1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/LoopUtils.h" 95 #include "llvm/Transforms/Utils/LoopVersioning.h" 96 #include "llvm/Transforms/Vectorize.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> TinyTripCountVectorThreshold( 116 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 static cl::opt<bool> MaximizeBandwidth( 122 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 123 cl::desc("Maximize bandwidth when selecting vectorization factor which " 124 "will be determined by the smallest type in loop.")); 125 126 static cl::opt<bool> EnableInterleavedMemAccesses( 127 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 128 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 129 130 /// Maximum factor for an interleaved memory access. 131 static cl::opt<unsigned> MaxInterleaveGroupFactor( 132 "max-interleave-group-factor", cl::Hidden, 133 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 134 cl::init(8)); 135 136 /// We don't interleave loops with a known constant trip count below this 137 /// number. 138 static const unsigned TinyTripCountInterleaveThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc( 170 "The cost of a loop that is considered 'small' by the interleaver.")); 171 172 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 173 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 174 cl::desc("Enable the use of the block frequency analysis to access PGO " 175 "heuristics minimizing code growth in cold regions and being more " 176 "aggressive in hot regions.")); 177 178 // Runtime interleave loops for load/store throughput. 179 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 180 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 181 cl::desc( 182 "Enable runtime interleaving until load/store ports are saturated")); 183 184 /// The number of stores in a loop that are allowed to need predication. 185 static cl::opt<unsigned> NumberOfStoresToPredicate( 186 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 187 cl::desc("Max number of stores to be predicated behind an if.")); 188 189 static cl::opt<bool> EnableIndVarRegisterHeur( 190 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 191 cl::desc("Count the induction variable only once when interleaving")); 192 193 static cl::opt<bool> EnableCondStoresVectorization( 194 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 195 cl::desc("Enable if predication of stores during vectorization.")); 196 197 static cl::opt<unsigned> MaxNestedScalarReductionIC( 198 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 199 cl::desc("The maximum interleave count to use when interleaving a scalar " 200 "reduction in a nested loop.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 208 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 209 cl::desc("The maximum number of SCEV checks allowed.")); 210 211 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 212 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed with a " 214 "vectorize(enable) pragma")); 215 216 namespace { 217 218 // Forward declarations. 219 class LoopVectorizeHints; 220 class LoopVectorizationLegality; 221 class LoopVectorizationCostModel; 222 class LoopVectorizationRequirements; 223 224 // A traits type that is intended to be used in graph algorithms. The graph it 225 // models starts at the loop header, and traverses the BasicBlocks that are in 226 // the loop body, but not the loop header. Since the loop header is skipped, 227 // the back edges are excluded. 228 struct LoopBodyTraits { 229 using NodeRef = std::pair<const Loop *, BasicBlock *>; 230 231 // This wraps a const Loop * into the iterator, so we know which edges to 232 // filter out. 233 class WrappedSuccIterator 234 : public iterator_adaptor_base< 235 WrappedSuccIterator, succ_iterator, 236 typename std::iterator_traits<succ_iterator>::iterator_category, 237 NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> { 238 using BaseT = iterator_adaptor_base< 239 WrappedSuccIterator, succ_iterator, 240 typename std::iterator_traits<succ_iterator>::iterator_category, 241 NodeRef, std::ptrdiff_t, NodeRef *, NodeRef>; 242 243 const Loop *L; 244 245 public: 246 WrappedSuccIterator(succ_iterator Begin, const Loop *L) 247 : BaseT(Begin), L(L) {} 248 249 NodeRef operator*() const { return {L, *I}; } 250 }; 251 252 struct LoopBodyFilter { 253 bool operator()(NodeRef N) const { 254 const Loop *L = N.first; 255 return N.second != L->getHeader() && L->contains(N.second); 256 } 257 }; 258 259 using ChildIteratorType = 260 filter_iterator<WrappedSuccIterator, LoopBodyFilter>; 261 262 static NodeRef getEntryNode(const Loop &G) { return {&G, G.getHeader()}; } 263 264 static ChildIteratorType child_begin(NodeRef Node) { 265 return make_filter_range(make_range<WrappedSuccIterator>( 266 {succ_begin(Node.second), Node.first}, 267 {succ_end(Node.second), Node.first}), 268 LoopBodyFilter{}) 269 .begin(); 270 } 271 272 static ChildIteratorType child_end(NodeRef Node) { 273 return make_filter_range(make_range<WrappedSuccIterator>( 274 {succ_begin(Node.second), Node.first}, 275 {succ_end(Node.second), Node.first}), 276 LoopBodyFilter{}) 277 .end(); 278 } 279 }; 280 281 /// Returns true if the given loop body has a cycle, excluding the loop 282 /// itself. 283 static bool hasCyclesInLoopBody(const Loop &L) { 284 if (!L.empty()) 285 return true; 286 287 for (const auto SCC : 288 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 289 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 290 if (SCC.size() > 1) { 291 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 292 DEBUG(L.dump()); 293 return true; 294 } 295 } 296 return false; 297 } 298 299 /// \brief This modifies LoopAccessReport to initialize message with 300 /// loop-vectorizer-specific part. 301 class VectorizationReport : public LoopAccessReport { 302 public: 303 VectorizationReport(Instruction *I = nullptr) 304 : LoopAccessReport("loop not vectorized: ", I) {} 305 306 /// \brief This allows promotion of the loop-access analysis report into the 307 /// loop-vectorizer report. It modifies the message to add the 308 /// loop-vectorizer-specific part of the message. 309 explicit VectorizationReport(const LoopAccessReport &R) 310 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 311 R.getInstr()) {} 312 }; 313 314 /// A helper function for converting Scalar types to vector types. 315 /// If the incoming type is void, we return void. If the VF is 1, we return 316 /// the scalar type. 317 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 318 if (Scalar->isVoidTy() || VF == 1) 319 return Scalar; 320 return VectorType::get(Scalar, VF); 321 } 322 323 /// A helper function that returns GEP instruction and knows to skip a 324 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 325 /// pointee types of the 'bitcast' have the same size. 326 /// For example: 327 /// bitcast double** %var to i64* - can be skipped 328 /// bitcast double** %var to i8* - can not 329 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 330 331 if (isa<GetElementPtrInst>(Ptr)) 332 return cast<GetElementPtrInst>(Ptr); 333 334 if (isa<BitCastInst>(Ptr) && 335 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 336 Type *BitcastTy = Ptr->getType(); 337 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 338 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 339 return nullptr; 340 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 341 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 342 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 343 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 344 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 345 } 346 return nullptr; 347 } 348 349 /// InnerLoopVectorizer vectorizes loops which contain only one basic 350 /// block to a specified vectorization factor (VF). 351 /// This class performs the widening of scalars into vectors, or multiple 352 /// scalars. This class also implements the following features: 353 /// * It inserts an epilogue loop for handling loops that don't have iteration 354 /// counts that are known to be a multiple of the vectorization factor. 355 /// * It handles the code generation for reduction variables. 356 /// * Scalarization (implementation using scalars) of un-vectorizable 357 /// instructions. 358 /// InnerLoopVectorizer does not perform any vectorization-legality 359 /// checks, and relies on the caller to check for the different legality 360 /// aspects. The InnerLoopVectorizer relies on the 361 /// LoopVectorizationLegality class to provide information about the induction 362 /// and reduction variables that were found to a given vectorization factor. 363 class InnerLoopVectorizer { 364 public: 365 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 366 LoopInfo *LI, DominatorTree *DT, 367 const TargetLibraryInfo *TLI, 368 const TargetTransformInfo *TTI, AssumptionCache *AC, 369 unsigned VecWidth, unsigned UnrollFactor) 370 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 371 AC(AC), VF(VecWidth), UF(UnrollFactor), 372 Builder(PSE.getSE()->getContext()), Induction(nullptr), 373 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 374 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 375 376 // Perform the actual loop widening (vectorization). 377 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 378 // can be validly truncated to. The cost model has assumed this truncation 379 // will happen when vectorizing. VecValuesToIgnore contains scalar values 380 // that the cost model has chosen to ignore because they will not be 381 // vectorized. 382 void vectorize(LoopVectorizationLegality *L, 383 const MapVector<Instruction *, uint64_t> &MinimumBitWidths, 384 SmallPtrSetImpl<const Value *> &VecValuesToIgnore) { 385 MinBWs = &MinimumBitWidths; 386 ValuesNotWidened = &VecValuesToIgnore; 387 Legal = L; 388 // Create a new empty loop. Unlink the old loop and connect the new one. 389 createEmptyLoop(); 390 // Widen each instruction in the old loop to a new one in the new loop. 391 // Use the Legality module to find the induction and reduction variables. 392 vectorizeLoop(); 393 } 394 395 // Return true if any runtime check is added. 396 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 397 398 virtual ~InnerLoopVectorizer() {} 399 400 protected: 401 /// A small list of PHINodes. 402 typedef SmallVector<PHINode *, 4> PhiVector; 403 /// When we unroll loops we have multiple vector values for each scalar. 404 /// This data structure holds the unrolled and vectorized values that 405 /// originated from one scalar instruction. 406 typedef SmallVector<Value *, 2> VectorParts; 407 408 // When we if-convert we need to create edge masks. We have to cache values 409 // so that we don't end up with exponential recursion/IR. 410 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 411 EdgeMaskCache; 412 413 /// Create an empty loop, based on the loop ranges of the old loop. 414 void createEmptyLoop(); 415 416 /// Set up the values of the IVs correctly when exiting the vector loop. 417 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 418 Value *CountRoundDown, Value *EndValue, 419 BasicBlock *MiddleBlock); 420 421 /// Create a new induction variable inside L. 422 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 423 Value *Step, Instruction *DL); 424 /// Copy and widen the instructions from the old loop. 425 virtual void vectorizeLoop(); 426 427 /// Fix a first-order recurrence. This is the second phase of vectorizing 428 /// this phi node. 429 void fixFirstOrderRecurrence(PHINode *Phi); 430 431 /// \brief The Loop exit block may have single value PHI nodes where the 432 /// incoming value is 'Undef'. While vectorizing we only handled real values 433 /// that were defined inside the loop. Here we fix the 'undef case'. 434 /// See PR14725. 435 void fixLCSSAPHIs(); 436 437 /// Shrinks vector element sizes based on information in "MinBWs". 438 void truncateToMinimalBitwidths(); 439 440 /// A helper function that computes the predicate of the block BB, assuming 441 /// that the header block of the loop is set to True. It returns the *entry* 442 /// mask for the block BB. 443 VectorParts createBlockInMask(BasicBlock *BB); 444 /// A helper function that computes the predicate of the edge between SRC 445 /// and DST. 446 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 447 448 /// A helper function to vectorize a single BB within the innermost loop. 449 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 450 451 /// Vectorize a single PHINode in a block. This method handles the induction 452 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 453 /// arbitrary length vectors. 454 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 455 unsigned VF, PhiVector *PV); 456 457 /// Insert the new loop to the loop hierarchy and pass manager 458 /// and update the analysis passes. 459 void updateAnalysis(); 460 461 /// This instruction is un-vectorizable. Implement it as a sequence 462 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 463 /// scalarized instruction behind an if block predicated on the control 464 /// dependence of the instruction. 465 virtual void scalarizeInstruction(Instruction *Instr, 466 bool IfPredicateStore = false); 467 468 /// Vectorize Load and Store instructions, 469 virtual void vectorizeMemoryInstruction(Instruction *Instr); 470 471 /// Create a broadcast instruction. This method generates a broadcast 472 /// instruction (shuffle) for loop invariant values and for the induction 473 /// value. If this is the induction variable then we extend it to N, N+1, ... 474 /// this is needed because each iteration in the loop corresponds to a SIMD 475 /// element. 476 virtual Value *getBroadcastInstrs(Value *V); 477 478 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 479 /// to each vector element of Val. The sequence starts at StartIndex. 480 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 481 482 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 483 /// variable on which to base the steps, \p Step is the size of the step, and 484 /// \p EntryVal is the value from the original loop that maps to the steps. 485 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 486 /// can be a truncate instruction). 487 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 488 489 /// Create a vector induction phi node based on an existing scalar one. This 490 /// currently only works for integer induction variables with a constant 491 /// step. If \p TruncType is non-null, instead of widening the original IV, 492 /// we widen a version of the IV truncated to \p TruncType. 493 void createVectorIntInductionPHI(const InductionDescriptor &II, 494 VectorParts &Entry, IntegerType *TruncType); 495 496 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 497 /// induction variable will first be truncated to the corresponding type. The 498 /// widened values are placed in \p Entry. 499 void widenIntInduction(PHINode *IV, VectorParts &Entry, 500 TruncInst *Trunc = nullptr); 501 502 /// When we go over instructions in the basic block we rely on previous 503 /// values within the current basic block or on loop invariant values. 504 /// When we widen (vectorize) values we place them in the map. If the values 505 /// are not within the map, they have to be loop invariant, so we simply 506 /// broadcast them into a vector. 507 VectorParts &getVectorValue(Value *V); 508 509 /// Try to vectorize the interleaved access group that \p Instr belongs to. 510 void vectorizeInterleaveGroup(Instruction *Instr); 511 512 /// Generate a shuffle sequence that will reverse the vector Vec. 513 virtual Value *reverseVector(Value *Vec); 514 515 /// Returns (and creates if needed) the original loop trip count. 516 Value *getOrCreateTripCount(Loop *NewLoop); 517 518 /// Returns (and creates if needed) the trip count of the widened loop. 519 Value *getOrCreateVectorTripCount(Loop *NewLoop); 520 521 /// Emit a bypass check to see if the trip count would overflow, or we 522 /// wouldn't have enough iterations to execute one vector loop. 523 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 524 /// Emit a bypass check to see if the vector trip count is nonzero. 525 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 526 /// Emit a bypass check to see if all of the SCEV assumptions we've 527 /// had to make are correct. 528 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 529 /// Emit bypass checks to check any memory assumptions we may have made. 530 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 531 532 /// Add additional metadata to \p To that was not present on \p Orig. 533 /// 534 /// Currently this is used to add the noalias annotations based on the 535 /// inserted memchecks. Use this for instructions that are *cloned* into the 536 /// vector loop. 537 void addNewMetadata(Instruction *To, const Instruction *Orig); 538 539 /// Add metadata from one instruction to another. 540 /// 541 /// This includes both the original MDs from \p From and additional ones (\see 542 /// addNewMetadata). Use this for *newly created* instructions in the vector 543 /// loop. 544 void addMetadata(Instruction *To, Instruction *From); 545 546 /// \brief Similar to the previous function but it adds the metadata to a 547 /// vector of instructions. 548 void addMetadata(ArrayRef<Value *> To, Instruction *From); 549 550 /// This is a helper class that holds the vectorizer state. It maps scalar 551 /// instructions to vector instructions. When the code is 'unrolled' then 552 /// then a single scalar value is mapped to multiple vector parts. The parts 553 /// are stored in the VectorPart type. 554 struct ValueMap { 555 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 556 /// are mapped. 557 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 558 559 /// \return True if 'Key' is saved in the Value Map. 560 bool has(Value *Key) const { return MapStorage.count(Key); } 561 562 /// Initializes a new entry in the map. Sets all of the vector parts to the 563 /// save value in 'Val'. 564 /// \return A reference to a vector with splat values. 565 VectorParts &splat(Value *Key, Value *Val) { 566 VectorParts &Entry = MapStorage[Key]; 567 Entry.assign(UF, Val); 568 return Entry; 569 } 570 571 ///\return A reference to the value that is stored at 'Key'. 572 VectorParts &get(Value *Key) { 573 VectorParts &Entry = MapStorage[Key]; 574 if (Entry.empty()) 575 Entry.resize(UF); 576 assert(Entry.size() == UF); 577 return Entry; 578 } 579 580 private: 581 /// The unroll factor. Each entry in the map stores this number of vector 582 /// elements. 583 unsigned UF; 584 585 /// Map storage. We use std::map and not DenseMap because insertions to a 586 /// dense map invalidates its iterators. 587 std::map<Value *, VectorParts> MapStorage; 588 }; 589 590 /// The original loop. 591 Loop *OrigLoop; 592 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 593 /// dynamic knowledge to simplify SCEV expressions and converts them to a 594 /// more usable form. 595 PredicatedScalarEvolution &PSE; 596 /// Loop Info. 597 LoopInfo *LI; 598 /// Dominator Tree. 599 DominatorTree *DT; 600 /// Alias Analysis. 601 AliasAnalysis *AA; 602 /// Target Library Info. 603 const TargetLibraryInfo *TLI; 604 /// Target Transform Info. 605 const TargetTransformInfo *TTI; 606 /// Assumption Cache. 607 AssumptionCache *AC; 608 609 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 610 /// used. 611 /// 612 /// This is currently only used to add no-alias metadata based on the 613 /// memchecks. The actually versioning is performed manually. 614 std::unique_ptr<LoopVersioning> LVer; 615 616 /// The vectorization SIMD factor to use. Each vector will have this many 617 /// vector elements. 618 unsigned VF; 619 620 protected: 621 /// The vectorization unroll factor to use. Each scalar is vectorized to this 622 /// many different vector instructions. 623 unsigned UF; 624 625 /// The builder that we use 626 IRBuilder<> Builder; 627 628 // --- Vectorization state --- 629 630 /// The vector-loop preheader. 631 BasicBlock *LoopVectorPreHeader; 632 /// The scalar-loop preheader. 633 BasicBlock *LoopScalarPreHeader; 634 /// Middle Block between the vector and the scalar. 635 BasicBlock *LoopMiddleBlock; 636 /// The ExitBlock of the scalar loop. 637 BasicBlock *LoopExitBlock; 638 /// The vector loop body. 639 BasicBlock *LoopVectorBody; 640 /// The scalar loop body. 641 BasicBlock *LoopScalarBody; 642 /// A list of all bypass blocks. The first block is the entry of the loop. 643 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 644 645 /// The new Induction variable which was added to the new block. 646 PHINode *Induction; 647 /// The induction variable of the old basic block. 648 PHINode *OldInduction; 649 /// Maps scalars to widened vectors. 650 ValueMap WidenMap; 651 652 /// A map of induction variables from the original loop to their 653 /// corresponding VF * UF scalarized values in the vectorized loop. The 654 /// purpose of ScalarIVMap is similar to that of WidenMap. Whereas WidenMap 655 /// maps original loop values to their vector versions in the new loop, 656 /// ScalarIVMap maps induction variables from the original loop that are not 657 /// vectorized to their scalar equivalents in the vector loop. Maintaining a 658 /// separate map for scalarized induction variables allows us to avoid 659 /// unnecessary scalar-to-vector-to-scalar conversions. 660 DenseMap<Value *, SmallVector<Value *, 8>> ScalarIVMap; 661 662 /// Store instructions that should be predicated, as a pair 663 /// <StoreInst, Predicate> 664 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 665 EdgeMaskCache MaskCache; 666 /// Trip count of the original loop. 667 Value *TripCount; 668 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 669 Value *VectorTripCount; 670 671 /// Map of scalar integer values to the smallest bitwidth they can be legally 672 /// represented as. The vector equivalents of these values should be truncated 673 /// to this type. 674 const MapVector<Instruction *, uint64_t> *MinBWs; 675 676 /// A set of values that should not be widened. This is taken from 677 /// VecValuesToIgnore in the cost model. 678 SmallPtrSetImpl<const Value *> *ValuesNotWidened; 679 680 LoopVectorizationLegality *Legal; 681 682 // Record whether runtime checks are added. 683 bool AddedSafetyChecks; 684 }; 685 686 class InnerLoopUnroller : public InnerLoopVectorizer { 687 public: 688 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 689 LoopInfo *LI, DominatorTree *DT, 690 const TargetLibraryInfo *TLI, 691 const TargetTransformInfo *TTI, AssumptionCache *AC, 692 unsigned UnrollFactor) 693 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 694 UnrollFactor) {} 695 696 private: 697 void scalarizeInstruction(Instruction *Instr, 698 bool IfPredicateStore = false) override; 699 void vectorizeMemoryInstruction(Instruction *Instr) override; 700 Value *getBroadcastInstrs(Value *V) override; 701 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 702 Value *reverseVector(Value *Vec) override; 703 }; 704 705 /// \brief Look for a meaningful debug location on the instruction or it's 706 /// operands. 707 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 708 if (!I) 709 return I; 710 711 DebugLoc Empty; 712 if (I->getDebugLoc() != Empty) 713 return I; 714 715 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 716 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 717 if (OpInst->getDebugLoc() != Empty) 718 return OpInst; 719 } 720 721 return I; 722 } 723 724 /// \brief Set the debug location in the builder using the debug location in the 725 /// instruction. 726 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 727 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 728 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 729 else 730 B.SetCurrentDebugLocation(DebugLoc()); 731 } 732 733 #ifndef NDEBUG 734 /// \return string containing a file name and a line # for the given loop. 735 static std::string getDebugLocString(const Loop *L) { 736 std::string Result; 737 if (L) { 738 raw_string_ostream OS(Result); 739 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 740 LoopDbgLoc.print(OS); 741 else 742 // Just print the module name. 743 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 744 OS.flush(); 745 } 746 return Result; 747 } 748 #endif 749 750 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 751 const Instruction *Orig) { 752 // If the loop was versioned with memchecks, add the corresponding no-alias 753 // metadata. 754 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 755 LVer->annotateInstWithNoAlias(To, Orig); 756 } 757 758 void InnerLoopVectorizer::addMetadata(Instruction *To, 759 Instruction *From) { 760 propagateMetadata(To, From); 761 addNewMetadata(To, From); 762 } 763 764 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 765 Instruction *From) { 766 for (Value *V : To) { 767 if (Instruction *I = dyn_cast<Instruction>(V)) 768 addMetadata(I, From); 769 } 770 } 771 772 /// \brief The group of interleaved loads/stores sharing the same stride and 773 /// close to each other. 774 /// 775 /// Each member in this group has an index starting from 0, and the largest 776 /// index should be less than interleaved factor, which is equal to the absolute 777 /// value of the access's stride. 778 /// 779 /// E.g. An interleaved load group of factor 4: 780 /// for (unsigned i = 0; i < 1024; i+=4) { 781 /// a = A[i]; // Member of index 0 782 /// b = A[i+1]; // Member of index 1 783 /// d = A[i+3]; // Member of index 3 784 /// ... 785 /// } 786 /// 787 /// An interleaved store group of factor 4: 788 /// for (unsigned i = 0; i < 1024; i+=4) { 789 /// ... 790 /// A[i] = a; // Member of index 0 791 /// A[i+1] = b; // Member of index 1 792 /// A[i+2] = c; // Member of index 2 793 /// A[i+3] = d; // Member of index 3 794 /// } 795 /// 796 /// Note: the interleaved load group could have gaps (missing members), but 797 /// the interleaved store group doesn't allow gaps. 798 class InterleaveGroup { 799 public: 800 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 801 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 802 assert(Align && "The alignment should be non-zero"); 803 804 Factor = std::abs(Stride); 805 assert(Factor > 1 && "Invalid interleave factor"); 806 807 Reverse = Stride < 0; 808 Members[0] = Instr; 809 } 810 811 bool isReverse() const { return Reverse; } 812 unsigned getFactor() const { return Factor; } 813 unsigned getAlignment() const { return Align; } 814 unsigned getNumMembers() const { return Members.size(); } 815 816 /// \brief Try to insert a new member \p Instr with index \p Index and 817 /// alignment \p NewAlign. The index is related to the leader and it could be 818 /// negative if it is the new leader. 819 /// 820 /// \returns false if the instruction doesn't belong to the group. 821 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 822 assert(NewAlign && "The new member's alignment should be non-zero"); 823 824 int Key = Index + SmallestKey; 825 826 // Skip if there is already a member with the same index. 827 if (Members.count(Key)) 828 return false; 829 830 if (Key > LargestKey) { 831 // The largest index is always less than the interleave factor. 832 if (Index >= static_cast<int>(Factor)) 833 return false; 834 835 LargestKey = Key; 836 } else if (Key < SmallestKey) { 837 // The largest index is always less than the interleave factor. 