMap<unsigned, Instruction*> IdxToInstr; 5594 // Marks the end of each interval. 5595 IntervalMap EndPoint; 5596 // Saves the list of instruction indices that are used in the loop. 5597 SmallSet<Instruction*, 8> Ends; 5598 // Saves the list of values that are used in the loop but are 5599 // defined outside the loop, such as arguments and constants. 5600 SmallPtrSet<Value*, 8> LoopInvariants; 5601 5602 unsigned Index = 0; 5603 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5604 be = DFS.endRPO(); bb != be; ++bb) { 5605 R.NumInstructions += (*bb)->size(); 5606 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5607 ++it) { 5608 Instruction *I = it; 5609 IdxToInstr[Index++] = I; 5610 5611 // Save the end location of each USE. 5612 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5613 Value *U = I->getOperand(i); 5614 Instruction *Instr = dyn_cast<Instruction>(U); 5615 5616 // Ignore non-instruction values such as arguments, constants, etc. 5617 if (!Instr) continue; 5618 5619 // If this instruction is outside the loop then record it and continue. 5620 if (!TheLoop->contains(Instr)) { 5621 LoopInvariants.insert(Instr); 5622 continue; 5623 } 5624 5625 // Overwrite previous end points. 5626 EndPoint[Instr] = Index; 5627 Ends.insert(Instr); 5628 } 5629 } 5630 } 5631 5632 // Saves the list of intervals that end with the index in 'key'. 5633 typedef SmallVector<Instruction*, 2> InstrList; 5634 DenseMap<unsigned, InstrList> TransposeEnds; 5635 5636 // Transpose the EndPoints to a list of values that end at each index. 5637 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5638 it != e; ++it) 5639 TransposeEnds[it->second].push_back(it->first); 5640 5641 SmallSet<Instruction*, 8> OpenIntervals; 5642 unsigned MaxUsage = 0; 5643 5644 5645 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5646 for (unsigned int i = 0; i < Index; ++i) { 5647 Instruction *I = IdxToInstr[i]; 5648 // Ignore instructions that are never used within the loop. 5649 if (!Ends.count(I)) continue; 5650 5651 // Remove all of the instructions that end at this location. 5652 InstrList &List = TransposeEnds[i]; 5653 for (unsigned int j=0, e = List.size(); j < e; ++j) 5654 OpenIntervals.erase(List[j]); 5655 5656 // Count the number of live interals. 5657 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5658 5659 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5660 OpenIntervals.size() << '\n'); 5661 5662 // Add the current instruction to the list of open intervals. 5663 OpenIntervals.insert(I); 5664 } 5665 5666 unsigned Invariant = LoopInvariants.size(); 5667 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5668 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5669 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5670 5671 R.LoopInvariantRegs = Invariant; 5672 R.MaxLocalUsers = MaxUsage; 5673 return R; 5674 } 5675 5676 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5677 unsigned Cost = 0; 5678 5679 // For each block. 5680 for (Loop::block_iterator bb = TheLoop->block_begin(), 5681 be = TheLoop->block_end(); bb != be; ++bb) { 5682 unsigned BlockCost = 0; 5683 BasicBlock *BB = *bb; 5684 5685 // For each instruction in the old loop. 5686 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5687 // Skip dbg intrinsics. 5688 if (isa<DbgInfoIntrinsic>(it)) 5689 continue; 5690 5691 unsigned C = getInstructionCost(it, VF); 5692 5693 // Check if we should override the cost. 5694 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5695 C = ForceTargetInstructionCost; 5696 5697 BlockCost += C; 5698 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5699 VF << " For instruction: " << *it << '\n'); 5700 } 5701 5702 // We assume that if-converted blocks have a 50% chance of being executed. 5703 // When the code is scalar then some of the blocks are avoided due to CF. 5704 // When the code is vectorized we execute all code paths. 5705 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5706 BlockCost /= 2; 5707 5708 Cost += BlockCost; 5709 } 5710 5711 return Cost; 5712 } 5713 5714 /// \brief Check whether the address computation for a non-consecutive memory 5715 /// access looks like an unlikely candidate for being merged into the indexing 5716 /// mode. 5717 /// 5718 /// We look for a GEP which has one index that is an induction variable and all 5719 /// other indices are loop invariant. If the stride of this access is also 5720 /// within a small bound we decide that this address computation can likely be 5721 /// merged into the addressing mode. 5722 /// In all other cases, we identify the address computation as complex. 5723 static bool isLikelyComplexAddressComputation(Value *Ptr, 5724 LoopVectorizationLegality *Legal, 5725 ScalarEvolution *SE, 5726 const Loop *TheLoop) { 5727 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5728 if (!Gep) 5729 return true; 5730 5731 // We are looking for a gep with all loop invariant indices except for one 5732 // which should be an induction variable. 