1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// We don't vectorize loops with a known constant trip count below this number. 118 static cl::opt<unsigned> TinyTripCountVectorThreshold( 119 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 120 cl::desc("Don't vectorize loops with a constant " 121 "trip count that is smaller than this " 122 "value.")); 123 124 static cl::opt<bool> MaximizeBandwidth( 125 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 126 cl::desc("Maximize bandwidth when selecting vectorization factor which " 127 "will be determined by the smallest type in loop.")); 128 129 static cl::opt<bool> EnableInterleavedMemAccesses( 130 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 131 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 132 133 /// Maximum factor for an interleaved memory access. 134 static cl::opt<unsigned> MaxInterleaveGroupFactor( 135 "max-interleave-group-factor", cl::Hidden, 136 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 137 cl::init(8)); 138 139 /// We don't interleave loops with a known constant trip count below this 140 /// number. 141 static const unsigned TinyTripCountInterleaveThreshold = 128; 142 143 static cl::opt<unsigned> ForceTargetNumScalarRegs( 144 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of scalar registers.")); 146 147 static cl::opt<unsigned> ForceTargetNumVectorRegs( 148 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of vector registers.")); 150 151 /// Maximum vectorization interleave count. 152 static const unsigned MaxInterleaveFactor = 16; 153 154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 155 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's max interleave factor for " 157 "scalar loops.")); 158 159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 160 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's max interleave factor for " 162 "vectorized loops.")); 163 164 static cl::opt<unsigned> ForceTargetInstructionCost( 165 "force-target-instruction-cost", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's expected cost for " 167 "an instruction to a single constant value. Mostly " 168 "useful for getting consistent testing.")); 169 170 static cl::opt<unsigned> SmallLoopCost( 171 "small-loop-cost", cl::init(20), cl::Hidden, 172 cl::desc( 173 "The cost of a loop that is considered 'small' by the interleaver.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime interleave loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 183 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 184 cl::desc( 185 "Enable runtime interleaving until load/store ports are saturated")); 186 187 /// The number of stores in a loop that are allowed to need predication. 188 static cl::opt<unsigned> NumberOfStoresToPredicate( 189 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 190 cl::desc("Max number of stores to be predicated behind an if.")); 191 192 static cl::opt<bool> EnableIndVarRegisterHeur( 193 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 194 cl::desc("Count the induction variable only once when interleaving")); 195 196 static cl::opt<bool> EnableCondStoresVectorization( 197 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 198 cl::desc("Enable if predication of stores during vectorization.")); 199 200 static cl::opt<unsigned> MaxNestedScalarReductionIC( 201 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 202 cl::desc("The maximum interleave count to use when interleaving a scalar " 203 "reduction in a nested loop.")); 204 205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 206 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 207 cl::desc("The maximum allowed number of runtime memory checks with a " 208 "vectorize(enable) pragma.")); 209 210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 211 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed.")); 213 214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 215 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed with a " 217 "vectorize(enable) pragma")); 218 219 /// Create an analysis remark that explains why vectorization failed 220 /// 221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 222 /// RemarkName is the identifier for the remark. If \p I is passed it is an 223 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 224 /// the location of the remark. \return the remark object that can be 225 /// streamed to. 226 static OptimizationRemarkAnalysis 227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 228 Instruction *I = nullptr) { 229 Value *CodeRegion = TheLoop->getHeader(); 230 DebugLoc DL = TheLoop->getStartLoc(); 231 232 if (I) { 233 CodeRegion = I->getParent(); 234 // If there is no debug location attached to the instruction, revert back to 235 // using the loop's. 236 if (I->getDebugLoc()) 237 DL = I->getDebugLoc(); 238 } 239 240 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 241 R << "loop not vectorized: "; 242 return R; 243 } 244 245 namespace { 246 247 // Forward declarations. 248 class LoopVectorizeHints; 249 class LoopVectorizationLegality; 250 class LoopVectorizationCostModel; 251 class LoopVectorizationRequirements; 252 253 /// Returns true if the given loop body has a cycle, excluding the loop 254 /// itself. 255 static bool hasCyclesInLoopBody(const Loop &L) { 256 if (!L.empty()) 257 return true; 258 259 for (const auto &SCC : 260 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 261 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 262 if (SCC.size() > 1) { 263 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 264 DEBUG(L.dump()); 265 return true; 266 } 267 } 268 return false; 269 } 270 271 /// A helper function for converting Scalar types to vector types. 272 /// If the incoming type is void, we return void. If the VF is 1, we return 273 /// the scalar type. 274 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 275 if (Scalar->isVoidTy() || VF == 1) 276 return Scalar; 277 return VectorType::get(Scalar, VF); 278 } 279 280 // FIXME: The following helper functions have multiple implementations 281 // in the project. They can be effectively organized in a common Load/Store 282 // utilities unit. 283 284 /// A helper function that returns the pointer operand of a load or store 285 /// instruction. 286 static Value *getPointerOperand(Value *I) { 287 if (auto *LI = dyn_cast<LoadInst>(I)) 288 return LI->getPointerOperand(); 289 if (auto *SI = dyn_cast<StoreInst>(I)) 290 return SI->getPointerOperand(); 291 return nullptr; 292 } 293 294 /// A helper function that returns the type of loaded or stored value. 295 static Type *getMemInstValueType(Value *I) { 296 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 297 "Expected Load or Store instruction"); 298 if (auto *LI = dyn_cast<LoadInst>(I)) 299 return LI->getType(); 300 return cast<StoreInst>(I)->getValueOperand()->getType(); 301 } 302 303 /// A helper function that returns the alignment of load or store instruction. 304 static unsigned getMemInstAlignment(Value *I) { 305 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 306 "Expected Load or Store instruction"); 307 if (auto *LI = dyn_cast<LoadInst>(I)) 308 return LI->getAlignment(); 309 return cast<StoreInst>(I)->getAlignment(); 310 } 311 312 /// A helper function that returns the address space of the pointer operand of 313 /// load or store instruction. 314 static unsigned getMemInstAddressSpace(Value *I) { 315 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 316 "Expected Load or Store instruction"); 317 if (auto *LI = dyn_cast<LoadInst>(I)) 318 return LI->getPointerAddressSpace(); 319 return cast<StoreInst>(I)->getPointerAddressSpace(); 320 } 321 322 /// A helper function that returns true if the given type is irregular. The 323 /// type is irregular if its allocated size doesn't equal the store size of an 324 /// element of the corresponding vector type at the given vectorization factor. 325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 326 327 // Determine if an array of VF elements of type Ty is "bitcast compatible" 328 // with a <VF x Ty> vector. 329 if (VF > 1) { 330 auto *VectorTy = VectorType::get(Ty, VF); 331 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 332 } 333 334 // If the vectorization factor is one, we just check if an array of type Ty 335 // requires padding between elements. 336 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 337 } 338 339 /// A helper function that returns the reciprocal of the block probability of 340 /// predicated blocks. If we return X, we are assuming the predicated block 341 /// will execute once for for every X iterations of the loop header. 342 /// 343 /// TODO: We should use actual block probability here, if available. Currently, 344 /// we always assume predicated blocks have a 50% chance of executing. 345 static unsigned getReciprocalPredBlockProb() { return 2; } 346 347 /// A helper function that adds a 'fast' flag to floating-point operations. 348 static Value *addFastMathFlag(Value *V) { 349 if (isa<FPMathOperator>(V)) { 350 FastMathFlags Flags; 351 Flags.setUnsafeAlgebra(); 352 cast<Instruction>(V)->setFastMathFlags(Flags); 353 } 354 return V; 355 } 356 357 /// A helper function that returns an integer or floating-point constant with 358 /// value C. 359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 360 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 361 : ConstantFP::get(Ty, C); 362 } 363 364 /// InnerLoopVectorizer vectorizes loops which contain only one basic 365 /// block to a specified vectorization factor (VF). 366 /// This class performs the widening of scalars into vectors, or multiple 367 /// scalars. This class also implements the following features: 368 /// * It inserts an epilogue loop for handling loops that don't have iteration 369 /// counts that are known to be a multiple of the vectorization factor. 370 /// * It handles the code generation for reduction variables. 371 /// * Scalarization (implementation using scalars) of un-vectorizable 372 /// instructions. 373 /// InnerLoopVectorizer does not perform any vectorization-legality 374 /// checks, and relies on the caller to check for the different legality 375 /// aspects. The InnerLoopVectorizer relies on the 376 /// LoopVectorizationLegality class to provide information about the induction 377 /// and reduction variables that were found to a given vectorization factor. 378 class InnerLoopVectorizer { 379 public: 380 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 381 LoopInfo *LI, DominatorTree *DT, 382 const TargetLibraryInfo *TLI, 383 const TargetTransformInfo *TTI, AssumptionCache *AC, 384 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 385 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 386 LoopVectorizationCostModel *CM) 387 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 388 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 389 Builder(PSE.getSE()->getContext()), Induction(nullptr), 390 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 391 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 392 AddedSafetyChecks(false) {} 393 394 /// Create a new empty loop. Unlink the old loop and connect the new one. 395 void createVectorizedLoopSkeleton(); 396 397 /// Vectorize a single instruction within the innermost loop. 398 void vectorizeInstruction(Instruction &I); 399 400 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 401 void fixVectorizedLoop(); 402 403 // Return true if any runtime check is added. 404 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 405 406 virtual ~InnerLoopVectorizer() {} 407 408 protected: 409 /// A small list of PHINodes. 410 typedef SmallVector<PHINode *, 4> PhiVector; 411 412 /// A type for vectorized values in the new loop. Each value from the 413 /// original loop, when vectorized, is represented by UF vector values in the 414 /// new unrolled loop, where UF is the unroll factor. 415 typedef SmallVector<Value *, 2> VectorParts; 416 417 /// A type for scalarized values in the new loop. Each value from the 418 /// original loop, when scalarized, is represented by UF x VF scalar values 419 /// in the new unrolled loop, where UF is the unroll factor and VF is the 420 /// vectorization factor. 421 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 422 423 // When we if-convert we need to create edge masks. We have to cache values 424 // so that we don't end up with exponential recursion/IR. 425 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 426 EdgeMaskCacheTy; 427 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 428 429 /// Set up the values of the IVs correctly when exiting the vector loop. 430 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 431 Value *CountRoundDown, Value *EndValue, 432 BasicBlock *MiddleBlock); 433 434 /// Create a new induction variable inside L. 435 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 436 Value *Step, Instruction *DL); 437 438 /// Handle all cross-iteration phis in the header. 439 void fixCrossIterationPHIs(); 440 441 /// Fix a first-order recurrence. This is the second phase of vectorizing 442 /// this phi node. 443 void fixFirstOrderRecurrence(PHINode *Phi); 444 445 /// Fix a reduction cross-iteration phi. This is the second phase of 446 /// vectorizing this phi node. 447 void fixReduction(PHINode *Phi); 448 449 /// \brief The Loop exit block may have single value PHI nodes with some 450 /// incoming value. While vectorizing we only handled real values 451 /// that were defined inside the loop and we should have one value for 452 /// each predecessor of its parent basic block. See PR14725. 453 void fixLCSSAPHIs(); 454 455 /// Iteratively sink the scalarized operands of a predicated instruction into 456 /// the block that was created for it. 457 void sinkScalarOperands(Instruction *PredInst); 458 459 /// Predicate conditional instructions that require predication on their 460 /// respective conditions. 461 void predicateInstructions(); 462 463 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 464 /// represented as. 465 void truncateToMinimalBitwidths(); 466 467 /// A helper function that computes the predicate of the block BB, assuming 468 /// that the header block of the loop is set to True. It returns the *entry* 469 /// mask for the block BB. 470 VectorParts createBlockInMask(BasicBlock *BB); 471 /// A helper function that computes the predicate of the edge between SRC 472 /// and DST. 473 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 474 475 /// Vectorize a single PHINode in a block. This method handles the induction 476 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 477 /// arbitrary length vectors. 478 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 479 480 /// Insert the new loop to the loop hierarchy and pass manager 481 /// and update the analysis passes. 482 void updateAnalysis(); 483 484 /// This instruction is un-vectorizable. Implement it as a sequence 485 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 486 /// scalarized instruction behind an if block predicated on the control 487 /// dependence of the instruction. 488 virtual void scalarizeInstruction(Instruction *Instr, 489 bool IfPredicateInstr = false); 490 491 /// Vectorize Load and Store instructions, 492 virtual void vectorizeMemoryInstruction(Instruction *Instr); 493 494 /// Create a broadcast instruction. This method generates a broadcast 495 /// instruction (shuffle) for loop invariant values and for the induction 496 /// value. If this is the induction variable then we extend it to N, N+1, ... 497 /// this is needed because each iteration in the loop corresponds to a SIMD 498 /// element. 499 virtual Value *getBroadcastInstrs(Value *V); 500 501 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 502 /// to each vector element of Val. The sequence starts at StartIndex. 503 /// \p Opcode is relevant for FP induction variable. 504 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 505 Instruction::BinaryOps Opcode = 506 Instruction::BinaryOpsEnd); 507 508 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 509 /// variable on which to base the steps, \p Step is the size of the step, and 510 /// \p EntryVal is the value from the original loop that maps to the steps. 511 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 512 /// can be a truncate instruction). 513 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 514 const InductionDescriptor &ID); 515 516 /// Create a vector induction phi node based on an existing scalar one. \p 517 /// EntryVal is the value from the original loop that maps to the vector phi 518 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 519 /// truncate instruction, instead of widening the original IV, we widen a 520 /// version of the IV truncated to \p EntryVal's type. 521 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 522 Value *Step, Instruction *EntryVal); 523 524 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 525 /// is provided, the integer induction variable will first be truncated to 526 /// the corresponding type. 527 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 528 529 /// Returns true if an instruction \p I should be scalarized instead of 530 /// vectorized for the chosen vectorization factor. 531 bool shouldScalarizeInstruction(Instruction *I) const; 532 533 /// Returns true if we should generate a scalar version of \p IV. 534 bool needsScalarInduction(Instruction *IV) const; 535 536 /// Return a constant reference to the VectorParts corresponding to \p V from 537 /// the original loop. If the value has already been vectorized, the 538 /// corresponding vector entry in VectorLoopValueMap is returned. If, 539 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 540 /// new vector values on-demand by inserting the scalar values into vectors 541 /// with an insertelement sequence. If the value has been neither vectorized 542 /// nor scalarized, it must be loop invariant, so we simply broadcast the 543 /// value into vectors. 544 const VectorParts &getVectorValue(Value *V); 545 546 /// Return a value in the new loop corresponding to \p V from the original 547 /// loop at unroll index \p Part and vector index \p Lane. If the value has 548 /// been vectorized but not scalarized, the necessary extractelement 549 /// instruction will be generated. 550 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 551 552 /// Try to vectorize the interleaved access group that \p Instr belongs to. 553 void vectorizeInterleaveGroup(Instruction *Instr); 554 555 /// Generate a shuffle sequence that will reverse the vector Vec. 556 virtual Value *reverseVector(Value *Vec); 557 558 /// Returns (and creates if needed) the original loop trip count. 559 Value *getOrCreateTripCount(Loop *NewLoop); 560 561 /// Returns (and creates if needed) the trip count of the widened loop. 562 Value *getOrCreateVectorTripCount(Loop *NewLoop); 563 564 /// Emit a bypass check to see if the trip count would overflow, or we 565 /// wouldn't have enough iterations to execute one vector loop. 566 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 567 /// Emit a bypass check to see if the vector trip count is nonzero. 568 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 569 /// Emit a bypass check to see if all of the SCEV assumptions we've 570 /// had to make are correct. 571 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 572 /// Emit bypass checks to check any memory assumptions we may have made. 573 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 574 575 /// Add additional metadata to \p To that was not present on \p Orig. 576 /// 577 /// Currently this is used to add the noalias annotations based on the 578 /// inserted memchecks. Use this for instructions that are *cloned* into the 579 /// vector loop. 580 void addNewMetadata(Instruction *To, const Instruction *Orig); 581 582 /// Add metadata from one instruction to another. 583 /// 584 /// This includes both the original MDs from \p From and additional ones (\see 585 /// addNewMetadata). Use this for *newly created* instructions in the vector 586 /// loop. 587 void addMetadata(Instruction *To, Instruction *From); 588 589 /// \brief Similar to the previous function but it adds the metadata to a 590 /// vector of instructions. 591 void addMetadata(ArrayRef<Value *> To, Instruction *From); 592 593 /// \brief Set the debug location in the builder using the debug location in 594 /// the instruction. 595 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 596 597 /// This is a helper class for maintaining vectorization state. It's used for 598 /// mapping values from the original loop to their corresponding values in 599 /// the new loop. Two mappings are maintained: one for vectorized values and 600 /// one for scalarized values. Vectorized values are represented with UF 601 /// vector values in the new loop, and scalarized values are represented with 602 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 603 /// vectorization factors, respectively. 604 /// 605 /// Entries can be added to either map with initVector and initScalar, which 606 /// initialize and return a constant reference to the new entry. If a 607 /// non-constant reference to a vector entry is required, getVector can be 608 /// used to retrieve a mutable entry. We currently directly modify the mapped 609 /// values during "fix-up" operations that occur once the first phase of 610 /// widening is complete. These operations include type truncation and the 611 /// second phase of recurrence widening. 612 /// 613 /// Otherwise, entries from either map should be accessed using the 614 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 615 /// getVectorValue and getScalarValue coordinate to generate a vector or 616 /// scalar value on-demand if one is not yet available. When vectorizing a 617 /// loop, we visit the definition of an instruction before its uses. When 618 /// visiting the definition, we either vectorize or scalarize the 619 /// instruction, creating an entry for it in the corresponding map. (In some 620 /// cases, such as induction variables, we will create both vector and scalar 621 /// entries.) Then, as we encounter uses of the definition, we derive values 622 /// for each scalar or vector use unless such a value is already available. 623 /// For example, if we scalarize a definition and one of its uses is vector, 624 /// we build the required vector on-demand with an insertelement sequence 625 /// when visiting the use. Otherwise, if the use is scalar, we can use the 626 /// existing scalar definition. 627 struct ValueMap { 628 629 /// Construct an empty map with the given unroll and vectorization factors. 630 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 631 : UF(UnrollFactor), VF(VecWidth) { 632 // The unroll and vectorization factors are only used in asserts builds 633 // to verify map entries are sized appropriately. 634 (void)UF; 635 (void)VF; 636 } 637 638 /// \return True if the map has a vector entry for \p Key. 639 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 640 641 /// \return True if the map has a scalar entry for \p Key. 642 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 643 644 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 645 /// constant reference to the new vector map entry. The given key should 646 /// not already be in the map, and the given VectorParts should be 647 /// correctly sized for the current unroll factor. 648 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 649 assert(!hasVector(Key) && "Vector entry already initialized"); 650 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 651 VectorMapStorage[Key] = Entry; 652 return VectorMapStorage[Key]; 653 } 654 655 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 656 /// constant reference to the new scalar map entry. The given key should 657 /// not already be in the map, and the given ScalarParts should be 658 /// correctly sized for the current unroll and vectorization factors. 659 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 660 assert(!hasScalar(Key) && "Scalar entry already initialized"); 661 assert(Entry.size() == UF && 662 all_of(make_range(Entry.begin(), Entry.end()), 663 [&](const SmallVectorImpl<Value *> &Values) -> bool { 664 return Values.size() == VF; 665 }) && 666 "ScalarParts has wrong dimensions"); 667 ScalarMapStorage[Key] = Entry; 668 return ScalarMapStorage[Key]; 669 } 670 671 /// \return A reference to the vector map entry corresponding to \p Key. 672 /// The key should already be in the map. This function should only be used 673 /// when it's necessary to update values that have already been vectorized. 674 /// This is the case for "fix-up" operations including type truncation and 675 /// the second phase of recurrence vectorization. If a non-const reference 676 /// isn't required, getVectorValue should be used instead. 677 VectorParts &getVector(Value *Key) { 678 assert(hasVector(Key) && "Vector entry not initialized"); 679 return VectorMapStorage.find(Key)->second; 680 } 681 682 /// Retrieve an entry from the vector or scalar maps. The preferred way to 683 /// access an existing mapped entry is with getVectorValue or 684 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 685 /// moved inside ValueMap, we have to declare them as friends. 686 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 687 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 688 unsigned Lane); 689 690 private: 691 /// The unroll factor. Each entry in the vector map contains UF vector 692 /// values. 693 unsigned UF; 694 695 /// The vectorization factor. Each entry in the scalar map contains UF x VF 696 /// scalar values. 697 unsigned VF; 698 699 /// The vector and scalar map storage. We use std::map and not DenseMap 700 /// because insertions to DenseMap invalidate its iterators. 701 std::map<Value *, VectorParts> VectorMapStorage; 702 std::map<Value *, ScalarParts> ScalarMapStorage; 703 }; 704 705 /// The original loop. 706 Loop *OrigLoop; 707 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 708 /// dynamic knowledge to simplify SCEV expressions and converts them to a 709 /// more usable form. 710 PredicatedScalarEvolution &PSE; 711 /// Loop Info. 712 LoopInfo *LI; 713 /// Dominator Tree. 714 DominatorTree *DT; 715 /// Alias Analysis. 716 AliasAnalysis *AA; 717 /// Target Library Info. 718 const TargetLibraryInfo *TLI; 719 /// Target Transform Info. 720 const TargetTransformInfo *TTI; 721 /// Assumption Cache. 722 AssumptionCache *AC; 723 /// Interface to emit optimization remarks. 724 OptimizationRemarkEmitter *ORE; 725 726 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 727 /// used. 728 /// 729 /// This is currently only used to add no-alias metadata based on the 730 /// memchecks. The actually versioning is performed manually. 731 std::unique_ptr<LoopVersioning> LVer; 732 733 /// The vectorization SIMD factor to use. Each vector will have this many 734 /// vector elements. 735 unsigned VF; 736 737 protected: 738 /// The vectorization unroll factor to use. Each scalar is vectorized to this 739 /// many different vector instructions. 740 unsigned UF; 741 742 /// The builder that we use 743 IRBuilder<> Builder; 744 745 // --- Vectorization state --- 746 747 /// The vector-loop preheader. 748 BasicBlock *LoopVectorPreHeader; 749 /// The scalar-loop preheader. 750 BasicBlock *LoopScalarPreHeader; 751 /// Middle Block between the vector and the scalar. 752 BasicBlock *LoopMiddleBlock; 753 /// The ExitBlock of the scalar loop. 754 BasicBlock *LoopExitBlock; 755 /// The vector loop body. 756 BasicBlock *LoopVectorBody; 757 /// The scalar loop body. 758 BasicBlock *LoopScalarBody; 759 /// A list of all bypass blocks. The first block is the entry of the loop. 760 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 761 762 /// The new Induction variable which was added to the new block. 763 PHINode *Induction; 764 /// The induction variable of the old basic block. 765 PHINode *OldInduction; 766 767 /// Maps values from the original loop to their corresponding values in the 768 /// vectorized loop. A key value can map to either vector values, scalar 769 /// values or both kinds of values, depending on whether the key was 770 /// vectorized and scalarized. 771 ValueMap VectorLoopValueMap; 772 773 /// Store instructions that should be predicated, as a pair 774 /// <StoreInst, Predicate> 775 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 776 EdgeMaskCacheTy EdgeMaskCache; 777 BlockMaskCacheTy BlockMaskCache; 778 /// Trip count of the original loop. 779 Value *TripCount; 780 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 781 Value *VectorTripCount; 782 783 /// The legality analysis. 784 LoopVectorizationLegality *Legal; 785 786 /// The profitablity analysis. 787 LoopVectorizationCostModel *Cost; 788 789 // Record whether runtime checks are added. 790 bool AddedSafetyChecks; 791 792 // Holds the end values for each induction variable. We save the end values 793 // so we can later fix-up the external users of the induction variables. 794 DenseMap<PHINode *, Value *> IVEndValues; 795 }; 796 797 class InnerLoopUnroller : public InnerLoopVectorizer { 798 public: 799 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 800 LoopInfo *LI, DominatorTree *DT, 801 const TargetLibraryInfo *TLI, 802 const TargetTransformInfo *TTI, AssumptionCache *AC, 803 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 804 LoopVectorizationLegality *LVL, 805 LoopVectorizationCostModel *CM) 806 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 807 UnrollFactor, LVL, CM) {} 808 809 private: 810 void vectorizeMemoryInstruction(Instruction *Instr) override; 811 Value *getBroadcastInstrs(Value *V) override; 812 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 813 Instruction::BinaryOps Opcode = 814 Instruction::BinaryOpsEnd) override; 815 Value *reverseVector(Value *Vec) override; 816 }; 817 818 /// \brief Look for a meaningful debug location on the instruction or it's 819 /// operands. 820 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 821 if (!I) 822 return I; 823 824 DebugLoc Empty; 825 if (I->getDebugLoc() != Empty) 826 return I; 827 828 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 829 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 830 if (OpInst->getDebugLoc() != Empty) 831 return OpInst; 832 } 833 834 return I; 835 } 836 837 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 838 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 839 const DILocation *DIL = Inst->getDebugLoc(); 840 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 841 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 842 else 843 B.SetCurrentDebugLocation(DIL); 844 } else 845 B.SetCurrentDebugLocation(DebugLoc()); 846 } 847 848 #ifndef NDEBUG 849 /// \return string containing a file name and a line # for the given loop. 850 static std::string getDebugLocString(const Loop *L) { 851 std::string Result; 852 if (L) { 853 raw_string_ostream OS(Result); 854 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 855 LoopDbgLoc.print(OS); 856 else 857 // Just print the module name. 858 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 859 OS.flush(); 860 } 861 return Result; 862 } 863 #endif 864 865 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 866 const Instruction *Orig) { 867 // If the loop was versioned with memchecks, add the corresponding no-alias 868 // metadata. 869 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 870 LVer->annotateInstWithNoAlias(To, Orig); 871 } 872 873 void InnerLoopVectorizer::addMetadata(Instruction *To, 874 Instruction *From) { 875 propagateMetadata(To, From); 876 addNewMetadata(To, From); 877 } 878 879 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 880 Instruction *From) { 881 for (Value *V : To) { 882 if (Instruction *I = dyn_cast<Instruction>(V)) 883 addMetadata(I, From); 884 } 885 } 886 887 /// \brief The group of interleaved loads/stores sharing the same stride and 888 /// close to each other. 889 /// 890 /// Each member in this group has an index starting from 0, and the largest 891 /// index should be less than interleaved factor, which is equal to the absolute 892 /// value of the access's stride. 893 /// 894 /// E.g. An interleaved load group of factor 4: 895 /// for (unsigned i = 0; i < 1024; i+=4) { 896 /// a = A[i]; // Member of index 0 897 /// b = A[i+1]; // Member of index 1 898 /// d = A[i+3]; // Member of index 3 899 /// ... 900 /// } 901 /// 902 /// An interleaved store group of factor 4: 903 /// for (unsigned i = 0; i < 1024; i+=4) { 904 /// ... 905 /// A[i] = a; // Member of index 0 906 /// A[i+1] = b; // Member of index 1 907 /// A[i+2] = c; // Member of index 2 908 /// A[i+3] = d; // Member of index 3 909 /// } 910 /// 911 /// Note: the interleaved load group could have gaps (missing members), but 912 /// the interleaved store group doesn't allow gaps. 913 class InterleaveGroup { 914 public: 915 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 916 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 917 assert(Align && "The alignment should be non-zero"); 918 919 Factor = std::abs(Stride); 920 assert(Factor > 1 && "Invalid interleave factor"); 921 922 Reverse = Stride < 0; 923 Members[0] = Instr; 924 } 925 926 bool isReverse() const { return Reverse; } 927 unsigned getFactor() const { return Factor; } 928 unsigned getAlignment() const { return Align; } 929 unsigned getNumMembers() const { return Members.size(); } 930 931 /// \brief Try to insert a new member \p Instr with index \p Index and 932 /// alignment \p NewAlign. The index is related to the leader and it could be 933 /// negative if it is the new leader. 934 /// 935 /// \returns false if the instruction doesn't belong to the group. 936 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 937 assert(NewAlign && "The new member's alignment should be non-zero"); 938 939 int Key = Index + SmallestKey; 940 941 // Skip if there is already a member with the same index. 942 if (Members.count(Key)) 943 return false; 944 945 if (Key > LargestKey) { 946 // The largest index is always less than the interleave factor. 947 if (Index >= static_cast<int>(Factor)) 948 return false; 949 950 LargestKey = Key; 951 } else if (Key < SmallestKey) { 952 // The largest index is always less than the interleave factor. 953 if (LargestKey - Key >= static_cast<int>(Factor)) 954 return false; 955 956 SmallestKey = Key; 957 } 958 959 // It's always safe to select the minimum alignment. 960 Align = std::min(Align, NewAlign); 961 Members[Key] = Instr; 962 return true; 963 } 964 965 /// \brief Get the member with the given index \p Index 966 /// 967 /// \returns nullptr if contains no such member. 968 Instruction *getMember(unsigned Index) const { 969 int Key = SmallestKey + Index; 970 if (!Members.count(Key)) 971 return nullptr; 972 973 return Members.find(Key)->second; 974 } 975 976 /// \brief Get the index for the given member. Unlike the key in the member 977 /// map, the index starts from 0. 978 unsigned getIndex(Instruction *Instr) const { 979 for (auto I : Members) 980 if (I.second == Instr) 981 return I.first - SmallestKey; 982 983 llvm_unreachable("InterleaveGroup contains no such member"); 984 } 985 986 Instruction *getInsertPos() const { return InsertPos; } 987 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 988 989 private: 990 unsigned Factor; // Interleave Factor. 991 bool Reverse; 992 unsigned Align; 993 DenseMap<int, Instruction *> Members; 994 int SmallestKey; 995 int LargestKey; 996 997 // To avoid breaking dependences, vectorized instructions of an interleave 998 // group should be inserted at either the first load or the last store in 999 // program order. 1000 // 1001 // E.g. %even = load i32 // Insert Position 1002 // %add = add i32 %even // Use of %even 1003 // %odd = load i32 1004 // 1005 // store i32 %even 1006 // %odd = add i32 // Def of %odd 1007 // store i32 %odd // Insert Position 1008 Instruction *InsertPos; 1009 }; 1010 1011 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1012 /// 1013 /// Use this class to analyze interleaved accesses only when we can vectorize 1014 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1015 /// on interleaved accesses is unsafe. 1016 /// 1017 /// The analysis collects interleave groups and records the relationships 1018 /// between the member and the group in a map. 1019 class InterleavedAccessInfo { 1020 public: 1021 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1022 DominatorTree *DT, LoopInfo *LI) 1023 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1024 RequiresScalarEpilogue(false) {} 1025 1026 ~InterleavedAccessInfo() { 1027 SmallSet<InterleaveGroup *, 4> DelSet; 1028 // Avoid releasing a pointer twice. 1029 for (auto &I : InterleaveGroupMap) 1030 DelSet.insert(I.second); 1031 for (auto *Ptr : DelSet) 1032 delete Ptr; 1033 } 1034 1035 /// \brief Analyze the interleaved accesses and collect them in interleave 1036 /// groups. Substitute symbolic strides using \p Strides. 1037 void analyzeInterleaving(const ValueToValueMap &Strides); 1038 1039 /// \brief Check if \p Instr belongs to any interleave group. 1040 bool isInterleaved(Instruction *Instr) const { 1041 return InterleaveGroupMap.count(Instr); 1042 } 1043 1044 /// \brief Return the maximum interleave factor of all interleaved groups. 1045 unsigned getMaxInterleaveFactor() const { 1046 unsigned MaxFactor = 1; 1047 for (auto &Entry : InterleaveGroupMap) 1048 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1049 return MaxFactor; 1050 } 1051 1052 /// \brief Get the interleave group that \p Instr belongs to. 1053 /// 1054 /// \returns nullptr if doesn't have such group. 1055 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1056 if (InterleaveGroupMap.count(Instr)) 1057 return InterleaveGroupMap.find(Instr)->second; 1058 return nullptr; 1059 } 1060 1061 /// \brief Returns true if an interleaved group that may access memory 1062 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1063 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1064 1065 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1066 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1067 1068 private: 1069 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1070 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1071 /// The interleaved access analysis can also add new predicates (for example 1072 /// by versioning strides of pointers). 1073 PredicatedScalarEvolution &PSE; 1074 Loop *TheLoop; 1075 DominatorTree *DT; 1076 LoopInfo *LI; 1077 const LoopAccessInfo *LAI; 1078 1079 /// True if the loop may contain non-reversed interleaved groups with 1080 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1081 /// out-of-bounds by executing at least one scalar epilogue iteration. 1082 bool RequiresScalarEpilogue; 1083 1084 /// Holds the relationships between the members and the interleave group. 