838 if (LargestKey - Key >= static_cast<int>(Factor)) 839 return false; 840 841 SmallestKey = Key; 842 } 843 844 // It's always safe to select the minimum alignment. 845 Align = std::min(Align, NewAlign); 846 Members[Key] = Instr; 847 return true; 848 } 849 850 /// \brief Get the member with the given index \p Index 851 /// 852 /// \returns nullptr if contains no such member. 853 Instruction *getMember(unsigned Index) const { 854 int Key = SmallestKey + Index; 855 if (!Members.count(Key)) 856 return nullptr; 857 858 return Members.find(Key)->second; 859 } 860 861 /// \brief Get the index for the given member. Unlike the key in the member 862 /// map, the index starts from 0. 863 unsigned getIndex(Instruction *Instr) const { 864 for (auto I : Members) 865 if (I.second == Instr) 866 return I.first - SmallestKey; 867 868 llvm_unreachable("InterleaveGroup contains no such member"); 869 } 870 871 Instruction *getInsertPos() const { return InsertPos; } 872 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 873 874 private: 875 unsigned Factor; // Interleave Factor. 876 bool Reverse; 877 unsigned Align; 878 DenseMap<int, Instruction *> Members; 879 int SmallestKey; 880 int LargestKey; 881 882 // To avoid breaking dependences, vectorized instructions of an interleave 883 // group should be inserted at either the first load or the last store in 884 // program order. 885 // 886 // E.g. %even = load i32 // Insert Position 887 // %add = add i32 %even // Use of %even 888 // %odd = load i32 889 // 890 // store i32 %even 891 // %odd = add i32 // Def of %odd 892 // store i32 %odd // Insert Position 893 Instruction *InsertPos; 894 }; 895 896 /// \brief Drive the analysis of interleaved memory accesses in the loop. 897 /// 898 /// Use this class to analyze interleaved accesses only when we can vectorize 899 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 900 /// on interleaved accesses is unsafe. 901 /// 902 /// The analysis collects interleave groups and records the relationships 903 /// between the member and the group in a map. 904 class InterleavedAccessInfo { 905 public: 906 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 907 DominatorTree *DT, LoopInfo *LI) 908 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 909 RequiresScalarEpilogue(false) {} 910 911 ~InterleavedAccessInfo() { 912 SmallSet<InterleaveGroup *, 4> DelSet; 913 // Avoid releasing a pointer twice. 914 for (auto &I : InterleaveGroupMap) 915 DelSet.insert(I.second); 916 for (auto *Ptr : DelSet) 917 delete Ptr; 918 } 919 920 /// \brief Analyze the interleaved accesses and collect them in interleave 921 /// groups. Substitute symbolic strides using \p Strides. 922 void analyzeInterleaving(const ValueToValueMap &Strides); 923 924 /// \brief Check if \p Instr belongs to any interleave group. 925 bool isInterleaved(Instruction *Instr) const { 926 return InterleaveGroupMap.count(Instr); 927 } 928 929 /// \brief Return the maximum interleave factor of all interleaved groups. 930 unsigned getMaxInterleaveFactor() const { 931 unsigned MaxFactor = 1; 932 for (auto &Entry : InterleaveGroupMap) 933 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 934 return MaxFactor; 935 } 936 937 /// \brief Get the interleave group that \p Instr belongs to. 938 /// 939 /// \returns nullptr if doesn't have such group. 940 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 941 if (InterleaveGroupMap.count(Instr)) 942 return InterleaveGroupMap.find(Instr)->second; 943 return nullptr; 944 } 945 946 /// \brief Returns true if an interleaved group that may access memory 947 /// out-of-bounds requires a scalar epilogue iteration for correctness. 948 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 949 950 /// \brief Initialize the LoopAccessInfo used for dependence checking. 951 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 952 953 private: 954 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 955 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 956 /// The interleaved access analysis can also add new predicates (for example 957 /// by versioning strides of pointers). 958 PredicatedScalarEvolution &PSE; 959 Loop *TheLoop; 960 DominatorTree *DT; 961 LoopInfo *LI; 962 const LoopAccessInfo *LAI; 963 964 /// True if the loop may contain non-reversed interleaved groups with 965 /// out-of-bounds accesses. We ensure we don't speculatively access memory 966 /// out-of-bounds by executing at least one scalar epilogue iteration. 967 bool RequiresScalarEpilogue; 968 969 /// Holds the relationships between the members and the interleave group. 970 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 971 972 /// Holds dependences among the memory accesses in the loop. It maps a source 973 /// access to a set of dependent sink accesses. 974 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 975 976 /// \brief The descriptor for a strided memory access. 977 struct StrideDescriptor { 978 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 979 unsigned Align) 980 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 981 982 StrideDescriptor() = default; 983 984 // The access's stride. It is negative for a reverse access. 985 int64_t Stride = 0; 986 const SCEV *Scev = nullptr; // The scalar expression of this access 987 uint64_t Size = 0; // The size of the memory object. 988 unsigned Align = 0; // The alignment of this access. 989 }; 990 991 /// \brief A type for holding instructions and their stride descriptors. 992 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 993 994 /// \brief Create a new interleave group with the given instruction \p Instr, 995 /// stride \p Stride and alignment \p Align. 996 /// 997 /// \returns the newly created interleave group. 998 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 999 unsigned Align) { 1000 assert(!InterleaveGroupMap.count(Instr) && 1001 "Already in an interleaved access group"); 1002 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1003 return InterleaveGroupMap[Instr]; 1004 } 1005 1006 /// \brief Release the group and remove all the relationships. 1007 void releaseGroup(InterleaveGroup *Group) { 1008 for (unsigned i = 0; i < Group->getFactor(); i++) 1009 if (Instruction *Member = Group->getMember(i)) 1010 InterleaveGroupMap.erase(Member); 1011 1012 delete Group; 1013 } 1014 1015 /// \brief Collect all the accesses with a constant stride in program order. 1016 void collectConstStrideAccesses( 1017 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1018 const ValueToValueMap &Strides); 1019 1020 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1021 static bool isStrided(int Stride) { 1022 unsigned Factor = std::abs(Stride); 1023 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1024 } 1025 1026 /// \brief Returns true if \p BB is a predicated block. 1027 bool isPredicated(BasicBlock *BB) const { 1028 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1029 } 1030 1031 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1032 bool areDependencesValid() const { 1033 return LAI && LAI->getDepChecker().getDependences(); 1034 } 1035 1036 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1037 /// necessary, when constructing interleaved groups. 1038 /// 1039 /// \p A must precede \p B in program order. We return false if reordering is 1040 /// not necessary or is prevented because \p A and \p B may be dependent. 1041 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1042 StrideEntry *B) const { 1043 1044 // Code motion for interleaved accesses can potentially hoist strided loads 1045 // and sink strided stores. The code below checks the legality of the 1046 // following two conditions: 1047 // 1048 // 1. Potentially moving a strided load (B) before any store (A) that 1049 // precedes B, or 1050 // 1051 // 2. Potentially moving a strided store (A) after any load or store (B) 1052 // that A precedes. 1053 // 1054 // It's legal to reorder A and B if we know there isn't a dependence from A 1055 // to B. Note that this determination is conservative since some 1056 // dependences could potentially be reordered safely. 1057 1058 // A is potentially the source of a dependence. 1059 auto *Src = A->first; 1060 auto SrcDes = A->second; 1061 1062 // B is potentially the sink of a dependence. 1063 auto *Sink = B->first; 1064 auto SinkDes = B->second; 1065 1066 // Code motion for interleaved accesses can't violate WAR dependences. 1067 // Thus, reordering is legal if the source isn't a write. 1068 if (!Src->mayWriteToMemory()) 1069 return true; 1070 1071 // At least one of the accesses must be strided. 1072 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1073 return true; 1074 1075 // If dependence information is not available from LoopAccessInfo, 1076 // conservatively assume the instructions can't be reordered. 1077 if (!areDependencesValid()) 1078 return false; 1079 1080 // If we know there is a dependence from source to sink, assume the 1081 // instructions can't be reordered. Otherwise, reordering is legal. 1082 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1083 } 1084 1085 /// \brief Collect the dependences from LoopAccessInfo. 1086 /// 1087 /// We process the dependences once during the interleaved access analysis to 1088 /// enable constant-time dependence queries. 1089 void collectDependences() { 1090 if (!areDependencesValid()) 1091 return; 1092 auto *Deps = LAI->getDepChecker().getDependences(); 1093 for (auto Dep : *Deps) 1094 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1095 } 1096 }; 1097 1098 /// Utility class for getting and setting loop vectorizer hints in the form 1099 /// of loop metadata. 1100 /// This class keeps a number of loop annotations locally (as member variables) 1101 /// and can, upon request, write them back as metadata on the loop. It will 1102 /// initially scan the loop for existing metadata, and will update the local 1103 /// values based on information in the loop. 1104 /// We cannot write all values to metadata, as the mere presence of some info, 1105 /// for example 'force', means a decision has been made. So, we need to be 1106 /// careful NOT to add them if the user hasn't specifically asked so. 1107 class LoopVectorizeHints { 1108 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1109 1110 /// Hint - associates name and validation with the hint value. 1111 struct Hint { 1112 const char *Name; 1113 unsigned Value; // This may have to change for non-numeric values. 1114 HintKind Kind; 1115 1116 Hint(const char *Name, unsigned Value, HintKind Kind) 1117 : Name(Name), Value(Value), Kind(Kind) {} 1118 1119 bool validate(unsigned Val) { 1120 switch (Kind) { 1121 case HK_WIDTH: 1122 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1123 case HK_UNROLL: 1124 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1125 case HK_FORCE: 1126 return (Val <= 1); 1127 } 1128 return false; 1129 } 1130 }; 1131 1132 /// Vectorization width. 1133 Hint Width; 1134 /// Vectorization interleave factor. 1135 Hint Interleave; 1136 /// Vectorization forced 1137 Hint Force; 1138 1139 /// Return the loop metadata prefix. 1140 static StringRef Prefix() { return "llvm.loop."; } 1141 1142 /// True if there is any unsafe math in the loop. 1143 bool PotentiallyUnsafe; 1144 1145 public: 1146 enum ForceKind { 1147 FK_Undefined = -1, ///< Not selected. 1148 FK_Disabled = 0, ///< Forcing disabled. 1149 FK_Enabled = 1, ///< Forcing enabled. 1150 }; 1151 1152 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1153 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1154 HK_WIDTH), 1155 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1156 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1157 PotentiallyUnsafe(false), TheLoop(L) { 1158 // Populate values with existing loop metadata. 1159 getHintsFromMetadata(); 1160 1161 // force-vector-interleave overrides DisableInterleaving. 1162 if (VectorizerParams::isInterleaveForced()) 1163 Interleave.Value = VectorizerParams::VectorizationInterleave; 1164 1165 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1166 << "LV: Interleaving disabled by the pass manager\n"); 1167 } 1168 1169 /// Mark the loop L as already vectorized by setting the width to 1. 1170 void setAlreadyVectorized() { 1171 Width.Value = Interleave.Value = 1; 1172 Hint Hints[] = {Width, Interleave}; 1173 writeHintsToMetadata(Hints); 1174 } 1175 1176 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1177 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1178 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1179 emitOptimizationRemarkAnalysis(F->getContext(), 1180 vectorizeAnalysisPassName(), *F, 1181 L->getStartLoc(), emitRemark()); 1182 return false; 1183 } 1184 1185 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1186 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1187 emitOptimizationRemarkAnalysis(F->getContext(), 1188 vectorizeAnalysisPassName(), *F, 1189 L->getStartLoc(), emitRemark()); 1190 return false; 1191 } 1192 1193 if (getWidth() == 1 && getInterleave() == 1) { 1194 // FIXME: Add a separate metadata to indicate when the loop has already 1195 // been vectorized instead of setting width and count to 1. 1196 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1197 // FIXME: Add interleave.disable metadata. This will allow 1198 // vectorize.disable to be used without disabling the pass and errors 1199 // to differentiate between disabled vectorization and a width of 1. 1200 emitOptimizationRemarkAnalysis( 1201 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1202 "loop not vectorized: vectorization and interleaving are explicitly " 1203 "disabled, or vectorize width and interleave count are both set to " 1204 "1"); 1205 return false; 1206 } 1207 1208 return true; 1209 } 1210 1211 /// Dumps all the hint information. 1212 std::string emitRemark() const { 1213 VectorizationReport R; 1214 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1215 R << "vectorization is explicitly disabled"; 1216 else { 1217 R << "use -Rpass-analysis=loop-vectorize for more info"; 1218 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1219 R << " (Force=true"; 1220 if (Width.Value != 0) 1221 R << ", Vector Width=" << Width.Value; 1222 if (Interleave.Value != 0) 1223 R << ", Interleave Count=" << Interleave.Value; 1224 R << ")"; 1225 } 1226 } 1227 1228 return R.str(); 1229 } 1230 1231 unsigned getWidth() const { return Width.Value; } 1232 unsigned getInterleave() const { return Interleave.Value; } 1233 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1234 1235 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1236 /// pass name to force the frontend to print the diagnostic. 1237 const char *vectorizeAnalysisPassName() const { 1238 if (getWidth() == 1) 1239 return LV_NAME; 1240 if (getForce() == LoopVectorizeHints::FK_Disabled) 1241 return LV_NAME; 1242 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1243 return LV_NAME; 1244 return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint; 1245 } 1246 1247 bool allowReordering() const { 1248 // When enabling loop hints are provided we allow the vectorizer to change 1249 // the order of operations that is given by the scalar loop. This is not 1250 // enabled by default because can be unsafe or inefficient. For example, 1251 // reordering floating-point operations will change the way round-off 1252 // error accumulates in the loop. 1253 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1254 } 1255 1256 bool isPotentiallyUnsafe() const { 1257 // Avoid FP vectorization if the target is unsure about proper support. 1258 // This may be related to the SIMD unit in the target not handling 1259 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1260 // Otherwise, a sequence of vectorized loops, even without reduction, 1261 // could lead to different end results on the destination vectors. 1262 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1263 } 1264 1265 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1266 1267 private: 1268 /// Find hints specified in the loop metadata and update local values. 1269 void getHintsFromMetadata() { 1270 MDNode *LoopID = TheLoop->getLoopID(); 1271 if (!LoopID) 1272 return; 1273 1274 // First operand should refer to the loop id itself. 1275 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1276 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1277 1278 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1279 const MDString *S = nullptr; 1280 SmallVector<Metadata *, 4> Args; 1281 1282 // The expected hint is either a MDString or a MDNode with the first 1283 // operand a MDString. 1284 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1285 if (!MD || MD->getNumOperands() == 0) 1286 continue; 1287 S = dyn_cast<MDString>(MD->getOperand(0)); 1288 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1289 Args.push_back(MD->getOperand(i)); 1290 } else { 1291 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1292 assert(Args.size() == 0 && "too many arguments for MDString"); 1293 } 1294 1295 if (!S) 1296 continue; 1297 1298 // Check if the hint starts with the loop metadata prefix. 1299 StringRef Name = S->getString(); 1300 if (Args.size() == 1) 1301 setHint(Name, Args[0]); 1302 } 1303 } 1304 1305 /// Checks string hint with one operand and set value if valid. 1306 void setHint(StringRef Name, Metadata *Arg) { 1307 if (!Name.startswith(Prefix())) 1308 return; 1309 Name = Name.substr(Prefix().size(), StringRef::npos); 1310 1311 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1312 if (!C) 1313 return; 1314 unsigned Val = C->getZExtValue(); 1315 1316 Hint *Hints[] = {&Width, &Interleave, &Force}; 1317 for (auto H : Hints) { 1318 if (Name == H->Name) { 1319 if (H->validate(Val)) 1320 H->Value = Val; 1321 else 1322 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1323 break; 1324 } 1325 } 1326 } 1327 1328 /// Create a new hint from name / value pair. 1329 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1330 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1331 Metadata *MDs[] = {MDString::get(Context, Name), 1332 ConstantAsMetadata::get( 1333 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1334 return MDNode::get(Context, MDs); 1335 } 1336 1337 /// Matches metadata with hint name. 1338 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1339 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1340 if (!Name) 1341 return false; 1342 1343 for (auto H : HintTypes) 1344 if (Name->getString().endswith(H.Name)) 1345 return true; 1346 return false; 1347 } 1348 1349 /// Sets current hints into loop metadata, keeping other values intact. 1350 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1351 if (HintTypes.size() == 0) 1352 return; 1353 1354 // Reserve the first element to LoopID (see below). 1355 SmallVector<Metadata *, 4> MDs(1); 1356 // If the loop already has metadata, then ignore the existing operands. 1357 MDNode *LoopID = TheLoop->getLoopID(); 1358 if (LoopID) { 1359 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1360 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1361 // If node in update list, ignore old value. 1362 if (!matchesHintMetadataName(Node, HintTypes)) 1363 MDs.push_back(Node); 1364 } 1365 } 1366 1367 // Now, add the missing hints. 1368 for (auto H : HintTypes) 1369 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1370 1371 // Replace current metadata node with new one. 1372 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1373 MDNode *NewLoopID = MDNode::get(Context, MDs); 1374 // Set operand 0 to refer to the loop id itself. 1375 NewLoopID->replaceOperandWith(0, NewLoopID); 1376 1377 TheLoop->setLoopID(NewLoopID); 1378 } 1379 1380 /// The loop these hints belong to. 1381 const Loop *TheLoop; 1382 }; 1383 1384 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1385 const LoopVectorizeHints &Hints, 1386 const LoopAccessReport &Message) { 1387 const char *Name = Hints.vectorizeAnalysisPassName(); 1388 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1389 } 1390 1391 static void emitMissedWarning(Function *F, Loop *L, 1392 const LoopVectorizeHints &LH) { 1393 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1394 LH.emitRemark()); 1395 1396 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1397 if (LH.getWidth() != 1) 1398 emitLoopVectorizeWarning( 1399 F->getContext(), *F, L->getStartLoc(), 1400 "failed explicitly specified loop vectorization"); 1401 else if (LH.getInterleave() != 1) 1402 emitLoopInterleaveWarning( 1403 F->getContext(), *F, L->getStartLoc(), 1404 "failed explicitly specified loop interleaving"); 1405 } 1406 } 1407 1408 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1409 /// to what vectorization factor. 1410 /// This class does not look at the profitability of vectorization, only the 1411 /// legality. This class has two main kinds of checks: 1412 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1413 /// will change the order of memory accesses in a way that will change the 1414 /// correctness of the program. 1415 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1416 /// checks for a number of different conditions, such as the availability of a 1417 /// single induction variable, that all types are supported and vectorize-able, 1418 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1419 /// This class is also used by InnerLoopVectorizer for identifying 1420 /// induction variable and the different reduction variables. 1421 class LoopVectorizationLegality { 1422 public: 1423 LoopVectorizationLegality( 1424 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1425 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1426 const TargetTransformInfo *TTI, 1427 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1428 LoopVectorizationRequirements *R, LoopVectorizeHints *H) 1429 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1430 TTI(TTI), DT(DT), GetLAA(GetLAA), LAI(nullptr), 1431 InterleaveInfo(PSE, L, DT, LI), Induction(nullptr), 1432 WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R), 1433 Hints(H) {} 1434 1435 /// ReductionList contains the reduction descriptors for all 1436 /// of the reductions that were found in the loop. 1437 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1438 1439 /// InductionList saves induction variables and maps them to the 1440 /// induction descriptor. 1441 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1442 1443 /// RecurrenceSet contains the phi nodes that are recurrences other than 1444 /// inductions and reductions. 1445 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1446 1447 /// Returns true if it is legal to vectorize this loop. 1448 /// This does not mean that it is profitable to vectorize this 1449 /// loop, only that it is legal to do so. 1450 bool canVectorize(); 1451 1452 /// Returns the Induction variable. 1453 PHINode *getInduction() { return Induction; } 1454 1455 /// Returns the reduction variables found in the loop. 1456 ReductionList *getReductionVars() { return &Reductions; } 1457 1458 /// Returns the induction variables found in the loop. 1459 InductionList *getInductionVars() { return &Inductions; } 1460 1461 /// Return the first-order recurrences found in the loop. 1462 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1463 1464 /// Returns the widest induction type. 1465 Type *getWidestInductionType() { return WidestIndTy; } 1466 1467 /// Returns True if V is an induction variable in this loop. 1468 bool isInductionVariable(const Value *V); 1469 1470 /// Returns True if PN is a reduction variable in this loop. 1471 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1472 1473 /// Returns True if Phi is a first-order recurrence in this loop. 1474 bool isFirstOrderRecurrence(const PHINode *Phi); 1475 1476 /// Return true if the block BB needs to be predicated in order for the loop 1477 /// to be vectorized. 1478 bool blockNeedsPredication(BasicBlock *BB); 1479 1480 /// Check if this pointer is consecutive when vectorizing. This happens 1481 /// when the last index of the GEP is the induction variable, or that the 1482 /// pointer itself is an induction variable. 1483 /// This check allows us to vectorize A[idx] into a wide load/store. 1484 /// Returns: 1485 /// 0 - Stride is unknown or non-consecutive. 1486 /// 1 - Address is consecutive. 1487 /// -1 - Address is consecutive, and decreasing. 1488 int isConsecutivePtr(Value *Ptr); 1489 1490 /// Returns true if the value V is uniform within the loop. 1491 bool isUniform(Value *V); 1492 1493 /// Returns true if this instruction will remain scalar after vectorization. 1494 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1495 1496 /// Returns the information that we collected about runtime memory check. 1497 const RuntimePointerChecking *getRuntimePointerChecking() const { 1498 return LAI->getRuntimePointerChecking(); 1499 } 1500 1501 const LoopAccessInfo *getLAI() const { return LAI; } 1502 1503 /// \brief Check if \p Instr belongs to any interleaved access group. 1504 bool isAccessInterleaved(Instruction *Instr) { 1505 return InterleaveInfo.isInterleaved(Instr); 1506 } 1507 1508 /// \brief Return the maximum interleave factor of all interleaved groups. 1509 unsigned getMaxInterleaveFactor() const { 1510 return InterleaveInfo.getMaxInterleaveFactor(); 1511 } 1512 1513 /// \brief Get the interleaved access group that \p Instr belongs to. 1514 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1515 return InterleaveInfo.getInterleaveGroup(Instr); 1516 } 1517 1518 /// \brief Returns true if an interleaved group requires a scalar iteration 1519 /// to handle accesses with gaps. 1520 bool requiresScalarEpilogue() const { 1521 return InterleaveInfo.requiresScalarEpilogue(); 1522 } 1523 1524 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1525 1526 bool hasStride(Value *V) { return LAI->hasStride(V); } 1527 1528 /// Returns true if the target machine supports masked store operation 1529 /// for the given \p DataType and kind of access to \p Ptr. 1530 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1531 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1532 } 1533 /// Returns true if the target machine supports masked load operation 1534 /// for the given \p DataType and kind of access to \p Ptr. 1535 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1536 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1537 } 1538 /// Returns true if the target machine supports masked scatter operation 1539 /// for the given \p DataType. 1540 bool isLegalMaskedScatter(Type *DataType) { 1541 return TTI->isLegalMaskedScatter(DataType); 1542 } 1543 /// Returns true if the target machine supports masked gather operation 1544 /// for the given \p DataType. 1545 bool isLegalMaskedGather(Type *DataType) { 1546 return TTI->isLegalMaskedGather(DataType); 1547 } 1548 1549 /// Returns true if vector representation of the instruction \p I 1550 /// requires mask. 1551 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1552 unsigned getNumStores() const { return LAI->getNumStores(); } 1553 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1554 unsigned getNumPredStores() const { return NumPredStores; } 1555 1556 private: 1557 /// Check if a single basic block loop is vectorizable. 1558 /// At this point we know that this is a loop with a constant trip count 1559 /// and we only need to check individual instructions. 1560 bool canVectorizeInstrs(); 1561 1562 /// When we vectorize loops we may change the order in which 1563 /// we read and write from memory. This method checks if it is 1564 /// legal to vectorize the code, considering only memory constrains. 