1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/User.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/LoopUtils.h" 96 #include "llvm/Transforms/Utils/LoopVersioning.h" 97 #include "llvm/Transforms/Vectorize.h" 98 #include <algorithm> 99 #include <map> 100 #include <tuple> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 105 #define LV_NAME "loop-vectorize" 106 #define DEBUG_TYPE LV_NAME 107 108 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 109 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 110 111 static cl::opt<bool> 112 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 113 cl::desc("Enable if-conversion during vectorization.")); 114 115 /// We don't vectorize loops with a known constant trip count below this number. 116 static cl::opt<unsigned> TinyTripCountVectorThreshold( 117 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 118 cl::desc("Don't vectorize loops with a constant " 119 "trip count that is smaller than this " 120 "value.")); 121 122 static cl::opt<bool> MaximizeBandwidth( 123 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 124 cl::desc("Maximize bandwidth when selecting vectorization factor which " 125 "will be determined by the smallest type in loop.")); 126 127 static cl::opt<bool> EnableInterleavedMemAccesses( 128 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 129 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 130 131 /// Maximum factor for an interleaved memory access. 132 static cl::opt<unsigned> MaxInterleaveGroupFactor( 133 "max-interleave-group-factor", cl::Hidden, 134 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 135 cl::init(8)); 136 137 /// We don't interleave loops with a known constant trip count below this 138 /// number. 139 static const unsigned TinyTripCountInterleaveThreshold = 128; 140 141 static cl::opt<unsigned> ForceTargetNumScalarRegs( 142 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 143 cl::desc("A flag that overrides the target's number of scalar registers.")); 144 145 static cl::opt<unsigned> ForceTargetNumVectorRegs( 146 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 147 cl::desc("A flag that overrides the target's number of vector registers.")); 148 149 /// Maximum vectorization interleave count. 150 static const unsigned MaxInterleaveFactor = 16; 151 152 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 153 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 154 cl::desc("A flag that overrides the target's max interleave factor for " 155 "scalar loops.")); 156 157 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 158 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 159 cl::desc("A flag that overrides the target's max interleave factor for " 160 "vectorized loops.")); 161 162 static cl::opt<unsigned> ForceTargetInstructionCost( 163 "force-target-instruction-cost", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's expected cost for " 165 "an instruction to a single constant value. Mostly " 166 "useful for getting consistent testing.")); 167 168 static cl::opt<unsigned> SmallLoopCost( 169 "small-loop-cost", cl::init(20), cl::Hidden, 170 cl::desc( 171 "The cost of a loop that is considered 'small' by the interleaver.")); 172 173 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 174 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 175 cl::desc("Enable the use of the block frequency analysis to access PGO " 176 "heuristics minimizing code growth in cold regions and being more " 177 "aggressive in hot regions.")); 178 179 // Runtime interleave loops for load/store throughput. 180 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 181 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 182 cl::desc( 183 "Enable runtime interleaving until load/store ports are saturated")); 184 185 /// The number of stores in a loop that are allowed to need predication. 186 static cl::opt<unsigned> NumberOfStoresToPredicate( 187 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 188 cl::desc("Max number of stores to be predicated behind an if.")); 189 190 static cl::opt<bool> EnableIndVarRegisterHeur( 191 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 192 cl::desc("Count the induction variable only once when interleaving")); 193 194 static cl::opt<bool> EnableCondStoresVectorization( 195 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 196 cl::desc("Enable if predication of stores during vectorization.")); 197 198 static cl::opt<unsigned> MaxNestedScalarReductionIC( 199 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 200 cl::desc("The maximum interleave count to use when interleaving a scalar " 201 "reduction in a nested loop.")); 202 203 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 204 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 205 cl::desc("The maximum allowed number of runtime memory checks with a " 206 "vectorize(enable) pragma.")); 207 208 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 209 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 210 cl::desc("The maximum number of SCEV checks allowed.")); 211 212 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 213 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 214 cl::desc("The maximum number of SCEV checks allowed with a " 215 "vectorize(enable) pragma")); 216 217 /// Create an analysis remark that explains why vectorization failed 218 /// 219 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 220 /// RemarkName is the identifier for the remark. If \p I is passed it is an 221 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 222 /// the location of the remark. \return the remark object that can be 223 /// streamed to. 224 static OptimizationRemarkAnalysis 225 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 226 Instruction *I = nullptr) { 227 Value *CodeRegion = TheLoop->getHeader(); 228 DebugLoc DL = TheLoop->getStartLoc(); 229 230 if (I) { 231 CodeRegion = I->getParent(); 232 // If there is no debug location attached to the instruction, revert back to 233 // using the loop's. 234 if (I->getDebugLoc()) 235 DL = I->getDebugLoc(); 236 } 237 238 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 239 R << "loop not vectorized: "; 240 return R; 241 } 242 243 namespace { 244 245 // Forward declarations. 246 class LoopVectorizeHints; 247 class LoopVectorizationLegality; 248 class LoopVectorizationCostModel; 249 class LoopVectorizationRequirements; 250 251 /// Returns true if the given loop body has a cycle, excluding the loop 252 /// itself. 253 static bool hasCyclesInLoopBody(const Loop &L) { 254 if (!L.empty()) 255 return true; 256 257 for (const auto &SCC : 258 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 259 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 260 if (SCC.size() > 1) { 261 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 262 DEBUG(L.dump()); 263 return true; 264 } 265 } 266 return false; 267 } 268 269 /// \brief This modifies LoopAccessReport to initialize message with 270 /// loop-vectorizer-specific part. 271 class VectorizationReport : public LoopAccessReport { 272 public: 273 VectorizationReport(Instruction *I = nullptr) 274 : LoopAccessReport("loop not vectorized: ", I) {} 275 276 /// \brief This allows promotion of the loop-access analysis report into the 277 /// loop-vectorizer report. It modifies the message to add the 278 /// loop-vectorizer-specific part of the message. 279 explicit VectorizationReport(const LoopAccessReport &R) 280 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 281 R.getInstr()) {} 282 }; 283 284 /// A helper function for converting Scalar types to vector types. 285 /// If the incoming type is void, we return void. If the VF is 1, we return 286 /// the scalar type. 287 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 288 if (Scalar->isVoidTy() || VF == 1) 289 return Scalar; 290 return VectorType::get(Scalar, VF); 291 } 292 293 /// A helper function that returns GEP instruction and knows to skip a 294 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 295 /// pointee types of the 'bitcast' have the same size. 296 /// For example: 297 /// bitcast double** %var to i64* - can be skipped 298 /// bitcast double** %var to i8* - can not 299 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 300 301 if (isa<GetElementPtrInst>(Ptr)) 302 return cast<GetElementPtrInst>(Ptr); 303 304 if (isa<BitCastInst>(Ptr) && 305 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 306 Type *BitcastTy = Ptr->getType(); 307 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 308 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 309 return nullptr; 310 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 311 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 312 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 313 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 314 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 315 } 316 return nullptr; 317 } 318 319 /// A helper function that returns the pointer operand of a load or store 320 /// instruction. 321 static Value *getPointerOperand(Value *I) { 322 if (auto *LI = dyn_cast<LoadInst>(I)) 323 return LI->getPointerOperand(); 324 if (auto *SI = dyn_cast<StoreInst>(I)) 325 return SI->getPointerOperand(); 326 return nullptr; 327 } 328 329 /// A helper function that returns true if the given type is irregular. The 330 /// type is irregular if its allocated size doesn't equal the store size of an 331 /// element of the corresponding vector type at the given vectorization factor. 332 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 333 334 // Determine if an array of VF elements of type Ty is "bitcast compatible" 335 // with a <VF x Ty> vector. 336 if (VF > 1) { 337 auto *VectorTy = VectorType::get(Ty, VF); 338 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 339 } 340 341 // If the vectorization factor is one, we just check if an array of type Ty 342 // requires padding between elements. 343 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 344 } 345 346 /// A helper function that returns the reciprocal of the block probability of 347 /// predicated blocks. If we return X, we are assuming the predicated block 348 /// will execute once for for every X iterations of the loop header. 349 /// 350 /// TODO: We should use actual block probability here, if available. Currently, 351 /// we always assume predicated blocks have a 50% chance of executing. 352 static unsigned getReciprocalPredBlockProb() { return 2; } 353 354 /// InnerLoopVectorizer vectorizes loops which contain only one basic 355 /// block to a specified vectorization factor (VF). 356 /// This class performs the widening of scalars into vectors, or multiple 357 /// scalars. This class also implements the following features: 358 /// * It inserts an epilogue loop for handling loops that don't have iteration 359 /// counts that are known to be a multiple of the vectorization factor. 360 /// * It handles the code generation for reduction variables. 361 /// * Scalarization (implementation using scalars) of un-vectorizable 362 /// instructions. 363 /// InnerLoopVectorizer does not perform any vectorization-legality 364 /// checks, and relies on the caller to check for the different legality 365 /// aspects. The InnerLoopVectorizer relies on the 366 /// LoopVectorizationLegality class to provide information about the induction 367 /// and reduction variables that were found to a given vectorization factor. 368 class InnerLoopVectorizer { 369 public: 370 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 371 LoopInfo *LI, DominatorTree *DT, 372 const TargetLibraryInfo *TLI, 373 const TargetTransformInfo *TTI, AssumptionCache *AC, 374 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 375 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 376 LoopVectorizationCostModel *CM) 377 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 378 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 379 Builder(PSE.getSE()->getContext()), Induction(nullptr), 380 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 381 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 382 AddedSafetyChecks(false) {} 383 384 // Perform the actual loop widening (vectorization). 385 void vectorize() { 386 // Create a new empty loop. Unlink the old loop and connect the new one. 387 createEmptyLoop(); 388 // Widen each instruction in the old loop to a new one in the new loop. 389 vectorizeLoop(); 390 } 391 392 // Return true if any runtime check is added. 393 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 394 395 virtual ~InnerLoopVectorizer() {} 396 397 protected: 398 /// A small list of PHINodes. 399 typedef SmallVector<PHINode *, 4> PhiVector; 400 401 /// A type for vectorized values in the new loop. Each value from the 402 /// original loop, when vectorized, is represented by UF vector values in the 403 /// new unrolled loop, where UF is the unroll factor. 404 typedef SmallVector<Value *, 2> VectorParts; 405 406 /// A type for scalarized values in the new loop. Each value from the 407 /// original loop, when scalarized, is represented by UF x VF scalar values 408 /// in the new unrolled loop, where UF is the unroll factor and VF is the 409 /// vectorization factor. 410 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 411 412 // When we if-convert we need to create edge masks. We have to cache values 413 // so that we don't end up with exponential recursion/IR. 414 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 415 EdgeMaskCache; 416 417 /// Create an empty loop, based on the loop ranges of the old loop. 418 void createEmptyLoop(); 419 420 /// Set up the values of the IVs correctly when exiting the vector loop. 421 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 422 Value *CountRoundDown, Value *EndValue, 423 BasicBlock *MiddleBlock); 424 425 /// Create a new induction variable inside L. 426 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 427 Value *Step, Instruction *DL); 428 /// Copy and widen the instructions from the old loop. 429 virtual void vectorizeLoop(); 430 431 /// Fix a first-order recurrence. This is the second phase of vectorizing 432 /// this phi node. 433 void fixFirstOrderRecurrence(PHINode *Phi); 434 435 /// \brief The Loop exit block may have single value PHI nodes where the 436 /// incoming value is 'Undef'. While vectorizing we only handled real values 437 /// that were defined inside the loop. Here we fix the 'undef case'. 438 /// See PR14725. 439 void fixLCSSAPHIs(); 440 441 /// Iteratively sink the scalarized operands of a predicated instruction into 442 /// the block that was created for it. 443 void sinkScalarOperands(Instruction *PredInst); 444 445 /// Predicate conditional instructions that require predication on their 446 /// respective conditions. 447 void predicateInstructions(); 448 449 /// Collect the instructions from the original loop that would be trivially 450 /// dead in the vectorized loop if generated. 451 void collectTriviallyDeadInstructions(); 452 453 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 454 /// represented as. 455 void truncateToMinimalBitwidths(); 456 457 /// A helper function that computes the predicate of the block BB, assuming 458 /// that the header block of the loop is set to True. It returns the *entry* 459 /// mask for the block BB. 460 VectorParts createBlockInMask(BasicBlock *BB); 461 /// A helper function that computes the predicate of the edge between SRC 462 /// and DST. 463 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 464 465 /// A helper function to vectorize a single BB within the innermost loop. 466 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 467 468 /// Vectorize a single PHINode in a block. This method handles the induction 469 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 470 /// arbitrary length vectors. 471 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF, 472 PhiVector *PV); 473 474 /// Insert the new loop to the loop hierarchy and pass manager 475 /// and update the analysis passes. 476 void updateAnalysis(); 477 478 /// This instruction is un-vectorizable. Implement it as a sequence 479 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 480 /// scalarized instruction behind an if block predicated on the control 481 /// dependence of the instruction. 482 virtual void scalarizeInstruction(Instruction *Instr, 483 bool IfPredicateInstr = false); 484 485 /// Vectorize Load and Store instructions, 486 virtual void vectorizeMemoryInstruction(Instruction *Instr); 487 488 /// Create a broadcast instruction. This method generates a broadcast 489 /// instruction (shuffle) for loop invariant values and for the induction 490 /// value. If this is the induction variable then we extend it to N, N+1, ... 491 /// this is needed because each iteration in the loop corresponds to a SIMD 492 /// element. 493 virtual Value *getBroadcastInstrs(Value *V); 494 495 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 496 /// to each vector element of Val. The sequence starts at StartIndex. 497 /// \p Opcode is relevant for FP induction variable. 498 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 499 Instruction::BinaryOps Opcode = 500 Instruction::BinaryOpsEnd); 501 502 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 503 /// variable on which to base the steps, \p Step is the size of the step, and 504 /// \p EntryVal is the value from the original loop that maps to the steps. 505 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 506 /// can be a truncate instruction). 507 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 508 509 /// Create a vector induction phi node based on an existing scalar one. This 510 /// currently only works for integer induction variables with a constant 511 /// step. \p EntryVal is the value from the original loop that maps to the 512 /// vector phi node. If \p EntryVal is a truncate instruction, instead of 513 /// widening the original IV, we widen a version of the IV truncated to \p 514 /// EntryVal's type. 515 void createVectorIntInductionPHI(const InductionDescriptor &II, 516 Instruction *EntryVal); 517 518 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 519 /// induction variable will first be truncated to the corresponding type. 520 void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr); 521 522 /// Returns true if an instruction \p I should be scalarized instead of 523 /// vectorized for the chosen vectorization factor. 524 bool shouldScalarizeInstruction(Instruction *I) const; 525 526 /// Returns true if we should generate a scalar version of \p IV. 527 bool needsScalarInduction(Instruction *IV) const; 528 529 /// Return a constant reference to the VectorParts corresponding to \p V from 530 /// the original loop. If the value has already been vectorized, the 531 /// corresponding vector entry in VectorLoopValueMap is returned. If, 532 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 533 /// new vector values on-demand by inserting the scalar values into vectors 534 /// with an insertelement sequence. If the value has been neither vectorized 535 /// nor scalarized, it must be loop invariant, so we simply broadcast the 536 /// value into vectors. 537 const VectorParts &getVectorValue(Value *V); 538 539 /// Return a value in the new loop corresponding to \p V from the original 540 /// loop at unroll index \p Part and vector index \p Lane. If the value has 541 /// been vectorized but not scalarized, the necessary extractelement 542 /// instruction will be generated. 543 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 544 545 /// Try to vectorize the interleaved access group that \p Instr belongs to. 546 void vectorizeInterleaveGroup(Instruction *Instr); 547 548 /// Generate a shuffle sequence that will reverse the vector Vec. 549 virtual Value *reverseVector(Value *Vec); 550 551 /// Returns (and creates if needed) the original loop trip count. 552 Value *getOrCreateTripCount(Loop *NewLoop); 553 554 /// Returns (and creates if needed) the trip count of the widened loop. 555 Value *getOrCreateVectorTripCount(Loop *NewLoop); 556 557 /// Emit a bypass check to see if the trip count would overflow, or we 558 /// wouldn't have enough iterations to execute one vector loop. 559 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 560 /// Emit a bypass check to see if the vector trip count is nonzero. 561 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 562 /// Emit a bypass check to see if all of the SCEV assumptions we've 563 /// had to make are correct. 564 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 565 /// Emit bypass checks to check any memory assumptions we may have made. 566 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 567 568 /// Add additional metadata to \p To that was not present on \p Orig. 569 /// 570 /// Currently this is used to add the noalias annotations based on the 571 /// inserted memchecks. Use this for instructions that are *cloned* into the 572 /// vector loop. 573 void addNewMetadata(Instruction *To, const Instruction *Orig); 574 575 /// Add metadata from one instruction to another. 576 /// 577 /// This includes both the original MDs from \p From and additional ones (\see 578 /// addNewMetadata). Use this for *newly created* instructions in the vector 579 /// loop. 580 void addMetadata(Instruction *To, Instruction *From); 581 582 /// \brief Similar to the previous function but it adds the metadata to a 583 /// vector of instructions. 584 void addMetadata(ArrayRef<Value *> To, Instruction *From); 585 586 /// This is a helper class for maintaining vectorization state. It's used for 587 /// mapping values from the original loop to their corresponding values in 588 /// the new loop. Two mappings are maintained: one for vectorized values and 589 /// one for scalarized values. Vectorized values are represented with UF 590 /// vector values in the new loop, and scalarized values are represented with 591 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 592 /// vectorization factors, respectively. 593 /// 594 /// Entries can be added to either map with initVector and initScalar, which 595 /// initialize and return a constant reference to the new entry. If a 596 /// non-constant reference to a vector entry is required, getVector can be 597 /// used to retrieve a mutable entry. We currently directly modify the mapped 598 /// values during "fix-up" operations that occur once the first phase of 599 /// widening is complete. These operations include type truncation and the 600 /// second phase of recurrence widening. 601 /// 602 /// Otherwise, entries from either map should be accessed using the 603 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 604 /// getVectorValue and getScalarValue coordinate to generate a vector or 605 /// scalar value on-demand if one is not yet available. When vectorizing a 606 /// loop, we visit the definition of an instruction before its uses. When 607 /// visiting the definition, we either vectorize or scalarize the 608 /// instruction, creating an entry for it in the corresponding map. (In some 609 /// cases, such as induction variables, we will create both vector and scalar 610 /// entries.) Then, as we encounter uses of the definition, we derive values 611 /// for each scalar or vector use unless such a value is already available. 612 /// For example, if we scalarize a definition and one of its uses is vector, 613 /// we build the required vector on-demand with an insertelement sequence 614 /// when visiting the use. Otherwise, if the use is scalar, we can use the 615 /// existing scalar definition. 616 struct ValueMap { 617 618 /// Construct an empty map with the given unroll and vectorization factors. 619 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 620 : UF(UnrollFactor), VF(VecWidth) { 621 // The unroll and vectorization factors are only used in asserts builds 622 // to verify map entries are sized appropriately. 623 (void)UF; 624 (void)VF; 625 } 626 627 /// \return True if the map has a vector entry for \p Key. 628 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 629 630 /// \return True if the map has a scalar entry for \p Key. 631 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 632 633 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 634 /// constant reference to the new vector map entry. The given key should 635 /// not already be in the map, and the given VectorParts should be 636 /// correctly sized for the current unroll factor. 637 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 638 assert(!hasVector(Key) && "Vector entry already initialized"); 639 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 640 VectorMapStorage[Key] = Entry; 641 return VectorMapStorage[Key]; 642 } 643 644 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 645 /// constant reference to the new scalar map entry. The given key should 646 /// not already be in the map, and the given ScalarParts should be 647 /// correctly sized for the current unroll and vectorization factors. 648 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 649 assert(!hasScalar(Key) && "Scalar entry already initialized"); 650 assert(Entry.size() == UF && 651 all_of(make_range(Entry.begin(), Entry.end()), 652 [&](const SmallVectorImpl<Value *> &Values) -> bool { 653 return Values.size() == VF; 654 }) && 655 "ScalarParts has wrong dimensions"); 656 ScalarMapStorage[Key] = Entry; 657 return ScalarMapStorage[Key]; 658 } 659 660 /// \return A reference to the vector map entry corresponding to \p Key. 661 /// The key should already be in the map. This function should only be used 662 /// when it's necessary to update values that have already been vectorized. 663 /// This is the case for "fix-up" operations including type truncation and 664 /// the second phase of recurrence vectorization. If a non-const reference 665 /// isn't required, getVectorValue should be used instead. 666 VectorParts &getVector(Value *Key) { 667 assert(hasVector(Key) && "Vector entry not initialized"); 668 return VectorMapStorage.find(Key)->second; 669 } 670 671 /// Retrieve an entry from the vector or scalar maps. The preferred way to 672 /// access an existing mapped entry is with getVectorValue or 673 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 674 /// moved inside ValueMap, we have to declare them as friends. 675 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 676 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 677 unsigned Lane); 678 679 private: 680 /// The unroll factor. Each entry in the vector map contains UF vector 681 /// values. 682 unsigned UF; 683 684 /// The vectorization factor. Each entry in the scalar map contains UF x VF 685 /// scalar values. 686 unsigned VF; 687 688 /// The vector and scalar map storage. We use std::map and not DenseMap 689 /// because insertions to DenseMap invalidate its iterators. 690 std::map<Value *, VectorParts> VectorMapStorage; 691 std::map<Value *, ScalarParts> ScalarMapStorage; 692 }; 693 694 /// The original loop. 695 Loop *OrigLoop; 696 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 697 /// dynamic knowledge to simplify SCEV expressions and converts them to a 698 /// more usable form. 699 PredicatedScalarEvolution &PSE; 700 /// Loop Info. 701 LoopInfo *LI; 702 /// Dominator Tree. 703 DominatorTree *DT; 704 /// Alias Analysis. 705 AliasAnalysis *AA; 706 /// Target Library Info. 707 const TargetLibraryInfo *TLI; 708 /// Target Transform Info. 709 const TargetTransformInfo *TTI; 710 /// Assumption Cache. 711 AssumptionCache *AC; 712 /// Interface to emit optimization remarks. 713 OptimizationRemarkEmitter *ORE; 714 715 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 716 /// used. 717 /// 718 /// This is currently only used to add no-alias metadata based on the 719 /// memchecks. The actually versioning is performed manually. 720 std::unique_ptr<LoopVersioning> LVer; 721 722 /// The vectorization SIMD factor to use. Each vector will have this many 723 /// vector elements. 724 unsigned VF; 725 726 protected: 727 /// The vectorization unroll factor to use. Each scalar is vectorized to this 728 /// many different vector instructions. 729 unsigned UF; 730 731 /// The builder that we use 732 IRBuilder<> Builder; 733 734 // --- Vectorization state --- 735 736 /// The vector-loop preheader. 737 BasicBlock *LoopVectorPreHeader; 738 /// The scalar-loop preheader. 739 BasicBlock *LoopScalarPreHeader; 740 /// Middle Block between the vector and the scalar. 741 BasicBlock *LoopMiddleBlock; 742 /// The ExitBlock of the scalar loop. 743 BasicBlock *LoopExitBlock; 744 /// The vector loop body. 745 BasicBlock *LoopVectorBody; 746 /// The scalar loop body. 747 BasicBlock *LoopScalarBody; 748 /// A list of all bypass blocks. The first block is the entry of the loop. 749 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 750 751 /// The new Induction variable which was added to the new block. 752 PHINode *Induction; 753 /// The induction variable of the old basic block. 754 PHINode *OldInduction; 755 756 /// Maps values from the original loop to their corresponding values in the 757 /// vectorized loop. A key value can map to either vector values, scalar 758 /// values or both kinds of values, depending on whether the key was 759 /// vectorized and scalarized. 760 ValueMap VectorLoopValueMap; 761 762 /// Store instructions that should be predicated, as a pair 763 /// <StoreInst, Predicate> 764 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 765 EdgeMaskCache MaskCache; 766 /// Trip count of the original loop. 767 Value *TripCount; 768 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 769 Value *VectorTripCount; 770 771 /// The legality analysis. 772 LoopVectorizationLegality *Legal; 773 774 /// The profitablity analysis. 775 LoopVectorizationCostModel *Cost; 776 777 // Record whether runtime checks are added. 778 bool AddedSafetyChecks; 779 780 // Holds instructions from the original loop whose counterparts in the 781 // vectorized loop would be trivially dead if generated. For example, 782 // original induction update instructions can become dead because we 783 // separately emit induction "steps" when generating code for the new loop. 784 // Similarly, we create a new latch condition when setting up the structure 785 // of the new loop, so the old one can become dead. 786 SmallPtrSet<Instruction *, 4> DeadInstructions; 787 788 // Holds the end values for each induction variable. We save the end values 789 // so we can later fix-up the external users of the induction variables. 790 DenseMap<PHINode *, Value *> IVEndValues; 791 }; 792 793 class InnerLoopUnroller : public InnerLoopVectorizer { 794 public: 795 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 796 LoopInfo *LI, DominatorTree *DT, 797 const TargetLibraryInfo *TLI, 798 const TargetTransformInfo *TTI, AssumptionCache *AC, 799 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 800 LoopVectorizationLegality *LVL, 801 LoopVectorizationCostModel *CM) 802 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 803 UnrollFactor, LVL, CM) {} 804 805 private: 806 void scalarizeInstruction(Instruction *Instr, 807 bool IfPredicateInstr = false) override; 808 void vectorizeMemoryInstruction(Instruction *Instr) override; 809 Value *getBroadcastInstrs(Value *V) override; 810 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 811 Instruction::BinaryOps Opcode = 812 Instruction::BinaryOpsEnd) override; 813 Value *reverseVector(Value *Vec) override; 814 }; 815 816 /// \brief Look for a meaningful debug location on the instruction or it's 817 /// operands. 818 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 819 if (!I) 820 return I; 821 822 DebugLoc Empty; 823 if (I->getDebugLoc() != Empty) 824 return I; 825 826 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 827 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 828 if (OpInst->getDebugLoc() != Empty) 829 return OpInst; 830 } 831 832 return I; 833 } 834 835 /// \brief Set the debug location in the builder using the debug location in the 836 /// instruction. 837 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 838 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 839 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 840 else 841 B.SetCurrentDebugLocation(DebugLoc()); 842 } 843 844 #ifndef NDEBUG 845 /// \return string containing a file name and a line # for the given loop. 846 static std::string getDebugLocString(const Loop *L) { 847 std::string Result; 848 if (L) { 849 raw_string_ostream OS(Result); 850 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 851 LoopDbgLoc.print(OS); 852 else 853 // Just print the module name. 854 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 855 OS.flush(); 856 } 857 return Result; 858 } 859 #endif 860 861 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 862 const Instruction *Orig) { 863 // If the loop was versioned with memchecks, add the corresponding no-alias 864 // metadata. 865 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 866 LVer->annotateInstWithNoAlias(To, Orig); 867 } 868 869 void InnerLoopVectorizer::addMetadata(Instruction *To, 870 Instruction *From) { 871 propagateMetadata(To, From); 872 addNewMetadata(To, From); 873 } 874 875 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 876 Instruction *From) { 877 for (Value *V : To) { 878 if (Instruction *I = dyn_cast<Instruction>(V)) 879 addMetadata(I, From); 880 } 881 } 882 883 /// \brief The group of interleaved loads/stores sharing the same stride and 884 /// close to each other. 885 /// 886 /// Each member in this group has an index starting from 0, and the largest 887 /// index should be less than interleaved factor, which is equal to the absolute 888 /// value of the access's stride. 889 /// 890 /// E.g. An interleaved load group of factor 4: 891 /// for (unsigned i = 0; i < 1024; i+=4) { 892 /// a = A[i]; // Member of index 0 893 /// b = A[i+1]; // Member of index 1 894 /// d = A[i+3]; // Member of index 3 895 /// ... 896 /// } 897 /// 898 /// An interleaved store group of factor 4: 899 /// for (unsigned i = 0; i < 1024; i+=4) { 900 /// ... 901 /// A[i] = a; // Member of index 0 902 /// A[i+1] = b; // Member of index 1 903 /// A[i+2] = c; // Member of index 2 904 /// A[i+3] = d; // Member of index 3 905 /// } 906 /// 907 /// Note: the interleaved load group could have gaps (missing members), but 908 /// the interleaved store group doesn't allow gaps. 909 class InterleaveGroup { 910 public: 911 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 912 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 913 assert(Align && "The alignment should be non-zero"); 914 915 Factor = std::abs(Stride); 916 assert(Factor > 1 && "Invalid interleave factor"); 917 918 Reverse = Stride < 0; 919 Members[0] = Instr; 920 } 921 922 bool isReverse() const { return Reverse; } 923 unsigned getFactor() const { return Factor; } 924 unsigned getAlignment() const { return Align; } 925 unsigned getNumMembers() const { return Members.size(); } 926 927 /// \brief Try to insert a new member \p Instr with index \p Index and 928 /// alignment \p NewAlign. The index is related to the leader and it could be 929 /// negative if it is the new leader. 930 /// 931 /// \returns false if the instruction doesn't belong to the group. 932 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 933 assert(NewAlign && "The new member's alignment should be non-zero"); 934 935 int Key = Index + SmallestKey; 936 937 // Skip if there is already a member with the same index. 938 if (Members.count(Key)) 939 return false; 940 941 if (Key > LargestKey) { 942 // The largest index is always less than the interleave factor. 943 if (Index >= static_cast<int>(Factor)) 944 return false; 945 946 LargestKey = Key; 947 } else if (Key < SmallestKey) { 948 // The largest index is always less than the interleave factor. 949 if (LargestKey - Key >= static_cast<int>(Factor)) 950 return false; 951 952 SmallestKey = Key; 953 } 954 955 // It's always safe to select the minimum alignment. 956 Align = std::min(Align, NewAlign); 957 Members[Key] = Instr; 958 return true; 959 } 960 961 /// \brief Get the member with the given index \p Index 962 /// 963 /// \returns nullptr if contains no such member. 964 Instruction *getMember(unsigned Index) const { 965 int Key = SmallestKey + Index; 966 if (!Members.count(Key)) 967 return nullptr; 968 969 return Members.find(Key)->second; 970 } 971 972 /// \brief Get the index for the given member. Unlike the key in the member 973 /// map, the index starts from 0. 974 unsigned getIndex(Instruction *Instr) const { 975 for (auto I : Members) 976 if (I.second == Instr) 977 return I.first - SmallestKey; 978 979 llvm_unreachable("InterleaveGroup contains no such member"); 980 } 981 982 Instruction *getInsertPos() const { return InsertPos; } 983 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 984 985 private: 986 unsigned Factor; // Interleave Factor. 987 bool Reverse; 988 unsigned Align; 989 DenseMap<int, Instruction *> Members; 990 int SmallestKey; 991 int LargestKey; 992 993 // To avoid breaking dependences, vectorized instructions of an interleave 994 // group should be inserted at either the first load or the last store in 995 // program order. 