5733 unsigned NumOperands = Gep->getNumOperands(); 5734 for (unsigned i = 1; i < NumOperands; ++i) { 5735 Value *Opd = Gep->getOperand(i); 5736 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5737 !Legal->isInductionVariable(Opd)) 5738 return true; 5739 } 5740 5741 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5742 // can likely be merged into the address computation. 5743 unsigned MaxMergeDistance = 64; 5744 5745 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5746 if (!AddRec) 5747 return true; 5748 5749 // Check the step is constant. 5750 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5751 // Calculate the pointer stride and check if it is consecutive. 5752 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5753 if (!C) 5754 return true; 5755 5756 const APInt &APStepVal = C->getValue()->getValue(); 5757 5758 // Huge step value - give up. 5759 if (APStepVal.getBitWidth() > 64) 5760 return true; 5761 5762 int64_t StepVal = APStepVal.getSExtValue(); 5763 5764 return StepVal > MaxMergeDistance; 5765 } 5766 5767 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5768 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5769 return true; 5770 return false; 5771 } 5772 5773 unsigned 5774 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5775 // If we know that this instruction will remain uniform, check the cost of 5776 // the scalar version. 5777 if (Legal->isUniformAfterVectorization(I)) 5778 VF = 1; 5779 5780 Type *RetTy = I->getType(); 5781 Type *VectorTy = ToVectorTy(RetTy, VF); 5782 5783 // TODO: We need to estimate the cost of intrinsic calls. 5784 switch (I->getOpcode()) { 5785 case Instruction::GetElementPtr: 5786 // We mark this instruction as zero-cost because the cost of GEPs in 5787 // vectorized code depends on whether the corresponding memory instruction 5788 // is scalarized or not. Therefore, we handle GEPs with the memory 5789 // instruction cost. 5790 return 0; 5791 case Instruction::Br: { 5792 return TTI.getCFInstrCost(I->getOpcode()); 5793 } 5794 case Instruction::PHI: 5795 //TODO: IF-converted IFs become selects. 5796 return 0; 5797 case Instruction::Add: 5798 case Instruction::FAdd: 5799 case Instruction::Sub: 5800 case Instruction::FSub: 5801 case Instruction::Mul: 5802 case Instruction::FMul: 5803 case Instruction::UDiv: 5804 case Instruction::SDiv: 5805 case Instruction::FDiv: 5806 case Instruction::URem: 5807 case Instruction::SRem: 5808 case Instruction::FRem: 5809 case Instruction::Shl: 5810 case Instruction::LShr: 5811 case Instruction::AShr: 5812 case Instruction::And: 5813 case Instruction::Or: 5814 case Instruction::Xor: { 5815 // Since we will replace the stride by 1 the multiplication should go away. 5816 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5817 return 0; 5818 // Certain instructions can be cheaper to vectorize if they have a constant 5819 // second vector operand. One example of this are shifts on x86. 5820 TargetTransformInfo::OperandValueKind Op1VK = 5821 TargetTransformInfo::OK_AnyValue; 5822 TargetTransformInfo::OperandValueKind Op2VK = 5823 TargetTransformInfo::OK_AnyValue; 5824 Value *Op2 = I->getOperand(1); 5825 5826 // Check for a splat of a constant or for a non uniform vector of constants. 5827 if (isa<ConstantInt>(Op2)) 5828 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5829 else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5830 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5831 if (cast<Constant>(Op2)->getSplatValue() != nullptr) 5832 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5833 } 5834 5835 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5836 } 5837 case Instruction::Select: { 5838 SelectInst *SI = cast<SelectInst>(I); 5839 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5840 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5841 Type *CondTy = SI->getCondition()->getType(); 5842 if (!ScalarCond) 5843 CondTy = VectorType::get(CondTy, VF); 5844 5845 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5846 } 5847 case Instruction::ICmp: 5848 case Instruction::FCmp: { 5849 Type *ValTy = I->getOperand(0)->getType(); 5850 VectorTy = ToVectorTy(ValTy, VF); 5851 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5852 } 5853 case Instruction::Store: 5854 case Instruction::Load: { 5855 StoreInst *SI = dyn_cast<StoreInst>(I); 5856 LoadInst *LI = dyn_cast<LoadInst>(I); 5857 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5858 LI->getType()); 5859 VectorTy = ToVectorTy(ValTy, VF); 5860 5861 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5862 unsigned AS = SI ? SI->getPointerAddressSpace() : 5863 LI->getPointerAddressSpace(); 5864 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5865 // We add the cost of address computation here instead of with the gep 5866 // instruction because only here we know whether the operation is 5867 // scalarized. 