1565 /// Returns true if the loop is vectorizable 1566 bool canVectorizeMemory(); 1567 1568 /// Return true if we can vectorize this loop using the IF-conversion 1569 /// transformation. 1570 bool canVectorizeWithIfConvert(); 1571 1572 /// Collect the variables that need to stay uniform after vectorization. 1573 void collectLoopUniforms(); 1574 1575 /// Return true if all of the instructions in the block can be speculatively 1576 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1577 /// and we know that we can read from them without segfault. 1578 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1579 1580 /// Updates the vectorization state by adding \p Phi to the inductions list. 1581 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1582 /// better choice for the main induction than the existing one. 1583 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1584 SmallPtrSetImpl<Value *> &AllowedExit); 1585 1586 /// Report an analysis message to assist the user in diagnosing loops that are 1587 /// not vectorized. These are handled as LoopAccessReport rather than 1588 /// VectorizationReport because the << operator of VectorizationReport returns 1589 /// LoopAccessReport. 1590 void emitAnalysis(const LoopAccessReport &Message) const { 1591 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1592 } 1593 1594 /// \brief If an access has a symbolic strides, this maps the pointer value to 1595 /// the stride symbol. 1596 const ValueToValueMap *getSymbolicStrides() { 1597 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1598 // it's collected. This happens from canVectorizeWithIfConvert, when the 1599 // pointer is checked to reference consecutive elements suitable for a 1600 // masked access. 1601 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1602 } 1603 1604 unsigned NumPredStores; 1605 1606 /// The loop that we evaluate. 1607 Loop *TheLoop; 1608 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1609 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1610 /// of existing SCEV assumptions. The analysis will also add a minimal set 1611 /// of new predicates if this is required to enable vectorization and 1612 /// unrolling. 1613 PredicatedScalarEvolution &PSE; 1614 /// Target Library Info. 1615 TargetLibraryInfo *TLI; 1616 /// Parent function 1617 Function *TheFunction; 1618 /// Target Transform Info 1619 const TargetTransformInfo *TTI; 1620 /// Dominator Tree. 1621 DominatorTree *DT; 1622 // LoopAccess analysis. 1623 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1624 // And the loop-accesses info corresponding to this loop. This pointer is 1625 // null until canVectorizeMemory sets it up. 1626 const LoopAccessInfo *LAI; 1627 1628 /// The interleave access information contains groups of interleaved accesses 1629 /// with the same stride and close to each other. 1630 InterleavedAccessInfo InterleaveInfo; 1631 1632 // --- vectorization state --- // 1633 1634 /// Holds the integer induction variable. This is the counter of the 1635 /// loop. 1636 PHINode *Induction; 1637 /// Holds the reduction variables. 1638 ReductionList Reductions; 1639 /// Holds all of the induction variables that we found in the loop. 1640 /// Notice that inductions don't need to start at zero and that induction 1641 /// variables can be pointers. 1642 InductionList Inductions; 1643 /// Holds the phi nodes that are first-order recurrences. 1644 RecurrenceSet FirstOrderRecurrences; 1645 /// Holds the widest induction type encountered. 1646 Type *WidestIndTy; 1647 1648 /// Allowed outside users. This holds the induction and reduction 1649 /// vars which can be accessed from outside the loop. 1650 SmallPtrSet<Value *, 4> AllowedExit; 1651 /// This set holds the variables which are known to be uniform after 1652 /// vectorization. 1653 SmallPtrSet<Instruction *, 4> Uniforms; 1654 1655 /// Can we assume the absence of NaNs. 1656 bool HasFunNoNaNAttr; 1657 1658 /// Vectorization requirements that will go through late-evaluation. 1659 LoopVectorizationRequirements *Requirements; 1660 1661 /// Used to emit an analysis of any legality issues. 1662 LoopVectorizeHints *Hints; 1663 1664 /// While vectorizing these instructions we have to generate a 1665 /// call to the appropriate masked intrinsic 1666 SmallPtrSet<const Instruction *, 8> MaskedOp; 1667 }; 1668 1669 /// LoopVectorizationCostModel - estimates the expected speedups due to 1670 /// vectorization. 1671 /// In many cases vectorization is not profitable. This can happen because of 1672 /// a number of reasons. In this class we mainly attempt to predict the 1673 /// expected speedup/slowdowns due to the supported instruction set. We use the 1674 /// TargetTransformInfo to query the different backends for the cost of 1675 /// different operations. 1676 class LoopVectorizationCostModel { 1677 public: 1678 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1679 LoopInfo *LI, LoopVectorizationLegality *Legal, 1680 const TargetTransformInfo &TTI, 1681 const TargetLibraryInfo *TLI, DemandedBits *DB, 1682 AssumptionCache *AC, const Function *F, 1683 const LoopVectorizeHints *Hints) 1684 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1685 AC(AC), TheFunction(F), Hints(Hints) {} 1686 1687 /// Information about vectorization costs 1688 struct VectorizationFactor { 1689 unsigned Width; // Vector width with best cost 1690 unsigned Cost; // Cost of the loop with that width 1691 }; 1692 /// \return The most profitable vectorization factor and the cost of that VF. 1693 /// This method checks every power of two up to VF. If UserVF is not ZERO 1694 /// then this vectorization factor will be selected if vectorization is 1695 /// possible. 1696 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1697 1698 /// \return The size (in bits) of the smallest and widest types in the code 1699 /// that needs to be vectorized. We ignore values that remain scalar such as 1700 /// 64 bit loop indices. 1701 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1702 1703 /// \return The desired interleave count. 1704 /// If interleave count has been specified by metadata it will be returned. 1705 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1706 /// are the selected vectorization factor and the cost of the selected VF. 1707 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1708 unsigned LoopCost); 1709 1710 /// \return The most profitable unroll factor. 1711 /// This method finds the best unroll-factor based on register pressure and 1712 /// other parameters. VF and LoopCost are the selected vectorization factor 1713 /// and the cost of the selected VF. 1714 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1715 unsigned LoopCost); 1716 1717 /// \brief A struct that represents some properties of the register usage 1718 /// of a loop. 1719 struct RegisterUsage { 1720 /// Holds the number of loop invariant values that are used in the loop. 1721 unsigned LoopInvariantRegs; 1722 /// Holds the maximum number of concurrent live intervals in the loop. 1723 unsigned MaxLocalUsers; 1724 /// Holds the number of instructions in the loop. 1725 unsigned NumInstructions; 1726 }; 1727 1728 /// \return Returns information about the register usages of the loop for the 1729 /// given vectorization factors. 1730 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1731 1732 /// Collect values we want to ignore in the cost model. 1733 void collectValuesToIgnore(); 1734 1735 private: 1736 /// The vectorization cost is a combination of the cost itself and a boolean 1737 /// indicating whether any of the contributing operations will actually 1738 /// operate on 1739 /// vector values after type legalization in the backend. If this latter value 1740 /// is 1741 /// false, then all operations will be scalarized (i.e. no vectorization has 1742 /// actually taken place). 1743 typedef std::pair<unsigned, bool> VectorizationCostTy; 1744 1745 /// Returns the expected execution cost. The unit of the cost does 1746 /// not matter because we use the 'cost' units to compare different 1747 /// vector widths. The cost that is returned is *not* normalized by 1748 /// the factor width. 1749 VectorizationCostTy expectedCost(unsigned VF); 1750 1751 /// Returns the execution time cost of an instruction for a given vector 1752 /// width. Vector width of one means scalar. 1753 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1754 1755 /// The cost-computation logic from getInstructionCost which provides 1756 /// the vector type as an output parameter. 1757 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1758 1759 /// Returns whether the instruction is a load or store and will be a emitted 1760 /// as a vector operation. 1761 bool isConsecutiveLoadOrStore(Instruction *I); 1762 1763 /// Report an analysis message to assist the user in diagnosing loops that are 1764 /// not vectorized. These are handled as LoopAccessReport rather than 1765 /// VectorizationReport because the << operator of VectorizationReport returns 1766 /// LoopAccessReport. 1767 void emitAnalysis(const LoopAccessReport &Message) const { 1768 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1769 } 1770 1771 public: 1772 /// Map of scalar integer values to the smallest bitwidth they can be legally 1773 /// represented as. The vector equivalents of these values should be truncated 1774 /// to this type. 1775 MapVector<Instruction *, uint64_t> MinBWs; 1776 1777 /// The loop that we evaluate. 1778 Loop *TheLoop; 1779 /// Predicated scalar evolution analysis. 1780 PredicatedScalarEvolution &PSE; 1781 /// Loop Info analysis. 1782 LoopInfo *LI; 1783 /// Vectorization legality. 1784 LoopVectorizationLegality *Legal; 1785 /// Vector target information. 1786 const TargetTransformInfo &TTI; 1787 /// Target Library Info. 1788 const TargetLibraryInfo *TLI; 1789 /// Demanded bits analysis. 1790 DemandedBits *DB; 1791 /// Assumption cache. 1792 AssumptionCache *AC; 1793 const Function *TheFunction; 1794 /// Loop Vectorize Hint. 1795 const LoopVectorizeHints *Hints; 1796 /// Values to ignore in the cost model. 1797 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1798 /// Values to ignore in the cost model when VF > 1. 1799 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1800 }; 1801 1802 /// \brief This holds vectorization requirements that must be verified late in 1803 /// the process. The requirements are set by legalize and costmodel. Once 1804 /// vectorization has been determined to be possible and profitable the 1805 /// requirements can be verified by looking for metadata or compiler options. 1806 /// For example, some loops require FP commutativity which is only allowed if 1807 /// vectorization is explicitly specified or if the fast-math compiler option 1808 /// has been provided. 1809 /// Late evaluation of these requirements allows helpful diagnostics to be 1810 /// composed that tells the user what need to be done to vectorize the loop. For 1811 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1812 /// evaluation should be used only when diagnostics can generated that can be 1813 /// followed by a non-expert user. 1814 class LoopVectorizationRequirements { 1815 public: 1816 LoopVectorizationRequirements() 1817 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1818 1819 void addUnsafeAlgebraInst(Instruction *I) { 1820 // First unsafe algebra instruction. 1821 if (!UnsafeAlgebraInst) 1822 UnsafeAlgebraInst = I; 1823 } 1824 1825 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1826 1827 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1828 const char *Name = Hints.vectorizeAnalysisPassName(); 1829 bool Failed = false; 1830 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1831 emitOptimizationRemarkAnalysisFPCommute( 1832 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1833 VectorizationReport() << "cannot prove it is safe to reorder " 1834 "floating-point operations"); 1835 Failed = true; 1836 } 1837 1838 // Test if runtime memcheck thresholds are exceeded. 1839 bool PragmaThresholdReached = 1840 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1841 bool ThresholdReached = 1842 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1843 if ((ThresholdReached && !Hints.allowReordering()) || 1844 PragmaThresholdReached) { 1845 emitOptimizationRemarkAnalysisAliasing( 1846 F->getContext(), Name, *F, L->getStartLoc(), 1847 VectorizationReport() 1848 << "cannot prove it is safe to reorder memory operations"); 1849 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1850 Failed = true; 1851 } 1852 1853 return Failed; 1854 } 1855 1856 private: 1857 unsigned NumRuntimePointerChecks; 1858 Instruction *UnsafeAlgebraInst; 1859 }; 1860 1861 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1862 if (L.empty()) { 1863 if (!hasCyclesInLoopBody(L)) 1864 V.push_back(&L); 1865 return; 1866 } 1867 for (Loop *InnerL : L) 1868 addAcyclicInnerLoop(*InnerL, V); 1869 } 1870 1871 /// The LoopVectorize Pass. 1872 struct LoopVectorize : public FunctionPass { 1873 /// Pass identification, replacement for typeid 1874 static char ID; 1875 1876 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1877 : FunctionPass(ID) { 1878 Impl.DisableUnrolling = NoUnrolling; 1879 Impl.AlwaysVectorize = AlwaysVectorize; 1880 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1881 } 1882 1883 LoopVectorizePass Impl; 1884 1885 bool runOnFunction(Function &F) override { 1886 if (skipFunction(F)) 1887 return false; 1888 1889 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1890 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1891 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1892 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1893 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1894 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1895 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1896 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1897 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1898 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1899 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1900 1901 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1902 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1903 1904 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1905 GetLAA); 1906 } 1907 1908 void getAnalysisUsage(AnalysisUsage &AU) const override { 1909 AU.addRequired<AssumptionCacheTracker>(); 1910 AU.addRequiredID(LoopSimplifyID); 1911 AU.addRequiredID(LCSSAID); 1912 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1913 AU.addRequired<DominatorTreeWrapperPass>(); 1914 AU.addRequired<LoopInfoWrapperPass>(); 1915 AU.addRequired<ScalarEvolutionWrapperPass>(); 1916 AU.addRequired<TargetTransformInfoWrapperPass>(); 1917 AU.addRequired<AAResultsWrapperPass>(); 1918 AU.addRequired<LoopAccessLegacyAnalysis>(); 1919 AU.addRequired<DemandedBitsWrapperPass>(); 1920 AU.addPreserved<LoopInfoWrapperPass>(); 1921 AU.addPreserved<DominatorTreeWrapperPass>(); 1922 AU.addPreserved<BasicAAWrapperPass>(); 1923 AU.addPreserved<GlobalsAAWrapperPass>(); 1924 } 1925 }; 1926 1927 } // end anonymous namespace 1928 1929 //===----------------------------------------------------------------------===// 1930 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1931 // LoopVectorizationCostModel. 1932 //===----------------------------------------------------------------------===// 1933 1934 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1935 // We need to place the broadcast of invariant variables outside the loop. 1936 Instruction *Instr = dyn_cast<Instruction>(V); 1937 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 1938 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1939 1940 // Place the code for broadcasting invariant variables in the new preheader. 1941 IRBuilder<>::InsertPointGuard Guard(Builder); 1942 if (Invariant) 1943 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1944 1945 // Broadcast the scalar into all locations in the vector. 1946 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1947 1948 return Shuf; 1949 } 1950 1951 void InnerLoopVectorizer::createVectorIntInductionPHI( 1952 const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType) { 1953 Value *Start = II.getStartValue(); 1954 ConstantInt *Step = II.getConstIntStepValue(); 1955 assert(Step && "Can not widen an IV with a non-constant step"); 1956 1957 // Construct the initial value of the vector IV in the vector loop preheader 1958 auto CurrIP = Builder.saveIP(); 1959 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1960 if (TruncType) { 1961 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 1962 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1963 } 1964 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1965 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 1966 Builder.restoreIP(CurrIP); 1967 1968 Value *SplatVF = 1969 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 1970 VF * Step->getSExtValue())); 1971 // We may need to add the step a number of times, depending on the unroll 1972 // factor. The last of those goes into the PHI. 1973 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1974 &*LoopVectorBody->getFirstInsertionPt()); 1975 Value *LastInduction = VecInd; 1976 for (unsigned Part = 0; Part < UF; ++Part) { 1977 Entry[Part] = LastInduction; 1978 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); 1979 } 1980 1981 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1982 VecInd->addIncoming(LastInduction, LoopVectorBody); 1983 } 1984 1985 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry, 1986 TruncInst *Trunc) { 1987 1988 auto II = Legal->getInductionVars()->find(IV); 1989 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1990 1991 auto ID = II->second; 1992 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1993 1994 // If a truncate instruction was provided, get the smaller type. 1995 auto *TruncType = Trunc ? cast<IntegerType>(Trunc->getType()) : nullptr; 1996 1997 // The step of the induction. 1998 Value *Step = nullptr; 1999 2000 // If the induction variable has a constant integer step value, go ahead and 2001 // get it now. 2002 if (ID.getConstIntStepValue()) 2003 Step = ID.getConstIntStepValue(); 2004 2005 // Try to create a new independent vector induction variable. If we can't 2006 // create the phi node, we will splat the scalar induction variable in each 2007 // loop iteration. 2008 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2009 !ValuesNotWidened->count(IV)) 2010 return createVectorIntInductionPHI(ID, Entry, TruncType); 2011 2012 // The scalar value to broadcast. This will be derived from the canonical 2013 // induction variable. 2014 Value *ScalarIV = nullptr; 2015 2016 // Define the scalar induction variable and step values. If we were given a 2017 // truncation type, truncate the canonical induction variable and constant 2018 // step. Otherwise, derive these values from the induction descriptor. 2019 if (TruncType) { 2020 assert(Step && "Truncation requires constant integer step"); 2021 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2022 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2023 Step = ConstantInt::getSigned(TruncType, StepInt); 2024 } else { 2025 ScalarIV = Induction; 2026 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2027 if (IV != OldInduction) { 2028 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2029 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2030 ScalarIV->setName("offset.idx"); 2031 } 2032 if (!Step) { 2033 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2034 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2035 &*Builder.GetInsertPoint()); 2036 } 2037 } 2038 2039 // Splat the scalar induction variable, and build the necessary step vectors. 2040 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2041 for (unsigned Part = 0; Part < UF; ++Part) 2042 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2043 2044 // If an induction variable is only used for counting loop iterations or 2045 // calculating addresses, it doesn't need to be widened. Create scalar steps 2046 // that can be used by instructions we will later scalarize. Note that the 2047 // addition of the scalar steps will not increase the number of instructions 2048 // in the loop in the common case prior to InstCombine. We will be trading 2049 // one vector extract for each scalar step. 2050 if (VF > 1 && ValuesNotWidened->count(IV)) { 2051 auto *EntryVal = Trunc ? cast<Value>(Trunc) : IV; 2052 buildScalarSteps(ScalarIV, Step, EntryVal); 2053 } 2054 } 2055 2056 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2057 Value *Step) { 2058 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2059 assert(Val->getType()->getScalarType()->isIntegerTy() && 2060 "Elem must be an integer"); 2061 assert(Step->getType() == Val->getType()->getScalarType() && 2062 "Step has wrong type"); 2063 // Create the types. 2064 Type *ITy = Val->getType()->getScalarType(); 2065 VectorType *Ty = cast<VectorType>(Val->getType()); 2066 int VLen = Ty->getNumElements(); 2067 SmallVector<Constant *, 8> Indices; 2068 2069 // Create a vector of consecutive numbers from zero to VF. 2070 for (int i = 0; i < VLen; ++i) 2071 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2072 2073 // Add the consecutive indices to the vector value. 2074 Constant *Cv = ConstantVector::get(Indices); 2075 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2076 Step = Builder.CreateVectorSplat(VLen, Step); 2077 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2078 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2079 // which can be found from the original scalar operations. 2080 Step = Builder.CreateMul(Cv, Step); 2081 return Builder.CreateAdd(Val, Step, "induction"); 2082 } 2083 2084 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2085 Value *EntryVal) { 2086 2087 // We shouldn't have to build scalar steps if we aren't vectorizing. 2088 assert(VF > 1 && "VF should be greater than one"); 2089 2090 // Get the value type and ensure it and the step have the same integer type. 2091 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2092 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2093 "Val and Step should have the same integer type"); 2094 2095 // Compute the scalar steps and save the results in ScalarIVMap. 2096 for (unsigned Part = 0; Part < UF; ++Part) 2097 for (unsigned I = 0; I < VF; ++I) { 2098 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + I); 2099 auto *Mul = Builder.CreateMul(StartIdx, Step); 2100 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2101 ScalarIVMap[EntryVal].push_back(Add); 2102 } 2103 } 2104 2105 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2106 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2107 auto *SE = PSE.getSE(); 2108 // Make sure that the pointer does not point to structs. 2109 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2110 return 0; 2111 2112 // If this value is a pointer induction variable, we know it is consecutive. 2113 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2114 if (Phi && Inductions.count(Phi)) { 2115 InductionDescriptor II = Inductions[Phi]; 2116 return II.getConsecutiveDirection(); 2117 } 2118 2119 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2120 if (!Gep) 2121 return 0; 2122 2123 unsigned NumOperands = Gep->getNumOperands(); 2124 Value *GpPtr = Gep->getPointerOperand(); 2125 // If this GEP value is a consecutive pointer induction variable and all of 2126 // the indices are constant, then we know it is consecutive. 2127 Phi = dyn_cast<PHINode>(GpPtr); 2128 if (Phi && Inductions.count(Phi)) { 2129 2130 // Make sure that the pointer does not point to structs. 2131 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2132 if (GepPtrType->getElementType()->isAggregateType()) 2133 return 0; 2134 2135 // Make sure that all of the index operands are loop invariant. 2136 for (unsigned i = 1; i < NumOperands; ++i) 2137 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2138 return 0; 2139 2140 InductionDescriptor II = Inductions[Phi]; 2141 return II.getConsecutiveDirection(); 2142 } 2143 2144 unsigned InductionOperand = getGEPInductionOperand(Gep); 2145 2146 // Check that all of the gep indices are uniform except for our induction 2147 // operand. 2148 for (unsigned i = 0; i != NumOperands; ++i) 2149 if (i != InductionOperand && 2150 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2151 return 0; 2152 2153 // We can emit wide load/stores only if the last non-zero index is the 2154 // induction variable. 2155 const SCEV *Last = nullptr; 2156 if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep)) 2157 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2158 else { 2159 // Because of the multiplication by a stride we can have a s/zext cast. 2160 // We are going to replace this stride by 1 so the cast is safe to ignore. 2161 // 2162 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2163 // %0 = trunc i64 %indvars.iv to i32 2164 // %mul = mul i32 %0, %Stride1 2165 // %idxprom = zext i32 %mul to i64 << Safe cast. 2166 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2167 // 2168 Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(), 2169 Gep->getOperand(InductionOperand), Gep); 2170 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2171 Last = 2172 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2173 ? C->getOperand() 2174 : Last; 2175 } 2176 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2177 const SCEV *Step = AR->getStepRecurrence(*SE); 2178 2179 // The memory is consecutive because the last index is consecutive 2180 // and all other indices are loop invariant. 2181 if (Step->isOne()) 2182 return 1; 2183 if (Step->isAllOnesValue()) 2184 return -1; 2185 } 2186 2187 return 0; 2188 } 2189 2190 bool LoopVectorizationLegality::isUniform(Value *V) { 2191 return LAI->isUniform(V); 2192 } 2193 2194 InnerLoopVectorizer::VectorParts & 2195 InnerLoopVectorizer::getVectorValue(Value *V) { 2196 assert(V != Induction && "The new induction variable should not be used."); 2197 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2198 2199 // If we have a stride that is replaced by one, do it here. 2200 if (Legal->hasStride(V)) 2201 V = ConstantInt::get(V->getType(), 1); 2202 2203 // If we have this scalar in the map, return it. 2204 if (WidenMap.has(V)) 2205 return WidenMap.get(V); 2206 2207 // If this scalar is unknown, assume that it is a constant or that it is 2208 // loop invariant. Broadcast V and save the value for future uses. 2209 Value *B = getBroadcastInstrs(V); 2210 return WidenMap.splat(V, B); 2211 } 2212 2213 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2214 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2215 SmallVector<Constant *, 8> ShuffleMask; 2216 for (unsigned i = 0; i < VF; ++i) 2217 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2218 2219 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2220 ConstantVector::get(ShuffleMask), 2221 "reverse"); 2222 } 2223 2224 // Get a mask to interleave \p NumVec vectors into a wide vector. 2225 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2226 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2227 // <0, 4, 1, 5, 2, 6, 3, 7> 2228 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2229 unsigned NumVec) { 2230 SmallVector<Constant *, 16> Mask; 2231 for (unsigned i = 0; i < VF; i++) 2232 for (unsigned j = 0; j < NumVec; j++) 2233 Mask.push_back(Builder.getInt32(j * VF + i)); 2234 2235 return ConstantVector::get(Mask); 2236 } 2237 2238 // Get the strided mask starting from index \p Start. 