996 // 997 // E.g. %even = load i32 // Insert Position 998 // %add = add i32 %even // Use of %even 999 // %odd = load i32 1000 // 1001 // store i32 %even 1002 // %odd = add i32 // Def of %odd 1003 // store i32 %odd // Insert Position 1004 Instruction *InsertPos; 1005 }; 1006 1007 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1008 /// 1009 /// Use this class to analyze interleaved accesses only when we can vectorize 1010 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1011 /// on interleaved accesses is unsafe. 1012 /// 1013 /// The analysis collects interleave groups and records the relationships 1014 /// between the member and the group in a map. 1015 class InterleavedAccessInfo { 1016 public: 1017 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1018 DominatorTree *DT, LoopInfo *LI) 1019 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1020 RequiresScalarEpilogue(false) {} 1021 1022 ~InterleavedAccessInfo() { 1023 SmallSet<InterleaveGroup *, 4> DelSet; 1024 // Avoid releasing a pointer twice. 1025 for (auto &I : InterleaveGroupMap) 1026 DelSet.insert(I.second); 1027 for (auto *Ptr : DelSet) 1028 delete Ptr; 1029 } 1030 1031 /// \brief Analyze the interleaved accesses and collect them in interleave 1032 /// groups. Substitute symbolic strides using \p Strides. 1033 void analyzeInterleaving(const ValueToValueMap &Strides); 1034 1035 /// \brief Check if \p Instr belongs to any interleave group. 1036 bool isInterleaved(Instruction *Instr) const { 1037 return InterleaveGroupMap.count(Instr); 1038 } 1039 1040 /// \brief Return the maximum interleave factor of all interleaved groups. 1041 unsigned getMaxInterleaveFactor() const { 1042 unsigned MaxFactor = 1; 1043 for (auto &Entry : InterleaveGroupMap) 1044 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1045 return MaxFactor; 1046 } 1047 1048 /// \brief Get the interleave group that \p Instr belongs to. 1049 /// 1050 /// \returns nullptr if doesn't have such group. 1051 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1052 if (InterleaveGroupMap.count(Instr)) 1053 return InterleaveGroupMap.find(Instr)->second; 1054 return nullptr; 1055 } 1056 1057 /// \brief Returns true if an interleaved group that may access memory 1058 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1059 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1060 1061 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1062 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1063 1064 private: 1065 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1066 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1067 /// The interleaved access analysis can also add new predicates (for example 1068 /// by versioning strides of pointers). 1069 PredicatedScalarEvolution &PSE; 1070 Loop *TheLoop; 1071 DominatorTree *DT; 1072 LoopInfo *LI; 1073 const LoopAccessInfo *LAI; 1074 1075 /// True if the loop may contain non-reversed interleaved groups with 1076 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1077 /// out-of-bounds by executing at least one scalar epilogue iteration. 1078 bool RequiresScalarEpilogue; 1079 1080 /// Holds the relationships between the members and the interleave group. 1081 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1082 1083 /// Holds dependences among the memory accesses in the loop. It maps a source 1084 /// access to a set of dependent sink accesses. 1085 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1086 1087 /// \brief The descriptor for a strided memory access. 1088 struct StrideDescriptor { 1089 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1090 unsigned Align) 1091 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1092 1093 StrideDescriptor() = default; 1094 1095 // The access's stride. It is negative for a reverse access. 1096 int64_t Stride = 0; 1097 const SCEV *Scev = nullptr; // The scalar expression of this access 1098 uint64_t Size = 0; // The size of the memory object. 1099 unsigned Align = 0; // The alignment of this access. 1100 }; 1101 1102 /// \brief A type for holding instructions and their stride descriptors. 1103 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1104 1105 /// \brief Create a new interleave group with the given instruction \p Instr, 1106 /// stride \p Stride and alignment \p Align. 1107 /// 1108 /// \returns the newly created interleave group. 1109 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1110 unsigned Align) { 1111 assert(!InterleaveGroupMap.count(Instr) && 1112 "Already in an interleaved access group"); 1113 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1114 return InterleaveGroupMap[Instr]; 1115 } 1116 1117 /// \brief Release the group and remove all the relationships. 1118 void releaseGroup(InterleaveGroup *Group) { 1119 for (unsigned i = 0; i < Group->getFactor(); i++) 1120 if (Instruction *Member = Group->getMember(i)) 1121 InterleaveGroupMap.erase(Member); 1122 1123 delete Group; 1124 } 1125 1126 /// \brief Collect all the accesses with a constant stride in program order. 1127 void collectConstStrideAccesses( 1128 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1129 const ValueToValueMap &Strides); 1130 1131 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1132 static bool isStrided(int Stride) { 1133 unsigned Factor = std::abs(Stride); 1134 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1135 } 1136 1137 /// \brief Returns true if \p BB is a predicated block. 1138 bool isPredicated(BasicBlock *BB) const { 1139 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1140 } 1141 1142 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1143 bool areDependencesValid() const { 1144 return LAI && LAI->getDepChecker().getDependences(); 1145 } 1146 1147 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1148 /// necessary, when constructing interleaved groups. 1149 /// 1150 /// \p A must precede \p B in program order. We return false if reordering is 1151 /// not necessary or is prevented because \p A and \p B may be dependent. 1152 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1153 StrideEntry *B) const { 1154 1155 // Code motion for interleaved accesses can potentially hoist strided loads 1156 // and sink strided stores. The code below checks the legality of the 1157 // following two conditions: 1158 // 1159 // 1. Potentially moving a strided load (B) before any store (A) that 1160 // precedes B, or 1161 // 1162 // 2. Potentially moving a strided store (A) after any load or store (B) 1163 // that A precedes. 1164 // 1165 // It's legal to reorder A and B if we know there isn't a dependence from A 1166 // to B. Note that this determination is conservative since some 1167 // dependences could potentially be reordered safely. 1168 1169 // A is potentially the source of a dependence. 1170 auto *Src = A->first; 1171 auto SrcDes = A->second; 1172 1173 // B is potentially the sink of a dependence. 1174 auto *Sink = B->first; 1175 auto SinkDes = B->second; 1176 1177 // Code motion for interleaved accesses can't violate WAR dependences. 1178 // Thus, reordering is legal if the source isn't a write. 1179 if (!Src->mayWriteToMemory()) 1180 return true; 1181 1182 // At least one of the accesses must be strided. 1183 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1184 return true; 1185 1186 // If dependence information is not available from LoopAccessInfo, 1187 // conservatively assume the instructions can't be reordered. 1188 if (!areDependencesValid()) 1189 return false; 1190 1191 // If we know there is a dependence from source to sink, assume the 1192 // instructions can't be reordered. Otherwise, reordering is legal. 1193 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1194 } 1195 1196 /// \brief Collect the dependences from LoopAccessInfo. 1197 /// 1198 /// We process the dependences once during the interleaved access analysis to 1199 /// enable constant-time dependence queries. 1200 void collectDependences() { 1201 if (!areDependencesValid()) 1202 return; 1203 auto *Deps = LAI->getDepChecker().getDependences(); 1204 for (auto Dep : *Deps) 1205 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1206 } 1207 }; 1208 1209 /// Utility class for getting and setting loop vectorizer hints in the form 1210 /// of loop metadata. 1211 /// This class keeps a number of loop annotations locally (as member variables) 1212 /// and can, upon request, write them back as metadata on the loop. It will 1213 /// initially scan the loop for existing metadata, and will update the local 1214 /// values based on information in the loop. 1215 /// We cannot write all values to metadata, as the mere presence of some info, 1216 /// for example 'force', means a decision has been made. So, we need to be 1217 /// careful NOT to add them if the user hasn't specifically asked so. 1218 class LoopVectorizeHints { 1219 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1220 1221 /// Hint - associates name and validation with the hint value. 1222 struct Hint { 1223 const char *Name; 1224 unsigned Value; // This may have to change for non-numeric values. 1225 HintKind Kind; 1226 1227 Hint(const char *Name, unsigned Value, HintKind Kind) 1228 : Name(Name), Value(Value), Kind(Kind) {} 1229 1230 bool validate(unsigned Val) { 1231 switch (Kind) { 1232 case HK_WIDTH: 1233 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1234 case HK_UNROLL: 1235 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1236 case HK_FORCE: 1237 return (Val <= 1); 1238 } 1239 return false; 1240 } 1241 }; 1242 1243 /// Vectorization width. 1244 Hint Width; 1245 /// Vectorization interleave factor. 1246 Hint Interleave; 1247 /// Vectorization forced 1248 Hint Force; 1249 1250 /// Return the loop metadata prefix. 1251 static StringRef Prefix() { return "llvm.loop."; } 1252 1253 /// True if there is any unsafe math in the loop. 1254 bool PotentiallyUnsafe; 1255 1256 public: 1257 enum ForceKind { 1258 FK_Undefined = -1, ///< Not selected. 1259 FK_Disabled = 0, ///< Forcing disabled. 1260 FK_Enabled = 1, ///< Forcing enabled. 1261 }; 1262 1263 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1264 OptimizationRemarkEmitter &ORE) 1265 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1266 HK_WIDTH), 1267 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1268 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1269 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1270 // Populate values with existing loop metadata. 1271 getHintsFromMetadata(); 1272 1273 // force-vector-interleave overrides DisableInterleaving. 1274 if (VectorizerParams::isInterleaveForced()) 1275 Interleave.Value = VectorizerParams::VectorizationInterleave; 1276 1277 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1278 << "LV: Interleaving disabled by the pass manager\n"); 1279 } 1280 1281 /// Mark the loop L as already vectorized by setting the width to 1. 1282 void setAlreadyVectorized() { 1283 Width.Value = Interleave.Value = 1; 1284 Hint Hints[] = {Width, Interleave}; 1285 writeHintsToMetadata(Hints); 1286 } 1287 1288 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1289 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1290 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1291 emitRemarkWithHints(); 1292 return false; 1293 } 1294 1295 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1296 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1297 emitRemarkWithHints(); 1298 return false; 1299 } 1300 1301 if (getWidth() == 1 && getInterleave() == 1) { 1302 // FIXME: Add a separate metadata to indicate when the loop has already 1303 // been vectorized instead of setting width and count to 1. 1304 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1305 // FIXME: Add interleave.disable metadata. This will allow 1306 // vectorize.disable to be used without disabling the pass and errors 1307 // to differentiate between disabled vectorization and a width of 1. 1308 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1309 "AllDisabled", L->getStartLoc(), 1310 L->getHeader()) 1311 << "loop not vectorized: vectorization and interleaving are " 1312 "explicitly disabled, or vectorize width and interleave " 1313 "count are both set to 1"); 1314 return false; 1315 } 1316 1317 return true; 1318 } 1319 1320 /// Dumps all the hint information. 1321 void emitRemarkWithHints() const { 1322 using namespace ore; 1323 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1324 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1325 TheLoop->getStartLoc(), 1326 TheLoop->getHeader()) 1327 << "loop not vectorized: vectorization is explicitly disabled"); 1328 else { 1329 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1330 TheLoop->getStartLoc(), TheLoop->getHeader()); 1331 R << "loop not vectorized"; 1332 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1333 R << " (Force=" << NV("Force", true); 1334 if (Width.Value != 0) 1335 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1336 if (Interleave.Value != 0) 1337 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1338 R << ")"; 1339 } 1340 ORE.emit(R); 1341 } 1342 } 1343 1344 unsigned getWidth() const { return Width.Value; } 1345 unsigned getInterleave() const { return Interleave.Value; } 1346 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1347 1348 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1349 /// pass name to force the frontend to print the diagnostic. 1350 const char *vectorizeAnalysisPassName() const { 1351 if (getWidth() == 1) 1352 return LV_NAME; 1353 if (getForce() == LoopVectorizeHints::FK_Disabled) 1354 return LV_NAME; 1355 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1356 return LV_NAME; 1357 return OptimizationRemarkAnalysis::AlwaysPrint; 1358 } 1359 1360 bool allowReordering() const { 1361 // When enabling loop hints are provided we allow the vectorizer to change 1362 // the order of operations that is given by the scalar loop. This is not 1363 // enabled by default because can be unsafe or inefficient. For example, 1364 // reordering floating-point operations will change the way round-off 1365 // error accumulates in the loop. 1366 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1367 } 1368 1369 bool isPotentiallyUnsafe() const { 1370 // Avoid FP vectorization if the target is unsure about proper support. 1371 // This may be related to the SIMD unit in the target not handling 1372 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1373 // Otherwise, a sequence of vectorized loops, even without reduction, 1374 // could lead to different end results on the destination vectors. 1375 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1376 } 1377 1378 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1379 1380 private: 1381 /// Find hints specified in the loop metadata and update local values. 1382 void getHintsFromMetadata() { 1383 MDNode *LoopID = TheLoop->getLoopID(); 1384 if (!LoopID) 1385 return; 1386 1387 // First operand should refer to the loop id itself. 1388 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1389 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1390 1391 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1392 const MDString *S = nullptr; 1393 SmallVector<Metadata *, 4> Args; 1394 1395 // The expected hint is either a MDString or a MDNode with the first 1396 // operand a MDString. 1397 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1398 if (!MD || MD->getNumOperands() == 0) 1399 continue; 1400 S = dyn_cast<MDString>(MD->getOperand(0)); 1401 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1402 Args.push_back(MD->getOperand(i)); 1403 } else { 1404 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1405 assert(Args.size() == 0 && "too many arguments for MDString"); 1406 } 1407 1408 if (!S) 1409 continue; 1410 1411 // Check if the hint starts with the loop metadata prefix. 1412 StringRef Name = S->getString(); 1413 if (Args.size() == 1) 1414 setHint(Name, Args[0]); 1415 } 1416 } 1417 1418 /// Checks string hint with one operand and set value if valid. 1419 void setHint(StringRef Name, Metadata *Arg) { 1420 if (!Name.startswith(Prefix())) 1421 return; 1422 Name = Name.substr(Prefix().size(), StringRef::npos); 1423 1424 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1425 if (!C) 1426 return; 1427 unsigned Val = C->getZExtValue(); 1428 1429 Hint *Hints[] = {&Width, &Interleave, &Force}; 1430 for (auto H : Hints) { 1431 if (Name == H->Name) { 1432 if (H->validate(Val)) 1433 H->Value = Val; 1434 else 1435 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1436 break; 1437 } 1438 } 1439 } 1440 1441 /// Create a new hint from name / value pair. 1442 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1443 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1444 Metadata *MDs[] = {MDString::get(Context, Name), 1445 ConstantAsMetadata::get( 1446 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1447 return MDNode::get(Context, MDs); 1448 } 1449 1450 /// Matches metadata with hint name. 1451 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1452 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1453 if (!Name) 1454 return false; 1455 1456 for (auto H : HintTypes) 1457 if (Name->getString().endswith(H.Name)) 1458 return true; 1459 return false; 1460 } 1461 1462 /// Sets current hints into loop metadata, keeping other values intact. 1463 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1464 if (HintTypes.size() == 0) 1465 return; 1466 1467 // Reserve the first element to LoopID (see below). 1468 SmallVector<Metadata *, 4> MDs(1); 1469 // If the loop already has metadata, then ignore the existing operands. 1470 MDNode *LoopID = TheLoop->getLoopID(); 1471 if (LoopID) { 1472 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1473 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1474 // If node in update list, ignore old value. 1475 if (!matchesHintMetadataName(Node, HintTypes)) 1476 MDs.push_back(Node); 1477 } 1478 } 1479 1480 // Now, add the missing hints. 1481 for (auto H : HintTypes) 1482 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1483 1484 // Replace current metadata node with new one. 1485 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1486 MDNode *NewLoopID = MDNode::get(Context, MDs); 1487 // Set operand 0 to refer to the loop id itself. 1488 NewLoopID->replaceOperandWith(0, NewLoopID); 1489 1490 TheLoop->setLoopID(NewLoopID); 1491 } 1492 1493 /// The loop these hints belong to. 1494 const Loop *TheLoop; 1495 1496 /// Interface to emit optimization remarks. 1497 OptimizationRemarkEmitter &ORE; 1498 }; 1499 1500 static void emitAnalysisDiag(const Loop *TheLoop, 1501 const LoopVectorizeHints &Hints, 1502 OptimizationRemarkEmitter &ORE, 1503 const LoopAccessReport &Message) { 1504 const char *Name = Hints.vectorizeAnalysisPassName(); 1505 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1506 } 1507 1508 static void emitMissedWarning(Function *F, Loop *L, 1509 const LoopVectorizeHints &LH, 1510 OptimizationRemarkEmitter *ORE) { 1511 LH.emitRemarkWithHints(); 1512 1513 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1514 if (LH.getWidth() != 1) 1515 emitLoopVectorizeWarning( 1516 F->getContext(), *F, L->getStartLoc(), 1517 "failed explicitly specified loop vectorization"); 1518 else if (LH.getInterleave() != 1) 1519 emitLoopInterleaveWarning( 1520 F->getContext(), *F, L->getStartLoc(), 1521 "failed explicitly specified loop interleaving"); 1522 } 1523 } 1524 1525 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1526 /// to what vectorization factor. 1527 /// This class does not look at the profitability of vectorization, only the 1528 /// legality. This class has two main kinds of checks: 1529 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1530 /// will change the order of memory accesses in a way that will change the 1531 /// correctness of the program. 1532 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1533 /// checks for a number of different conditions, such as the availability of a 1534 /// single induction variable, that all types are supported and vectorize-able, 1535 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1536 /// This class is also used by InnerLoopVectorizer for identifying 1537 /// induction variable and the different reduction variables. 1538 class LoopVectorizationLegality { 1539 public: 1540 LoopVectorizationLegality( 1541 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1542 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1543 const TargetTransformInfo *TTI, 1544 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1545 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1546 LoopVectorizeHints *H) 1547 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1548 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1549 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1550 Requirements(R), Hints(H) {} 1551 1552 /// ReductionList contains the reduction descriptors for all 1553 /// of the reductions that were found in the loop. 1554 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1555 1556 /// InductionList saves induction variables and maps them to the 1557 /// induction descriptor. 1558 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1559 1560 /// RecurrenceSet contains the phi nodes that are recurrences other than 1561 /// inductions and reductions. 1562 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1563 1564 /// Returns true if it is legal to vectorize this loop. 1565 /// This does not mean that it is profitable to vectorize this 1566 /// loop, only that it is legal to do so. 1567 bool canVectorize(); 1568 1569 /// Returns the Induction variable. 1570 PHINode *getInduction() { return Induction; } 1571 1572 /// Returns the reduction variables found in the loop. 1573 ReductionList *getReductionVars() { return &Reductions; } 1574 1575 /// Returns the induction variables found in the loop. 1576 InductionList *getInductionVars() { return &Inductions; } 1577 1578 /// Return the first-order recurrences found in the loop. 1579 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1580 1581 /// Returns the widest induction type. 1582 Type *getWidestInductionType() { return WidestIndTy; } 1583 1584 /// Returns True if V is an induction variable in this loop. 1585 bool isInductionVariable(const Value *V); 1586 1587 /// Returns True if PN is a reduction variable in this loop. 1588 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1589 1590 /// Returns True if Phi is a first-order recurrence in this loop. 1591 bool isFirstOrderRecurrence(const PHINode *Phi); 1592 1593 /// Return true if the block BB needs to be predicated in order for the loop 1594 /// to be vectorized. 1595 bool blockNeedsPredication(BasicBlock *BB); 1596 1597 /// Check if this pointer is consecutive when vectorizing. This happens 1598 /// when the last index of the GEP is the induction variable, or that the 1599 /// pointer itself is an induction variable. 1600 /// This check allows us to vectorize A[idx] into a wide load/store. 1601 /// Returns: 1602 /// 0 - Stride is unknown or non-consecutive. 1603 /// 1 - Address is consecutive. 1604 /// -1 - Address is consecutive, and decreasing. 1605 int isConsecutivePtr(Value *Ptr); 1606 1607 /// Returns true if the value V is uniform within the loop. 1608 bool isUniform(Value *V); 1609 1610 /// Returns true if \p I is known to be uniform after vectorization. 1611 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1612 1613 /// Returns true if \p I is known to be scalar after vectorization. 1614 bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); } 1615 1616 /// Returns the information that we collected about runtime memory check. 1617 const RuntimePointerChecking *getRuntimePointerChecking() const { 1618 return LAI->getRuntimePointerChecking(); 1619 } 1620 1621 const LoopAccessInfo *getLAI() const { return LAI; } 1622 1623 /// \brief Check if \p Instr belongs to any interleaved access group. 1624 bool isAccessInterleaved(Instruction *Instr) { 1625 return InterleaveInfo.isInterleaved(Instr); 1626 } 1627 1628 /// \brief Return the maximum interleave factor of all interleaved groups. 1629 unsigned getMaxInterleaveFactor() const { 1630 return InterleaveInfo.getMaxInterleaveFactor(); 1631 } 1632 1633 /// \brief Get the interleaved access group that \p Instr belongs to. 1634 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1635 return InterleaveInfo.getInterleaveGroup(Instr); 1636 } 1637 1638 /// \brief Returns true if an interleaved group requires a scalar iteration 1639 /// to handle accesses with gaps. 1640 bool requiresScalarEpilogue() const { 1641 return InterleaveInfo.requiresScalarEpilogue(); 1642 } 1643 1644 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1645 1646 bool hasStride(Value *V) { return LAI->hasStride(V); } 1647 1648 /// Returns true if the target machine supports masked store operation 1649 /// for the given \p DataType and kind of access to \p Ptr. 1650 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1651 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1652 } 1653 /// Returns true if the target machine supports masked load operation 1654 /// for the given \p DataType and kind of access to \p Ptr. 1655 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1656 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1657 } 1658 /// Returns true if the target machine supports masked scatter operation 1659 /// for the given \p DataType. 1660 bool isLegalMaskedScatter(Type *DataType) { 1661 return TTI->isLegalMaskedScatter(DataType); 1662 } 1663 /// Returns true if the target machine supports masked gather operation 1664 /// for the given \p DataType. 1665 bool isLegalMaskedGather(Type *DataType) { 1666 return TTI->isLegalMaskedGather(DataType); 1667 } 1668 /// Returns true if the target machine can represent \p V as a masked gather 1669 /// or scatter operation. 1670 bool isLegalGatherOrScatter(Value *V) { 1671 auto *LI = dyn_cast<LoadInst>(V); 1672 auto *SI = dyn_cast<StoreInst>(V); 1673 if (!LI && !SI) 1674 return false; 1675 auto *Ptr = getPointerOperand(V); 1676 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1677 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1678 } 1679 1680 /// Returns true if vector representation of the instruction \p I 1681 /// requires mask. 1682 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1683 unsigned getNumStores() const { return LAI->getNumStores(); } 1684 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1685 unsigned getNumPredStores() const { return NumPredStores; } 1686 1687 /// Returns true if \p I is an instruction that will be scalarized with 1688 /// predication. Such instructions include conditional stores and 1689 /// instructions that may divide by zero. 1690 bool isScalarWithPredication(Instruction *I); 1691 1692 /// Returns true if \p I is a memory instruction that has a consecutive or 1693 /// consecutive-like pointer operand. Consecutive-like pointers are pointers 1694 /// that are treated like consecutive pointers during vectorization. The 1695 /// pointer operands of interleaved accesses are an example. 1696 bool hasConsecutiveLikePtrOperand(Instruction *I); 1697 1698 /// Returns true if \p I is a memory instruction that must be scalarized 1699 /// during vectorization. 1700 bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1); 1701 1702 private: 1703 /// Check if a single basic block loop is vectorizable. 1704 /// At this point we know that this is a loop with a constant trip count 1705 /// and we only need to check individual instructions. 1706 bool canVectorizeInstrs(); 1707 1708 /// When we vectorize loops we may change the order in which 1709 /// we read and write from memory. This method checks if it is 1710 /// legal to vectorize the code, considering only memory constrains. 1711 /// Returns true if the loop is vectorizable 1712 bool canVectorizeMemory(); 1713 1714 /// Return true if we can vectorize this loop using the IF-conversion 1715 /// transformation. 1716 bool canVectorizeWithIfConvert(); 1717 1718 /// Collect the instructions that are uniform after vectorization. An 1719 /// instruction is uniform if we represent it with a single scalar value in 1720 /// the vectorized loop corresponding to each vector iteration. Examples of 1721 /// uniform instructions include pointer operands of consecutive or 1722 /// interleaved memory accesses. Note that although uniformity implies an 1723 /// instruction will be scalar, the reverse is not true. In general, a 1724 /// scalarized instruction will be represented by VF scalar values in the 1725 /// vectorized loop, each corresponding to an iteration of the original 1726 /// scalar loop. 1727 void collectLoopUniforms(); 1728 1729 /// Collect the instructions that are scalar after vectorization. An 1730 /// instruction is scalar if it is known to be uniform or will be scalarized 1731 /// during vectorization. Non-uniform scalarized instructions will be 1732 /// represented by VF values in the vectorized loop, each corresponding to an 1733 /// iteration of the original scalar loop. 1734 void collectLoopScalars(); 1735 1736 /// Return true if all of the instructions in the block can be speculatively 1737 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1738 /// and we know that we can read from them without segfault. 1739 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1740 1741 /// Updates the vectorization state by adding \p Phi to the inductions list. 1742 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1743 /// better choice for the main induction than the existing one. 1744 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1745 SmallPtrSetImpl<Value *> &AllowedExit); 1746 1747 /// Report an analysis message to assist the user in diagnosing loops that are 1748 /// not vectorized. These are handled as LoopAccessReport rather than 1749 /// VectorizationReport because the << operator of VectorizationReport returns 1750 /// LoopAccessReport. 1751 void emitAnalysis(const LoopAccessReport &Message) const { 1752 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1753 } 1754 1755 /// Create an analysis remark that explains why vectorization failed 1756 /// 1757 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1758 /// an instruction that prevents vectorization. Otherwise the loop is used 1759 /// for the location of the remark. \return the remark object that can be 1760 /// streamed to. 1761 OptimizationRemarkAnalysis 1762 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1763 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1764 RemarkName, TheLoop, I); 1765 } 1766 1767 /// \brief If an access has a symbolic strides, this maps the pointer value to 1768 /// the stride symbol. 1769 const ValueToValueMap *getSymbolicStrides() { 1770 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1771 // it's collected. This happens from canVectorizeWithIfConvert, when the 1772 // pointer is checked to reference consecutive elements suitable for a 1773 // masked access. 1774 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1775 } 1776 1777 unsigned NumPredStores; 1778 1779 /// The loop that we evaluate. 1780 Loop *TheLoop; 1781 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1782 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1783 /// of existing SCEV assumptions. The analysis will also add a minimal set 1784 /// of new predicates if this is required to enable vectorization and 1785 /// unrolling. 1786 PredicatedScalarEvolution &PSE; 1787 /// Target Library Info. 1788 TargetLibraryInfo *TLI; 1789 /// Target Transform Info 1790 const TargetTransformInfo *TTI; 1791 /// Dominator Tree. 1792 DominatorTree *DT; 1793 // LoopAccess analysis. 1794 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1795 // And the loop-accesses info corresponding to this loop. This pointer is 1796 // null until canVectorizeMemory sets it up. 1797 const LoopAccessInfo *LAI; 1798 /// Interface to emit optimization remarks. 1799 OptimizationRemarkEmitter *ORE; 1800 1801 /// The interleave access information contains groups of interleaved accesses 1802 /// with the same stride and close to each other. 1803 InterleavedAccessInfo InterleaveInfo; 1804 1805 // --- vectorization state --- // 1806 1807 /// Holds the integer induction variable. This is the counter of the 1808 /// loop. 1809 PHINode *Induction; 1810 /// Holds the reduction variables. 1811 ReductionList Reductions; 1812 /// Holds all of the induction variables that we found in the loop. 1813 /// Notice that inductions don't need to start at zero and that induction 1814 /// variables can be pointers. 1815 InductionList Inductions; 1816 /// Holds the phi nodes that are first-order recurrences. 1817 RecurrenceSet FirstOrderRecurrences; 1818 /// Holds the widest induction type encountered. 1819 Type *WidestIndTy; 1820 1821 /// Allowed outside users. This holds the induction and reduction 1822 /// vars which can be accessed from outside the loop. 1823 SmallPtrSet<Value *, 4> AllowedExit; 1824 1825 /// Holds the instructions known to be uniform after vectorization. 1826 SmallPtrSet<Instruction *, 4> Uniforms; 1827 1828 /// Holds the instructions known to be scalar after vectorization. 1829 SmallPtrSet<Instruction *, 4> Scalars; 1830 1831 /// Can we assume the absence of NaNs. 1832 bool HasFunNoNaNAttr; 1833 1834 /// Vectorization requirements that will go through late-evaluation. 1835 LoopVectorizationRequirements *Requirements; 1836 1837 /// Used to emit an analysis of any legality issues. 1838 LoopVectorizeHints *Hints; 1839 1840 /// While vectorizing these instructions we have to generate a 1841 /// call to the appropriate masked intrinsic 1842 SmallPtrSet<const Instruction *, 8> MaskedOp; 1843 }; 1844 1845 /// LoopVectorizationCostModel - estimates the expected speedups due to 1846 /// vectorization. 1847 /// In many cases vectorization is not profitable. This can happen because of 1848 /// a number of reasons. In this class we mainly attempt to predict the 1849 /// expected speedup/slowdowns due to the supported instruction set. We use the 1850 /// TargetTransformInfo to query the different backends for the cost of 1851 /// different operations. 1852 class LoopVectorizationCostModel { 1853 public: 1854 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1855 LoopInfo *LI, LoopVectorizationLegality *Legal, 1856 const TargetTransformInfo &TTI, 1857 const TargetLibraryInfo *TLI, DemandedBits *DB, 1858 AssumptionCache *AC, 1859 OptimizationRemarkEmitter *ORE, const Function *F, 1860 const LoopVectorizeHints *Hints) 1861 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1862 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1863 1864 /// Information about vectorization costs 1865 struct VectorizationFactor { 1866 unsigned Width; // Vector width with best cost 1867 unsigned Cost; // Cost of the loop with that width 1868 }; 1869 /// \return The most profitable vectorization factor and the cost of that VF. 1870 /// This method checks every power of two up to VF. If UserVF is not ZERO 1871 /// then this vectorization factor will be selected if vectorization is 1872 /// possible. 1873 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1874 1875 /// \return The size (in bits) of the smallest and widest types in the code 1876 /// that needs to be vectorized. We ignore values that remain scalar such as 1877 /// 64 bit loop indices. 1878 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1879 1880 /// \return The desired interleave count. 1881 /// If interleave count has been specified by metadata it will be returned. 1882 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1883 /// are the selected vectorization factor and the cost of the selected VF. 1884 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1885 unsigned LoopCost); 1886 1887 /// \brief A struct that represents some properties of the register usage 1888 /// of a loop. 1889 struct RegisterUsage { 1890 /// Holds the number of loop invariant values that are used in the loop. 1891 unsigned LoopInvariantRegs; 1892 /// Holds the maximum number of concurrent live intervals in the loop. 1893 unsigned MaxLocalUsers; 1894 /// Holds the number of instructions in the loop. 1895 unsigned NumInstructions; 1896 }; 1897 1898 /// \return Returns information about the register usages of the loop for the 1899 /// given vectorization factors. 1900 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1901 1902 /// Collect values we want to ignore in the cost model. 1903 void collectValuesToIgnore(); 1904 1905 /// \returns The smallest bitwidth each instruction can be represented with. 1906 /// The vector equivalents of these instructions should be truncated to this 1907 /// type. 1908 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1909 return MinBWs; 1910 } 1911 1912 /// \returns True if it is more profitable to scalarize instruction \p I for 1913 /// vectorization factor \p VF. 1914 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1915 auto Scalars = InstsToScalarize.find(VF); 1916 assert(Scalars != InstsToScalarize.end() && 1917 "VF not yet analyzed for scalarization profitability"); 1918 return Scalars->second.count(I); 1919 } 1920 1921 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1922 /// for vectorization factor \p VF. 1923 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1924 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1925 !Legal->isScalarAfterVectorization(I); 1926 } 1927 1928 private: 1929 /// The vectorization cost is a combination of the cost itself and a boolean 1930 /// indicating whether any of the contributing operations will actually 1931 /// operate on 1932 /// vector values after type legalization in the backend. If this latter value 1933 /// is 1934 /// false, then all operations will be scalarized (i.e. no vectorization has 1935 /// actually taken place). 