1085 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1086 1087 /// Holds dependences among the memory accesses in the loop. It maps a source 1088 /// access to a set of dependent sink accesses. 1089 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1090 1091 /// \brief The descriptor for a strided memory access. 1092 struct StrideDescriptor { 1093 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1094 unsigned Align) 1095 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1096 1097 StrideDescriptor() = default; 1098 1099 // The access's stride. It is negative for a reverse access. 1100 int64_t Stride = 0; 1101 const SCEV *Scev = nullptr; // The scalar expression of this access 1102 uint64_t Size = 0; // The size of the memory object. 1103 unsigned Align = 0; // The alignment of this access. 1104 }; 1105 1106 /// \brief A type for holding instructions and their stride descriptors. 1107 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1108 1109 /// \brief Create a new interleave group with the given instruction \p Instr, 1110 /// stride \p Stride and alignment \p Align. 1111 /// 1112 /// \returns the newly created interleave group. 1113 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1114 unsigned Align) { 1115 assert(!InterleaveGroupMap.count(Instr) && 1116 "Already in an interleaved access group"); 1117 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1118 return InterleaveGroupMap[Instr]; 1119 } 1120 1121 /// \brief Release the group and remove all the relationships. 1122 void releaseGroup(InterleaveGroup *Group) { 1123 for (unsigned i = 0; i < Group->getFactor(); i++) 1124 if (Instruction *Member = Group->getMember(i)) 1125 InterleaveGroupMap.erase(Member); 1126 1127 delete Group; 1128 } 1129 1130 /// \brief Collect all the accesses with a constant stride in program order. 1131 void collectConstStrideAccesses( 1132 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1133 const ValueToValueMap &Strides); 1134 1135 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1136 static bool isStrided(int Stride) { 1137 unsigned Factor = std::abs(Stride); 1138 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1139 } 1140 1141 /// \brief Returns true if \p BB is a predicated block. 1142 bool isPredicated(BasicBlock *BB) const { 1143 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1144 } 1145 1146 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1147 bool areDependencesValid() const { 1148 return LAI && LAI->getDepChecker().getDependences(); 1149 } 1150 1151 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1152 /// necessary, when constructing interleaved groups. 1153 /// 1154 /// \p A must precede \p B in program order. We return false if reordering is 1155 /// not necessary or is prevented because \p A and \p B may be dependent. 1156 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1157 StrideEntry *B) const { 1158 1159 // Code motion for interleaved accesses can potentially hoist strided loads 1160 // and sink strided stores. The code below checks the legality of the 1161 // following two conditions: 1162 // 1163 // 1. Potentially moving a strided load (B) before any store (A) that 1164 // precedes B, or 1165 // 1166 // 2. Potentially moving a strided store (A) after any load or store (B) 1167 // that A precedes. 1168 // 1169 // It's legal to reorder A and B if we know there isn't a dependence from A 1170 // to B. Note that this determination is conservative since some 1171 // dependences could potentially be reordered safely. 1172 1173 // A is potentially the source of a dependence. 1174 auto *Src = A->first; 1175 auto SrcDes = A->second; 1176 1177 // B is potentially the sink of a dependence. 1178 auto *Sink = B->first; 1179 auto SinkDes = B->second; 1180 1181 // Code motion for interleaved accesses can't violate WAR dependences. 1182 // Thus, reordering is legal if the source isn't a write. 1183 if (!Src->mayWriteToMemory()) 1184 return true; 1185 1186 // At least one of the accesses must be strided. 1187 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1188 return true; 1189 1190 // If dependence information is not available from LoopAccessInfo, 1191 // conservatively assume the instructions can't be reordered. 1192 if (!areDependencesValid()) 1193 return false; 1194 1195 // If we know there is a dependence from source to sink, assume the 1196 // instructions can't be reordered. Otherwise, reordering is legal. 1197 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1198 } 1199 1200 /// \brief Collect the dependences from LoopAccessInfo. 1201 /// 1202 /// We process the dependences once during the interleaved access analysis to 1203 /// enable constant-time dependence queries. 1204 void collectDependences() { 1205 if (!areDependencesValid()) 1206 return; 1207 auto *Deps = LAI->getDepChecker().getDependences(); 1208 for (auto Dep : *Deps) 1209 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1210 } 1211 }; 1212 1213 /// Utility class for getting and setting loop vectorizer hints in the form 1214 /// of loop metadata. 1215 /// This class keeps a number of loop annotations locally (as member variables) 1216 /// and can, upon request, write them back as metadata on the loop. It will 1217 /// initially scan the loop for existing metadata, and will update the local 1218 /// values based on information in the loop. 1219 /// We cannot write all values to metadata, as the mere presence of some info, 1220 /// for example 'force', means a decision has been made. So, we need to be 1221 /// careful NOT to add them if the user hasn't specifically asked so. 1222 class LoopVectorizeHints { 1223 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1224 1225 /// Hint - associates name and validation with the hint value. 1226 struct Hint { 1227 const char *Name; 1228 unsigned Value; // This may have to change for non-numeric values. 1229 HintKind Kind; 1230 1231 Hint(const char *Name, unsigned Value, HintKind Kind) 1232 : Name(Name), Value(Value), Kind(Kind) {} 1233 1234 bool validate(unsigned Val) { 1235 switch (Kind) { 1236 case HK_WIDTH: 1237 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1238 case HK_UNROLL: 1239 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1240 case HK_FORCE: 1241 return (Val <= 1); 1242 } 1243 return false; 1244 } 1245 }; 1246 1247 /// Vectorization width. 1248 Hint Width; 1249 /// Vectorization interleave factor. 1250 Hint Interleave; 1251 /// Vectorization forced 1252 Hint Force; 1253 1254 /// Return the loop metadata prefix. 1255 static StringRef Prefix() { return "llvm.loop."; } 1256 1257 /// True if there is any unsafe math in the loop. 1258 bool PotentiallyUnsafe; 1259 1260 public: 1261 enum ForceKind { 1262 FK_Undefined = -1, ///< Not selected. 1263 FK_Disabled = 0, ///< Forcing disabled. 1264 FK_Enabled = 1, ///< Forcing enabled. 1265 }; 1266 1267 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1268 OptimizationRemarkEmitter &ORE) 1269 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1270 HK_WIDTH), 1271 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1272 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1273 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1274 // Populate values with existing loop metadata. 1275 getHintsFromMetadata(); 1276 1277 // force-vector-interleave overrides DisableInterleaving. 1278 if (VectorizerParams::isInterleaveForced()) 1279 Interleave.Value = VectorizerParams::VectorizationInterleave; 1280 1281 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1282 << "LV: Interleaving disabled by the pass manager\n"); 1283 } 1284 1285 /// Mark the loop L as already vectorized by setting the width to 1. 1286 void setAlreadyVectorized() { 1287 Width.Value = Interleave.Value = 1; 1288 Hint Hints[] = {Width, Interleave}; 1289 writeHintsToMetadata(Hints); 1290 } 1291 1292 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1293 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1294 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1295 emitRemarkWithHints(); 1296 return false; 1297 } 1298 1299 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1300 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1301 emitRemarkWithHints(); 1302 return false; 1303 } 1304 1305 if (getWidth() == 1 && getInterleave() == 1) { 1306 // FIXME: Add a separate metadata to indicate when the loop has already 1307 // been vectorized instead of setting width and count to 1. 1308 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1309 // FIXME: Add interleave.disable metadata. This will allow 1310 // vectorize.disable to be used without disabling the pass and errors 1311 // to differentiate between disabled vectorization and a width of 1. 1312 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1313 "AllDisabled", L->getStartLoc(), 1314 L->getHeader()) 1315 << "loop not vectorized: vectorization and interleaving are " 1316 "explicitly disabled, or vectorize width and interleave " 1317 "count are both set to 1"); 1318 return false; 1319 } 1320 1321 return true; 1322 } 1323 1324 /// Dumps all the hint information. 1325 void emitRemarkWithHints() const { 1326 using namespace ore; 1327 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1328 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1329 TheLoop->getStartLoc(), 1330 TheLoop->getHeader()) 1331 << "loop not vectorized: vectorization is explicitly disabled"); 1332 else { 1333 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1334 TheLoop->getStartLoc(), TheLoop->getHeader()); 1335 R << "loop not vectorized"; 1336 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1337 R << " (Force=" << NV("Force", true); 1338 if (Width.Value != 0) 1339 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1340 if (Interleave.Value != 0) 1341 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1342 R << ")"; 1343 } 1344 ORE.emit(R); 1345 } 1346 } 1347 1348 unsigned getWidth() const { return Width.Value; } 1349 unsigned getInterleave() const { return Interleave.Value; } 1350 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1351 1352 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1353 /// pass name to force the frontend to print the diagnostic. 1354 const char *vectorizeAnalysisPassName() const { 1355 if (getWidth() == 1) 1356 return LV_NAME; 1357 if (getForce() == LoopVectorizeHints::FK_Disabled) 1358 return LV_NAME; 1359 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1360 return LV_NAME; 1361 return OptimizationRemarkAnalysis::AlwaysPrint; 1362 } 1363 1364 bool allowReordering() const { 1365 // When enabling loop hints are provided we allow the vectorizer to change 1366 // the order of operations that is given by the scalar loop. This is not 1367 // enabled by default because can be unsafe or inefficient. For example, 1368 // reordering floating-point operations will change the way round-off 1369 // error accumulates in the loop. 1370 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1371 } 1372 1373 bool isPotentiallyUnsafe() const { 1374 // Avoid FP vectorization if the target is unsure about proper support. 1375 // This may be related to the SIMD unit in the target not handling 1376 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1377 // Otherwise, a sequence of vectorized loops, even without reduction, 1378 // could lead to different end results on the destination vectors. 1379 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1380 } 1381 1382 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1383 1384 private: 1385 /// Find hints specified in the loop metadata and update local values. 1386 void getHintsFromMetadata() { 1387 MDNode *LoopID = TheLoop->getLoopID(); 1388 if (!LoopID) 1389 return; 1390 1391 // First operand should refer to the loop id itself. 1392 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1393 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1394 1395 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1396 const MDString *S = nullptr; 1397 SmallVector<Metadata *, 4> Args; 1398 1399 // The expected hint is either a MDString or a MDNode with the first 1400 // operand a MDString. 1401 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1402 if (!MD || MD->getNumOperands() == 0) 1403 continue; 1404 S = dyn_cast<MDString>(MD->getOperand(0)); 1405 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1406 Args.push_back(MD->getOperand(i)); 1407 } else { 1408 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1409 assert(Args.size() == 0 && "too many arguments for MDString"); 1410 } 1411 1412 if (!S) 1413 continue; 1414 1415 // Check if the hint starts with the loop metadata prefix. 1416 StringRef Name = S->getString(); 1417 if (Args.size() == 1) 1418 setHint(Name, Args[0]); 1419 } 1420 } 1421 1422 /// Checks string hint with one operand and set value if valid. 1423 void setHint(StringRef Name, Metadata *Arg) { 1424 if (!Name.startswith(Prefix())) 1425 return; 1426 Name = Name.substr(Prefix().size(), StringRef::npos); 1427 1428 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1429 if (!C) 1430 return; 1431 unsigned Val = C->getZExtValue(); 1432 1433 Hint *Hints[] = {&Width, &Interleave, &Force}; 1434 for (auto H : Hints) { 1435 if (Name == H->Name) { 1436 if (H->validate(Val)) 1437 H->Value = Val; 1438 else 1439 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1440 break; 1441 } 1442 } 1443 } 1444 1445 /// Create a new hint from name / value pair. 1446 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1447 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1448 Metadata *MDs[] = {MDString::get(Context, Name), 1449 ConstantAsMetadata::get( 1450 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1451 return MDNode::get(Context, MDs); 1452 } 1453 1454 /// Matches metadata with hint name. 1455 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1456 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1457 if (!Name) 1458 return false; 1459 1460 for (auto H : HintTypes) 1461 if (Name->getString().endswith(H.Name)) 1462 return true; 1463 return false; 1464 } 1465 1466 /// Sets current hints into loop metadata, keeping other values intact. 1467 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1468 if (HintTypes.size() == 0) 1469 return; 1470 1471 // Reserve the first element to LoopID (see below). 1472 SmallVector<Metadata *, 4> MDs(1); 1473 // If the loop already has metadata, then ignore the existing operands. 1474 MDNode *LoopID = TheLoop->getLoopID(); 1475 if (LoopID) { 1476 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1477 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1478 // If node in update list, ignore old value. 1479 if (!matchesHintMetadataName(Node, HintTypes)) 1480 MDs.push_back(Node); 1481 } 1482 } 1483 1484 // Now, add the missing hints. 1485 for (auto H : HintTypes) 1486 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1487 1488 // Replace current metadata node with new one. 1489 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1490 MDNode *NewLoopID = MDNode::get(Context, MDs); 1491 // Set operand 0 to refer to the loop id itself. 1492 NewLoopID->replaceOperandWith(0, NewLoopID); 1493 1494 TheLoop->setLoopID(NewLoopID); 1495 } 1496 1497 /// The loop these hints belong to. 1498 const Loop *TheLoop; 1499 1500 /// Interface to emit optimization remarks. 1501 OptimizationRemarkEmitter &ORE; 1502 }; 1503 1504 static void emitMissedWarning(Function *F, Loop *L, 1505 const LoopVectorizeHints &LH, 1506 OptimizationRemarkEmitter *ORE) { 1507 LH.emitRemarkWithHints(); 1508 1509 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1510 if (LH.getWidth() != 1) 1511 ORE->emit(DiagnosticInfoOptimizationFailure( 1512 DEBUG_TYPE, "FailedRequestedVectorization", 1513 L->getStartLoc(), L->getHeader()) 1514 << "loop not vectorized: " 1515 << "failed explicitly specified loop vectorization"); 1516 else if (LH.getInterleave() != 1) 1517 ORE->emit(DiagnosticInfoOptimizationFailure( 1518 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1519 L->getHeader()) 1520 << "loop not interleaved: " 1521 << "failed explicitly specified loop interleaving"); 1522 } 1523 } 1524 1525 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1526 /// to what vectorization factor. 1527 /// This class does not look at the profitability of vectorization, only the 1528 /// legality. This class has two main kinds of checks: 1529 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1530 /// will change the order of memory accesses in a way that will change the 1531 /// correctness of the program. 1532 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1533 /// checks for a number of different conditions, such as the availability of a 1534 /// single induction variable, that all types are supported and vectorize-able, 1535 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1536 /// This class is also used by InnerLoopVectorizer for identifying 1537 /// induction variable and the different reduction variables. 1538 class LoopVectorizationLegality { 1539 public: 1540 LoopVectorizationLegality( 1541 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1542 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1543 const TargetTransformInfo *TTI, 1544 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1545 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1546 LoopVectorizeHints *H) 1547 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1548 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1549 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1550 Requirements(R), Hints(H) {} 1551 1552 /// ReductionList contains the reduction descriptors for all 1553 /// of the reductions that were found in the loop. 1554 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1555 1556 /// InductionList saves induction variables and maps them to the 1557 /// induction descriptor. 1558 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1559 1560 /// RecurrenceSet contains the phi nodes that are recurrences other than 1561 /// inductions and reductions. 1562 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1563 1564 /// Returns true if it is legal to vectorize this loop. 1565 /// This does not mean that it is profitable to vectorize this 1566 /// loop, only that it is legal to do so. 1567 bool canVectorize(); 1568 1569 /// Returns the primary induction variable. 1570 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1571 1572 /// Returns the reduction variables found in the loop. 1573 ReductionList *getReductionVars() { return &Reductions; } 1574 1575 /// Returns the induction variables found in the loop. 1576 InductionList *getInductionVars() { return &Inductions; } 1577 1578 /// Return the first-order recurrences found in the loop. 1579 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1580 1581 /// Returns the widest induction type. 1582 Type *getWidestInductionType() { return WidestIndTy; } 1583 1584 /// Returns True if V is an induction variable in this loop. 1585 bool isInductionVariable(const Value *V); 1586 1587 /// Returns True if PN is a reduction variable in this loop. 1588 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1589 1590 /// Returns True if Phi is a first-order recurrence in this loop. 1591 bool isFirstOrderRecurrence(const PHINode *Phi); 1592 1593 /// Return true if the block BB needs to be predicated in order for the loop 1594 /// to be vectorized. 1595 bool blockNeedsPredication(BasicBlock *BB); 1596 1597 /// Check if this pointer is consecutive when vectorizing. This happens 1598 /// when the last index of the GEP is the induction variable, or that the 1599 /// pointer itself is an induction variable. 1600 /// This check allows us to vectorize A[idx] into a wide load/store. 1601 /// Returns: 1602 /// 0 - Stride is unknown or non-consecutive. 1603 /// 1 - Address is consecutive. 1604 /// -1 - Address is consecutive, and decreasing. 1605 int isConsecutivePtr(Value *Ptr); 1606 1607 /// Returns true if the value V is uniform within the loop. 1608 bool isUniform(Value *V); 1609 1610 /// Returns the information that we collected about runtime memory check. 1611 const RuntimePointerChecking *getRuntimePointerChecking() const { 1612 return LAI->getRuntimePointerChecking(); 1613 } 1614 1615 const LoopAccessInfo *getLAI() const { return LAI; } 1616 1617 /// \brief Check if \p Instr belongs to any interleaved access group. 1618 bool isAccessInterleaved(Instruction *Instr) { 1619 return InterleaveInfo.isInterleaved(Instr); 1620 } 1621 1622 /// \brief Return the maximum interleave factor of all interleaved groups. 1623 unsigned getMaxInterleaveFactor() const { 1624 return InterleaveInfo.getMaxInterleaveFactor(); 1625 } 1626 1627 /// \brief Get the interleaved access group that \p Instr belongs to. 1628 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1629 return InterleaveInfo.getInterleaveGroup(Instr); 1630 } 1631 1632 /// \brief Returns true if an interleaved group requires a scalar iteration 1633 /// to handle accesses with gaps. 1634 bool requiresScalarEpilogue() const { 1635 return InterleaveInfo.requiresScalarEpilogue(); 1636 } 1637 1638 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1639 1640 bool hasStride(Value *V) { return LAI->hasStride(V); } 1641 1642 /// Returns true if the target machine supports masked store operation 1643 /// for the given \p DataType and kind of access to \p Ptr. 1644 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1645 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1646 } 1647 /// Returns true if the target machine supports masked load operation 1648 /// for the given \p DataType and kind of access to \p Ptr. 1649 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1650 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1651 } 1652 /// Returns true if the target machine supports masked scatter operation 1653 /// for the given \p DataType. 1654 bool isLegalMaskedScatter(Type *DataType) { 1655 return TTI->isLegalMaskedScatter(DataType); 1656 } 1657 /// Returns true if the target machine supports masked gather operation 1658 /// for the given \p DataType. 1659 bool isLegalMaskedGather(Type *DataType) { 1660 return TTI->isLegalMaskedGather(DataType); 1661 } 1662 /// Returns true if the target machine can represent \p V as a masked gather 1663 /// or scatter operation. 1664 bool isLegalGatherOrScatter(Value *V) { 1665 auto *LI = dyn_cast<LoadInst>(V); 1666 auto *SI = dyn_cast<StoreInst>(V); 1667 if (!LI && !SI) 1668 return false; 1669 auto *Ptr = getPointerOperand(V); 1670 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1671 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1672 } 1673 1674 /// Returns true if vector representation of the instruction \p I 1675 /// requires mask. 1676 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1677 unsigned getNumStores() const { return LAI->getNumStores(); } 1678 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1679 unsigned getNumPredStores() const { return NumPredStores; } 1680 1681 /// Returns true if \p I is an instruction that will be scalarized with 1682 /// predication. Such instructions include conditional stores and 1683 /// instructions that may divide by zero. 1684 bool isScalarWithPredication(Instruction *I); 1685 1686 /// Returns true if \p I is a memory instruction with consecutive memory 1687 /// access that can be widened. 1688 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1689 1690 // Returns true if the NoNaN attribute is set on the function. 1691 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1692 1693 private: 1694 /// Check if a single basic block loop is vectorizable. 1695 /// At this point we know that this is a loop with a constant trip count 1696 /// and we only need to check individual instructions. 1697 bool canVectorizeInstrs(); 1698 1699 /// When we vectorize loops we may change the order in which 1700 /// we read and write from memory. This method checks if it is 1701 /// legal to vectorize the code, considering only memory constrains. 1702 /// Returns true if the loop is vectorizable 1703 bool canVectorizeMemory(); 1704 1705 /// Return true if we can vectorize this loop using the IF-conversion 1706 /// transformation. 1707 bool canVectorizeWithIfConvert(); 1708 1709 /// Return true if all of the instructions in the block can be speculatively 1710 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1711 /// and we know that we can read from them without segfault. 1712 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1713 1714 /// Updates the vectorization state by adding \p Phi to the inductions list. 1715 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1716 /// better choice for the main induction than the existing one. 1717 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1718 SmallPtrSetImpl<Value *> &AllowedExit); 1719 1720 /// Create an analysis remark that explains why vectorization failed 1721 /// 1722 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1723 /// an instruction that prevents vectorization. Otherwise the loop is used 1724 /// for the location of the remark. \return the remark object that can be 1725 /// streamed to. 1726 OptimizationRemarkAnalysis 1727 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1728 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1729 RemarkName, TheLoop, I); 1730 } 1731 1732 /// \brief If an access has a symbolic strides, this maps the pointer value to 1733 /// the stride symbol. 1734 const ValueToValueMap *getSymbolicStrides() { 1735 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1736 // it's collected. This happens from canVectorizeWithIfConvert, when the 1737 // pointer is checked to reference consecutive elements suitable for a 1738 // masked access. 1739 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1740 } 1741 1742 unsigned NumPredStores; 1743 1744 /// The loop that we evaluate. 1745 Loop *TheLoop; 1746 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1747 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1748 /// of existing SCEV assumptions. The analysis will also add a minimal set 1749 /// of new predicates if this is required to enable vectorization and 1750 /// unrolling. 1751 PredicatedScalarEvolution &PSE; 1752 /// Target Library Info. 1753 TargetLibraryInfo *TLI; 1754 /// Target Transform Info 1755 const TargetTransformInfo *TTI; 1756 /// Dominator Tree. 1757 DominatorTree *DT; 1758 // LoopAccess analysis. 1759 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1760 // And the loop-accesses info corresponding to this loop. This pointer is 1761 // null until canVectorizeMemory sets it up. 1762 const LoopAccessInfo *LAI; 1763 /// Interface to emit optimization remarks. 1764 OptimizationRemarkEmitter *ORE; 1765 1766 /// The interleave access information contains groups of interleaved accesses 1767 /// with the same stride and close to each other. 1768 InterleavedAccessInfo InterleaveInfo; 1769 1770 // --- vectorization state --- // 1771 1772 /// Holds the primary induction variable. This is the counter of the 1773 /// loop. 1774 PHINode *PrimaryInduction; 1775 /// Holds the reduction variables. 1776 ReductionList Reductions; 1777 /// Holds all of the induction variables that we found in the loop. 1778 /// Notice that inductions don't need to start at zero and that induction 1779 /// variables can be pointers. 1780 InductionList Inductions; 1781 /// Holds the phi nodes that are first-order recurrences. 1782 RecurrenceSet FirstOrderRecurrences; 1783 /// Holds the widest induction type encountered. 1784 Type *WidestIndTy; 1785 1786 /// Allowed outside users. This holds the induction and reduction 1787 /// vars which can be accessed from outside the loop. 1788 SmallPtrSet<Value *, 4> AllowedExit; 1789 1790 /// Can we assume the absence of NaNs. 1791 bool HasFunNoNaNAttr; 1792 1793 /// Vectorization requirements that will go through late-evaluation. 1794 LoopVectorizationRequirements *Requirements; 1795 1796 /// Used to emit an analysis of any legality issues. 1797 LoopVectorizeHints *Hints; 1798 1799 /// While vectorizing these instructions we have to generate a 1800 /// call to the appropriate masked intrinsic 1801 SmallPtrSet<const Instruction *, 8> MaskedOp; 1802 }; 1803 1804 /// LoopVectorizationCostModel - estimates the expected speedups due to 1805 /// vectorization. 1806 /// In many cases vectorization is not profitable. This can happen because of 1807 /// a number of reasons. In this class we mainly attempt to predict the 1808 /// expected speedup/slowdowns due to the supported instruction set. We use the 1809 /// TargetTransformInfo to query the different backends for the cost of 1810 /// different operations. 1811 class LoopVectorizationCostModel { 1812 public: 1813 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1814 LoopInfo *LI, LoopVectorizationLegality *Legal, 1815 const TargetTransformInfo &TTI, 1816 const TargetLibraryInfo *TLI, DemandedBits *DB, 1817 AssumptionCache *AC, 1818 OptimizationRemarkEmitter *ORE, const Function *F, 1819 const LoopVectorizeHints *Hints) 1820 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1821 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1822 1823 /// \return An upper bound for the vectorization factor, or None if 1824 /// vectorization should be avoided up front. 1825 Optional<unsigned> computeMaxVF(bool OptForSize); 1826 1827 /// Information about vectorization costs 1828 struct VectorizationFactor { 1829 unsigned Width; // Vector width with best cost 1830 unsigned Cost; // Cost of the loop with that width 1831 }; 1832 /// \return The most profitable vectorization factor and the cost of that VF. 1833 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1834 /// then this vectorization factor will be selected if vectorization is 1835 /// possible. 1836 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1837 1838 /// Setup cost-based decisions for user vectorization factor. 1839 void selectUserVectorizationFactor(unsigned UserVF) { 1840 collectUniformsAndScalars(UserVF); 1841 collectInstsToScalarize(UserVF); 1842 } 1843 1844 /// \return The size (in bits) of the smallest and widest types in the code 1845 /// that needs to be vectorized. We ignore values that remain scalar such as 1846 /// 64 bit loop indices. 1847 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1848 1849 /// \return The desired interleave count. 1850 /// If interleave count has been specified by metadata it will be returned. 1851 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1852 /// are the selected vectorization factor and the cost of the selected VF. 1853 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1854 unsigned LoopCost); 1855 1856 /// Memory access instruction may be vectorized in more than one way. 1857 /// Form of instruction after vectorization depends on cost. 1858 /// This function takes cost-based decisions for Load/Store instructions 1859 /// and collects them in a map. This decisions map is used for building 1860 /// the lists of loop-uniform and loop-scalar instructions. 1861 /// The calculated cost is saved with widening decision in order to 1862 /// avoid redundant calculations. 1863 void setCostBasedWideningDecision(unsigned VF); 1864 1865 /// \brief A struct that represents some properties of the register usage 1866 /// of a loop. 1867 struct RegisterUsage { 1868 /// Holds the number of loop invariant values that are used in the loop. 1869 unsigned LoopInvariantRegs; 1870 /// Holds the maximum number of concurrent live intervals in the loop. 1871 unsigned MaxLocalUsers; 1872 /// Holds the number of instructions in the loop. 1873 unsigned NumInstructions; 1874 }; 1875 1876 /// \return Returns information about the register usages of the loop for the 1877 /// given vectorization factors. 1878 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1879 1880 /// Collect values we want to ignore in the cost model. 1881 void collectValuesToIgnore(); 1882 1883 /// \returns The smallest bitwidth each instruction can be represented with. 1884 /// The vector equivalents of these instructions should be truncated to this 1885 /// type. 1886 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1887 return MinBWs; 1888 } 1889 1890 /// \returns True if it is more profitable to scalarize instruction \p I for 1891 /// vectorization factor \p VF. 1892 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1893 auto Scalars = InstsToScalarize.find(VF); 1894 assert(Scalars != InstsToScalarize.end() && 1895 "VF not yet analyzed for scalarization profitability"); 1896 return Scalars->second.count(I); 1897 } 1898 1899 /// Returns true if \p I is known to be uniform after vectorization. 1900 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1901 if (VF == 1) 1902 return true; 1903 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1904 auto UniformsPerVF = Uniforms.find(VF); 1905 return UniformsPerVF->second.count(I); 1906 } 1907 1908 /// Returns true if \p I is known to be scalar after vectorization. 1909 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1910 if (VF == 1) 1911 return true; 1912 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1913 auto ScalarsPerVF = Scalars.find(VF); 1914 return ScalarsPerVF->second.count(I); 1915 } 1916 1917 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1918 /// for vectorization factor \p VF. 1919 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1920 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1921 !isScalarAfterVectorization(I, VF); 1922 } 1923 1924 /// Decision that was taken during cost calculation for memory instruction. 1925 enum InstWidening { 1926 CM_Unknown, 1927 CM_Widen, 1928 CM_Interleave, 1929 CM_GatherScatter, 1930 CM_Scalarize 1931 }; 1932 1933 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1934 /// instruction \p I and vector width \p VF. 1935 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1936 unsigned Cost) { 1937 assert(VF >= 2 && "Expected VF >=2"); 1938 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1939 } 1940 1941 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1942 /// interleaving group \p Grp and vector width \p VF. 1943 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1944 InstWidening W, unsigned Cost) { 1945 assert(VF >= 2 && "Expected VF >=2"); 1946 /// Broadcast this decicion to all instructions inside the group. 1947 /// But the cost will be assigned to one instruction only. 1948 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1949 if (auto *I = Grp->getMember(i)) { 1950 if (Grp->getInsertPos() == I) 1951 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1952 else 1953 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1954 } 1955 } 1956 } 1957 1958 /// Return the cost model decision for the given instruction \p I and vector 1959 /// width \p VF. Return CM_Unknown if this instruction did not pass 1960 /// through the cost modeling. 1961 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1962 assert(VF >= 2 && "Expected VF >=2"); 1963 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1964 auto Itr = WideningDecisions.find(InstOnVF); 1965 if (Itr == WideningDecisions.end()) 1966 return CM_Unknown; 1967 return Itr->second.first; 1968 } 1969 1970 /// Return the vectorization cost for the given instruction \p I and vector 1971 /// width \p VF. 1972 unsigned getWideningCost(Instruction *I, unsigned VF) { 1973 assert(VF >= 2 && "Expected VF >=2"); 1974 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1975 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1976 return WideningDecisions[InstOnVF].second; 1977 } 1978 1979 /// Return True if instruction \p I is an optimizable truncate whose operand 1980 /// is an induction variable. Such a truncate will be removed by adding a new 1981 /// induction variable with the destination type. 1982 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1983 1984 // If the instruction is not a truncate, return false. 1985 auto *Trunc = dyn_cast<TruncInst>(I); 1986 if (!Trunc) 1987 return false; 1988 1989 // Get the source and destination types of the truncate. 1990 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1991 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1992 1993 // If the truncate is free for the given types, return false. Replacing a 1994 // free truncate with an induction variable would add an induction variable 1995 // update instruction to each iteration of the loop. We exclude from this 1996 // check the primary induction variable since it will need an update 1997 // instruction regardless. 1998 Value *Op = Trunc->getOperand(0); 1999 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2000 return false; 2001 2002 // If the truncated value is not an induction variable, return false. 2003 return Legal->isInductionVariable(Op); 2004 } 2005 2006 private: 2007 /// \return An upper bound for the vectorization factor, larger than zero. 2008 /// One is returned if vectorization should best be avoided due to cost. 2009 unsigned computeFeasibleMaxVF(bool OptForSize); 2010 2011 /// The vectorization cost is a combination of the cost itself and a boolean 2012 /// indicating whether any of the contributing operations will actually 2013 /// operate on 2014 /// vector values after type legalization in the backend. If this latter value 2015 /// is 2016 /// false, then all operations will be scalarized (i.e. no vectorization has 2017 /// actually taken place). 2018 typedef std::pair<unsigned, bool> VectorizationCostTy; 2019 2020 /// Returns the expected execution cost. The unit of the cost does 2021 /// not matter because we use the 'cost' units to compare different 2022 /// vector widths. The cost that is returned is *not* normalized by 2023 /// the factor width. 2024 VectorizationCostTy expectedCost(unsigned VF); 2025 2026 /// Returns the execution time cost of an instruction for a given vector 2027 /// width. Vector width of one means scalar. 2028 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2029 2030 /// The cost-computation logic from getInstructionCost which provides 2031 /// the vector type as an output parameter. 2032 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2033 2034 /// Calculate vectorization cost of memory instruction \p I. 2035 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2036 2037 /// The cost computation for scalarized memory instruction. 2038 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2039 2040 /// The cost computation for interleaving group of memory instructions. 2041 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2042 2043 /// The cost computation for Gather/Scatter instruction. 2044 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2045 2046 /// The cost computation for widening instruction \p I with consecutive 2047 /// memory access. 2048 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2049 2050 /// The cost calculation for Load instruction \p I with uniform pointer - 2051 /// scalar load + broadcast. 