2239 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2240 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2241 unsigned Stride, unsigned VF) { 2242 SmallVector<Constant *, 16> Mask; 2243 for (unsigned i = 0; i < VF; i++) 2244 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2245 2246 return ConstantVector::get(Mask); 2247 } 2248 2249 // Get a mask of two parts: The first part consists of sequential integers 2250 // starting from 0, The second part consists of UNDEFs. 2251 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2252 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2253 unsigned NumUndef) { 2254 SmallVector<Constant *, 16> Mask; 2255 for (unsigned i = 0; i < NumInt; i++) 2256 Mask.push_back(Builder.getInt32(i)); 2257 2258 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2259 for (unsigned i = 0; i < NumUndef; i++) 2260 Mask.push_back(Undef); 2261 2262 return ConstantVector::get(Mask); 2263 } 2264 2265 // Concatenate two vectors with the same element type. The 2nd vector should 2266 // not have more elements than the 1st vector. If the 2nd vector has less 2267 // elements, extend it with UNDEFs. 2268 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2269 Value *V2) { 2270 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2271 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2272 assert(VecTy1 && VecTy2 && 2273 VecTy1->getScalarType() == VecTy2->getScalarType() && 2274 "Expect two vectors with the same element type"); 2275 2276 unsigned NumElts1 = VecTy1->getNumElements(); 2277 unsigned NumElts2 = VecTy2->getNumElements(); 2278 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2279 2280 if (NumElts1 > NumElts2) { 2281 // Extend with UNDEFs. 2282 Constant *ExtMask = 2283 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2284 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2285 } 2286 2287 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2288 return Builder.CreateShuffleVector(V1, V2, Mask); 2289 } 2290 2291 // Concatenate vectors in the given list. All vectors have the same type. 2292 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2293 ArrayRef<Value *> InputList) { 2294 unsigned NumVec = InputList.size(); 2295 assert(NumVec > 1 && "Should be at least two vectors"); 2296 2297 SmallVector<Value *, 8> ResList; 2298 ResList.append(InputList.begin(), InputList.end()); 2299 do { 2300 SmallVector<Value *, 8> TmpList; 2301 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2302 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2303 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2304 "Only the last vector may have a different type"); 2305 2306 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2307 } 2308 2309 // Push the last vector if the total number of vectors is odd. 2310 if (NumVec % 2 != 0) 2311 TmpList.push_back(ResList[NumVec - 1]); 2312 2313 ResList = TmpList; 2314 NumVec = ResList.size(); 2315 } while (NumVec > 1); 2316 2317 return ResList[0]; 2318 } 2319 2320 // Try to vectorize the interleave group that \p Instr belongs to. 2321 // 2322 // E.g. Translate following interleaved load group (factor = 3): 2323 // for (i = 0; i < N; i+=3) { 2324 // R = Pic[i]; // Member of index 0 2325 // G = Pic[i+1]; // Member of index 1 2326 // B = Pic[i+2]; // Member of index 2 2327 // ... // do something to R, G, B 2328 // } 2329 // To: 2330 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2331 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2332 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2333 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2334 // 2335 // Or translate following interleaved store group (factor = 3): 2336 // for (i = 0; i < N; i+=3) { 2337 // ... do something to R, G, B 2338 // Pic[i] = R; // Member of index 0 2339 // Pic[i+1] = G; // Member of index 1 2340 // Pic[i+2] = B; // Member of index 2 2341 // } 2342 // To: 2343 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2344 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2345 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2346 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2347 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2348 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2349 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2350 assert(Group && "Fail to get an interleaved access group."); 2351 2352 // Skip if current instruction is not the insert position. 2353 if (Instr != Group->getInsertPos()) 2354 return; 2355 2356 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2357 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2358 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2359 2360 // Prepare for the vector type of the interleaved load/store. 2361 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2362 unsigned InterleaveFactor = Group->getFactor(); 2363 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2364 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2365 2366 // Prepare for the new pointers. 2367 setDebugLocFromInst(Builder, Ptr); 2368 VectorParts &PtrParts = getVectorValue(Ptr); 2369 SmallVector<Value *, 2> NewPtrs; 2370 unsigned Index = Group->getIndex(Instr); 2371 for (unsigned Part = 0; Part < UF; Part++) { 2372 // Extract the pointer for current instruction from the pointer vector. A 2373 // reverse access uses the pointer in the last lane. 2374 Value *NewPtr = Builder.CreateExtractElement( 2375 PtrParts[Part], 2376 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2377 2378 // Notice current instruction could be any index. Need to adjust the address 2379 // to the member of index 0. 2380 // 2381 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2382 // b = A[i]; // Member of index 0 2383 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2384 // 2385 // E.g. A[i+1] = a; // Member of index 1 2386 // A[i] = b; // Member of index 0 2387 // A[i+2] = c; // Member of index 2 (Current instruction) 2388 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2389 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2390 2391 // Cast to the vector pointer type. 2392 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2393 } 2394 2395 setDebugLocFromInst(Builder, Instr); 2396 Value *UndefVec = UndefValue::get(VecTy); 2397 2398 // Vectorize the interleaved load group. 2399 if (LI) { 2400 for (unsigned Part = 0; Part < UF; Part++) { 2401 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2402 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2403 2404 for (unsigned i = 0; i < InterleaveFactor; i++) { 2405 Instruction *Member = Group->getMember(i); 2406 2407 // Skip the gaps in the group. 2408 if (!Member) 2409 continue; 2410 2411 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2412 Value *StridedVec = Builder.CreateShuffleVector( 2413 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2414 2415 // If this member has different type, cast the result type. 2416 if (Member->getType() != ScalarTy) { 2417 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2418 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2419 } 2420 2421 VectorParts &Entry = WidenMap.get(Member); 2422 Entry[Part] = 2423 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2424 } 2425 2426 addMetadata(NewLoadInstr, Instr); 2427 } 2428 return; 2429 } 2430 2431 // The sub vector type for current instruction. 2432 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2433 2434 // Vectorize the interleaved store group. 2435 for (unsigned Part = 0; Part < UF; Part++) { 2436 // Collect the stored vector from each member. 2437 SmallVector<Value *, 4> StoredVecs; 2438 for (unsigned i = 0; i < InterleaveFactor; i++) { 2439 // Interleaved store group doesn't allow a gap, so each index has a member 2440 Instruction *Member = Group->getMember(i); 2441 assert(Member && "Fail to get a member from an interleaved store group"); 2442 2443 Value *StoredVec = 2444 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2445 if (Group->isReverse()) 2446 StoredVec = reverseVector(StoredVec); 2447 2448 // If this member has different type, cast it to an unified type. 2449 if (StoredVec->getType() != SubVT) 2450 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2451 2452 StoredVecs.push_back(StoredVec); 2453 } 2454 2455 // Concatenate all vectors into a wide vector. 2456 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2457 2458 // Interleave the elements in the wide vector. 2459 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2460 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2461 "interleaved.vec"); 2462 2463 Instruction *NewStoreInstr = 2464 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2465 addMetadata(NewStoreInstr, Instr); 2466 } 2467 } 2468 2469 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2470 // Attempt to issue a wide load. 2471 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2472 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2473 2474 assert((LI || SI) && "Invalid Load/Store instruction"); 2475 2476 // Try to vectorize the interleave group if this access is interleaved. 2477 if (Legal->isAccessInterleaved(Instr)) 2478 return vectorizeInterleaveGroup(Instr); 2479 2480 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2481 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2482 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2483 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2484 // An alignment of 0 means target abi alignment. We need to use the scalar's 2485 // target abi alignment in such a case. 2486 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2487 if (!Alignment) 2488 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2489 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2490 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2491 uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2492 2493 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2494 !Legal->isMaskRequired(SI)) 2495 return scalarizeInstruction(Instr, true); 2496 2497 if (ScalarAllocatedSize != VectorElementSize) 2498 return scalarizeInstruction(Instr); 2499 2500 // If the pointer is loop invariant scalarize the load. 2501 if (LI && Legal->isUniform(Ptr)) 2502 return scalarizeInstruction(Instr); 2503 2504 // If the pointer is non-consecutive and gather/scatter is not supported 2505 // scalarize the instruction. 2506 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2507 bool Reverse = ConsecutiveStride < 0; 2508 bool CreateGatherScatter = 2509 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2510 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2511 2512 if (!ConsecutiveStride && !CreateGatherScatter) 2513 return scalarizeInstruction(Instr); 2514 2515 Constant *Zero = Builder.getInt32(0); 2516 VectorParts &Entry = WidenMap.get(Instr); 2517 VectorParts VectorGep; 2518 2519 // Handle consecutive loads/stores. 2520 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2521 if (ConsecutiveStride) { 2522 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2523 setDebugLocFromInst(Builder, Gep); 2524 Value *PtrOperand = Gep->getPointerOperand(); 2525 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2526 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2527 2528 // Create the new GEP with the new induction variable. 2529 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2530 Gep2->setOperand(0, FirstBasePtr); 2531 Gep2->setName("gep.indvar.base"); 2532 Ptr = Builder.Insert(Gep2); 2533 } else if (Gep) { 2534 setDebugLocFromInst(Builder, Gep); 2535 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2536 OrigLoop) && 2537 "Base ptr must be invariant"); 2538 // The last index does not have to be the induction. It can be 2539 // consecutive and be a function of the index. For example A[I+1]; 2540 unsigned NumOperands = Gep->getNumOperands(); 2541 unsigned InductionOperand = getGEPInductionOperand(Gep); 2542 // Create the new GEP with the new induction variable. 2543 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2544 2545 for (unsigned i = 0; i < NumOperands; ++i) { 2546 Value *GepOperand = Gep->getOperand(i); 2547 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2548 2549 // Update last index or loop invariant instruction anchored in loop. 2550 if (i == InductionOperand || 2551 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2552 assert((i == InductionOperand || 2553 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2554 OrigLoop)) && 2555 "Must be last index or loop invariant"); 2556 2557 VectorParts &GEPParts = getVectorValue(GepOperand); 2558 2559 // If GepOperand is an induction variable, and there's a scalarized 2560 // version of it available, use it. Otherwise, we will need to create 2561 // an extractelement instruction. 2562 Value *Index = ScalarIVMap.count(GepOperand) 2563 ? ScalarIVMap[GepOperand][0] 2564 : Builder.CreateExtractElement(GEPParts[0], Zero); 2565 2566 Gep2->setOperand(i, Index); 2567 Gep2->setName("gep.indvar.idx"); 2568 } 2569 } 2570 Ptr = Builder.Insert(Gep2); 2571 } else { // No GEP 2572 // Use the induction element ptr. 2573 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2574 setDebugLocFromInst(Builder, Ptr); 2575 VectorParts &PtrVal = getVectorValue(Ptr); 2576 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2577 } 2578 } else { 2579 // At this point we should vector version of GEP for Gather or Scatter 2580 assert(CreateGatherScatter && "The instruction should be scalarized"); 2581 if (Gep) { 2582 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2583 // and each index that's defined inside the loop, even if it is 2584 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2585 // scalar. 2586 SmallVector<VectorParts, 4> OpsV; 2587 for (Value *Op : Gep->operands()) { 2588 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2589 if (SrcInst && OrigLoop->contains(SrcInst)) 2590 OpsV.push_back(getVectorValue(Op)); 2591 else 2592 OpsV.push_back(VectorParts(UF, Op)); 2593 } 2594 for (unsigned Part = 0; Part < UF; ++Part) { 2595 SmallVector<Value *, 4> Ops; 2596 Value *GEPBasePtr = OpsV[0][Part]; 2597 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2598 Ops.push_back(OpsV[i][Part]); 2599 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2600 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2601 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2602 2603 NewGep = 2604 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2605 VectorGep.push_back(NewGep); 2606 } 2607 } else 2608 VectorGep = getVectorValue(Ptr); 2609 } 2610 2611 VectorParts Mask = createBlockInMask(Instr->getParent()); 2612 // Handle Stores: 2613 if (SI) { 2614 assert(!Legal->isUniform(SI->getPointerOperand()) && 2615 "We do not allow storing to uniform addresses"); 2616 setDebugLocFromInst(Builder, SI); 2617 // We don't want to update the value in the map as it might be used in 2618 // another expression. So don't use a reference type for "StoredVal". 2619 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2620 2621 for (unsigned Part = 0; Part < UF; ++Part) { 2622 Instruction *NewSI = nullptr; 2623 if (CreateGatherScatter) { 2624 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2625 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2626 Alignment, MaskPart); 2627 } else { 2628 // Calculate the pointer for the specific unroll-part. 2629 Value *PartPtr = 2630 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2631 2632 if (Reverse) { 2633 // If we store to reverse consecutive memory locations, then we need 2634 // to reverse the order of elements in the stored value. 2635 StoredVal[Part] = reverseVector(StoredVal[Part]); 2636 // If the address is consecutive but reversed, then the 2637 // wide store needs to start at the last vector element. 2638 PartPtr = 2639 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2640 PartPtr = 2641 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2642 Mask[Part] = reverseVector(Mask[Part]); 2643 } 2644 2645 Value *VecPtr = 2646 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2647 2648 if (Legal->isMaskRequired(SI)) 2649 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2650 Mask[Part]); 2651 else 2652 NewSI = 2653 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2654 } 2655 addMetadata(NewSI, SI); 2656 } 2657 return; 2658 } 2659 2660 // Handle loads. 2661 assert(LI && "Must have a load instruction"); 2662 setDebugLocFromInst(Builder, LI); 2663 for (unsigned Part = 0; Part < UF; ++Part) { 2664 Instruction *NewLI; 2665 if (CreateGatherScatter) { 2666 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2667 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2668 0, "wide.masked.gather"); 2669 Entry[Part] = NewLI; 2670 } else { 2671 // Calculate the pointer for the specific unroll-part. 2672 Value *PartPtr = 2673 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2674 2675 if (Reverse) { 2676 // If the address is consecutive but reversed, then the 2677 // wide load needs to start at the last vector element. 2678 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2679 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2680 Mask[Part] = reverseVector(Mask[Part]); 2681 } 2682 2683 Value *VecPtr = 2684 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2685 if (Legal->isMaskRequired(LI)) 2686 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2687 UndefValue::get(DataTy), 2688 "wide.masked.load"); 2689 else 2690 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2691 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2692 } 2693 addMetadata(NewLI, LI); 2694 } 2695 } 2696 2697 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2698 bool IfPredicateStore) { 2699 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2700 // Holds vector parameters or scalars, in case of uniform vals. 2701 SmallVector<VectorParts, 4> Params; 2702 2703 setDebugLocFromInst(Builder, Instr); 2704 2705 // Find all of the vectorized parameters. 2706 for (Value *SrcOp : Instr->operands()) { 2707 // If we are accessing the old induction variable, use the new one. 2708 if (SrcOp == OldInduction) { 2709 Params.push_back(getVectorValue(SrcOp)); 2710 continue; 2711 } 2712 2713 // Try using previously calculated values. 2714 auto *SrcInst = dyn_cast<Instruction>(SrcOp); 2715 2716 // If the src is an instruction that appeared earlier in the basic block, 2717 // then it should already be vectorized. 2718 if (SrcInst && OrigLoop->contains(SrcInst)) { 2719 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2720 // The parameter is a vector value from earlier. 2721 Params.push_back(WidenMap.get(SrcInst)); 2722 } else { 2723 // The parameter is a scalar from outside the loop. Maybe even a constant. 2724 VectorParts Scalars; 2725 Scalars.append(UF, SrcOp); 2726 Params.push_back(Scalars); 2727 } 2728 } 2729 2730 assert(Params.size() == Instr->getNumOperands() && 2731 "Invalid number of operands"); 2732 2733 // Does this instruction return a value ? 2734 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2735 2736 Value *UndefVec = 2737 IsVoidRetTy ? nullptr 2738 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2739 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2740 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2741 2742 VectorParts Cond; 2743 if (IfPredicateStore) { 2744 assert(Instr->getParent()->getSinglePredecessor() && 2745 "Only support single predecessor blocks"); 2746 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2747 Instr->getParent()); 2748 } 2749 2750 // For each vector unroll 'part': 2751 for (unsigned Part = 0; Part < UF; ++Part) { 2752 // For each scalar that we create: 2753 for (unsigned Width = 0; Width < VF; ++Width) { 2754 2755 // Start if-block. 2756 Value *Cmp = nullptr; 2757 if (IfPredicateStore) { 2758 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2759 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2760 ConstantInt::get(Cmp->getType(), 1)); 2761 } 2762 2763 Instruction *Cloned = Instr->clone(); 2764 if (!IsVoidRetTy) 2765 Cloned->setName(Instr->getName() + ".cloned"); 2766 // Replace the operands of the cloned instructions with extracted scalars. 2767 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2768 2769 // If the operand is an induction variable, and there's a scalarized 2770 // version of it available, use it. Otherwise, we will need to create 2771 // an extractelement instruction if vectorizing. 2772 auto *NewOp = Params[op][Part]; 2773 auto *ScalarOp = Instr->getOperand(op); 2774 if (ScalarIVMap.count(ScalarOp)) 2775 NewOp = ScalarIVMap[ScalarOp][VF * Part + Width]; 2776 else if (NewOp->getType()->isVectorTy()) 2777 NewOp = Builder.CreateExtractElement(NewOp, Builder.getInt32(Width)); 2778 Cloned->setOperand(op, NewOp); 2779 } 2780 addNewMetadata(Cloned, Instr); 2781 2782 // Place the cloned scalar in the new loop. 2783 Builder.Insert(Cloned); 2784 2785 // If we just cloned a new assumption, add it the assumption cache. 2786 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2787 if (II->getIntrinsicID() == Intrinsic::assume) 2788 AC->registerAssumption(II); 2789 2790 // If the original scalar returns a value we need to place it in a vector 2791 // so that future users will be able to use it. 2792 if (!IsVoidRetTy) 2793 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2794 Builder.getInt32(Width)); 2795 // End if-block. 2796 if (IfPredicateStore) 2797 PredicatedStores.push_back( 2798 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2799 } 2800 } 2801 } 2802 2803 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2804 Value *End, Value *Step, 2805 Instruction *DL) { 2806 BasicBlock *Header = L->getHeader(); 2807 BasicBlock *Latch = L->getLoopLatch(); 2808 // As we're just creating this loop, it's possible no latch exists 2809 // yet. If so, use the header as this will be a single block loop. 2810 if (!Latch) 2811 Latch = Header; 2812 2813 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2814 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2815 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2816 2817 Builder.SetInsertPoint(Latch->getTerminator()); 2818 2819 // Create i+1 and fill the PHINode. 2820 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2821 Induction->addIncoming(Start, L->getLoopPreheader()); 2822 Induction->addIncoming(Next, Latch); 2823 // Create the compare. 2824 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2825 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2826 2827 // Now we have two terminators. Remove the old one from the block. 2828 Latch->getTerminator()->eraseFromParent(); 2829 2830 return Induction; 2831 } 2832 2833 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2834 if (TripCount) 2835 return TripCount; 2836 2837 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2838 // Find the loop boundaries. 2839 ScalarEvolution *SE = PSE.getSE(); 2840 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2841 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2842 "Invalid loop count"); 2843 2844 Type *IdxTy = Legal->getWidestInductionType(); 2845 2846 // The exit count might have the type of i64 while the phi is i32. This can 2847 // happen if we have an induction variable that is sign extended before the 2848 // compare. The only way that we get a backedge taken count is that the 2849 // induction variable was signed and as such will not overflow. In such a case 2850 // truncation is legal. 2851 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2852 IdxTy->getPrimitiveSizeInBits()) 2853 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2854 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2855 2856 // Get the total trip count from the count by adding 1. 2857 const SCEV *ExitCount = SE->getAddExpr( 2858 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2859 2860 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2861 2862 // Expand the trip count and place the new instructions in the preheader. 2863 // Notice that the pre-header does not change, only the loop body. 2864 SCEVExpander Exp(*SE, DL, "induction"); 2865 2866 // Count holds the overall loop count (N). 2867 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2868 L->getLoopPreheader()->getTerminator()); 2869 2870 if (TripCount->getType()->isPointerTy()) 2871 TripCount = 2872 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2873 L->getLoopPreheader()->getTerminator()); 2874 2875 return TripCount; 2876 } 2877 2878 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2879 if (VectorTripCount) 2880 return VectorTripCount; 2881 2882 Value *TC = getOrCreateTripCount(L); 2883 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2884 2885 // Now we need to generate the expression for the part of the loop that the 2886 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2887 // iterations are not required for correctness, or N - Step, otherwise. Step 2888 // is equal to the vectorization factor (number of SIMD elements) times the 2889 // unroll factor (number of SIMD instructions). 2890 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2891 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2892 2893 // If there is a non-reversed interleaved group that may speculatively access 2894 // memory out-of-bounds, we need to ensure that there will be at least one 2895 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2896 // the trip count, we set the remainder to be equal to the step. If the step 2897 // does not evenly divide the trip count, no adjustment is necessary since 2898 // there will already be scalar iterations. Note that the minimum iterations 2899 // check ensures that N >= Step. 2900 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2901 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2902 R = Builder.CreateSelect(IsZero, Step, R); 2903 } 2904 2905 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2906 2907 return VectorTripCount; 2908 } 2909 2910 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2911 BasicBlock *Bypass) { 2912 Value *Count = getOrCreateTripCount(L); 2913 BasicBlock *BB = L->getLoopPreheader(); 2914 IRBuilder<> Builder(BB->getTerminator()); 2915 2916 // Generate code to check that the loop's trip count that we computed by 2917 // adding one to the backedge-taken count will not overflow. 2918 Value *CheckMinIters = Builder.CreateICmpULT( 2919 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2920 2921 BasicBlock *NewBB = 2922 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 2923 // Update dominator tree immediately if the generated block is a 2924 // LoopBypassBlock because SCEV expansions to generate loop bypass 2925 // checks may query it before the current function is finished. 2926 DT->addNewBlock(NewBB, BB); 2927 if (L->getParentLoop()) 2928 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2929 ReplaceInstWithInst(BB->getTerminator(), 2930 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2931 LoopBypassBlocks.push_back(BB); 2932 } 2933 2934 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2935 BasicBlock *Bypass) { 2936 Value *TC = getOrCreateVectorTripCount(L); 2937 BasicBlock *BB = L->getLoopPreheader(); 2938 IRBuilder<> Builder(BB->getTerminator()); 2939 2940 // Now, compare the new count to zero. If it is zero skip the vector loop and 2941 // jump to the scalar loop. 2942 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2943 "cmp.zero"); 2944 2945 // Generate code to check that the loop's trip count that we computed by 2946 // adding one to the backedge-taken count will not overflow. 