1936 typedef std::pair<unsigned, bool> VectorizationCostTy; 1937 1938 /// Returns the expected execution cost. The unit of the cost does 1939 /// not matter because we use the 'cost' units to compare different 1940 /// vector widths. The cost that is returned is *not* normalized by 1941 /// the factor width. 1942 VectorizationCostTy expectedCost(unsigned VF); 1943 1944 /// Returns the execution time cost of an instruction for a given vector 1945 /// width. Vector width of one means scalar. 1946 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1947 1948 /// The cost-computation logic from getInstructionCost which provides 1949 /// the vector type as an output parameter. 1950 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1951 1952 /// Returns whether the instruction is a load or store and will be a emitted 1953 /// as a vector operation. 1954 bool isConsecutiveLoadOrStore(Instruction *I); 1955 1956 /// Create an analysis remark that explains why vectorization failed 1957 /// 1958 /// \p RemarkName is the identifier for the remark. \return the remark object 1959 /// that can be streamed to. 1960 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1961 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1962 RemarkName, TheLoop); 1963 } 1964 1965 /// Map of scalar integer values to the smallest bitwidth they can be legally 1966 /// represented as. The vector equivalents of these values should be truncated 1967 /// to this type. 1968 MapVector<Instruction *, uint64_t> MinBWs; 1969 1970 /// A type representing the costs for instructions if they were to be 1971 /// scalarized rather than vectorized. The entries are Instruction-Cost 1972 /// pairs. 1973 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 1974 1975 /// A map holding scalar costs for different vectorization factors. The 1976 /// presence of a cost for an instruction in the mapping indicates that the 1977 /// instruction will be scalarized when vectorizing with the associated 1978 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1979 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1980 1981 /// Returns the expected difference in cost from scalarizing the expression 1982 /// feeding a predicated instruction \p PredInst. The instructions to 1983 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1984 /// non-negative return value implies the expression will be scalarized. 1985 /// Currently, only single-use chains are considered for scalarization. 1986 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1987 unsigned VF); 1988 1989 /// Collects the instructions to scalarize for each predicated instruction in 1990 /// the loop. 1991 void collectInstsToScalarize(unsigned VF); 1992 1993 public: 1994 /// The loop that we evaluate. 1995 Loop *TheLoop; 1996 /// Predicated scalar evolution analysis. 1997 PredicatedScalarEvolution &PSE; 1998 /// Loop Info analysis. 1999 LoopInfo *LI; 2000 /// Vectorization legality. 2001 LoopVectorizationLegality *Legal; 2002 /// Vector target information. 2003 const TargetTransformInfo &TTI; 2004 /// Target Library Info. 2005 const TargetLibraryInfo *TLI; 2006 /// Demanded bits analysis. 2007 DemandedBits *DB; 2008 /// Assumption cache. 2009 AssumptionCache *AC; 2010 /// Interface to emit optimization remarks. 2011 OptimizationRemarkEmitter *ORE; 2012 2013 const Function *TheFunction; 2014 /// Loop Vectorize Hint. 2015 const LoopVectorizeHints *Hints; 2016 /// Values to ignore in the cost model. 2017 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2018 /// Values to ignore in the cost model when VF > 1. 2019 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2020 }; 2021 2022 /// \brief This holds vectorization requirements that must be verified late in 2023 /// the process. The requirements are set by legalize and costmodel. Once 2024 /// vectorization has been determined to be possible and profitable the 2025 /// requirements can be verified by looking for metadata or compiler options. 2026 /// For example, some loops require FP commutativity which is only allowed if 2027 /// vectorization is explicitly specified or if the fast-math compiler option 2028 /// has been provided. 2029 /// Late evaluation of these requirements allows helpful diagnostics to be 2030 /// composed that tells the user what need to be done to vectorize the loop. For 2031 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2032 /// evaluation should be used only when diagnostics can generated that can be 2033 /// followed by a non-expert user. 2034 class LoopVectorizationRequirements { 2035 public: 2036 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2037 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2038 2039 void addUnsafeAlgebraInst(Instruction *I) { 2040 // First unsafe algebra instruction. 2041 if (!UnsafeAlgebraInst) 2042 UnsafeAlgebraInst = I; 2043 } 2044 2045 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2046 2047 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2048 const char *PassName = Hints.vectorizeAnalysisPassName(); 2049 bool Failed = false; 2050 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2051 ORE.emit( 2052 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2053 UnsafeAlgebraInst->getDebugLoc(), 2054 UnsafeAlgebraInst->getParent()) 2055 << "loop not vectorized: cannot prove it is safe to reorder " 2056 "floating-point operations"); 2057 Failed = true; 2058 } 2059 2060 // Test if runtime memcheck thresholds are exceeded. 2061 bool PragmaThresholdReached = 2062 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2063 bool ThresholdReached = 2064 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2065 if ((ThresholdReached && !Hints.allowReordering()) || 2066 PragmaThresholdReached) { 2067 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2068 L->getStartLoc(), 2069 L->getHeader()) 2070 << "loop not vectorized: cannot prove it is safe to reorder " 2071 "memory operations"); 2072 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2073 Failed = true; 2074 } 2075 2076 return Failed; 2077 } 2078 2079 private: 2080 unsigned NumRuntimePointerChecks; 2081 Instruction *UnsafeAlgebraInst; 2082 2083 /// Interface to emit optimization remarks. 2084 OptimizationRemarkEmitter &ORE; 2085 }; 2086 2087 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2088 if (L.empty()) { 2089 if (!hasCyclesInLoopBody(L)) 2090 V.push_back(&L); 2091 return; 2092 } 2093 for (Loop *InnerL : L) 2094 addAcyclicInnerLoop(*InnerL, V); 2095 } 2096 2097 /// The LoopVectorize Pass. 2098 struct LoopVectorize : public FunctionPass { 2099 /// Pass identification, replacement for typeid 2100 static char ID; 2101 2102 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2103 : FunctionPass(ID) { 2104 Impl.DisableUnrolling = NoUnrolling; 2105 Impl.AlwaysVectorize = AlwaysVectorize; 2106 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2107 } 2108 2109 LoopVectorizePass Impl; 2110 2111 bool runOnFunction(Function &F) override { 2112 if (skipFunction(F)) 2113 return false; 2114 2115 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2116 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2117 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2118 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2119 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2120 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2121 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2122 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2123 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2124 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2125 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2126 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2127 2128 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2129 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2130 2131 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2132 GetLAA, *ORE); 2133 } 2134 2135 void getAnalysisUsage(AnalysisUsage &AU) const override { 2136 AU.addRequired<AssumptionCacheTracker>(); 2137 AU.addRequiredID(LoopSimplifyID); 2138 AU.addRequiredID(LCSSAID); 2139 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2140 AU.addRequired<DominatorTreeWrapperPass>(); 2141 AU.addRequired<LoopInfoWrapperPass>(); 2142 AU.addRequired<ScalarEvolutionWrapperPass>(); 2143 AU.addRequired<TargetTransformInfoWrapperPass>(); 2144 AU.addRequired<AAResultsWrapperPass>(); 2145 AU.addRequired<LoopAccessLegacyAnalysis>(); 2146 AU.addRequired<DemandedBitsWrapperPass>(); 2147 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2148 AU.addPreserved<LoopInfoWrapperPass>(); 2149 AU.addPreserved<DominatorTreeWrapperPass>(); 2150 AU.addPreserved<BasicAAWrapperPass>(); 2151 AU.addPreserved<GlobalsAAWrapperPass>(); 2152 } 2153 }; 2154 2155 } // end anonymous namespace 2156 2157 //===----------------------------------------------------------------------===// 2158 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2159 // LoopVectorizationCostModel. 2160 //===----------------------------------------------------------------------===// 2161 2162 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2163 // We need to place the broadcast of invariant variables outside the loop. 2164 Instruction *Instr = dyn_cast<Instruction>(V); 2165 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2166 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2167 2168 // Place the code for broadcasting invariant variables in the new preheader. 2169 IRBuilder<>::InsertPointGuard Guard(Builder); 2170 if (Invariant) 2171 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2172 2173 // Broadcast the scalar into all locations in the vector. 2174 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2175 2176 return Shuf; 2177 } 2178 2179 void InnerLoopVectorizer::createVectorIntInductionPHI( 2180 const InductionDescriptor &II, Instruction *EntryVal) { 2181 Value *Start = II.getStartValue(); 2182 ConstantInt *Step = II.getConstIntStepValue(); 2183 assert(Step && "Can not widen an IV with a non-constant step"); 2184 2185 // Construct the initial value of the vector IV in the vector loop preheader 2186 auto CurrIP = Builder.saveIP(); 2187 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2188 if (isa<TruncInst>(EntryVal)) { 2189 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2190 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2191 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2192 } 2193 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2194 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2195 Builder.restoreIP(CurrIP); 2196 2197 Value *SplatVF = 2198 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2199 VF * Step->getSExtValue())); 2200 // We may need to add the step a number of times, depending on the unroll 2201 // factor. The last of those goes into the PHI. 2202 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2203 &*LoopVectorBody->getFirstInsertionPt()); 2204 Instruction *LastInduction = VecInd; 2205 VectorParts Entry(UF); 2206 for (unsigned Part = 0; Part < UF; ++Part) { 2207 Entry[Part] = LastInduction; 2208 LastInduction = cast<Instruction>( 2209 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2210 } 2211 VectorLoopValueMap.initVector(EntryVal, Entry); 2212 if (isa<TruncInst>(EntryVal)) 2213 addMetadata(Entry, EntryVal); 2214 2215 // Move the last step to the end of the latch block. This ensures consistent 2216 // placement of all induction updates. 2217 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2218 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2219 auto *ICmp = cast<Instruction>(Br->getCondition()); 2220 LastInduction->moveBefore(ICmp); 2221 LastInduction->setName("vec.ind.next"); 2222 2223 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2224 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2225 } 2226 2227 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2228 return Legal->isScalarAfterVectorization(I) || 2229 Cost->isProfitableToScalarize(I, VF); 2230 } 2231 2232 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2233 if (shouldScalarizeInstruction(IV)) 2234 return true; 2235 auto isScalarInst = [&](User *U) -> bool { 2236 auto *I = cast<Instruction>(U); 2237 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2238 }; 2239 return any_of(IV->users(), isScalarInst); 2240 } 2241 2242 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) { 2243 2244 auto II = Legal->getInductionVars()->find(IV); 2245 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2246 2247 auto ID = II->second; 2248 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2249 2250 // The scalar value to broadcast. This will be derived from the canonical 2251 // induction variable. 2252 Value *ScalarIV = nullptr; 2253 2254 // The step of the induction. 2255 Value *Step = nullptr; 2256 2257 // The value from the original loop to which we are mapping the new induction 2258 // variable. 2259 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2260 2261 // True if we have vectorized the induction variable. 2262 auto VectorizedIV = false; 2263 2264 // Determine if we want a scalar version of the induction variable. This is 2265 // true if the induction variable itself is not widened, or if it has at 2266 // least one user in the loop that is not widened. 2267 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2268 2269 // If the induction variable has a constant integer step value, go ahead and 2270 // get it now. 2271 if (ID.getConstIntStepValue()) 2272 Step = ID.getConstIntStepValue(); 2273 2274 // Try to create a new independent vector induction variable. If we can't 2275 // create the phi node, we will splat the scalar induction variable in each 2276 // loop iteration. 2277 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2278 !shouldScalarizeInstruction(EntryVal)) { 2279 createVectorIntInductionPHI(ID, EntryVal); 2280 VectorizedIV = true; 2281 } 2282 2283 // If we haven't yet vectorized the induction variable, or if we will create 2284 // a scalar one, we need to define the scalar induction variable and step 2285 // values. If we were given a truncation type, truncate the canonical 2286 // induction variable and constant step. Otherwise, derive these values from 2287 // the induction descriptor. 2288 if (!VectorizedIV || NeedsScalarIV) { 2289 if (Trunc) { 2290 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2291 assert(Step && "Truncation requires constant integer step"); 2292 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2293 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2294 Step = ConstantInt::getSigned(TruncType, StepInt); 2295 } else { 2296 ScalarIV = Induction; 2297 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2298 if (IV != OldInduction) { 2299 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2300 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2301 ScalarIV->setName("offset.idx"); 2302 } 2303 if (!Step) { 2304 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2305 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2306 &*Builder.GetInsertPoint()); 2307 } 2308 } 2309 } 2310 2311 // If we haven't yet vectorized the induction variable, splat the scalar 2312 // induction variable, and build the necessary step vectors. 2313 if (!VectorizedIV) { 2314 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2315 VectorParts Entry(UF); 2316 for (unsigned Part = 0; Part < UF; ++Part) 2317 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2318 VectorLoopValueMap.initVector(EntryVal, Entry); 2319 if (Trunc) 2320 addMetadata(Entry, Trunc); 2321 } 2322 2323 // If an induction variable is only used for counting loop iterations or 2324 // calculating addresses, it doesn't need to be widened. Create scalar steps 2325 // that can be used by instructions we will later scalarize. Note that the 2326 // addition of the scalar steps will not increase the number of instructions 2327 // in the loop in the common case prior to InstCombine. We will be trading 2328 // one vector extract for each scalar step. 2329 if (NeedsScalarIV) 2330 buildScalarSteps(ScalarIV, Step, EntryVal); 2331 } 2332 2333 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2334 Instruction::BinaryOps BinOp) { 2335 // Create and check the types. 2336 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2337 int VLen = Val->getType()->getVectorNumElements(); 2338 2339 Type *STy = Val->getType()->getScalarType(); 2340 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2341 "Induction Step must be an integer or FP"); 2342 assert(Step->getType() == STy && "Step has wrong type"); 2343 2344 SmallVector<Constant *, 8> Indices; 2345 2346 if (STy->isIntegerTy()) { 2347 // Create a vector of consecutive numbers from zero to VF. 2348 for (int i = 0; i < VLen; ++i) 2349 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2350 2351 // Add the consecutive indices to the vector value. 2352 Constant *Cv = ConstantVector::get(Indices); 2353 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2354 Step = Builder.CreateVectorSplat(VLen, Step); 2355 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2356 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2357 // which can be found from the original scalar operations. 2358 Step = Builder.CreateMul(Cv, Step); 2359 return Builder.CreateAdd(Val, Step, "induction"); 2360 } 2361 2362 // Floating point induction. 2363 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2364 "Binary Opcode should be specified for FP induction"); 2365 // Create a vector of consecutive numbers from zero to VF. 2366 for (int i = 0; i < VLen; ++i) 2367 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2368 2369 // Add the consecutive indices to the vector value. 2370 Constant *Cv = ConstantVector::get(Indices); 2371 2372 Step = Builder.CreateVectorSplat(VLen, Step); 2373 2374 // Floating point operations had to be 'fast' to enable the induction. 2375 FastMathFlags Flags; 2376 Flags.setUnsafeAlgebra(); 2377 2378 Value *MulOp = Builder.CreateFMul(Cv, Step); 2379 if (isa<Instruction>(MulOp)) 2380 // Have to check, MulOp may be a constant 2381 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2382 2383 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2384 if (isa<Instruction>(BOp)) 2385 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2386 return BOp; 2387 } 2388 2389 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2390 Value *EntryVal) { 2391 2392 // We shouldn't have to build scalar steps if we aren't vectorizing. 2393 assert(VF > 1 && "VF should be greater than one"); 2394 2395 // Get the value type and ensure it and the step have the same integer type. 2396 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2397 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2398 "Val and Step should have the same integer type"); 2399 2400 // Determine the number of scalars we need to generate for each unroll 2401 // iteration. If EntryVal is uniform, we only need to generate the first 2402 // lane. Otherwise, we generate all VF values. 2403 unsigned Lanes = 2404 Legal->isUniformAfterVectorization(cast<Instruction>(EntryVal)) ? 1 : VF; 2405 2406 // Compute the scalar steps and save the results in VectorLoopValueMap. 2407 ScalarParts Entry(UF); 2408 for (unsigned Part = 0; Part < UF; ++Part) { 2409 Entry[Part].resize(VF); 2410 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2411 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2412 auto *Mul = Builder.CreateMul(StartIdx, Step); 2413 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2414 Entry[Part][Lane] = Add; 2415 } 2416 } 2417 VectorLoopValueMap.initScalar(EntryVal, Entry); 2418 } 2419 2420 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2421 2422 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2423 ValueToValueMap(); 2424 2425 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2426 if (Stride == 1 || Stride == -1) 2427 return Stride; 2428 return 0; 2429 } 2430 2431 bool LoopVectorizationLegality::isUniform(Value *V) { 2432 return LAI->isUniform(V); 2433 } 2434 2435 const InnerLoopVectorizer::VectorParts & 2436 InnerLoopVectorizer::getVectorValue(Value *V) { 2437 assert(V != Induction && "The new induction variable should not be used."); 2438 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2439 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2440 2441 // If we have a stride that is replaced by one, do it here. 2442 if (Legal->hasStride(V)) 2443 V = ConstantInt::get(V->getType(), 1); 2444 2445 // If we have this scalar in the map, return it. 2446 if (VectorLoopValueMap.hasVector(V)) 2447 return VectorLoopValueMap.VectorMapStorage[V]; 2448 2449 // If the value has not been vectorized, check if it has been scalarized 2450 // instead. If it has been scalarized, and we actually need the value in 2451 // vector form, we will construct the vector values on demand. 2452 if (VectorLoopValueMap.hasScalar(V)) { 2453 2454 // Initialize a new vector map entry. 2455 VectorParts Entry(UF); 2456 2457 // If we've scalarized a value, that value should be an instruction. 2458 auto *I = cast<Instruction>(V); 2459 2460 // If we aren't vectorizing, we can just copy the scalar map values over to 2461 // the vector map. 2462 if (VF == 1) { 2463 for (unsigned Part = 0; Part < UF; ++Part) 2464 Entry[Part] = getScalarValue(V, Part, 0); 2465 return VectorLoopValueMap.initVector(V, Entry); 2466 } 2467 2468 // Get the last scalar instruction we generated for V. If the value is 2469 // known to be uniform after vectorization, this corresponds to lane zero 2470 // of the last unroll iteration. Otherwise, the last instruction is the one 2471 // we created for the last vector lane of the last unroll iteration. 2472 unsigned LastLane = Legal->isUniformAfterVectorization(I) ? 0 : VF - 1; 2473 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2474 2475 // Set the insert point after the last scalarized instruction. This ensures 2476 // the insertelement sequence will directly follow the scalar definitions. 2477 auto OldIP = Builder.saveIP(); 2478 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2479 Builder.SetInsertPoint(&*NewIP); 2480 2481 // However, if we are vectorizing, we need to construct the vector values. 2482 // If the value is known to be uniform after vectorization, we can just 2483 // broadcast the scalar value corresponding to lane zero for each unroll 2484 // iteration. Otherwise, we construct the vector values using insertelement 2485 // instructions. Since the resulting vectors are stored in 2486 // VectorLoopValueMap, we will only generate the insertelements once. 2487 for (unsigned Part = 0; Part < UF; ++Part) { 2488 Value *VectorValue = nullptr; 2489 if (Legal->isUniformAfterVectorization(I)) { 2490 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2491 } else { 2492 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2493 for (unsigned Lane = 0; Lane < VF; ++Lane) 2494 VectorValue = Builder.CreateInsertElement( 2495 VectorValue, getScalarValue(V, Part, Lane), 2496 Builder.getInt32(Lane)); 2497 } 2498 Entry[Part] = VectorValue; 2499 } 2500 Builder.restoreIP(OldIP); 2501 return VectorLoopValueMap.initVector(V, Entry); 2502 } 2503 2504 // If this scalar is unknown, assume that it is a constant or that it is 2505 // loop invariant. Broadcast V and save the value for future uses. 2506 Value *B = getBroadcastInstrs(V); 2507 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2508 } 2509 2510 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2511 unsigned Lane) { 2512 2513 // If the value is not an instruction contained in the loop, it should 2514 // already be scalar. 2515 if (OrigLoop->isLoopInvariant(V)) 2516 return V; 2517 2518 assert(Lane > 0 ? !Legal->isUniformAfterVectorization(cast<Instruction>(V)) 2519 : true && "Uniform values only have lane zero"); 2520 2521 // If the value from the original loop has not been vectorized, it is 2522 // represented by UF x VF scalar values in the new loop. Return the requested 2523 // scalar value. 2524 if (VectorLoopValueMap.hasScalar(V)) 2525 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2526 2527 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2528 // for the given unroll part. If this entry is not a vector type (i.e., the 2529 // vectorization factor is one), there is no need to generate an 2530 // extractelement instruction. 2531 auto *U = getVectorValue(V)[Part]; 2532 if (!U->getType()->isVectorTy()) { 2533 assert(VF == 1 && "Value not scalarized has non-vector type"); 2534 return U; 2535 } 2536 2537 // Otherwise, the value from the original loop has been vectorized and is 2538 // represented by UF vector values. Extract and return the requested scalar 2539 // value from the appropriate vector lane. 2540 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2541 } 2542 2543 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2544 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2545 SmallVector<Constant *, 8> ShuffleMask; 2546 for (unsigned i = 0; i < VF; ++i) 2547 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2548 2549 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2550 ConstantVector::get(ShuffleMask), 2551 "reverse"); 2552 } 2553 2554 // Get a mask to interleave \p NumVec vectors into a wide vector. 2555 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2556 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2557 // <0, 4, 1, 5, 2, 6, 3, 7> 2558 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2559 unsigned NumVec) { 2560 SmallVector<Constant *, 16> Mask; 2561 for (unsigned i = 0; i < VF; i++) 2562 for (unsigned j = 0; j < NumVec; j++) 2563 Mask.push_back(Builder.getInt32(j * VF + i)); 2564 2565 return ConstantVector::get(Mask); 2566 } 2567 2568 // Get the strided mask starting from index \p Start. 2569 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2570 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2571 unsigned Stride, unsigned VF) { 2572 SmallVector<Constant *, 16> Mask; 2573 for (unsigned i = 0; i < VF; i++) 2574 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2575 2576 return ConstantVector::get(Mask); 2577 } 2578 2579 // Get a mask of two parts: The first part consists of sequential integers 2580 // starting from 0, The second part consists of UNDEFs. 2581 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2582 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2583 unsigned NumUndef) { 2584 SmallVector<Constant *, 16> Mask; 2585 for (unsigned i = 0; i < NumInt; i++) 2586 Mask.push_back(Builder.getInt32(i)); 2587 2588 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2589 for (unsigned i = 0; i < NumUndef; i++) 2590 Mask.push_back(Undef); 2591 2592 return ConstantVector::get(Mask); 2593 } 2594 2595 // Concatenate two vectors with the same element type. The 2nd vector should 2596 // not have more elements than the 1st vector. If the 2nd vector has less 2597 // elements, extend it with UNDEFs. 2598 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2599 Value *V2) { 2600 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2601 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2602 assert(VecTy1 && VecTy2 && 2603 VecTy1->getScalarType() == VecTy2->getScalarType() && 2604 "Expect two vectors with the same element type"); 2605 2606 unsigned NumElts1 = VecTy1->getNumElements(); 2607 unsigned NumElts2 = VecTy2->getNumElements(); 2608 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2609 2610 if (NumElts1 > NumElts2) { 2611 // Extend with UNDEFs. 2612 Constant *ExtMask = 2613 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2614 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2615 } 2616 2617 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2618 return Builder.CreateShuffleVector(V1, V2, Mask); 2619 } 2620 2621 // Concatenate vectors in the given list. All vectors have the same type. 2622 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2623 ArrayRef<Value *> InputList) { 2624 unsigned NumVec = InputList.size(); 2625 assert(NumVec > 1 && "Should be at least two vectors"); 2626 2627 SmallVector<Value *, 8> ResList; 2628 ResList.append(InputList.begin(), InputList.end()); 2629 do { 2630 SmallVector<Value *, 8> TmpList; 2631 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2632 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2633 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2634 "Only the last vector may have a different type"); 2635 2636 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2637 } 2638 2639 // Push the last vector if the total number of vectors is odd. 2640 if (NumVec % 2 != 0) 2641 TmpList.push_back(ResList[NumVec - 1]); 2642 2643 ResList = TmpList; 2644 NumVec = ResList.size(); 2645 } while (NumVec > 1); 2646 2647 return ResList[0]; 2648 } 2649 2650 // Try to vectorize the interleave group that \p Instr belongs to. 2651 // 2652 // E.g. Translate following interleaved load group (factor = 3): 2653 // for (i = 0; i < N; i+=3) { 2654 // R = Pic[i]; // Member of index 0 2655 // G = Pic[i+1]; // Member of index 1 2656 // B = Pic[i+2]; // Member of index 2 2657 // ... // do something to R, G, B 2658 // } 2659 // To: 2660 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2661 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2662 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2663 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2664 // 2665 // Or translate following interleaved store group (factor = 3): 2666 // for (i = 0; i < N; i+=3) { 2667 // ... do something to R, G, B 2668 // Pic[i] = R; // Member of index 0 2669 // Pic[i+1] = G; // Member of index 1 2670 // Pic[i+2] = B; // Member of index 2 2671 // } 2672 // To: 2673 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2674 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2675 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2676 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2677 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2678 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2679 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2680 assert(Group && "Fail to get an interleaved access group."); 2681 2682 // Skip if current instruction is not the insert position. 2683 if (Instr != Group->getInsertPos()) 2684 return; 2685 2686 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2687 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2688 Value *Ptr = getPointerOperand(Instr); 2689 2690 // Prepare for the vector type of the interleaved load/store. 2691 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2692 unsigned InterleaveFactor = Group->getFactor(); 2693 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2694 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2695 2696 // Prepare for the new pointers. 2697 setDebugLocFromInst(Builder, Ptr); 2698 SmallVector<Value *, 2> NewPtrs; 2699 unsigned Index = Group->getIndex(Instr); 2700 2701 // If the group is reverse, adjust the index to refer to the last vector lane 2702 // instead of the first. We adjust the index from the first vector lane, 2703 // rather than directly getting the pointer for lane VF - 1, because the 2704 // pointer operand of the interleaved access is supposed to be uniform. For 2705 // uniform instructions, we're only required to generate a value for the 2706 // first vector lane in each unroll iteration. 2707 if (Group->isReverse()) 2708 Index += (VF - 1) * Group->getFactor(); 2709 2710 for (unsigned Part = 0; Part < UF; Part++) { 2711 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2712 2713 // Notice current instruction could be any index. Need to adjust the address 2714 // to the member of index 0. 2715 // 2716 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2717 // b = A[i]; // Member of index 0 2718 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2719 // 2720 // E.g. A[i+1] = a; // Member of index 1 2721 // A[i] = b; // Member of index 0 2722 // A[i+2] = c; // Member of index 2 (Current instruction) 2723 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2724 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2725 2726 // Cast to the vector pointer type. 2727 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2728 } 2729 2730 setDebugLocFromInst(Builder, Instr); 2731 Value *UndefVec = UndefValue::get(VecTy); 2732 2733 // Vectorize the interleaved load group. 2734 if (LI) { 2735 2736 // For each unroll part, create a wide load for the group. 2737 SmallVector<Value *, 2> NewLoads; 2738 for (unsigned Part = 0; Part < UF; Part++) { 2739 auto *NewLoad = Builder.CreateAlignedLoad( 2740 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2741 addMetadata(NewLoad, Instr); 2742 NewLoads.push_back(NewLoad); 2743 } 2744 2745 // For each member in the group, shuffle out the appropriate data from the 2746 // wide loads. 2747 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2748 Instruction *Member = Group->getMember(I); 2749 2750 // Skip the gaps in the group. 2751 if (!Member) 2752 continue; 2753 2754 VectorParts Entry(UF); 2755 Constant *StrideMask = getStridedMask(Builder, I, InterleaveFactor, VF); 2756 for (unsigned Part = 0; Part < UF; Part++) { 2757 Value *StridedVec = Builder.CreateShuffleVector( 2758 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2759 2760 // If this member has different type, cast the result type. 2761 if (Member->getType() != ScalarTy) { 2762 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2763 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2764 } 2765 2766 Entry[Part] = 2767 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2768 } 2769 VectorLoopValueMap.initVector(Member, Entry); 2770 } 2771 return; 2772 } 2773 2774 // The sub vector type for current instruction. 2775 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2776 2777 // Vectorize the interleaved store group. 2778 for (unsigned Part = 0; Part < UF; Part++) { 2779 // Collect the stored vector from each member. 2780 SmallVector<Value *, 4> StoredVecs; 2781 for (unsigned i = 0; i < InterleaveFactor; i++) { 2782 // Interleaved store group doesn't allow a gap, so each index has a member 2783 Instruction *Member = Group->getMember(i); 2784 assert(Member && "Fail to get a member from an interleaved store group"); 2785 2786 Value *StoredVec = 2787 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2788 if (Group->isReverse()) 2789 StoredVec = reverseVector(StoredVec); 2790 2791 // If this member has different type, cast it to an unified type. 2792 if (StoredVec->getType() != SubVT) 2793 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2794 2795 StoredVecs.push_back(StoredVec); 2796 } 2797 2798 // Concatenate all vectors into a wide vector. 2799 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2800 2801 // Interleave the elements in the wide vector. 2802 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2803 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2804 "interleaved.vec"); 2805 2806 Instruction *NewStoreInstr = 2807 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2808 addMetadata(NewStoreInstr, Instr); 2809 } 2810 } 2811 2812 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2813 // Attempt to issue a wide load. 2814 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2815 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2816 2817 assert((LI || SI) && "Invalid Load/Store instruction"); 2818 2819 // Try to vectorize the interleave group if this access is interleaved. 2820 if (Legal->isAccessInterleaved(Instr)) 2821 return vectorizeInterleaveGroup(Instr); 2822 2823 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2824 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2825 Value *Ptr = getPointerOperand(Instr); 2826 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2827 // An alignment of 0 means target abi alignment. We need to use the scalar's 2828 // target abi alignment in such a case. 2829 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2830 if (!Alignment) 2831 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2832 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2833 2834 // Scalarize the memory instruction if necessary. 2835 if (Legal->memoryInstructionMustBeScalarized(Instr, VF)) 2836 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2837 2838 // Determine if the pointer operand of the access is either consecutive or 2839 // reverse consecutive. 2840 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2841 bool Reverse = ConsecutiveStride < 0; 2842 2843 // Determine if either a gather or scatter operation is legal. 2844 bool CreateGatherScatter = 2845 !ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr); 2846 2847 VectorParts VectorGep; 2848 2849 // Handle consecutive loads/stores. 2850 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2851 if (ConsecutiveStride) { 2852 if (Gep) { 2853 unsigned NumOperands = Gep->getNumOperands(); 2854 #ifndef NDEBUG 2855 // The original GEP that identified as a consecutive memory access 2856 // should have only one loop-variant operand. 