5868 if (VF == 1) 5869 return TTI.getAddressComputationCost(VectorTy) + 5870 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5871 5872 // Scalarized loads/stores. 5873 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5874 bool Reverse = ConsecutiveStride < 0; 5875 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5876 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5877 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5878 bool IsComplexComputation = 5879 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5880 unsigned Cost = 0; 5881 // The cost of extracting from the value vector and pointer vector. 5882 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5883 for (unsigned i = 0; i < VF; ++i) { 5884 // The cost of extracting the pointer operand. 5885 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5886 // In case of STORE, the cost of ExtractElement from the vector. 5887 // In case of LOAD, the cost of InsertElement into the returned 5888 // vector. 5889 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5890 Instruction::InsertElement, 5891 VectorTy, i); 5892 } 5893 5894 // The cost of the scalar loads/stores. 5895 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5896 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5897 Alignment, AS); 5898 return Cost; 5899 } 5900 5901 // Wide load/stores. 5902 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5903 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5904 5905 if (Reverse) 5906 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5907 VectorTy, 0); 5908 return Cost; 5909 } 5910 case Instruction::ZExt: 5911 case Instruction::SExt: 5912 case Instruction::FPToUI: 5913 case Instruction::FPToSI: 5914 case Instruction::FPExt: 5915 case Instruction::PtrToInt: 5916 case Instruction::IntToPtr: 5917 case Instruction::SIToFP: 5918 case Instruction::UIToFP: 5919 case Instruction::Trunc: 5920 case Instruction::FPTrunc: 5921 case Instruction::BitCast: { 5922 // We optimize the truncation of induction variable. 5923 // The cost of these is the same as the scalar operation. 5924 if (I->getOpcode() == Instruction::Trunc && 5925 Legal->isInductionVariable(I->getOperand(0))) 5926 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5927 I->getOperand(0)->getType()); 5928 5929 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5930 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5931 } 5932 case Instruction::Call: { 5933 CallInst *CI = cast<CallInst>(I); 5934 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5935 assert(ID && "Not an intrinsic call!"); 5936 Type *RetTy = ToVectorTy(CI->getType(), VF); 5937 SmallVector<Type*, 4> Tys; 5938 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5939 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5940 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5941 } 5942 default: { 5943 // We are scalarizing the instruction. Return the cost of the scalar 5944 // instruction, plus the cost of insert and extract into vector 5945 // elements, times the vector width. 5946 unsigned Cost = 0; 5947 5948 if (!RetTy->isVoidTy() && VF != 1) { 5949 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5950 VectorTy); 5951 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5952 VectorTy); 5953 5954 // The cost of inserting the results plus extracting each one of the 5955 // operands. 5956 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5957 } 5958 5959 // The cost of executing VF copies of the scalar instruction. This opcode 5960 // is unknown. Assume that it is the same as 'mul'. 5961 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5962 return Cost; 5963 } 5964 }// end of switch. 5965 } 5966 5967 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5968 if (Scalar->isVoidTy() || VF == 1) 5969 return Scalar; 5970 return VectorType::get(Scalar, VF); 5971 } 5972 5973 char LoopVectorize::ID = 0; 5974 static const char lv_name[] = "Loop Vectorization"; 5975 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5976 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5977 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5978 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5979 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5980 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5981 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5982 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5983 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5984 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5985 5986 namespace llvm { 5987 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5988 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5989 } 5990 } 5991 5992 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5993 // Check for a store. 