2947 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2948 // Update dominator tree immediately if the generated block is a 2949 // LoopBypassBlock because SCEV expansions to generate loop bypass 2950 // checks may query it before the current function is finished. 2951 DT->addNewBlock(NewBB, BB); 2952 if (L->getParentLoop()) 2953 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2954 ReplaceInstWithInst(BB->getTerminator(), 2955 BranchInst::Create(Bypass, NewBB, Cmp)); 2956 LoopBypassBlocks.push_back(BB); 2957 } 2958 2959 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2960 BasicBlock *BB = L->getLoopPreheader(); 2961 2962 // Generate the code to check that the SCEV assumptions that we made. 2963 // We want the new basic block to start at the first instruction in a 2964 // sequence of instructions that form a check. 2965 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2966 "scev.check"); 2967 Value *SCEVCheck = 2968 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2969 2970 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2971 if (C->isZero()) 2972 return; 2973 2974 // Create a new block containing the stride check. 2975 BB->setName("vector.scevcheck"); 2976 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2977 // Update dominator tree immediately if the generated block is a 2978 // LoopBypassBlock because SCEV expansions to generate loop bypass 2979 // checks may query it before the current function is finished. 2980 DT->addNewBlock(NewBB, BB); 2981 if (L->getParentLoop()) 2982 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2983 ReplaceInstWithInst(BB->getTerminator(), 2984 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2985 LoopBypassBlocks.push_back(BB); 2986 AddedSafetyChecks = true; 2987 } 2988 2989 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2990 BasicBlock *BB = L->getLoopPreheader(); 2991 2992 // Generate the code that checks in runtime if arrays overlap. We put the 2993 // checks into a separate block to make the more common case of few elements 2994 // faster. 2995 Instruction *FirstCheckInst; 2996 Instruction *MemRuntimeCheck; 2997 std::tie(FirstCheckInst, MemRuntimeCheck) = 2998 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2999 if (!MemRuntimeCheck) 3000 return; 3001 3002 // Create a new block containing the memory check. 3003 BB->setName("vector.memcheck"); 3004 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3005 // Update dominator tree immediately if the generated block is a 3006 // LoopBypassBlock because SCEV expansions to generate loop bypass 3007 // checks may query it before the current function is finished. 3008 DT->addNewBlock(NewBB, BB); 3009 if (L->getParentLoop()) 3010 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3011 ReplaceInstWithInst(BB->getTerminator(), 3012 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3013 LoopBypassBlocks.push_back(BB); 3014 AddedSafetyChecks = true; 3015 3016 // We currently don't use LoopVersioning for the actual loop cloning but we 3017 // still use it to add the noalias metadata. 3018 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3019 PSE.getSE()); 3020 LVer->prepareNoAliasMetadata(); 3021 } 3022 3023 void InnerLoopVectorizer::createEmptyLoop() { 3024 /* 3025 In this function we generate a new loop. The new loop will contain 3026 the vectorized instructions while the old loop will continue to run the 3027 scalar remainder. 3028 3029 [ ] <-- loop iteration number check. 3030 / | 3031 / v 3032 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3033 | / | 3034 | / v 3035 || [ ] <-- vector pre header. 3036 |/ | 3037 | v 3038 | [ ] \ 3039 | [ ]_| <-- vector loop. 3040 | | 3041 | v 3042 | -[ ] <--- middle-block. 3043 | / | 3044 | / v 3045 -|- >[ ] <--- new preheader. 3046 | | 3047 | v 3048 | [ ] \ 3049 | [ ]_| <-- old scalar loop to handle remainder. 3050 \ | 3051 \ v 3052 >[ ] <-- exit block. 3053 ... 3054 */ 3055 3056 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3057 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3058 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3059 assert(VectorPH && "Invalid loop structure"); 3060 assert(ExitBlock && "Must have an exit block"); 3061 3062 // Some loops have a single integer induction variable, while other loops 3063 // don't. One example is c++ iterators that often have multiple pointer 3064 // induction variables. In the code below we also support a case where we 3065 // don't have a single induction variable. 3066 // 3067 // We try to obtain an induction variable from the original loop as hard 3068 // as possible. However if we don't find one that: 3069 // - is an integer 3070 // - counts from zero, stepping by one 3071 // - is the size of the widest induction variable type 3072 // then we create a new one. 3073 OldInduction = Legal->getInduction(); 3074 Type *IdxTy = Legal->getWidestInductionType(); 3075 3076 // Split the single block loop into the two loop structure described above. 3077 BasicBlock *VecBody = 3078 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3079 BasicBlock *MiddleBlock = 3080 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3081 BasicBlock *ScalarPH = 3082 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3083 3084 // Create and register the new vector loop. 3085 Loop *Lp = new Loop(); 3086 Loop *ParentLoop = OrigLoop->getParentLoop(); 3087 3088 // Insert the new loop into the loop nest and register the new basic blocks 3089 // before calling any utilities such as SCEV that require valid LoopInfo. 3090 if (ParentLoop) { 3091 ParentLoop->addChildLoop(Lp); 3092 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3093 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3094 } else { 3095 LI->addTopLevelLoop(Lp); 3096 } 3097 Lp->addBasicBlockToLoop(VecBody, *LI); 3098 3099 // Find the loop boundaries. 3100 Value *Count = getOrCreateTripCount(Lp); 3101 3102 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3103 3104 // We need to test whether the backedge-taken count is uint##_max. Adding one 3105 // to it will cause overflow and an incorrect loop trip count in the vector 3106 // body. In case of overflow we want to directly jump to the scalar remainder 3107 // loop. 3108 emitMinimumIterationCountCheck(Lp, ScalarPH); 3109 // Now, compare the new count to zero. If it is zero skip the vector loop and 3110 // jump to the scalar loop. 3111 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3112 // Generate the code to check any assumptions that we've made for SCEV 3113 // expressions. 3114 emitSCEVChecks(Lp, ScalarPH); 3115 3116 // Generate the code that checks in runtime if arrays overlap. We put the 3117 // checks into a separate block to make the more common case of few elements 3118 // faster. 3119 emitMemRuntimeChecks(Lp, ScalarPH); 3120 3121 // Generate the induction variable. 3122 // The loop step is equal to the vectorization factor (num of SIMD elements) 3123 // times the unroll factor (num of SIMD instructions). 3124 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3125 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3126 Induction = 3127 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3128 getDebugLocFromInstOrOperands(OldInduction)); 3129 3130 // We are going to resume the execution of the scalar loop. 3131 // Go over all of the induction variables that we found and fix the 3132 // PHIs that are left in the scalar version of the loop. 3133 // The starting values of PHI nodes depend on the counter of the last 3134 // iteration in the vectorized loop. 3135 // If we come from a bypass edge then we need to start from the original 3136 // start value. 3137 3138 // This variable saves the new starting index for the scalar loop. It is used 3139 // to test if there are any tail iterations left once the vector loop has 3140 // completed. 3141 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3142 for (auto &InductionEntry : *List) { 3143 PHINode *OrigPhi = InductionEntry.first; 3144 InductionDescriptor II = InductionEntry.second; 3145 3146 // Create phi nodes to merge from the backedge-taken check block. 3147 PHINode *BCResumeVal = PHINode::Create( 3148 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3149 Value *EndValue; 3150 if (OrigPhi == OldInduction) { 3151 // We know what the end value is. 3152 EndValue = CountRoundDown; 3153 } else { 3154 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3155 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3156 II.getStep()->getType(), "cast.crd"); 3157 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3158 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3159 EndValue->setName("ind.end"); 3160 } 3161 3162 // The new PHI merges the original incoming value, in case of a bypass, 3163 // or the value at the end of the vectorized loop. 3164 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3165 3166 // Fix up external users of the induction variable. 3167 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3168 3169 // Fix the scalar body counter (PHI node). 3170 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3171 3172 // The old induction's phi node in the scalar body needs the truncated 3173 // value. 3174 for (BasicBlock *BB : LoopBypassBlocks) 3175 BCResumeVal->addIncoming(II.getStartValue(), BB); 3176 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3177 } 3178 3179 // Add a check in the middle block to see if we have completed 3180 // all of the iterations in the first vector loop. 3181 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3182 Value *CmpN = 3183 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3184 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3185 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3186 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3187 3188 // Get ready to start creating new instructions into the vectorized body. 3189 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3190 3191 // Save the state. 3192 LoopVectorPreHeader = Lp->getLoopPreheader(); 3193 LoopScalarPreHeader = ScalarPH; 3194 LoopMiddleBlock = MiddleBlock; 3195 LoopExitBlock = ExitBlock; 3196 LoopVectorBody = VecBody; 3197 LoopScalarBody = OldBasicBlock; 3198 3199 // Keep all loop hints from the original loop on the vector loop (we'll 3200 // replace the vectorizer-specific hints below). 3201 if (MDNode *LID = OrigLoop->getLoopID()) 3202 Lp->setLoopID(LID); 3203 3204 LoopVectorizeHints Hints(Lp, true); 3205 Hints.setAlreadyVectorized(); 3206 } 3207 3208 // Fix up external users of the induction variable. At this point, we are 3209 // in LCSSA form, with all external PHIs that use the IV having one input value, 3210 // coming from the remainder loop. We need those PHIs to also have a correct 3211 // value for the IV when arriving directly from the middle block. 3212 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3213 const InductionDescriptor &II, 3214 Value *CountRoundDown, Value *EndValue, 3215 BasicBlock *MiddleBlock) { 3216 // There are two kinds of external IV usages - those that use the value 3217 // computed in the last iteration (the PHI) and those that use the penultimate 3218 // value (the value that feeds into the phi from the loop latch). 3219 // We allow both, but they, obviously, have different values. 3220 3221 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3222 3223 DenseMap<Value *, Value *> MissingVals; 3224 3225 // An external user of the last iteration's value should see the value that 3226 // the remainder loop uses to initialize its own IV. 3227 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3228 for (User *U : PostInc->users()) { 3229 Instruction *UI = cast<Instruction>(U); 3230 if (!OrigLoop->contains(UI)) { 3231 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3232 MissingVals[UI] = EndValue; 3233 } 3234 } 3235 3236 // An external user of the penultimate value need to see EndValue - Step. 3237 // The simplest way to get this is to recompute it from the constituent SCEVs, 3238 // that is Start + (Step * (CRD - 1)). 3239 for (User *U : OrigPhi->users()) { 3240 auto *UI = cast<Instruction>(U); 3241 if (!OrigLoop->contains(UI)) { 3242 const DataLayout &DL = 3243 OrigLoop->getHeader()->getModule()->getDataLayout(); 3244 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3245 3246 IRBuilder<> B(MiddleBlock->getTerminator()); 3247 Value *CountMinusOne = B.CreateSub( 3248 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3249 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3250 "cast.cmo"); 3251 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3252 Escape->setName("ind.escape"); 3253 MissingVals[UI] = Escape; 3254 } 3255 } 3256 3257 for (auto &I : MissingVals) { 3258 PHINode *PHI = cast<PHINode>(I.first); 3259 // One corner case we have to handle is two IVs "chasing" each-other, 3260 // that is %IV2 = phi [...], [ %IV1, %latch ] 3261 // In this case, if IV1 has an external use, we need to avoid adding both 3262 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3263 // don't already have an incoming value for the middle block. 3264 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3265 PHI->addIncoming(I.second, MiddleBlock); 3266 } 3267 } 3268 3269 namespace { 3270 struct CSEDenseMapInfo { 3271 static bool canHandle(Instruction *I) { 3272 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3273 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3274 } 3275 static inline Instruction *getEmptyKey() { 3276 return DenseMapInfo<Instruction *>::getEmptyKey(); 3277 } 3278 static inline Instruction *getTombstoneKey() { 3279 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3280 } 3281 static unsigned getHashValue(Instruction *I) { 3282 assert(canHandle(I) && "Unknown instruction!"); 3283 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3284 I->value_op_end())); 3285 } 3286 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3287 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3288 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3289 return LHS == RHS; 3290 return LHS->isIdenticalTo(RHS); 3291 } 3292 }; 3293 } 3294 3295 ///\brief Perform cse of induction variable instructions. 3296 static void cse(BasicBlock *BB) { 3297 // Perform simple cse. 3298 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3299 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3300 Instruction *In = &*I++; 3301 3302 if (!CSEDenseMapInfo::canHandle(In)) 3303 continue; 3304 3305 // Check if we can replace this instruction with any of the 3306 // visited instructions. 3307 if (Instruction *V = CSEMap.lookup(In)) { 3308 In->replaceAllUsesWith(V); 3309 In->eraseFromParent(); 3310 continue; 3311 } 3312 3313 CSEMap[In] = In; 3314 } 3315 } 3316 3317 /// \brief Adds a 'fast' flag to floating point operations. 3318 static Value *addFastMathFlag(Value *V) { 3319 if (isa<FPMathOperator>(V)) { 3320 FastMathFlags Flags; 3321 Flags.setUnsafeAlgebra(); 3322 cast<Instruction>(V)->setFastMathFlags(Flags); 3323 } 3324 return V; 3325 } 3326 3327 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3328 /// the result needs to be inserted and/or extracted from vectors. 3329 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3330 const TargetTransformInfo &TTI) { 3331 if (Ty->isVoidTy()) 3332 return 0; 3333 3334 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3335 unsigned Cost = 0; 3336 3337 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3338 if (Insert) 3339 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3340 if (Extract) 3341 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3342 } 3343 3344 return Cost; 3345 } 3346 3347 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3348 // Return the cost of the instruction, including scalarization overhead if it's 3349 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3350 // i.e. either vector version isn't available, or is too expensive. 3351 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3352 const TargetTransformInfo &TTI, 3353 const TargetLibraryInfo *TLI, 3354 bool &NeedToScalarize) { 3355 Function *F = CI->getCalledFunction(); 3356 StringRef FnName = CI->getCalledFunction()->getName(); 3357 Type *ScalarRetTy = CI->getType(); 3358 SmallVector<Type *, 4> Tys, ScalarTys; 3359 for (auto &ArgOp : CI->arg_operands()) 3360 ScalarTys.push_back(ArgOp->getType()); 3361 3362 // Estimate cost of scalarized vector call. The source operands are assumed 3363 // to be vectors, so we need to extract individual elements from there, 3364 // execute VF scalar calls, and then gather the result into the vector return 3365 // value. 3366 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3367 if (VF == 1) 3368 return ScalarCallCost; 3369 3370 // Compute corresponding vector type for return value and arguments. 3371 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3372 for (Type *ScalarTy : ScalarTys) 3373 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3374 3375 // Compute costs of unpacking argument values for the scalar calls and 3376 // packing the return values to a vector. 3377 unsigned ScalarizationCost = 3378 getScalarizationOverhead(RetTy, true, false, TTI); 3379 for (Type *Ty : Tys) 3380 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); 3381 3382 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3383 3384 // If we can't emit a vector call for this function, then the currently found 3385 // cost is the cost we need to return. 3386 NeedToScalarize = true; 3387 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3388 return Cost; 3389 3390 // If the corresponding vector cost is cheaper, return its cost. 3391 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3392 if (VectorCallCost < Cost) { 3393 NeedToScalarize = false; 3394 return VectorCallCost; 3395 } 3396 return Cost; 3397 } 3398 3399 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3400 // factor VF. Return the cost of the instruction, including scalarization 3401 // overhead if it's needed. 3402 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3403 const TargetTransformInfo &TTI, 3404 const TargetLibraryInfo *TLI) { 3405 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3406 assert(ID && "Expected intrinsic call!"); 3407 3408 Type *RetTy = ToVectorTy(CI->getType(), VF); 3409 SmallVector<Type *, 4> Tys; 3410 for (Value *ArgOperand : CI->arg_operands()) 3411 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3412 3413 FastMathFlags FMF; 3414 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3415 FMF = FPMO->getFastMathFlags(); 3416 3417 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3418 } 3419 3420 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3421 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3422 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3423 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3424 } 3425 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3426 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3427 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3428 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3429 } 3430 3431 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3432 // For every instruction `I` in MinBWs, truncate the operands, create a 3433 // truncated version of `I` and reextend its result. InstCombine runs 3434 // later and will remove any ext/trunc pairs. 3435 // 3436 SmallPtrSet<Value *, 4> Erased; 3437 for (const auto &KV : *MinBWs) { 3438 VectorParts &Parts = WidenMap.get(KV.first); 3439 for (Value *&I : Parts) { 3440 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3441 continue; 3442 Type *OriginalTy = I->getType(); 3443 Type *ScalarTruncatedTy = 3444 IntegerType::get(OriginalTy->getContext(), KV.second); 3445 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3446 OriginalTy->getVectorNumElements()); 3447 if (TruncatedTy == OriginalTy) 3448 continue; 3449 3450 IRBuilder<> B(cast<Instruction>(I)); 3451 auto ShrinkOperand = [&](Value *V) -> Value * { 3452 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3453 if (ZI->getSrcTy() == TruncatedTy) 3454 return ZI->getOperand(0); 3455 return B.CreateZExtOrTrunc(V, TruncatedTy); 3456 }; 3457 3458 // The actual instruction modification depends on the instruction type, 3459 // unfortunately. 3460 Value *NewI = nullptr; 3461 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3462 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3463 ShrinkOperand(BO->getOperand(1))); 3464 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3465 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3466 NewI = 3467 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3468 ShrinkOperand(CI->getOperand(1))); 3469 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3470 NewI = B.CreateSelect(SI->getCondition(), 3471 ShrinkOperand(SI->getTrueValue()), 3472 ShrinkOperand(SI->getFalseValue())); 3473 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3474 switch (CI->getOpcode()) { 3475 default: 3476 llvm_unreachable("Unhandled cast!"); 3477 case Instruction::Trunc: 3478 NewI = ShrinkOperand(CI->getOperand(0)); 3479 break; 3480 case Instruction::SExt: 3481 NewI = B.CreateSExtOrTrunc( 3482 CI->getOperand(0), 3483 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3484 break; 3485 case Instruction::ZExt: 3486 NewI = B.CreateZExtOrTrunc( 3487 CI->getOperand(0), 3488 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3489 break; 3490 } 3491 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3492 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3493 auto *O0 = B.CreateZExtOrTrunc( 3494 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3495 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3496 auto *O1 = B.CreateZExtOrTrunc( 3497 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3498 3499 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3500 } else if (isa<LoadInst>(I)) { 3501 // Don't do anything with the operands, just extend the result. 3502 continue; 3503 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3504 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3505 auto *O0 = B.CreateZExtOrTrunc( 3506 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3507 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3508 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3509 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3510 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3511 auto *O0 = B.CreateZExtOrTrunc( 3512 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3513 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3514 } else { 3515 llvm_unreachable("Unhandled instruction type!"); 3516 } 3517 3518 // Lastly, extend the result. 3519 NewI->takeName(cast<Instruction>(I)); 3520 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3521 I->replaceAllUsesWith(Res); 3522 cast<Instruction>(I)->eraseFromParent(); 3523 Erased.insert(I); 3524 I = Res; 3525 } 3526 } 3527 3528 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3529 for (const auto &KV : *MinBWs) { 3530 VectorParts &Parts = WidenMap.get(KV.first); 3531 for (Value *&I : Parts) { 3532 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3533 if (Inst && Inst->use_empty()) { 3534 Value *NewI = Inst->getOperand(0); 3535 Inst->eraseFromParent(); 3536 I = NewI; 3537 } 3538 } 3539 } 3540 } 3541 3542 void InnerLoopVectorizer::vectorizeLoop() { 3543 //===------------------------------------------------===// 3544 // 3545 // Notice: any optimization or new instruction that go 3546 // into the code below should be also be implemented in 3547 // the cost-model. 3548 // 3549 //===------------------------------------------------===// 3550 Constant *Zero = Builder.getInt32(0); 3551 3552 // In order to support recurrences we need to be able to vectorize Phi nodes. 3553 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3554 // we create a new vector PHI node with no incoming edges. We use this value 3555 // when we vectorize all of the instructions that use the PHI. Next, after 3556 // all of the instructions in the block are complete we add the new incoming 3557 // edges to the PHI. At this point all of the instructions in the basic block 3558 // are vectorized, so we can use them to construct the PHI. 3559 PhiVector PHIsToFix; 3560 3561 // Scan the loop in a topological order to ensure that defs are vectorized 3562 // before users. 3563 LoopBlocksDFS DFS(OrigLoop); 3564 DFS.perform(LI); 3565 3566 // Vectorize all of the blocks in the original loop. 3567 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3568 vectorizeBlockInLoop(BB, &PHIsToFix); 3569 3570 // Insert truncates and extends for any truncated instructions as hints to 3571 // InstCombine. 3572 if (VF > 1) 3573 truncateToMinimalBitwidths(); 3574 3575 // At this point every instruction in the original loop is widened to a 3576 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3577 // nodes are currently empty because we did not want to introduce cycles. 3578 // This is the second stage of vectorizing recurrences. 3579 for (PHINode *Phi : PHIsToFix) { 3580 assert(Phi && "Unable to recover vectorized PHI"); 3581 3582 // Handle first-order recurrences that need to be fixed. 3583 if (Legal->isFirstOrderRecurrence(Phi)) { 3584 fixFirstOrderRecurrence(Phi); 3585 continue; 3586 } 3587 3588 // If the phi node is not a first-order recurrence, it must be a reduction. 3589 // Get it's reduction variable descriptor. 3590 assert(Legal->isReductionVariable(Phi) && 3591 "Unable to find the reduction variable"); 3592 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3593 3594 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3595 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3596 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3597 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3598 RdxDesc.getMinMaxRecurrenceKind(); 3599 setDebugLocFromInst(Builder, ReductionStartValue); 3600 3601 // We need to generate a reduction vector from the incoming scalar. 3602 // To do so, we need to generate the 'identity' vector and override 3603 // one of the elements with the incoming scalar reduction. We need 3604 // to do it in the vector-loop preheader. 3605 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3606 3607 // This is the vector-clone of the value that leaves the loop. 3608 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3609 Type *VecTy = VectorExit[0]->getType(); 3610 3611 // Find the reduction identity variable. Zero for addition, or, xor, 3612 // one for multiplication, -1 for And. 3613 Value *Identity; 3614 Value *VectorStart; 3615 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3616 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3617 // MinMax reduction have the start value as their identify. 3618 if (VF == 1) { 3619 VectorStart = Identity = ReductionStartValue; 3620 } else { 3621 VectorStart = Identity = 3622 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3623 } 3624 } else { 3625 // Handle other reduction kinds: 3626 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3627 RK, VecTy->getScalarType()); 3628 if (VF == 1) { 3629 Identity = Iden; 3630 // This vector is the Identity vector where the first element is the 3631 // incoming scalar reduction. 3632 VectorStart = ReductionStartValue; 3633 } else { 3634 Identity = ConstantVector::getSplat(VF, Iden); 3635 3636 // This vector is the Identity vector where the first element is the 3637 // incoming scalar reduction. 