2857 unsigned NumOfLoopVariantOps = 0; 2858 for (unsigned i = 0; i < NumOperands; ++i) 2859 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 2860 OrigLoop)) 2861 NumOfLoopVariantOps++; 2862 assert(NumOfLoopVariantOps == 1 && 2863 "Consecutive GEP should have only one loop-variant operand"); 2864 #endif 2865 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2866 Gep2->setName("gep.indvar"); 2867 2868 // A new GEP is created for a 0-lane value of the first unroll iteration. 2869 // The GEPs for the rest of the unroll iterations are computed below as an 2870 // offset from this GEP. 2871 for (unsigned i = 0; i < NumOperands; ++i) 2872 // We can apply getScalarValue() for all GEP indices. It returns an 2873 // original value for loop-invariant operand and 0-lane for consecutive 2874 // operand. 2875 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 2876 0, /* First unroll iteration */ 2877 0 /* 0-lane of the vector */ )); 2878 setDebugLocFromInst(Builder, Gep); 2879 Ptr = Builder.Insert(Gep2); 2880 2881 } else { // No GEP 2882 setDebugLocFromInst(Builder, Ptr); 2883 Ptr = getScalarValue(Ptr, 0, 0); 2884 } 2885 } else { 2886 // At this point we should vector version of GEP for Gather or Scatter 2887 assert(CreateGatherScatter && "The instruction should be scalarized"); 2888 if (Gep) { 2889 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2890 // and each index that's defined inside the loop, even if it is 2891 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2892 // scalar. 2893 SmallVector<VectorParts, 4> OpsV; 2894 for (Value *Op : Gep->operands()) { 2895 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2896 if (SrcInst && OrigLoop->contains(SrcInst)) 2897 OpsV.push_back(getVectorValue(Op)); 2898 else 2899 OpsV.push_back(VectorParts(UF, Op)); 2900 } 2901 for (unsigned Part = 0; Part < UF; ++Part) { 2902 SmallVector<Value *, 4> Ops; 2903 Value *GEPBasePtr = OpsV[0][Part]; 2904 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2905 Ops.push_back(OpsV[i][Part]); 2906 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2907 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2908 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2909 2910 NewGep = 2911 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2912 VectorGep.push_back(NewGep); 2913 } 2914 } else 2915 VectorGep = getVectorValue(Ptr); 2916 } 2917 2918 VectorParts Mask = createBlockInMask(Instr->getParent()); 2919 // Handle Stores: 2920 if (SI) { 2921 assert(!Legal->isUniform(SI->getPointerOperand()) && 2922 "We do not allow storing to uniform addresses"); 2923 setDebugLocFromInst(Builder, SI); 2924 // We don't want to update the value in the map as it might be used in 2925 // another expression. So don't use a reference type for "StoredVal". 2926 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2927 2928 for (unsigned Part = 0; Part < UF; ++Part) { 2929 Instruction *NewSI = nullptr; 2930 if (CreateGatherScatter) { 2931 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2932 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2933 Alignment, MaskPart); 2934 } else { 2935 // Calculate the pointer for the specific unroll-part. 2936 Value *PartPtr = 2937 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2938 2939 if (Reverse) { 2940 // If we store to reverse consecutive memory locations, then we need 2941 // to reverse the order of elements in the stored value. 2942 StoredVal[Part] = reverseVector(StoredVal[Part]); 2943 // If the address is consecutive but reversed, then the 2944 // wide store needs to start at the last vector element. 2945 PartPtr = 2946 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2947 PartPtr = 2948 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2949 Mask[Part] = reverseVector(Mask[Part]); 2950 } 2951 2952 Value *VecPtr = 2953 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2954 2955 if (Legal->isMaskRequired(SI)) 2956 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2957 Mask[Part]); 2958 else 2959 NewSI = 2960 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2961 } 2962 addMetadata(NewSI, SI); 2963 } 2964 return; 2965 } 2966 2967 // Handle loads. 2968 assert(LI && "Must have a load instruction"); 2969 setDebugLocFromInst(Builder, LI); 2970 VectorParts Entry(UF); 2971 for (unsigned Part = 0; Part < UF; ++Part) { 2972 Instruction *NewLI; 2973 if (CreateGatherScatter) { 2974 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2975 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2976 0, "wide.masked.gather"); 2977 Entry[Part] = NewLI; 2978 } else { 2979 // Calculate the pointer for the specific unroll-part. 2980 Value *PartPtr = 2981 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2982 2983 if (Reverse) { 2984 // If the address is consecutive but reversed, then the 2985 // wide load needs to start at the last vector element. 2986 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2987 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2988 Mask[Part] = reverseVector(Mask[Part]); 2989 } 2990 2991 Value *VecPtr = 2992 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2993 if (Legal->isMaskRequired(LI)) 2994 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2995 UndefValue::get(DataTy), 2996 "wide.masked.load"); 2997 else 2998 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2999 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3000 } 3001 addMetadata(NewLI, LI); 3002 } 3003 VectorLoopValueMap.initVector(Instr, Entry); 3004 } 3005 3006 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3007 bool IfPredicateInstr) { 3008 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3009 DEBUG(dbgs() << "LV: Scalarizing" 3010 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3011 << '\n'); 3012 // Holds vector parameters or scalars, in case of uniform vals. 3013 SmallVector<VectorParts, 4> Params; 3014 3015 setDebugLocFromInst(Builder, Instr); 3016 3017 // Does this instruction return a value ? 3018 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3019 3020 // Initialize a new scalar map entry. 3021 ScalarParts Entry(UF); 3022 3023 VectorParts Cond; 3024 if (IfPredicateInstr) 3025 Cond = createBlockInMask(Instr->getParent()); 3026 3027 // Determine the number of scalars we need to generate for each unroll 3028 // iteration. If the instruction is uniform, we only need to generate the 3029 // first lane. Otherwise, we generate all VF values. 3030 unsigned Lanes = Legal->isUniformAfterVectorization(Instr) ? 1 : VF; 3031 3032 // For each vector unroll 'part': 3033 for (unsigned Part = 0; Part < UF; ++Part) { 3034 Entry[Part].resize(VF); 3035 // For each scalar that we create: 3036 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3037 3038 // Start if-block. 3039 Value *Cmp = nullptr; 3040 if (IfPredicateInstr) { 3041 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane)); 3042 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3043 ConstantInt::get(Cmp->getType(), 1)); 3044 } 3045 3046 Instruction *Cloned = Instr->clone(); 3047 if (!IsVoidRetTy) 3048 Cloned->setName(Instr->getName() + ".cloned"); 3049 3050 // Replace the operands of the cloned instructions with their scalar 3051 // equivalents in the new loop. 3052 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3053 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3054 Cloned->setOperand(op, NewOp); 3055 } 3056 addNewMetadata(Cloned, Instr); 3057 3058 // Place the cloned scalar in the new loop. 3059 Builder.Insert(Cloned); 3060 3061 // Add the cloned scalar to the scalar map entry. 3062 Entry[Part][Lane] = Cloned; 3063 3064 // If we just cloned a new assumption, add it the assumption cache. 3065 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3066 if (II->getIntrinsicID() == Intrinsic::assume) 3067 AC->registerAssumption(II); 3068 3069 // End if-block. 3070 if (IfPredicateInstr) 3071 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3072 } 3073 } 3074 VectorLoopValueMap.initScalar(Instr, Entry); 3075 } 3076 3077 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3078 Value *End, Value *Step, 3079 Instruction *DL) { 3080 BasicBlock *Header = L->getHeader(); 3081 BasicBlock *Latch = L->getLoopLatch(); 3082 // As we're just creating this loop, it's possible no latch exists 3083 // yet. If so, use the header as this will be a single block loop. 3084 if (!Latch) 3085 Latch = Header; 3086 3087 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3088 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3089 setDebugLocFromInst(Builder, OldInst); 3090 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3091 3092 Builder.SetInsertPoint(Latch->getTerminator()); 3093 setDebugLocFromInst(Builder, OldInst); 3094 3095 // Create i+1 and fill the PHINode. 3096 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3097 Induction->addIncoming(Start, L->getLoopPreheader()); 3098 Induction->addIncoming(Next, Latch); 3099 // Create the compare. 3100 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3101 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3102 3103 // Now we have two terminators. Remove the old one from the block. 3104 Latch->getTerminator()->eraseFromParent(); 3105 3106 return Induction; 3107 } 3108 3109 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3110 if (TripCount) 3111 return TripCount; 3112 3113 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3114 // Find the loop boundaries. 3115 ScalarEvolution *SE = PSE.getSE(); 3116 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3117 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3118 "Invalid loop count"); 3119 3120 Type *IdxTy = Legal->getWidestInductionType(); 3121 3122 // The exit count might have the type of i64 while the phi is i32. This can 3123 // happen if we have an induction variable that is sign extended before the 3124 // compare. The only way that we get a backedge taken count is that the 3125 // induction variable was signed and as such will not overflow. In such a case 3126 // truncation is legal. 3127 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3128 IdxTy->getPrimitiveSizeInBits()) 3129 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3130 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3131 3132 // Get the total trip count from the count by adding 1. 3133 const SCEV *ExitCount = SE->getAddExpr( 3134 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3135 3136 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3137 3138 // Expand the trip count and place the new instructions in the preheader. 3139 // Notice that the pre-header does not change, only the loop body. 3140 SCEVExpander Exp(*SE, DL, "induction"); 3141 3142 // Count holds the overall loop count (N). 3143 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3144 L->getLoopPreheader()->getTerminator()); 3145 3146 if (TripCount->getType()->isPointerTy()) 3147 TripCount = 3148 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3149 L->getLoopPreheader()->getTerminator()); 3150 3151 return TripCount; 3152 } 3153 3154 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3155 if (VectorTripCount) 3156 return VectorTripCount; 3157 3158 Value *TC = getOrCreateTripCount(L); 3159 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3160 3161 // Now we need to generate the expression for the part of the loop that the 3162 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3163 // iterations are not required for correctness, or N - Step, otherwise. Step 3164 // is equal to the vectorization factor (number of SIMD elements) times the 3165 // unroll factor (number of SIMD instructions). 3166 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3167 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3168 3169 // If there is a non-reversed interleaved group that may speculatively access 3170 // memory out-of-bounds, we need to ensure that there will be at least one 3171 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3172 // the trip count, we set the remainder to be equal to the step. If the step 3173 // does not evenly divide the trip count, no adjustment is necessary since 3174 // there will already be scalar iterations. Note that the minimum iterations 3175 // check ensures that N >= Step. 3176 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3177 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3178 R = Builder.CreateSelect(IsZero, Step, R); 3179 } 3180 3181 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3182 3183 return VectorTripCount; 3184 } 3185 3186 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3187 BasicBlock *Bypass) { 3188 Value *Count = getOrCreateTripCount(L); 3189 BasicBlock *BB = L->getLoopPreheader(); 3190 IRBuilder<> Builder(BB->getTerminator()); 3191 3192 // Generate code to check that the loop's trip count that we computed by 3193 // adding one to the backedge-taken count will not overflow. 3194 Value *CheckMinIters = Builder.CreateICmpULT( 3195 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3196 3197 BasicBlock *NewBB = 3198 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3199 // Update dominator tree immediately if the generated block is a 3200 // LoopBypassBlock because SCEV expansions to generate loop bypass 3201 // checks may query it before the current function is finished. 3202 DT->addNewBlock(NewBB, BB); 3203 if (L->getParentLoop()) 3204 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3205 ReplaceInstWithInst(BB->getTerminator(), 3206 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3207 LoopBypassBlocks.push_back(BB); 3208 } 3209 3210 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3211 BasicBlock *Bypass) { 3212 Value *TC = getOrCreateVectorTripCount(L); 3213 BasicBlock *BB = L->getLoopPreheader(); 3214 IRBuilder<> Builder(BB->getTerminator()); 3215 3216 // Now, compare the new count to zero. If it is zero skip the vector loop and 3217 // jump to the scalar loop. 3218 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3219 "cmp.zero"); 3220 3221 // Generate code to check that the loop's trip count that we computed by 3222 // adding one to the backedge-taken count will not overflow. 3223 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3224 // Update dominator tree immediately if the generated block is a 3225 // LoopBypassBlock because SCEV expansions to generate loop bypass 3226 // checks may query it before the current function is finished. 3227 DT->addNewBlock(NewBB, BB); 3228 if (L->getParentLoop()) 3229 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3230 ReplaceInstWithInst(BB->getTerminator(), 3231 BranchInst::Create(Bypass, NewBB, Cmp)); 3232 LoopBypassBlocks.push_back(BB); 3233 } 3234 3235 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3236 BasicBlock *BB = L->getLoopPreheader(); 3237 3238 // Generate the code to check that the SCEV assumptions that we made. 3239 // We want the new basic block to start at the first instruction in a 3240 // sequence of instructions that form a check. 3241 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3242 "scev.check"); 3243 Value *SCEVCheck = 3244 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3245 3246 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3247 if (C->isZero()) 3248 return; 3249 3250 // Create a new block containing the stride check. 3251 BB->setName("vector.scevcheck"); 3252 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3253 // Update dominator tree immediately if the generated block is a 3254 // LoopBypassBlock because SCEV expansions to generate loop bypass 3255 // checks may query it before the current function is finished. 3256 DT->addNewBlock(NewBB, BB); 3257 if (L->getParentLoop()) 3258 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3259 ReplaceInstWithInst(BB->getTerminator(), 3260 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3261 LoopBypassBlocks.push_back(BB); 3262 AddedSafetyChecks = true; 3263 } 3264 3265 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3266 BasicBlock *BB = L->getLoopPreheader(); 3267 3268 // Generate the code that checks in runtime if arrays overlap. We put the 3269 // checks into a separate block to make the more common case of few elements 3270 // faster. 3271 Instruction *FirstCheckInst; 3272 Instruction *MemRuntimeCheck; 3273 std::tie(FirstCheckInst, MemRuntimeCheck) = 3274 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3275 if (!MemRuntimeCheck) 3276 return; 3277 3278 // Create a new block containing the memory check. 3279 BB->setName("vector.memcheck"); 3280 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3281 // Update dominator tree immediately if the generated block is a 3282 // LoopBypassBlock because SCEV expansions to generate loop bypass 3283 // checks may query it before the current function is finished. 3284 DT->addNewBlock(NewBB, BB); 3285 if (L->getParentLoop()) 3286 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3287 ReplaceInstWithInst(BB->getTerminator(), 3288 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3289 LoopBypassBlocks.push_back(BB); 3290 AddedSafetyChecks = true; 3291 3292 // We currently don't use LoopVersioning for the actual loop cloning but we 3293 // still use it to add the noalias metadata. 3294 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3295 PSE.getSE()); 3296 LVer->prepareNoAliasMetadata(); 3297 } 3298 3299 void InnerLoopVectorizer::createEmptyLoop() { 3300 /* 3301 In this function we generate a new loop. The new loop will contain 3302 the vectorized instructions while the old loop will continue to run the 3303 scalar remainder. 3304 3305 [ ] <-- loop iteration number check. 3306 / | 3307 / v 3308 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3309 | / | 3310 | / v 3311 || [ ] <-- vector pre header. 3312 |/ | 3313 | v 3314 | [ ] \ 3315 | [ ]_| <-- vector loop. 3316 | | 3317 | v 3318 | -[ ] <--- middle-block. 3319 | / | 3320 | / v 3321 -|- >[ ] <--- new preheader. 3322 | | 3323 | v 3324 | [ ] \ 3325 | [ ]_| <-- old scalar loop to handle remainder. 3326 \ | 3327 \ v 3328 >[ ] <-- exit block. 3329 ... 3330 */ 3331 3332 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3333 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3334 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3335 assert(VectorPH && "Invalid loop structure"); 3336 assert(ExitBlock && "Must have an exit block"); 3337 3338 // Some loops have a single integer induction variable, while other loops 3339 // don't. One example is c++ iterators that often have multiple pointer 3340 // induction variables. In the code below we also support a case where we 3341 // don't have a single induction variable. 3342 // 3343 // We try to obtain an induction variable from the original loop as hard 3344 // as possible. However if we don't find one that: 3345 // - is an integer 3346 // - counts from zero, stepping by one 3347 // - is the size of the widest induction variable type 3348 // then we create a new one. 3349 OldInduction = Legal->getInduction(); 3350 Type *IdxTy = Legal->getWidestInductionType(); 3351 3352 // Split the single block loop into the two loop structure described above. 3353 BasicBlock *VecBody = 3354 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3355 BasicBlock *MiddleBlock = 3356 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3357 BasicBlock *ScalarPH = 3358 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3359 3360 // Create and register the new vector loop. 3361 Loop *Lp = new Loop(); 3362 Loop *ParentLoop = OrigLoop->getParentLoop(); 3363 3364 // Insert the new loop into the loop nest and register the new basic blocks 3365 // before calling any utilities such as SCEV that require valid LoopInfo. 3366 if (ParentLoop) { 3367 ParentLoop->addChildLoop(Lp); 3368 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3369 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3370 } else { 3371 LI->addTopLevelLoop(Lp); 3372 } 3373 Lp->addBasicBlockToLoop(VecBody, *LI); 3374 3375 // Find the loop boundaries. 3376 Value *Count = getOrCreateTripCount(Lp); 3377 3378 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3379 3380 // We need to test whether the backedge-taken count is uint##_max. Adding one 3381 // to it will cause overflow and an incorrect loop trip count in the vector 3382 // body. In case of overflow we want to directly jump to the scalar remainder 3383 // loop. 3384 emitMinimumIterationCountCheck(Lp, ScalarPH); 3385 // Now, compare the new count to zero. If it is zero skip the vector loop and 3386 // jump to the scalar loop. 3387 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3388 // Generate the code to check any assumptions that we've made for SCEV 3389 // expressions. 3390 emitSCEVChecks(Lp, ScalarPH); 3391 3392 // Generate the code that checks in runtime if arrays overlap. We put the 3393 // checks into a separate block to make the more common case of few elements 3394 // faster. 3395 emitMemRuntimeChecks(Lp, ScalarPH); 3396 3397 // Generate the induction variable. 3398 // The loop step is equal to the vectorization factor (num of SIMD elements) 3399 // times the unroll factor (num of SIMD instructions). 3400 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3401 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3402 Induction = 3403 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3404 getDebugLocFromInstOrOperands(OldInduction)); 3405 3406 // We are going to resume the execution of the scalar loop. 3407 // Go over all of the induction variables that we found and fix the 3408 // PHIs that are left in the scalar version of the loop. 3409 // The starting values of PHI nodes depend on the counter of the last 3410 // iteration in the vectorized loop. 3411 // If we come from a bypass edge then we need to start from the original 3412 // start value. 3413 3414 // This variable saves the new starting index for the scalar loop. It is used 3415 // to test if there are any tail iterations left once the vector loop has 3416 // completed. 3417 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3418 for (auto &InductionEntry : *List) { 3419 PHINode *OrigPhi = InductionEntry.first; 3420 InductionDescriptor II = InductionEntry.second; 3421 3422 // Create phi nodes to merge from the backedge-taken check block. 3423 PHINode *BCResumeVal = PHINode::Create( 3424 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3425 Value *&EndValue = IVEndValues[OrigPhi]; 3426 if (OrigPhi == OldInduction) { 3427 // We know what the end value is. 3428 EndValue = CountRoundDown; 3429 } else { 3430 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3431 Type *StepType = II.getStep()->getType(); 3432 Instruction::CastOps CastOp = 3433 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3434 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3435 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3436 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3437 EndValue->setName("ind.end"); 3438 } 3439 3440 // The new PHI merges the original incoming value, in case of a bypass, 3441 // or the value at the end of the vectorized loop. 3442 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3443 3444 // Fix the scalar body counter (PHI node). 3445 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3446 3447 // The old induction's phi node in the scalar body needs the truncated 3448 // value. 3449 for (BasicBlock *BB : LoopBypassBlocks) 3450 BCResumeVal->addIncoming(II.getStartValue(), BB); 3451 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3452 } 3453 3454 // Add a check in the middle block to see if we have completed 3455 // all of the iterations in the first vector loop. 3456 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3457 Value *CmpN = 3458 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3459 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3460 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3461 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3462 3463 // Get ready to start creating new instructions into the vectorized body. 3464 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3465 3466 // Save the state. 3467 LoopVectorPreHeader = Lp->getLoopPreheader(); 3468 LoopScalarPreHeader = ScalarPH; 3469 LoopMiddleBlock = MiddleBlock; 3470 LoopExitBlock = ExitBlock; 3471 LoopVectorBody = VecBody; 3472 LoopScalarBody = OldBasicBlock; 3473 3474 // Keep all loop hints from the original loop on the vector loop (we'll 3475 // replace the vectorizer-specific hints below). 3476 if (MDNode *LID = OrigLoop->getLoopID()) 3477 Lp->setLoopID(LID); 3478 3479 LoopVectorizeHints Hints(Lp, true, *ORE); 3480 Hints.setAlreadyVectorized(); 3481 } 3482 3483 // Fix up external users of the induction variable. At this point, we are 3484 // in LCSSA form, with all external PHIs that use the IV having one input value, 3485 // coming from the remainder loop. We need those PHIs to also have a correct 3486 // value for the IV when arriving directly from the middle block. 3487 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3488 const InductionDescriptor &II, 3489 Value *CountRoundDown, Value *EndValue, 3490 BasicBlock *MiddleBlock) { 3491 // There are two kinds of external IV usages - those that use the value 3492 // computed in the last iteration (the PHI) and those that use the penultimate 3493 // value (the value that feeds into the phi from the loop latch). 3494 // We allow both, but they, obviously, have different values. 3495 3496 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3497 3498 DenseMap<Value *, Value *> MissingVals; 3499 3500 // An external user of the last iteration's value should see the value that 3501 // the remainder loop uses to initialize its own IV. 3502 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3503 for (User *U : PostInc->users()) { 3504 Instruction *UI = cast<Instruction>(U); 3505 if (!OrigLoop->contains(UI)) { 3506 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3507 MissingVals[UI] = EndValue; 3508 } 3509 } 3510 3511 // An external user of the penultimate value need to see EndValue - Step. 3512 // The simplest way to get this is to recompute it from the constituent SCEVs, 3513 // that is Start + (Step * (CRD - 1)). 3514 for (User *U : OrigPhi->users()) { 3515 auto *UI = cast<Instruction>(U); 3516 if (!OrigLoop->contains(UI)) { 3517 const DataLayout &DL = 3518 OrigLoop->getHeader()->getModule()->getDataLayout(); 3519 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3520 3521 IRBuilder<> B(MiddleBlock->getTerminator()); 3522 Value *CountMinusOne = B.CreateSub( 3523 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3524 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3525 "cast.cmo"); 3526 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3527 Escape->setName("ind.escape"); 3528 MissingVals[UI] = Escape; 3529 } 3530 } 3531 3532 for (auto &I : MissingVals) { 3533 PHINode *PHI = cast<PHINode>(I.first); 3534 // One corner case we have to handle is two IVs "chasing" each-other, 3535 // that is %IV2 = phi [...], [ %IV1, %latch ] 3536 // In this case, if IV1 has an external use, we need to avoid adding both 3537 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3538 // don't already have an incoming value for the middle block. 3539 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3540 PHI->addIncoming(I.second, MiddleBlock); 3541 } 3542 } 3543 3544 namespace { 3545 struct CSEDenseMapInfo { 3546 static bool canHandle(Instruction *I) { 3547 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3548 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3549 } 3550 static inline Instruction *getEmptyKey() { 3551 return DenseMapInfo<Instruction *>::getEmptyKey(); 3552 } 3553 static inline Instruction *getTombstoneKey() { 3554 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3555 } 3556 static unsigned getHashValue(Instruction *I) { 3557 assert(canHandle(I) && "Unknown instruction!"); 3558 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3559 I->value_op_end())); 3560 } 3561 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3562 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3563 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3564 return LHS == RHS; 3565 return LHS->isIdenticalTo(RHS); 3566 } 3567 }; 3568 } 3569 3570 ///\brief Perform cse of induction variable instructions. 3571 static void cse(BasicBlock *BB) { 3572 // Perform simple cse. 3573 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3574 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3575 Instruction *In = &*I++; 3576 3577 if (!CSEDenseMapInfo::canHandle(In)) 3578 continue; 3579 3580 // Check if we can replace this instruction with any of the 3581 // visited instructions. 3582 if (Instruction *V = CSEMap.lookup(In)) { 3583 In->replaceAllUsesWith(V); 3584 In->eraseFromParent(); 3585 continue; 3586 } 3587 3588 CSEMap[In] = In; 3589 } 3590 } 3591 3592 /// \brief Adds a 'fast' flag to floating point operations. 3593 static Value *addFastMathFlag(Value *V) { 3594 if (isa<FPMathOperator>(V)) { 3595 FastMathFlags Flags; 3596 Flags.setUnsafeAlgebra(); 3597 cast<Instruction>(V)->setFastMathFlags(Flags); 3598 } 3599 return V; 3600 } 3601 3602 /// \brief Estimate the overhead of scalarizing a value based on its type. 3603 /// Insert and Extract are set if the result needs to be inserted and/or 3604 /// extracted from vectors. 3605 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3606 const TargetTransformInfo &TTI) { 3607 if (Ty->isVoidTy()) 3608 return 0; 3609 3610 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3611 unsigned Cost = 0; 3612 3613 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3614 if (Extract) 3615 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3616 if (Insert) 3617 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3618 } 3619 3620 return Cost; 3621 } 3622 3623 /// \brief Estimate the overhead of scalarizing an Instruction based on the 3624 /// types of its operands and return value. 3625 static unsigned getScalarizationOverhead(SmallVectorImpl<Type *> &OpTys, 3626 Type *RetTy, 3627 const TargetTransformInfo &TTI) { 3628 unsigned ScalarizationCost = 3629 getScalarizationOverhead(RetTy, true, false, TTI); 3630 3631 for (Type *Ty : OpTys) 3632 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); 3633 3634 return ScalarizationCost; 3635 } 3636 3637 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3638 /// convenience wrapper for the type-based getScalarizationOverhead API. 3639 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3640 const TargetTransformInfo &TTI) { 3641 if (VF == 1) 3642 return 0; 3643 3644 Type *RetTy = ToVectorTy(I->getType(), VF); 3645 3646 SmallVector<Type *, 4> OpTys; 3647 unsigned OperandsNum = I->getNumOperands(); 3648 for (unsigned OpInd = 0; OpInd < OperandsNum; ++OpInd) 3649 OpTys.push_back(ToVectorTy(I->getOperand(OpInd)->getType(), VF)); 3650 3651 return getScalarizationOverhead(OpTys, RetTy, TTI); 3652 } 3653 3654 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3655 // Return the cost of the instruction, including scalarization overhead if it's 3656 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3657 // i.e. either vector version isn't available, or is too expensive. 3658 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3659 const TargetTransformInfo &TTI, 3660 const TargetLibraryInfo *TLI, 3661 bool &NeedToScalarize) { 3662 Function *F = CI->getCalledFunction(); 3663 StringRef FnName = CI->getCalledFunction()->getName(); 3664 Type *ScalarRetTy = CI->getType(); 3665 SmallVector<Type *, 4> Tys, ScalarTys; 3666 for (auto &ArgOp : CI->arg_operands()) 3667 ScalarTys.push_back(ArgOp->getType()); 3668 3669 // Estimate cost of scalarized vector call. The source operands are assumed 3670 // to be vectors, so we need to extract individual elements from there, 3671 // execute VF scalar calls, and then gather the result into the vector return 3672 // value. 3673 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3674 if (VF == 1) 3675 return ScalarCallCost; 3676 3677 // Compute corresponding vector type for return value and arguments. 3678 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3679 for (Type *ScalarTy : ScalarTys) 3680 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3681 3682 // Compute costs of unpacking argument values for the scalar calls and 3683 // packing the return values to a vector. 3684 unsigned ScalarizationCost = getScalarizationOverhead(Tys, RetTy, TTI); 3685 3686 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3687 3688 // If we can't emit a vector call for this function, then the currently found 3689 // cost is the cost we need to return. 3690 NeedToScalarize = true; 3691 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3692 return Cost; 3693 3694 // If the corresponding vector cost is cheaper, return its cost. 3695 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3696 if (VectorCallCost < Cost) { 3697 NeedToScalarize = false; 3698 return VectorCallCost; 3699 } 3700 return Cost; 3701 } 3702 3703 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3704 // factor VF. Return the cost of the instruction, including scalarization 3705 // overhead if it's needed. 3706 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3707 const TargetTransformInfo &TTI, 3708 const TargetLibraryInfo *TLI) { 3709 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3710 assert(ID && "Expected intrinsic call!"); 3711 3712 Type *RetTy = ToVectorTy(CI->getType(), VF); 3713 SmallVector<Type *, 4> Tys; 3714 for (Value *ArgOperand : CI->arg_operands()) 3715 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3716 3717 FastMathFlags FMF; 3718 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3719 FMF = FPMO->getFastMathFlags(); 3720 3721 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3722 } 3723 3724 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3725 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3726 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3727 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3728 } 3729 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3730 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3731 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3732 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3733 } 3734 3735 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3736 // For every instruction `I` in MinBWs, truncate the operands, create a 3737 // truncated version of `I` and reextend its result. InstCombine runs 3738 // later and will remove any ext/trunc pairs. 3739 // 3740 SmallPtrSet<Value *, 4> Erased; 3741 for (const auto &KV : Cost->getMinimalBitwidths()) { 3742 // If the value wasn't vectorized, we must maintain the original scalar 3743 // type. The absence of the value from VectorLoopValueMap indicates that it 3744 // wasn't vectorized. 3745 if (!VectorLoopValueMap.hasVector(KV.first)) 3746 continue; 3747 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3748 for (Value *&I : Parts) { 3749 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3750 continue; 3751 Type *OriginalTy = I->getType(); 3752 Type *ScalarTruncatedTy = 3753 IntegerType::get(OriginalTy->getContext(), KV.second); 3754 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3755 OriginalTy->getVectorNumElements()); 3756 if (TruncatedTy == OriginalTy) 3757 continue; 3758 3759 IRBuilder<> B(cast<Instruction>(I)); 3760 auto ShrinkOperand = [&](Value *V) -> Value * { 3761 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3762 if (ZI->getSrcTy() == TruncatedTy) 3763 return ZI->getOperand(0); 3764 return B.CreateZExtOrTrunc(V, TruncatedTy); 3765 }; 3766 3767 // The actual instruction modification depends on the instruction type, 3768 // unfortunately. 3769 Value *NewI = nullptr; 3770 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3771 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3772 ShrinkOperand(BO->getOperand(1))); 3773 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3774 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3775 NewI = 3776 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3777 ShrinkOperand(CI->getOperand(1))); 3778 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3779 NewI = B.CreateSelect(SI->getCondition(), 3780 ShrinkOperand(SI->getTrueValue()), 3781 ShrinkOperand(SI->getFalseValue())); 3782 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3783 switch (CI->getOpcode()) { 3784 default: 3785 llvm_unreachable("Unhandled cast!"); 3786 case Instruction::Trunc: 3787 NewI = ShrinkOperand(CI->getOperand(0)); 3788 break; 3789 case Instruction::SExt: 3790 NewI = B.CreateSExtOrTrunc( 3791 CI->getOperand(0), 3792 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3793 break; 3794 case Instruction::ZExt: 3795 NewI = B.CreateZExtOrTrunc( 3796 CI->getOperand(0), 3797 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3798 break; 3799 } 3800 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3801 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3802 auto *O0 = B.CreateZExtOrTrunc( 3803 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3804 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3805 auto *O1 = B.CreateZExtOrTrunc( 3806 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3807 3808 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3809 } else if (isa<LoadInst>(I)) { 3810 // Don't do anything with the operands, just extend the result. 