2052 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2053 2054 /// Returns whether the instruction is a load or store and will be a emitted 2055 /// as a vector operation. 2056 bool isConsecutiveLoadOrStore(Instruction *I); 2057 2058 /// Create an analysis remark that explains why vectorization failed 2059 /// 2060 /// \p RemarkName is the identifier for the remark. \return the remark object 2061 /// that can be streamed to. 2062 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2063 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2064 RemarkName, TheLoop); 2065 } 2066 2067 /// Map of scalar integer values to the smallest bitwidth they can be legally 2068 /// represented as. The vector equivalents of these values should be truncated 2069 /// to this type. 2070 MapVector<Instruction *, uint64_t> MinBWs; 2071 2072 /// A type representing the costs for instructions if they were to be 2073 /// scalarized rather than vectorized. The entries are Instruction-Cost 2074 /// pairs. 2075 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2076 2077 /// A set containing all BasicBlocks that are known to present after 2078 /// vectorization as a predicated block. 2079 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2080 2081 /// A map holding scalar costs for different vectorization factors. The 2082 /// presence of a cost for an instruction in the mapping indicates that the 2083 /// instruction will be scalarized when vectorizing with the associated 2084 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2085 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2086 2087 /// Holds the instructions known to be uniform after vectorization. 2088 /// The data is collected per VF. 2089 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2090 2091 /// Holds the instructions known to be scalar after vectorization. 2092 /// The data is collected per VF. 2093 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2094 2095 /// Returns the expected difference in cost from scalarizing the expression 2096 /// feeding a predicated instruction \p PredInst. The instructions to 2097 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2098 /// non-negative return value implies the expression will be scalarized. 2099 /// Currently, only single-use chains are considered for scalarization. 2100 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2101 unsigned VF); 2102 2103 /// Collects the instructions to scalarize for each predicated instruction in 2104 /// the loop. 2105 void collectInstsToScalarize(unsigned VF); 2106 2107 /// Collect the instructions that are uniform after vectorization. An 2108 /// instruction is uniform if we represent it with a single scalar value in 2109 /// the vectorized loop corresponding to each vector iteration. Examples of 2110 /// uniform instructions include pointer operands of consecutive or 2111 /// interleaved memory accesses. Note that although uniformity implies an 2112 /// instruction will be scalar, the reverse is not true. In general, a 2113 /// scalarized instruction will be represented by VF scalar values in the 2114 /// vectorized loop, each corresponding to an iteration of the original 2115 /// scalar loop. 2116 void collectLoopUniforms(unsigned VF); 2117 2118 /// Collect the instructions that are scalar after vectorization. An 2119 /// instruction is scalar if it is known to be uniform or will be scalarized 2120 /// during vectorization. Non-uniform scalarized instructions will be 2121 /// represented by VF values in the vectorized loop, each corresponding to an 2122 /// iteration of the original scalar loop. 2123 void collectLoopScalars(unsigned VF); 2124 2125 /// Collect Uniform and Scalar values for the given \p VF. 2126 /// The sets depend on CM decision for Load/Store instructions 2127 /// that may be vectorized as interleave, gather-scatter or scalarized. 2128 void collectUniformsAndScalars(unsigned VF) { 2129 // Do the analysis once. 2130 if (VF == 1 || Uniforms.count(VF)) 2131 return; 2132 setCostBasedWideningDecision(VF); 2133 collectLoopUniforms(VF); 2134 collectLoopScalars(VF); 2135 } 2136 2137 /// Keeps cost model vectorization decision and cost for instructions. 2138 /// Right now it is used for memory instructions only. 2139 typedef DenseMap<std::pair<Instruction *, unsigned>, 2140 std::pair<InstWidening, unsigned>> 2141 DecisionList; 2142 2143 DecisionList WideningDecisions; 2144 2145 public: 2146 /// The loop that we evaluate. 2147 Loop *TheLoop; 2148 /// Predicated scalar evolution analysis. 2149 PredicatedScalarEvolution &PSE; 2150 /// Loop Info analysis. 2151 LoopInfo *LI; 2152 /// Vectorization legality. 2153 LoopVectorizationLegality *Legal; 2154 /// Vector target information. 2155 const TargetTransformInfo &TTI; 2156 /// Target Library Info. 2157 const TargetLibraryInfo *TLI; 2158 /// Demanded bits analysis. 2159 DemandedBits *DB; 2160 /// Assumption cache. 2161 AssumptionCache *AC; 2162 /// Interface to emit optimization remarks. 2163 OptimizationRemarkEmitter *ORE; 2164 2165 const Function *TheFunction; 2166 /// Loop Vectorize Hint. 2167 const LoopVectorizeHints *Hints; 2168 /// Values to ignore in the cost model. 2169 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2170 /// Values to ignore in the cost model when VF > 1. 2171 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2172 }; 2173 2174 /// LoopVectorizationPlanner - drives the vectorization process after having 2175 /// passed Legality checks. 2176 class LoopVectorizationPlanner { 2177 public: 2178 LoopVectorizationPlanner(Loop *OrigLoop, LoopInfo *LI, 2179 LoopVectorizationLegality *Legal, 2180 LoopVectorizationCostModel &CM) 2181 : OrigLoop(OrigLoop), LI(LI), Legal(Legal), CM(CM) {} 2182 2183 ~LoopVectorizationPlanner() {} 2184 2185 /// Plan how to best vectorize, return the best VF and its cost. 2186 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2187 unsigned UserVF); 2188 2189 /// Generate the IR code for the vectorized loop. 2190 void executePlan(InnerLoopVectorizer &ILV); 2191 2192 protected: 2193 /// Collect the instructions from the original loop that would be trivially 2194 /// dead in the vectorized loop if generated. 2195 void collectTriviallyDeadInstructions( 2196 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2197 2198 private: 2199 /// The loop that we evaluate. 2200 Loop *OrigLoop; 2201 2202 /// Loop Info analysis. 2203 LoopInfo *LI; 2204 2205 /// The legality analysis. 2206 LoopVectorizationLegality *Legal; 2207 2208 /// The profitablity analysis. 2209 LoopVectorizationCostModel &CM; 2210 }; 2211 2212 /// \brief This holds vectorization requirements that must be verified late in 2213 /// the process. The requirements are set by legalize and costmodel. Once 2214 /// vectorization has been determined to be possible and profitable the 2215 /// requirements can be verified by looking for metadata or compiler options. 2216 /// For example, some loops require FP commutativity which is only allowed if 2217 /// vectorization is explicitly specified or if the fast-math compiler option 2218 /// has been provided. 2219 /// Late evaluation of these requirements allows helpful diagnostics to be 2220 /// composed that tells the user what need to be done to vectorize the loop. For 2221 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2222 /// evaluation should be used only when diagnostics can generated that can be 2223 /// followed by a non-expert user. 2224 class LoopVectorizationRequirements { 2225 public: 2226 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2227 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2228 2229 void addUnsafeAlgebraInst(Instruction *I) { 2230 // First unsafe algebra instruction. 2231 if (!UnsafeAlgebraInst) 2232 UnsafeAlgebraInst = I; 2233 } 2234 2235 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2236 2237 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2238 const char *PassName = Hints.vectorizeAnalysisPassName(); 2239 bool Failed = false; 2240 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2241 ORE.emit( 2242 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2243 UnsafeAlgebraInst->getDebugLoc(), 2244 UnsafeAlgebraInst->getParent()) 2245 << "loop not vectorized: cannot prove it is safe to reorder " 2246 "floating-point operations"); 2247 Failed = true; 2248 } 2249 2250 // Test if runtime memcheck thresholds are exceeded. 2251 bool PragmaThresholdReached = 2252 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2253 bool ThresholdReached = 2254 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2255 if ((ThresholdReached && !Hints.allowReordering()) || 2256 PragmaThresholdReached) { 2257 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2258 L->getStartLoc(), 2259 L->getHeader()) 2260 << "loop not vectorized: cannot prove it is safe to reorder " 2261 "memory operations"); 2262 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2263 Failed = true; 2264 } 2265 2266 return Failed; 2267 } 2268 2269 private: 2270 unsigned NumRuntimePointerChecks; 2271 Instruction *UnsafeAlgebraInst; 2272 2273 /// Interface to emit optimization remarks. 2274 OptimizationRemarkEmitter &ORE; 2275 }; 2276 2277 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2278 if (L.empty()) { 2279 if (!hasCyclesInLoopBody(L)) 2280 V.push_back(&L); 2281 return; 2282 } 2283 for (Loop *InnerL : L) 2284 addAcyclicInnerLoop(*InnerL, V); 2285 } 2286 2287 /// The LoopVectorize Pass. 2288 struct LoopVectorize : public FunctionPass { 2289 /// Pass identification, replacement for typeid 2290 static char ID; 2291 2292 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2293 : FunctionPass(ID) { 2294 Impl.DisableUnrolling = NoUnrolling; 2295 Impl.AlwaysVectorize = AlwaysVectorize; 2296 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2297 } 2298 2299 LoopVectorizePass Impl; 2300 2301 bool runOnFunction(Function &F) override { 2302 if (skipFunction(F)) 2303 return false; 2304 2305 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2306 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2307 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2308 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2309 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2310 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2311 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2312 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2313 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2314 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2315 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2316 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2317 2318 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2319 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2320 2321 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2322 GetLAA, *ORE); 2323 } 2324 2325 void getAnalysisUsage(AnalysisUsage &AU) const override { 2326 AU.addRequired<AssumptionCacheTracker>(); 2327 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2328 AU.addRequired<DominatorTreeWrapperPass>(); 2329 AU.addRequired<LoopInfoWrapperPass>(); 2330 AU.addRequired<ScalarEvolutionWrapperPass>(); 2331 AU.addRequired<TargetTransformInfoWrapperPass>(); 2332 AU.addRequired<AAResultsWrapperPass>(); 2333 AU.addRequired<LoopAccessLegacyAnalysis>(); 2334 AU.addRequired<DemandedBitsWrapperPass>(); 2335 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2336 AU.addPreserved<LoopInfoWrapperPass>(); 2337 AU.addPreserved<DominatorTreeWrapperPass>(); 2338 AU.addPreserved<BasicAAWrapperPass>(); 2339 AU.addPreserved<GlobalsAAWrapperPass>(); 2340 } 2341 }; 2342 2343 } // end anonymous namespace 2344 2345 //===----------------------------------------------------------------------===// 2346 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2347 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2348 //===----------------------------------------------------------------------===// 2349 2350 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2351 // We need to place the broadcast of invariant variables outside the loop. 2352 Instruction *Instr = dyn_cast<Instruction>(V); 2353 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2354 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2355 2356 // Place the code for broadcasting invariant variables in the new preheader. 2357 IRBuilder<>::InsertPointGuard Guard(Builder); 2358 if (Invariant) 2359 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2360 2361 // Broadcast the scalar into all locations in the vector. 2362 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2363 2364 return Shuf; 2365 } 2366 2367 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2368 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2369 Value *Start = II.getStartValue(); 2370 2371 // Construct the initial value of the vector IV in the vector loop preheader 2372 auto CurrIP = Builder.saveIP(); 2373 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2374 if (isa<TruncInst>(EntryVal)) { 2375 assert(Start->getType()->isIntegerTy() && 2376 "Truncation requires an integer type"); 2377 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2378 Step = Builder.CreateTrunc(Step, TruncType); 2379 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2380 } 2381 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2382 Value *SteppedStart = 2383 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2384 2385 // We create vector phi nodes for both integer and floating-point induction 2386 // variables. Here, we determine the kind of arithmetic we will perform. 2387 Instruction::BinaryOps AddOp; 2388 Instruction::BinaryOps MulOp; 2389 if (Step->getType()->isIntegerTy()) { 2390 AddOp = Instruction::Add; 2391 MulOp = Instruction::Mul; 2392 } else { 2393 AddOp = II.getInductionOpcode(); 2394 MulOp = Instruction::FMul; 2395 } 2396 2397 // Multiply the vectorization factor by the step using integer or 2398 // floating-point arithmetic as appropriate. 2399 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2400 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2401 2402 // Create a vector splat to use in the induction update. 2403 // 2404 // FIXME: If the step is non-constant, we create the vector splat with 2405 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2406 // handle a constant vector splat. 2407 Value *SplatVF = isa<Constant>(Mul) 2408 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2409 : Builder.CreateVectorSplat(VF, Mul); 2410 Builder.restoreIP(CurrIP); 2411 2412 // We may need to add the step a number of times, depending on the unroll 2413 // factor. The last of those goes into the PHI. 2414 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2415 &*LoopVectorBody->getFirstInsertionPt()); 2416 Instruction *LastInduction = VecInd; 2417 VectorParts Entry(UF); 2418 for (unsigned Part = 0; Part < UF; ++Part) { 2419 Entry[Part] = LastInduction; 2420 LastInduction = cast<Instruction>(addFastMathFlag( 2421 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2422 } 2423 VectorLoopValueMap.initVector(EntryVal, Entry); 2424 if (isa<TruncInst>(EntryVal)) 2425 addMetadata(Entry, EntryVal); 2426 2427 // Move the last step to the end of the latch block. This ensures consistent 2428 // placement of all induction updates. 2429 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2430 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2431 auto *ICmp = cast<Instruction>(Br->getCondition()); 2432 LastInduction->moveBefore(ICmp); 2433 LastInduction->setName("vec.ind.next"); 2434 2435 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2436 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2437 } 2438 2439 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2440 return Cost->isScalarAfterVectorization(I, VF) || 2441 Cost->isProfitableToScalarize(I, VF); 2442 } 2443 2444 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2445 if (shouldScalarizeInstruction(IV)) 2446 return true; 2447 auto isScalarInst = [&](User *U) -> bool { 2448 auto *I = cast<Instruction>(U); 2449 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2450 }; 2451 return any_of(IV->users(), isScalarInst); 2452 } 2453 2454 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2455 2456 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2457 "Primary induction variable must have an integer type"); 2458 2459 auto II = Legal->getInductionVars()->find(IV); 2460 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2461 2462 auto ID = II->second; 2463 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2464 2465 // The scalar value to broadcast. This will be derived from the canonical 2466 // induction variable. 2467 Value *ScalarIV = nullptr; 2468 2469 // The value from the original loop to which we are mapping the new induction 2470 // variable. 2471 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2472 2473 // True if we have vectorized the induction variable. 2474 auto VectorizedIV = false; 2475 2476 // Determine if we want a scalar version of the induction variable. This is 2477 // true if the induction variable itself is not widened, or if it has at 2478 // least one user in the loop that is not widened. 2479 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2480 2481 // Generate code for the induction step. Note that induction steps are 2482 // required to be loop-invariant 2483 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2484 "Induction step should be loop invariant"); 2485 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2486 Value *Step = nullptr; 2487 if (PSE.getSE()->isSCEVable(IV->getType())) { 2488 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2489 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2490 LoopVectorPreHeader->getTerminator()); 2491 } else { 2492 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2493 } 2494 2495 // Try to create a new independent vector induction variable. If we can't 2496 // create the phi node, we will splat the scalar induction variable in each 2497 // loop iteration. 2498 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2499 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2500 VectorizedIV = true; 2501 } 2502 2503 // If we haven't yet vectorized the induction variable, or if we will create 2504 // a scalar one, we need to define the scalar induction variable and step 2505 // values. If we were given a truncation type, truncate the canonical 2506 // induction variable and step. Otherwise, derive these values from the 2507 // induction descriptor. 2508 if (!VectorizedIV || NeedsScalarIV) { 2509 ScalarIV = Induction; 2510 if (IV != OldInduction) { 2511 ScalarIV = IV->getType()->isIntegerTy() 2512 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2513 : Builder.CreateCast(Instruction::SIToFP, Induction, 2514 IV->getType()); 2515 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2516 ScalarIV->setName("offset.idx"); 2517 } 2518 if (Trunc) { 2519 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2520 assert(Step->getType()->isIntegerTy() && 2521 "Truncation requires an integer step"); 2522 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2523 Step = Builder.CreateTrunc(Step, TruncType); 2524 } 2525 } 2526 2527 // If we haven't yet vectorized the induction variable, splat the scalar 2528 // induction variable, and build the necessary step vectors. 2529 if (!VectorizedIV) { 2530 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2531 VectorParts Entry(UF); 2532 for (unsigned Part = 0; Part < UF; ++Part) 2533 Entry[Part] = 2534 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2535 VectorLoopValueMap.initVector(EntryVal, Entry); 2536 if (Trunc) 2537 addMetadata(Entry, Trunc); 2538 } 2539 2540 // If an induction variable is only used for counting loop iterations or 2541 // calculating addresses, it doesn't need to be widened. Create scalar steps 2542 // that can be used by instructions we will later scalarize. Note that the 2543 // addition of the scalar steps will not increase the number of instructions 2544 // in the loop in the common case prior to InstCombine. We will be trading 2545 // one vector extract for each scalar step. 2546 if (NeedsScalarIV) 2547 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2548 } 2549 2550 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2551 Instruction::BinaryOps BinOp) { 2552 // Create and check the types. 2553 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2554 int VLen = Val->getType()->getVectorNumElements(); 2555 2556 Type *STy = Val->getType()->getScalarType(); 2557 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2558 "Induction Step must be an integer or FP"); 2559 assert(Step->getType() == STy && "Step has wrong type"); 2560 2561 SmallVector<Constant *, 8> Indices; 2562 2563 if (STy->isIntegerTy()) { 2564 // Create a vector of consecutive numbers from zero to VF. 2565 for (int i = 0; i < VLen; ++i) 2566 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2567 2568 // Add the consecutive indices to the vector value. 2569 Constant *Cv = ConstantVector::get(Indices); 2570 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2571 Step = Builder.CreateVectorSplat(VLen, Step); 2572 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2573 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2574 // which can be found from the original scalar operations. 2575 Step = Builder.CreateMul(Cv, Step); 2576 return Builder.CreateAdd(Val, Step, "induction"); 2577 } 2578 2579 // Floating point induction. 2580 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2581 "Binary Opcode should be specified for FP induction"); 2582 // Create a vector of consecutive numbers from zero to VF. 2583 for (int i = 0; i < VLen; ++i) 2584 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2585 2586 // Add the consecutive indices to the vector value. 2587 Constant *Cv = ConstantVector::get(Indices); 2588 2589 Step = Builder.CreateVectorSplat(VLen, Step); 2590 2591 // Floating point operations had to be 'fast' to enable the induction. 2592 FastMathFlags Flags; 2593 Flags.setUnsafeAlgebra(); 2594 2595 Value *MulOp = Builder.CreateFMul(Cv, Step); 2596 if (isa<Instruction>(MulOp)) 2597 // Have to check, MulOp may be a constant 2598 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2599 2600 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2601 if (isa<Instruction>(BOp)) 2602 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2603 return BOp; 2604 } 2605 2606 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2607 Value *EntryVal, 2608 const InductionDescriptor &ID) { 2609 2610 // We shouldn't have to build scalar steps if we aren't vectorizing. 2611 assert(VF > 1 && "VF should be greater than one"); 2612 2613 // Get the value type and ensure it and the step have the same integer type. 2614 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2615 assert(ScalarIVTy == Step->getType() && 2616 "Val and Step should have the same type"); 2617 2618 // We build scalar steps for both integer and floating-point induction 2619 // variables. Here, we determine the kind of arithmetic we will perform. 2620 Instruction::BinaryOps AddOp; 2621 Instruction::BinaryOps MulOp; 2622 if (ScalarIVTy->isIntegerTy()) { 2623 AddOp = Instruction::Add; 2624 MulOp = Instruction::Mul; 2625 } else { 2626 AddOp = ID.getInductionOpcode(); 2627 MulOp = Instruction::FMul; 2628 } 2629 2630 // Determine the number of scalars we need to generate for each unroll 2631 // iteration. If EntryVal is uniform, we only need to generate the first 2632 // lane. Otherwise, we generate all VF values. 2633 unsigned Lanes = 2634 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2635 2636 // Compute the scalar steps and save the results in VectorLoopValueMap. 2637 ScalarParts Entry(UF); 2638 for (unsigned Part = 0; Part < UF; ++Part) { 2639 Entry[Part].resize(VF); 2640 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2641 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2642 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2643 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2644 Entry[Part][Lane] = Add; 2645 } 2646 } 2647 VectorLoopValueMap.initScalar(EntryVal, Entry); 2648 } 2649 2650 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2651 2652 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2653 ValueToValueMap(); 2654 2655 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2656 if (Stride == 1 || Stride == -1) 2657 return Stride; 2658 return 0; 2659 } 2660 2661 bool LoopVectorizationLegality::isUniform(Value *V) { 2662 return LAI->isUniform(V); 2663 } 2664 2665 const InnerLoopVectorizer::VectorParts & 2666 InnerLoopVectorizer::getVectorValue(Value *V) { 2667 assert(V != Induction && "The new induction variable should not be used."); 2668 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2669 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2670 2671 // If we have a stride that is replaced by one, do it here. 2672 if (Legal->hasStride(V)) 2673 V = ConstantInt::get(V->getType(), 1); 2674 2675 // If we have this scalar in the map, return it. 2676 if (VectorLoopValueMap.hasVector(V)) 2677 return VectorLoopValueMap.VectorMapStorage[V]; 2678 2679 // If the value has not been vectorized, check if it has been scalarized 2680 // instead. If it has been scalarized, and we actually need the value in 2681 // vector form, we will construct the vector values on demand. 2682 if (VectorLoopValueMap.hasScalar(V)) { 2683 2684 // Initialize a new vector map entry. 2685 VectorParts Entry(UF); 2686 2687 // If we've scalarized a value, that value should be an instruction. 2688 auto *I = cast<Instruction>(V); 2689 2690 // If we aren't vectorizing, we can just copy the scalar map values over to 2691 // the vector map. 2692 if (VF == 1) { 2693 for (unsigned Part = 0; Part < UF; ++Part) 2694 Entry[Part] = getScalarValue(V, Part, 0); 2695 return VectorLoopValueMap.initVector(V, Entry); 2696 } 2697 2698 // Get the last scalar instruction we generated for V. If the value is 2699 // known to be uniform after vectorization, this corresponds to lane zero 2700 // of the last unroll iteration. Otherwise, the last instruction is the one 2701 // we created for the last vector lane of the last unroll iteration. 2702 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2703 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2704 2705 // Set the insert point after the last scalarized instruction. This ensures 2706 // the insertelement sequence will directly follow the scalar definitions. 2707 auto OldIP = Builder.saveIP(); 2708 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2709 Builder.SetInsertPoint(&*NewIP); 2710 2711 // However, if we are vectorizing, we need to construct the vector values. 2712 // If the value is known to be uniform after vectorization, we can just 2713 // broadcast the scalar value corresponding to lane zero for each unroll 2714 // iteration. Otherwise, we construct the vector values using insertelement 2715 // instructions. Since the resulting vectors are stored in 2716 // VectorLoopValueMap, we will only generate the insertelements once. 2717 for (unsigned Part = 0; Part < UF; ++Part) { 2718 Value *VectorValue = nullptr; 2719 if (Cost->isUniformAfterVectorization(I, VF)) { 2720 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2721 } else { 2722 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2723 for (unsigned Lane = 0; Lane < VF; ++Lane) 2724 VectorValue = Builder.CreateInsertElement( 2725 VectorValue, getScalarValue(V, Part, Lane), 2726 Builder.getInt32(Lane)); 2727 } 2728 Entry[Part] = VectorValue; 2729 } 2730 Builder.restoreIP(OldIP); 2731 return VectorLoopValueMap.initVector(V, Entry); 2732 } 2733 2734 // If this scalar is unknown, assume that it is a constant or that it is 2735 // loop invariant. Broadcast V and save the value for future uses. 2736 Value *B = getBroadcastInstrs(V); 2737 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2738 } 2739 2740 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2741 unsigned Lane) { 2742 2743 // If the value is not an instruction contained in the loop, it should 2744 // already be scalar. 2745 if (OrigLoop->isLoopInvariant(V)) 2746 return V; 2747 2748 assert(Lane > 0 ? 2749 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2750 : true && "Uniform values only have lane zero"); 2751 2752 // If the value from the original loop has not been vectorized, it is 2753 // represented by UF x VF scalar values in the new loop. Return the requested 2754 // scalar value. 2755 if (VectorLoopValueMap.hasScalar(V)) 2756 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2757 2758 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2759 // for the given unroll part. If this entry is not a vector type (i.e., the 2760 // vectorization factor is one), there is no need to generate an 2761 // extractelement instruction. 2762 auto *U = getVectorValue(V)[Part]; 2763 if (!U->getType()->isVectorTy()) { 2764 assert(VF == 1 && "Value not scalarized has non-vector type"); 2765 return U; 2766 } 2767 2768 // Otherwise, the value from the original loop has been vectorized and is 2769 // represented by UF vector values. Extract and return the requested scalar 2770 // value from the appropriate vector lane. 2771 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2772 } 2773 2774 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2775 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2776 SmallVector<Constant *, 8> ShuffleMask; 2777 for (unsigned i = 0; i < VF; ++i) 2778 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2779 2780 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2781 ConstantVector::get(ShuffleMask), 2782 "reverse"); 2783 } 2784 2785 // Try to vectorize the interleave group that \p Instr belongs to. 2786 // 2787 // E.g. Translate following interleaved load group (factor = 3): 2788 // for (i = 0; i < N; i+=3) { 2789 // R = Pic[i]; // Member of index 0 2790 // G = Pic[i+1]; // Member of index 1 2791 // B = Pic[i+2]; // Member of index 2 2792 // ... // do something to R, G, B 2793 // } 2794 // To: 2795 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2796 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2797 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2798 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2799 // 2800 // Or translate following interleaved store group (factor = 3): 2801 // for (i = 0; i < N; i+=3) { 2802 // ... do something to R, G, B 2803 // Pic[i] = R; // Member of index 0 2804 // Pic[i+1] = G; // Member of index 1 2805 // Pic[i+2] = B; // Member of index 2 2806 // } 2807 // To: 2808 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2809 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2810 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2811 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2812 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2813 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2814 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2815 assert(Group && "Fail to get an interleaved access group."); 2816 2817 // Skip if current instruction is not the insert position. 2818 if (Instr != Group->getInsertPos()) 2819 return; 2820 2821 Value *Ptr = getPointerOperand(Instr); 2822 2823 // Prepare for the vector type of the interleaved load/store. 2824 Type *ScalarTy = getMemInstValueType(Instr); 2825 unsigned InterleaveFactor = Group->getFactor(); 2826 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2827 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2828 2829 // Prepare for the new pointers. 2830 setDebugLocFromInst(Builder, Ptr); 2831 SmallVector<Value *, 2> NewPtrs; 2832 unsigned Index = Group->getIndex(Instr); 2833 2834 // If the group is reverse, adjust the index to refer to the last vector lane 2835 // instead of the first. We adjust the index from the first vector lane, 2836 // rather than directly getting the pointer for lane VF - 1, because the 2837 // pointer operand of the interleaved access is supposed to be uniform. For 2838 // uniform instructions, we're only required to generate a value for the 2839 // first vector lane in each unroll iteration. 2840 if (Group->isReverse()) 2841 Index += (VF - 1) * Group->getFactor(); 2842 2843 for (unsigned Part = 0; Part < UF; Part++) { 2844 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2845 2846 // Notice current instruction could be any index. Need to adjust the address 2847 // to the member of index 0. 2848 // 2849 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2850 // b = A[i]; // Member of index 0 2851 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2852 // 2853 // E.g. A[i+1] = a; // Member of index 1 2854 // A[i] = b; // Member of index 0 2855 // A[i+2] = c; // Member of index 2 (Current instruction) 2856 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2857 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2858 2859 // Cast to the vector pointer type. 2860 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2861 } 2862 2863 setDebugLocFromInst(Builder, Instr); 2864 Value *UndefVec = UndefValue::get(VecTy); 2865 2866 // Vectorize the interleaved load group. 2867 if (isa<LoadInst>(Instr)) { 2868 2869 // For each unroll part, create a wide load for the group. 2870 SmallVector<Value *, 2> NewLoads; 2871 for (unsigned Part = 0; Part < UF; Part++) { 2872 auto *NewLoad = Builder.CreateAlignedLoad( 2873 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2874 addMetadata(NewLoad, Instr); 2875 NewLoads.push_back(NewLoad); 2876 } 2877 2878 // For each member in the group, shuffle out the appropriate data from the 2879 // wide loads. 2880 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2881 Instruction *Member = Group->getMember(I); 2882 2883 // Skip the gaps in the group. 2884 if (!Member) 2885 continue; 2886 2887 VectorParts Entry(UF); 2888 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2889 for (unsigned Part = 0; Part < UF; Part++) { 2890 Value *StridedVec = Builder.CreateShuffleVector( 2891 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2892 2893 // If this member has different type, cast the result type. 2894 if (Member->getType() != ScalarTy) { 2895 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2896 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2897 } 2898 2899 Entry[Part] = 2900 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2901 } 2902 VectorLoopValueMap.initVector(Member, Entry); 2903 } 2904 return; 2905 } 2906 2907 // The sub vector type for current instruction. 2908 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2909 2910 // Vectorize the interleaved store group. 2911 for (unsigned Part = 0; Part < UF; Part++) { 2912 // Collect the stored vector from each member. 2913 SmallVector<Value *, 4> StoredVecs; 2914 for (unsigned i = 0; i < InterleaveFactor; i++) { 2915 // Interleaved store group doesn't allow a gap, so each index has a member 2916 Instruction *Member = Group->getMember(i); 2917 assert(Member && "Fail to get a member from an interleaved store group"); 2918 2919 Value *StoredVec = 2920 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2921 if (Group->isReverse()) 2922 StoredVec = reverseVector(StoredVec); 2923 2924 // If this member has different type, cast it to an unified type. 2925 if (StoredVec->getType() != SubVT) 2926 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2927 2928 StoredVecs.push_back(StoredVec); 2929 } 2930 2931 // Concatenate all vectors into a wide vector. 2932 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2933 2934 // Interleave the elements in the wide vector. 2935 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2936 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2937 "interleaved.vec"); 2938 2939 Instruction *NewStoreInstr = 2940 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2941 addMetadata(NewStoreInstr, Instr); 2942 } 2943 } 2944 2945 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2946 // Attempt to issue a wide load. 2947 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2948 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2949 2950 assert((LI || SI) && "Invalid Load/Store instruction"); 2951 2952 LoopVectorizationCostModel::InstWidening Decision = 2953 Cost->getWideningDecision(Instr, VF); 2954 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2955 "CM decision should be taken at this point"); 2956 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2957 return vectorizeInterleaveGroup(Instr); 2958 2959 Type *ScalarDataTy = getMemInstValueType(Instr); 2960 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2961 Value *Ptr = getPointerOperand(Instr); 2962 unsigned Alignment = getMemInstAlignment(Instr); 2963 // An alignment of 0 means target abi alignment. We need to use the scalar's 2964 // target abi alignment in such a case. 2965 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2966 if (!Alignment) 2967 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2968 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2969 2970 // Scalarize the memory instruction if necessary. 2971 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2972 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2973 2974 // Determine if the pointer operand of the access is either consecutive or 2975 // reverse consecutive. 2976 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2977 bool Reverse = ConsecutiveStride < 0; 2978 bool CreateGatherScatter = 2979 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2980 2981 VectorParts VectorGep; 2982 2983 // Handle consecutive loads/stores. 2984 if (ConsecutiveStride) { 2985 Ptr = getScalarValue(Ptr, 0, 0); 2986 } else { 2987 // At this point we should vector version of GEP for Gather or Scatter 2988 assert(CreateGatherScatter && "The instruction should be scalarized"); 2989 VectorGep = getVectorValue(Ptr); 2990 } 2991 2992 VectorParts Mask = createBlockInMask(Instr->getParent()); 2993 // Handle Stores: 2994 if (SI) { 2995 assert(!Legal->isUniform(SI->getPointerOperand()) && 2996 "We do not allow storing to uniform addresses"); 2997 setDebugLocFromInst(Builder, SI); 2998 // We don't want to update the value in the map as it might be used in 2999 // another expression. So don't use a reference type for "StoredVal". 3000 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 3001 3002 for (unsigned Part = 0; Part < UF; ++Part) { 3003 Instruction *NewSI = nullptr; 3004 if (CreateGatherScatter) { 3005 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3006 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 3007 Alignment, MaskPart); 3008 } else { 3009 // Calculate the pointer for the specific unroll-part. 3010 Value *PartPtr = 3011 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3012 3013 if (Reverse) { 3014 // If we store to reverse consecutive memory locations, then we need 3015 // to reverse the order of elements in the stored value. 