3638 VectorStart = 3639 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3640 } 3641 } 3642 3643 // Fix the vector-loop phi. 3644 3645 // Reductions do not have to start at zero. They can start with 3646 // any loop invariant values. 3647 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3648 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3649 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3650 VectorParts &Val = getVectorValue(LoopVal); 3651 for (unsigned part = 0; part < UF; ++part) { 3652 // Make sure to add the reduction stat value only to the 3653 // first unroll part. 3654 Value *StartVal = (part == 0) ? VectorStart : Identity; 3655 cast<PHINode>(VecRdxPhi[part]) 3656 ->addIncoming(StartVal, LoopVectorPreHeader); 3657 cast<PHINode>(VecRdxPhi[part]) 3658 ->addIncoming(Val[part], LoopVectorBody); 3659 } 3660 3661 // Before each round, move the insertion point right between 3662 // the PHIs and the values we are going to write. 3663 // This allows us to write both PHINodes and the extractelement 3664 // instructions. 3665 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3666 3667 VectorParts RdxParts = getVectorValue(LoopExitInst); 3668 setDebugLocFromInst(Builder, LoopExitInst); 3669 3670 // If the vector reduction can be performed in a smaller type, we truncate 3671 // then extend the loop exit value to enable InstCombine to evaluate the 3672 // entire expression in the smaller type. 3673 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3674 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3675 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3676 for (unsigned part = 0; part < UF; ++part) { 3677 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3678 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3679 : Builder.CreateZExt(Trunc, VecTy); 3680 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3681 UI != RdxParts[part]->user_end();) 3682 if (*UI != Trunc) { 3683 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3684 RdxParts[part] = Extnd; 3685 } else { 3686 ++UI; 3687 } 3688 } 3689 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3690 for (unsigned part = 0; part < UF; ++part) 3691 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3692 } 3693 3694 // Reduce all of the unrolled parts into a single vector. 3695 Value *ReducedPartRdx = RdxParts[0]; 3696 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3697 setDebugLocFromInst(Builder, ReducedPartRdx); 3698 for (unsigned part = 1; part < UF; ++part) { 3699 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3700 // Floating point operations had to be 'fast' to enable the reduction. 3701 ReducedPartRdx = addFastMathFlag( 3702 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3703 ReducedPartRdx, "bin.rdx")); 3704 else 3705 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3706 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3707 } 3708 3709 if (VF > 1) { 3710 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3711 // and vector ops, reducing the set of values being computed by half each 3712 // round. 3713 assert(isPowerOf2_32(VF) && 3714 "Reduction emission only supported for pow2 vectors!"); 3715 Value *TmpVec = ReducedPartRdx; 3716 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3717 for (unsigned i = VF; i != 1; i >>= 1) { 3718 // Move the upper half of the vector to the lower half. 3719 for (unsigned j = 0; j != i / 2; ++j) 3720 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3721 3722 // Fill the rest of the mask with undef. 3723 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3724 UndefValue::get(Builder.getInt32Ty())); 3725 3726 Value *Shuf = Builder.CreateShuffleVector( 3727 TmpVec, UndefValue::get(TmpVec->getType()), 3728 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3729 3730 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3731 // Floating point operations had to be 'fast' to enable the reduction. 3732 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3733 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3734 else 3735 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3736 TmpVec, Shuf); 3737 } 3738 3739 // The result is in the first element of the vector. 3740 ReducedPartRdx = 3741 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3742 3743 // If the reduction can be performed in a smaller type, we need to extend 3744 // the reduction to the wider type before we branch to the original loop. 3745 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3746 ReducedPartRdx = 3747 RdxDesc.isSigned() 3748 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3749 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3750 } 3751 3752 // Create a phi node that merges control-flow from the backedge-taken check 3753 // block and the middle block. 3754 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3755 LoopScalarPreHeader->getTerminator()); 3756 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3757 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3758 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3759 3760 // Now, we need to fix the users of the reduction variable 3761 // inside and outside of the scalar remainder loop. 3762 // We know that the loop is in LCSSA form. We need to update the 3763 // PHI nodes in the exit blocks. 3764 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3765 LEE = LoopExitBlock->end(); 3766 LEI != LEE; ++LEI) { 3767 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3768 if (!LCSSAPhi) 3769 break; 3770 3771 // All PHINodes need to have a single entry edge, or two if 3772 // we already fixed them. 3773 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3774 3775 // We found our reduction value exit-PHI. Update it with the 3776 // incoming bypass edge. 3777 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3778 // Add an edge coming from the bypass. 3779 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3780 break; 3781 } 3782 } // end of the LCSSA phi scan. 3783 3784 // Fix the scalar loop reduction variable with the incoming reduction sum 3785 // from the vector body and from the backedge value. 3786 int IncomingEdgeBlockIdx = 3787 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3788 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3789 // Pick the other block. 3790 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3791 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3792 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3793 } // end of for each Phi in PHIsToFix. 3794 3795 fixLCSSAPHIs(); 3796 3797 // Make sure DomTree is updated. 3798 updateAnalysis(); 3799 3800 // Predicate any stores. 3801 for (auto KV : PredicatedStores) { 3802 BasicBlock::iterator I(KV.first); 3803 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3804 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3805 /*BranchWeights=*/nullptr, DT, LI); 3806 I->moveBefore(T); 3807 I->getParent()->setName("pred.store.if"); 3808 BB->setName("pred.store.continue"); 3809 } 3810 DEBUG(DT->verifyDomTree()); 3811 // Remove redundant induction instructions. 3812 cse(LoopVectorBody); 3813 } 3814 3815 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3816 3817 // This is the second phase of vectorizing first-order recurrences. An 3818 // overview of the transformation is described below. Suppose we have the 3819 // following loop. 3820 // 3821 // for (int i = 0; i < n; ++i) 3822 // b[i] = a[i] - a[i - 1]; 3823 // 3824 // There is a first-order recurrence on "a". For this loop, the shorthand 3825 // scalar IR looks like: 3826 // 3827 // scalar.ph: 3828 // s_init = a[-1] 3829 // br scalar.body 3830 // 3831 // scalar.body: 3832 // i = phi [0, scalar.ph], [i+1, scalar.body] 3833 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3834 // s2 = a[i] 3835 // b[i] = s2 - s1 3836 // br cond, scalar.body, ... 3837 // 3838 // In this example, s1 is a recurrence because it's value depends on the 3839 // previous iteration. In the first phase of vectorization, we created a 3840 // temporary value for s1. We now complete the vectorization and produce the 3841 // shorthand vector IR shown below (for VF = 4, UF = 1). 3842 // 3843 // vector.ph: 3844 // v_init = vector(..., ..., ..., a[-1]) 3845 // br vector.body 3846 // 3847 // vector.body 3848 // i = phi [0, vector.ph], [i+4, vector.body] 3849 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3850 // v2 = a[i, i+1, i+2, i+3]; 3851 // v3 = vector(v1(3), v2(0, 1, 2)) 3852 // b[i, i+1, i+2, i+3] = v2 - v3 3853 // br cond, vector.body, middle.block 3854 // 3855 // middle.block: 3856 // x = v2(3) 3857 // br scalar.ph 3858 // 3859 // scalar.ph: 3860 // s_init = phi [x, middle.block], [a[-1], otherwise] 3861 // br scalar.body 3862 // 3863 // After execution completes the vector loop, we extract the next value of 3864 // the recurrence (x) to use as the initial value in the scalar loop. 3865 3866 // Get the original loop preheader and single loop latch. 3867 auto *Preheader = OrigLoop->getLoopPreheader(); 3868 auto *Latch = OrigLoop->getLoopLatch(); 3869 3870 // Get the initial and previous values of the scalar recurrence. 3871 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3872 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3873 3874 // Create a vector from the initial value. 3875 auto *VectorInit = ScalarInit; 3876 if (VF > 1) { 3877 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3878 VectorInit = Builder.CreateInsertElement( 3879 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3880 Builder.getInt32(VF - 1), "vector.recur.init"); 3881 } 3882 3883 // We constructed a temporary phi node in the first phase of vectorization. 3884 // This phi node will eventually be deleted. 3885 auto &PhiParts = getVectorValue(Phi); 3886 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3887 3888 // Create a phi node for the new recurrence. The current value will either be 3889 // the initial value inserted into a vector or loop-varying vector value. 3890 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3891 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3892 3893 // Get the vectorized previous value. We ensured the previous values was an 3894 // instruction when detecting the recurrence. 3895 auto &PreviousParts = getVectorValue(Previous); 3896 3897 // Set the insertion point to be after this instruction. We ensured the 3898 // previous value dominated all uses of the phi when detecting the 3899 // recurrence. 3900 Builder.SetInsertPoint( 3901 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3902 3903 // We will construct a vector for the recurrence by combining the values for 3904 // the current and previous iterations. This is the required shuffle mask. 3905 SmallVector<Constant *, 8> ShuffleMask(VF); 3906 ShuffleMask[0] = Builder.getInt32(VF - 1); 3907 for (unsigned I = 1; I < VF; ++I) 3908 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3909 3910 // The vector from which to take the initial value for the current iteration 3911 // (actual or unrolled). Initially, this is the vector phi node. 3912 Value *Incoming = VecPhi; 3913 3914 // Shuffle the current and previous vector and update the vector parts. 3915 for (unsigned Part = 0; Part < UF; ++Part) { 3916 auto *Shuffle = 3917 VF > 1 3918 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3919 ConstantVector::get(ShuffleMask)) 3920 : Incoming; 3921 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3922 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3923 PhiParts[Part] = Shuffle; 3924 Incoming = PreviousParts[Part]; 3925 } 3926 3927 // Fix the latch value of the new recurrence in the vector loop. 3928 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3929 3930 // Extract the last vector element in the middle block. This will be the 3931 // initial value for the recurrence when jumping to the scalar loop. 3932 auto *Extract = Incoming; 3933 if (VF > 1) { 3934 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3935 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3936 "vector.recur.extract"); 3937 } 3938 3939 // Fix the initial value of the original recurrence in the scalar loop. 3940 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3941 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3942 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3943 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3944 Start->addIncoming(Incoming, BB); 3945 } 3946 3947 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3948 Phi->setName("scalar.recur"); 3949 3950 // Finally, fix users of the recurrence outside the loop. The users will need 3951 // either the last value of the scalar recurrence or the last value of the 3952 // vector recurrence we extracted in the middle block. Since the loop is in 3953 // LCSSA form, we just need to find the phi node for the original scalar 3954 // recurrence in the exit block, and then add an edge for the middle block. 3955 for (auto &I : *LoopExitBlock) { 3956 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3957 if (!LCSSAPhi) 3958 break; 3959 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3960 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3961 break; 3962 } 3963 } 3964 } 3965 3966 void InnerLoopVectorizer::fixLCSSAPHIs() { 3967 for (Instruction &LEI : *LoopExitBlock) { 3968 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 3969 if (!LCSSAPhi) 3970 break; 3971 if (LCSSAPhi->getNumIncomingValues() == 1) 3972 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3973 LoopMiddleBlock); 3974 } 3975 } 3976 3977 InnerLoopVectorizer::VectorParts 3978 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3979 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3980 "Invalid edge"); 3981 3982 // Look for cached value. 3983 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 3984 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3985 if (ECEntryIt != MaskCache.end()) 3986 return ECEntryIt->second; 3987 3988 VectorParts SrcMask = createBlockInMask(Src); 3989 3990 // The terminator has to be a branch inst! 3991 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3992 assert(BI && "Unexpected terminator found"); 3993 3994 if (BI->isConditional()) { 3995 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3996 3997 if (BI->getSuccessor(0) != Dst) 3998 for (unsigned part = 0; part < UF; ++part) 3999 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4000 4001 for (unsigned part = 0; part < UF; ++part) 4002 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4003 4004 MaskCache[Edge] = EdgeMask; 4005 return EdgeMask; 4006 } 4007 4008 MaskCache[Edge] = SrcMask; 4009 return SrcMask; 4010 } 4011 4012 InnerLoopVectorizer::VectorParts 4013 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4014 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4015 4016 // Loop incoming mask is all-one. 4017 if (OrigLoop->getHeader() == BB) { 4018 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4019 return getVectorValue(C); 4020 } 4021 4022 // This is the block mask. We OR all incoming edges, and with zero. 4023 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4024 VectorParts BlockMask = getVectorValue(Zero); 4025 4026 // For each pred: 4027 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4028 VectorParts EM = createEdgeMask(*it, BB); 4029 for (unsigned part = 0; part < UF; ++part) 4030 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4031 } 4032 4033 return BlockMask; 4034 } 4035 4036 void InnerLoopVectorizer::widenPHIInstruction( 4037 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 4038 unsigned VF, PhiVector *PV) { 4039 PHINode *P = cast<PHINode>(PN); 4040 // Handle recurrences. 4041 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4042 for (unsigned part = 0; part < UF; ++part) { 4043 // This is phase one of vectorizing PHIs. 4044 Type *VecTy = 4045 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4046 Entry[part] = PHINode::Create( 4047 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4048 } 4049 PV->push_back(P); 4050 return; 4051 } 4052 4053 setDebugLocFromInst(Builder, P); 4054 // Check for PHI nodes that are lowered to vector selects. 4055 if (P->getParent() != OrigLoop->getHeader()) { 4056 // We know that all PHIs in non-header blocks are converted into 4057 // selects, so we don't have to worry about the insertion order and we 4058 // can just use the builder. 4059 // At this point we generate the predication tree. There may be 4060 // duplications since this is a simple recursive scan, but future 4061 // optimizations will clean it up. 4062 4063 unsigned NumIncoming = P->getNumIncomingValues(); 4064 4065 // Generate a sequence of selects of the form: 4066 // SELECT(Mask3, In3, 4067 // SELECT(Mask2, In2, 4068 // ( ...))) 4069 for (unsigned In = 0; In < NumIncoming; In++) { 4070 VectorParts Cond = 4071 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4072 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4073 4074 for (unsigned part = 0; part < UF; ++part) { 4075 // We might have single edge PHIs (blocks) - use an identity 4076 // 'select' for the first PHI operand. 4077 if (In == 0) 4078 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4079 else 4080 // Select between the current value and the previous incoming edge 4081 // based on the incoming mask. 4082 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4083 "predphi"); 4084 } 4085 } 4086 return; 4087 } 4088 4089 // This PHINode must be an induction variable. 4090 // Make sure that we know about it. 4091 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4092 4093 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4094 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4095 4096 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4097 // which can be found from the original scalar operations. 4098 switch (II.getKind()) { 4099 case InductionDescriptor::IK_NoInduction: 4100 llvm_unreachable("Unknown induction"); 4101 case InductionDescriptor::IK_IntInduction: 4102 return widenIntInduction(P, Entry); 4103 case InductionDescriptor::IK_PtrInduction: 4104 // Handle the pointer induction variable case. 4105 assert(P->getType()->isPointerTy() && "Unexpected type."); 4106 // This is the normalized GEP that starts counting at zero. 4107 Value *PtrInd = Induction; 4108 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4109 // This is the vector of results. Notice that we don't generate 4110 // vector geps because scalar geps result in better code. 4111 for (unsigned part = 0; part < UF; ++part) { 4112 if (VF == 1) { 4113 int EltIndex = part; 4114 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4115 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4116 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4117 SclrGep->setName("next.gep"); 4118 Entry[part] = SclrGep; 4119 continue; 4120 } 4121 4122 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4123 for (unsigned int i = 0; i < VF; ++i) { 4124 int EltIndex = i + part * VF; 4125 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4126 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4127 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4128 SclrGep->setName("next.gep"); 4129 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4130 Builder.getInt32(i), "insert.gep"); 4131 } 4132 Entry[part] = VecVal; 4133 } 4134 return; 4135 } 4136 } 4137 4138 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4139 // For each instruction in the old loop. 4140 for (Instruction &I : *BB) { 4141 VectorParts &Entry = WidenMap.get(&I); 4142 4143 switch (I.getOpcode()) { 4144 case Instruction::Br: 4145 // Nothing to do for PHIs and BR, since we already took care of the 4146 // loop control flow instructions. 4147 continue; 4148 case Instruction::PHI: { 4149 // Vectorize PHINodes. 4150 widenPHIInstruction(&I, Entry, UF, VF, PV); 4151 continue; 4152 } // End of PHI. 4153 4154 case Instruction::Add: 4155 case Instruction::FAdd: 4156 case Instruction::Sub: 4157 case Instruction::FSub: 4158 case Instruction::Mul: 4159 case Instruction::FMul: 4160 case Instruction::UDiv: 4161 case Instruction::SDiv: 4162 case Instruction::FDiv: 4163 case Instruction::URem: 4164 case Instruction::SRem: 4165 case Instruction::FRem: 4166 case Instruction::Shl: 4167 case Instruction::LShr: 4168 case Instruction::AShr: 4169 case Instruction::And: 4170 case Instruction::Or: 4171 case Instruction::Xor: { 4172 // Just widen binops. 4173 auto *BinOp = cast<BinaryOperator>(&I); 4174 setDebugLocFromInst(Builder, BinOp); 4175 VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4176 VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4177 4178 // Use this vector value for all users of the original instruction. 4179 for (unsigned Part = 0; Part < UF; ++Part) { 4180 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4181 4182 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4183 VecOp->copyIRFlags(BinOp); 4184 4185 Entry[Part] = V; 4186 } 4187 4188 addMetadata(Entry, BinOp); 4189 break; 4190 } 4191 case Instruction::Select: { 4192 // Widen selects. 4193 // If the selector is loop invariant we can create a select 4194 // instruction with a scalar condition. Otherwise, use vector-select. 4195 auto *SE = PSE.getSE(); 4196 bool InvariantCond = 4197 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4198 setDebugLocFromInst(Builder, &I); 4199 4200 // The condition can be loop invariant but still defined inside the 4201 // loop. This means that we can't just use the original 'cond' value. 4202 // We have to take the 'vectorized' value and pick the first lane. 4203 // Instcombine will make this a no-op. 4204 VectorParts &Cond = getVectorValue(I.getOperand(0)); 4205 VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4206 VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4207 4208 Value *ScalarCond = 4209 (VF == 1) 4210 ? Cond[0] 4211 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4212 4213 for (unsigned Part = 0; Part < UF; ++Part) { 4214 Entry[Part] = Builder.CreateSelect( 4215 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4216 } 4217 4218 addMetadata(Entry, &I); 4219 break; 4220 } 4221 4222 case Instruction::ICmp: 4223 case Instruction::FCmp: { 4224 // Widen compares. Generate vector compares. 4225 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4226 auto *Cmp = dyn_cast<CmpInst>(&I); 4227 setDebugLocFromInst(Builder, Cmp); 4228 VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4229 VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4230 for (unsigned Part = 0; Part < UF; ++Part) { 4231 Value *C = nullptr; 4232 if (FCmp) { 4233 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4234 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4235 } else { 4236 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4237 } 4238 Entry[Part] = C; 4239 } 4240 4241 addMetadata(Entry, &I); 4242 break; 4243 } 4244 4245 case Instruction::Store: 4246 case Instruction::Load: 4247 vectorizeMemoryInstruction(&I); 4248 break; 4249 case Instruction::ZExt: 4250 case Instruction::SExt: 4251 case Instruction::FPToUI: 4252 case Instruction::FPToSI: 4253 case Instruction::FPExt: 4254 case Instruction::PtrToInt: 4255 case Instruction::IntToPtr: 4256 case Instruction::SIToFP: 4257 case Instruction::UIToFP: 4258 case Instruction::Trunc: 4259 case Instruction::FPTrunc: 4260 case Instruction::BitCast: { 4261 auto *CI = dyn_cast<CastInst>(&I); 4262 setDebugLocFromInst(Builder, CI); 4263 4264 // Optimize the special case where the source is a constant integer 4265 // induction variable. Notice that we can only optimize the 'trunc' case 4266 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4267 // (c) other casts depend on pointer size. 4268 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4269 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4270 ID.getConstIntStepValue()) { 4271 widenIntInduction(OldInduction, Entry, cast<TruncInst>(CI)); 4272 addMetadata(Entry, &I); 4273 break; 4274 } 4275 4276 /// Vectorize casts. 4277 Type *DestTy = 4278 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4279 4280 VectorParts &A = getVectorValue(CI->getOperand(0)); 4281 for (unsigned Part = 0; Part < UF; ++Part) 4282 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4283 addMetadata(Entry, &I); 4284 break; 4285 } 4286 4287 case Instruction::Call: { 4288 // Ignore dbg intrinsics. 4289 if (isa<DbgInfoIntrinsic>(I)) 4290 break; 4291 setDebugLocFromInst(Builder, &I); 4292 4293 Module *M = BB->getParent()->getParent(); 4294 auto *CI = cast<CallInst>(&I); 4295 4296 StringRef FnName = CI->getCalledFunction()->getName(); 4297 Function *F = CI->getCalledFunction(); 4298 Type *RetTy = ToVectorTy(CI->getType(), VF); 4299 SmallVector<Type *, 4> Tys; 4300 for (Value *ArgOperand : CI->arg_operands()) 4301 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4302 4303 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4304 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4305 ID == Intrinsic::lifetime_start)) { 4306 scalarizeInstruction(&I); 4307 break; 4308 } 4309 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4310 // version of the instruction. 4311 // Is it beneficial to perform intrinsic call compared to lib call? 4312 bool NeedToScalarize; 4313 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4314 bool UseVectorIntrinsic = 4315 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4316 if (!UseVectorIntrinsic && NeedToScalarize) { 4317 scalarizeInstruction(&I); 4318 break; 4319 } 4320 4321 for (unsigned Part = 0; Part < UF; ++Part) { 4322 SmallVector<Value *, 4> Args; 4323 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4324 Value *Arg = CI->getArgOperand(i); 4325 // Some intrinsics have a scalar argument - don't replace it with a 4326 // vector. 4327 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4328 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4329 Arg = VectorArg[Part]; 4330 } 4331 Args.push_back(Arg); 4332 } 4333 4334 Function *VectorF; 4335 if (UseVectorIntrinsic) { 4336 // Use vector version of the intrinsic. 4337 Type *TysForDecl[] = {CI->getType()}; 4338 if (VF > 1) 4339 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4340 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4341 } else { 4342 // Use vector version of the library call. 4343 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4344 assert(!VFnName.empty() && "Vector function name is empty."); 4345 VectorF = M->getFunction(VFnName); 4346 if (!VectorF) { 4347 // Generate a declaration 4348 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4349 VectorF = 4350 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4351 VectorF->copyAttributesFrom(F); 4352 } 4353 } 4354 assert(VectorF && "Can't create vector function."); 4355 4356 SmallVector<OperandBundleDef, 1> OpBundles; 4357 CI->getOperandBundlesAsDefs(OpBundles); 4358 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4359 4360 if (isa<FPMathOperator>(V)) 4361 V->copyFastMathFlags(CI); 4362 4363 Entry[Part] = V; 4364 } 4365 4366 addMetadata(Entry, &I); 4367 break; 4368 } 4369 4370 default: 4371 // All other instructions are unsupported. Scalarize them. 4372 scalarizeInstruction(&I); 4373 break; 4374 } // end of switch. 4375 } // end of for_each instr. 4376 } 4377 4378 void InnerLoopVectorizer::updateAnalysis() { 4379 // Forget the original basic block. 4380 PSE.getSE()->forgetLoop(OrigLoop); 4381 4382 // Update the dominator tree information. 