3811 continue; 3812 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3813 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3814 auto *O0 = B.CreateZExtOrTrunc( 3815 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3816 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3817 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3818 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3819 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3820 auto *O0 = B.CreateZExtOrTrunc( 3821 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3822 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3823 } else { 3824 llvm_unreachable("Unhandled instruction type!"); 3825 } 3826 3827 // Lastly, extend the result. 3828 NewI->takeName(cast<Instruction>(I)); 3829 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3830 I->replaceAllUsesWith(Res); 3831 cast<Instruction>(I)->eraseFromParent(); 3832 Erased.insert(I); 3833 I = Res; 3834 } 3835 } 3836 3837 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3838 for (const auto &KV : Cost->getMinimalBitwidths()) { 3839 // If the value wasn't vectorized, we must maintain the original scalar 3840 // type. The absence of the value from VectorLoopValueMap indicates that it 3841 // wasn't vectorized. 3842 if (!VectorLoopValueMap.hasVector(KV.first)) 3843 continue; 3844 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3845 for (Value *&I : Parts) { 3846 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3847 if (Inst && Inst->use_empty()) { 3848 Value *NewI = Inst->getOperand(0); 3849 Inst->eraseFromParent(); 3850 I = NewI; 3851 } 3852 } 3853 } 3854 } 3855 3856 void InnerLoopVectorizer::vectorizeLoop() { 3857 //===------------------------------------------------===// 3858 // 3859 // Notice: any optimization or new instruction that go 3860 // into the code below should be also be implemented in 3861 // the cost-model. 3862 // 3863 //===------------------------------------------------===// 3864 Constant *Zero = Builder.getInt32(0); 3865 3866 // In order to support recurrences we need to be able to vectorize Phi nodes. 3867 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3868 // we create a new vector PHI node with no incoming edges. We use this value 3869 // when we vectorize all of the instructions that use the PHI. Next, after 3870 // all of the instructions in the block are complete we add the new incoming 3871 // edges to the PHI. At this point all of the instructions in the basic block 3872 // are vectorized, so we can use them to construct the PHI. 3873 PhiVector PHIsToFix; 3874 3875 // Collect instructions from the original loop that will become trivially 3876 // dead in the vectorized loop. We don't need to vectorize these 3877 // instructions. 3878 collectTriviallyDeadInstructions(); 3879 3880 // Scan the loop in a topological order to ensure that defs are vectorized 3881 // before users. 3882 LoopBlocksDFS DFS(OrigLoop); 3883 DFS.perform(LI); 3884 3885 // Vectorize all of the blocks in the original loop. 3886 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3887 vectorizeBlockInLoop(BB, &PHIsToFix); 3888 3889 // Insert truncates and extends for any truncated instructions as hints to 3890 // InstCombine. 3891 if (VF > 1) 3892 truncateToMinimalBitwidths(); 3893 3894 // At this point every instruction in the original loop is widened to a 3895 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3896 // nodes are currently empty because we did not want to introduce cycles. 3897 // This is the second stage of vectorizing recurrences. 3898 for (PHINode *Phi : PHIsToFix) { 3899 assert(Phi && "Unable to recover vectorized PHI"); 3900 3901 // Handle first-order recurrences that need to be fixed. 3902 if (Legal->isFirstOrderRecurrence(Phi)) { 3903 fixFirstOrderRecurrence(Phi); 3904 continue; 3905 } 3906 3907 // If the phi node is not a first-order recurrence, it must be a reduction. 3908 // Get it's reduction variable descriptor. 3909 assert(Legal->isReductionVariable(Phi) && 3910 "Unable to find the reduction variable"); 3911 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3912 3913 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3914 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3915 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3916 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3917 RdxDesc.getMinMaxRecurrenceKind(); 3918 setDebugLocFromInst(Builder, ReductionStartValue); 3919 3920 // We need to generate a reduction vector from the incoming scalar. 3921 // To do so, we need to generate the 'identity' vector and override 3922 // one of the elements with the incoming scalar reduction. We need 3923 // to do it in the vector-loop preheader. 3924 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3925 3926 // This is the vector-clone of the value that leaves the loop. 3927 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3928 Type *VecTy = VectorExit[0]->getType(); 3929 3930 // Find the reduction identity variable. Zero for addition, or, xor, 3931 // one for multiplication, -1 for And. 3932 Value *Identity; 3933 Value *VectorStart; 3934 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3935 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3936 // MinMax reduction have the start value as their identify. 3937 if (VF == 1) { 3938 VectorStart = Identity = ReductionStartValue; 3939 } else { 3940 VectorStart = Identity = 3941 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3942 } 3943 } else { 3944 // Handle other reduction kinds: 3945 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3946 RK, VecTy->getScalarType()); 3947 if (VF == 1) { 3948 Identity = Iden; 3949 // This vector is the Identity vector where the first element is the 3950 // incoming scalar reduction. 3951 VectorStart = ReductionStartValue; 3952 } else { 3953 Identity = ConstantVector::getSplat(VF, Iden); 3954 3955 // This vector is the Identity vector where the first element is the 3956 // incoming scalar reduction. 3957 VectorStart = 3958 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3959 } 3960 } 3961 3962 // Fix the vector-loop phi. 3963 3964 // Reductions do not have to start at zero. They can start with 3965 // any loop invariant values. 3966 const VectorParts &VecRdxPhi = getVectorValue(Phi); 3967 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3968 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3969 const VectorParts &Val = getVectorValue(LoopVal); 3970 for (unsigned part = 0; part < UF; ++part) { 3971 // Make sure to add the reduction stat value only to the 3972 // first unroll part. 3973 Value *StartVal = (part == 0) ? VectorStart : Identity; 3974 cast<PHINode>(VecRdxPhi[part]) 3975 ->addIncoming(StartVal, LoopVectorPreHeader); 3976 cast<PHINode>(VecRdxPhi[part]) 3977 ->addIncoming(Val[part], LoopVectorBody); 3978 } 3979 3980 // Before each round, move the insertion point right between 3981 // the PHIs and the values we are going to write. 3982 // This allows us to write both PHINodes and the extractelement 3983 // instructions. 3984 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3985 3986 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 3987 setDebugLocFromInst(Builder, LoopExitInst); 3988 3989 // If the vector reduction can be performed in a smaller type, we truncate 3990 // then extend the loop exit value to enable InstCombine to evaluate the 3991 // entire expression in the smaller type. 3992 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3993 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3994 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3995 for (unsigned part = 0; part < UF; ++part) { 3996 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3997 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3998 : Builder.CreateZExt(Trunc, VecTy); 3999 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4000 UI != RdxParts[part]->user_end();) 4001 if (*UI != Trunc) { 4002 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4003 RdxParts[part] = Extnd; 4004 } else { 4005 ++UI; 4006 } 4007 } 4008 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4009 for (unsigned part = 0; part < UF; ++part) 4010 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4011 } 4012 4013 // Reduce all of the unrolled parts into a single vector. 4014 Value *ReducedPartRdx = RdxParts[0]; 4015 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4016 setDebugLocFromInst(Builder, ReducedPartRdx); 4017 for (unsigned part = 1; part < UF; ++part) { 4018 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4019 // Floating point operations had to be 'fast' to enable the reduction. 4020 ReducedPartRdx = addFastMathFlag( 4021 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4022 ReducedPartRdx, "bin.rdx")); 4023 else 4024 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4025 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4026 } 4027 4028 if (VF > 1) { 4029 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4030 // and vector ops, reducing the set of values being computed by half each 4031 // round. 4032 assert(isPowerOf2_32(VF) && 4033 "Reduction emission only supported for pow2 vectors!"); 4034 Value *TmpVec = ReducedPartRdx; 4035 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4036 for (unsigned i = VF; i != 1; i >>= 1) { 4037 // Move the upper half of the vector to the lower half. 4038 for (unsigned j = 0; j != i / 2; ++j) 4039 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4040 4041 // Fill the rest of the mask with undef. 4042 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4043 UndefValue::get(Builder.getInt32Ty())); 4044 4045 Value *Shuf = Builder.CreateShuffleVector( 4046 TmpVec, UndefValue::get(TmpVec->getType()), 4047 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4048 4049 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4050 // Floating point operations had to be 'fast' to enable the reduction. 4051 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4052 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4053 else 4054 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4055 TmpVec, Shuf); 4056 } 4057 4058 // The result is in the first element of the vector. 4059 ReducedPartRdx = 4060 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4061 4062 // If the reduction can be performed in a smaller type, we need to extend 4063 // the reduction to the wider type before we branch to the original loop. 4064 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4065 ReducedPartRdx = 4066 RdxDesc.isSigned() 4067 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4068 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4069 } 4070 4071 // Create a phi node that merges control-flow from the backedge-taken check 4072 // block and the middle block. 4073 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4074 LoopScalarPreHeader->getTerminator()); 4075 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4076 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4077 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4078 4079 // Now, we need to fix the users of the reduction variable 4080 // inside and outside of the scalar remainder loop. 4081 // We know that the loop is in LCSSA form. We need to update the 4082 // PHI nodes in the exit blocks. 4083 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4084 LEE = LoopExitBlock->end(); 4085 LEI != LEE; ++LEI) { 4086 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4087 if (!LCSSAPhi) 4088 break; 4089 4090 // All PHINodes need to have a single entry edge, or two if 4091 // we already fixed them. 4092 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4093 4094 // We found our reduction value exit-PHI. Update it with the 4095 // incoming bypass edge. 4096 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 4097 // Add an edge coming from the bypass. 4098 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4099 break; 4100 } 4101 } // end of the LCSSA phi scan. 4102 4103 // Fix the scalar loop reduction variable with the incoming reduction sum 4104 // from the vector body and from the backedge value. 4105 int IncomingEdgeBlockIdx = 4106 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4107 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4108 // Pick the other block. 4109 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4110 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4111 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4112 } // end of for each Phi in PHIsToFix. 4113 4114 // Update the dominator tree. 4115 // 4116 // FIXME: After creating the structure of the new loop, the dominator tree is 4117 // no longer up-to-date, and it remains that way until we update it 4118 // here. An out-of-date dominator tree is problematic for SCEV, 4119 // because SCEVExpander uses it to guide code generation. The 4120 // vectorizer use SCEVExpanders in several places. Instead, we should 4121 // keep the dominator tree up-to-date as we go. 4122 updateAnalysis(); 4123 4124 // Fix-up external users of the induction variables. 4125 for (auto &Entry : *Legal->getInductionVars()) 4126 fixupIVUsers(Entry.first, Entry.second, 4127 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4128 IVEndValues[Entry.first], LoopMiddleBlock); 4129 4130 fixLCSSAPHIs(); 4131 predicateInstructions(); 4132 4133 // Remove redundant induction instructions. 4134 cse(LoopVectorBody); 4135 } 4136 4137 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4138 4139 // This is the second phase of vectorizing first-order recurrences. An 4140 // overview of the transformation is described below. Suppose we have the 4141 // following loop. 4142 // 4143 // for (int i = 0; i < n; ++i) 4144 // b[i] = a[i] - a[i - 1]; 4145 // 4146 // There is a first-order recurrence on "a". For this loop, the shorthand 4147 // scalar IR looks like: 4148 // 4149 // scalar.ph: 4150 // s_init = a[-1] 4151 // br scalar.body 4152 // 4153 // scalar.body: 4154 // i = phi [0, scalar.ph], [i+1, scalar.body] 4155 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4156 // s2 = a[i] 4157 // b[i] = s2 - s1 4158 // br cond, scalar.body, ... 4159 // 4160 // In this example, s1 is a recurrence because it's value depends on the 4161 // previous iteration. In the first phase of vectorization, we created a 4162 // temporary value for s1. We now complete the vectorization and produce the 4163 // shorthand vector IR shown below (for VF = 4, UF = 1). 4164 // 4165 // vector.ph: 4166 // v_init = vector(..., ..., ..., a[-1]) 4167 // br vector.body 4168 // 4169 // vector.body 4170 // i = phi [0, vector.ph], [i+4, vector.body] 4171 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4172 // v2 = a[i, i+1, i+2, i+3]; 4173 // v3 = vector(v1(3), v2(0, 1, 2)) 4174 // b[i, i+1, i+2, i+3] = v2 - v3 4175 // br cond, vector.body, middle.block 4176 // 4177 // middle.block: 4178 // x = v2(3) 4179 // br scalar.ph 4180 // 4181 // scalar.ph: 4182 // s_init = phi [x, middle.block], [a[-1], otherwise] 4183 // br scalar.body 4184 // 4185 // After execution completes the vector loop, we extract the next value of 4186 // the recurrence (x) to use as the initial value in the scalar loop. 4187 4188 // Get the original loop preheader and single loop latch. 4189 auto *Preheader = OrigLoop->getLoopPreheader(); 4190 auto *Latch = OrigLoop->getLoopLatch(); 4191 4192 // Get the initial and previous values of the scalar recurrence. 4193 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4194 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4195 4196 // Create a vector from the initial value. 4197 auto *VectorInit = ScalarInit; 4198 if (VF > 1) { 4199 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4200 VectorInit = Builder.CreateInsertElement( 4201 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4202 Builder.getInt32(VF - 1), "vector.recur.init"); 4203 } 4204 4205 // We constructed a temporary phi node in the first phase of vectorization. 4206 // This phi node will eventually be deleted. 4207 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4208 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4209 4210 // Create a phi node for the new recurrence. The current value will either be 4211 // the initial value inserted into a vector or loop-varying vector value. 4212 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4213 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4214 4215 // Get the vectorized previous value. We ensured the previous values was an 4216 // instruction when detecting the recurrence. 4217 auto &PreviousParts = getVectorValue(Previous); 4218 4219 // Set the insertion point to be after this instruction. We ensured the 4220 // previous value dominated all uses of the phi when detecting the 4221 // recurrence. 4222 Builder.SetInsertPoint( 4223 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4224 4225 // We will construct a vector for the recurrence by combining the values for 4226 // the current and previous iterations. This is the required shuffle mask. 4227 SmallVector<Constant *, 8> ShuffleMask(VF); 4228 ShuffleMask[0] = Builder.getInt32(VF - 1); 4229 for (unsigned I = 1; I < VF; ++I) 4230 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4231 4232 // The vector from which to take the initial value for the current iteration 4233 // (actual or unrolled). Initially, this is the vector phi node. 4234 Value *Incoming = VecPhi; 4235 4236 // Shuffle the current and previous vector and update the vector parts. 4237 for (unsigned Part = 0; Part < UF; ++Part) { 4238 auto *Shuffle = 4239 VF > 1 4240 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4241 ConstantVector::get(ShuffleMask)) 4242 : Incoming; 4243 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4244 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4245 PhiParts[Part] = Shuffle; 4246 Incoming = PreviousParts[Part]; 4247 } 4248 4249 // Fix the latch value of the new recurrence in the vector loop. 4250 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4251 4252 // Extract the last vector element in the middle block. This will be the 4253 // initial value for the recurrence when jumping to the scalar loop. 4254 auto *Extract = Incoming; 4255 if (VF > 1) { 4256 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4257 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4258 "vector.recur.extract"); 4259 } 4260 4261 // Fix the initial value of the original recurrence in the scalar loop. 4262 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4263 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4264 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4265 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4266 Start->addIncoming(Incoming, BB); 4267 } 4268 4269 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4270 Phi->setName("scalar.recur"); 4271 4272 // Finally, fix users of the recurrence outside the loop. The users will need 4273 // either the last value of the scalar recurrence or the last value of the 4274 // vector recurrence we extracted in the middle block. Since the loop is in 4275 // LCSSA form, we just need to find the phi node for the original scalar 4276 // recurrence in the exit block, and then add an edge for the middle block. 4277 for (auto &I : *LoopExitBlock) { 4278 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4279 if (!LCSSAPhi) 4280 break; 4281 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4282 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4283 break; 4284 } 4285 } 4286 } 4287 4288 void InnerLoopVectorizer::fixLCSSAPHIs() { 4289 for (Instruction &LEI : *LoopExitBlock) { 4290 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4291 if (!LCSSAPhi) 4292 break; 4293 if (LCSSAPhi->getNumIncomingValues() == 1) 4294 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4295 LoopMiddleBlock); 4296 } 4297 } 4298 4299 void InnerLoopVectorizer::collectTriviallyDeadInstructions() { 4300 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4301 4302 // We create new control-flow for the vectorized loop, so the original 4303 // condition will be dead after vectorization if it's only used by the 4304 // branch. 4305 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4306 if (Cmp && Cmp->hasOneUse()) 4307 DeadInstructions.insert(Cmp); 4308 4309 // We create new "steps" for induction variable updates to which the original 4310 // induction variables map. An original update instruction will be dead if 4311 // all its users except the induction variable are dead. 4312 for (auto &Induction : *Legal->getInductionVars()) { 4313 PHINode *Ind = Induction.first; 4314 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4315 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4316 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4317 })) 4318 DeadInstructions.insert(IndUpdate); 4319 } 4320 } 4321 4322 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4323 4324 // The basic block and loop containing the predicated instruction. 4325 auto *PredBB = PredInst->getParent(); 4326 auto *VectorLoop = LI->getLoopFor(PredBB); 4327 4328 // Initialize a worklist with the operands of the predicated instruction. 4329 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4330 4331 // Holds instructions that we need to analyze again. An instruction may be 4332 // reanalyzed if we don't yet know if we can sink it or not. 4333 SmallVector<Instruction *, 8> InstsToReanalyze; 4334 4335 // Returns true if a given use occurs in the predicated block. Phi nodes use 4336 // their operands in their corresponding predecessor blocks. 4337 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4338 auto *I = cast<Instruction>(U.getUser()); 4339 BasicBlock *BB = I->getParent(); 4340 if (auto *Phi = dyn_cast<PHINode>(I)) 4341 BB = Phi->getIncomingBlock( 4342 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4343 return BB == PredBB; 4344 }; 4345 4346 // Iteratively sink the scalarized operands of the predicated instruction 4347 // into the block we created for it. When an instruction is sunk, it's 4348 // operands are then added to the worklist. The algorithm ends after one pass 4349 // through the worklist doesn't sink a single instruction. 4350 bool Changed; 4351 do { 4352 4353 // Add the instructions that need to be reanalyzed to the worklist, and 4354 // reset the changed indicator. 4355 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4356 InstsToReanalyze.clear(); 4357 Changed = false; 4358 4359 while (!Worklist.empty()) { 4360 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4361 4362 // We can't sink an instruction if it is a phi node, is already in the 4363 // predicated block, is not in the loop, or may have side effects. 4364 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4365 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4366 continue; 4367 4368 // It's legal to sink the instruction if all its uses occur in the 4369 // predicated block. Otherwise, there's nothing to do yet, and we may 4370 // need to reanalyze the instruction. 4371 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4372 InstsToReanalyze.push_back(I); 4373 continue; 4374 } 4375 4376 // Move the instruction to the beginning of the predicated block, and add 4377 // it's operands to the worklist. 4378 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4379 Worklist.insert(I->op_begin(), I->op_end()); 4380 4381 // The sinking may have enabled other instructions to be sunk, so we will 4382 // need to iterate. 4383 Changed = true; 4384 } 4385 } while (Changed); 4386 } 4387 4388 void InnerLoopVectorizer::predicateInstructions() { 4389 4390 // For each instruction I marked for predication on value C, split I into its 4391 // own basic block to form an if-then construct over C. Since I may be fed by 4392 // an extractelement instruction or other scalar operand, we try to 4393 // iteratively sink its scalar operands into the predicated block. If I feeds 4394 // an insertelement instruction, we try to move this instruction into the 4395 // predicated block as well. For non-void types, a phi node will be created 4396 // for the resulting value (either vector or scalar). 4397 // 4398 // So for some predicated instruction, e.g. the conditional sdiv in: 4399 // 4400 // for.body: 4401 // ... 4402 // %add = add nsw i32 %mul, %0 4403 // %cmp5 = icmp sgt i32 %2, 7 4404 // br i1 %cmp5, label %if.then, label %if.end 4405 // 4406 // if.then: 4407 // %div = sdiv i32 %0, %1 4408 // br label %if.end 4409 // 4410 // if.end: 4411 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4412 // 4413 // the sdiv at this point is scalarized and if-converted using a select. 4414 // The inactive elements in the vector are not used, but the predicated 4415 // instruction is still executed for all vector elements, essentially: 4416 // 4417 // vector.body: 4418 // ... 4419 // %17 = add nsw <2 x i32> %16, %wide.load 4420 // %29 = extractelement <2 x i32> %wide.load, i32 0 4421 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4422 // %31 = sdiv i32 %29, %30 4423 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4424 // %35 = extractelement <2 x i32> %wide.load, i32 1 4425 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4426 // %37 = sdiv i32 %35, %36 4427 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4428 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4429 // 4430 // Predication will now re-introduce the original control flow to avoid false 4431 // side-effects by the sdiv instructions on the inactive elements, yielding 4432 // (after cleanup): 4433 // 4434 // vector.body: 4435 // ... 4436 // %5 = add nsw <2 x i32> %4, %wide.load 4437 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4438 // %9 = extractelement <2 x i1> %8, i32 0 4439 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4440 // 4441 // pred.sdiv.if: 4442 // %10 = extractelement <2 x i32> %wide.load, i32 0 4443 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4444 // %12 = sdiv i32 %10, %11 4445 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4446 // br label %pred.sdiv.continue 4447 // 4448 // pred.sdiv.continue: 4449 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4450 // %15 = extractelement <2 x i1> %8, i32 1 4451 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4452 // 4453 // pred.sdiv.if54: 4454 // %16 = extractelement <2 x i32> %wide.load, i32 1 4455 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4456 // %18 = sdiv i32 %16, %17 4457 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4458 // br label %pred.sdiv.continue55 4459 // 4460 // pred.sdiv.continue55: 4461 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4462 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4463 4464 for (auto KV : PredicatedInstructions) { 4465 BasicBlock::iterator I(KV.first); 4466 BasicBlock *Head = I->getParent(); 4467 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4468 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4469 /*BranchWeights=*/nullptr, DT, LI); 4470 I->moveBefore(T); 4471 sinkScalarOperands(&*I); 4472 4473 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4474 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4475 4476 // If the instruction is non-void create a Phi node at reconvergence point. 4477 if (!I->getType()->isVoidTy()) { 4478 Value *IncomingTrue = nullptr; 4479 Value *IncomingFalse = nullptr; 4480 4481 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4482 // If the predicated instruction is feeding an insert-element, move it 4483 // into the Then block; Phi node will be created for the vector. 4484 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4485 IEI->moveBefore(T); 4486 IncomingTrue = IEI; // the new vector with the inserted element. 4487 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4488 } else { 4489 // Phi node will be created for the scalar predicated instruction. 4490 IncomingTrue = &*I; 4491 IncomingFalse = UndefValue::get(I->getType()); 4492 } 4493 4494 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4495 assert(PostDom && "Then block has multiple successors"); 4496 PHINode *Phi = 4497 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4498 IncomingTrue->replaceAllUsesWith(Phi); 4499 Phi->addIncoming(IncomingFalse, Head); 4500 Phi->addIncoming(IncomingTrue, I->getParent()); 4501 } 4502 } 4503 4504 DEBUG(DT->verifyDomTree()); 4505 } 4506 4507 InnerLoopVectorizer::VectorParts 4508 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4509 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4510 4511 // Look for cached value. 4512 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4513 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4514 if (ECEntryIt != MaskCache.end()) 4515 return ECEntryIt->second; 4516 4517 VectorParts SrcMask = createBlockInMask(Src); 4518 4519 // The terminator has to be a branch inst! 4520 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4521 assert(BI && "Unexpected terminator found"); 4522 4523 if (BI->isConditional()) { 4524 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4525 4526 if (BI->getSuccessor(0) != Dst) 4527 for (unsigned part = 0; part < UF; ++part) 4528 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4529 4530 for (unsigned part = 0; part < UF; ++part) 4531 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4532 4533 MaskCache[Edge] = EdgeMask; 4534 return EdgeMask; 4535 } 4536 4537 MaskCache[Edge] = SrcMask; 4538 return SrcMask; 4539 } 4540 4541 InnerLoopVectorizer::VectorParts 4542 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4543 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4544 4545 // Loop incoming mask is all-one. 4546 if (OrigLoop->getHeader() == BB) { 4547 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4548 return getVectorValue(C); 4549 } 4550 4551 // This is the block mask. We OR all incoming edges, and with zero. 4552 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4553 VectorParts BlockMask = getVectorValue(Zero); 4554 4555 // For each pred: 4556 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4557 VectorParts EM = createEdgeMask(*it, BB); 4558 for (unsigned part = 0; part < UF; ++part) 4559 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4560 } 4561 4562 return BlockMask; 4563 } 4564 4565 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4566 unsigned VF, PhiVector *PV) { 4567 PHINode *P = cast<PHINode>(PN); 4568 // Handle recurrences. 4569 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4570 VectorParts Entry(UF); 4571 for (unsigned part = 0; part < UF; ++part) { 4572 // This is phase one of vectorizing PHIs. 4573 Type *VecTy = 4574 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4575 Entry[part] = PHINode::Create( 4576 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4577 } 4578 VectorLoopValueMap.initVector(P, Entry); 4579 PV->push_back(P); 4580 return; 4581 } 4582 4583 setDebugLocFromInst(Builder, P); 4584 // Check for PHI nodes that are lowered to vector selects. 4585 if (P->getParent() != OrigLoop->getHeader()) { 4586 // We know that all PHIs in non-header blocks are converted into 4587 // selects, so we don't have to worry about the insertion order and we 4588 // can just use the builder. 4589 // At this point we generate the predication tree. There may be 4590 // duplications since this is a simple recursive scan, but future 4591 // optimizations will clean it up. 4592 4593 unsigned NumIncoming = P->getNumIncomingValues(); 4594 4595 // Generate a sequence of selects of the form: 4596 // SELECT(Mask3, In3, 4597 // SELECT(Mask2, In2, 4598 // ( ...))) 4599 VectorParts Entry(UF); 4600 for (unsigned In = 0; In < NumIncoming; In++) { 4601 VectorParts Cond = 4602 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4603 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4604 4605 for (unsigned part = 0; part < UF; ++part) { 4606 // We might have single edge PHIs (blocks) - use an identity 4607 // 'select' for the first PHI operand. 4608 if (In == 0) 4609 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4610 else 4611 // Select between the current value and the previous incoming edge 4612 // based on the incoming mask. 4613 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4614 "predphi"); 4615 } 4616 } 4617 VectorLoopValueMap.initVector(P, Entry); 4618 return; 4619 } 4620 4621 // This PHINode must be an induction variable. 4622 // Make sure that we know about it. 4623 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4624 4625 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4626 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4627 4628 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4629 // which can be found from the original scalar operations. 4630 switch (II.getKind()) { 4631 case InductionDescriptor::IK_NoInduction: 4632 llvm_unreachable("Unknown induction"); 4633 case InductionDescriptor::IK_IntInduction: 4634 return widenIntInduction(P); 4635 case InductionDescriptor::IK_PtrInduction: { 4636 // Handle the pointer induction variable case. 4637 assert(P->getType()->isPointerTy() && "Unexpected type."); 4638 // This is the normalized GEP that starts counting at zero. 4639 Value *PtrInd = Induction; 4640 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4641 // Determine the number of scalars we need to generate for each unroll 4642 // iteration. If the instruction is uniform, we only need to generate the 4643 // first lane. Otherwise, we generate all VF values. 4644 unsigned Lanes = Legal->isUniformAfterVectorization(P) ? 1 : VF; 4645 // These are the scalar results. Notice that we don't generate vector GEPs 4646 // because scalar GEPs result in better code. 4647 ScalarParts Entry(UF); 4648 for (unsigned Part = 0; Part < UF; ++Part) { 4649 Entry[Part].resize(VF); 4650 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4651 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4652 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4653 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4654 SclrGep->setName("next.gep"); 4655 Entry[Part][Lane] = SclrGep; 4656 } 4657 } 4658 VectorLoopValueMap.initScalar(P, Entry); 4659 return; 4660 } 4661 case InductionDescriptor::IK_FpInduction: { 4662 assert(P->getType() == II.getStartValue()->getType() && 4663 "Types must match"); 4664 // Handle other induction variables that are now based on the 4665 // canonical one. 4666 assert(P != OldInduction && "Primary induction can be integer only"); 4667 4668 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4669 V = II.transform(Builder, V, PSE.getSE(), DL); 4670 V->setName("fp.offset.idx"); 4671 4672 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4673 4674 Value *Broadcasted = getBroadcastInstrs(V); 4675 // After broadcasting the induction variable we need to make the vector 4676 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4677 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4678 VectorParts Entry(UF); 4679 for (unsigned part = 0; part < UF; ++part) 4680 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4681 II.getInductionOpcode()); 4682 VectorLoopValueMap.initVector(P, Entry); 4683 return; 4684 } 4685 } 4686 } 4687 4688 /// A helper function for checking whether an integer division-related 4689 /// instruction may divide by zero (in which case it must be predicated if 4690 /// executed conditionally in the scalar code). 4691 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4692 /// Non-zero divisors that are non compile-time constants will not be 4693 /// converted into multiplication, so we will still end up scalarizing 4694 /// the division, but can do so w/o predication. 4695 static bool mayDivideByZero(Instruction &I) { 4696 assert((I.getOpcode() == Instruction::UDiv || 4697 I.getOpcode() == Instruction::SDiv || 4698 I.getOpcode() == Instruction::URem || 4699 I.getOpcode() == Instruction::SRem) && 4700 "Unexpected instruction"); 4701 Value *Divisor = I.getOperand(1); 4702 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4703 return !CInt || CInt->isZero(); 4704 } 4705 4706 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4707 // For each instruction in the old loop. 4708 for (Instruction &I : *BB) { 4709 4710 // If the instruction will become trivially dead when vectorized, we don't 4711 // need to generate it. 4712 if (DeadInstructions.count(&I)) 4713 continue; 4714 4715 // Scalarize instructions that should remain scalar after vectorization. 4716 if (VF > 1 && 4717 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4718 isa<DbgInfoIntrinsic>(&I)) && 4719 shouldScalarizeInstruction(&I)) { 4720 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4721 continue; 4722 } 4723 4724 switch (I.getOpcode()) { 4725 case Instruction::Br: 4726 // Nothing to do for PHIs and BR, since we already took care of the 4727 // loop control flow instructions. 4728 continue; 4729 case Instruction::PHI: { 4730 // Vectorize PHINodes. 4731 widenPHIInstruction(&I, UF, VF, PV); 4732 continue; 4733 } // End of PHI. 4734 4735 case Instruction::UDiv: 4736 case Instruction::SDiv: 4737 case Instruction::SRem: 4738 case Instruction::URem: 4739 // Scalarize with predication if this instruction may divide by zero and 4740 // block execution is conditional, otherwise fallthrough. 