3016 StoredVal[Part] = reverseVector(StoredVal[Part]); 3017 // If the address is consecutive but reversed, then the 3018 // wide store needs to start at the last vector element. 3019 PartPtr = 3020 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3021 PartPtr = 3022 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3023 Mask[Part] = reverseVector(Mask[Part]); 3024 } 3025 3026 Value *VecPtr = 3027 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3028 3029 if (Legal->isMaskRequired(SI)) 3030 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3031 Mask[Part]); 3032 else 3033 NewSI = 3034 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3035 } 3036 addMetadata(NewSI, SI); 3037 } 3038 return; 3039 } 3040 3041 // Handle loads. 3042 assert(LI && "Must have a load instruction"); 3043 setDebugLocFromInst(Builder, LI); 3044 VectorParts Entry(UF); 3045 for (unsigned Part = 0; Part < UF; ++Part) { 3046 Instruction *NewLI; 3047 if (CreateGatherScatter) { 3048 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3049 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3050 0, "wide.masked.gather"); 3051 Entry[Part] = NewLI; 3052 } else { 3053 // Calculate the pointer for the specific unroll-part. 3054 Value *PartPtr = 3055 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3056 3057 if (Reverse) { 3058 // If the address is consecutive but reversed, then the 3059 // wide load needs to start at the last vector element. 3060 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3061 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3062 Mask[Part] = reverseVector(Mask[Part]); 3063 } 3064 3065 Value *VecPtr = 3066 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3067 if (Legal->isMaskRequired(LI)) 3068 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3069 UndefValue::get(DataTy), 3070 "wide.masked.load"); 3071 else 3072 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3073 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3074 } 3075 addMetadata(NewLI, LI); 3076 } 3077 VectorLoopValueMap.initVector(Instr, Entry); 3078 } 3079 3080 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3081 bool IfPredicateInstr) { 3082 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3083 DEBUG(dbgs() << "LV: Scalarizing" 3084 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3085 << '\n'); 3086 // Holds vector parameters or scalars, in case of uniform vals. 3087 SmallVector<VectorParts, 4> Params; 3088 3089 setDebugLocFromInst(Builder, Instr); 3090 3091 // Does this instruction return a value ? 3092 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3093 3094 // Initialize a new scalar map entry. 3095 ScalarParts Entry(UF); 3096 3097 VectorParts Cond; 3098 if (IfPredicateInstr) 3099 Cond = createBlockInMask(Instr->getParent()); 3100 3101 // Determine the number of scalars we need to generate for each unroll 3102 // iteration. If the instruction is uniform, we only need to generate the 3103 // first lane. Otherwise, we generate all VF values. 3104 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3105 3106 // For each vector unroll 'part': 3107 for (unsigned Part = 0; Part < UF; ++Part) { 3108 Entry[Part].resize(VF); 3109 // For each scalar that we create: 3110 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3111 3112 // Start if-block. 3113 Value *Cmp = nullptr; 3114 if (IfPredicateInstr) { 3115 Cmp = Cond[Part]; 3116 if (Cmp->getType()->isVectorTy()) 3117 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3118 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3119 ConstantInt::get(Cmp->getType(), 1)); 3120 } 3121 3122 Instruction *Cloned = Instr->clone(); 3123 if (!IsVoidRetTy) 3124 Cloned->setName(Instr->getName() + ".cloned"); 3125 3126 // Replace the operands of the cloned instructions with their scalar 3127 // equivalents in the new loop. 3128 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3129 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3130 Cloned->setOperand(op, NewOp); 3131 } 3132 addNewMetadata(Cloned, Instr); 3133 3134 // Place the cloned scalar in the new loop. 3135 Builder.Insert(Cloned); 3136 3137 // Add the cloned scalar to the scalar map entry. 3138 Entry[Part][Lane] = Cloned; 3139 3140 // If we just cloned a new assumption, add it the assumption cache. 3141 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3142 if (II->getIntrinsicID() == Intrinsic::assume) 3143 AC->registerAssumption(II); 3144 3145 // End if-block. 3146 if (IfPredicateInstr) 3147 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3148 } 3149 } 3150 VectorLoopValueMap.initScalar(Instr, Entry); 3151 } 3152 3153 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3154 Value *End, Value *Step, 3155 Instruction *DL) { 3156 BasicBlock *Header = L->getHeader(); 3157 BasicBlock *Latch = L->getLoopLatch(); 3158 // As we're just creating this loop, it's possible no latch exists 3159 // yet. If so, use the header as this will be a single block loop. 3160 if (!Latch) 3161 Latch = Header; 3162 3163 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3164 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3165 setDebugLocFromInst(Builder, OldInst); 3166 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3167 3168 Builder.SetInsertPoint(Latch->getTerminator()); 3169 setDebugLocFromInst(Builder, OldInst); 3170 3171 // Create i+1 and fill the PHINode. 3172 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3173 Induction->addIncoming(Start, L->getLoopPreheader()); 3174 Induction->addIncoming(Next, Latch); 3175 // Create the compare. 3176 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3177 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3178 3179 // Now we have two terminators. Remove the old one from the block. 3180 Latch->getTerminator()->eraseFromParent(); 3181 3182 return Induction; 3183 } 3184 3185 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3186 if (TripCount) 3187 return TripCount; 3188 3189 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3190 // Find the loop boundaries. 3191 ScalarEvolution *SE = PSE.getSE(); 3192 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3193 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3194 "Invalid loop count"); 3195 3196 Type *IdxTy = Legal->getWidestInductionType(); 3197 3198 // The exit count might have the type of i64 while the phi is i32. This can 3199 // happen if we have an induction variable that is sign extended before the 3200 // compare. The only way that we get a backedge taken count is that the 3201 // induction variable was signed and as such will not overflow. In such a case 3202 // truncation is legal. 3203 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3204 IdxTy->getPrimitiveSizeInBits()) 3205 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3206 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3207 3208 // Get the total trip count from the count by adding 1. 3209 const SCEV *ExitCount = SE->getAddExpr( 3210 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3211 3212 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3213 3214 // Expand the trip count and place the new instructions in the preheader. 3215 // Notice that the pre-header does not change, only the loop body. 3216 SCEVExpander Exp(*SE, DL, "induction"); 3217 3218 // Count holds the overall loop count (N). 3219 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3220 L->getLoopPreheader()->getTerminator()); 3221 3222 if (TripCount->getType()->isPointerTy()) 3223 TripCount = 3224 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3225 L->getLoopPreheader()->getTerminator()); 3226 3227 return TripCount; 3228 } 3229 3230 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3231 if (VectorTripCount) 3232 return VectorTripCount; 3233 3234 Value *TC = getOrCreateTripCount(L); 3235 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3236 3237 // Now we need to generate the expression for the part of the loop that the 3238 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3239 // iterations are not required for correctness, or N - Step, otherwise. Step 3240 // is equal to the vectorization factor (number of SIMD elements) times the 3241 // unroll factor (number of SIMD instructions). 3242 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3243 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3244 3245 // If there is a non-reversed interleaved group that may speculatively access 3246 // memory out-of-bounds, we need to ensure that there will be at least one 3247 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3248 // the trip count, we set the remainder to be equal to the step. If the step 3249 // does not evenly divide the trip count, no adjustment is necessary since 3250 // there will already be scalar iterations. Note that the minimum iterations 3251 // check ensures that N >= Step. 3252 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3253 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3254 R = Builder.CreateSelect(IsZero, Step, R); 3255 } 3256 3257 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3258 3259 return VectorTripCount; 3260 } 3261 3262 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3263 BasicBlock *Bypass) { 3264 Value *Count = getOrCreateTripCount(L); 3265 BasicBlock *BB = L->getLoopPreheader(); 3266 IRBuilder<> Builder(BB->getTerminator()); 3267 3268 // Generate code to check that the loop's trip count that we computed by 3269 // adding one to the backedge-taken count will not overflow. 3270 Value *CheckMinIters = Builder.CreateICmpULT( 3271 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3272 3273 BasicBlock *NewBB = 3274 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3275 // Update dominator tree immediately if the generated block is a 3276 // LoopBypassBlock because SCEV expansions to generate loop bypass 3277 // checks may query it before the current function is finished. 3278 DT->addNewBlock(NewBB, BB); 3279 if (L->getParentLoop()) 3280 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3281 ReplaceInstWithInst(BB->getTerminator(), 3282 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3283 LoopBypassBlocks.push_back(BB); 3284 } 3285 3286 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3287 BasicBlock *Bypass) { 3288 Value *TC = getOrCreateVectorTripCount(L); 3289 BasicBlock *BB = L->getLoopPreheader(); 3290 IRBuilder<> Builder(BB->getTerminator()); 3291 3292 // Now, compare the new count to zero. If it is zero skip the vector loop and 3293 // jump to the scalar loop. 3294 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3295 "cmp.zero"); 3296 3297 // Generate code to check that the loop's trip count that we computed by 3298 // adding one to the backedge-taken count will not overflow. 3299 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3300 // Update dominator tree immediately if the generated block is a 3301 // LoopBypassBlock because SCEV expansions to generate loop bypass 3302 // checks may query it before the current function is finished. 3303 DT->addNewBlock(NewBB, BB); 3304 if (L->getParentLoop()) 3305 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3306 ReplaceInstWithInst(BB->getTerminator(), 3307 BranchInst::Create(Bypass, NewBB, Cmp)); 3308 LoopBypassBlocks.push_back(BB); 3309 } 3310 3311 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3312 BasicBlock *BB = L->getLoopPreheader(); 3313 3314 // Generate the code to check that the SCEV assumptions that we made. 3315 // We want the new basic block to start at the first instruction in a 3316 // sequence of instructions that form a check. 3317 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3318 "scev.check"); 3319 Value *SCEVCheck = 3320 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3321 3322 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3323 if (C->isZero()) 3324 return; 3325 3326 // Create a new block containing the stride check. 3327 BB->setName("vector.scevcheck"); 3328 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3329 // Update dominator tree immediately if the generated block is a 3330 // LoopBypassBlock because SCEV expansions to generate loop bypass 3331 // checks may query it before the current function is finished. 3332 DT->addNewBlock(NewBB, BB); 3333 if (L->getParentLoop()) 3334 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3335 ReplaceInstWithInst(BB->getTerminator(), 3336 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3337 LoopBypassBlocks.push_back(BB); 3338 AddedSafetyChecks = true; 3339 } 3340 3341 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3342 BasicBlock *BB = L->getLoopPreheader(); 3343 3344 // Generate the code that checks in runtime if arrays overlap. We put the 3345 // checks into a separate block to make the more common case of few elements 3346 // faster. 3347 Instruction *FirstCheckInst; 3348 Instruction *MemRuntimeCheck; 3349 std::tie(FirstCheckInst, MemRuntimeCheck) = 3350 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3351 if (!MemRuntimeCheck) 3352 return; 3353 3354 // Create a new block containing the memory check. 3355 BB->setName("vector.memcheck"); 3356 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3357 // Update dominator tree immediately if the generated block is a 3358 // LoopBypassBlock because SCEV expansions to generate loop bypass 3359 // checks may query it before the current function is finished. 3360 DT->addNewBlock(NewBB, BB); 3361 if (L->getParentLoop()) 3362 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3363 ReplaceInstWithInst(BB->getTerminator(), 3364 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3365 LoopBypassBlocks.push_back(BB); 3366 AddedSafetyChecks = true; 3367 3368 // We currently don't use LoopVersioning for the actual loop cloning but we 3369 // still use it to add the noalias metadata. 3370 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3371 PSE.getSE()); 3372 LVer->prepareNoAliasMetadata(); 3373 } 3374 3375 void InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3376 /* 3377 In this function we generate a new loop. The new loop will contain 3378 the vectorized instructions while the old loop will continue to run the 3379 scalar remainder. 3380 3381 [ ] <-- loop iteration number check. 3382 / | 3383 / v 3384 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3385 | / | 3386 | / v 3387 || [ ] <-- vector pre header. 3388 |/ | 3389 | v 3390 | [ ] \ 3391 | [ ]_| <-- vector loop. 3392 | | 3393 | v 3394 | -[ ] <--- middle-block. 3395 | / | 3396 | / v 3397 -|- >[ ] <--- new preheader. 3398 | | 3399 | v 3400 | [ ] \ 3401 | [ ]_| <-- old scalar loop to handle remainder. 3402 \ | 3403 \ v 3404 >[ ] <-- exit block. 3405 ... 3406 */ 3407 3408 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3409 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3410 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3411 assert(VectorPH && "Invalid loop structure"); 3412 assert(ExitBlock && "Must have an exit block"); 3413 3414 // Some loops have a single integer induction variable, while other loops 3415 // don't. One example is c++ iterators that often have multiple pointer 3416 // induction variables. In the code below we also support a case where we 3417 // don't have a single induction variable. 3418 // 3419 // We try to obtain an induction variable from the original loop as hard 3420 // as possible. However if we don't find one that: 3421 // - is an integer 3422 // - counts from zero, stepping by one 3423 // - is the size of the widest induction variable type 3424 // then we create a new one. 3425 OldInduction = Legal->getPrimaryInduction(); 3426 Type *IdxTy = Legal->getWidestInductionType(); 3427 3428 // Split the single block loop into the two loop structure described above. 3429 BasicBlock *VecBody = 3430 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3431 BasicBlock *MiddleBlock = 3432 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3433 BasicBlock *ScalarPH = 3434 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3435 3436 // Create and register the new vector loop. 3437 Loop *Lp = new Loop(); 3438 Loop *ParentLoop = OrigLoop->getParentLoop(); 3439 3440 // Insert the new loop into the loop nest and register the new basic blocks 3441 // before calling any utilities such as SCEV that require valid LoopInfo. 3442 if (ParentLoop) { 3443 ParentLoop->addChildLoop(Lp); 3444 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3445 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3446 } else { 3447 LI->addTopLevelLoop(Lp); 3448 } 3449 Lp->addBasicBlockToLoop(VecBody, *LI); 3450 3451 // Find the loop boundaries. 3452 Value *Count = getOrCreateTripCount(Lp); 3453 3454 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3455 3456 // We need to test whether the backedge-taken count is uint##_max. Adding one 3457 // to it will cause overflow and an incorrect loop trip count in the vector 3458 // body. In case of overflow we want to directly jump to the scalar remainder 3459 // loop. 3460 emitMinimumIterationCountCheck(Lp, ScalarPH); 3461 // Now, compare the new count to zero. If it is zero skip the vector loop and 3462 // jump to the scalar loop. 3463 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3464 // Generate the code to check any assumptions that we've made for SCEV 3465 // expressions. 3466 emitSCEVChecks(Lp, ScalarPH); 3467 3468 // Generate the code that checks in runtime if arrays overlap. We put the 3469 // checks into a separate block to make the more common case of few elements 3470 // faster. 3471 emitMemRuntimeChecks(Lp, ScalarPH); 3472 3473 // Generate the induction variable. 3474 // The loop step is equal to the vectorization factor (num of SIMD elements) 3475 // times the unroll factor (num of SIMD instructions). 3476 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3477 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3478 Induction = 3479 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3480 getDebugLocFromInstOrOperands(OldInduction)); 3481 3482 // We are going to resume the execution of the scalar loop. 3483 // Go over all of the induction variables that we found and fix the 3484 // PHIs that are left in the scalar version of the loop. 3485 // The starting values of PHI nodes depend on the counter of the last 3486 // iteration in the vectorized loop. 3487 // If we come from a bypass edge then we need to start from the original 3488 // start value. 3489 3490 // This variable saves the new starting index for the scalar loop. It is used 3491 // to test if there are any tail iterations left once the vector loop has 3492 // completed. 3493 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3494 for (auto &InductionEntry : *List) { 3495 PHINode *OrigPhi = InductionEntry.first; 3496 InductionDescriptor II = InductionEntry.second; 3497 3498 // Create phi nodes to merge from the backedge-taken check block. 3499 PHINode *BCResumeVal = PHINode::Create( 3500 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3501 Value *&EndValue = IVEndValues[OrigPhi]; 3502 if (OrigPhi == OldInduction) { 3503 // We know what the end value is. 3504 EndValue = CountRoundDown; 3505 } else { 3506 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3507 Type *StepType = II.getStep()->getType(); 3508 Instruction::CastOps CastOp = 3509 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3510 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3511 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3512 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3513 EndValue->setName("ind.end"); 3514 } 3515 3516 // The new PHI merges the original incoming value, in case of a bypass, 3517 // or the value at the end of the vectorized loop. 3518 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3519 3520 // Fix the scalar body counter (PHI node). 3521 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3522 3523 // The old induction's phi node in the scalar body needs the truncated 3524 // value. 3525 for (BasicBlock *BB : LoopBypassBlocks) 3526 BCResumeVal->addIncoming(II.getStartValue(), BB); 3527 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3528 } 3529 3530 // Add a check in the middle block to see if we have completed 3531 // all of the iterations in the first vector loop. 3532 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3533 Value *CmpN = 3534 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3535 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3536 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3537 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3538 3539 // Get ready to start creating new instructions into the vectorized body. 3540 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3541 3542 // Save the state. 3543 LoopVectorPreHeader = Lp->getLoopPreheader(); 3544 LoopScalarPreHeader = ScalarPH; 3545 LoopMiddleBlock = MiddleBlock; 3546 LoopExitBlock = ExitBlock; 3547 LoopVectorBody = VecBody; 3548 LoopScalarBody = OldBasicBlock; 3549 3550 // Keep all loop hints from the original loop on the vector loop (we'll 3551 // replace the vectorizer-specific hints below). 3552 if (MDNode *LID = OrigLoop->getLoopID()) 3553 Lp->setLoopID(LID); 3554 3555 LoopVectorizeHints Hints(Lp, true, *ORE); 3556 Hints.setAlreadyVectorized(); 3557 } 3558 3559 // Fix up external users of the induction variable. At this point, we are 3560 // in LCSSA form, with all external PHIs that use the IV having one input value, 3561 // coming from the remainder loop. We need those PHIs to also have a correct 3562 // value for the IV when arriving directly from the middle block. 3563 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3564 const InductionDescriptor &II, 3565 Value *CountRoundDown, Value *EndValue, 3566 BasicBlock *MiddleBlock) { 3567 // There are two kinds of external IV usages - those that use the value 3568 // computed in the last iteration (the PHI) and those that use the penultimate 3569 // value (the value that feeds into the phi from the loop latch). 3570 // We allow both, but they, obviously, have different values. 3571 3572 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3573 3574 DenseMap<Value *, Value *> MissingVals; 3575 3576 // An external user of the last iteration's value should see the value that 3577 // the remainder loop uses to initialize its own IV. 3578 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3579 for (User *U : PostInc->users()) { 3580 Instruction *UI = cast<Instruction>(U); 3581 if (!OrigLoop->contains(UI)) { 3582 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3583 MissingVals[UI] = EndValue; 3584 } 3585 } 3586 3587 // An external user of the penultimate value need to see EndValue - Step. 3588 // The simplest way to get this is to recompute it from the constituent SCEVs, 3589 // that is Start + (Step * (CRD - 1)). 3590 for (User *U : OrigPhi->users()) { 3591 auto *UI = cast<Instruction>(U); 3592 if (!OrigLoop->contains(UI)) { 3593 const DataLayout &DL = 3594 OrigLoop->getHeader()->getModule()->getDataLayout(); 3595 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3596 3597 IRBuilder<> B(MiddleBlock->getTerminator()); 3598 Value *CountMinusOne = B.CreateSub( 3599 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3600 Value *CMO = 3601 !II.getStep()->getType()->isIntegerTy() 3602 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3603 II.getStep()->getType()) 3604 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3605 CMO->setName("cast.cmo"); 3606 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3607 Escape->setName("ind.escape"); 3608 MissingVals[UI] = Escape; 3609 } 3610 } 3611 3612 for (auto &I : MissingVals) { 3613 PHINode *PHI = cast<PHINode>(I.first); 3614 // One corner case we have to handle is two IVs "chasing" each-other, 3615 // that is %IV2 = phi [...], [ %IV1, %latch ] 3616 // In this case, if IV1 has an external use, we need to avoid adding both 3617 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3618 // don't already have an incoming value for the middle block. 3619 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3620 PHI->addIncoming(I.second, MiddleBlock); 3621 } 3622 } 3623 3624 namespace { 3625 struct CSEDenseMapInfo { 3626 static bool canHandle(const Instruction *I) { 3627 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3628 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3629 } 3630 static inline Instruction *getEmptyKey() { 3631 return DenseMapInfo<Instruction *>::getEmptyKey(); 3632 } 3633 static inline Instruction *getTombstoneKey() { 3634 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3635 } 3636 static unsigned getHashValue(const Instruction *I) { 3637 assert(canHandle(I) && "Unknown instruction!"); 3638 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3639 I->value_op_end())); 3640 } 3641 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3642 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3643 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3644 return LHS == RHS; 3645 return LHS->isIdenticalTo(RHS); 3646 } 3647 }; 3648 } 3649 3650 ///\brief Perform cse of induction variable instructions. 3651 static void cse(BasicBlock *BB) { 3652 // Perform simple cse. 3653 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3654 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3655 Instruction *In = &*I++; 3656 3657 if (!CSEDenseMapInfo::canHandle(In)) 3658 continue; 3659 3660 // Check if we can replace this instruction with any of the 3661 // visited instructions. 3662 if (Instruction *V = CSEMap.lookup(In)) { 3663 In->replaceAllUsesWith(V); 3664 In->eraseFromParent(); 3665 continue; 3666 } 3667 3668 CSEMap[In] = In; 3669 } 3670 } 3671 3672 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3673 /// convenience wrapper for the type-based getScalarizationOverhead API. 3674 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3675 const TargetTransformInfo &TTI) { 3676 if (VF == 1) 3677 return 0; 3678 3679 unsigned Cost = 0; 3680 Type *RetTy = ToVectorTy(I->getType(), VF); 3681 if (!RetTy->isVoidTy() && 3682 (!isa<LoadInst>(I) || 3683 !TTI.supportsEfficientVectorElementLoadStore())) 3684 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3685 3686 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3687 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3688 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3689 } 3690 else if (!isa<StoreInst>(I) || 3691 !TTI.supportsEfficientVectorElementLoadStore()) { 3692 SmallVector<const Value *, 4> Operands(I->operand_values()); 3693 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3694 } 3695 3696 return Cost; 3697 } 3698 3699 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3700 // Return the cost of the instruction, including scalarization overhead if it's 3701 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3702 // i.e. either vector version isn't available, or is too expensive. 3703 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3704 const TargetTransformInfo &TTI, 3705 const TargetLibraryInfo *TLI, 3706 bool &NeedToScalarize) { 3707 Function *F = CI->getCalledFunction(); 3708 StringRef FnName = CI->getCalledFunction()->getName(); 3709 Type *ScalarRetTy = CI->getType(); 3710 SmallVector<Type *, 4> Tys, ScalarTys; 3711 for (auto &ArgOp : CI->arg_operands()) 3712 ScalarTys.push_back(ArgOp->getType()); 3713 3714 // Estimate cost of scalarized vector call. The source operands are assumed 3715 // to be vectors, so we need to extract individual elements from there, 3716 // execute VF scalar calls, and then gather the result into the vector return 3717 // value. 3718 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3719 if (VF == 1) 3720 return ScalarCallCost; 3721 3722 // Compute corresponding vector type for return value and arguments. 3723 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3724 for (Type *ScalarTy : ScalarTys) 3725 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3726 3727 // Compute costs of unpacking argument values for the scalar calls and 3728 // packing the return values to a vector. 3729 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3730 3731 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3732 3733 // If we can't emit a vector call for this function, then the currently found 3734 // cost is the cost we need to return. 3735 NeedToScalarize = true; 3736 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3737 return Cost; 3738 3739 // If the corresponding vector cost is cheaper, return its cost. 3740 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3741 if (VectorCallCost < Cost) { 3742 NeedToScalarize = false; 3743 return VectorCallCost; 3744 } 3745 return Cost; 3746 } 3747 3748 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3749 // factor VF. Return the cost of the instruction, including scalarization 3750 // overhead if it's needed. 3751 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3752 const TargetTransformInfo &TTI, 3753 const TargetLibraryInfo *TLI) { 3754 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3755 assert(ID && "Expected intrinsic call!"); 3756 3757 FastMathFlags FMF; 3758 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3759 FMF = FPMO->getFastMathFlags(); 3760 3761 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3762 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3763 } 3764 3765 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3766 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3767 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3768 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3769 } 3770 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3771 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3772 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3773 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3774 } 3775 3776 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3777 // For every instruction `I` in MinBWs, truncate the operands, create a 3778 // truncated version of `I` and reextend its result. InstCombine runs 3779 // later and will remove any ext/trunc pairs. 3780 // 3781 SmallPtrSet<Value *, 4> Erased; 3782 for (const auto &KV : Cost->getMinimalBitwidths()) { 3783 // If the value wasn't vectorized, we must maintain the original scalar 3784 // type. The absence of the value from VectorLoopValueMap indicates that it 3785 // wasn't vectorized. 3786 if (!VectorLoopValueMap.hasVector(KV.first)) 3787 continue; 3788 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3789 for (Value *&I : Parts) { 3790 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3791 continue; 3792 Type *OriginalTy = I->getType(); 3793 Type *ScalarTruncatedTy = 3794 IntegerType::get(OriginalTy->getContext(), KV.second); 3795 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3796 OriginalTy->getVectorNumElements()); 3797 if (TruncatedTy == OriginalTy) 3798 continue; 3799 3800 IRBuilder<> B(cast<Instruction>(I)); 3801 auto ShrinkOperand = [&](Value *V) -> Value * { 3802 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3803 if (ZI->getSrcTy() == TruncatedTy) 3804 return ZI->getOperand(0); 3805 return B.CreateZExtOrTrunc(V, TruncatedTy); 3806 }; 3807 3808 // The actual instruction modification depends on the instruction type, 3809 // unfortunately. 3810 Value *NewI = nullptr; 3811 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3812 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3813 ShrinkOperand(BO->getOperand(1))); 3814 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3815 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3816 NewI = 3817 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3818 ShrinkOperand(CI->getOperand(1))); 3819 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3820 NewI = B.CreateSelect(SI->getCondition(), 3821 ShrinkOperand(SI->getTrueValue()), 3822 ShrinkOperand(SI->getFalseValue())); 3823 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3824 switch (CI->getOpcode()) { 3825 default: 3826 llvm_unreachable("Unhandled cast!"); 3827 case Instruction::Trunc: 3828 NewI = ShrinkOperand(CI->getOperand(0)); 3829 break; 3830 case Instruction::SExt: 3831 NewI = B.CreateSExtOrTrunc( 3832 CI->getOperand(0), 3833 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3834 break; 3835 case Instruction::ZExt: 3836 NewI = B.CreateZExtOrTrunc( 3837 CI->getOperand(0), 3838 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3839 break; 3840 } 3841 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3842 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3843 auto *O0 = B.CreateZExtOrTrunc( 3844 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3845 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3846 auto *O1 = B.CreateZExtOrTrunc( 3847 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3848 3849 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3850 } else if (isa<LoadInst>(I)) { 3851 // Don't do anything with the operands, just extend the result. 3852 continue; 3853 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3854 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3855 auto *O0 = B.CreateZExtOrTrunc( 3856 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3857 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3858 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3859 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3860 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3861 auto *O0 = B.CreateZExtOrTrunc( 3862 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3863 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3864 } else { 3865 llvm_unreachable("Unhandled instruction type!"); 3866 } 3867 3868 // Lastly, extend the result. 3869 NewI->takeName(cast<Instruction>(I)); 3870 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3871 I->replaceAllUsesWith(Res); 3872 cast<Instruction>(I)->eraseFromParent(); 3873 Erased.insert(I); 3874 I = Res; 3875 } 3876 } 3877 3878 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3879 for (const auto &KV : Cost->getMinimalBitwidths()) { 3880 // If the value wasn't vectorized, we must maintain the original scalar 3881 // type. The absence of the value from VectorLoopValueMap indicates that it 3882 // wasn't vectorized. 3883 if (!VectorLoopValueMap.hasVector(KV.first)) 3884 continue; 3885 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3886 for (Value *&I : Parts) { 3887 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3888 if (Inst && Inst->use_empty()) { 3889 Value *NewI = Inst->getOperand(0); 3890 Inst->eraseFromParent(); 3891 I = NewI; 3892 } 3893 } 3894 } 3895 } 3896 3897 void InnerLoopVectorizer::fixVectorizedLoop() { 3898 // Insert truncates and extends for any truncated instructions as hints to 3899 // InstCombine. 3900 if (VF > 1) 3901 truncateToMinimalBitwidths(); 3902 3903 // At this point every instruction in the original loop is widened to a 3904 // vector form. Now we need to fix the recurrences in the loop. These PHI 3905 // nodes are currently empty because we did not want to introduce cycles. 3906 // This is the second stage of vectorizing recurrences. 3907 fixCrossIterationPHIs(); 3908 3909 // Update the dominator tree. 3910 // 3911 // FIXME: After creating the structure of the new loop, the dominator tree is 3912 // no longer up-to-date, and it remains that way until we update it 3913 // here. An out-of-date dominator tree is problematic for SCEV, 3914 // because SCEVExpander uses it to guide code generation. The 3915 // vectorizer use SCEVExpanders in several places. Instead, we should 3916 // keep the dominator tree up-to-date as we go. 3917 updateAnalysis(); 3918 3919 // Fix-up external users of the induction variables. 3920 for (auto &Entry : *Legal->getInductionVars()) 3921 fixupIVUsers(Entry.first, Entry.second, 3922 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3923 IVEndValues[Entry.first], LoopMiddleBlock); 3924 3925 fixLCSSAPHIs(); 3926 predicateInstructions(); 3927 3928 // Remove redundant induction instructions. 3929 cse(LoopVectorBody); 3930 } 3931 3932 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3933 // In order to support recurrences we need to be able to vectorize Phi nodes. 3934 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3935 // stage #2: We now need to fix the recurrences by adding incoming edges to 3936 // the currently empty PHI nodes. At this point every instruction in the 3937 // original loop is widened to a vector form so we can use them to construct 3938 // the incoming edges. 3939 for (Instruction &I : *OrigLoop->getHeader()) { 3940 PHINode *Phi = dyn_cast<PHINode>(&I); 3941 if (!Phi) 3942 break; 3943 // Handle first-order recurrences and reductions that need to be fixed. 3944 if (Legal->isFirstOrderRecurrence(Phi)) 3945 fixFirstOrderRecurrence(Phi); 3946 else if (Legal->isReductionVariable(Phi)) 3947 fixReduction(Phi); 3948 } 3949 } 3950 3951 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3952 3953 // This is the second phase of vectorizing first-order recurrences. An 3954 // overview of the transformation is described below. Suppose we have the 3955 // following loop. 3956 // 3957 // for (int i = 0; i < n; ++i) 3958 // b[i] = a[i] - a[i - 1]; 3959 // 3960 // There is a first-order recurrence on "a". For this loop, the shorthand 3961 // scalar IR looks like: 3962 // 3963 // scalar.ph: 3964 // s_init = a[-1] 3965 // br scalar.body 3966 // 3967 // scalar.body: 3968 // i = phi [0, scalar.ph], [i+1, scalar.body] 3969 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3970 // s2 = a[i] 3971 // b[i] = s2 - s1 3972 // br cond, scalar.body, ... 3973 // 3974 // In this example, s1 is a recurrence because it's value depends on the 3975 // previous iteration. In the first phase of vectorization, we created a 3976 // temporary value for s1. We now complete the vectorization and produce the 3977 // shorthand vector IR shown below (for VF = 4, UF = 1). 3978 // 3979 // vector.ph: 3980 // v_init = vector(..., ..., ..., a[-1]) 3981 // br vector.body 3982 // 3983 // vector.body 3984 // i = phi [0, vector.ph], [i+4, vector.body] 3985 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3986 // v2 = a[i, i+1, i+2, i+3]; 3987 // v3 = vector(v1(3), v2(0, 1, 2)) 3988 // b[i, i+1, i+2, i+3] = v2 - v3 3989 // br cond, vector.body, middle.block 3990 // 3991 // middle.block: 3992 // x = v2(3) 3993 // br scalar.ph 3994 // 3995 // scalar.ph: 3996 // s_init = phi [x, middle.block], [a[-1], otherwise] 3997 // br scalar.body 3998 // 3999 // After execution completes the vector loop, we extract the next value of 4000 // the recurrence (x) to use as the initial value in the scalar loop. 4001 4002 // Get the original loop preheader and single loop latch. 4003 auto *Preheader = OrigLoop->getLoopPreheader(); 4004 auto *Latch = OrigLoop->getLoopLatch(); 4005 4006 // Get the initial and previous values of the scalar recurrence. 