4383 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4384 "Entry does not dominate exit."); 4385 4386 // We don't predicate stores by this point, so the vector body should be a 4387 // single loop. 4388 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4389 4390 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4391 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4392 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4393 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4394 4395 DEBUG(DT->verifyDomTree()); 4396 } 4397 4398 /// \brief Check whether it is safe to if-convert this phi node. 4399 /// 4400 /// Phi nodes with constant expressions that can trap are not safe to if 4401 /// convert. 4402 static bool canIfConvertPHINodes(BasicBlock *BB) { 4403 for (Instruction &I : *BB) { 4404 auto *Phi = dyn_cast<PHINode>(&I); 4405 if (!Phi) 4406 return true; 4407 for (Value *V : Phi->incoming_values()) 4408 if (auto *C = dyn_cast<Constant>(V)) 4409 if (C->canTrap()) 4410 return false; 4411 } 4412 return true; 4413 } 4414 4415 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4416 if (!EnableIfConversion) { 4417 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4418 return false; 4419 } 4420 4421 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4422 4423 // A list of pointers that we can safely read and write to. 4424 SmallPtrSet<Value *, 8> SafePointes; 4425 4426 // Collect safe addresses. 4427 for (BasicBlock *BB : TheLoop->blocks()) { 4428 if (blockNeedsPredication(BB)) 4429 continue; 4430 4431 for (Instruction &I : *BB) { 4432 if (auto *LI = dyn_cast<LoadInst>(&I)) 4433 SafePointes.insert(LI->getPointerOperand()); 4434 else if (auto *SI = dyn_cast<StoreInst>(&I)) 4435 SafePointes.insert(SI->getPointerOperand()); 4436 } 4437 } 4438 4439 // Collect the blocks that need predication. 4440 BasicBlock *Header = TheLoop->getHeader(); 4441 for (BasicBlock *BB : TheLoop->blocks()) { 4442 // We don't support switch statements inside loops. 4443 if (!isa<BranchInst>(BB->getTerminator())) { 4444 emitAnalysis(VectorizationReport(BB->getTerminator()) 4445 << "loop contains a switch statement"); 4446 return false; 4447 } 4448 4449 // We must be able to predicate all blocks that need to be predicated. 4450 if (blockNeedsPredication(BB)) { 4451 if (!blockCanBePredicated(BB, SafePointes)) { 4452 emitAnalysis(VectorizationReport(BB->getTerminator()) 4453 << "control flow cannot be substituted for a select"); 4454 return false; 4455 } 4456 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4457 emitAnalysis(VectorizationReport(BB->getTerminator()) 4458 << "control flow cannot be substituted for a select"); 4459 return false; 4460 } 4461 } 4462 4463 // We can if-convert this loop. 4464 return true; 4465 } 4466 4467 bool LoopVectorizationLegality::canVectorize() { 4468 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4469 // be canonicalized. 4470 if (!TheLoop->getLoopPreheader()) { 4471 emitAnalysis(VectorizationReport() 4472 << "loop control flow is not understood by vectorizer"); 4473 return false; 4474 } 4475 4476 // FIXME: The code is currently dead, since the loop gets sent to 4477 // LoopVectorizationLegality is already an innermost loop. 4478 // 4479 // We can only vectorize innermost loops. 4480 if (!TheLoop->empty()) { 4481 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4482 return false; 4483 } 4484 4485 // We must have a single backedge. 4486 if (TheLoop->getNumBackEdges() != 1) { 4487 emitAnalysis(VectorizationReport() 4488 << "loop control flow is not understood by vectorizer"); 4489 return false; 4490 } 4491 4492 // We must have a single exiting block. 4493 if (!TheLoop->getExitingBlock()) { 4494 emitAnalysis(VectorizationReport() 4495 << "loop control flow is not understood by vectorizer"); 4496 return false; 4497 } 4498 4499 // We only handle bottom-tested loops, i.e. loop in which the condition is 4500 // checked at the end of each iteration. With that we can assume that all 4501 // instructions in the loop are executed the same number of times. 4502 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4503 emitAnalysis(VectorizationReport() 4504 << "loop control flow is not understood by vectorizer"); 4505 return false; 4506 } 4507 4508 // We need to have a loop header. 4509 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4510 << '\n'); 4511 4512 // Check if we can if-convert non-single-bb loops. 4513 unsigned NumBlocks = TheLoop->getNumBlocks(); 4514 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4515 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4516 return false; 4517 } 4518 4519 // ScalarEvolution needs to be able to find the exit count. 4520 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4521 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4522 emitAnalysis(VectorizationReport() 4523 << "could not determine number of loop iterations"); 4524 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4525 return false; 4526 } 4527 4528 // Check if we can vectorize the instructions and CFG in this loop. 4529 if (!canVectorizeInstrs()) { 4530 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4531 return false; 4532 } 4533 4534 // Go over each instruction and look at memory deps. 4535 if (!canVectorizeMemory()) { 4536 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4537 return false; 4538 } 4539 4540 // Collect all of the variables that remain uniform after vectorization. 4541 collectLoopUniforms(); 4542 4543 DEBUG(dbgs() << "LV: We can vectorize this loop" 4544 << (LAI->getRuntimePointerChecking()->Need 4545 ? " (with a runtime bound check)" 4546 : "") 4547 << "!\n"); 4548 4549 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4550 4551 // If an override option has been passed in for interleaved accesses, use it. 4552 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4553 UseInterleaved = EnableInterleavedMemAccesses; 4554 4555 // Analyze interleaved memory accesses. 4556 if (UseInterleaved) 4557 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4558 4559 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4560 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4561 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4562 4563 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4564 emitAnalysis(VectorizationReport() 4565 << "Too many SCEV assumptions need to be made and checked " 4566 << "at runtime"); 4567 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4568 return false; 4569 } 4570 4571 // Okay! We can vectorize. At this point we don't have any other mem analysis 4572 // which may limit our maximum vectorization factor, so just return true with 4573 // no restrictions. 4574 return true; 4575 } 4576 4577 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4578 if (Ty->isPointerTy()) 4579 return DL.getIntPtrType(Ty); 4580 4581 // It is possible that char's or short's overflow when we ask for the loop's 4582 // trip count, work around this by changing the type size. 4583 if (Ty->getScalarSizeInBits() < 32) 4584 return Type::getInt32Ty(Ty->getContext()); 4585 4586 return Ty; 4587 } 4588 4589 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4590 Ty0 = convertPointerToIntegerType(DL, Ty0); 4591 Ty1 = convertPointerToIntegerType(DL, Ty1); 4592 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4593 return Ty0; 4594 return Ty1; 4595 } 4596 4597 /// \brief Check that the instruction has outside loop users and is not an 4598 /// identified reduction variable. 4599 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4600 SmallPtrSetImpl<Value *> &AllowedExit) { 4601 // Reduction and Induction instructions are allowed to have exit users. All 4602 // other instructions must not have external users. 4603 if (!AllowedExit.count(Inst)) 4604 // Check that all of the users of the loop are inside the BB. 4605 for (User *U : Inst->users()) { 4606 Instruction *UI = cast<Instruction>(U); 4607 // This user may be a reduction exit value. 4608 if (!TheLoop->contains(UI)) { 4609 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4610 return true; 4611 } 4612 } 4613 return false; 4614 } 4615 4616 void LoopVectorizationLegality::addInductionPhi( 4617 PHINode *Phi, const InductionDescriptor &ID, 4618 SmallPtrSetImpl<Value *> &AllowedExit) { 4619 Inductions[Phi] = ID; 4620 Type *PhiTy = Phi->getType(); 4621 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4622 4623 // Get the widest type. 4624 if (!WidestIndTy) 4625 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4626 else 4627 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4628 4629 // Int inductions are special because we only allow one IV. 4630 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4631 ID.getConstIntStepValue() && 4632 ID.getConstIntStepValue()->isOne() && 4633 isa<Constant>(ID.getStartValue()) && 4634 cast<Constant>(ID.getStartValue())->isNullValue()) { 4635 4636 // Use the phi node with the widest type as induction. Use the last 4637 // one if there are multiple (no good reason for doing this other 4638 // than it is expedient). We've checked that it begins at zero and 4639 // steps by one, so this is a canonical induction variable. 4640 if (!Induction || PhiTy == WidestIndTy) 4641 Induction = Phi; 4642 } 4643 4644 // Both the PHI node itself, and the "post-increment" value feeding 4645 // back into the PHI node may have external users. 4646 AllowedExit.insert(Phi); 4647 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 4648 4649 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4650 return; 4651 } 4652 4653 bool LoopVectorizationLegality::canVectorizeInstrs() { 4654 BasicBlock *Header = TheLoop->getHeader(); 4655 4656 // Look for the attribute signaling the absence of NaNs. 4657 Function &F = *Header->getParent(); 4658 HasFunNoNaNAttr = 4659 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4660 4661 // For each block in the loop. 4662 for (BasicBlock *BB : TheLoop->blocks()) { 4663 // Scan the instructions in the block and look for hazards. 4664 for (Instruction &I : *BB) { 4665 if (auto *Phi = dyn_cast<PHINode>(&I)) { 4666 Type *PhiTy = Phi->getType(); 4667 // Check that this PHI type is allowed. 4668 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4669 !PhiTy->isPointerTy()) { 4670 emitAnalysis(VectorizationReport(Phi) 4671 << "loop control flow is not understood by vectorizer"); 4672 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4673 return false; 4674 } 4675 4676 // If this PHINode is not in the header block, then we know that we 4677 // can convert it to select during if-conversion. No need to check if 4678 // the PHIs in this block are induction or reduction variables. 4679 if (BB != Header) { 4680 // Check that this instruction has no outside users or is an 4681 // identified reduction value with an outside user. 4682 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 4683 continue; 4684 emitAnalysis(VectorizationReport(Phi) 4685 << "value could not be identified as " 4686 "an induction or reduction variable"); 4687 return false; 4688 } 4689 4690 // We only allow if-converted PHIs with exactly two incoming values. 4691 if (Phi->getNumIncomingValues() != 2) { 4692 emitAnalysis(VectorizationReport(Phi) 4693 << "control flow not understood by vectorizer"); 4694 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4695 return false; 4696 } 4697 4698 RecurrenceDescriptor RedDes; 4699 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4700 if (RedDes.hasUnsafeAlgebra()) 4701 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4702 AllowedExit.insert(RedDes.getLoopExitInstr()); 4703 Reductions[Phi] = RedDes; 4704 continue; 4705 } 4706 4707 InductionDescriptor ID; 4708 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4709 addInductionPhi(Phi, ID, AllowedExit); 4710 continue; 4711 } 4712 4713 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4714 FirstOrderRecurrences.insert(Phi); 4715 continue; 4716 } 4717 4718 // As a last resort, coerce the PHI to a AddRec expression 4719 // and re-try classifying it a an induction PHI. 4720 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4721 addInductionPhi(Phi, ID, AllowedExit); 4722 continue; 4723 } 4724 4725 emitAnalysis(VectorizationReport(Phi) 4726 << "value that could not be identified as " 4727 "reduction is used outside the loop"); 4728 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4729 return false; 4730 } // end of PHI handling 4731 4732 // We handle calls that: 4733 // * Are debug info intrinsics. 4734 // * Have a mapping to an IR intrinsic. 4735 // * Have a vector version available. 4736 auto *CI = dyn_cast<CallInst>(&I); 4737 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4738 !isa<DbgInfoIntrinsic>(CI) && 4739 !(CI->getCalledFunction() && TLI && 4740 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4741 emitAnalysis(VectorizationReport(CI) 4742 << "call instruction cannot be vectorized"); 4743 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4744 return false; 4745 } 4746 4747 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4748 // second argument is the same (i.e. loop invariant) 4749 if (CI && hasVectorInstrinsicScalarOpd( 4750 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4751 auto *SE = PSE.getSE(); 4752 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4753 emitAnalysis(VectorizationReport(CI) 4754 << "intrinsic instruction cannot be vectorized"); 4755 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4756 return false; 4757 } 4758 } 4759 4760 // Check that the instruction return type is vectorizable. 4761 // Also, we can't vectorize extractelement instructions. 4762 if ((!VectorType::isValidElementType(I.getType()) && 4763 !I.getType()->isVoidTy()) || 4764 isa<ExtractElementInst>(I)) { 4765 emitAnalysis(VectorizationReport(&I) 4766 << "instruction return type cannot be vectorized"); 4767 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4768 return false; 4769 } 4770 4771 // Check that the stored type is vectorizable. 4772 if (auto *ST = dyn_cast<StoreInst>(&I)) { 4773 Type *T = ST->getValueOperand()->getType(); 4774 if (!VectorType::isValidElementType(T)) { 4775 emitAnalysis(VectorizationReport(ST) 4776 << "store instruction cannot be vectorized"); 4777 return false; 4778 } 4779 4780 // FP instructions can allow unsafe algebra, thus vectorizable by 4781 // non-IEEE-754 compliant SIMD units. 4782 // This applies to floating-point math operations and calls, not memory 4783 // operations, shuffles, or casts, as they don't change precision or 4784 // semantics. 4785 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 4786 !I.hasUnsafeAlgebra()) { 4787 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4788 Hints->setPotentiallyUnsafe(); 4789 } 4790 4791 // Reduction instructions are allowed to have exit users. 4792 // All other instructions must not have external users. 4793 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 4794 emitAnalysis(VectorizationReport(&I) 4795 << "value cannot be used outside the loop"); 4796 return false; 4797 } 4798 4799 } // next instr. 4800 } 4801 4802 if (!Induction) { 4803 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4804 if (Inductions.empty()) { 4805 emitAnalysis(VectorizationReport() 4806 << "loop induction variable could not be identified"); 4807 return false; 4808 } 4809 } 4810 4811 // Now we know the widest induction type, check if our found induction 4812 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4813 // will create another. 4814 if (Induction && WidestIndTy != Induction->getType()) 4815 Induction = nullptr; 4816 4817 return true; 4818 } 4819 4820 void LoopVectorizationLegality::collectLoopUniforms() { 4821 // We now know that the loop is vectorizable! 4822 // Collect variables that will remain uniform after vectorization. 4823 4824 // If V is not an instruction inside the current loop, it is a Value 4825 // outside of the scope which we are interesting in. 4826 auto isOutOfScope = [&](Value *V) -> bool { 4827 Instruction *I = dyn_cast<Instruction>(V); 4828 return (!I || !TheLoop->contains(I)); 4829 }; 4830 4831 SetVector<Instruction *> Worklist; 4832 BasicBlock *Latch = TheLoop->getLoopLatch(); 4833 // Start with the conditional branch. 4834 if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) { 4835 Instruction *Cmp = cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4836 Worklist.insert(Cmp); 4837 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4838 } 4839 4840 // Also add all consecutive pointer values; these values will be uniform 4841 // after vectorization (and subsequent cleanup). 4842 for (auto *BB : TheLoop->blocks()) { 4843 for (auto &I : *BB) { 4844 if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) { 4845 Worklist.insert(&I); 4846 DEBUG(dbgs() << "LV: Found uniform instruction: " << I << "\n"); 4847 } 4848 } 4849 } 4850 4851 // Expand Worklist in topological order: whenever a new instruction 4852 // is added , its users should be either already inside Worklist, or 4853 // out of scope. It ensures a uniform instruction will only be used 4854 // by uniform instructions or out of scope instructions. 4855 unsigned idx = 0; 4856 do { 4857 Instruction *I = Worklist[idx++]; 4858 4859 for (auto OV : I->operand_values()) { 4860 if (isOutOfScope(OV)) 4861 continue; 4862 auto *OI = cast<Instruction>(OV); 4863 if (all_of(OI->users(), [&](User *U) -> bool { 4864 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 4865 })) { 4866 Worklist.insert(OI); 4867 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4868 } 4869 } 4870 } while (idx != Worklist.size()); 4871 4872 // For an instruction to be added into Worklist above, all its users inside 4873 // the current loop should be already added into Worklist. This condition 4874 // cannot be true for phi instructions which is always in a dependence loop. 4875 // Because any instruction in the dependence cycle always depends on others 4876 // in the cycle to be added into Worklist first, the result is no ones in 4877 // the cycle will be added into Worklist in the end. 4878 // That is why we process PHI separately. 4879 for (auto &Induction : *getInductionVars()) { 4880 auto *PN = Induction.first; 4881 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 4882 if (all_of(PN->users(), 4883 [&](User *U) -> bool { 4884 return U == UpdateV || isOutOfScope(U) || 4885 Worklist.count(cast<Instruction>(U)); 4886 }) && 4887 all_of(UpdateV->users(), [&](User *U) -> bool { 4888 return U == PN || isOutOfScope(U) || 4889 Worklist.count(cast<Instruction>(U)); 4890 })) { 4891 Worklist.insert(cast<Instruction>(PN)); 4892 Worklist.insert(cast<Instruction>(UpdateV)); 4893 DEBUG(dbgs() << "LV: Found uniform instruction: " << *PN << "\n"); 4894 DEBUG(dbgs() << "LV: Found uniform instruction: " << *UpdateV << "\n"); 4895 } 4896 } 4897 4898 Uniforms.insert(Worklist.begin(), Worklist.end()); 4899 } 4900 4901 bool LoopVectorizationLegality::canVectorizeMemory() { 4902 LAI = &(*GetLAA)(*TheLoop); 4903 InterleaveInfo.setLAI(LAI); 4904 auto &OptionalReport = LAI->getReport(); 4905 if (OptionalReport) 4906 emitAnalysis(VectorizationReport(*OptionalReport)); 4907 if (!LAI->canVectorizeMemory()) 4908 return false; 4909 4910 if (LAI->hasStoreToLoopInvariantAddress()) { 4911 emitAnalysis( 4912 VectorizationReport() 4913 << "write to a loop invariant address could not be vectorized"); 4914 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4915 return false; 4916 } 4917 4918 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4919 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 4920 4921 return true; 4922 } 4923 4924 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4925 Value *In0 = const_cast<Value *>(V); 4926 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4927 if (!PN) 4928 return false; 4929 4930 return Inductions.count(PN); 4931 } 4932 4933 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4934 return FirstOrderRecurrences.count(Phi); 4935 } 4936 4937 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4938 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4939 } 4940 4941 bool LoopVectorizationLegality::blockCanBePredicated( 4942 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 4943 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4944 4945 for (Instruction &I : *BB) { 4946 // Check that we don't have a constant expression that can trap as operand. 4947 for (Value *Operand : I.operands()) { 4948 if (auto *C = dyn_cast<Constant>(Operand)) 4949 if (C->canTrap()) 4950 return false; 4951 } 4952 // We might be able to hoist the load. 4953 if (I.mayReadFromMemory()) { 4954 auto *LI = dyn_cast<LoadInst>(&I); 4955 if (!LI) 4956 return false; 4957 if (!SafePtrs.count(LI->getPointerOperand())) { 4958 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4959 isLegalMaskedGather(LI->getType())) { 4960 MaskedOp.insert(LI); 4961 continue; 4962 } 4963 // !llvm.mem.parallel_loop_access implies if-conversion safety. 4964 if (IsAnnotatedParallel) 4965 continue; 4966 return false; 4967 } 4968 } 4969 4970 // We don't predicate stores at the moment. 4971 if (I.mayWriteToMemory()) { 4972 auto *SI = dyn_cast<StoreInst>(&I); 4973 // We only support predication of stores in basic blocks with one 4974 // predecessor. 4975 if (!SI) 4976 return false; 4977 4978 // Build a masked store if it is legal for the target. 4979 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 4980 SI->getPointerOperand()) || 4981 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 4982 MaskedOp.insert(SI); 4983 continue; 4984 } 4985 4986 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4987 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4988 4989 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4990 !isSinglePredecessor) 4991 return false; 4992 } 4993 if (I.mayThrow()) 4994 return false; 4995 4996 // The instructions below can trap. 4997 switch (I.getOpcode()) { 4998 default: 4999 continue; 5000 case Instruction::UDiv: 5001 case Instruction::SDiv: 5002 case Instruction::URem: 5003 case Instruction::SRem: 5004 return false; 5005 } 5006 } 5007 5008 return true; 5009 } 5010 5011 void InterleavedAccessInfo::collectConstStrideAccesses( 5012 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5013 const ValueToValueMap &Strides) { 5014 5015 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5016 5017 // Since it's desired that the load/store instructions be maintained in 5018 // "program order" for the interleaved access analysis, we have to visit the 5019 // blocks in the loop in reverse postorder (i.e., in a topological order). 5020 // Such an ordering will ensure that any load/store that may be executed 5021 // before a second load/store will precede the second load/store in 5022 // AccessStrideInfo. 5023 LoopBlocksDFS DFS(TheLoop); 5024 DFS.perform(LI); 5025 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5026 for (auto &I : *BB) { 5027 auto *LI = dyn_cast<LoadInst>(&I); 5028 auto *SI = dyn_cast<StoreInst>(&I); 5029 if (!LI && !SI) 5030 continue; 5031 5032 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5033 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5034 5035 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5036 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5037 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5038 5039 // An alignment of 0 means target ABI alignment. 5040 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5041 if (!Align) 5042 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5043 5044 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5045 } 5046 } 5047 5048 // Analyze interleaved accesses and collect them into interleaved load and 5049 // store groups. 5050 // 5051 // When generating code for an interleaved load group, we effectively hoist all 5052 // loads in the group to the location of the first load in program order. When 5053 // generating code for an interleaved store group, we sink all stores to the 5054 // location of the last store. This code motion can change the order of load 5055 // and store instructions and may break dependences. 5056 // 5057 // The code generation strategy mentioned above ensures that we won't violate 5058 // any write-after-read (WAR) dependences. 5059 // 5060 // E.g., for the WAR dependence: a = A[i]; // (1) 5061 // A[i] = b; // (2) 5062 // 5063 // The store group of (2) is always inserted at or below (2), and the load 5064 // group of (1) is always inserted at or above (1). Thus, the instructions will 5065 // never be reordered. All other dependences are checked to ensure the 5066 // correctness of the instruction reordering. 5067 // 5068 // The algorithm visits all memory accesses in the loop in bottom-up program 5069 // order. Program order is established by traversing the blocks in the loop in 5070 // reverse postorder when collecting the accesses. 5071 // 5072 // We visit the memory accesses in bottom-up order because it can simplify the 5073 // construction of store groups in the presence of write-after-write (WAW) 5074 // dependences. 5075 // 5076 // E.g., for the WAW dependence: A[i] = a; // (1) 5077 // A[i] = b; // (2) 5078 // A[i + 1] = c; // (3) 5079 // 5080 // We will first create a store group with (3) and (2). (1) can't be added to 5081 // this group because it and (2) are dependent. However, (1) can be grouped 5082 // with other accesses that may precede it in program order. Note that a 5083 // bottom-up order does not imply that WAW dependences should not be checked. 5084 void InterleavedAccessInfo::analyzeInterleaving( 5085 const ValueToValueMap &Strides) { 5086 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5087 5088 // Holds all accesses with a constant stride. 5089 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5090 collectConstStrideAccesses(AccessStrideInfo, Strides); 5091 5092 if (AccessStrideInfo.empty()) 5093 return; 5094 5095 // Collect the dependences in the loop. 5096 collectDependences(); 5097 5098 // Holds all interleaved store groups temporarily. 5099 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5100 // Holds all interleaved load groups temporarily. 5101 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5102 5103 // Search in bottom-up program order for pairs of accesses (A and B) that can 5104 // form interleaved load or store groups. In the algorithm below, access A 5105 // precedes access B in program order. We initialize a group for B in the 5106 // outer loop of the algorithm, and then in the inner loop, we attempt to 5107 // insert each A into B's group if: 5108 // 5109 // 1. A and B have the same stride, 5110 // 2. A and B have the same memory object size, and 5111 // 3. A belongs in B's group according to its distance from B. 5112 // 5113 // Special care is taken to ensure group formation will not break any 5114 // dependences. 5115 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5116 BI != E; ++BI) { 5117 Instruction *B = BI->first; 5118 StrideDescriptor DesB = BI->second; 5119 5120 // Initialize a group for B if it has an allowable stride. Even if we don't 5121 // create a group for B, we continue with the bottom-up algorithm to ensure 5122 // we don't break any of B's dependences. 