4741 if (Legal->isScalarWithPredication(&I)) { 4742 scalarizeInstruction(&I, true); 4743 continue; 4744 } 4745 case Instruction::Add: 4746 case Instruction::FAdd: 4747 case Instruction::Sub: 4748 case Instruction::FSub: 4749 case Instruction::Mul: 4750 case Instruction::FMul: 4751 case Instruction::FDiv: 4752 case Instruction::FRem: 4753 case Instruction::Shl: 4754 case Instruction::LShr: 4755 case Instruction::AShr: 4756 case Instruction::And: 4757 case Instruction::Or: 4758 case Instruction::Xor: { 4759 // Just widen binops. 4760 auto *BinOp = cast<BinaryOperator>(&I); 4761 setDebugLocFromInst(Builder, BinOp); 4762 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4763 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4764 4765 // Use this vector value for all users of the original instruction. 4766 VectorParts Entry(UF); 4767 for (unsigned Part = 0; Part < UF; ++Part) { 4768 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4769 4770 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4771 VecOp->copyIRFlags(BinOp); 4772 4773 Entry[Part] = V; 4774 } 4775 4776 VectorLoopValueMap.initVector(&I, Entry); 4777 addMetadata(Entry, BinOp); 4778 break; 4779 } 4780 case Instruction::Select: { 4781 // Widen selects. 4782 // If the selector is loop invariant we can create a select 4783 // instruction with a scalar condition. Otherwise, use vector-select. 4784 auto *SE = PSE.getSE(); 4785 bool InvariantCond = 4786 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4787 setDebugLocFromInst(Builder, &I); 4788 4789 // The condition can be loop invariant but still defined inside the 4790 // loop. This means that we can't just use the original 'cond' value. 4791 // We have to take the 'vectorized' value and pick the first lane. 4792 // Instcombine will make this a no-op. 4793 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4794 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4795 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4796 4797 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4798 4799 VectorParts Entry(UF); 4800 for (unsigned Part = 0; Part < UF; ++Part) { 4801 Entry[Part] = Builder.CreateSelect( 4802 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4803 } 4804 4805 VectorLoopValueMap.initVector(&I, Entry); 4806 addMetadata(Entry, &I); 4807 break; 4808 } 4809 4810 case Instruction::ICmp: 4811 case Instruction::FCmp: { 4812 // Widen compares. Generate vector compares. 4813 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4814 auto *Cmp = dyn_cast<CmpInst>(&I); 4815 setDebugLocFromInst(Builder, Cmp); 4816 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4817 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4818 VectorParts Entry(UF); 4819 for (unsigned Part = 0; Part < UF; ++Part) { 4820 Value *C = nullptr; 4821 if (FCmp) { 4822 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4823 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4824 } else { 4825 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4826 } 4827 Entry[Part] = C; 4828 } 4829 4830 VectorLoopValueMap.initVector(&I, Entry); 4831 addMetadata(Entry, &I); 4832 break; 4833 } 4834 4835 case Instruction::Store: 4836 case Instruction::Load: 4837 vectorizeMemoryInstruction(&I); 4838 break; 4839 case Instruction::ZExt: 4840 case Instruction::SExt: 4841 case Instruction::FPToUI: 4842 case Instruction::FPToSI: 4843 case Instruction::FPExt: 4844 case Instruction::PtrToInt: 4845 case Instruction::IntToPtr: 4846 case Instruction::SIToFP: 4847 case Instruction::UIToFP: 4848 case Instruction::Trunc: 4849 case Instruction::FPTrunc: 4850 case Instruction::BitCast: { 4851 auto *CI = dyn_cast<CastInst>(&I); 4852 setDebugLocFromInst(Builder, CI); 4853 4854 // Optimize the special case where the source is a constant integer 4855 // induction variable. Notice that we can only optimize the 'trunc' case 4856 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4857 // (c) other casts depend on pointer size. 4858 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4859 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4860 ID.getConstIntStepValue()) { 4861 widenIntInduction(OldInduction, cast<TruncInst>(CI)); 4862 break; 4863 } 4864 4865 /// Vectorize casts. 4866 Type *DestTy = 4867 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4868 4869 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4870 VectorParts Entry(UF); 4871 for (unsigned Part = 0; Part < UF; ++Part) 4872 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4873 VectorLoopValueMap.initVector(&I, Entry); 4874 addMetadata(Entry, &I); 4875 break; 4876 } 4877 4878 case Instruction::Call: { 4879 // Ignore dbg intrinsics. 4880 if (isa<DbgInfoIntrinsic>(I)) 4881 break; 4882 setDebugLocFromInst(Builder, &I); 4883 4884 Module *M = BB->getParent()->getParent(); 4885 auto *CI = cast<CallInst>(&I); 4886 4887 StringRef FnName = CI->getCalledFunction()->getName(); 4888 Function *F = CI->getCalledFunction(); 4889 Type *RetTy = ToVectorTy(CI->getType(), VF); 4890 SmallVector<Type *, 4> Tys; 4891 for (Value *ArgOperand : CI->arg_operands()) 4892 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4893 4894 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4895 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4896 ID == Intrinsic::lifetime_start)) { 4897 scalarizeInstruction(&I); 4898 break; 4899 } 4900 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4901 // version of the instruction. 4902 // Is it beneficial to perform intrinsic call compared to lib call? 4903 bool NeedToScalarize; 4904 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4905 bool UseVectorIntrinsic = 4906 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4907 if (!UseVectorIntrinsic && NeedToScalarize) { 4908 scalarizeInstruction(&I); 4909 break; 4910 } 4911 4912 VectorParts Entry(UF); 4913 for (unsigned Part = 0; Part < UF; ++Part) { 4914 SmallVector<Value *, 4> Args; 4915 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4916 Value *Arg = CI->getArgOperand(i); 4917 // Some intrinsics have a scalar argument - don't replace it with a 4918 // vector. 4919 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4920 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4921 Arg = VectorArg[Part]; 4922 } 4923 Args.push_back(Arg); 4924 } 4925 4926 Function *VectorF; 4927 if (UseVectorIntrinsic) { 4928 // Use vector version of the intrinsic. 4929 Type *TysForDecl[] = {CI->getType()}; 4930 if (VF > 1) 4931 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4932 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4933 } else { 4934 // Use vector version of the library call. 4935 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4936 assert(!VFnName.empty() && "Vector function name is empty."); 4937 VectorF = M->getFunction(VFnName); 4938 if (!VectorF) { 4939 // Generate a declaration 4940 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4941 VectorF = 4942 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4943 VectorF->copyAttributesFrom(F); 4944 } 4945 } 4946 assert(VectorF && "Can't create vector function."); 4947 4948 SmallVector<OperandBundleDef, 1> OpBundles; 4949 CI->getOperandBundlesAsDefs(OpBundles); 4950 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4951 4952 if (isa<FPMathOperator>(V)) 4953 V->copyFastMathFlags(CI); 4954 4955 Entry[Part] = V; 4956 } 4957 4958 VectorLoopValueMap.initVector(&I, Entry); 4959 addMetadata(Entry, &I); 4960 break; 4961 } 4962 4963 default: 4964 // All other instructions are unsupported. Scalarize them. 4965 scalarizeInstruction(&I); 4966 break; 4967 } // end of switch. 4968 } // end of for_each instr. 4969 } 4970 4971 void InnerLoopVectorizer::updateAnalysis() { 4972 // Forget the original basic block. 4973 PSE.getSE()->forgetLoop(OrigLoop); 4974 4975 // Update the dominator tree information. 4976 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4977 "Entry does not dominate exit."); 4978 4979 // We don't predicate stores by this point, so the vector body should be a 4980 // single loop. 4981 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4982 4983 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4984 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4985 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4986 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4987 4988 DEBUG(DT->verifyDomTree()); 4989 } 4990 4991 /// \brief Check whether it is safe to if-convert this phi node. 4992 /// 4993 /// Phi nodes with constant expressions that can trap are not safe to if 4994 /// convert. 4995 static bool canIfConvertPHINodes(BasicBlock *BB) { 4996 for (Instruction &I : *BB) { 4997 auto *Phi = dyn_cast<PHINode>(&I); 4998 if (!Phi) 4999 return true; 5000 for (Value *V : Phi->incoming_values()) 5001 if (auto *C = dyn_cast<Constant>(V)) 5002 if (C->canTrap()) 5003 return false; 5004 } 5005 return true; 5006 } 5007 5008 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5009 if (!EnableIfConversion) { 5010 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5011 << "if-conversion is disabled"); 5012 return false; 5013 } 5014 5015 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5016 5017 // A list of pointers that we can safely read and write to. 5018 SmallPtrSet<Value *, 8> SafePointes; 5019 5020 // Collect safe addresses. 5021 for (BasicBlock *BB : TheLoop->blocks()) { 5022 if (blockNeedsPredication(BB)) 5023 continue; 5024 5025 for (Instruction &I : *BB) 5026 if (auto *Ptr = getPointerOperand(&I)) 5027 SafePointes.insert(Ptr); 5028 } 5029 5030 // Collect the blocks that need predication. 5031 BasicBlock *Header = TheLoop->getHeader(); 5032 for (BasicBlock *BB : TheLoop->blocks()) { 5033 // We don't support switch statements inside loops. 5034 if (!isa<BranchInst>(BB->getTerminator())) { 5035 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5036 << "loop contains a switch statement"); 5037 return false; 5038 } 5039 5040 // We must be able to predicate all blocks that need to be predicated. 5041 if (blockNeedsPredication(BB)) { 5042 if (!blockCanBePredicated(BB, SafePointes)) { 5043 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5044 << "control flow cannot be substituted for a select"); 5045 return false; 5046 } 5047 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5048 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5049 << "control flow cannot be substituted for a select"); 5050 return false; 5051 } 5052 } 5053 5054 // We can if-convert this loop. 5055 return true; 5056 } 5057 5058 bool LoopVectorizationLegality::canVectorize() { 5059 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5060 // be canonicalized. 5061 if (!TheLoop->getLoopPreheader()) { 5062 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5063 << "loop control flow is not understood by vectorizer"); 5064 return false; 5065 } 5066 5067 // FIXME: The code is currently dead, since the loop gets sent to 5068 // LoopVectorizationLegality is already an innermost loop. 5069 // 5070 // We can only vectorize innermost loops. 5071 if (!TheLoop->empty()) { 5072 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5073 << "loop is not the innermost loop"); 5074 return false; 5075 } 5076 5077 // We must have a single backedge. 5078 if (TheLoop->getNumBackEdges() != 1) { 5079 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5080 << "loop control flow is not understood by vectorizer"); 5081 return false; 5082 } 5083 5084 // We must have a single exiting block. 5085 if (!TheLoop->getExitingBlock()) { 5086 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5087 << "loop control flow is not understood by vectorizer"); 5088 return false; 5089 } 5090 5091 // We only handle bottom-tested loops, i.e. loop in which the condition is 5092 // checked at the end of each iteration. With that we can assume that all 5093 // instructions in the loop are executed the same number of times. 5094 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5095 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5096 << "loop control flow is not understood by vectorizer"); 5097 return false; 5098 } 5099 5100 // We need to have a loop header. 5101 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5102 << '\n'); 5103 5104 // Check if we can if-convert non-single-bb loops. 5105 unsigned NumBlocks = TheLoop->getNumBlocks(); 5106 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5107 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5108 return false; 5109 } 5110 5111 // ScalarEvolution needs to be able to find the exit count. 5112 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5113 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5114 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5115 << "could not determine number of loop iterations"); 5116 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5117 return false; 5118 } 5119 5120 // Check if we can vectorize the instructions and CFG in this loop. 5121 if (!canVectorizeInstrs()) { 5122 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5123 return false; 5124 } 5125 5126 // Go over each instruction and look at memory deps. 5127 if (!canVectorizeMemory()) { 5128 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5129 return false; 5130 } 5131 5132 DEBUG(dbgs() << "LV: We can vectorize this loop" 5133 << (LAI->getRuntimePointerChecking()->Need 5134 ? " (with a runtime bound check)" 5135 : "") 5136 << "!\n"); 5137 5138 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5139 5140 // If an override option has been passed in for interleaved accesses, use it. 5141 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5142 UseInterleaved = EnableInterleavedMemAccesses; 5143 5144 // Analyze interleaved memory accesses. 5145 if (UseInterleaved) 5146 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5147 5148 // Collect all instructions that are known to be uniform after vectorization. 5149 collectLoopUniforms(); 5150 5151 // Collect all instructions that are known to be scalar after vectorization. 5152 collectLoopScalars(); 5153 5154 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5155 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5156 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5157 5158 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5159 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5160 << "Too many SCEV assumptions need to be made and checked " 5161 << "at runtime"); 5162 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5163 return false; 5164 } 5165 5166 // Okay! We can vectorize. At this point we don't have any other mem analysis 5167 // which may limit our maximum vectorization factor, so just return true with 5168 // no restrictions. 5169 return true; 5170 } 5171 5172 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5173 if (Ty->isPointerTy()) 5174 return DL.getIntPtrType(Ty); 5175 5176 // It is possible that char's or short's overflow when we ask for the loop's 5177 // trip count, work around this by changing the type size. 5178 if (Ty->getScalarSizeInBits() < 32) 5179 return Type::getInt32Ty(Ty->getContext()); 5180 5181 return Ty; 5182 } 5183 5184 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5185 Ty0 = convertPointerToIntegerType(DL, Ty0); 5186 Ty1 = convertPointerToIntegerType(DL, Ty1); 5187 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5188 return Ty0; 5189 return Ty1; 5190 } 5191 5192 /// \brief Check that the instruction has outside loop users and is not an 5193 /// identified reduction variable. 5194 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5195 SmallPtrSetImpl<Value *> &AllowedExit) { 5196 // Reduction and Induction instructions are allowed to have exit users. All 5197 // other instructions must not have external users. 5198 if (!AllowedExit.count(Inst)) 5199 // Check that all of the users of the loop are inside the BB. 5200 for (User *U : Inst->users()) { 5201 Instruction *UI = cast<Instruction>(U); 5202 // This user may be a reduction exit value. 5203 if (!TheLoop->contains(UI)) { 5204 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5205 return true; 5206 } 5207 } 5208 return false; 5209 } 5210 5211 void LoopVectorizationLegality::addInductionPhi( 5212 PHINode *Phi, const InductionDescriptor &ID, 5213 SmallPtrSetImpl<Value *> &AllowedExit) { 5214 Inductions[Phi] = ID; 5215 Type *PhiTy = Phi->getType(); 5216 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5217 5218 // Get the widest type. 5219 if (!PhiTy->isFloatingPointTy()) { 5220 if (!WidestIndTy) 5221 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5222 else 5223 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5224 } 5225 5226 // Int inductions are special because we only allow one IV. 5227 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5228 ID.getConstIntStepValue() && 5229 ID.getConstIntStepValue()->isOne() && 5230 isa<Constant>(ID.getStartValue()) && 5231 cast<Constant>(ID.getStartValue())->isNullValue()) { 5232 5233 // Use the phi node with the widest type as induction. Use the last 5234 // one if there are multiple (no good reason for doing this other 5235 // than it is expedient). We've checked that it begins at zero and 5236 // steps by one, so this is a canonical induction variable. 5237 if (!Induction || PhiTy == WidestIndTy) 5238 Induction = Phi; 5239 } 5240 5241 // Both the PHI node itself, and the "post-increment" value feeding 5242 // back into the PHI node may have external users. 5243 AllowedExit.insert(Phi); 5244 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5245 5246 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5247 return; 5248 } 5249 5250 bool LoopVectorizationLegality::canVectorizeInstrs() { 5251 BasicBlock *Header = TheLoop->getHeader(); 5252 5253 // Look for the attribute signaling the absence of NaNs. 5254 Function &F = *Header->getParent(); 5255 HasFunNoNaNAttr = 5256 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5257 5258 // For each block in the loop. 5259 for (BasicBlock *BB : TheLoop->blocks()) { 5260 // Scan the instructions in the block and look for hazards. 5261 for (Instruction &I : *BB) { 5262 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5263 Type *PhiTy = Phi->getType(); 5264 // Check that this PHI type is allowed. 5265 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5266 !PhiTy->isPointerTy()) { 5267 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5268 << "loop control flow is not understood by vectorizer"); 5269 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5270 return false; 5271 } 5272 5273 // If this PHINode is not in the header block, then we know that we 5274 // can convert it to select during if-conversion. No need to check if 5275 // the PHIs in this block are induction or reduction variables. 5276 if (BB != Header) { 5277 // Check that this instruction has no outside users or is an 5278 // identified reduction value with an outside user. 5279 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5280 continue; 5281 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5282 << "value could not be identified as " 5283 "an induction or reduction variable"); 5284 return false; 5285 } 5286 5287 // We only allow if-converted PHIs with exactly two incoming values. 5288 if (Phi->getNumIncomingValues() != 2) { 5289 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5290 << "control flow not understood by vectorizer"); 5291 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5292 return false; 5293 } 5294 5295 RecurrenceDescriptor RedDes; 5296 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5297 if (RedDes.hasUnsafeAlgebra()) 5298 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5299 AllowedExit.insert(RedDes.getLoopExitInstr()); 5300 Reductions[Phi] = RedDes; 5301 continue; 5302 } 5303 5304 InductionDescriptor ID; 5305 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5306 addInductionPhi(Phi, ID, AllowedExit); 5307 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5308 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5309 continue; 5310 } 5311 5312 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5313 FirstOrderRecurrences.insert(Phi); 5314 continue; 5315 } 5316 5317 // As a last resort, coerce the PHI to a AddRec expression 5318 // and re-try classifying it a an induction PHI. 5319 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5320 addInductionPhi(Phi, ID, AllowedExit); 5321 continue; 5322 } 5323 5324 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5325 << "value that could not be identified as " 5326 "reduction is used outside the loop"); 5327 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5328 return false; 5329 } // end of PHI handling 5330 5331 // We handle calls that: 5332 // * Are debug info intrinsics. 5333 // * Have a mapping to an IR intrinsic. 5334 // * Have a vector version available. 5335 auto *CI = dyn_cast<CallInst>(&I); 5336 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5337 !isa<DbgInfoIntrinsic>(CI) && 5338 !(CI->getCalledFunction() && TLI && 5339 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5340 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5341 << "call instruction cannot be vectorized"); 5342 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5343 return false; 5344 } 5345 5346 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5347 // second argument is the same (i.e. loop invariant) 5348 if (CI && hasVectorInstrinsicScalarOpd( 5349 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5350 auto *SE = PSE.getSE(); 5351 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5352 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5353 << "intrinsic instruction cannot be vectorized"); 5354 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5355 return false; 5356 } 5357 } 5358 5359 // Check that the instruction return type is vectorizable. 5360 // Also, we can't vectorize extractelement instructions. 5361 if ((!VectorType::isValidElementType(I.getType()) && 5362 !I.getType()->isVoidTy()) || 5363 isa<ExtractElementInst>(I)) { 5364 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5365 << "instruction return type cannot be vectorized"); 5366 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5367 return false; 5368 } 5369 5370 // Check that the stored type is vectorizable. 5371 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5372 Type *T = ST->getValueOperand()->getType(); 5373 if (!VectorType::isValidElementType(T)) { 5374 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5375 << "store instruction cannot be vectorized"); 5376 return false; 5377 } 5378 5379 // FP instructions can allow unsafe algebra, thus vectorizable by 5380 // non-IEEE-754 compliant SIMD units. 5381 // This applies to floating-point math operations and calls, not memory 5382 // operations, shuffles, or casts, as they don't change precision or 5383 // semantics. 5384 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5385 !I.hasUnsafeAlgebra()) { 5386 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5387 Hints->setPotentiallyUnsafe(); 5388 } 5389 5390 // Reduction instructions are allowed to have exit users. 5391 // All other instructions must not have external users. 5392 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5393 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5394 << "value cannot be used outside the loop"); 5395 return false; 5396 } 5397 5398 } // next instr. 5399 } 5400 5401 if (!Induction) { 5402 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5403 if (Inductions.empty()) { 5404 ORE->emit(createMissedAnalysis("NoInductionVariable") 5405 << "loop induction variable could not be identified"); 5406 return false; 5407 } 5408 } 5409 5410 // Now we know the widest induction type, check if our found induction 5411 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5412 // will create another. 5413 if (Induction && WidestIndTy != Induction->getType()) 5414 Induction = nullptr; 5415 5416 return true; 5417 } 5418 5419 void LoopVectorizationLegality::collectLoopScalars() { 5420 5421 // If an instruction is uniform after vectorization, it will remain scalar. 5422 Scalars.insert(Uniforms.begin(), Uniforms.end()); 5423 5424 // Collect the getelementptr instructions that will not be vectorized. A 5425 // getelementptr instruction is only vectorized if it is used for a legal 5426 // gather or scatter operation. 5427 for (auto *BB : TheLoop->blocks()) 5428 for (auto &I : *BB) { 5429 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5430 Scalars.insert(GEP); 5431 continue; 5432 } 5433 auto *Ptr = getPointerOperand(&I); 5434 if (!Ptr) 5435 continue; 5436 auto *GEP = getGEPInstruction(Ptr); 5437 if (GEP && isLegalGatherOrScatter(&I)) 5438 Scalars.erase(GEP); 5439 } 5440 5441 // An induction variable will remain scalar if all users of the induction 5442 // variable and induction variable update remain scalar. 5443 auto *Latch = TheLoop->getLoopLatch(); 5444 for (auto &Induction : *getInductionVars()) { 5445 auto *Ind = Induction.first; 5446 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5447 5448 // Determine if all users of the induction variable are scalar after 5449 // vectorization. 5450 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5451 auto *I = cast<Instruction>(U); 5452 return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I); 5453 }); 5454 if (!ScalarInd) 5455 continue; 5456 5457 // Determine if all users of the induction variable update instruction are 5458 // scalar after vectorization. 5459 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5460 auto *I = cast<Instruction>(U); 5461 return I == Ind || !TheLoop->contains(I) || Scalars.count(I); 5462 }); 5463 if (!ScalarIndUpdate) 5464 continue; 5465 5466 // The induction variable and its update instruction will remain scalar. 5467 Scalars.insert(Ind); 5468 Scalars.insert(IndUpdate); 5469 } 5470 } 5471 5472 bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) { 5473 if (isAccessInterleaved(I)) 5474 return true; 5475 if (auto *Ptr = getPointerOperand(I)) 5476 return isConsecutivePtr(Ptr); 5477 return false; 5478 } 5479 5480 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5481 if (!blockNeedsPredication(I->getParent())) 5482 return false; 5483 switch(I->getOpcode()) { 5484 default: 5485 break; 5486 case Instruction::Store: 5487 return !isMaskRequired(I); 5488 case Instruction::UDiv: 5489 case Instruction::SDiv: 5490 case Instruction::SRem: 5491 case Instruction::URem: 5492 return mayDivideByZero(*I); 5493 } 5494 return false; 5495 } 5496 5497 bool LoopVectorizationLegality::memoryInstructionMustBeScalarized( 5498 Instruction *I, unsigned VF) { 5499 5500 // If the memory instruction is in an interleaved group, it will be 5501 // vectorized and its pointer will remain uniform. 5502 if (isAccessInterleaved(I)) 5503 return false; 5504 5505 // Get and ensure we have a valid memory instruction. 5506 LoadInst *LI = dyn_cast<LoadInst>(I); 5507 StoreInst *SI = dyn_cast<StoreInst>(I); 5508 assert((LI || SI) && "Invalid memory instruction"); 5509 5510 // If the pointer operand is uniform (loop invariant), the memory instruction 5511 // will be scalarized. 5512 auto *Ptr = getPointerOperand(I); 5513 if (LI && isUniform(Ptr)) 5514 return true; 5515 5516 // If the pointer operand is non-consecutive and neither a gather nor a 5517 // scatter operation is legal, the memory instruction will be scalarized. 5518 if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I)) 5519 return true; 5520 5521 // If the instruction is a store located in a predicated block, it will be 5522 // scalarized. 5523 if (isScalarWithPredication(I)) 5524 return true; 5525 5526 // If the instruction's allocated size doesn't equal it's type size, it 5527 // requires padding and will be scalarized. 5528 auto &DL = I->getModule()->getDataLayout(); 5529 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5530 if (hasIrregularType(ScalarTy, DL, VF)) 5531 return true; 5532 5533 // Otherwise, the memory instruction should be vectorized if the rest of the 5534 // loop is. 5535 return false; 5536 } 5537 5538 void LoopVectorizationLegality::collectLoopUniforms() { 5539 // We now know that the loop is vectorizable! 5540 // Collect instructions inside the loop that will remain uniform after 5541 // vectorization. 5542 5543 // Global values, params and instructions outside of current loop are out of 5544 // scope. 5545 auto isOutOfScope = [&](Value *V) -> bool { 5546 Instruction *I = dyn_cast<Instruction>(V); 5547 return (!I || !TheLoop->contains(I)); 5548 }; 5549 5550 SetVector<Instruction *> Worklist; 5551 BasicBlock *Latch = TheLoop->getLoopLatch(); 5552 5553 // Start with the conditional branch. If the branch condition is an 5554 // instruction contained in the loop that is only used by the branch, it is 5555 // uniform. 5556 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5557 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5558 Worklist.insert(Cmp); 5559 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5560 } 5561 5562 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5563 // are pointers that are treated like consecutive pointers during 5564 // vectorization. The pointer operands of interleaved accesses are an 5565 // example. 5566 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5567 5568 // Holds pointer operands of instructions that are possibly non-uniform. 5569 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5570 5571 // Iterate over the instructions in the loop, and collect all 5572 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5573 // that a consecutive-like pointer operand will be scalarized, we collect it 5574 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5575 // getelementptr instruction can be used by both vectorized and scalarized 5576 // memory instructions. For example, if a loop loads and stores from the same 5577 // location, but the store is conditional, the store will be scalarized, and 5578 // the getelementptr won't remain uniform. 5579 for (auto *BB : TheLoop->blocks()) 5580 for (auto &I : *BB) { 5581 5582 // If there's no pointer operand, there's nothing to do. 5583 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5584 if (!Ptr) 5585 continue; 5586 5587 // True if all users of Ptr are memory accesses that have Ptr as their 5588 // pointer operand. 5589 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5590 return getPointerOperand(U) == Ptr; 5591 }); 5592 5593 // Ensure the memory instruction will not be scalarized, making its 5594 // pointer operand non-uniform. If the pointer operand is used by some 5595 // instruction other than a memory access, we're not going to check if 5596 // that other instruction may be scalarized here. Thus, conservatively 5597 // assume the pointer operand may be non-uniform. 5598 if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I)) 5599 PossibleNonUniformPtrs.insert(Ptr); 5600 5601 // If the memory instruction will be vectorized and its pointer operand 5602 // is consecutive-like, the pointer operand should remain uniform. 5603 else if (hasConsecutiveLikePtrOperand(&I)) 5604 ConsecutiveLikePtrs.insert(Ptr); 5605 5606 // Otherwise, if the memory instruction will be vectorized and its 5607 // pointer operand is non-consecutive-like, the memory instruction should 5608 // be a gather or scatter operation. Its pointer operand will be 5609 // non-uniform. 5610 else 5611 PossibleNonUniformPtrs.insert(Ptr); 5612 } 5613 5614 // Add to the Worklist all consecutive and consecutive-like pointers that 5615 // aren't also identified as possibly non-uniform. 5616 for (auto *V : ConsecutiveLikePtrs) 5617 if (!PossibleNonUniformPtrs.count(V)) { 5618 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5619 Worklist.insert(V); 5620 } 5621 5622 // Expand Worklist in topological order: whenever a new instruction 5623 // is added , its users should be either already inside Worklist, or 5624 // out of scope. It ensures a uniform instruction will only be used 5625 // by uniform instructions or out of scope instructions. 5626 unsigned idx = 0; 5627 while (idx != Worklist.size()) { 5628 Instruction *I = Worklist[idx++]; 5629 5630 for (auto OV : I->operand_values()) { 5631 if (isOutOfScope(OV)) 5632 continue; 5633 auto *OI = cast<Instruction>(OV); 5634 if (all_of(OI->users(), [&](User *U) -> bool { 5635 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5636 })) { 5637 Worklist.insert(OI); 5638 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5639 } 5640 } 5641 } 5642 5643 // Returns true if Ptr is the pointer operand of a memory access instruction 5644 // I, and I is known to not require scalarization. 5645 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5646 return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I); 5647 }; 5648 5649 // For an instruction to be added into Worklist above, all its users inside 5650 // the loop should also be in Worklist. However, this condition cannot be 5651 // true for phi nodes that form a cyclic dependence. We must process phi 5652 // nodes separately. An induction variable will remain uniform if all users 5653 // of the induction variable and induction variable update remain uniform. 5654 // The code below handles both pointer and non-pointer induction variables. 5655 for (auto &Induction : Inductions) { 5656 auto *Ind = Induction.first; 5657 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5658 5659 // Determine if all users of the induction variable are uniform after 5660 // vectorization. 5661 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5662 auto *I = cast<Instruction>(U); 5663 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5664 isVectorizedMemAccessUse(I, Ind); 5665 }); 5666 if (!UniformInd) 5667 continue; 5668 5669 // Determine if all users of the induction variable update instruction are 5670 // uniform after vectorization. 5671 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5672 auto *I = cast<Instruction>(U); 5673 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5674 isVectorizedMemAccessUse(I, IndUpdate); 5675 }); 5676 if (!UniformIndUpdate) 5677 continue; 5678 5679 // The induction variable and its update instruction will remain uniform. 5680 Worklist.insert(Ind); 5681 Worklist.insert(IndUpdate); 5682 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5683 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5684 } 5685 5686 Uniforms.insert(Worklist.begin(), Worklist.end()); 5687 } 5688 5689 bool LoopVectorizationLegality::canVectorizeMemory() { 5690 LAI = &(*GetLAA)(*TheLoop); 5691 InterleaveInfo.setLAI(LAI); 5692 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5693 if (LAR) { 5694 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5695 "loop not vectorized: ", *LAR); 5696 ORE->emit(VR); 5697 } 5698 if (!LAI->canVectorizeMemory()) 5699 return false; 5700 5701 if (LAI->hasStoreToLoopInvariantAddress()) { 5702 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5703 << "write to a loop invariant address could not be vectorized"); 5704 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5705 return false; 5706 } 5707 5708 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5709 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5710 5711 return true; 5712 } 5713 5714 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5715 Value *In0 = const_cast<Value *>(V); 5716 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5717 if (!PN) 5718 return false; 5719 5720 return Inductions.count(PN); 5721 } 5722 5723 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5724 return FirstOrderRecurrences.count(Phi); 5725 } 5726 5727 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5728 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5729 } 5730 5731 bool LoopVectorizationLegality::blockCanBePredicated( 5732 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5733 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5734 5735 for (Instruction &I : *BB) { 5736 // Check that we don't have a constant expression that can trap as operand. 5737 for (Value *Operand : I.operands()) { 5738 if (auto *C = dyn_cast<Constant>(Operand)) 5739 if (C->canTrap()) 5740 return false; 5741 } 5742 // We might be able to hoist the load. 5743 if (I.mayReadFromMemory()) { 5744 auto *LI = dyn_cast<LoadInst>(&I); 5745 if (!LI) 5746 return false; 5747 if (!SafePtrs.count(LI->getPointerOperand())) { 5748 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5749 isLegalMaskedGather(LI->getType())) { 5750 MaskedOp.insert(LI); 5751 continue; 5752 } 5753 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5754 if (IsAnnotatedParallel) 5755 continue; 5756 return false; 5757 } 5758 } 5759 5760 if (I.mayWriteToMemory()) { 5761 auto *SI = dyn_cast<StoreInst>(&I); 5762 // We only support predication of stores in basic blocks with one 5763 // predecessor. 5764 if (!SI) 5765 return false; 5766 5767 // Build a masked store if it is legal for the target. 