4007 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4008 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4009 4010 // Create a vector from the initial value. 4011 auto *VectorInit = ScalarInit; 4012 if (VF > 1) { 4013 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4014 VectorInit = Builder.CreateInsertElement( 4015 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4016 Builder.getInt32(VF - 1), "vector.recur.init"); 4017 } 4018 4019 // We constructed a temporary phi node in the first phase of vectorization. 4020 // This phi node will eventually be deleted. 4021 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4022 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4023 4024 // Create a phi node for the new recurrence. The current value will either be 4025 // the initial value inserted into a vector or loop-varying vector value. 4026 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4027 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4028 4029 // Get the vectorized previous value. 4030 auto &PreviousParts = getVectorValue(Previous); 4031 4032 // Set the insertion point after the previous value if it is an instruction. 4033 // Note that the previous value may have been constant-folded so it is not 4034 // guaranteed to be an instruction in the vector loop. Also, if the previous 4035 // value is a phi node, we should insert after all the phi nodes to avoid 4036 // breaking basic block verification. 4037 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1]) || 4038 isa<PHINode>(PreviousParts[UF - 1])) 4039 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4040 else 4041 Builder.SetInsertPoint( 4042 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4043 4044 // We will construct a vector for the recurrence by combining the values for 4045 // the current and previous iterations. This is the required shuffle mask. 4046 SmallVector<Constant *, 8> ShuffleMask(VF); 4047 ShuffleMask[0] = Builder.getInt32(VF - 1); 4048 for (unsigned I = 1; I < VF; ++I) 4049 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4050 4051 // The vector from which to take the initial value for the current iteration 4052 // (actual or unrolled). Initially, this is the vector phi node. 4053 Value *Incoming = VecPhi; 4054 4055 // Shuffle the current and previous vector and update the vector parts. 4056 for (unsigned Part = 0; Part < UF; ++Part) { 4057 auto *Shuffle = 4058 VF > 1 4059 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4060 ConstantVector::get(ShuffleMask)) 4061 : Incoming; 4062 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4063 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4064 PhiParts[Part] = Shuffle; 4065 Incoming = PreviousParts[Part]; 4066 } 4067 4068 // Fix the latch value of the new recurrence in the vector loop. 4069 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4070 4071 // Extract the last vector element in the middle block. This will be the 4072 // initial value for the recurrence when jumping to the scalar loop. 4073 auto *ExtractForScalar = Incoming; 4074 if (VF > 1) { 4075 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4076 ExtractForScalar = Builder.CreateExtractElement( 4077 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4078 } 4079 // Extract the second last element in the middle block if the 4080 // Phi is used outside the loop. We need to extract the phi itself 4081 // and not the last element (the phi update in the current iteration). This 4082 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4083 // when the scalar loop is not run at all. 4084 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4085 if (VF > 1) 4086 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4087 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4088 // When loop is unrolled without vectorizing, initialize 4089 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4090 // `Incoming`. This is analogous to the vectorized case above: extracting the 4091 // second last element when VF > 1. 4092 else if (UF > 1) 4093 ExtractForPhiUsedOutsideLoop = PreviousParts[UF - 2]; 4094 4095 // Fix the initial value of the original recurrence in the scalar loop. 4096 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4097 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4098 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4099 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4100 Start->addIncoming(Incoming, BB); 4101 } 4102 4103 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4104 Phi->setName("scalar.recur"); 4105 4106 // Finally, fix users of the recurrence outside the loop. The users will need 4107 // either the last value of the scalar recurrence or the last value of the 4108 // vector recurrence we extracted in the middle block. Since the loop is in 4109 // LCSSA form, we just need to find the phi node for the original scalar 4110 // recurrence in the exit block, and then add an edge for the middle block. 4111 for (auto &I : *LoopExitBlock) { 4112 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4113 if (!LCSSAPhi) 4114 break; 4115 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4116 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4117 break; 4118 } 4119 } 4120 } 4121 4122 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4123 Constant *Zero = Builder.getInt32(0); 4124 4125 // Get it's reduction variable descriptor. 4126 assert(Legal->isReductionVariable(Phi) && 4127 "Unable to find the reduction variable"); 4128 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4129 4130 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4131 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4132 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4133 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4134 RdxDesc.getMinMaxRecurrenceKind(); 4135 setDebugLocFromInst(Builder, ReductionStartValue); 4136 4137 // We need to generate a reduction vector from the incoming scalar. 4138 // To do so, we need to generate the 'identity' vector and override 4139 // one of the elements with the incoming scalar reduction. We need 4140 // to do it in the vector-loop preheader. 4141 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4142 4143 // This is the vector-clone of the value that leaves the loop. 4144 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 4145 Type *VecTy = VectorExit[0]->getType(); 4146 4147 // Find the reduction identity variable. Zero for addition, or, xor, 4148 // one for multiplication, -1 for And. 4149 Value *Identity; 4150 Value *VectorStart; 4151 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4152 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4153 // MinMax reduction have the start value as their identify. 4154 if (VF == 1) { 4155 VectorStart = Identity = ReductionStartValue; 4156 } else { 4157 VectorStart = Identity = 4158 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4159 } 4160 } else { 4161 // Handle other reduction kinds: 4162 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4163 RK, VecTy->getScalarType()); 4164 if (VF == 1) { 4165 Identity = Iden; 4166 // This vector is the Identity vector where the first element is the 4167 // incoming scalar reduction. 4168 VectorStart = ReductionStartValue; 4169 } else { 4170 Identity = ConstantVector::getSplat(VF, Iden); 4171 4172 // This vector is the Identity vector where the first element is the 4173 // incoming scalar reduction. 4174 VectorStart = 4175 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4176 } 4177 } 4178 4179 // Fix the vector-loop phi. 4180 4181 // Reductions do not have to start at zero. They can start with 4182 // any loop invariant values. 4183 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4184 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4185 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4186 const VectorParts &Val = getVectorValue(LoopVal); 4187 for (unsigned part = 0; part < UF; ++part) { 4188 // Make sure to add the reduction stat value only to the 4189 // first unroll part. 4190 Value *StartVal = (part == 0) ? VectorStart : Identity; 4191 cast<PHINode>(VecRdxPhi[part]) 4192 ->addIncoming(StartVal, LoopVectorPreHeader); 4193 cast<PHINode>(VecRdxPhi[part]) 4194 ->addIncoming(Val[part], LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4195 } 4196 4197 // Before each round, move the insertion point right between 4198 // the PHIs and the values we are going to write. 4199 // This allows us to write both PHINodes and the extractelement 4200 // instructions. 4201 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4202 4203 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4204 setDebugLocFromInst(Builder, LoopExitInst); 4205 4206 // If the vector reduction can be performed in a smaller type, we truncate 4207 // then extend the loop exit value to enable InstCombine to evaluate the 4208 // entire expression in the smaller type. 4209 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4210 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4211 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4212 for (unsigned part = 0; part < UF; ++part) { 4213 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4214 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4215 : Builder.CreateZExt(Trunc, VecTy); 4216 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4217 UI != RdxParts[part]->user_end();) 4218 if (*UI != Trunc) { 4219 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4220 RdxParts[part] = Extnd; 4221 } else { 4222 ++UI; 4223 } 4224 } 4225 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4226 for (unsigned part = 0; part < UF; ++part) 4227 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4228 } 4229 4230 // Reduce all of the unrolled parts into a single vector. 4231 Value *ReducedPartRdx = RdxParts[0]; 4232 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4233 setDebugLocFromInst(Builder, ReducedPartRdx); 4234 for (unsigned part = 1; part < UF; ++part) { 4235 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4236 // Floating point operations had to be 'fast' to enable the reduction. 4237 ReducedPartRdx = addFastMathFlag( 4238 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4239 ReducedPartRdx, "bin.rdx")); 4240 else 4241 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4242 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4243 } 4244 4245 if (VF > 1) { 4246 bool NoNaN = Legal->hasFunNoNaNAttr(); 4247 ReducedPartRdx = 4248 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4249 // If the reduction can be performed in a smaller type, we need to extend 4250 // the reduction to the wider type before we branch to the original loop. 4251 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4252 ReducedPartRdx = 4253 RdxDesc.isSigned() 4254 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4255 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4256 } 4257 4258 // Create a phi node that merges control-flow from the backedge-taken check 4259 // block and the middle block. 4260 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4261 LoopScalarPreHeader->getTerminator()); 4262 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4263 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4264 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4265 4266 // Now, we need to fix the users of the reduction variable 4267 // inside and outside of the scalar remainder loop. 4268 // We know that the loop is in LCSSA form. We need to update the 4269 // PHI nodes in the exit blocks. 4270 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4271 LEE = LoopExitBlock->end(); 4272 LEI != LEE; ++LEI) { 4273 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4274 if (!LCSSAPhi) 4275 break; 4276 4277 // All PHINodes need to have a single entry edge, or two if 4278 // we already fixed them. 4279 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4280 4281 // We found a reduction value exit-PHI. Update it with the 4282 // incoming bypass edge. 4283 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4284 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4285 } // end of the LCSSA phi scan. 4286 4287 // Fix the scalar loop reduction variable with the incoming reduction sum 4288 // from the vector body and from the backedge value. 4289 int IncomingEdgeBlockIdx = 4290 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4291 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4292 // Pick the other block. 4293 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4294 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4295 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4296 } 4297 4298 void InnerLoopVectorizer::fixLCSSAPHIs() { 4299 for (Instruction &LEI : *LoopExitBlock) { 4300 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4301 if (!LCSSAPhi) 4302 break; 4303 if (LCSSAPhi->getNumIncomingValues() == 1) { 4304 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4305 "Incoming value isn't loop invariant"); 4306 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4307 } 4308 } 4309 } 4310 4311 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4312 4313 // The basic block and loop containing the predicated instruction. 4314 auto *PredBB = PredInst->getParent(); 4315 auto *VectorLoop = LI->getLoopFor(PredBB); 4316 4317 // Initialize a worklist with the operands of the predicated instruction. 4318 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4319 4320 // Holds instructions that we need to analyze again. An instruction may be 4321 // reanalyzed if we don't yet know if we can sink it or not. 4322 SmallVector<Instruction *, 8> InstsToReanalyze; 4323 4324 // Returns true if a given use occurs in the predicated block. Phi nodes use 4325 // their operands in their corresponding predecessor blocks. 4326 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4327 auto *I = cast<Instruction>(U.getUser()); 4328 BasicBlock *BB = I->getParent(); 4329 if (auto *Phi = dyn_cast<PHINode>(I)) 4330 BB = Phi->getIncomingBlock( 4331 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4332 return BB == PredBB; 4333 }; 4334 4335 // Iteratively sink the scalarized operands of the predicated instruction 4336 // into the block we created for it. When an instruction is sunk, it's 4337 // operands are then added to the worklist. The algorithm ends after one pass 4338 // through the worklist doesn't sink a single instruction. 4339 bool Changed; 4340 do { 4341 4342 // Add the instructions that need to be reanalyzed to the worklist, and 4343 // reset the changed indicator. 4344 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4345 InstsToReanalyze.clear(); 4346 Changed = false; 4347 4348 while (!Worklist.empty()) { 4349 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4350 4351 // We can't sink an instruction if it is a phi node, is already in the 4352 // predicated block, is not in the loop, or may have side effects. 4353 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4354 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4355 continue; 4356 4357 // It's legal to sink the instruction if all its uses occur in the 4358 // predicated block. Otherwise, there's nothing to do yet, and we may 4359 // need to reanalyze the instruction. 4360 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4361 InstsToReanalyze.push_back(I); 4362 continue; 4363 } 4364 4365 // Move the instruction to the beginning of the predicated block, and add 4366 // it's operands to the worklist. 4367 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4368 Worklist.insert(I->op_begin(), I->op_end()); 4369 4370 // The sinking may have enabled other instructions to be sunk, so we will 4371 // need to iterate. 4372 Changed = true; 4373 } 4374 } while (Changed); 4375 } 4376 4377 void InnerLoopVectorizer::predicateInstructions() { 4378 4379 // For each instruction I marked for predication on value C, split I into its 4380 // own basic block to form an if-then construct over C. Since I may be fed by 4381 // an extractelement instruction or other scalar operand, we try to 4382 // iteratively sink its scalar operands into the predicated block. If I feeds 4383 // an insertelement instruction, we try to move this instruction into the 4384 // predicated block as well. For non-void types, a phi node will be created 4385 // for the resulting value (either vector or scalar). 4386 // 4387 // So for some predicated instruction, e.g. the conditional sdiv in: 4388 // 4389 // for.body: 4390 // ... 4391 // %add = add nsw i32 %mul, %0 4392 // %cmp5 = icmp sgt i32 %2, 7 4393 // br i1 %cmp5, label %if.then, label %if.end 4394 // 4395 // if.then: 4396 // %div = sdiv i32 %0, %1 4397 // br label %if.end 4398 // 4399 // if.end: 4400 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4401 // 4402 // the sdiv at this point is scalarized and if-converted using a select. 4403 // The inactive elements in the vector are not used, but the predicated 4404 // instruction is still executed for all vector elements, essentially: 4405 // 4406 // vector.body: 4407 // ... 4408 // %17 = add nsw <2 x i32> %16, %wide.load 4409 // %29 = extractelement <2 x i32> %wide.load, i32 0 4410 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4411 // %31 = sdiv i32 %29, %30 4412 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4413 // %35 = extractelement <2 x i32> %wide.load, i32 1 4414 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4415 // %37 = sdiv i32 %35, %36 4416 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4417 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4418 // 4419 // Predication will now re-introduce the original control flow to avoid false 4420 // side-effects by the sdiv instructions on the inactive elements, yielding 4421 // (after cleanup): 4422 // 4423 // vector.body: 4424 // ... 4425 // %5 = add nsw <2 x i32> %4, %wide.load 4426 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4427 // %9 = extractelement <2 x i1> %8, i32 0 4428 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4429 // 4430 // pred.sdiv.if: 4431 // %10 = extractelement <2 x i32> %wide.load, i32 0 4432 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4433 // %12 = sdiv i32 %10, %11 4434 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4435 // br label %pred.sdiv.continue 4436 // 4437 // pred.sdiv.continue: 4438 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4439 // %15 = extractelement <2 x i1> %8, i32 1 4440 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4441 // 4442 // pred.sdiv.if54: 4443 // %16 = extractelement <2 x i32> %wide.load, i32 1 4444 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4445 // %18 = sdiv i32 %16, %17 4446 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4447 // br label %pred.sdiv.continue55 4448 // 4449 // pred.sdiv.continue55: 4450 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4451 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4452 4453 for (auto KV : PredicatedInstructions) { 4454 BasicBlock::iterator I(KV.first); 4455 BasicBlock *Head = I->getParent(); 4456 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4457 /*BranchWeights=*/nullptr, DT, LI); 4458 I->moveBefore(T); 4459 sinkScalarOperands(&*I); 4460 4461 BasicBlock *PredicatedBlock = I->getParent(); 4462 Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName(); 4463 PredicatedBlock->setName(BBNamePrefix + ".if"); 4464 PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue"); 4465 4466 // If the instruction is non-void create a Phi node at reconvergence point. 4467 if (!I->getType()->isVoidTy()) { 4468 Value *IncomingTrue = nullptr; 4469 Value *IncomingFalse = nullptr; 4470 4471 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4472 // If the predicated instruction is feeding an insert-element, move it 4473 // into the Then block; Phi node will be created for the vector. 4474 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4475 IEI->moveBefore(T); 4476 IncomingTrue = IEI; // the new vector with the inserted element. 4477 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4478 } else { 4479 // Phi node will be created for the scalar predicated instruction. 4480 IncomingTrue = &*I; 4481 IncomingFalse = UndefValue::get(I->getType()); 4482 } 4483 4484 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4485 assert(PostDom && "Then block has multiple successors"); 4486 PHINode *Phi = 4487 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4488 IncomingTrue->replaceAllUsesWith(Phi); 4489 Phi->addIncoming(IncomingFalse, Head); 4490 Phi->addIncoming(IncomingTrue, I->getParent()); 4491 } 4492 } 4493 4494 DEBUG(DT->verifyDomTree()); 4495 } 4496 4497 InnerLoopVectorizer::VectorParts 4498 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4499 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4500 4501 // Look for cached value. 4502 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4503 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4504 if (ECEntryIt != EdgeMaskCache.end()) 4505 return ECEntryIt->second; 4506 4507 VectorParts SrcMask = createBlockInMask(Src); 4508 4509 // The terminator has to be a branch inst! 4510 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4511 assert(BI && "Unexpected terminator found"); 4512 4513 if (BI->isConditional()) { 4514 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4515 4516 if (BI->getSuccessor(0) != Dst) 4517 for (unsigned part = 0; part < UF; ++part) 4518 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4519 4520 for (unsigned part = 0; part < UF; ++part) 4521 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4522 4523 EdgeMaskCache[Edge] = EdgeMask; 4524 return EdgeMask; 4525 } 4526 4527 EdgeMaskCache[Edge] = SrcMask; 4528 return SrcMask; 4529 } 4530 4531 InnerLoopVectorizer::VectorParts 4532 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4533 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4534 4535 // Look for cached value. 4536 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4537 if (BCEntryIt != BlockMaskCache.end()) 4538 return BCEntryIt->second; 4539 4540 // Loop incoming mask is all-one. 4541 if (OrigLoop->getHeader() == BB) { 4542 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4543 const VectorParts &BlockMask = getVectorValue(C); 4544 BlockMaskCache[BB] = BlockMask; 4545 return BlockMask; 4546 } 4547 4548 // This is the block mask. We OR all incoming edges, and with zero. 4549 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4550 VectorParts BlockMask = getVectorValue(Zero); 4551 4552 // For each pred: 4553 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4554 VectorParts EM = createEdgeMask(*it, BB); 4555 for (unsigned part = 0; part < UF; ++part) 4556 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4557 } 4558 4559 BlockMaskCache[BB] = BlockMask; 4560 return BlockMask; 4561 } 4562 4563 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4564 unsigned VF) { 4565 PHINode *P = cast<PHINode>(PN); 4566 // In order to support recurrences we need to be able to vectorize Phi nodes. 4567 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4568 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4569 // this value when we vectorize all of the instructions that use the PHI. 4570 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4571 VectorParts Entry(UF); 4572 for (unsigned part = 0; part < UF; ++part) { 4573 // This is phase one of vectorizing PHIs. 4574 Type *VecTy = 4575 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4576 Entry[part] = PHINode::Create( 4577 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4578 } 4579 VectorLoopValueMap.initVector(P, Entry); 4580 return; 4581 } 4582 4583 setDebugLocFromInst(Builder, P); 4584 // Check for PHI nodes that are lowered to vector selects. 4585 if (P->getParent() != OrigLoop->getHeader()) { 4586 // We know that all PHIs in non-header blocks are converted into 4587 // selects, so we don't have to worry about the insertion order and we 4588 // can just use the builder. 4589 // At this point we generate the predication tree. There may be 4590 // duplications since this is a simple recursive scan, but future 4591 // optimizations will clean it up. 4592 4593 unsigned NumIncoming = P->getNumIncomingValues(); 4594 4595 // Generate a sequence of selects of the form: 4596 // SELECT(Mask3, In3, 4597 // SELECT(Mask2, In2, 4598 // ( ...))) 4599 VectorParts Entry(UF); 4600 for (unsigned In = 0; In < NumIncoming; In++) { 4601 VectorParts Cond = 4602 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4603 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4604 4605 for (unsigned part = 0; part < UF; ++part) { 4606 // We might have single edge PHIs (blocks) - use an identity 4607 // 'select' for the first PHI operand. 4608 if (In == 0) 4609 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4610 else 4611 // Select between the current value and the previous incoming edge 4612 // based on the incoming mask. 4613 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4614 "predphi"); 4615 } 4616 } 4617 VectorLoopValueMap.initVector(P, Entry); 4618 return; 4619 } 4620 4621 // This PHINode must be an induction variable. 4622 // Make sure that we know about it. 4623 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4624 4625 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4626 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4627 4628 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4629 // which can be found from the original scalar operations. 4630 switch (II.getKind()) { 4631 case InductionDescriptor::IK_NoInduction: 4632 llvm_unreachable("Unknown induction"); 4633 case InductionDescriptor::IK_IntInduction: 4634 case InductionDescriptor::IK_FpInduction: 4635 return widenIntOrFpInduction(P); 4636 case InductionDescriptor::IK_PtrInduction: { 4637 // Handle the pointer induction variable case. 4638 assert(P->getType()->isPointerTy() && "Unexpected type."); 4639 // This is the normalized GEP that starts counting at zero. 4640 Value *PtrInd = Induction; 4641 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4642 // Determine the number of scalars we need to generate for each unroll 4643 // iteration. If the instruction is uniform, we only need to generate the 4644 // first lane. Otherwise, we generate all VF values. 4645 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4646 // These are the scalar results. Notice that we don't generate vector GEPs 4647 // because scalar GEPs result in better code. 4648 ScalarParts Entry(UF); 4649 for (unsigned Part = 0; Part < UF; ++Part) { 4650 Entry[Part].resize(VF); 4651 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4652 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4653 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4654 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4655 SclrGep->setName("next.gep"); 4656 Entry[Part][Lane] = SclrGep; 4657 } 4658 } 4659 VectorLoopValueMap.initScalar(P, Entry); 4660 return; 4661 } 4662 } 4663 } 4664 4665 /// A helper function for checking whether an integer division-related 4666 /// instruction may divide by zero (in which case it must be predicated if 4667 /// executed conditionally in the scalar code). 4668 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4669 /// Non-zero divisors that are non compile-time constants will not be 4670 /// converted into multiplication, so we will still end up scalarizing 4671 /// the division, but can do so w/o predication. 4672 static bool mayDivideByZero(Instruction &I) { 4673 assert((I.getOpcode() == Instruction::UDiv || 4674 I.getOpcode() == Instruction::SDiv || 4675 I.getOpcode() == Instruction::URem || 4676 I.getOpcode() == Instruction::SRem) && 4677 "Unexpected instruction"); 4678 Value *Divisor = I.getOperand(1); 4679 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4680 return !CInt || CInt->isZero(); 4681 } 4682 4683 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4684 // Scalarize instructions that should remain scalar after vectorization. 4685 if (VF > 1 && 4686 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4687 shouldScalarizeInstruction(&I)) { 4688 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4689 return; 4690 } 4691 4692 switch (I.getOpcode()) { 4693 case Instruction::Br: 4694 // Nothing to do for PHIs and BR, since we already took care of the 4695 // loop control flow instructions. 4696 break; 4697 case Instruction::PHI: { 4698 // Vectorize PHINodes. 4699 widenPHIInstruction(&I, UF, VF); 4700 break; 4701 } // End of PHI. 4702 case Instruction::GetElementPtr: { 4703 // Construct a vector GEP by widening the operands of the scalar GEP as 4704 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4705 // results in a vector of pointers when at least one operand of the GEP 4706 // is vector-typed. Thus, to keep the representation compact, we only use 4707 // vector-typed operands for loop-varying values. 4708 auto *GEP = cast<GetElementPtrInst>(&I); 4709 VectorParts Entry(UF); 4710 4711 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4712 // If we are vectorizing, but the GEP has only loop-invariant operands, 4713 // the GEP we build (by only using vector-typed operands for 4714 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4715 // produce a vector of pointers, we need to either arbitrarily pick an 4716 // operand to broadcast, or broadcast a clone of the original GEP. 4717 // Here, we broadcast a clone of the original. 4718 // 4719 // TODO: If at some point we decide to scalarize instructions having 4720 // loop-invariant operands, this special case will no longer be 4721 // required. We would add the scalarization decision to 4722 // collectLoopScalars() and teach getVectorValue() to broadcast 4723 // the lane-zero scalar value. 4724 auto *Clone = Builder.Insert(GEP->clone()); 4725 for (unsigned Part = 0; Part < UF; ++Part) 4726 Entry[Part] = Builder.CreateVectorSplat(VF, Clone); 4727 } else { 4728 // If the GEP has at least one loop-varying operand, we are sure to 4729 // produce a vector of pointers. But if we are only unrolling, we want 4730 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4731 // produce with the code below will be scalar (if VF == 1) or vector 4732 // (otherwise). Note that for the unroll-only case, we still maintain 4733 // values in the vector mapping with initVector, as we do for other 4734 // instructions. 4735 for (unsigned Part = 0; Part < UF; ++Part) { 4736 4737 // The pointer operand of the new GEP. If it's loop-invariant, we 4738 // won't broadcast it. 4739 auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4740 ? GEP->getPointerOperand() 4741 : getVectorValue(GEP->getPointerOperand())[Part]; 4742 4743 // Collect all the indices for the new GEP. If any index is 4744 // loop-invariant, we won't broadcast it. 4745 SmallVector<Value *, 4> Indices; 4746 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4747 if (OrigLoop->isLoopInvariant(U.get())) 4748 Indices.push_back(U.get()); 4749 else 4750 Indices.push_back(getVectorValue(U.get())[Part]); 4751 } 4752 4753 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4754 // but it should be a vector, otherwise. 4755 auto *NewGEP = GEP->isInBounds() 4756 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4757 : Builder.CreateGEP(Ptr, Indices); 4758 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4759 "NewGEP is not a pointer vector"); 4760 Entry[Part] = NewGEP; 4761 } 4762 } 4763 4764 VectorLoopValueMap.initVector(&I, Entry); 4765 addMetadata(Entry, GEP); 4766 break; 4767 } 4768 case Instruction::UDiv: 4769 case Instruction::SDiv: 4770 case Instruction::SRem: 4771 case Instruction::URem: 4772 // Scalarize with predication if this instruction may divide by zero and 4773 // block execution is conditional, otherwise fallthrough. 4774 if (Legal->isScalarWithPredication(&I)) { 4775 scalarizeInstruction(&I, true); 4776 break; 4777 } 4778 case Instruction::Add: 4779 case Instruction::FAdd: 4780 case Instruction::Sub: 4781 case Instruction::FSub: 4782 case Instruction::Mul: 4783 case Instruction::FMul: 4784 case Instruction::FDiv: 4785 case Instruction::FRem: 4786 case Instruction::Shl: 4787 case Instruction::LShr: 4788 case Instruction::AShr: 4789 case Instruction::And: 4790 case Instruction::Or: 4791 case Instruction::Xor: { 4792 // Just widen binops. 4793 auto *BinOp = cast<BinaryOperator>(&I); 4794 setDebugLocFromInst(Builder, BinOp); 4795 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4796 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4797 4798 // Use this vector value for all users of the original instruction. 4799 VectorParts Entry(UF); 4800 for (unsigned Part = 0; Part < UF; ++Part) { 4801 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4802 4803 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4804 VecOp->copyIRFlags(BinOp); 4805 4806 Entry[Part] = V; 4807 } 4808 4809 VectorLoopValueMap.initVector(&I, Entry); 4810 addMetadata(Entry, BinOp); 4811 break; 4812 } 4813 case Instruction::Select: { 4814 // Widen selects. 4815 // If the selector is loop invariant we can create a select 4816 // instruction with a scalar condition. Otherwise, use vector-select. 4817 auto *SE = PSE.getSE(); 4818 bool InvariantCond = 4819 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4820 setDebugLocFromInst(Builder, &I); 4821 4822 // The condition can be loop invariant but still defined inside the 4823 // loop. This means that we can't just use the original 'cond' value. 4824 // We have to take the 'vectorized' value and pick the first lane. 4825 // Instcombine will make this a no-op. 4826 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4827 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4828 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4829 4830 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4831 4832 VectorParts Entry(UF); 4833 for (unsigned Part = 0; Part < UF; ++Part) { 4834 Entry[Part] = Builder.CreateSelect( 4835 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4836 } 4837 4838 VectorLoopValueMap.initVector(&I, Entry); 4839 addMetadata(Entry, &I); 4840 break; 4841 } 4842 4843 case Instruction::ICmp: 4844 case Instruction::FCmp: { 4845 // Widen compares. Generate vector compares. 4846 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4847 auto *Cmp = dyn_cast<CmpInst>(&I); 4848 setDebugLocFromInst(Builder, Cmp); 4849 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4850 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4851 VectorParts Entry(UF); 4852 for (unsigned Part = 0; Part < UF; ++Part) { 4853 Value *C = nullptr; 4854 if (FCmp) { 4855 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4856 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4857 } else { 4858 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4859 } 4860 Entry[Part] = C; 4861 } 4862 4863 VectorLoopValueMap.initVector(&I, Entry); 4864 addMetadata(Entry, &I); 4865 break; 4866 } 4867 4868 case Instruction::Store: 4869 case Instruction::Load: 4870 vectorizeMemoryInstruction(&I); 4871 break; 4872 case Instruction::ZExt: 4873 case Instruction::SExt: 4874 case Instruction::FPToUI: 4875 case Instruction::FPToSI: 4876 case Instruction::FPExt: 4877 case Instruction::PtrToInt: 4878 case Instruction::IntToPtr: 4879 case Instruction::SIToFP: 4880 case Instruction::UIToFP: 4881 case Instruction::Trunc: 4882 case Instruction::FPTrunc: 4883 case Instruction::BitCast: { 4884 auto *CI = dyn_cast<CastInst>(&I); 4885 setDebugLocFromInst(Builder, CI); 4886 4887 // Optimize the special case where the source is a constant integer 4888 // induction variable. Notice that we can only optimize the 'trunc' case 4889 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4890 // (c) other casts depend on pointer size. 4891 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4892 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4893 cast<TruncInst>(CI)); 4894 break; 4895 } 4896 4897 /// Vectorize casts. 4898 Type *DestTy = 4899 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4900 4901 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4902 VectorParts Entry(UF); 4903 for (unsigned Part = 0; Part < UF; ++Part) 4904 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4905 VectorLoopValueMap.initVector(&I, Entry); 4906 addMetadata(Entry, &I); 4907 break; 4908 } 4909 4910 case Instruction::Call: { 4911 // Ignore dbg intrinsics. 4912 if (isa<DbgInfoIntrinsic>(I)) 4913 break; 4914 setDebugLocFromInst(Builder, &I); 4915 4916 Module *M = I.getParent()->getParent()->getParent(); 4917 auto *CI = cast<CallInst>(&I); 4918 4919 StringRef FnName = CI->getCalledFunction()->getName(); 4920 Function *F = CI->getCalledFunction(); 4921 Type *RetTy = ToVectorTy(CI->getType(), VF); 4922 SmallVector<Type *, 4> Tys; 4923 for (Value *ArgOperand : CI->arg_operands()) 4924 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4925 4926 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4927 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4928 ID == Intrinsic::lifetime_start)) { 4929 scalarizeInstruction(&I); 4930 break; 4931 } 4932 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4933 // version of the instruction. 4934 // Is it beneficial to perform intrinsic call compared to lib call? 4935 bool NeedToScalarize; 4936 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4937 bool UseVectorIntrinsic = 4938 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4939 if (!UseVectorIntrinsic && NeedToScalarize) { 4940 scalarizeInstruction(&I); 4941 break; 4942 } 4943 4944 VectorParts Entry(UF); 4945 for (unsigned Part = 0; Part < UF; ++Part) { 4946 SmallVector<Value *, 4> Args; 4947 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4948 Value *Arg = CI->getArgOperand(i); 4949 // Some intrinsics have a scalar argument - don't replace it with a 4950 // vector. 4951 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4952 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4953 Arg = VectorArg[Part]; 4954 } 4955 Args.push_back(Arg); 4956 } 4957 4958 Function *VectorF; 4959 if (UseVectorIntrinsic) { 4960 // Use vector version of the intrinsic. 4961 Type *TysForDecl[] = {CI->getType()}; 4962 if (VF > 1) 4963 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4964 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4965 } else { 4966 // Use vector version of the library call. 4967 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4968 assert(!VFnName.empty() && "Vector function name is empty."); 4969 VectorF = M->getFunction(VFnName); 4970 if (!VectorF) { 4971 // Generate a declaration 4972 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4973 VectorF = 4974 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4975 VectorF->copyAttributesFrom(F); 4976 } 4977 } 4978 assert(VectorF && "Can't create vector function."); 4979 4980 SmallVector<OperandBundleDef, 1> OpBundles; 4981 CI->getOperandBundlesAsDefs(OpBundles); 4982 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4983 4984 if (isa<FPMathOperator>(V)) 4985 V->copyFastMathFlags(CI); 4986 4987 Entry[Part] = V; 4988 } 4989 4990 VectorLoopValueMap.initVector(&I, Entry); 4991 addMetadata(Entry, &I); 4992 break; 4993 } 4994 4995 default: 4996 // All other instructions are unsupported. Scalarize them. 4997 scalarizeInstruction(&I); 4998 break; 4999 } // end of switch. 