5994 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5995 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5996 5997 // Check for a load. 5998 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5999 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6000 6001 return false; 6002 } 6003 6004 6005 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6006 bool IfPredicateStore) { 6007 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6008 // Holds vector parameters or scalars, in case of uniform vals. 6009 SmallVector<VectorParts, 4> Params; 6010 6011 setDebugLocFromInst(Builder, Instr); 6012 6013 // Find all of the vectorized parameters. 6014 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6015 Value *SrcOp = Instr->getOperand(op); 6016 6017 // If we are accessing the old induction variable, use the new one. 6018 if (SrcOp == OldInduction) { 6019 Params.push_back(getVectorValue(SrcOp)); 6020 continue; 6021 } 6022 6023 // Try using previously calculated values. 6024 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6025 6026 // If the src is an instruction that appeared earlier in the basic block 6027 // then it should already be vectorized. 6028 if (SrcInst && OrigLoop->contains(SrcInst)) { 6029 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6030 // The parameter is a vector value from earlier. 6031 Params.push_back(WidenMap.get(SrcInst)); 6032 } else { 6033 // The parameter is a scalar from outside the loop. Maybe even a constant. 6034 VectorParts Scalars; 6035 Scalars.append(UF, SrcOp); 6036 Params.push_back(Scalars); 6037 } 6038 } 6039 6040 assert(Params.size() == Instr->getNumOperands() && 6041 "Invalid number of operands"); 6042 6043 // Does this instruction return a value ? 6044 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6045 6046 Value *UndefVec = IsVoidRetTy ? nullptr : 6047 UndefValue::get(Instr->getType()); 6048 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6049 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6050 6051 Instruction *InsertPt = Builder.GetInsertPoint(); 6052 BasicBlock *IfBlock = Builder.GetInsertBlock(); 6053 BasicBlock *CondBlock = nullptr; 6054 6055 VectorParts Cond; 6056 Loop *VectorLp = nullptr; 6057 if (IfPredicateStore) { 6058 assert(Instr->getParent()->getSinglePredecessor() && 6059 "Only support single predecessor blocks"); 6060 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6061 Instr->getParent()); 6062 VectorLp = LI->getLoopFor(IfBlock); 6063 assert(VectorLp && "Must have a loop for this block"); 6064 } 6065 6066 // For each vector unroll 'part': 6067 for (unsigned Part = 0; Part < UF; ++Part) { 6068 // For each scalar that we create: 6069 6070 // Start an "if (pred) a[i] = ..." block. 6071 Value *Cmp = nullptr; 6072 if (IfPredicateStore) { 6073 if (Cond[Part]->getType()->isVectorTy()) 6074 Cond[Part] = 6075 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6076 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6077 ConstantInt::get(Cond[Part]->getType(), 1)); 6078 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 6079 LoopVectorBody.push_back(CondBlock); 6080 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 6081 // Update Builder with newly created basic block. 6082 Builder.SetInsertPoint(InsertPt); 6083 } 6084 6085 Instruction *Cloned = Instr->clone(); 6086 if (!IsVoidRetTy) 6087 Cloned->setName(Instr->getName() + ".cloned"); 6088 // Replace the operands of the cloned instructions with extracted scalars. 6089 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6090 Value *Op = Params[op][Part]; 6091 Cloned->setOperand(op, Op); 6092 } 6093 6094 // Place the cloned scalar in the new loop. 6095 Builder.Insert(Cloned); 6096 6097 // If the original scalar returns a value we need to place it in a vector 6098 // so that future users will be able to use it. 6099 if (!IsVoidRetTy) 6100 VecResults[Part] = Cloned; 6101 6102 // End if-block. 6103 if (IfPredicateStore) { 6104 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6105 LoopVectorBody.push_back(NewIfBlock); 6106 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 6107 Builder.SetInsertPoint(InsertPt); 6108 Instruction *OldBr = IfBlock->getTerminator(); 6109 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6110 OldBr->eraseFromParent(); 6111 IfBlock = NewIfBlock; 6112 } 6113 } 6114 } 6115 6116 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6117 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6118 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6119 6120 return scalarizeInstruction(Instr, IfPredicateStore); 6121 } 6122 6123 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6124 return Vec; 6125 } 6126 6127 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6128 return V; 6129 } 6130 6131 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6132 bool Negate) { 6133 // When unrolling and the VF is 1, we only need to add a simple scalar. 6134 Type *ITy = Val->getType(); 6135 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6136 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6137 return Builder.CreateAdd(Val, C, "induction"); 6138 } 6139