5768 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5769 SI->getPointerOperand()) || 5770 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5771 MaskedOp.insert(SI); 5772 continue; 5773 } 5774 5775 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5776 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5777 5778 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5779 !isSinglePredecessor) 5780 return false; 5781 } 5782 if (I.mayThrow()) 5783 return false; 5784 } 5785 5786 return true; 5787 } 5788 5789 void InterleavedAccessInfo::collectConstStrideAccesses( 5790 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5791 const ValueToValueMap &Strides) { 5792 5793 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5794 5795 // Since it's desired that the load/store instructions be maintained in 5796 // "program order" for the interleaved access analysis, we have to visit the 5797 // blocks in the loop in reverse postorder (i.e., in a topological order). 5798 // Such an ordering will ensure that any load/store that may be executed 5799 // before a second load/store will precede the second load/store in 5800 // AccessStrideInfo. 5801 LoopBlocksDFS DFS(TheLoop); 5802 DFS.perform(LI); 5803 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5804 for (auto &I : *BB) { 5805 auto *LI = dyn_cast<LoadInst>(&I); 5806 auto *SI = dyn_cast<StoreInst>(&I); 5807 if (!LI && !SI) 5808 continue; 5809 5810 Value *Ptr = getPointerOperand(&I); 5811 // We don't check wrapping here because we don't know yet if Ptr will be 5812 // part of a full group or a group with gaps. Checking wrapping for all 5813 // pointers (even those that end up in groups with no gaps) will be overly 5814 // conservative. For full groups, wrapping should be ok since if we would 5815 // wrap around the address space we would do a memory access at nullptr 5816 // even without the transformation. The wrapping checks are therefore 5817 // deferred until after we've formed the interleaved groups. 5818 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5819 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5820 5821 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5822 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5823 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5824 5825 // An alignment of 0 means target ABI alignment. 5826 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5827 if (!Align) 5828 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5829 5830 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5831 } 5832 } 5833 5834 // Analyze interleaved accesses and collect them into interleaved load and 5835 // store groups. 5836 // 5837 // When generating code for an interleaved load group, we effectively hoist all 5838 // loads in the group to the location of the first load in program order. When 5839 // generating code for an interleaved store group, we sink all stores to the 5840 // location of the last store. This code motion can change the order of load 5841 // and store instructions and may break dependences. 5842 // 5843 // The code generation strategy mentioned above ensures that we won't violate 5844 // any write-after-read (WAR) dependences. 5845 // 5846 // E.g., for the WAR dependence: a = A[i]; // (1) 5847 // A[i] = b; // (2) 5848 // 5849 // The store group of (2) is always inserted at or below (2), and the load 5850 // group of (1) is always inserted at or above (1). Thus, the instructions will 5851 // never be reordered. All other dependences are checked to ensure the 5852 // correctness of the instruction reordering. 5853 // 5854 // The algorithm visits all memory accesses in the loop in bottom-up program 5855 // order. Program order is established by traversing the blocks in the loop in 5856 // reverse postorder when collecting the accesses. 5857 // 5858 // We visit the memory accesses in bottom-up order because it can simplify the 5859 // construction of store groups in the presence of write-after-write (WAW) 5860 // dependences. 5861 // 5862 // E.g., for the WAW dependence: A[i] = a; // (1) 5863 // A[i] = b; // (2) 5864 // A[i + 1] = c; // (3) 5865 // 5866 // We will first create a store group with (3) and (2). (1) can't be added to 5867 // this group because it and (2) are dependent. However, (1) can be grouped 5868 // with other accesses that may precede it in program order. Note that a 5869 // bottom-up order does not imply that WAW dependences should not be checked. 5870 void InterleavedAccessInfo::analyzeInterleaving( 5871 const ValueToValueMap &Strides) { 5872 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5873 5874 // Holds all accesses with a constant stride. 5875 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5876 collectConstStrideAccesses(AccessStrideInfo, Strides); 5877 5878 if (AccessStrideInfo.empty()) 5879 return; 5880 5881 // Collect the dependences in the loop. 5882 collectDependences(); 5883 5884 // Holds all interleaved store groups temporarily. 5885 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5886 // Holds all interleaved load groups temporarily. 5887 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5888 5889 // Search in bottom-up program order for pairs of accesses (A and B) that can 5890 // form interleaved load or store groups. In the algorithm below, access A 5891 // precedes access B in program order. We initialize a group for B in the 5892 // outer loop of the algorithm, and then in the inner loop, we attempt to 5893 // insert each A into B's group if: 5894 // 5895 // 1. A and B have the same stride, 5896 // 2. A and B have the same memory object size, and 5897 // 3. A belongs in B's group according to its distance from B. 5898 // 5899 // Special care is taken to ensure group formation will not break any 5900 // dependences. 5901 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5902 BI != E; ++BI) { 5903 Instruction *B = BI->first; 5904 StrideDescriptor DesB = BI->second; 5905 5906 // Initialize a group for B if it has an allowable stride. Even if we don't 5907 // create a group for B, we continue with the bottom-up algorithm to ensure 5908 // we don't break any of B's dependences. 5909 InterleaveGroup *Group = nullptr; 5910 if (isStrided(DesB.Stride)) { 5911 Group = getInterleaveGroup(B); 5912 if (!Group) { 5913 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5914 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5915 } 5916 if (B->mayWriteToMemory()) 5917 StoreGroups.insert(Group); 5918 else 5919 LoadGroups.insert(Group); 5920 } 5921 5922 for (auto AI = std::next(BI); AI != E; ++AI) { 5923 Instruction *A = AI->first; 5924 StrideDescriptor DesA = AI->second; 5925 5926 // Our code motion strategy implies that we can't have dependences 5927 // between accesses in an interleaved group and other accesses located 5928 // between the first and last member of the group. Note that this also 5929 // means that a group can't have more than one member at a given offset. 5930 // The accesses in a group can have dependences with other accesses, but 5931 // we must ensure we don't extend the boundaries of the group such that 5932 // we encompass those dependent accesses. 5933 // 5934 // For example, assume we have the sequence of accesses shown below in a 5935 // stride-2 loop: 5936 // 5937 // (1, 2) is a group | A[i] = a; // (1) 5938 // | A[i-1] = b; // (2) | 5939 // A[i-3] = c; // (3) 5940 // A[i] = d; // (4) | (2, 4) is not a group 5941 // 5942 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5943 // but not with (4). If we did, the dependent access (3) would be within 5944 // the boundaries of the (2, 4) group. 5945 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5946 5947 // If a dependence exists and A is already in a group, we know that A 5948 // must be a store since A precedes B and WAR dependences are allowed. 5949 // Thus, A would be sunk below B. We release A's group to prevent this 5950 // illegal code motion. A will then be free to form another group with 5951 // instructions that precede it. 5952 if (isInterleaved(A)) { 5953 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5954 StoreGroups.remove(StoreGroup); 5955 releaseGroup(StoreGroup); 5956 } 5957 5958 // If a dependence exists and A is not already in a group (or it was 5959 // and we just released it), B might be hoisted above A (if B is a 5960 // load) or another store might be sunk below A (if B is a store). In 5961 // either case, we can't add additional instructions to B's group. B 5962 // will only form a group with instructions that it precedes. 5963 break; 5964 } 5965 5966 // At this point, we've checked for illegal code motion. If either A or B 5967 // isn't strided, there's nothing left to do. 5968 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5969 continue; 5970 5971 // Ignore A if it's already in a group or isn't the same kind of memory 5972 // operation as B. 5973 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5974 continue; 5975 5976 // Check rules 1 and 2. Ignore A if its stride or size is different from 5977 // that of B. 5978 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5979 continue; 5980 5981 // Calculate the distance from A to B. 5982 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5983 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5984 if (!DistToB) 5985 continue; 5986 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5987 5988 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5989 // size. 5990 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5991 continue; 5992 5993 // Ignore A if either A or B is in a predicated block. Although we 5994 // currently prevent group formation for predicated accesses, we may be 5995 // able to relax this limitation in the future once we handle more 5996 // complicated blocks. 5997 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5998 continue; 5999 6000 // The index of A is the index of B plus A's distance to B in multiples 6001 // of the size. 6002 int IndexA = 6003 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6004 6005 // Try to insert A into B's group. 6006 if (Group->insertMember(A, IndexA, DesA.Align)) { 6007 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6008 << " into the interleave group with" << *B << '\n'); 6009 InterleaveGroupMap[A] = Group; 6010 6011 // Set the first load in program order as the insert position. 6012 if (A->mayReadFromMemory()) 6013 Group->setInsertPos(A); 6014 } 6015 } // Iteration over A accesses. 6016 } // Iteration over B accesses. 6017 6018 // Remove interleaved store groups with gaps. 6019 for (InterleaveGroup *Group : StoreGroups) 6020 if (Group->getNumMembers() != Group->getFactor()) 6021 releaseGroup(Group); 6022 6023 // Remove interleaved groups with gaps (currently only loads) whose memory 6024 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6025 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6026 // not check wrapping (see documentation there). 6027 // FORNOW we use Assume=false; 6028 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6029 // of runtime SCEV assumptions checks (thereby potentially failing to 6030 // vectorize altogether). 6031 // Additional optional optimizations: 6032 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6033 // wrap then we can deduce that all pointers in the group don't wrap. 6034 // This means that we can forcefully peel the loop in order to only have to 6035 // check the first pointer for no-wrap. When we'll change to use Assume=true 6036 // we'll only need at most one runtime check per interleaved group. 6037 // 6038 for (InterleaveGroup *Group : LoadGroups) { 6039 6040 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6041 // load would wrap around the address space we would do a memory access at 6042 // nullptr even without the transformation. 6043 if (Group->getNumMembers() == Group->getFactor()) 6044 continue; 6045 6046 // Case 2: If first and last members of the group don't wrap this implies 6047 // that all the pointers in the group don't wrap. 6048 // So we check only group member 0 (which is always guaranteed to exist), 6049 // and group member Factor - 1; If the latter doesn't exist we rely on 6050 // peeling (if it is a non-reveresed accsess -- see Case 3). 6051 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6052 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6053 /*ShouldCheckWrap=*/true)) { 6054 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6055 "first group member potentially pointer-wrapping.\n"); 6056 releaseGroup(Group); 6057 continue; 6058 } 6059 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6060 if (LastMember) { 6061 Value *LastMemberPtr = getPointerOperand(LastMember); 6062 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6063 /*ShouldCheckWrap=*/true)) { 6064 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6065 "last group member potentially pointer-wrapping.\n"); 6066 releaseGroup(Group); 6067 } 6068 } 6069 else { 6070 // Case 3: A non-reversed interleaved load group with gaps: We need 6071 // to execute at least one scalar epilogue iteration. This will ensure 6072 // we don't speculatively access memory out-of-bounds. We only need 6073 // to look for a member at index factor - 1, since every group must have 6074 // a member at index zero. 6075 if (Group->isReverse()) { 6076 releaseGroup(Group); 6077 continue; 6078 } 6079 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6080 RequiresScalarEpilogue = true; 6081 } 6082 } 6083 } 6084 6085 LoopVectorizationCostModel::VectorizationFactor 6086 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 6087 // Width 1 means no vectorize 6088 VectorizationFactor Factor = {1U, 0U}; 6089 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 6090 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6091 << "runtime pointer checks needed. Enable vectorization of this " 6092 "loop with '#pragma clang loop vectorize(enable)' when " 6093 "compiling with -Os/-Oz"); 6094 DEBUG(dbgs() 6095 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6096 return Factor; 6097 } 6098 6099 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6100 ORE->emit(createMissedAnalysis("ConditionalStore") 6101 << "store that is conditionally executed prevents vectorization"); 6102 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6103 return Factor; 6104 } 6105 6106 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6107 unsigned SmallestType, WidestType; 6108 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6109 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6110 unsigned MaxSafeDepDist = -1U; 6111 6112 // Get the maximum safe dependence distance in bits computed by LAA. If the 6113 // loop contains any interleaved accesses, we divide the dependence distance 6114 // by the maximum interleave factor of all interleaved groups. Note that 6115 // although the division ensures correctness, this is a fairly conservative 6116 // computation because the maximum distance computed by LAA may not involve 6117 // any of the interleaved accesses. 6118 if (Legal->getMaxSafeDepDistBytes() != -1U) 6119 MaxSafeDepDist = 6120 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6121 6122 WidestRegister = 6123 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6124 unsigned MaxVectorSize = WidestRegister / WidestType; 6125 6126 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6127 << WidestType << " bits.\n"); 6128 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6129 << " bits.\n"); 6130 6131 if (MaxVectorSize == 0) { 6132 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6133 MaxVectorSize = 1; 6134 } 6135 6136 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6137 " into one vector!"); 6138 6139 unsigned VF = MaxVectorSize; 6140 if (MaximizeBandwidth && !OptForSize) { 6141 // Collect all viable vectorization factors. 6142 SmallVector<unsigned, 8> VFs; 6143 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6144 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6145 VFs.push_back(VS); 6146 6147 // For each VF calculate its register usage. 6148 auto RUs = calculateRegisterUsage(VFs); 6149 6150 // Select the largest VF which doesn't require more registers than existing 6151 // ones. 6152 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6153 for (int i = RUs.size() - 1; i >= 0; --i) { 6154 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6155 VF = VFs[i]; 6156 break; 6157 } 6158 } 6159 } 6160 6161 // If we optimize the program for size, avoid creating the tail loop. 6162 if (OptForSize) { 6163 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6164 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6165 6166 // If we don't know the precise trip count, don't try to vectorize. 6167 if (TC < 2) { 6168 ORE->emit( 6169 createMissedAnalysis("UnknownLoopCountComplexCFG") 6170 << "unable to calculate the loop count due to complex control flow"); 6171 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6172 return Factor; 6173 } 6174 6175 // Find the maximum SIMD width that can fit within the trip count. 6176 VF = TC % MaxVectorSize; 6177 6178 if (VF == 0) 6179 VF = MaxVectorSize; 6180 else { 6181 // If the trip count that we found modulo the vectorization factor is not 6182 // zero then we require a tail. 6183 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6184 << "cannot optimize for size and vectorize at the " 6185 "same time. Enable vectorization of this loop " 6186 "with '#pragma clang loop vectorize(enable)' " 6187 "when compiling with -Os/-Oz"); 6188 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6189 return Factor; 6190 } 6191 } 6192 6193 int UserVF = Hints->getWidth(); 6194 if (UserVF != 0) { 6195 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6196 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6197 6198 Factor.Width = UserVF; 6199 collectInstsToScalarize(UserVF); 6200 return Factor; 6201 } 6202 6203 float Cost = expectedCost(1).first; 6204 #ifndef NDEBUG 6205 const float ScalarCost = Cost; 6206 #endif /* NDEBUG */ 6207 unsigned Width = 1; 6208 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6209 6210 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6211 // Ignore scalar width, because the user explicitly wants vectorization. 6212 if (ForceVectorization && VF > 1) { 6213 Width = 2; 6214 Cost = expectedCost(Width).first / (float)Width; 6215 } 6216 6217 for (unsigned i = 2; i <= VF; i *= 2) { 6218 // Notice that the vector loop needs to be executed less times, so 6219 // we need to divide the cost of the vector loops by the width of 6220 // the vector elements. 6221 VectorizationCostTy C = expectedCost(i); 6222 float VectorCost = C.first / (float)i; 6223 DEBUG(dbgs() << "LV: Vector loop of width " << i 6224 << " costs: " << (int)VectorCost << ".\n"); 6225 if (!C.second && !ForceVectorization) { 6226 DEBUG( 6227 dbgs() << "LV: Not considering vector loop of width " << i 6228 << " because it will not generate any vector instructions.\n"); 6229 continue; 6230 } 6231 if (VectorCost < Cost) { 6232 Cost = VectorCost; 6233 Width = i; 6234 } 6235 } 6236 6237 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6238 << "LV: Vectorization seems to be not beneficial, " 6239 << "but was forced by a user.\n"); 6240 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6241 Factor.Width = Width; 6242 Factor.Cost = Width * Cost; 6243 return Factor; 6244 } 6245 6246 std::pair<unsigned, unsigned> 6247 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6248 unsigned MinWidth = -1U; 6249 unsigned MaxWidth = 8; 6250 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6251 6252 // For each block. 6253 for (BasicBlock *BB : TheLoop->blocks()) { 6254 // For each instruction in the loop. 6255 for (Instruction &I : *BB) { 6256 Type *T = I.getType(); 6257 6258 // Skip ignored values. 6259 if (ValuesToIgnore.count(&I)) 6260 continue; 6261 6262 // Only examine Loads, Stores and PHINodes. 6263 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6264 continue; 6265 6266 // Examine PHI nodes that are reduction variables. Update the type to 6267 // account for the recurrence type. 6268 if (auto *PN = dyn_cast<PHINode>(&I)) { 6269 if (!Legal->isReductionVariable(PN)) 6270 continue; 6271 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6272 T = RdxDesc.getRecurrenceType(); 6273 } 6274 6275 // Examine the stored values. 6276 if (auto *ST = dyn_cast<StoreInst>(&I)) 6277 T = ST->getValueOperand()->getType(); 6278 6279 // Ignore loaded pointer types and stored pointer types that are not 6280 // consecutive. However, we do want to take consecutive stores/loads of 6281 // pointer vectors into account. 6282 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 6283 continue; 6284 6285 MinWidth = std::min(MinWidth, 6286 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6287 MaxWidth = std::max(MaxWidth, 6288 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6289 } 6290 } 6291 6292 return {MinWidth, MaxWidth}; 6293 } 6294 6295 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6296 unsigned VF, 6297 unsigned LoopCost) { 6298 6299 // -- The interleave heuristics -- 6300 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6301 // There are many micro-architectural considerations that we can't predict 6302 // at this level. For example, frontend pressure (on decode or fetch) due to 6303 // code size, or the number and capabilities of the execution ports. 6304 // 6305 // We use the following heuristics to select the interleave count: 6306 // 1. If the code has reductions, then we interleave to break the cross 6307 // iteration dependency. 6308 // 2. If the loop is really small, then we interleave to reduce the loop 6309 // overhead. 6310 // 3. We don't interleave if we think that we will spill registers to memory 6311 // due to the increased register pressure. 6312 6313 // When we optimize for size, we don't interleave. 6314 if (OptForSize) 6315 return 1; 6316 6317 // We used the distance for the interleave count. 6318 if (Legal->getMaxSafeDepDistBytes() != -1U) 6319 return 1; 6320 6321 // Do not interleave loops with a relatively small trip count. 6322 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6323 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6324 return 1; 6325 6326 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6327 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6328 << " registers\n"); 6329 6330 if (VF == 1) { 6331 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6332 TargetNumRegisters = ForceTargetNumScalarRegs; 6333 } else { 6334 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6335 TargetNumRegisters = ForceTargetNumVectorRegs; 6336 } 6337 6338 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6339 // We divide by these constants so assume that we have at least one 6340 // instruction that uses at least one register. 6341 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6342 R.NumInstructions = std::max(R.NumInstructions, 1U); 6343 6344 // We calculate the interleave count using the following formula. 6345 // Subtract the number of loop invariants from the number of available 6346 // registers. These registers are used by all of the interleaved instances. 6347 // Next, divide the remaining registers by the number of registers that is 6348 // required by the loop, in order to estimate how many parallel instances 6349 // fit without causing spills. All of this is rounded down if necessary to be 6350 // a power of two. We want power of two interleave count to simplify any 6351 // addressing operations or alignment considerations. 6352 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6353 R.MaxLocalUsers); 6354 6355 // Don't count the induction variable as interleaved. 6356 if (EnableIndVarRegisterHeur) 6357 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6358 std::max(1U, (R.MaxLocalUsers - 1))); 6359 6360 // Clamp the interleave ranges to reasonable counts. 6361 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6362 6363 // Check if the user has overridden the max. 6364 if (VF == 1) { 6365 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6366 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6367 } else { 6368 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6369 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6370 } 6371 6372 // If we did not calculate the cost for VF (because the user selected the VF) 6373 // then we calculate the cost of VF here. 6374 if (LoopCost == 0) 6375 LoopCost = expectedCost(VF).first; 6376 6377 // Clamp the calculated IC to be between the 1 and the max interleave count 6378 // that the target allows. 6379 if (IC > MaxInterleaveCount) 6380 IC = MaxInterleaveCount; 6381 else if (IC < 1) 6382 IC = 1; 6383 6384 // Interleave if we vectorized this loop and there is a reduction that could 6385 // benefit from interleaving. 6386 if (VF > 1 && Legal->getReductionVars()->size()) { 6387 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6388 return IC; 6389 } 6390 6391 // Note that if we've already vectorized the loop we will have done the 6392 // runtime check and so interleaving won't require further checks. 6393 bool InterleavingRequiresRuntimePointerCheck = 6394 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6395 6396 // We want to interleave small loops in order to reduce the loop overhead and 6397 // potentially expose ILP opportunities. 6398 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6399 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6400 // We assume that the cost overhead is 1 and we use the cost model 6401 // to estimate the cost of the loop and interleave until the cost of the 6402 // loop overhead is about 5% of the cost of the loop. 6403 unsigned SmallIC = 6404 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6405 6406 // Interleave until store/load ports (estimated by max interleave count) are 6407 // saturated. 6408 unsigned NumStores = Legal->getNumStores(); 6409 unsigned NumLoads = Legal->getNumLoads(); 6410 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6411 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6412 6413 // If we have a scalar reduction (vector reductions are already dealt with 6414 // by this point), we can increase the critical path length if the loop 6415 // we're interleaving is inside another loop. Limit, by default to 2, so the 6416 // critical path only gets increased by one reduction operation. 6417 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6418 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6419 SmallIC = std::min(SmallIC, F); 6420 StoresIC = std::min(StoresIC, F); 6421 LoadsIC = std::min(LoadsIC, F); 6422 } 6423 6424 if (EnableLoadStoreRuntimeInterleave && 6425 std::max(StoresIC, LoadsIC) > SmallIC) { 6426 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6427 return std::max(StoresIC, LoadsIC); 6428 } 6429 6430 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6431 return SmallIC; 6432 } 6433 6434 // Interleave if this is a large loop (small loops are already dealt with by 6435 // this point) that could benefit from interleaving. 6436 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6437 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6438 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6439 return IC; 6440 } 6441 6442 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6443 return 1; 6444 } 6445 6446 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6447 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6448 // This function calculates the register usage by measuring the highest number 6449 // of values that are alive at a single location. Obviously, this is a very 6450 // rough estimation. We scan the loop in a topological order in order and 6451 // assign a number to each instruction. We use RPO to ensure that defs are 6452 // met before their users. We assume that each instruction that has in-loop 6453 // users starts an interval. We record every time that an in-loop value is 6454 // used, so we have a list of the first and last occurrences of each 6455 // instruction. Next, we transpose this data structure into a multi map that 6456 // holds the list of intervals that *end* at a specific location. This multi 6457 // map allows us to perform a linear search. We scan the instructions linearly 6458 // and record each time that a new interval starts, by placing it in a set. 6459 // If we find this value in the multi-map then we remove it from the set. 6460 // The max register usage is the maximum size of the set. 6461 // We also search for instructions that are defined outside the loop, but are 6462 // used inside the loop. We need this number separately from the max-interval 6463 // usage number because when we unroll, loop-invariant values do not take 6464 // more register. 6465 LoopBlocksDFS DFS(TheLoop); 6466 DFS.perform(LI); 6467 6468 RegisterUsage RU; 6469 RU.NumInstructions = 0; 6470 6471 // Each 'key' in the map opens a new interval. The values 6472 // of the map are the index of the 'last seen' usage of the 6473 // instruction that is the key. 6474 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6475 // Maps instruction to its index. 6476 DenseMap<unsigned, Instruction *> IdxToInstr; 6477 // Marks the end of each interval. 6478 IntervalMap EndPoint; 6479 // Saves the list of instruction indices that are used in the loop. 6480 SmallSet<Instruction *, 8> Ends; 6481 // Saves the list of values that are used in the loop but are 6482 // defined outside the loop, such as arguments and constants. 6483 SmallPtrSet<Value *, 8> LoopInvariants; 6484 6485 unsigned Index = 0; 6486 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6487 RU.NumInstructions += BB->size(); 6488 for (Instruction &I : *BB) { 6489 IdxToInstr[Index++] = &I; 6490 6491 // Save the end location of each USE. 6492 for (Value *U : I.operands()) { 6493 auto *Instr = dyn_cast<Instruction>(U); 6494 6495 // Ignore non-instruction values such as arguments, constants, etc. 6496 if (!Instr) 6497 continue; 6498 6499 // If this instruction is outside the loop then record it and continue. 6500 if (!TheLoop->contains(Instr)) { 6501 LoopInvariants.insert(Instr); 6502 continue; 6503 } 6504 6505 // Overwrite previous end points. 6506 EndPoint[Instr] = Index; 6507 Ends.insert(Instr); 6508 } 6509 } 6510 } 6511 6512 // Saves the list of intervals that end with the index in 'key'. 6513 typedef SmallVector<Instruction *, 2> InstrList; 6514 DenseMap<unsigned, InstrList> TransposeEnds; 6515 6516 // Transpose the EndPoints to a list of values that end at each index. 6517 for (auto &Interval : EndPoint) 6518 TransposeEnds[Interval.second].push_back(Interval.first); 6519 6520 SmallSet<Instruction *, 8> OpenIntervals; 6521 6522 // Get the size of the widest register. 6523 unsigned MaxSafeDepDist = -1U; 6524 if (Legal->getMaxSafeDepDistBytes() != -1U) 6525 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6526 unsigned WidestRegister = 6527 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6528 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6529 6530 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6531 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6532 6533 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6534 6535 // A lambda that gets the register usage for the given type and VF. 6536 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6537 if (Ty->isTokenTy()) 6538 return 0U; 6539 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6540 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6541 }; 6542 6543 for (unsigned int i = 0; i < Index; ++i) { 6544 Instruction *I = IdxToInstr[i]; 6545 6546 // Remove all of the instructions that end at this location. 6547 InstrList &List = TransposeEnds[i]; 6548 for (Instruction *ToRemove : List) 6549 OpenIntervals.erase(ToRemove); 6550 6551 // Ignore instructions that are never used within the loop. 6552 if (!Ends.count(I)) 6553 continue; 6554 6555 // Skip ignored values. 6556 if (ValuesToIgnore.count(I)) 6557 continue; 6558 6559 // For each VF find the maximum usage of registers. 6560 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6561 if (VFs[j] == 1) { 6562 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6563 continue; 6564 } 6565 6566 // Count the number of live intervals. 6567 unsigned RegUsage = 0; 6568 for (auto Inst : OpenIntervals) { 6569 // Skip ignored values for VF > 1. 6570 if (VecValuesToIgnore.count(Inst)) 6571 continue; 6572 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6573 } 6574 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6575 } 6576 6577 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6578 << OpenIntervals.size() << '\n'); 6579 6580 // Add the current instruction to the list of open intervals. 6581 OpenIntervals.insert(I); 6582 } 6583 6584 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6585 unsigned Invariant = 0; 6586 if (VFs[i] == 1) 6587 Invariant = LoopInvariants.size(); 6588 else { 6589 for (auto Inst : LoopInvariants) 6590 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6591 } 6592 6593 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6594 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6595 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6596 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6597 6598 RU.LoopInvariantRegs = Invariant; 6599 RU.MaxLocalUsers = MaxUsages[i]; 6600 RUs[i] = RU; 6601 } 6602 6603 return RUs; 6604 } 6605 6606 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6607 6608 // If we aren't vectorizing the loop, or if we've already collected the 6609 // instructions to scalarize, there's nothing to do. Collection may already 6610 // have occurred if we have a user-selected VF and are now computing the 6611 // expected cost for interleaving. 6612 if (VF < 2 || InstsToScalarize.count(VF)) 6613 return; 6614 6615 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6616 // not profitable to scalarize any instructions, the presence of VF in the 6617 // map will indicate that we've analyzed it already. 6618 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6619 6620 // Find all the instructions that are scalar with predication in the loop and 6621 // determine if it would be better to not if-convert the blocks they are in. 6622 // If so, we also record the instructions to scalarize. 6623 for (BasicBlock *BB : TheLoop->blocks()) { 6624 if (!Legal->blockNeedsPredication(BB)) 6625 continue; 6626 for (Instruction &I : *BB) 6627 if (Legal->isScalarWithPredication(&I)) { 6628 ScalarCostsTy ScalarCosts; 6629 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6630 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6631 } 6632 } 6633 } 6634 6635 int LoopVectorizationCostModel::computePredInstDiscount( 6636 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6637 unsigned VF) { 6638 6639 assert(!Legal->isUniformAfterVectorization(PredInst) && 6640 "Instruction marked uniform-after-vectorization will be predicated"); 6641 6642 // Initialize the discount to zero, meaning that the scalar version and the 6643 // vector version cost the same. 6644 int Discount = 0; 6645 6646 // Holds instructions to analyze. The instructions we visit are mapped in 6647 // ScalarCosts. Those instructions are the ones that would be scalarized if 6648 // we find that the scalar version costs less. 6649 SmallVector<Instruction *, 8> Worklist; 6650 6651 // Returns true if the given instruction can be scalarized. 6652 auto canBeScalarized = [&](Instruction *I) -> bool { 6653 6654 // We only attempt to scalarize instructions forming a single-use chain 6655 // from the original predicated block that would otherwise be vectorized. 6656 // Although not strictly necessary, we give up on instructions we know will 6657 // already be scalar to avoid traversing chains that are unlikely to be 6658 // beneficial. 6659 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6660 Legal->isScalarAfterVectorization(I)) 6661 return false; 6662 6663 // If the instruction is scalar with predication, it will be analyzed 6664 // separately. We ignore it within the context of PredInst. 6665 if (Legal->isScalarWithPredication(I)) 6666 return false; 6667 6668 // If any of the instruction's operands are uniform after vectorization, 6669 // the instruction cannot be scalarized. This prevents, for example, a 6670 // masked load from being scalarized. 6671 // 6672 // We assume we will only emit a value for lane zero of an instruction 6673 // marked uniform after vectorization, rather than VF identical values. 6674 // Thus, if we scalarize an instruction that uses a uniform, we would 6675 // create uses of values corresponding to the lanes we aren't emitting code 6676 // for. This behavior can be changed by allowing getScalarValue to clone 6677 // the lane zero values for uniforms rather than asserting. 6678 for (Use &U : I->operands()) 6679 if (auto *J = dyn_cast<Instruction>(U.get())) 6680 if (Legal->isUniformAfterVectorization(J)) 6681 return false; 6682 6683 // Otherwise, we can scalarize the instruction. 6684 return true; 6685 }; 6686 6687 // Returns true if an operand that cannot be scalarized must be extracted 6688 // from a vector. We will account for this scalarization overhead below. Note 6689 // that the non-void predicated instructions are placed in their own blocks, 6690 // and their return values are inserted into vectors. Thus, an extract would 6691 // still be required. 6692 auto needsExtract = [&](Instruction *I) -> bool { 6693 return TheLoop->contains(I) && !Legal->isScalarAfterVectorization(I); 6694 }; 6695 6696 // Compute the expected cost discount from scalarizing the entire expression 6697 // feeding the predicated instruction. We currently only consider expressions 6698 // that are single-use instruction chains. 