5000 } 5001 5002 void InnerLoopVectorizer::updateAnalysis() { 5003 // Forget the original basic block. 5004 PSE.getSE()->forgetLoop(OrigLoop); 5005 5006 // Update the dominator tree information. 5007 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5008 "Entry does not dominate exit."); 5009 5010 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5011 LoopVectorPreHeader); 5012 DT->addNewBlock(LoopMiddleBlock, 5013 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5014 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5015 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5016 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5017 5018 DEBUG(DT->verifyDomTree()); 5019 } 5020 5021 /// \brief Check whether it is safe to if-convert this phi node. 5022 /// 5023 /// Phi nodes with constant expressions that can trap are not safe to if 5024 /// convert. 5025 static bool canIfConvertPHINodes(BasicBlock *BB) { 5026 for (Instruction &I : *BB) { 5027 auto *Phi = dyn_cast<PHINode>(&I); 5028 if (!Phi) 5029 return true; 5030 for (Value *V : Phi->incoming_values()) 5031 if (auto *C = dyn_cast<Constant>(V)) 5032 if (C->canTrap()) 5033 return false; 5034 } 5035 return true; 5036 } 5037 5038 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5039 if (!EnableIfConversion) { 5040 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5041 << "if-conversion is disabled"); 5042 return false; 5043 } 5044 5045 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5046 5047 // A list of pointers that we can safely read and write to. 5048 SmallPtrSet<Value *, 8> SafePointes; 5049 5050 // Collect safe addresses. 5051 for (BasicBlock *BB : TheLoop->blocks()) { 5052 if (blockNeedsPredication(BB)) 5053 continue; 5054 5055 for (Instruction &I : *BB) 5056 if (auto *Ptr = getPointerOperand(&I)) 5057 SafePointes.insert(Ptr); 5058 } 5059 5060 // Collect the blocks that need predication. 5061 BasicBlock *Header = TheLoop->getHeader(); 5062 for (BasicBlock *BB : TheLoop->blocks()) { 5063 // We don't support switch statements inside loops. 5064 if (!isa<BranchInst>(BB->getTerminator())) { 5065 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5066 << "loop contains a switch statement"); 5067 return false; 5068 } 5069 5070 // We must be able to predicate all blocks that need to be predicated. 5071 if (blockNeedsPredication(BB)) { 5072 if (!blockCanBePredicated(BB, SafePointes)) { 5073 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5074 << "control flow cannot be substituted for a select"); 5075 return false; 5076 } 5077 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5078 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5079 << "control flow cannot be substituted for a select"); 5080 return false; 5081 } 5082 } 5083 5084 // We can if-convert this loop. 5085 return true; 5086 } 5087 5088 bool LoopVectorizationLegality::canVectorize() { 5089 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5090 // be canonicalized. 5091 if (!TheLoop->getLoopPreheader()) { 5092 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5093 << "loop control flow is not understood by vectorizer"); 5094 return false; 5095 } 5096 5097 // FIXME: The code is currently dead, since the loop gets sent to 5098 // LoopVectorizationLegality is already an innermost loop. 5099 // 5100 // We can only vectorize innermost loops. 5101 if (!TheLoop->empty()) { 5102 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5103 << "loop is not the innermost loop"); 5104 return false; 5105 } 5106 5107 // We must have a single backedge. 5108 if (TheLoop->getNumBackEdges() != 1) { 5109 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5110 << "loop control flow is not understood by vectorizer"); 5111 return false; 5112 } 5113 5114 // We must have a single exiting block. 5115 if (!TheLoop->getExitingBlock()) { 5116 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5117 << "loop control flow is not understood by vectorizer"); 5118 return false; 5119 } 5120 5121 // We only handle bottom-tested loops, i.e. loop in which the condition is 5122 // checked at the end of each iteration. With that we can assume that all 5123 // instructions in the loop are executed the same number of times. 5124 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5125 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5126 << "loop control flow is not understood by vectorizer"); 5127 return false; 5128 } 5129 5130 // We need to have a loop header. 5131 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5132 << '\n'); 5133 5134 // Check if we can if-convert non-single-bb loops. 5135 unsigned NumBlocks = TheLoop->getNumBlocks(); 5136 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5137 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5138 return false; 5139 } 5140 5141 // ScalarEvolution needs to be able to find the exit count. 5142 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5143 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5144 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5145 << "could not determine number of loop iterations"); 5146 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5147 return false; 5148 } 5149 5150 // Check if we can vectorize the instructions and CFG in this loop. 5151 if (!canVectorizeInstrs()) { 5152 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5153 return false; 5154 } 5155 5156 // Go over each instruction and look at memory deps. 5157 if (!canVectorizeMemory()) { 5158 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5159 return false; 5160 } 5161 5162 DEBUG(dbgs() << "LV: We can vectorize this loop" 5163 << (LAI->getRuntimePointerChecking()->Need 5164 ? " (with a runtime bound check)" 5165 : "") 5166 << "!\n"); 5167 5168 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5169 5170 // If an override option has been passed in for interleaved accesses, use it. 5171 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5172 UseInterleaved = EnableInterleavedMemAccesses; 5173 5174 // Analyze interleaved memory accesses. 5175 if (UseInterleaved) 5176 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5177 5178 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5179 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5180 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5181 5182 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5183 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5184 << "Too many SCEV assumptions need to be made and checked " 5185 << "at runtime"); 5186 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5187 return false; 5188 } 5189 5190 // Okay! We can vectorize. At this point we don't have any other mem analysis 5191 // which may limit our maximum vectorization factor, so just return true with 5192 // no restrictions. 5193 return true; 5194 } 5195 5196 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5197 if (Ty->isPointerTy()) 5198 return DL.getIntPtrType(Ty); 5199 5200 // It is possible that char's or short's overflow when we ask for the loop's 5201 // trip count, work around this by changing the type size. 5202 if (Ty->getScalarSizeInBits() < 32) 5203 return Type::getInt32Ty(Ty->getContext()); 5204 5205 return Ty; 5206 } 5207 5208 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5209 Ty0 = convertPointerToIntegerType(DL, Ty0); 5210 Ty1 = convertPointerToIntegerType(DL, Ty1); 5211 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5212 return Ty0; 5213 return Ty1; 5214 } 5215 5216 /// \brief Check that the instruction has outside loop users and is not an 5217 /// identified reduction variable. 5218 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5219 SmallPtrSetImpl<Value *> &AllowedExit) { 5220 // Reduction and Induction instructions are allowed to have exit users. All 5221 // other instructions must not have external users. 5222 if (!AllowedExit.count(Inst)) 5223 // Check that all of the users of the loop are inside the BB. 5224 for (User *U : Inst->users()) { 5225 Instruction *UI = cast<Instruction>(U); 5226 // This user may be a reduction exit value. 5227 if (!TheLoop->contains(UI)) { 5228 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5229 return true; 5230 } 5231 } 5232 return false; 5233 } 5234 5235 void LoopVectorizationLegality::addInductionPhi( 5236 PHINode *Phi, const InductionDescriptor &ID, 5237 SmallPtrSetImpl<Value *> &AllowedExit) { 5238 Inductions[Phi] = ID; 5239 Type *PhiTy = Phi->getType(); 5240 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5241 5242 // Get the widest type. 5243 if (!PhiTy->isFloatingPointTy()) { 5244 if (!WidestIndTy) 5245 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5246 else 5247 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5248 } 5249 5250 // Int inductions are special because we only allow one IV. 5251 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5252 ID.getConstIntStepValue() && 5253 ID.getConstIntStepValue()->isOne() && 5254 isa<Constant>(ID.getStartValue()) && 5255 cast<Constant>(ID.getStartValue())->isNullValue()) { 5256 5257 // Use the phi node with the widest type as induction. Use the last 5258 // one if there are multiple (no good reason for doing this other 5259 // than it is expedient). We've checked that it begins at zero and 5260 // steps by one, so this is a canonical induction variable. 5261 if (!PrimaryInduction || PhiTy == WidestIndTy) 5262 PrimaryInduction = Phi; 5263 } 5264 5265 // Both the PHI node itself, and the "post-increment" value feeding 5266 // back into the PHI node may have external users. 5267 AllowedExit.insert(Phi); 5268 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5269 5270 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5271 return; 5272 } 5273 5274 bool LoopVectorizationLegality::canVectorizeInstrs() { 5275 BasicBlock *Header = TheLoop->getHeader(); 5276 5277 // Look for the attribute signaling the absence of NaNs. 5278 Function &F = *Header->getParent(); 5279 HasFunNoNaNAttr = 5280 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5281 5282 // For each block in the loop. 5283 for (BasicBlock *BB : TheLoop->blocks()) { 5284 // Scan the instructions in the block and look for hazards. 5285 for (Instruction &I : *BB) { 5286 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5287 Type *PhiTy = Phi->getType(); 5288 // Check that this PHI type is allowed. 5289 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5290 !PhiTy->isPointerTy()) { 5291 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5292 << "loop control flow is not understood by vectorizer"); 5293 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5294 return false; 5295 } 5296 5297 // If this PHINode is not in the header block, then we know that we 5298 // can convert it to select during if-conversion. No need to check if 5299 // the PHIs in this block are induction or reduction variables. 5300 if (BB != Header) { 5301 // Check that this instruction has no outside users or is an 5302 // identified reduction value with an outside user. 5303 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5304 continue; 5305 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5306 << "value could not be identified as " 5307 "an induction or reduction variable"); 5308 return false; 5309 } 5310 5311 // We only allow if-converted PHIs with exactly two incoming values. 5312 if (Phi->getNumIncomingValues() != 2) { 5313 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5314 << "control flow not understood by vectorizer"); 5315 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5316 return false; 5317 } 5318 5319 RecurrenceDescriptor RedDes; 5320 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5321 if (RedDes.hasUnsafeAlgebra()) 5322 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5323 AllowedExit.insert(RedDes.getLoopExitInstr()); 5324 Reductions[Phi] = RedDes; 5325 continue; 5326 } 5327 5328 InductionDescriptor ID; 5329 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5330 addInductionPhi(Phi, ID, AllowedExit); 5331 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5332 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5333 continue; 5334 } 5335 5336 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5337 FirstOrderRecurrences.insert(Phi); 5338 continue; 5339 } 5340 5341 // As a last resort, coerce the PHI to a AddRec expression 5342 // and re-try classifying it a an induction PHI. 5343 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5344 addInductionPhi(Phi, ID, AllowedExit); 5345 continue; 5346 } 5347 5348 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5349 << "value that could not be identified as " 5350 "reduction is used outside the loop"); 5351 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5352 return false; 5353 } // end of PHI handling 5354 5355 // We handle calls that: 5356 // * Are debug info intrinsics. 5357 // * Have a mapping to an IR intrinsic. 5358 // * Have a vector version available. 5359 auto *CI = dyn_cast<CallInst>(&I); 5360 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5361 !isa<DbgInfoIntrinsic>(CI) && 5362 !(CI->getCalledFunction() && TLI && 5363 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5364 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5365 << "call instruction cannot be vectorized"); 5366 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5367 return false; 5368 } 5369 5370 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5371 // second argument is the same (i.e. loop invariant) 5372 if (CI && hasVectorInstrinsicScalarOpd( 5373 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5374 auto *SE = PSE.getSE(); 5375 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5376 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5377 << "intrinsic instruction cannot be vectorized"); 5378 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5379 return false; 5380 } 5381 } 5382 5383 // Check that the instruction return type is vectorizable. 5384 // Also, we can't vectorize extractelement instructions. 5385 if ((!VectorType::isValidElementType(I.getType()) && 5386 !I.getType()->isVoidTy()) || 5387 isa<ExtractElementInst>(I)) { 5388 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5389 << "instruction return type cannot be vectorized"); 5390 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5391 return false; 5392 } 5393 5394 // Check that the stored type is vectorizable. 5395 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5396 Type *T = ST->getValueOperand()->getType(); 5397 if (!VectorType::isValidElementType(T)) { 5398 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5399 << "store instruction cannot be vectorized"); 5400 return false; 5401 } 5402 5403 // FP instructions can allow unsafe algebra, thus vectorizable by 5404 // non-IEEE-754 compliant SIMD units. 5405 // This applies to floating-point math operations and calls, not memory 5406 // operations, shuffles, or casts, as they don't change precision or 5407 // semantics. 5408 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5409 !I.hasUnsafeAlgebra()) { 5410 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5411 Hints->setPotentiallyUnsafe(); 5412 } 5413 5414 // Reduction instructions are allowed to have exit users. 5415 // All other instructions must not have external users. 5416 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5417 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5418 << "value cannot be used outside the loop"); 5419 return false; 5420 } 5421 5422 } // next instr. 5423 } 5424 5425 if (!PrimaryInduction) { 5426 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5427 if (Inductions.empty()) { 5428 ORE->emit(createMissedAnalysis("NoInductionVariable") 5429 << "loop induction variable could not be identified"); 5430 return false; 5431 } 5432 } 5433 5434 // Now we know the widest induction type, check if our found induction 5435 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5436 // will create another. 5437 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5438 PrimaryInduction = nullptr; 5439 5440 return true; 5441 } 5442 5443 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5444 5445 // We should not collect Scalars more than once per VF. Right now, this 5446 // function is called from collectUniformsAndScalars(), which already does 5447 // this check. Collecting Scalars for VF=1 does not make any sense. 5448 assert(VF >= 2 && !Scalars.count(VF) && 5449 "This function should not be visited twice for the same VF"); 5450 5451 SmallSetVector<Instruction *, 8> Worklist; 5452 5453 // These sets are used to seed the analysis with pointers used by memory 5454 // accesses that will remain scalar. 5455 SmallSetVector<Instruction *, 8> ScalarPtrs; 5456 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5457 5458 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5459 // The pointer operands of loads and stores will be scalar as long as the 5460 // memory access is not a gather or scatter operation. The value operand of a 5461 // store will remain scalar if the store is scalarized. 5462 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5463 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5464 assert(WideningDecision != CM_Unknown && 5465 "Widening decision should be ready at this moment"); 5466 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5467 if (Ptr == Store->getValueOperand()) 5468 return WideningDecision == CM_Scalarize; 5469 assert(Ptr == getPointerOperand(MemAccess) && 5470 "Ptr is neither a value or pointer operand"); 5471 return WideningDecision != CM_GatherScatter; 5472 }; 5473 5474 // A helper that returns true if the given value is a bitcast or 5475 // getelementptr instruction contained in the loop. 5476 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5477 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5478 isa<GetElementPtrInst>(V)) && 5479 !TheLoop->isLoopInvariant(V); 5480 }; 5481 5482 // A helper that evaluates a memory access's use of a pointer. If the use 5483 // will be a scalar use, and the pointer is only used by memory accesses, we 5484 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5485 // PossibleNonScalarPtrs. 5486 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5487 5488 // We only care about bitcast and getelementptr instructions contained in 5489 // the loop. 5490 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5491 return; 5492 5493 // If the pointer has already been identified as scalar (e.g., if it was 5494 // also identified as uniform), there's nothing to do. 5495 auto *I = cast<Instruction>(Ptr); 5496 if (Worklist.count(I)) 5497 return; 5498 5499 // If the use of the pointer will be a scalar use, and all users of the 5500 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5501 // place the pointer in PossibleNonScalarPtrs. 5502 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5503 return isa<LoadInst>(U) || isa<StoreInst>(U); 5504 })) 5505 ScalarPtrs.insert(I); 5506 else 5507 PossibleNonScalarPtrs.insert(I); 5508 }; 5509 5510 // We seed the scalars analysis with three classes of instructions: (1) 5511 // instructions marked uniform-after-vectorization, (2) bitcast and 5512 // getelementptr instructions used by memory accesses requiring a scalar use, 5513 // and (3) pointer induction variables and their update instructions (we 5514 // currently only scalarize these). 5515 // 5516 // (1) Add to the worklist all instructions that have been identified as 5517 // uniform-after-vectorization. 5518 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5519 5520 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5521 // memory accesses requiring a scalar use. The pointer operands of loads and 5522 // stores will be scalar as long as the memory accesses is not a gather or 5523 // scatter operation. The value operand of a store will remain scalar if the 5524 // store is scalarized. 5525 for (auto *BB : TheLoop->blocks()) 5526 for (auto &I : *BB) { 5527 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5528 evaluatePtrUse(Load, Load->getPointerOperand()); 5529 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5530 evaluatePtrUse(Store, Store->getPointerOperand()); 5531 evaluatePtrUse(Store, Store->getValueOperand()); 5532 } 5533 } 5534 for (auto *I : ScalarPtrs) 5535 if (!PossibleNonScalarPtrs.count(I)) { 5536 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5537 Worklist.insert(I); 5538 } 5539 5540 // (3) Add to the worklist all pointer induction variables and their update 5541 // instructions. 5542 // 5543 // TODO: Once we are able to vectorize pointer induction variables we should 5544 // no longer insert them into the worklist here. 5545 auto *Latch = TheLoop->getLoopLatch(); 5546 for (auto &Induction : *Legal->getInductionVars()) { 5547 auto *Ind = Induction.first; 5548 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5549 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5550 continue; 5551 Worklist.insert(Ind); 5552 Worklist.insert(IndUpdate); 5553 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5554 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5555 } 5556 5557 // Expand the worklist by looking through any bitcasts and getelementptr 5558 // instructions we've already identified as scalar. This is similar to the 5559 // expansion step in collectLoopUniforms(); however, here we're only 5560 // expanding to include additional bitcasts and getelementptr instructions. 5561 unsigned Idx = 0; 5562 while (Idx != Worklist.size()) { 5563 Instruction *Dst = Worklist[Idx++]; 5564 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5565 continue; 5566 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5567 if (all_of(Src->users(), [&](User *U) -> bool { 5568 auto *J = cast<Instruction>(U); 5569 return !TheLoop->contains(J) || Worklist.count(J) || 5570 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5571 isScalarUse(J, Src)); 5572 })) { 5573 Worklist.insert(Src); 5574 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5575 } 5576 } 5577 5578 // An induction variable will remain scalar if all users of the induction 5579 // variable and induction variable update remain scalar. 5580 for (auto &Induction : *Legal->getInductionVars()) { 5581 auto *Ind = Induction.first; 5582 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5583 5584 // We already considered pointer induction variables, so there's no reason 5585 // to look at their users again. 5586 // 5587 // TODO: Once we are able to vectorize pointer induction variables we 5588 // should no longer skip over them here. 5589 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5590 continue; 5591 5592 // Determine if all users of the induction variable are scalar after 5593 // vectorization. 5594 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5595 auto *I = cast<Instruction>(U); 5596 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5597 }); 5598 if (!ScalarInd) 5599 continue; 5600 5601 // Determine if all users of the induction variable update instruction are 5602 // scalar after vectorization. 5603 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5604 auto *I = cast<Instruction>(U); 5605 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5606 }); 5607 if (!ScalarIndUpdate) 5608 continue; 5609 5610 // The induction variable and its update instruction will remain scalar. 5611 Worklist.insert(Ind); 5612 Worklist.insert(IndUpdate); 5613 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5614 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5615 } 5616 5617 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5618 } 5619 5620 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5621 if (!blockNeedsPredication(I->getParent())) 5622 return false; 5623 switch(I->getOpcode()) { 5624 default: 5625 break; 5626 case Instruction::Store: 5627 return !isMaskRequired(I); 5628 case Instruction::UDiv: 5629 case Instruction::SDiv: 5630 case Instruction::SRem: 5631 case Instruction::URem: 5632 return mayDivideByZero(*I); 5633 } 5634 return false; 5635 } 5636 5637 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5638 unsigned VF) { 5639 // Get and ensure we have a valid memory instruction. 5640 LoadInst *LI = dyn_cast<LoadInst>(I); 5641 StoreInst *SI = dyn_cast<StoreInst>(I); 5642 assert((LI || SI) && "Invalid memory instruction"); 5643 5644 auto *Ptr = getPointerOperand(I); 5645 5646 // In order to be widened, the pointer should be consecutive, first of all. 5647 if (!isConsecutivePtr(Ptr)) 5648 return false; 5649 5650 // If the instruction is a store located in a predicated block, it will be 5651 // scalarized. 5652 if (isScalarWithPredication(I)) 5653 return false; 5654 5655 // If the instruction's allocated size doesn't equal it's type size, it 5656 // requires padding and will be scalarized. 5657 auto &DL = I->getModule()->getDataLayout(); 5658 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5659 if (hasIrregularType(ScalarTy, DL, VF)) 5660 return false; 5661 5662 return true; 5663 } 5664 5665 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5666 5667 // We should not collect Uniforms more than once per VF. Right now, 5668 // this function is called from collectUniformsAndScalars(), which 5669 // already does this check. Collecting Uniforms for VF=1 does not make any 5670 // sense. 5671 5672 assert(VF >= 2 && !Uniforms.count(VF) && 5673 "This function should not be visited twice for the same VF"); 5674 5675 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5676 // not analyze again. Uniforms.count(VF) will return 1. 5677 Uniforms[VF].clear(); 5678 5679 // We now know that the loop is vectorizable! 5680 // Collect instructions inside the loop that will remain uniform after 5681 // vectorization. 5682 5683 // Global values, params and instructions outside of current loop are out of 5684 // scope. 5685 auto isOutOfScope = [&](Value *V) -> bool { 5686 Instruction *I = dyn_cast<Instruction>(V); 5687 return (!I || !TheLoop->contains(I)); 5688 }; 5689 5690 SetVector<Instruction *> Worklist; 5691 BasicBlock *Latch = TheLoop->getLoopLatch(); 5692 5693 // Start with the conditional branch. If the branch condition is an 5694 // instruction contained in the loop that is only used by the branch, it is 5695 // uniform. 5696 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5697 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5698 Worklist.insert(Cmp); 5699 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5700 } 5701 5702 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5703 // are pointers that are treated like consecutive pointers during 5704 // vectorization. The pointer operands of interleaved accesses are an 5705 // example. 5706 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5707 5708 // Holds pointer operands of instructions that are possibly non-uniform. 5709 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5710 5711 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5712 InstWidening WideningDecision = getWideningDecision(I, VF); 5713 assert(WideningDecision != CM_Unknown && 5714 "Widening decision should be ready at this moment"); 5715 5716 return (WideningDecision == CM_Widen || 5717 WideningDecision == CM_Interleave); 5718 }; 5719 // Iterate over the instructions in the loop, and collect all 5720 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5721 // that a consecutive-like pointer operand will be scalarized, we collect it 5722 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5723 // getelementptr instruction can be used by both vectorized and scalarized 5724 // memory instructions. For example, if a loop loads and stores from the same 5725 // location, but the store is conditional, the store will be scalarized, and 5726 // the getelementptr won't remain uniform. 5727 for (auto *BB : TheLoop->blocks()) 5728 for (auto &I : *BB) { 5729 5730 // If there's no pointer operand, there's nothing to do. 5731 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5732 if (!Ptr) 5733 continue; 5734 5735 // True if all users of Ptr are memory accesses that have Ptr as their 5736 // pointer operand. 5737 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5738 return getPointerOperand(U) == Ptr; 5739 }); 5740 5741 // Ensure the memory instruction will not be scalarized or used by 5742 // gather/scatter, making its pointer operand non-uniform. If the pointer 5743 // operand is used by any instruction other than a memory access, we 5744 // conservatively assume the pointer operand may be non-uniform. 5745 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5746 PossibleNonUniformPtrs.insert(Ptr); 5747 5748 // If the memory instruction will be vectorized and its pointer operand 5749 // is consecutive-like, or interleaving - the pointer operand should 5750 // remain uniform. 5751 else 5752 ConsecutiveLikePtrs.insert(Ptr); 5753 } 5754 5755 // Add to the Worklist all consecutive and consecutive-like pointers that 5756 // aren't also identified as possibly non-uniform. 5757 for (auto *V : ConsecutiveLikePtrs) 5758 if (!PossibleNonUniformPtrs.count(V)) { 5759 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5760 Worklist.insert(V); 5761 } 5762 5763 // Expand Worklist in topological order: whenever a new instruction 5764 // is added , its users should be either already inside Worklist, or 5765 // out of scope. It ensures a uniform instruction will only be used 5766 // by uniform instructions or out of scope instructions. 5767 unsigned idx = 0; 5768 while (idx != Worklist.size()) { 5769 Instruction *I = Worklist[idx++]; 5770 5771 for (auto OV : I->operand_values()) { 5772 if (isOutOfScope(OV)) 5773 continue; 5774 auto *OI = cast<Instruction>(OV); 5775 if (all_of(OI->users(), [&](User *U) -> bool { 5776 auto *J = cast<Instruction>(U); 5777 return !TheLoop->contains(J) || Worklist.count(J) || 5778 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5779 })) { 5780 Worklist.insert(OI); 5781 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5782 } 5783 } 5784 } 5785 5786 // Returns true if Ptr is the pointer operand of a memory access instruction 5787 // I, and I is known to not require scalarization. 5788 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5789 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5790 }; 5791 5792 // For an instruction to be added into Worklist above, all its users inside 5793 // the loop should also be in Worklist. However, this condition cannot be 5794 // true for phi nodes that form a cyclic dependence. We must process phi 5795 // nodes separately. An induction variable will remain uniform if all users 5796 // of the induction variable and induction variable update remain uniform. 5797 // The code below handles both pointer and non-pointer induction variables. 5798 for (auto &Induction : *Legal->getInductionVars()) { 5799 auto *Ind = Induction.first; 5800 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5801 5802 // Determine if all users of the induction variable are uniform after 5803 // vectorization. 5804 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5805 auto *I = cast<Instruction>(U); 5806 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5807 isVectorizedMemAccessUse(I, Ind); 5808 }); 5809 if (!UniformInd) 5810 continue; 5811 5812 // Determine if all users of the induction variable update instruction are 5813 // uniform after vectorization. 5814 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5815 auto *I = cast<Instruction>(U); 5816 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5817 isVectorizedMemAccessUse(I, IndUpdate); 5818 }); 5819 if (!UniformIndUpdate) 5820 continue; 5821 5822 // The induction variable and its update instruction will remain uniform. 5823 Worklist.insert(Ind); 5824 Worklist.insert(IndUpdate); 5825 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5826 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5827 } 5828 5829 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5830 } 5831 5832 bool LoopVectorizationLegality::canVectorizeMemory() { 5833 LAI = &(*GetLAA)(*TheLoop); 5834 InterleaveInfo.setLAI(LAI); 5835 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5836 if (LAR) { 5837 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5838 "loop not vectorized: ", *LAR); 5839 ORE->emit(VR); 5840 } 5841 if (!LAI->canVectorizeMemory()) 5842 return false; 5843 5844 if (LAI->hasStoreToLoopInvariantAddress()) { 5845 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5846 << "write to a loop invariant address could not be vectorized"); 5847 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5848 return false; 5849 } 5850 5851 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5852 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5853 5854 return true; 5855 } 5856 5857 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5858 Value *In0 = const_cast<Value *>(V); 5859 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5860 if (!PN) 5861 return false; 5862 5863 return Inductions.count(PN); 5864 } 5865 5866 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5867 return FirstOrderRecurrences.count(Phi); 5868 } 5869 5870 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5871 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5872 } 5873 5874 bool LoopVectorizationLegality::blockCanBePredicated( 5875 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5876 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5877 5878 for (Instruction &I : *BB) { 5879 // Check that we don't have a constant expression that can trap as operand. 5880 for (Value *Operand : I.operands()) { 5881 if (auto *C = dyn_cast<Constant>(Operand)) 5882 if (C->canTrap()) 5883 return false; 5884 } 5885 // We might be able to hoist the load. 5886 if (I.mayReadFromMemory()) { 5887 auto *LI = dyn_cast<LoadInst>(&I); 5888 if (!LI) 5889 return false; 5890 if (!SafePtrs.count(LI->getPointerOperand())) { 5891 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5892 isLegalMaskedGather(LI->getType())) { 5893 MaskedOp.insert(LI); 5894 continue; 5895 } 5896 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5897 if (IsAnnotatedParallel) 5898 continue; 5899 return false; 5900 } 5901 } 5902 5903 if (I.mayWriteToMemory()) { 5904 auto *SI = dyn_cast<StoreInst>(&I); 5905 // We only support predication of stores in basic blocks with one 5906 // predecessor. 5907 if (!SI) 5908 return false; 5909 5910 // Build a masked store if it is legal for the target. 5911 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5912 SI->getPointerOperand()) || 5913 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5914 MaskedOp.insert(SI); 5915 continue; 5916 } 5917 5918 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5919 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5920 5921 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5922 !isSinglePredecessor) 5923 return false; 5924 } 5925 if (I.mayThrow()) 5926 return false; 5927 } 5928 5929 return true; 5930 } 5931 5932 void InterleavedAccessInfo::collectConstStrideAccesses( 5933 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5934 const ValueToValueMap &Strides) { 5935 5936 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5937 5938 // Since it's desired that the load/store instructions be maintained in 5939 // "program order" for the interleaved access analysis, we have to visit the 5940 // blocks in the loop in reverse postorder (i.e., in a topological order). 5941 // Such an ordering will ensure that any load/store that may be executed 5942 // before a second load/store will precede the second load/store in 5943 // AccessStrideInfo. 5944 LoopBlocksDFS DFS(TheLoop); 5945 DFS.perform(LI); 5946 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5947 for (auto &I : *BB) { 5948 auto *LI = dyn_cast<LoadInst>(&I); 5949 auto *SI = dyn_cast<StoreInst>(&I); 5950 if (!LI && !SI) 5951 continue; 5952 5953 Value *Ptr = getPointerOperand(&I); 5954 // We don't check wrapping here because we don't know yet if Ptr will be 5955 // part of a full group or a group with gaps. Checking wrapping for all 5956 // pointers (even those that end up in groups with no gaps) will be overly 5957 // conservative. For full groups, wrapping should be ok since if we would 5958 // wrap around the address space we would do a memory access at nullptr 5959 // even without the transformation. The wrapping checks are therefore 5960 // deferred until after we've formed the interleaved groups. 5961 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5962 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5963 5964 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5965 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5966 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5967 5968 // An alignment of 0 means target ABI alignment. 5969 unsigned Align = getMemInstAlignment(&I); 5970 if (!Align) 5971 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5972 5973 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5974 } 5975 } 5976 5977 // Analyze interleaved accesses and collect them into interleaved load and 5978 // store groups. 5979 // 5980 // When generating code for an interleaved load group, we effectively hoist all 5981 // loads in the group to the location of the first load in program order. When 5982 // generating code for an interleaved store group, we sink all stores to the 5983 // location of the last store. This code motion can change the order of load 5984 // and store instructions and may break dependences. 5985 // 5986 // The code generation strategy mentioned above ensures that we won't violate 5987 // any write-after-read (WAR) dependences. 5988 // 5989 // E.g., for the WAR dependence: a = A[i]; // (1) 5990 // A[i] = b; // (2) 5991 // 5992 // The store group of (2) is always inserted at or below (2), and the load 5993 // group of (1) is always inserted at or above (1). Thus, the instructions will 5994 // never be reordered. All other dependences are checked to ensure the 5995 // correctness of the instruction reordering. 5996 // 5997 // The algorithm visits all memory accesses in the loop in bottom-up program 5998 // order. Program order is established by traversing the blocks in the loop in 5999 // reverse postorder when collecting the accesses. 6000 // 6001 // We visit the memory accesses in bottom-up order because it can simplify the 6002 // construction of store groups in the presence of write-after-write (WAW) 6003 // dependences. 6004 // 6005 // E.g., for the WAW dependence: A[i] = a; // (1) 6006 // A[i] = b; // (2) 6007 // A[i + 1] = c; // (3) 6008 // 6009 // We will first create a store group with (3) and (2). (1) can't be added to 6010 // this group because it and (2) are dependent. However, (1) can be grouped 6011 // with other accesses that may precede it in program order. Note that a 6012 // bottom-up order does not imply that WAW dependences should not be checked. 6013 void InterleavedAccessInfo::analyzeInterleaving( 6014 const ValueToValueMap &Strides) { 6015 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6016 6017 // Holds all accesses with a constant stride. 6018 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6019 collectConstStrideAccesses(AccessStrideInfo, Strides); 6020 6021 if (AccessStrideInfo.empty()) 6022 return; 6023 6024 // Collect the dependences in the loop. 6025 collectDependences(); 6026 6027 // Holds all interleaved store groups temporarily. 6028 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6029 // Holds all interleaved load groups temporarily. 6030 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6031 6032 // Search in bottom-up program order for pairs of accesses (A and B) that can 6033 // form interleaved load or store groups. In the algorithm below, access A 6034 // precedes access B in program order. We initialize a group for B in the 6035 // outer loop of the algorithm, and then in the inner loop, we attempt to 6036 // insert each A into B's group if: 6037 // 6038 // 1. A and B have the same stride, 6039 // 2. A and B have the same memory object size, and 6040 // 3. A belongs in B's group according to its distance from B. 6041 // 6042 // Special care is taken to ensure group formation will not break any 6043 // dependences. 6044 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6045 BI != E; ++BI) { 6046 Instruction *B = BI->first; 6047 StrideDescriptor DesB = BI->second; 6048 6049 // Initialize a group for B if it has an allowable stride. Even if we don't 6050 // create a group for B, we continue with the bottom-up algorithm to ensure 6051 // we don't break any of B's dependences. 6052 InterleaveGroup *Group = nullptr; 6053 if (isStrided(DesB.Stride)) { 6054 Group = getInterleaveGroup(B); 6055 if (!Group) { 6056 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6057 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6058 } 6059 if (B->mayWriteToMemory()) 6060 StoreGroups.insert(Group); 6061 else 6062 LoadGroups.insert(Group); 6063 } 6064 6065 for (auto AI = std::next(BI); AI != E; ++AI) { 6066 Instruction *A = AI->first; 6067 StrideDescriptor DesA = AI->second; 6068 6069 // Our code motion strategy implies that we can't have dependences 6070 // between accesses in an interleaved group and other accesses located 6071 // between the first and last member of the group. Note that this also 6072 // means that a group can't have more than one member at a given offset. 6073 // The accesses in a group can have dependences with other accesses, but 6074 // we must ensure we don't extend the boundaries of the group such that 6075 // we encompass those dependent accesses. 6076 // 6077 // For example, assume we have the sequence of accesses shown below in a 6078 // stride-2 loop: 6079 // 6080 // (1, 2) is a group | A[i] = a; // (1) 6081 // | A[i-1] = b; // (2) | 6082 // A[i-3] = c; // (3) 6083 // A[i] = d; // (4) | (2, 4) is not a group 6084 // 6085 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6086 // but not with (4). If we did, the dependent access (3) would be within 6087 // the boundaries of the (2, 4) group. 6088 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6089 6090 // If a dependence exists and A is already in a group, we know that A 6091 // must be a store since A precedes B and WAR dependences are allowed. 6092 // Thus, A would be sunk below B. We release A's group to prevent this 6093 // illegal code motion. A will then be free to form another group with 6094 // instructions that precede it. 6095 if (isInterleaved(A)) { 6096 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6097 StoreGroups.remove(StoreGroup); 6098 releaseGroup(StoreGroup); 6099 } 6100 6101 // If a dependence exists and A is not already in a group (or it was 6102 // and we just released it), B might be hoisted above A (if B is a 6103 // load) or another store might be sunk below A (if B is a store). In 6104 // either case, we can't add additional instructions to B's group. B 6105 // will only form a group with instructions that it precedes. 6106 break; 6107 } 6108 6109 // At this point, we've checked for illegal code motion. If either A or B 6110 // isn't strided, there's nothing left to do. 6111 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6112 continue; 6113 6114 // Ignore A if it's already in a group or isn't the same kind of memory 6115 // operation as B. 6116 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6117 continue; 6118 6119 // Check rules 1 and 2. Ignore A if its stride or size is different from 6120 // that of B. 6121 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6122 continue; 6123 6124 // Ignore A if the memory object of A and B don't belong to the same 6125 // address space 6126 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6127 continue; 6128 6129 // Calculate the distance from A to B. 6130 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6131 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6132 if (!DistToB) 6133 continue; 6134 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6135 6136 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6137 // size. 6138 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6139 continue; 6140 6141 // Ignore A if either A or B is in a predicated block. Although we 6142 // currently prevent group formation for predicated accesses, we may be 6143 // able to relax this limitation in the future once we handle more 6144 // complicated blocks. 6145 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6146 continue; 6147 6148 // The index of A is the index of B plus A's distance to B in multiples 6149 // of the size. 6150 int IndexA = 6151 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6152 6153 // Try to insert A into B's group. 6154 if (Group->insertMember(A, IndexA, DesA.Align)) { 6155 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6156 << " into the interleave group with" << *B << '\n'); 6157 InterleaveGroupMap[A] = Group; 6158 6159 // Set the first load in program order as the insert position. 6160 if (A->mayReadFromMemory()) 6161 Group->setInsertPos(A); 6162 } 6163 } // Iteration over A accesses. 6164 } // Iteration over B accesses. 6165 6166 // Remove interleaved store groups with gaps. 6167 for (InterleaveGroup *Group : StoreGroups) 6168 if (Group->getNumMembers() != Group->getFactor()) 6169 releaseGroup(Group); 6170 6171 // Remove interleaved groups with gaps (currently only loads) whose memory 6172 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6173 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6174 // not check wrapping (see documentation there). 6175 // FORNOW we use Assume=false; 6176 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6177 // of runtime SCEV assumptions checks (thereby potentially failing to 6178 // vectorize altogether). 6179 // Additional optional optimizations: 6180 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6181 // wrap then we can deduce that all pointers in the group don't wrap. 6182 // This means that we can forcefully peel the loop in order to only have to 6183 // check the first pointer for no-wrap. When we'll change to use Assume=true 6184 // we'll only need at most one runtime check per interleaved group. 6185 // 6186 for (InterleaveGroup *Group : LoadGroups) { 6187 6188 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6189 // load would wrap around the address space we would do a memory access at 6190 // nullptr even without the transformation. 6191 if (Group->getNumMembers() == Group->getFactor()) 6192 continue; 6193 6194 // Case 2: If first and last members of the group don't wrap this implies 6195 // that all the pointers in the group don't wrap. 6196 // So we check only group member 0 (which is always guaranteed to exist), 6197 // and group member Factor - 1; If the latter doesn't exist we rely on 6198 // peeling (if it is a non-reveresed accsess -- see Case 3). 6199 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6200 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6201 /*ShouldCheckWrap=*/true)) { 6202 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6203 "first group member potentially pointer-wrapping.\n"); 6204 releaseGroup(Group); 6205 continue; 6206 } 6207 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6208 if (LastMember) { 6209 Value *LastMemberPtr = getPointerOperand(LastMember); 6210 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6211 /*ShouldCheckWrap=*/true)) { 6212 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6213 "last group member potentially pointer-wrapping.\n"); 6214 releaseGroup(Group); 6215 } 6216 } else { 6217 // Case 3: A non-reversed interleaved load group with gaps: We need 6218 // to execute at least one scalar epilogue iteration. This will ensure 6219 // we don't speculatively access memory out-of-bounds. We only need 6220 // to look for a member at index factor - 1, since every group must have 6221 // a member at index zero. 6222 if (Group->isReverse()) { 6223 releaseGroup(Group); 6224 continue; 6225 } 6226 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6227 RequiresScalarEpilogue = true; 6228 } 6229 } 6230 } 6231 6232 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6233 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6234 ORE->emit(createMissedAnalysis("ConditionalStore") 6235 << "store that is conditionally executed prevents vectorization"); 6236 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6237 return None; 6238 } 6239 6240 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6241 return computeFeasibleMaxVF(OptForSize); 6242 6243 if (Legal->getRuntimePointerChecking()->Need) { 6244 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6245 << "runtime pointer checks needed. Enable vectorization of this " 6246 "loop with '#pragma clang loop vectorize(enable)' when " 6247 "compiling with -Os/-Oz"); 6248 DEBUG(dbgs() 6249 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6250 return None; 6251 } 6252 6253 // If we optimize the program for size, avoid creating the tail loop. 6254 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6255 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6256 6257 // If we don't know the precise trip count, don't try to vectorize. 6258 if (TC < 2) { 6259 ORE->emit( 6260 createMissedAnalysis("UnknownLoopCountComplexCFG") 6261 << "unable to calculate the loop count due to complex control flow"); 6262 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6263 return None; 6264 } 6265 6266 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6267 6268 if (TC % MaxVF != 0) { 6269 // If the trip count that we found modulo the vectorization factor is not 6270 // zero then we require a tail. 6271 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6272 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6273 // smaller MaxVF that does not require a scalar epilog. 6274 6275 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6276 << "cannot optimize for size and vectorize at the " 6277 "same time. Enable vectorization of this loop " 6278 "with '#pragma clang loop vectorize(enable)' " 6279 "when compiling with -Os/-Oz"); 6280 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6281 return None; 6282 } 6283 6284 return MaxVF; 6285 } 6286 6287 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6288 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6289 unsigned SmallestType, WidestType; 6290 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6291 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6292 unsigned MaxSafeDepDist = -1U; 6293 6294 // Get the maximum safe dependence distance in bits computed by LAA. If the 6295 // loop contains any interleaved accesses, we divide the dependence distance 6296 // by the maximum interleave factor of all interleaved groups. Note that 6297 // although the division ensures correctness, this is a fairly conservative 6298 // computation because the maximum distance computed by LAA may not involve 6299 // any of the interleaved accesses. 6300 if (Legal->getMaxSafeDepDistBytes() != -1U) 6301 MaxSafeDepDist = 6302 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6303 6304 WidestRegister = 6305 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6306 unsigned MaxVectorSize = WidestRegister / WidestType; 6307 6308 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6309 << WidestType << " bits.\n"); 6310 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6311 << " bits.\n"); 6312 6313 if (MaxVectorSize == 0) { 6314 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6315 MaxVectorSize = 1; 6316 } 6317 6318 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6319 " into one vector!"); 6320 6321 unsigned MaxVF = MaxVectorSize; 6322 if (MaximizeBandwidth && !OptForSize) { 6323 // Collect all viable vectorization factors. 6324 SmallVector<unsigned, 8> VFs; 6325 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6326 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6327 VFs.push_back(VS); 6328 6329 // For each VF calculate its register usage. 6330 auto RUs = calculateRegisterUsage(VFs); 6331 6332 // Select the largest VF which doesn't require more registers than existing 6333 // ones. 6334 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6335 for (int i = RUs.size() - 1; i >= 0; --i) { 6336 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6337 MaxVF = VFs[i]; 6338 break; 6339 } 6340 } 6341 } 6342 return MaxVF; 6343 } 6344 6345 LoopVectorizationCostModel::VectorizationFactor 6346 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6347 float Cost = expectedCost(1).first; 6348 #ifndef NDEBUG 6349 const float ScalarCost = Cost; 6350 #endif /* NDEBUG */ 6351 unsigned Width = 1; 6352 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6353 6354 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6355 // Ignore scalar width, because the user explicitly wants vectorization. 6356 if (ForceVectorization && MaxVF > 1) { 6357 Width = 2; 6358 Cost = expectedCost(Width).first / (float)Width; 6359 } 6360 6361 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6362 // Notice that the vector loop needs to be executed less times, so 6363 // we need to divide the cost of the vector loops by the width of 6364 // the vector elements. 6365 VectorizationCostTy C = expectedCost(i); 6366 float VectorCost = C.first / (float)i; 6367 DEBUG(dbgs() << "LV: Vector loop of width " << i 6368 << " costs: " << (int)VectorCost << ".\n"); 6369 if (!C.second && !ForceVectorization) { 6370 DEBUG( 6371 dbgs() << "LV: Not considering vector loop of width " << i 6372 << " because it will not generate any vector instructions.\n"); 6373 continue; 6374 } 6375 if (VectorCost < Cost) { 6376 Cost = VectorCost; 6377 Width = i; 6378 } 6379 } 6380 6381 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6382 << "LV: Vectorization seems to be not beneficial, " 6383 << "but was forced by a user.\n"); 6384 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6385 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6386 return Factor; 6387 } 6388 6389 std::pair<unsigned, unsigned> 6390 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6391 unsigned MinWidth = -1U; 6392 unsigned MaxWidth = 8; 6393 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6394 6395 // For each block. 6396 for (BasicBlock *BB : TheLoop->blocks()) { 6397 // For each instruction in the loop. 6398 for (Instruction &I : *BB) { 6399 Type *T = I.getType(); 6400 6401 // Skip ignored values. 6402 if (ValuesToIgnore.count(&I)) 6403 continue; 6404 6405 // Only examine Loads, Stores and PHINodes. 6406 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6407 continue; 6408 6409 // Examine PHI nodes that are reduction variables. Update the type to 6410 // account for the recurrence type. 6411 if (auto *PN = dyn_cast<PHINode>(&I)) { 6412 if (!Legal->isReductionVariable(PN)) 6413 continue; 6414 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6415 T = RdxDesc.getRecurrenceType(); 6416 } 6417 6418 // Examine the stored values. 6419 if (auto *ST = dyn_cast<StoreInst>(&I)) 6420 T = ST->getValueOperand()->getType(); 6421 6422 // Ignore loaded pointer types and stored pointer types that are not 6423 // vectorizable. 6424 // 6425 // FIXME: The check here attempts to predict whether a load or store will 6426 // be vectorized. We only know this for certain after a VF has 6427 // been selected. Here, we assume that if an access can be 6428 // vectorized, it will be. We should also look at extending this 6429 // optimization to non-pointer types. 6430 // 6431 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6432 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6433 continue; 6434 6435 MinWidth = std::min(MinWidth, 6436 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6437 MaxWidth = std::max(MaxWidth, 6438 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6439 } 6440 } 6441 6442 return {MinWidth, MaxWidth}; 6443 } 6444 6445 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6446 unsigned VF, 6447 unsigned LoopCost) { 6448 6449 // -- The interleave heuristics -- 6450 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6451 // There are many micro-architectural considerations that we can't predict 6452 // at this level. For example, frontend pressure (on decode or fetch) due to 6453 // code size, or the number and capabilities of the execution ports. 6454 // 6455 // We use the following heuristics to select the interleave count: 6456 // 1. If the code has reductions, then we interleave to break the cross 6457 // iteration dependency. 6458 // 2. If the loop is really small, then we interleave to reduce the loop 6459 // overhead. 6460 // 3. We don't interleave if we think that we will spill registers to memory 6461 // due to the increased register pressure. 6462 6463 // When we optimize for size, we don't interleave. 6464 if (OptForSize) 6465 return 1; 6466 6467 // We used the distance for the interleave count. 6468 if (Legal->getMaxSafeDepDistBytes() != -1U) 6469 return 1; 6470 6471 // Do not interleave loops with a relatively small trip count. 6472 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6473 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6474 return 1; 6475 6476 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6477 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6478 << " registers\n"); 6479 6480 if (VF == 1) { 6481 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6482 TargetNumRegisters = ForceTargetNumScalarRegs; 6483 } else { 6484 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6485 TargetNumRegisters = ForceTargetNumVectorRegs; 6486 } 6487 6488 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6489 // We divide by these constants so assume that we have at least one 6490 // instruction that uses at least one register. 6491 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6492 R.NumInstructions = std::max(R.NumInstructions, 1U); 6493 6494 // We calculate the interleave count using the following formula. 6495 // Subtract the number of loop invariants from the number of available 6496 // registers. These registers are used by all of the interleaved instances. 6497 // Next, divide the remaining registers by the number of registers that is 6498 // required by the loop, in order to estimate how many parallel instances 6499 // fit without causing spills. All of this is rounded down if necessary to be 6500 // a power of two. We want power of two interleave count to simplify any 6501 // addressing operations or alignment considerations. 6502 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6503 R.MaxLocalUsers); 6504 6505 // Don't count the induction variable as interleaved. 6506 if (EnableIndVarRegisterHeur) 6507 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6508 std::max(1U, (R.MaxLocalUsers - 1))); 6509 6510 // Clamp the interleave ranges to reasonable counts. 6511 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6512 6513 // Check if the user has overridden the max. 6514 if (VF == 1) { 6515 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6516 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6517 } else { 6518 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6519 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6520 } 6521 6522 // If we did not calculate the cost for VF (because the user selected the VF) 6523 // then we calculate the cost of VF here. 6524 if (LoopCost == 0) 6525 LoopCost = expectedCost(VF).first; 6526 6527 // Clamp the calculated IC to be between the 1 and the max interleave count 6528 // that the target allows. 6529 if (IC > MaxInterleaveCount) 6530 IC = MaxInterleaveCount; 6531 else if (IC < 1) 6532 IC = 1; 6533 6534 // Interleave if we vectorized this loop and there is a reduction that could 6535 // benefit from interleaving. 6536 if (VF > 1 && Legal->getReductionVars()->size()) { 6537 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6538 return IC; 6539 } 6540 6541 // Note that if we've already vectorized the loop we will have done the 6542 // runtime check and so interleaving won't require further checks. 6543 bool InterleavingRequiresRuntimePointerCheck = 6544 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6545 6546 // We want to interleave small loops in order to reduce the loop overhead and 6547 // potentially expose ILP opportunities. 6548 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6549 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6550 // We assume that the cost overhead is 1 and we use the cost model 6551 // to estimate the cost of the loop and interleave until the cost of the 6552 // loop overhead is about 5% of the cost of the loop. 6553 unsigned SmallIC = 6554 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6555 6556 // Interleave until store/load ports (estimated by max interleave count) are 6557 // saturated. 6558 unsigned NumStores = Legal->getNumStores(); 6559 unsigned NumLoads = Legal->getNumLoads(); 6560 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6561 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6562 6563 // If we have a scalar reduction (vector reductions are already dealt with 6564 // by this point), we can increase the critical path length if the loop 6565 // we're interleaving is inside another loop. Limit, by default to 2, so the 6566 // critical path only gets increased by one reduction operation. 6567 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6568 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6569 SmallIC = std::min(SmallIC, F); 6570 StoresIC = std::min(StoresIC, F); 6571 LoadsIC = std::min(LoadsIC, F); 6572 } 6573 6574 if (EnableLoadStoreRuntimeInterleave && 6575 std::max(StoresIC, LoadsIC) > SmallIC) { 6576 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6577 return std::max(StoresIC, LoadsIC); 6578 } 6579 6580 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6581 return SmallIC; 6582 } 6583 6584 // Interleave if this is a large loop (small loops are already dealt with by 6585 // this point) that could benefit from interleaving. 6586 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6587 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6588 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6589 return IC; 6590 } 6591 6592 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6593 return 1; 6594 } 6595 6596 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6597 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6598 // This function calculates the register usage by measuring the highest number 6599 // of values that are alive at a single location. Obviously, this is a very 6600 // rough estimation. We scan the loop in a topological order in order and 6601 // assign a number to each instruction. We use RPO to ensure that defs are 6602 // met before their users. We assume that each instruction that has in-loop 6603 // users starts an interval. We record every time that an in-loop value is 6604 // used, so we have a list of the first and last occurrences of each 6605 // instruction. Next, we transpose this data structure into a multi map that 6606 // holds the list of intervals that *end* at a specific location. This multi 6607 // map allows us to perform a linear search. We scan the instructions linearly 6608 // and record each time that a new interval starts, by placing it in a set. 6609 // If we find this value in the multi-map then we remove it from the set. 6610 // The max register usage is the maximum size of the set. 6611 // We also search for instructions that are defined outside the loop, but are 6612 // used inside the loop. We need this number separately from the max-interval 6613 // usage number because when we unroll, loop-invariant values do not take 6614 // more register. 6615 LoopBlocksDFS DFS(TheLoop); 6616 DFS.perform(LI); 6617 6618 RegisterUsage RU; 6619 RU.NumInstructions = 0; 6620 6621 // Each 'key' in the map opens a new interval. The values 6622 // of the map are the index of the 'last seen' usage of the 6623 // instruction that is the key. 6624 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6625 // Maps instruction to its index. 6626 DenseMap<unsigned, Instruction *> IdxToInstr; 6627 // Marks the end of each interval. 6628 IntervalMap EndPoint; 6629 // Saves the list of instruction indices that are used in the loop. 6630 SmallSet<Instruction *, 8> Ends; 6631 // Saves the list of values that are used in the loop but are 6632 // defined outside the loop, such as arguments and constants. 6633 SmallPtrSet<Value *, 8> LoopInvariants; 6634 6635 unsigned Index = 0; 6636 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6637 RU.NumInstructions += BB->size(); 6638 for (Instruction &I : *BB) { 6639 IdxToInstr[Index++] = &I; 6640 6641 // Save the end location of each USE. 6642 for (Value *U : I.operands()) { 6643 auto *Instr = dyn_cast<Instruction>(U); 6644 6645 // Ignore non-instruction values such as arguments, constants, etc. 6646 if (!Instr) 6647 continue; 6648 6649 // If this instruction is outside the loop then record it and continue. 6650 if (!TheLoop->contains(Instr)) { 6651 LoopInvariants.insert(Instr); 6652 continue; 6653 } 6654 6655 // Overwrite previous end points. 6656 EndPoint[Instr] = Index; 6657 Ends.insert(Instr); 6658 } 6659 } 6660 } 6661 6662 // Saves the list of intervals that end with the index in 'key'. 6663 typedef SmallVector<Instruction *, 2> InstrList; 6664 DenseMap<unsigned, InstrList> TransposeEnds; 6665 6666 // Transpose the EndPoints to a list of values that end at each index. 6667 for (auto &Interval : EndPoint) 6668 TransposeEnds[Interval.second].push_back(Interval.first); 6669 6670 SmallSet<Instruction *, 8> OpenIntervals; 6671 6672 // Get the size of the widest register. 6673 unsigned MaxSafeDepDist = -1U; 6674 if (Legal->getMaxSafeDepDistBytes() != -1U) 6675 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6676 unsigned WidestRegister = 6677 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6678 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6679 6680 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6681 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6682 6683 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6684 6685 // A lambda that gets the register usage for the given type and VF. 6686 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6687 if (Ty->isTokenTy()) 6688 return 0U; 6689 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6690 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6691 }; 6692 6693 for (unsigned int i = 0; i < Index; ++i) { 6694 Instruction *I = IdxToInstr[i]; 6695 6696 // Remove all of the instructions that end at this location. 6697 InstrList &List = TransposeEnds[i]; 6698 for (Instruction *ToRemove : List) 6699 OpenIntervals.erase(ToRemove); 6700 6701 // Ignore instructions that are never used within the loop. 6702 if (!Ends.count(I)) 6703 continue; 6704 6705 // Skip ignored values. 6706 if (ValuesToIgnore.count(I)) 6707 continue; 6708 6709 // For each VF find the maximum usage of registers. 6710 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6711 if (VFs[j] == 1) { 6712 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6713 continue; 6714 } 6715 collectUniformsAndScalars(VFs[j]); 6716 // Count the number of live intervals. 6717 unsigned RegUsage = 0; 6718 for (auto Inst : OpenIntervals) { 6719 // Skip ignored values for VF > 1. 6720 if (VecValuesToIgnore.count(Inst) || 6721 isScalarAfterVectorization(Inst, VFs[j])) 6722 continue; 6723 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6724 } 6725 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6726 } 6727 6728 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6729 << OpenIntervals.size() << '\n'); 6730 6731 // Add the current instruction to the list of open intervals. 6732 OpenIntervals.insert(I); 6733 } 6734 6735 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6736 unsigned Invariant = 0; 6737 if (VFs[i] == 1) 6738 Invariant = LoopInvariants.size(); 6739 else { 6740 for (auto Inst : LoopInvariants) 6741 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6742 } 6743 6744 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6745 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6746 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6747 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6748 6749 RU.LoopInvariantRegs = Invariant; 6750 RU.MaxLocalUsers = MaxUsages[i]; 6751 RUs[i] = RU; 6752 } 6753 6754 return RUs; 6755 } 6756 6757 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6758 6759 // If we aren't vectorizing the loop, or if we've already collected the 6760 // instructions to scalarize, there's nothing to do. Collection may already 6761 // have occurred if we have a user-selected VF and are now computing the 6762 // expected cost for interleaving. 6763 if (VF < 2 || InstsToScalarize.count(VF)) 6764 return; 6765 6766 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6767 // not profitable to scalarize any instructions, the presence of VF in the 6768 // map will indicate that we've analyzed it already. 6769 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6770 6771 // Find all the instructions that are scalar with predication in the loop and 6772 // determine if it would be better to not if-convert the blocks they are in. 6773 // If so, we also record the instructions to scalarize. 6774 for (BasicBlock *BB : TheLoop->blocks()) { 6775 if (!Legal->blockNeedsPredication(BB)) 6776 continue; 6777 for (Instruction &I : *BB) 6778 if (Legal->isScalarWithPredication(&I)) { 6779 ScalarCostsTy ScalarCosts; 6780 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6781 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6782 6783 // Remember that BB will remain after vectorization. 6784 PredicatedBBsAfterVectorization.insert(BB); 6785 } 6786 } 6787 } 6788 6789 int LoopVectorizationCostModel::computePredInstDiscount( 6790 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6791 unsigned VF) { 6792 6793 assert(!isUniformAfterVectorization(PredInst, VF) && 6794 "Instruction marked uniform-after-vectorization will be predicated"); 6795 6796 // Initialize the discount to zero, meaning that the scalar version and the 6797 // vector version cost the same. 6798 int Discount = 0; 6799 6800 // Holds instructions to analyze. The instructions we visit are mapped in 6801 // ScalarCosts. Those instructions are the ones that would be scalarized if 6802 // we find that the scalar version costs less. 6803 SmallVector<Instruction *, 8> Worklist; 6804 6805 // Returns true if the given instruction can be scalarized. 6806 auto canBeScalarized = [&](Instruction *I) -> bool { 6807 6808 // We only attempt to scalarize instructions forming a single-use chain 6809 // from the original predicated block that would otherwise be vectorized. 6810 // Although not strictly necessary, we give up on instructions we know will 6811 // already be scalar to avoid traversing chains that are unlikely to be 6812 // beneficial. 6813 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6814 isScalarAfterVectorization(I, VF)) 6815 return false; 6816 6817 // If the instruction is scalar with predication, it will be analyzed 6818 // separately. We ignore it within the context of PredInst. 6819 if (Legal->isScalarWithPredication(I)) 6820 return false; 6821 6822 // If any of the instruction's operands are uniform after vectorization, 6823 // the instruction cannot be scalarized. This prevents, for example, a 6824 // masked load from being scalarized. 6825 // 6826 // We assume we will only emit a value for lane zero of an instruction 6827 // marked uniform after vectorization, rather than VF identical values. 6828 // Thus, if we scalarize an instruction that uses a uniform, we would 6829 // create uses of values corresponding to the lanes we aren't emitting code 6830 // for. This behavior can be changed by allowing getScalarValue to clone 6831 // the lane zero values for uniforms rather than asserting. 6832 for (Use &U : I->operands()) 6833 if (auto *J = dyn_cast<Instruction>(U.get())) 6834 if (isUniformAfterVectorization(J, VF)) 6835 return false; 6836 6837 // Otherwise, we can scalarize the instruction. 6838 return true; 6839 }; 6840 6841 // Returns true if an operand that cannot be scalarized must be extracted 6842 // from a vector. We will account for this scalarization overhead below. Note 6843 // that the non-void predicated instructions are placed in their own blocks, 6844 // and their return values are inserted into vectors. Thus, an extract would 6845 // still be required. 6846 auto needsExtract = [&](Instruction *I) -> bool { 6847 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6848 }; 6849 6850 // Compute the expected cost discount from scalarizing the entire expression 6851 // feeding the predicated instruction. We currently only consider expressions 6852 // that are single-use instruction chains. 6853 Worklist.push_back(PredInst); 6854 while (!Worklist.empty()) { 6855 Instruction *I = Worklist.pop_back_val(); 6856 6857 // If we've already analyzed the instruction, there's nothing to do. 6858 if (ScalarCosts.count(I)) 6859 continue; 6860 6861 // Compute the cost of the vector instruction. Note that this cost already 6862 // includes the scalarization overhead of the predicated instruction. 6863 unsigned VectorCost = getInstructionCost(I, VF).first; 6864 6865 // Compute the cost of the scalarized instruction. This cost is the cost of 6866 // the instruction as if it wasn't if-converted and instead remained in the 6867 // predicated block. We will scale this cost by block probability after 6868 // computing the scalarization overhead. 6869 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6870 6871 // Compute the scalarization overhead of needed insertelement instructions 6872 // and phi nodes. 6873 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6874 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6875 true, false); 6876 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6877 } 6878 6879 // Compute the scalarization overhead of needed extractelement 6880 // instructions. For each of the instruction's operands, if the operand can 6881 // be scalarized, add it to the worklist; otherwise, account for the 6882 // overhead. 6883 for (Use &U : I->operands()) 6884 if (auto *J = dyn_cast<Instruction>(U.get())) { 6885 assert(VectorType::isValidElementType(J->getType()) && 6886 "Instruction has non-scalar type"); 6887 if (canBeScalarized(J)) 6888 Worklist.push_back(J); 6889 else if (needsExtract(J)) 6890 ScalarCost += TTI.getScalarizationOverhead( 6891 ToVectorTy(J->getType(),VF), false, true); 6892 } 6893 6894 // Scale the total scalar cost by block probability. 6895 ScalarCost /= getReciprocalPredBlockProb(); 6896 6897 // Compute the discount. A non-negative discount means the vector version 6898 // of the instruction costs more, and scalarizing would be beneficial. 6899 Discount += VectorCost - ScalarCost; 6900 ScalarCosts[I] = ScalarCost; 6901 } 6902 6903 return Discount; 6904 } 6905 6906 LoopVectorizationCostModel::VectorizationCostTy 6907 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6908 VectorizationCostTy Cost; 6909 6910 // Collect Uniform and Scalar instructions after vectorization with VF. 6911 collectUniformsAndScalars(VF); 6912 6913 // Collect the instructions (and their associated costs) that will be more 6914 // profitable to scalarize. 6915 collectInstsToScalarize(VF); 6916 6917 // For each block. 6918 for (BasicBlock *BB : TheLoop->blocks()) { 6919 VectorizationCostTy BlockCost; 6920 6921 // For each instruction in the old loop. 6922 for (Instruction &I : *BB) { 6923 // Skip dbg intrinsics. 6924 if (isa<DbgInfoIntrinsic>(I)) 6925 continue; 6926 6927 // Skip ignored values. 6928 if (ValuesToIgnore.count(&I)) 6929 continue; 6930 6931 VectorizationCostTy C = getInstructionCost(&I, VF); 6932 6933 // Check if we should override the cost. 6934 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6935 C.first = ForceTargetInstructionCost; 6936 6937 BlockCost.first += C.first; 6938 BlockCost.second |= C.second; 6939 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6940 << VF << " For instruction: " << I << '\n'); 6941 } 6942 6943 // If we are vectorizing a predicated block, it will have been 6944 // if-converted. This means that the block's instructions (aside from 6945 // stores and instructions that may divide by zero) will now be 6946 // unconditionally executed. For the scalar case, we may not always execute 6947 // the predicated block. Thus, scale the block's cost by the probability of 6948 // executing it. 6949 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6950 BlockCost.first /= getReciprocalPredBlockProb(); 6951 6952 Cost.first += BlockCost.first; 6953 Cost.second |= BlockCost.second; 6954 } 6955 6956 return Cost; 6957 } 6958 6959 /// \brief Gets Address Access SCEV after verifying that the access pattern 6960 /// is loop invariant except the induction variable dependence. 6961 /// 6962 /// This SCEV can be sent to the Target in order to estimate the address 6963 /// calculation cost. 6964 static const SCEV *getAddressAccessSCEV( 6965 Value *Ptr, 6966 LoopVectorizationLegality *Legal, 6967 ScalarEvolution *SE, 6968 const Loop *TheLoop) { 6969 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6970 if (!Gep) 6971 return nullptr; 6972 6973 // We are looking for a gep with all loop invariant indices except for one 6974 // which should be an induction variable. 