6699 Worklist.push_back(PredInst); 6700 while (!Worklist.empty()) { 6701 Instruction *I = Worklist.pop_back_val(); 6702 6703 // If we've already analyzed the instruction, there's nothing to do. 6704 if (ScalarCosts.count(I)) 6705 continue; 6706 6707 // Compute the cost of the vector instruction. Note that this cost already 6708 // includes the scalarization overhead of the predicated instruction. 6709 unsigned VectorCost = getInstructionCost(I, VF).first; 6710 6711 // Compute the cost of the scalarized instruction. This cost is the cost of 6712 // the instruction as if it wasn't if-converted and instead remained in the 6713 // predicated block. We will scale this cost by block probability after 6714 // computing the scalarization overhead. 6715 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6716 6717 // Compute the scalarization overhead of needed insertelement instructions 6718 // and phi nodes. 6719 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6720 ScalarCost += getScalarizationOverhead(ToVectorTy(I->getType(), VF), true, 6721 false, TTI); 6722 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6723 } 6724 6725 // Compute the scalarization overhead of needed extractelement 6726 // instructions. For each of the instruction's operands, if the operand can 6727 // be scalarized, add it to the worklist; otherwise, account for the 6728 // overhead. 6729 for (Use &U : I->operands()) 6730 if (auto *J = dyn_cast<Instruction>(U.get())) { 6731 assert(VectorType::isValidElementType(J->getType()) && 6732 "Instruction has non-scalar type"); 6733 if (canBeScalarized(J)) 6734 Worklist.push_back(J); 6735 else if (needsExtract(J)) 6736 ScalarCost += getScalarizationOverhead(ToVectorTy(J->getType(), VF), 6737 false, true, TTI); 6738 } 6739 6740 // Scale the total scalar cost by block probability. 6741 ScalarCost /= getReciprocalPredBlockProb(); 6742 6743 // Compute the discount. A non-negative discount means the vector version 6744 // of the instruction costs more, and scalarizing would be beneficial. 6745 Discount += VectorCost - ScalarCost; 6746 ScalarCosts[I] = ScalarCost; 6747 } 6748 6749 return Discount; 6750 } 6751 6752 LoopVectorizationCostModel::VectorizationCostTy 6753 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6754 VectorizationCostTy Cost; 6755 6756 // Collect the instructions (and their associated costs) that will be more 6757 // profitable to scalarize. 6758 collectInstsToScalarize(VF); 6759 6760 // For each block. 6761 for (BasicBlock *BB : TheLoop->blocks()) { 6762 VectorizationCostTy BlockCost; 6763 6764 // For each instruction in the old loop. 6765 for (Instruction &I : *BB) { 6766 // Skip dbg intrinsics. 6767 if (isa<DbgInfoIntrinsic>(I)) 6768 continue; 6769 6770 // Skip ignored values. 6771 if (ValuesToIgnore.count(&I)) 6772 continue; 6773 6774 VectorizationCostTy C = getInstructionCost(&I, VF); 6775 6776 // Check if we should override the cost. 6777 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6778 C.first = ForceTargetInstructionCost; 6779 6780 BlockCost.first += C.first; 6781 BlockCost.second |= C.second; 6782 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6783 << VF << " For instruction: " << I << '\n'); 6784 } 6785 6786 // If we are vectorizing a predicated block, it will have been 6787 // if-converted. This means that the block's instructions (aside from 6788 // stores and instructions that may divide by zero) will now be 6789 // unconditionally executed. For the scalar case, we may not always execute 6790 // the predicated block. Thus, scale the block's cost by the probability of 6791 // executing it. 6792 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6793 BlockCost.first /= getReciprocalPredBlockProb(); 6794 6795 Cost.first += BlockCost.first; 6796 Cost.second |= BlockCost.second; 6797 } 6798 6799 return Cost; 6800 } 6801 6802 /// \brief Gets Address Access SCEV after verifying that the access pattern 6803 /// is loop invariant except the induction variable dependence. 6804 /// 6805 /// This SCEV can be sent to the Target in order to estimate the address 6806 /// calculation cost. 6807 static const SCEV *getAddressAccessSCEV( 6808 Value *Ptr, 6809 LoopVectorizationLegality *Legal, 6810 ScalarEvolution *SE, 6811 const Loop *TheLoop) { 6812 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6813 if (!Gep) 6814 return nullptr; 6815 6816 // We are looking for a gep with all loop invariant indices except for one 6817 // which should be an induction variable. 6818 unsigned NumOperands = Gep->getNumOperands(); 6819 for (unsigned i = 1; i < NumOperands; ++i) { 6820 Value *Opd = Gep->getOperand(i); 6821 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6822 !Legal->isInductionVariable(Opd)) 6823 return nullptr; 6824 } 6825 6826 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6827 return SE->getSCEV(Ptr); 6828 } 6829 6830 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6831 return Legal->hasStride(I->getOperand(0)) || 6832 Legal->hasStride(I->getOperand(1)); 6833 } 6834 6835 LoopVectorizationCostModel::VectorizationCostTy 6836 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6837 // If we know that this instruction will remain uniform, check the cost of 6838 // the scalar version. 6839 if (Legal->isUniformAfterVectorization(I)) 6840 VF = 1; 6841 6842 if (VF > 1 && isProfitableToScalarize(I, VF)) 6843 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6844 6845 Type *VectorTy; 6846 unsigned C = getInstructionCost(I, VF, VectorTy); 6847 6848 bool TypeNotScalarized = 6849 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6850 return VectorizationCostTy(C, TypeNotScalarized); 6851 } 6852 6853 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6854 unsigned VF, 6855 Type *&VectorTy) { 6856 Type *RetTy = I->getType(); 6857 if (canTruncateToMinimalBitwidth(I, VF)) 6858 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6859 VectorTy = ToVectorTy(RetTy, VF); 6860 auto SE = PSE.getSE(); 6861 6862 // TODO: We need to estimate the cost of intrinsic calls. 6863 switch (I->getOpcode()) { 6864 case Instruction::GetElementPtr: 6865 // We mark this instruction as zero-cost because the cost of GEPs in 6866 // vectorized code depends on whether the corresponding memory instruction 6867 // is scalarized or not. Therefore, we handle GEPs with the memory 6868 // instruction cost. 6869 return 0; 6870 case Instruction::Br: { 6871 return TTI.getCFInstrCost(I->getOpcode()); 6872 } 6873 case Instruction::PHI: { 6874 auto *Phi = cast<PHINode>(I); 6875 6876 // First-order recurrences are replaced by vector shuffles inside the loop. 6877 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6878 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6879 VectorTy, VF - 1, VectorTy); 6880 6881 // TODO: IF-converted IFs become selects. 6882 return 0; 6883 } 6884 case Instruction::UDiv: 6885 case Instruction::SDiv: 6886 case Instruction::URem: 6887 case Instruction::SRem: 6888 // If we have a predicated instruction, it may not be executed for each 6889 // vector lane. Get the scalarization cost and scale this amount by the 6890 // probability of executing the predicated block. If the instruction is not 6891 // predicated, we fall through to the next case. 6892 if (VF > 1 && Legal->isScalarWithPredication(I)) { 6893 unsigned Cost = 0; 6894 6895 // These instructions have a non-void type, so account for the phi nodes 6896 // that we will create. This cost is likely to be zero. The phi node 6897 // cost, if any, should be scaled by the block probability because it 6898 // models a copy at the end of each predicated block. 6899 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6900 6901 // The cost of the non-predicated instruction. 6902 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6903 6904 // The cost of insertelement and extractelement instructions needed for 6905 // scalarization. 6906 Cost += getScalarizationOverhead(I, VF, TTI); 6907 6908 // Scale the cost by the probability of executing the predicated blocks. 6909 // This assumes the predicated block for each vector lane is equally 6910 // likely. 6911 return Cost / getReciprocalPredBlockProb(); 6912 } 6913 case Instruction::Add: 6914 case Instruction::FAdd: 6915 case Instruction::Sub: 6916 case Instruction::FSub: 6917 case Instruction::Mul: 6918 case Instruction::FMul: 6919 case Instruction::FDiv: 6920 case Instruction::FRem: 6921 case Instruction::Shl: 6922 case Instruction::LShr: 6923 case Instruction::AShr: 6924 case Instruction::And: 6925 case Instruction::Or: 6926 case Instruction::Xor: { 6927 // Since we will replace the stride by 1 the multiplication should go away. 6928 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6929 return 0; 6930 // Certain instructions can be cheaper to vectorize if they have a constant 6931 // second vector operand. One example of this are shifts on x86. 6932 TargetTransformInfo::OperandValueKind Op1VK = 6933 TargetTransformInfo::OK_AnyValue; 6934 TargetTransformInfo::OperandValueKind Op2VK = 6935 TargetTransformInfo::OK_AnyValue; 6936 TargetTransformInfo::OperandValueProperties Op1VP = 6937 TargetTransformInfo::OP_None; 6938 TargetTransformInfo::OperandValueProperties Op2VP = 6939 TargetTransformInfo::OP_None; 6940 Value *Op2 = I->getOperand(1); 6941 6942 // Check for a splat or for a non uniform vector of constants. 6943 if (isa<ConstantInt>(Op2)) { 6944 ConstantInt *CInt = cast<ConstantInt>(Op2); 6945 if (CInt && CInt->getValue().isPowerOf2()) 6946 Op2VP = TargetTransformInfo::OP_PowerOf2; 6947 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6948 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6949 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6950 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6951 if (SplatValue) { 6952 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6953 if (CInt && CInt->getValue().isPowerOf2()) 6954 Op2VP = TargetTransformInfo::OP_PowerOf2; 6955 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6956 } 6957 } else if (Legal->isUniform(Op2)) { 6958 Op2VK = TargetTransformInfo::OK_UniformValue; 6959 } 6960 SmallVector<const Value *, 4> Operands(I->operand_values()); 6961 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 6962 Op2VK, Op1VP, Op2VP, Operands); 6963 } 6964 case Instruction::Select: { 6965 SelectInst *SI = cast<SelectInst>(I); 6966 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6967 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6968 Type *CondTy = SI->getCondition()->getType(); 6969 if (!ScalarCond) 6970 CondTy = VectorType::get(CondTy, VF); 6971 6972 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6973 } 6974 case Instruction::ICmp: 6975 case Instruction::FCmp: { 6976 Type *ValTy = I->getOperand(0)->getType(); 6977 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6978 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6979 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6980 VectorTy = ToVectorTy(ValTy, VF); 6981 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6982 } 6983 case Instruction::Store: 6984 case Instruction::Load: { 6985 StoreInst *SI = dyn_cast<StoreInst>(I); 6986 LoadInst *LI = dyn_cast<LoadInst>(I); 6987 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6988 VectorTy = ToVectorTy(ValTy, VF); 6989 6990 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6991 unsigned AS = 6992 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6993 Value *Ptr = getPointerOperand(I); 6994 // We add the cost of address computation here instead of with the gep 6995 // instruction because only here we know whether the operation is 6996 // scalarized. 6997 if (VF == 1) 6998 return TTI.getAddressComputationCost(VectorTy) + 6999 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7000 7001 if (LI && Legal->isUniform(Ptr)) { 7002 // Scalar load + broadcast 7003 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 7004 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 7005 Alignment, AS); 7006 return Cost + 7007 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 7008 } 7009 7010 // For an interleaved access, calculate the total cost of the whole 7011 // interleave group. 7012 if (Legal->isAccessInterleaved(I)) { 7013 auto Group = Legal->getInterleavedAccessGroup(I); 7014 assert(Group && "Fail to get an interleaved access group."); 7015 7016 // Only calculate the cost once at the insert position. 7017 if (Group->getInsertPos() != I) 7018 return 0; 7019 7020 unsigned InterleaveFactor = Group->getFactor(); 7021 Type *WideVecTy = 7022 VectorType::get(VectorTy->getVectorElementType(), 7023 VectorTy->getVectorNumElements() * InterleaveFactor); 7024 7025 // Holds the indices of existing members in an interleaved load group. 7026 // An interleaved store group doesn't need this as it doesn't allow gaps. 7027 SmallVector<unsigned, 4> Indices; 7028 if (LI) { 7029 for (unsigned i = 0; i < InterleaveFactor; i++) 7030 if (Group->getMember(i)) 7031 Indices.push_back(i); 7032 } 7033 7034 // Calculate the cost of the whole interleaved group. 7035 unsigned Cost = TTI.getInterleavedMemoryOpCost( 7036 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 7037 Group->getAlignment(), AS); 7038 7039 if (Group->isReverse()) 7040 Cost += 7041 Group->getNumMembers() * 7042 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7043 7044 // FIXME: The interleaved load group with a huge gap could be even more 7045 // expensive than scalar operations. Then we could ignore such group and 7046 // use scalar operations instead. 7047 return Cost; 7048 } 7049 7050 // Check if the memory instruction will be scalarized. 7051 if (Legal->memoryInstructionMustBeScalarized(I, VF)) { 7052 unsigned Cost = 0; 7053 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7054 7055 // Figure out whether the access is strided and get the stride value 7056 // if it's known in compile time 7057 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7058 7059 // Get the cost of the scalar memory instruction and address computation. 7060 Cost += VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7061 Cost += VF * 7062 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 7063 Alignment, AS); 7064 7065 // Get the overhead of the extractelement and insertelement instructions 7066 // we might create due to scalarization. 7067 Cost += getScalarizationOverhead(I, VF, TTI); 7068 7069 // If we have a predicated store, it may not be executed for each vector 7070 // lane. Scale the cost by the probability of executing the predicated 7071 // block. 7072 if (Legal->isScalarWithPredication(I)) 7073 Cost /= getReciprocalPredBlockProb(); 7074 7075 return Cost; 7076 } 7077 7078 // Determine if the pointer operand of the access is either consecutive or 7079 // reverse consecutive. 7080 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7081 bool Reverse = ConsecutiveStride < 0; 7082 7083 // Determine if either a gather or scatter operation is legal. 7084 bool UseGatherOrScatter = 7085 !ConsecutiveStride && Legal->isLegalGatherOrScatter(I); 7086 7087 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 7088 if (UseGatherOrScatter) { 7089 assert(ConsecutiveStride == 0 && 7090 "Gather/Scatter are not used for consecutive stride"); 7091 return Cost + 7092 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7093 Legal->isMaskRequired(I), Alignment); 7094 } 7095 // Wide load/stores. 7096 if (Legal->isMaskRequired(I)) 7097 Cost += 7098 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7099 else 7100 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7101 7102 if (Reverse) 7103 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7104 return Cost; 7105 } 7106 case Instruction::ZExt: 7107 case Instruction::SExt: 7108 case Instruction::FPToUI: 7109 case Instruction::FPToSI: 7110 case Instruction::FPExt: 7111 case Instruction::PtrToInt: 7112 case Instruction::IntToPtr: 7113 case Instruction::SIToFP: 7114 case Instruction::UIToFP: 7115 case Instruction::Trunc: 7116 case Instruction::FPTrunc: 7117 case Instruction::BitCast: { 7118 // We optimize the truncation of induction variable. 7119 // The cost of these is the same as the scalar operation. 7120 if (I->getOpcode() == Instruction::Trunc && 7121 Legal->isInductionVariable(I->getOperand(0))) 7122 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 7123 I->getOperand(0)->getType()); 7124 7125 Type *SrcScalarTy = I->getOperand(0)->getType(); 7126 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7127 if (canTruncateToMinimalBitwidth(I, VF)) { 7128 // This cast is going to be shrunk. This may remove the cast or it might 7129 // turn it into slightly different cast. For example, if MinBW == 16, 7130 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7131 // 7132 // Calculate the modified src and dest types. 7133 Type *MinVecTy = VectorTy; 7134 if (I->getOpcode() == Instruction::Trunc) { 7135 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7136 VectorTy = 7137 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7138 } else if (I->getOpcode() == Instruction::ZExt || 7139 I->getOpcode() == Instruction::SExt) { 7140 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7141 VectorTy = 7142 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7143 } 7144 } 7145 7146 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 7147 } 7148 case Instruction::Call: { 7149 bool NeedToScalarize; 7150 CallInst *CI = cast<CallInst>(I); 7151 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7152 if (getVectorIntrinsicIDForCall(CI, TLI)) 7153 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7154 return CallCost; 7155 } 7156 default: 7157 // The cost of executing VF copies of the scalar instruction. This opcode 7158 // is unknown. Assume that it is the same as 'mul'. 7159 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7160 getScalarizationOverhead(I, VF, TTI); 7161 } // end of switch. 7162 } 7163 7164 char LoopVectorize::ID = 0; 7165 static const char lv_name[] = "Loop Vectorization"; 7166 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7167 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7168 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7169 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7170 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7171 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7172 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7173 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7174 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7175 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 7176 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7177 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7178 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7179 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7180 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7181 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7182 7183 namespace llvm { 7184 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7185 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7186 } 7187 } 7188 7189 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7190 7191 // Check if the pointer operand of a load or store instruction is 7192 // consecutive. 7193 if (auto *Ptr = getPointerOperand(Inst)) 7194 return Legal->isConsecutivePtr(Ptr); 7195 return false; 7196 } 7197 7198 void LoopVectorizationCostModel::collectValuesToIgnore() { 7199 // Ignore ephemeral values. 7200 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7201 7202 // Ignore type-promoting instructions we identified during reduction 7203 // detection. 7204 for (auto &Reduction : *Legal->getReductionVars()) { 7205 RecurrenceDescriptor &RedDes = Reduction.second; 7206 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7207 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7208 } 7209 7210 // Insert values known to be scalar into VecValuesToIgnore. This is a 7211 // conservative estimation of the values that will later be scalarized. 7212 // 7213 // FIXME: Even though an instruction is not scalar-after-vectoriztion, it may 7214 // still be scalarized. For example, we may find an instruction to be 7215 // more profitable for a given vectorization factor if it were to be 7216 // scalarized. But at this point, we haven't yet computed the 7217 // vectorization factor. 7218 for (auto *BB : TheLoop->getBlocks()) 7219 for (auto &I : *BB) 7220 if (Legal->isScalarAfterVectorization(&I)) 7221 VecValuesToIgnore.insert(&I); 7222 } 7223 7224 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 7225 bool IfPredicateInstr) { 7226 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 7227 // Holds vector parameters or scalars, in case of uniform vals. 7228 SmallVector<VectorParts, 4> Params; 7229 7230 setDebugLocFromInst(Builder, Instr); 7231 7232 // Does this instruction return a value ? 7233 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 7234 7235 // Initialize a new scalar map entry. 7236 ScalarParts Entry(UF); 7237 7238 VectorParts Cond; 7239 if (IfPredicateInstr) 7240 Cond = createBlockInMask(Instr->getParent()); 7241 7242 // For each vector unroll 'part': 7243 for (unsigned Part = 0; Part < UF; ++Part) { 7244 Entry[Part].resize(1); 7245 // For each scalar that we create: 7246 7247 // Start an "if (pred) a[i] = ..." block. 7248 Value *Cmp = nullptr; 7249 if (IfPredicateInstr) { 7250 if (Cond[Part]->getType()->isVectorTy()) 7251 Cond[Part] = 7252 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 7253 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 7254 ConstantInt::get(Cond[Part]->getType(), 1)); 7255 } 7256 7257 Instruction *Cloned = Instr->clone(); 7258 if (!IsVoidRetTy) 7259 Cloned->setName(Instr->getName() + ".cloned"); 7260 7261 // Replace the operands of the cloned instructions with their scalar 7262 // equivalents in the new loop. 7263 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 7264 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 7265 Cloned->setOperand(op, NewOp); 7266 } 7267 7268 // Place the cloned scalar in the new loop. 7269 Builder.Insert(Cloned); 7270 7271 // Add the cloned scalar to the scalar map entry. 7272 Entry[Part][0] = Cloned; 7273 7274 // If we just cloned a new assumption, add it the assumption cache. 7275 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 7276 if (II->getIntrinsicID() == Intrinsic::assume) 7277 AC->registerAssumption(II); 7278 7279 // End if-block. 7280 if (IfPredicateInstr) 7281 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 7282 } 7283 VectorLoopValueMap.initScalar(Instr, Entry); 7284 } 7285 7286 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7287 auto *SI = dyn_cast<StoreInst>(Instr); 7288 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7289 7290 return scalarizeInstruction(Instr, IfPredicateInstr); 7291 } 7292 7293 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7294 7295 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7296 7297 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7298 Instruction::BinaryOps BinOp) { 7299 // When unrolling and the VF is 1, we only need to add a simple scalar. 7300 Type *Ty = Val->getType(); 7301 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7302 7303 if (Ty->isFloatingPointTy()) { 7304 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7305 7306 // Floating point operations had to be 'fast' to enable the unrolling. 7307 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7308 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7309 } 7310 Constant *C = ConstantInt::get(Ty, StartIdx); 7311 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7312 } 7313 7314 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7315 SmallVector<Metadata *, 4> MDs; 7316 // Reserve first location for self reference to the LoopID metadata node. 7317 MDs.push_back(nullptr); 7318 bool IsUnrollMetadata = false; 7319 MDNode *LoopID = L->getLoopID(); 7320 if (LoopID) { 7321 // First find existing loop unrolling disable metadata. 7322 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7323 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7324 if (MD) { 7325 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7326 IsUnrollMetadata = 7327 S && S->getString().startswith("llvm.loop.unroll.disable"); 7328 } 7329 MDs.push_back(LoopID->getOperand(i)); 7330 } 7331 } 7332 7333 if (!IsUnrollMetadata) { 7334 // Add runtime unroll disable metadata. 7335 LLVMContext &Context = L->getHeader()->getContext(); 7336 SmallVector<Metadata *, 1> DisableOperands; 7337 DisableOperands.push_back( 7338 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7339 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7340 MDs.push_back(DisableNode); 7341 MDNode *NewLoopID = MDNode::get(Context, MDs); 7342 // Set operand 0 to refer to the loop id itself. 7343 NewLoopID->replaceOperandWith(0, NewLoopID); 7344 L->setLoopID(NewLoopID); 7345 } 7346 } 7347 7348 bool LoopVectorizePass::processLoop(Loop *L) { 7349 assert(L->empty() && "Only process inner loops."); 7350 7351 #ifndef NDEBUG 7352 const std::string DebugLocStr = getDebugLocString(L); 7353 #endif /* NDEBUG */ 7354 7355 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7356 << L->getHeader()->getParent()->getName() << "\" from " 7357 << DebugLocStr << "\n"); 7358 7359 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7360 7361 DEBUG(dbgs() << "LV: Loop hints:" 7362 << " force=" 7363 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7364 ? "disabled" 7365 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7366 ? "enabled" 7367 : "?")) 7368 << " width=" << Hints.getWidth() 7369 << " unroll=" << Hints.getInterleave() << "\n"); 7370 7371 // Function containing loop 7372 Function *F = L->getHeader()->getParent(); 7373 7374 // Looking at the diagnostic output is the only way to determine if a loop 7375 // was vectorized (other than looking at the IR or machine code), so it 7376 // is important to generate an optimization remark for each loop. Most of 7377 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7378 // generated as OptimizationRemark and OptimizationRemarkMissed are 7379 // less verbose reporting vectorized loops and unvectorized loops that may 7380 // benefit from vectorization, respectively. 7381 7382 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7383 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7384 return false; 7385 } 7386 7387 // Check the loop for a trip count threshold: 7388 // do not vectorize loops with a tiny trip count. 7389 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7390 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7391 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7392 << "This loop is not worth vectorizing."); 7393 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7394 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7395 else { 7396 DEBUG(dbgs() << "\n"); 7397 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7398 "NotBeneficial", L) 7399 << "vectorization is not beneficial " 7400 "and is not explicitly forced"); 7401 return false; 7402 } 7403 } 7404 7405 PredicatedScalarEvolution PSE(*SE, *L); 7406 7407 // Check if it is legal to vectorize the loop. 7408 LoopVectorizationRequirements Requirements(*ORE); 7409 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7410 &Requirements, &Hints); 7411 if (!LVL.canVectorize()) { 7412 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7413 emitMissedWarning(F, L, Hints, ORE); 7414 return false; 7415 } 7416 7417 // Use the cost model. 7418 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7419 &Hints); 7420 CM.collectValuesToIgnore(); 7421 7422 // Check the function attributes to find out if this function should be 7423 // optimized for size. 7424 bool OptForSize = 7425 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7426 7427 // Compute the weighted frequency of this loop being executed and see if it 7428 // is less than 20% of the function entry baseline frequency. Note that we 7429 // always have a canonical loop here because we think we *can* vectorize. 7430 // FIXME: This is hidden behind a flag due to pervasive problems with 7431 // exactly what block frequency models. 7432 if (LoopVectorizeWithBlockFrequency) { 7433 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7434 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7435 LoopEntryFreq < ColdEntryFreq) 7436 OptForSize = true; 7437 } 7438 7439 // Check the function attributes to see if implicit floats are allowed. 7440 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7441 // an integer loop and the vector instructions selected are purely integer 7442 // vector instructions? 7443 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7444 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7445 "attribute is used.\n"); 7446 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7447 "NoImplicitFloat", L) 7448 << "loop not vectorized due to NoImplicitFloat attribute"); 7449 emitMissedWarning(F, L, Hints, ORE); 7450 return false; 7451 } 7452 7453 // Check if the target supports potentially unsafe FP vectorization. 7454 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7455 // for the target we're vectorizing for, to make sure none of the 7456 // additional fp-math flags can help. 7457 if (Hints.isPotentiallyUnsafe() && 7458 TTI->isFPVectorizationPotentiallyUnsafe()) { 7459 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7460 ORE->emit( 7461 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7462 << "loop not vectorized due to unsafe FP support."); 7463 emitMissedWarning(F, L, Hints, ORE); 7464 return false; 7465 } 7466 7467 // Select the optimal vectorization factor. 7468 const LoopVectorizationCostModel::VectorizationFactor VF = 7469 CM.selectVectorizationFactor(OptForSize); 7470 7471 // Select the interleave count. 7472 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7473 7474 // Get user interleave count. 7475 unsigned UserIC = Hints.getInterleave(); 7476 7477 // Identify the diagnostic messages that should be produced. 7478 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7479 bool VectorizeLoop = true, InterleaveLoop = true; 7480 if (Requirements.doesNotMeet(F, L, Hints)) { 7481 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7482 "requirements.\n"); 7483 emitMissedWarning(F, L, Hints, ORE); 7484 return false; 7485 } 7486 7487 if (VF.Width == 1) { 7488 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7489 VecDiagMsg = std::make_pair( 7490 "VectorizationNotBeneficial", 7491 "the cost-model indicates that vectorization is not beneficial"); 7492 VectorizeLoop = false; 7493 } 7494 7495 if (IC == 1 && UserIC <= 1) { 7496 // Tell the user interleaving is not beneficial. 7497 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7498 IntDiagMsg = std::make_pair( 7499 "InterleavingNotBeneficial", 7500 "the cost-model indicates that interleaving is not beneficial"); 7501 InterleaveLoop = false; 7502 if (UserIC == 1) { 7503 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7504 IntDiagMsg.second += 7505 " and is explicitly disabled or interleave count is set to 1"; 7506 } 7507 } else if (IC > 1 && UserIC == 1) { 7508 // Tell the user interleaving is beneficial, but it explicitly disabled. 7509 DEBUG(dbgs() 7510 << "LV: Interleaving is beneficial but is explicitly disabled."); 7511 IntDiagMsg = std::make_pair( 7512 "InterleavingBeneficialButDisabled", 7513 "the cost-model indicates that interleaving is beneficial " 7514 "but is explicitly disabled or interleave count is set to 1"); 7515 InterleaveLoop = false; 7516 } 7517 7518 // Override IC if user provided an interleave count. 7519 IC = UserIC > 0 ? UserIC : IC; 7520 7521 // Emit diagnostic messages, if any. 7522 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7523 if (!VectorizeLoop && !InterleaveLoop) { 7524 // Do not vectorize or interleaving the loop. 7525 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7526 L->getStartLoc(), L->getHeader()) 7527 << VecDiagMsg.second); 7528 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7529 L->getStartLoc(), L->getHeader()) 7530 << IntDiagMsg.second); 7531 return false; 7532 } else if (!VectorizeLoop && InterleaveLoop) { 7533 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7534 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7535 L->getStartLoc(), L->getHeader()) 7536 << VecDiagMsg.second); 7537 } else if (VectorizeLoop && !InterleaveLoop) { 7538 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7539 << DebugLocStr << '\n'); 7540 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7541 L->getStartLoc(), L->getHeader()) 7542 << IntDiagMsg.second); 7543 } else if (VectorizeLoop && InterleaveLoop) { 7544 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7545 << DebugLocStr << '\n'); 7546 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7547 } 7548 7549 using namespace ore; 7550 if (!VectorizeLoop) { 7551 assert(IC > 1 && "interleave count should not be 1 or 0"); 7552 // If we decided that it is not legal to vectorize the loop, then 7553 // interleave it. 7554 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7555 &CM); 7556 Unroller.vectorize(); 7557 7558 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7559 L->getHeader()) 7560 << "interleaved loop (interleaved count: " 7561 << NV("InterleaveCount", IC) << ")"); 7562 } else { 7563 // If we decided that it is *legal* to vectorize the loop, then do it. 7564 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7565 &LVL, &CM); 7566 LB.vectorize(); 7567 ++LoopsVectorized; 7568 7569 // Add metadata to disable runtime unrolling a scalar loop when there are 7570 // no runtime checks about strides and memory. A scalar loop that is 7571 // rarely used is not worth unrolling. 7572 if (!LB.areSafetyChecksAdded()) 7573 AddRuntimeUnrollDisableMetaData(L); 7574 7575 // Report the vectorization decision. 7576 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7577 L->getHeader()) 7578 << "vectorized loop (vectorization width: " 7579 << NV("VectorizationFactor", VF.Width) 7580 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7581 } 7582 7583 // Mark the loop as already vectorized to avoid vectorizing again. 7584 Hints.setAlreadyVectorized(); 7585 7586 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7587 return true; 7588 } 7589 7590 bool LoopVectorizePass::runImpl( 7591 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7592 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7593 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7594 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7595 OptimizationRemarkEmitter &ORE_) { 7596 7597 SE = &SE_; 7598 LI = &LI_; 7599 TTI = &TTI_; 7600 DT = &DT_; 7601 BFI = &BFI_; 7602 TLI = TLI_; 7603 AA = &AA_; 7604 AC = &AC_; 7605 GetLAA = &GetLAA_; 7606 DB = &DB_; 7607 ORE = &ORE_; 7608 7609 // Compute some weights outside of the loop over the loops. Compute this 7610 // using a BranchProbability to re-use its scaling math. 7611 const BranchProbability ColdProb(1, 5); // 20% 7612 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7613 7614 // Don't attempt if 7615 // 1. the target claims to have no vector registers, and 7616 // 2. interleaving won't help ILP. 7617 // 7618 // The second condition is necessary because, even if the target has no 7619 // vector registers, loop vectorization may still enable scalar 7620 // interleaving. 7621 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7622 return false; 7623 7624 // Build up a worklist of inner-loops to vectorize. This is necessary as 7625 // the act of vectorizing or partially unrolling a loop creates new loops 7626 // and can invalidate iterators across the loops. 7627 SmallVector<Loop *, 8> Worklist; 7628 7629 for (Loop *L : *LI) 7630 addAcyclicInnerLoop(*L, Worklist); 7631 7632 LoopsAnalyzed += Worklist.size(); 7633 7634 // Now walk the identified inner loops. 7635 bool Changed = false; 7636 while (!Worklist.empty()) 7637 Changed |= processLoop(Worklist.pop_back_val()); 7638 7639 // Process each loop nest in the function. 7640 return Changed; 7641 7642 } 7643 7644 7645 PreservedAnalyses LoopVectorizePass::run(Function &F, 7646 FunctionAnalysisManager &AM) { 7647 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7648 auto &LI = AM.getResult<LoopAnalysis>(F); 7649 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7650 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7651 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7652 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7653 auto &AA = AM.getResult<AAManager>(F); 7654 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7655 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7656 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7657 7658 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7659 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7660 [&](Loop &L) -> const LoopAccessInfo & { 7661 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7662 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7663 }; 7664 bool Changed = 7665 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7666 if (!Changed) 7667 return PreservedAnalyses::all(); 7668 PreservedAnalyses PA; 7669 PA.preserve<LoopAnalysis>(); 7670 PA.preserve<DominatorTreeAnalysis>(); 7671 PA.preserve<BasicAA>(); 7672 PA.preserve<GlobalsAA>(); 7673 return PA; 7674 } 7675