6975 unsigned NumOperands = Gep->getNumOperands(); 6976 for (unsigned i = 1; i < NumOperands; ++i) { 6977 Value *Opd = Gep->getOperand(i); 6978 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6979 !Legal->isInductionVariable(Opd)) 6980 return nullptr; 6981 } 6982 6983 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6984 return SE->getSCEV(Ptr); 6985 } 6986 6987 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6988 return Legal->hasStride(I->getOperand(0)) || 6989 Legal->hasStride(I->getOperand(1)); 6990 } 6991 6992 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6993 unsigned VF) { 6994 Type *ValTy = getMemInstValueType(I); 6995 auto SE = PSE.getSE(); 6996 6997 unsigned Alignment = getMemInstAlignment(I); 6998 unsigned AS = getMemInstAddressSpace(I); 6999 Value *Ptr = getPointerOperand(I); 7000 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7001 7002 // Figure out whether the access is strided and get the stride value 7003 // if it's known in compile time 7004 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7005 7006 // Get the cost of the scalar memory instruction and address computation. 7007 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7008 7009 Cost += VF * 7010 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7011 AS, I); 7012 7013 // Get the overhead of the extractelement and insertelement instructions 7014 // we might create due to scalarization. 7015 Cost += getScalarizationOverhead(I, VF, TTI); 7016 7017 // If we have a predicated store, it may not be executed for each vector 7018 // lane. Scale the cost by the probability of executing the predicated 7019 // block. 7020 if (Legal->isScalarWithPredication(I)) 7021 Cost /= getReciprocalPredBlockProb(); 7022 7023 return Cost; 7024 } 7025 7026 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7027 unsigned VF) { 7028 Type *ValTy = getMemInstValueType(I); 7029 Type *VectorTy = ToVectorTy(ValTy, VF); 7030 unsigned Alignment = getMemInstAlignment(I); 7031 Value *Ptr = getPointerOperand(I); 7032 unsigned AS = getMemInstAddressSpace(I); 7033 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7034 7035 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7036 "Stride should be 1 or -1 for consecutive memory access"); 7037 unsigned Cost = 0; 7038 if (Legal->isMaskRequired(I)) 7039 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7040 else 7041 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7042 7043 bool Reverse = ConsecutiveStride < 0; 7044 if (Reverse) 7045 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7046 return Cost; 7047 } 7048 7049 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7050 unsigned VF) { 7051 LoadInst *LI = cast<LoadInst>(I); 7052 Type *ValTy = LI->getType(); 7053 Type *VectorTy = ToVectorTy(ValTy, VF); 7054 unsigned Alignment = LI->getAlignment(); 7055 unsigned AS = LI->getPointerAddressSpace(); 7056 7057 return TTI.getAddressComputationCost(ValTy) + 7058 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7059 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7060 } 7061 7062 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7063 unsigned VF) { 7064 Type *ValTy = getMemInstValueType(I); 7065 Type *VectorTy = ToVectorTy(ValTy, VF); 7066 unsigned Alignment = getMemInstAlignment(I); 7067 Value *Ptr = getPointerOperand(I); 7068 7069 return TTI.getAddressComputationCost(VectorTy) + 7070 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7071 Legal->isMaskRequired(I), Alignment); 7072 } 7073 7074 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7075 unsigned VF) { 7076 Type *ValTy = getMemInstValueType(I); 7077 Type *VectorTy = ToVectorTy(ValTy, VF); 7078 unsigned AS = getMemInstAddressSpace(I); 7079 7080 auto Group = Legal->getInterleavedAccessGroup(I); 7081 assert(Group && "Fail to get an interleaved access group."); 7082 7083 unsigned InterleaveFactor = Group->getFactor(); 7084 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7085 7086 // Holds the indices of existing members in an interleaved load group. 7087 // An interleaved store group doesn't need this as it doesn't allow gaps. 7088 SmallVector<unsigned, 4> Indices; 7089 if (isa<LoadInst>(I)) { 7090 for (unsigned i = 0; i < InterleaveFactor; i++) 7091 if (Group->getMember(i)) 7092 Indices.push_back(i); 7093 } 7094 7095 // Calculate the cost of the whole interleaved group. 7096 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7097 Group->getFactor(), Indices, 7098 Group->getAlignment(), AS); 7099 7100 if (Group->isReverse()) 7101 Cost += Group->getNumMembers() * 7102 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7103 return Cost; 7104 } 7105 7106 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7107 unsigned VF) { 7108 7109 // Calculate scalar cost only. Vectorization cost should be ready at this 7110 // moment. 7111 if (VF == 1) { 7112 Type *ValTy = getMemInstValueType(I); 7113 unsigned Alignment = getMemInstAlignment(I); 7114 unsigned AS = getMemInstAddressSpace(I); 7115 7116 return TTI.getAddressComputationCost(ValTy) + 7117 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7118 } 7119 return getWideningCost(I, VF); 7120 } 7121 7122 LoopVectorizationCostModel::VectorizationCostTy 7123 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7124 // If we know that this instruction will remain uniform, check the cost of 7125 // the scalar version. 7126 if (isUniformAfterVectorization(I, VF)) 7127 VF = 1; 7128 7129 if (VF > 1 && isProfitableToScalarize(I, VF)) 7130 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7131 7132 Type *VectorTy; 7133 unsigned C = getInstructionCost(I, VF, VectorTy); 7134 7135 bool TypeNotScalarized = 7136 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 7137 return VectorizationCostTy(C, TypeNotScalarized); 7138 } 7139 7140 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7141 if (VF == 1) 7142 return; 7143 for (BasicBlock *BB : TheLoop->blocks()) { 7144 // For each instruction in the old loop. 7145 for (Instruction &I : *BB) { 7146 Value *Ptr = getPointerOperand(&I); 7147 if (!Ptr) 7148 continue; 7149 7150 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7151 // Scalar load + broadcast 7152 unsigned Cost = getUniformMemOpCost(&I, VF); 7153 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7154 continue; 7155 } 7156 7157 // We assume that widening is the best solution when possible. 7158 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7159 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7160 setWideningDecision(&I, VF, CM_Widen, Cost); 7161 continue; 7162 } 7163 7164 // Choose between Interleaving, Gather/Scatter or Scalarization. 7165 unsigned InterleaveCost = UINT_MAX; 7166 unsigned NumAccesses = 1; 7167 if (Legal->isAccessInterleaved(&I)) { 7168 auto Group = Legal->getInterleavedAccessGroup(&I); 7169 assert(Group && "Fail to get an interleaved access group."); 7170 7171 // Make one decision for the whole group. 7172 if (getWideningDecision(&I, VF) != CM_Unknown) 7173 continue; 7174 7175 NumAccesses = Group->getNumMembers(); 7176 InterleaveCost = getInterleaveGroupCost(&I, VF); 7177 } 7178 7179 unsigned GatherScatterCost = 7180 Legal->isLegalGatherOrScatter(&I) 7181 ? getGatherScatterCost(&I, VF) * NumAccesses 7182 : UINT_MAX; 7183 7184 unsigned ScalarizationCost = 7185 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7186 7187 // Choose better solution for the current VF, 7188 // write down this decision and use it during vectorization. 7189 unsigned Cost; 7190 InstWidening Decision; 7191 if (InterleaveCost <= GatherScatterCost && 7192 InterleaveCost < ScalarizationCost) { 7193 Decision = CM_Interleave; 7194 Cost = InterleaveCost; 7195 } else if (GatherScatterCost < ScalarizationCost) { 7196 Decision = CM_GatherScatter; 7197 Cost = GatherScatterCost; 7198 } else { 7199 Decision = CM_Scalarize; 7200 Cost = ScalarizationCost; 7201 } 7202 // If the instructions belongs to an interleave group, the whole group 7203 // receives the same decision. The whole group receives the cost, but 7204 // the cost will actually be assigned to one instruction. 7205 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7206 setWideningDecision(Group, VF, Decision, Cost); 7207 else 7208 setWideningDecision(&I, VF, Decision, Cost); 7209 } 7210 } 7211 } 7212 7213 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7214 unsigned VF, 7215 Type *&VectorTy) { 7216 Type *RetTy = I->getType(); 7217 if (canTruncateToMinimalBitwidth(I, VF)) 7218 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7219 VectorTy = ToVectorTy(RetTy, VF); 7220 auto SE = PSE.getSE(); 7221 7222 // TODO: We need to estimate the cost of intrinsic calls. 7223 switch (I->getOpcode()) { 7224 case Instruction::GetElementPtr: 7225 // We mark this instruction as zero-cost because the cost of GEPs in 7226 // vectorized code depends on whether the corresponding memory instruction 7227 // is scalarized or not. Therefore, we handle GEPs with the memory 7228 // instruction cost. 7229 return 0; 7230 case Instruction::Br: { 7231 // In cases of scalarized and predicated instructions, there will be VF 7232 // predicated blocks in the vectorized loop. Each branch around these 7233 // blocks requires also an extract of its vector compare i1 element. 7234 bool ScalarPredicatedBB = false; 7235 BranchInst *BI = cast<BranchInst>(I); 7236 if (VF > 1 && BI->isConditional() && 7237 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7238 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7239 ScalarPredicatedBB = true; 7240 7241 if (ScalarPredicatedBB) { 7242 // Return cost for branches around scalarized and predicated blocks. 7243 Type *Vec_i1Ty = 7244 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7245 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7246 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7247 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7248 // The back-edge branch will remain, as will all scalar branches. 7249 return TTI.getCFInstrCost(Instruction::Br); 7250 else 7251 // This branch will be eliminated by if-conversion. 7252 return 0; 7253 // Note: We currently assume zero cost for an unconditional branch inside 7254 // a predicated block since it will become a fall-through, although we 7255 // may decide in the future to call TTI for all branches. 7256 } 7257 case Instruction::PHI: { 7258 auto *Phi = cast<PHINode>(I); 7259 7260 // First-order recurrences are replaced by vector shuffles inside the loop. 7261 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7262 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7263 VectorTy, VF - 1, VectorTy); 7264 7265 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7266 // converted into select instructions. We require N - 1 selects per phi 7267 // node, where N is the number of incoming values. 7268 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7269 return (Phi->getNumIncomingValues() - 1) * 7270 TTI.getCmpSelInstrCost( 7271 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7272 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7273 7274 return TTI.getCFInstrCost(Instruction::PHI); 7275 } 7276 case Instruction::UDiv: 7277 case Instruction::SDiv: 7278 case Instruction::URem: 7279 case Instruction::SRem: 7280 // If we have a predicated instruction, it may not be executed for each 7281 // vector lane. Get the scalarization cost and scale this amount by the 7282 // probability of executing the predicated block. If the instruction is not 7283 // predicated, we fall through to the next case. 7284 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7285 unsigned Cost = 0; 7286 7287 // These instructions have a non-void type, so account for the phi nodes 7288 // that we will create. This cost is likely to be zero. The phi node 7289 // cost, if any, should be scaled by the block probability because it 7290 // models a copy at the end of each predicated block. 7291 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7292 7293 // The cost of the non-predicated instruction. 7294 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7295 7296 // The cost of insertelement and extractelement instructions needed for 7297 // scalarization. 7298 Cost += getScalarizationOverhead(I, VF, TTI); 7299 7300 // Scale the cost by the probability of executing the predicated blocks. 7301 // This assumes the predicated block for each vector lane is equally 7302 // likely. 7303 return Cost / getReciprocalPredBlockProb(); 7304 } 7305 case Instruction::Add: 7306 case Instruction::FAdd: 7307 case Instruction::Sub: 7308 case Instruction::FSub: 7309 case Instruction::Mul: 7310 case Instruction::FMul: 7311 case Instruction::FDiv: 7312 case Instruction::FRem: 7313 case Instruction::Shl: 7314 case Instruction::LShr: 7315 case Instruction::AShr: 7316 case Instruction::And: 7317 case Instruction::Or: 7318 case Instruction::Xor: { 7319 // Since we will replace the stride by 1 the multiplication should go away. 7320 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7321 return 0; 7322 // Certain instructions can be cheaper to vectorize if they have a constant 7323 // second vector operand. One example of this are shifts on x86. 7324 TargetTransformInfo::OperandValueKind Op1VK = 7325 TargetTransformInfo::OK_AnyValue; 7326 TargetTransformInfo::OperandValueKind Op2VK = 7327 TargetTransformInfo::OK_AnyValue; 7328 TargetTransformInfo::OperandValueProperties Op1VP = 7329 TargetTransformInfo::OP_None; 7330 TargetTransformInfo::OperandValueProperties Op2VP = 7331 TargetTransformInfo::OP_None; 7332 Value *Op2 = I->getOperand(1); 7333 7334 // Check for a splat or for a non uniform vector of constants. 7335 if (isa<ConstantInt>(Op2)) { 7336 ConstantInt *CInt = cast<ConstantInt>(Op2); 7337 if (CInt && CInt->getValue().isPowerOf2()) 7338 Op2VP = TargetTransformInfo::OP_PowerOf2; 7339 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7340 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7341 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7342 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7343 if (SplatValue) { 7344 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7345 if (CInt && CInt->getValue().isPowerOf2()) 7346 Op2VP = TargetTransformInfo::OP_PowerOf2; 7347 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7348 } 7349 } else if (Legal->isUniform(Op2)) { 7350 Op2VK = TargetTransformInfo::OK_UniformValue; 7351 } 7352 SmallVector<const Value *, 4> Operands(I->operand_values()); 7353 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7354 Op2VK, Op1VP, Op2VP, Operands); 7355 } 7356 case Instruction::Select: { 7357 SelectInst *SI = cast<SelectInst>(I); 7358 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7359 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7360 Type *CondTy = SI->getCondition()->getType(); 7361 if (!ScalarCond) 7362 CondTy = VectorType::get(CondTy, VF); 7363 7364 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7365 } 7366 case Instruction::ICmp: 7367 case Instruction::FCmp: { 7368 Type *ValTy = I->getOperand(0)->getType(); 7369 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7370 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7371 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7372 VectorTy = ToVectorTy(ValTy, VF); 7373 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7374 } 7375 case Instruction::Store: 7376 case Instruction::Load: { 7377 VectorTy = ToVectorTy(getMemInstValueType(I), VF); 7378 return getMemoryInstructionCost(I, VF); 7379 } 7380 case Instruction::ZExt: 7381 case Instruction::SExt: 7382 case Instruction::FPToUI: 7383 case Instruction::FPToSI: 7384 case Instruction::FPExt: 7385 case Instruction::PtrToInt: 7386 case Instruction::IntToPtr: 7387 case Instruction::SIToFP: 7388 case Instruction::UIToFP: 7389 case Instruction::Trunc: 7390 case Instruction::FPTrunc: 7391 case Instruction::BitCast: { 7392 // We optimize the truncation of induction variables having constant 7393 // integer steps. The cost of these truncations is the same as the scalar 7394 // operation. 7395 if (isOptimizableIVTruncate(I, VF)) { 7396 auto *Trunc = cast<TruncInst>(I); 7397 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7398 Trunc->getSrcTy(), Trunc); 7399 } 7400 7401 Type *SrcScalarTy = I->getOperand(0)->getType(); 7402 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7403 if (canTruncateToMinimalBitwidth(I, VF)) { 7404 // This cast is going to be shrunk. This may remove the cast or it might 7405 // turn it into slightly different cast. For example, if MinBW == 16, 7406 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7407 // 7408 // Calculate the modified src and dest types. 7409 Type *MinVecTy = VectorTy; 7410 if (I->getOpcode() == Instruction::Trunc) { 7411 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7412 VectorTy = 7413 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7414 } else if (I->getOpcode() == Instruction::ZExt || 7415 I->getOpcode() == Instruction::SExt) { 7416 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7417 VectorTy = 7418 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7419 } 7420 } 7421 7422 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7423 } 7424 case Instruction::Call: { 7425 bool NeedToScalarize; 7426 CallInst *CI = cast<CallInst>(I); 7427 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7428 if (getVectorIntrinsicIDForCall(CI, TLI)) 7429 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7430 return CallCost; 7431 } 7432 default: 7433 // The cost of executing VF copies of the scalar instruction. This opcode 7434 // is unknown. Assume that it is the same as 'mul'. 7435 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7436 getScalarizationOverhead(I, VF, TTI); 7437 } // end of switch. 7438 } 7439 7440 char LoopVectorize::ID = 0; 7441 static const char lv_name[] = "Loop Vectorization"; 7442 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7443 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7444 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7445 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7446 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7447 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7448 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7449 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7450 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7451 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7452 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7453 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7454 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7455 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7456 7457 namespace llvm { 7458 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7459 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7460 } 7461 } 7462 7463 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7464 7465 // Check if the pointer operand of a load or store instruction is 7466 // consecutive. 7467 if (auto *Ptr = getPointerOperand(Inst)) 7468 return Legal->isConsecutivePtr(Ptr); 7469 return false; 7470 } 7471 7472 void LoopVectorizationCostModel::collectValuesToIgnore() { 7473 // Ignore ephemeral values. 7474 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7475 7476 // Ignore type-promoting instructions we identified during reduction 7477 // detection. 7478 for (auto &Reduction : *Legal->getReductionVars()) { 7479 RecurrenceDescriptor &RedDes = Reduction.second; 7480 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7481 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7482 } 7483 } 7484 7485 LoopVectorizationCostModel::VectorizationFactor 7486 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7487 7488 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7489 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7490 0U}; 7491 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7492 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7493 return NoVectorization; 7494 7495 if (UserVF) { 7496 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7497 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7498 // Collect the instructions (and their associated costs) that will be more 7499 // profitable to scalarize. 7500 CM.selectUserVectorizationFactor(UserVF); 7501 return {UserVF, 0}; 7502 } 7503 7504 unsigned MaxVF = MaybeMaxVF.getValue(); 7505 assert(MaxVF != 0 && "MaxVF is zero."); 7506 if (MaxVF == 1) 7507 return NoVectorization; 7508 7509 // Select the optimal vectorization factor. 7510 return CM.selectVectorizationFactor(MaxVF); 7511 } 7512 7513 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV) { 7514 // Perform the actual loop transformation. 7515 7516 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7517 ILV.createVectorizedLoopSkeleton(); 7518 7519 //===------------------------------------------------===// 7520 // 7521 // Notice: any optimization or new instruction that go 7522 // into the code below should also be implemented in 7523 // the cost-model. 7524 // 7525 //===------------------------------------------------===// 7526 7527 // 2. Copy and widen instructions from the old loop into the new loop. 7528 7529 // Collect instructions from the original loop that will become trivially dead 7530 // in the vectorized loop. We don't need to vectorize these instructions. For 7531 // example, original induction update instructions can become dead because we 7532 // separately emit induction "steps" when generating code for the new loop. 7533 // Similarly, we create a new latch condition when setting up the structure 7534 // of the new loop, so the old one can become dead. 7535 SmallPtrSet<Instruction *, 4> DeadInstructions; 7536 collectTriviallyDeadInstructions(DeadInstructions); 7537 7538 // Scan the loop in a topological order to ensure that defs are vectorized 7539 // before users. 7540 LoopBlocksDFS DFS(OrigLoop); 7541 DFS.perform(LI); 7542 7543 // Vectorize all instructions in the original loop that will not become 7544 // trivially dead when vectorized. 7545 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 7546 for (Instruction &I : *BB) 7547 if (!DeadInstructions.count(&I)) 7548 ILV.vectorizeInstruction(I); 7549 7550 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7551 // predication, updating analyses. 7552 ILV.fixVectorizedLoop(); 7553 } 7554 7555 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7556 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7557 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7558 7559 // We create new control-flow for the vectorized loop, so the original 7560 // condition will be dead after vectorization if it's only used by the 7561 // branch. 7562 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7563 if (Cmp && Cmp->hasOneUse()) 7564 DeadInstructions.insert(Cmp); 7565 7566 // We create new "steps" for induction variable updates to which the original 7567 // induction variables map. An original update instruction will be dead if 7568 // all its users except the induction variable are dead. 7569 for (auto &Induction : *Legal->getInductionVars()) { 7570 PHINode *Ind = Induction.first; 7571 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7572 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7573 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7574 })) 7575 DeadInstructions.insert(IndUpdate); 7576 } 7577 } 7578 7579 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7580 auto *SI = dyn_cast<StoreInst>(Instr); 7581 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7582 7583 return scalarizeInstruction(Instr, IfPredicateInstr); 7584 } 7585 7586 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7587 7588 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7589 7590 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7591 Instruction::BinaryOps BinOp) { 7592 // When unrolling and the VF is 1, we only need to add a simple scalar. 7593 Type *Ty = Val->getType(); 7594 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7595 7596 if (Ty->isFloatingPointTy()) { 7597 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7598 7599 // Floating point operations had to be 'fast' to enable the unrolling. 7600 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7601 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7602 } 7603 Constant *C = ConstantInt::get(Ty, StartIdx); 7604 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7605 } 7606 7607 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7608 SmallVector<Metadata *, 4> MDs; 7609 // Reserve first location for self reference to the LoopID metadata node. 7610 MDs.push_back(nullptr); 7611 bool IsUnrollMetadata = false; 7612 MDNode *LoopID = L->getLoopID(); 7613 if (LoopID) { 7614 // First find existing loop unrolling disable metadata. 7615 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7616 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7617 if (MD) { 7618 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7619 IsUnrollMetadata = 7620 S && S->getString().startswith("llvm.loop.unroll.disable"); 7621 } 7622 MDs.push_back(LoopID->getOperand(i)); 7623 } 7624 } 7625 7626 if (!IsUnrollMetadata) { 7627 // Add runtime unroll disable metadata. 7628 LLVMContext &Context = L->getHeader()->getContext(); 7629 SmallVector<Metadata *, 1> DisableOperands; 7630 DisableOperands.push_back( 7631 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7632 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7633 MDs.push_back(DisableNode); 7634 MDNode *NewLoopID = MDNode::get(Context, MDs); 7635 // Set operand 0 to refer to the loop id itself. 7636 NewLoopID->replaceOperandWith(0, NewLoopID); 7637 L->setLoopID(NewLoopID); 7638 } 7639 } 7640 7641 bool LoopVectorizePass::processLoop(Loop *L) { 7642 assert(L->empty() && "Only process inner loops."); 7643 7644 #ifndef NDEBUG 7645 const std::string DebugLocStr = getDebugLocString(L); 7646 #endif /* NDEBUG */ 7647 7648 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7649 << L->getHeader()->getParent()->getName() << "\" from " 7650 << DebugLocStr << "\n"); 7651 7652 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7653 7654 DEBUG(dbgs() << "LV: Loop hints:" 7655 << " force=" 7656 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7657 ? "disabled" 7658 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7659 ? "enabled" 7660 : "?")) 7661 << " width=" << Hints.getWidth() 7662 << " unroll=" << Hints.getInterleave() << "\n"); 7663 7664 // Function containing loop 7665 Function *F = L->getHeader()->getParent(); 7666 7667 // Looking at the diagnostic output is the only way to determine if a loop 7668 // was vectorized (other than looking at the IR or machine code), so it 7669 // is important to generate an optimization remark for each loop. Most of 7670 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7671 // generated as OptimizationRemark and OptimizationRemarkMissed are 7672 // less verbose reporting vectorized loops and unvectorized loops that may 7673 // benefit from vectorization, respectively. 7674 7675 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7676 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7677 return false; 7678 } 7679 7680 // Check the loop for a trip count threshold: 7681 // do not vectorize loops with a tiny trip count. 7682 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7683 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7684 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7685 << "This loop is not worth vectorizing."); 7686 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7687 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7688 else { 7689 DEBUG(dbgs() << "\n"); 7690 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7691 "NotBeneficial", L) 7692 << "vectorization is not beneficial " 7693 "and is not explicitly forced"); 7694 return false; 7695 } 7696 } 7697 7698 PredicatedScalarEvolution PSE(*SE, *L); 7699 7700 // Check if it is legal to vectorize the loop. 7701 LoopVectorizationRequirements Requirements(*ORE); 7702 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7703 &Requirements, &Hints); 7704 if (!LVL.canVectorize()) { 7705 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7706 emitMissedWarning(F, L, Hints, ORE); 7707 return false; 7708 } 7709 7710 // Check the function attributes to find out if this function should be 7711 // optimized for size. 7712 bool OptForSize = 7713 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7714 7715 // Compute the weighted frequency of this loop being executed and see if it 7716 // is less than 20% of the function entry baseline frequency. Note that we 7717 // always have a canonical loop here because we think we *can* vectorize. 7718 // FIXME: This is hidden behind a flag due to pervasive problems with 7719 // exactly what block frequency models. 7720 if (LoopVectorizeWithBlockFrequency) { 7721 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7722 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7723 LoopEntryFreq < ColdEntryFreq) 7724 OptForSize = true; 7725 } 7726 7727 // Check the function attributes to see if implicit floats are allowed. 7728 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7729 // an integer loop and the vector instructions selected are purely integer 7730 // vector instructions? 7731 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7732 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7733 "attribute is used.\n"); 7734 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7735 "NoImplicitFloat", L) 7736 << "loop not vectorized due to NoImplicitFloat attribute"); 7737 emitMissedWarning(F, L, Hints, ORE); 7738 return false; 7739 } 7740 7741 // Check if the target supports potentially unsafe FP vectorization. 7742 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7743 // for the target we're vectorizing for, to make sure none of the 7744 // additional fp-math flags can help. 7745 if (Hints.isPotentiallyUnsafe() && 7746 TTI->isFPVectorizationPotentiallyUnsafe()) { 7747 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7748 ORE->emit( 7749 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7750 << "loop not vectorized due to unsafe FP support."); 7751 emitMissedWarning(F, L, Hints, ORE); 7752 return false; 7753 } 7754 7755 // Use the cost model. 7756 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7757 &Hints); 7758 CM.collectValuesToIgnore(); 7759 7760 // Use the planner for vectorization. 7761 LoopVectorizationPlanner LVP(L, LI, &LVL, CM); 7762 7763 // Get user vectorization factor. 7764 unsigned UserVF = Hints.getWidth(); 7765 7766 // Plan how to best vectorize, return the best VF and its cost. 7767 LoopVectorizationCostModel::VectorizationFactor VF = 7768 LVP.plan(OptForSize, UserVF); 7769 7770 // Select the interleave count. 7771 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7772 7773 // Get user interleave count. 7774 unsigned UserIC = Hints.getInterleave(); 7775 7776 // Identify the diagnostic messages that should be produced. 7777 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7778 bool VectorizeLoop = true, InterleaveLoop = true; 7779 if (Requirements.doesNotMeet(F, L, Hints)) { 7780 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7781 "requirements.\n"); 7782 emitMissedWarning(F, L, Hints, ORE); 7783 return false; 7784 } 7785 7786 if (VF.Width == 1) { 7787 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7788 VecDiagMsg = std::make_pair( 7789 "VectorizationNotBeneficial", 7790 "the cost-model indicates that vectorization is not beneficial"); 7791 VectorizeLoop = false; 7792 } 7793 7794 if (IC == 1 && UserIC <= 1) { 7795 // Tell the user interleaving is not beneficial. 7796 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7797 IntDiagMsg = std::make_pair( 7798 "InterleavingNotBeneficial", 7799 "the cost-model indicates that interleaving is not beneficial"); 7800 InterleaveLoop = false; 7801 if (UserIC == 1) { 7802 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7803 IntDiagMsg.second += 7804 " and is explicitly disabled or interleave count is set to 1"; 7805 } 7806 } else if (IC > 1 && UserIC == 1) { 7807 // Tell the user interleaving is beneficial, but it explicitly disabled. 7808 DEBUG(dbgs() 7809 << "LV: Interleaving is beneficial but is explicitly disabled."); 7810 IntDiagMsg = std::make_pair( 7811 "InterleavingBeneficialButDisabled", 7812 "the cost-model indicates that interleaving is beneficial " 7813 "but is explicitly disabled or interleave count is set to 1"); 7814 InterleaveLoop = false; 7815 } 7816 7817 // Override IC if user provided an interleave count. 7818 IC = UserIC > 0 ? UserIC : IC; 7819 7820 // Emit diagnostic messages, if any. 7821 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7822 if (!VectorizeLoop && !InterleaveLoop) { 7823 // Do not vectorize or interleaving the loop. 7824 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7825 L->getStartLoc(), L->getHeader()) 7826 << VecDiagMsg.second); 7827 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7828 L->getStartLoc(), L->getHeader()) 7829 << IntDiagMsg.second); 7830 return false; 7831 } else if (!VectorizeLoop && InterleaveLoop) { 7832 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7833 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7834 L->getStartLoc(), L->getHeader()) 7835 << VecDiagMsg.second); 7836 } else if (VectorizeLoop && !InterleaveLoop) { 7837 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7838 << DebugLocStr << '\n'); 7839 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7840 L->getStartLoc(), L->getHeader()) 7841 << IntDiagMsg.second); 7842 } else if (VectorizeLoop && InterleaveLoop) { 7843 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7844 << DebugLocStr << '\n'); 7845 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7846 } 7847 7848 using namespace ore; 7849 if (!VectorizeLoop) { 7850 assert(IC > 1 && "interleave count should not be 1 or 0"); 7851 // If we decided that it is not legal to vectorize the loop, then 7852 // interleave it. 7853 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7854 &CM); 7855 LVP.executePlan(Unroller); 7856 7857 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7858 L->getHeader()) 7859 << "interleaved loop (interleaved count: " 7860 << NV("InterleaveCount", IC) << ")"); 7861 } else { 7862 // If we decided that it is *legal* to vectorize the loop, then do it. 7863 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7864 &LVL, &CM); 7865 LVP.executePlan(LB); 7866 ++LoopsVectorized; 7867 7868 // Add metadata to disable runtime unrolling a scalar loop when there are 7869 // no runtime checks about strides and memory. A scalar loop that is 7870 // rarely used is not worth unrolling. 7871 if (!LB.areSafetyChecksAdded()) 7872 AddRuntimeUnrollDisableMetaData(L); 7873 7874 // Report the vectorization decision. 7875 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7876 L->getHeader()) 7877 << "vectorized loop (vectorization width: " 7878 << NV("VectorizationFactor", VF.Width) 7879 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7880 } 7881 7882 // Mark the loop as already vectorized to avoid vectorizing again. 7883 Hints.setAlreadyVectorized(); 7884 7885 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7886 return true; 7887 } 7888 7889 bool LoopVectorizePass::runImpl( 7890 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7891 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7892 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7893 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7894 OptimizationRemarkEmitter &ORE_) { 7895 7896 SE = &SE_; 7897 LI = &LI_; 7898 TTI = &TTI_; 7899 DT = &DT_; 7900 BFI = &BFI_; 7901 TLI = TLI_; 7902 AA = &AA_; 7903 AC = &AC_; 7904 GetLAA = &GetLAA_; 7905 DB = &DB_; 7906 ORE = &ORE_; 7907 7908 // Compute some weights outside of the loop over the loops. Compute this 7909 // using a BranchProbability to re-use its scaling math. 7910 const BranchProbability ColdProb(1, 5); // 20% 7911 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7912 7913 // Don't attempt if 7914 // 1. the target claims to have no vector registers, and 7915 // 2. interleaving won't help ILP. 7916 // 7917 // The second condition is necessary because, even if the target has no 7918 // vector registers, loop vectorization may still enable scalar 7919 // interleaving. 7920 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7921 return false; 7922 7923 bool Changed = false; 7924 7925 // The vectorizer requires loops to be in simplified form. 7926 // Since simplification may add new inner loops, it has to run before the 7927 // legality and profitability checks. This means running the loop vectorizer 7928 // will simplify all loops, regardless of whether anything end up being 7929 // vectorized. 7930 for (auto &L : *LI) 7931 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7932 7933 // Build up a worklist of inner-loops to vectorize. This is necessary as 7934 // the act of vectorizing or partially unrolling a loop creates new loops 7935 // and can invalidate iterators across the loops. 7936 SmallVector<Loop *, 8> Worklist; 7937 7938 for (Loop *L : *LI) 7939 addAcyclicInnerLoop(*L, Worklist); 7940 7941 LoopsAnalyzed += Worklist.size(); 7942 7943 // Now walk the identified inner loops. 7944 while (!Worklist.empty()) { 7945 Loop *L = Worklist.pop_back_val(); 7946 7947 // For the inner loops we actually process, form LCSSA to simplify the 7948 // transform. 7949 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7950 7951 Changed |= processLoop(L); 7952 } 7953 7954 // Process each loop nest in the function. 7955 return Changed; 7956 7957 } 7958 7959 7960 PreservedAnalyses LoopVectorizePass::run(Function &F, 7961 FunctionAnalysisManager &AM) { 7962 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7963 auto &LI = AM.getResult<LoopAnalysis>(F); 7964 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7965 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7966 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7967 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7968 auto &AA = AM.getResult<AAManager>(F); 7969 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7970 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7971 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7972 7973 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7974 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7975 [&](Loop &L) -> const LoopAccessInfo & { 7976 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7977 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7978 }; 7979 bool Changed = 7980 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7981 if (!Changed) 7982 return PreservedAnalyses::all(); 7983 PreservedAnalyses PA; 7984 PA.preserve<LoopAnalysis>(); 7985 PA.preserve<DominatorTreeAnalysis>(); 7986 PA.preserve<BasicAA>(); 7987 PA.preserve<GlobalsAA>(); 7988 return PA; 7989 } 7990