5123 InterleaveGroup *Group = nullptr; 5124 if (isStrided(DesB.Stride)) { 5125 Group = getInterleaveGroup(B); 5126 if (!Group) { 5127 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5128 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5129 } 5130 if (B->mayWriteToMemory()) 5131 StoreGroups.insert(Group); 5132 else 5133 LoadGroups.insert(Group); 5134 } 5135 5136 for (auto AI = std::next(BI); AI != E; ++AI) { 5137 Instruction *A = AI->first; 5138 StrideDescriptor DesA = AI->second; 5139 5140 // Our code motion strategy implies that we can't have dependences 5141 // between accesses in an interleaved group and other accesses located 5142 // between the first and last member of the group. Note that this also 5143 // means that a group can't have more than one member at a given offset. 5144 // The accesses in a group can have dependences with other accesses, but 5145 // we must ensure we don't extend the boundaries of the group such that 5146 // we encompass those dependent accesses. 5147 // 5148 // For example, assume we have the sequence of accesses shown below in a 5149 // stride-2 loop: 5150 // 5151 // (1, 2) is a group | A[i] = a; // (1) 5152 // | A[i-1] = b; // (2) | 5153 // A[i-3] = c; // (3) 5154 // A[i] = d; // (4) | (2, 4) is not a group 5155 // 5156 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5157 // but not with (4). If we did, the dependent access (3) would be within 5158 // the boundaries of the (2, 4) group. 5159 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5160 5161 // If a dependence exists and A is already in a group, we know that A 5162 // must be a store since A precedes B and WAR dependences are allowed. 5163 // Thus, A would be sunk below B. We release A's group to prevent this 5164 // illegal code motion. A will then be free to form another group with 5165 // instructions that precede it. 5166 if (isInterleaved(A)) { 5167 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5168 StoreGroups.remove(StoreGroup); 5169 releaseGroup(StoreGroup); 5170 } 5171 5172 // If a dependence exists and A is not already in a group (or it was 5173 // and we just released it), B might be hoisted above A (if B is a 5174 // load) or another store might be sunk below A (if B is a store). In 5175 // either case, we can't add additional instructions to B's group. B 5176 // will only form a group with instructions that it precedes. 5177 break; 5178 } 5179 5180 // At this point, we've checked for illegal code motion. If either A or B 5181 // isn't strided, there's nothing left to do. 5182 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5183 continue; 5184 5185 // Ignore A if it's already in a group or isn't the same kind of memory 5186 // operation as B. 5187 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5188 continue; 5189 5190 // Check rules 1 and 2. Ignore A if its stride or size is different from 5191 // that of B. 5192 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5193 continue; 5194 5195 // Calculate the distance from A to B. 5196 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5197 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5198 if (!DistToB) 5199 continue; 5200 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5201 5202 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5203 // size. 5204 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5205 continue; 5206 5207 // Ignore A if either A or B is in a predicated block. Although we 5208 // currently prevent group formation for predicated accesses, we may be 5209 // able to relax this limitation in the future once we handle more 5210 // complicated blocks. 5211 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5212 continue; 5213 5214 // The index of A is the index of B plus A's distance to B in multiples 5215 // of the size. 5216 int IndexA = 5217 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5218 5219 // Try to insert A into B's group. 5220 if (Group->insertMember(A, IndexA, DesA.Align)) { 5221 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5222 << " into the interleave group with" << *B << '\n'); 5223 InterleaveGroupMap[A] = Group; 5224 5225 // Set the first load in program order as the insert position. 5226 if (A->mayReadFromMemory()) 5227 Group->setInsertPos(A); 5228 } 5229 } // Iteration over A accesses. 5230 } // Iteration over B accesses. 5231 5232 // Remove interleaved store groups with gaps. 5233 for (InterleaveGroup *Group : StoreGroups) 5234 if (Group->getNumMembers() != Group->getFactor()) 5235 releaseGroup(Group); 5236 5237 // If there is a non-reversed interleaved load group with gaps, we will need 5238 // to execute at least one scalar epilogue iteration. This will ensure that 5239 // we don't speculatively access memory out-of-bounds. Note that we only need 5240 // to look for a member at index factor - 1, since every group must have a 5241 // member at index zero. 5242 for (InterleaveGroup *Group : LoadGroups) 5243 if (!Group->getMember(Group->getFactor() - 1)) { 5244 if (Group->isReverse()) { 5245 releaseGroup(Group); 5246 } else { 5247 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5248 RequiresScalarEpilogue = true; 5249 } 5250 } 5251 } 5252 5253 LoopVectorizationCostModel::VectorizationFactor 5254 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5255 // Width 1 means no vectorize 5256 VectorizationFactor Factor = {1U, 0U}; 5257 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5258 emitAnalysis( 5259 VectorizationReport() 5260 << "runtime pointer checks needed. Enable vectorization of this " 5261 "loop with '#pragma clang loop vectorize(enable)' when " 5262 "compiling with -Os/-Oz"); 5263 DEBUG(dbgs() 5264 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5265 return Factor; 5266 } 5267 5268 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5269 emitAnalysis( 5270 VectorizationReport() 5271 << "store that is conditionally executed prevents vectorization"); 5272 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5273 return Factor; 5274 } 5275 5276 // Find the trip count. 5277 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5278 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5279 5280 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5281 unsigned SmallestType, WidestType; 5282 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5283 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5284 unsigned MaxSafeDepDist = -1U; 5285 5286 // Get the maximum safe dependence distance in bits computed by LAA. If the 5287 // loop contains any interleaved accesses, we divide the dependence distance 5288 // by the maximum interleave factor of all interleaved groups. Note that 5289 // although the division ensures correctness, this is a fairly conservative 5290 // computation because the maximum distance computed by LAA may not involve 5291 // any of the interleaved accesses. 5292 if (Legal->getMaxSafeDepDistBytes() != -1U) 5293 MaxSafeDepDist = 5294 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5295 5296 WidestRegister = 5297 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5298 unsigned MaxVectorSize = WidestRegister / WidestType; 5299 5300 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5301 << WidestType << " bits.\n"); 5302 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5303 << " bits.\n"); 5304 5305 if (MaxVectorSize == 0) { 5306 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5307 MaxVectorSize = 1; 5308 } 5309 5310 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5311 " into one vector!"); 5312 5313 unsigned VF = MaxVectorSize; 5314 if (MaximizeBandwidth && !OptForSize) { 5315 // Collect all viable vectorization factors. 5316 SmallVector<unsigned, 8> VFs; 5317 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5318 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5319 VFs.push_back(VS); 5320 5321 // For each VF calculate its register usage. 5322 auto RUs = calculateRegisterUsage(VFs); 5323 5324 // Select the largest VF which doesn't require more registers than existing 5325 // ones. 5326 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5327 for (int i = RUs.size() - 1; i >= 0; --i) { 5328 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5329 VF = VFs[i]; 5330 break; 5331 } 5332 } 5333 } 5334 5335 // If we optimize the program for size, avoid creating the tail loop. 5336 if (OptForSize) { 5337 // If we are unable to calculate the trip count then don't try to vectorize. 5338 if (TC < 2) { 5339 emitAnalysis( 5340 VectorizationReport() 5341 << "unable to calculate the loop count due to complex control flow"); 5342 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5343 return Factor; 5344 } 5345 5346 // Find the maximum SIMD width that can fit within the trip count. 5347 VF = TC % MaxVectorSize; 5348 5349 if (VF == 0) 5350 VF = MaxVectorSize; 5351 else { 5352 // If the trip count that we found modulo the vectorization factor is not 5353 // zero then we require a tail. 5354 emitAnalysis(VectorizationReport() 5355 << "cannot optimize for size and vectorize at the " 5356 "same time. Enable vectorization of this loop " 5357 "with '#pragma clang loop vectorize(enable)' " 5358 "when compiling with -Os/-Oz"); 5359 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5360 return Factor; 5361 } 5362 } 5363 5364 int UserVF = Hints->getWidth(); 5365 if (UserVF != 0) { 5366 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5367 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5368 5369 Factor.Width = UserVF; 5370 return Factor; 5371 } 5372 5373 float Cost = expectedCost(1).first; 5374 #ifndef NDEBUG 5375 const float ScalarCost = Cost; 5376 #endif /* NDEBUG */ 5377 unsigned Width = 1; 5378 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5379 5380 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5381 // Ignore scalar width, because the user explicitly wants vectorization. 5382 if (ForceVectorization && VF > 1) { 5383 Width = 2; 5384 Cost = expectedCost(Width).first / (float)Width; 5385 } 5386 5387 for (unsigned i = 2; i <= VF; i *= 2) { 5388 // Notice that the vector loop needs to be executed less times, so 5389 // we need to divide the cost of the vector loops by the width of 5390 // the vector elements. 5391 VectorizationCostTy C = expectedCost(i); 5392 float VectorCost = C.first / (float)i; 5393 DEBUG(dbgs() << "LV: Vector loop of width " << i 5394 << " costs: " << (int)VectorCost << ".\n"); 5395 if (!C.second && !ForceVectorization) { 5396 DEBUG( 5397 dbgs() << "LV: Not considering vector loop of width " << i 5398 << " because it will not generate any vector instructions.\n"); 5399 continue; 5400 } 5401 if (VectorCost < Cost) { 5402 Cost = VectorCost; 5403 Width = i; 5404 } 5405 } 5406 5407 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5408 << "LV: Vectorization seems to be not beneficial, " 5409 << "but was forced by a user.\n"); 5410 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5411 Factor.Width = Width; 5412 Factor.Cost = Width * Cost; 5413 return Factor; 5414 } 5415 5416 std::pair<unsigned, unsigned> 5417 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5418 unsigned MinWidth = -1U; 5419 unsigned MaxWidth = 8; 5420 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5421 5422 // For each block. 5423 for (BasicBlock *BB : TheLoop->blocks()) { 5424 // For each instruction in the loop. 5425 for (Instruction &I : *BB) { 5426 Type *T = I.getType(); 5427 5428 // Skip ignored values. 5429 if (ValuesToIgnore.count(&I)) 5430 continue; 5431 5432 // Only examine Loads, Stores and PHINodes. 5433 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5434 continue; 5435 5436 // Examine PHI nodes that are reduction variables. Update the type to 5437 // account for the recurrence type. 5438 if (auto *PN = dyn_cast<PHINode>(&I)) { 5439 if (!Legal->isReductionVariable(PN)) 5440 continue; 5441 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5442 T = RdxDesc.getRecurrenceType(); 5443 } 5444 5445 // Examine the stored values. 5446 if (auto *ST = dyn_cast<StoreInst>(&I)) 5447 T = ST->getValueOperand()->getType(); 5448 5449 // Ignore loaded pointer types and stored pointer types that are not 5450 // consecutive. However, we do want to take consecutive stores/loads of 5451 // pointer vectors into account. 5452 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 5453 continue; 5454 5455 MinWidth = std::min(MinWidth, 5456 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5457 MaxWidth = std::max(MaxWidth, 5458 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5459 } 5460 } 5461 5462 return {MinWidth, MaxWidth}; 5463 } 5464 5465 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5466 unsigned VF, 5467 unsigned LoopCost) { 5468 5469 // -- The interleave heuristics -- 5470 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5471 // There are many micro-architectural considerations that we can't predict 5472 // at this level. For example, frontend pressure (on decode or fetch) due to 5473 // code size, or the number and capabilities of the execution ports. 5474 // 5475 // We use the following heuristics to select the interleave count: 5476 // 1. If the code has reductions, then we interleave to break the cross 5477 // iteration dependency. 5478 // 2. If the loop is really small, then we interleave to reduce the loop 5479 // overhead. 5480 // 3. We don't interleave if we think that we will spill registers to memory 5481 // due to the increased register pressure. 5482 5483 // When we optimize for size, we don't interleave. 5484 if (OptForSize) 5485 return 1; 5486 5487 // We used the distance for the interleave count. 5488 if (Legal->getMaxSafeDepDistBytes() != -1U) 5489 return 1; 5490 5491 // Do not interleave loops with a relatively small trip count. 5492 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5493 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5494 return 1; 5495 5496 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5497 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5498 << " registers\n"); 5499 5500 if (VF == 1) { 5501 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5502 TargetNumRegisters = ForceTargetNumScalarRegs; 5503 } else { 5504 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5505 TargetNumRegisters = ForceTargetNumVectorRegs; 5506 } 5507 5508 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5509 // We divide by these constants so assume that we have at least one 5510 // instruction that uses at least one register. 5511 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5512 R.NumInstructions = std::max(R.NumInstructions, 1U); 5513 5514 // We calculate the interleave count using the following formula. 5515 // Subtract the number of loop invariants from the number of available 5516 // registers. These registers are used by all of the interleaved instances. 5517 // Next, divide the remaining registers by the number of registers that is 5518 // required by the loop, in order to estimate how many parallel instances 5519 // fit without causing spills. All of this is rounded down if necessary to be 5520 // a power of two. We want power of two interleave count to simplify any 5521 // addressing operations or alignment considerations. 5522 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5523 R.MaxLocalUsers); 5524 5525 // Don't count the induction variable as interleaved. 5526 if (EnableIndVarRegisterHeur) 5527 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5528 std::max(1U, (R.MaxLocalUsers - 1))); 5529 5530 // Clamp the interleave ranges to reasonable counts. 5531 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5532 5533 // Check if the user has overridden the max. 5534 if (VF == 1) { 5535 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5536 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5537 } else { 5538 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5539 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5540 } 5541 5542 // If we did not calculate the cost for VF (because the user selected the VF) 5543 // then we calculate the cost of VF here. 5544 if (LoopCost == 0) 5545 LoopCost = expectedCost(VF).first; 5546 5547 // Clamp the calculated IC to be between the 1 and the max interleave count 5548 // that the target allows. 5549 if (IC > MaxInterleaveCount) 5550 IC = MaxInterleaveCount; 5551 else if (IC < 1) 5552 IC = 1; 5553 5554 // Interleave if we vectorized this loop and there is a reduction that could 5555 // benefit from interleaving. 5556 if (VF > 1 && Legal->getReductionVars()->size()) { 5557 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5558 return IC; 5559 } 5560 5561 // Note that if we've already vectorized the loop we will have done the 5562 // runtime check and so interleaving won't require further checks. 5563 bool InterleavingRequiresRuntimePointerCheck = 5564 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5565 5566 // We want to interleave small loops in order to reduce the loop overhead and 5567 // potentially expose ILP opportunities. 5568 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5569 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5570 // We assume that the cost overhead is 1 and we use the cost model 5571 // to estimate the cost of the loop and interleave until the cost of the 5572 // loop overhead is about 5% of the cost of the loop. 5573 unsigned SmallIC = 5574 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5575 5576 // Interleave until store/load ports (estimated by max interleave count) are 5577 // saturated. 5578 unsigned NumStores = Legal->getNumStores(); 5579 unsigned NumLoads = Legal->getNumLoads(); 5580 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5581 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5582 5583 // If we have a scalar reduction (vector reductions are already dealt with 5584 // by this point), we can increase the critical path length if the loop 5585 // we're interleaving is inside another loop. Limit, by default to 2, so the 5586 // critical path only gets increased by one reduction operation. 5587 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5588 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5589 SmallIC = std::min(SmallIC, F); 5590 StoresIC = std::min(StoresIC, F); 5591 LoadsIC = std::min(LoadsIC, F); 5592 } 5593 5594 if (EnableLoadStoreRuntimeInterleave && 5595 std::max(StoresIC, LoadsIC) > SmallIC) { 5596 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5597 return std::max(StoresIC, LoadsIC); 5598 } 5599 5600 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5601 return SmallIC; 5602 } 5603 5604 // Interleave if this is a large loop (small loops are already dealt with by 5605 // this point) that could benefit from interleaving. 5606 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5607 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5608 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5609 return IC; 5610 } 5611 5612 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5613 return 1; 5614 } 5615 5616 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5617 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5618 // This function calculates the register usage by measuring the highest number 5619 // of values that are alive at a single location. Obviously, this is a very 5620 // rough estimation. We scan the loop in a topological order in order and 5621 // assign a number to each instruction. We use RPO to ensure that defs are 5622 // met before their users. We assume that each instruction that has in-loop 5623 // users starts an interval. We record every time that an in-loop value is 5624 // used, so we have a list of the first and last occurrences of each 5625 // instruction. Next, we transpose this data structure into a multi map that 5626 // holds the list of intervals that *end* at a specific location. This multi 5627 // map allows us to perform a linear search. We scan the instructions linearly 5628 // and record each time that a new interval starts, by placing it in a set. 5629 // If we find this value in the multi-map then we remove it from the set. 5630 // The max register usage is the maximum size of the set. 5631 // We also search for instructions that are defined outside the loop, but are 5632 // used inside the loop. We need this number separately from the max-interval 5633 // usage number because when we unroll, loop-invariant values do not take 5634 // more register. 5635 LoopBlocksDFS DFS(TheLoop); 5636 DFS.perform(LI); 5637 5638 RegisterUsage RU; 5639 RU.NumInstructions = 0; 5640 5641 // Each 'key' in the map opens a new interval. The values 5642 // of the map are the index of the 'last seen' usage of the 5643 // instruction that is the key. 5644 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5645 // Maps instruction to its index. 5646 DenseMap<unsigned, Instruction *> IdxToInstr; 5647 // Marks the end of each interval. 5648 IntervalMap EndPoint; 5649 // Saves the list of instruction indices that are used in the loop. 5650 SmallSet<Instruction *, 8> Ends; 5651 // Saves the list of values that are used in the loop but are 5652 // defined outside the loop, such as arguments and constants. 5653 SmallPtrSet<Value *, 8> LoopInvariants; 5654 5655 unsigned Index = 0; 5656 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5657 RU.NumInstructions += BB->size(); 5658 for (Instruction &I : *BB) { 5659 IdxToInstr[Index++] = &I; 5660 5661 // Save the end location of each USE. 5662 for (Value *U : I.operands()) { 5663 auto *Instr = dyn_cast<Instruction>(U); 5664 5665 // Ignore non-instruction values such as arguments, constants, etc. 5666 if (!Instr) 5667 continue; 5668 5669 // If this instruction is outside the loop then record it and continue. 5670 if (!TheLoop->contains(Instr)) { 5671 LoopInvariants.insert(Instr); 5672 continue; 5673 } 5674 5675 // Overwrite previous end points. 5676 EndPoint[Instr] = Index; 5677 Ends.insert(Instr); 5678 } 5679 } 5680 } 5681 5682 // Saves the list of intervals that end with the index in 'key'. 5683 typedef SmallVector<Instruction *, 2> InstrList; 5684 DenseMap<unsigned, InstrList> TransposeEnds; 5685 5686 // Transpose the EndPoints to a list of values that end at each index. 5687 for (auto &Interval : EndPoint) 5688 TransposeEnds[Interval.second].push_back(Interval.first); 5689 5690 SmallSet<Instruction *, 8> OpenIntervals; 5691 5692 // Get the size of the widest register. 5693 unsigned MaxSafeDepDist = -1U; 5694 if (Legal->getMaxSafeDepDistBytes() != -1U) 5695 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5696 unsigned WidestRegister = 5697 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5698 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5699 5700 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5701 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5702 5703 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5704 5705 // A lambda that gets the register usage for the given type and VF. 5706 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5707 if (Ty->isTokenTy()) 5708 return 0U; 5709 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5710 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5711 }; 5712 5713 for (unsigned int i = 0; i < Index; ++i) { 5714 Instruction *I = IdxToInstr[i]; 5715 // Ignore instructions that are never used within the loop. 5716 if (!Ends.count(I)) 5717 continue; 5718 5719 // Remove all of the instructions that end at this location. 5720 InstrList &List = TransposeEnds[i]; 5721 for (Instruction *ToRemove : List) 5722 OpenIntervals.erase(ToRemove); 5723 5724 // Skip ignored values. 5725 if (ValuesToIgnore.count(I)) 5726 continue; 5727 5728 // For each VF find the maximum usage of registers. 5729 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5730 if (VFs[j] == 1) { 5731 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5732 continue; 5733 } 5734 5735 // Count the number of live intervals. 5736 unsigned RegUsage = 0; 5737 for (auto Inst : OpenIntervals) { 5738 // Skip ignored values for VF > 1. 5739 if (VecValuesToIgnore.count(Inst)) 5740 continue; 5741 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5742 } 5743 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5744 } 5745 5746 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5747 << OpenIntervals.size() << '\n'); 5748 5749 // Add the current instruction to the list of open intervals. 5750 OpenIntervals.insert(I); 5751 } 5752 5753 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5754 unsigned Invariant = 0; 5755 if (VFs[i] == 1) 5756 Invariant = LoopInvariants.size(); 5757 else { 5758 for (auto Inst : LoopInvariants) 5759 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5760 } 5761 5762 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5763 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5764 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5765 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5766 5767 RU.LoopInvariantRegs = Invariant; 5768 RU.MaxLocalUsers = MaxUsages[i]; 5769 RUs[i] = RU; 5770 } 5771 5772 return RUs; 5773 } 5774 5775 LoopVectorizationCostModel::VectorizationCostTy 5776 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5777 VectorizationCostTy Cost; 5778 5779 // For each block. 5780 for (BasicBlock *BB : TheLoop->blocks()) { 5781 VectorizationCostTy BlockCost; 5782 5783 // For each instruction in the old loop. 5784 for (Instruction &I : *BB) { 5785 // Skip dbg intrinsics. 5786 if (isa<DbgInfoIntrinsic>(I)) 5787 continue; 5788 5789 // Skip ignored values. 5790 if (ValuesToIgnore.count(&I)) 5791 continue; 5792 5793 VectorizationCostTy C = getInstructionCost(&I, VF); 5794 5795 // Check if we should override the cost. 5796 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5797 C.first = ForceTargetInstructionCost; 5798 5799 BlockCost.first += C.first; 5800 BlockCost.second |= C.second; 5801 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5802 << VF << " For instruction: " << I << '\n'); 5803 } 5804 5805 // We assume that if-converted blocks have a 50% chance of being executed. 5806 // When the code is scalar then some of the blocks are avoided due to CF. 5807 // When the code is vectorized we execute all code paths. 5808 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5809 BlockCost.first /= 2; 5810 5811 Cost.first += BlockCost.first; 5812 Cost.second |= BlockCost.second; 5813 } 5814 5815 return Cost; 5816 } 5817 5818 /// \brief Check if the load/store instruction \p I may be translated into 5819 /// gather/scatter during vectorization. 5820 /// 5821 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5822 /// instruction. We need it to retrieve data type. 5823 /// Using gather/scatter is possible when it is supported by target. 5824 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5825 LoopVectorizationLegality *Legal) { 5826 auto *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5827 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5828 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5829 } 5830 5831 /// \brief Check whether the address computation for a non-consecutive memory 5832 /// access looks like an unlikely candidate for being merged into the indexing 5833 /// mode. 5834 /// 5835 /// We look for a GEP which has one index that is an induction variable and all 5836 /// other indices are loop invariant. If the stride of this access is also 5837 /// within a small bound we decide that this address computation can likely be 5838 /// merged into the addressing mode. 5839 /// In all other cases, we identify the address computation as complex. 5840 static bool isLikelyComplexAddressComputation(Value *Ptr, 5841 LoopVectorizationLegality *Legal, 5842 ScalarEvolution *SE, 5843 const Loop *TheLoop) { 5844 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5845 if (!Gep) 5846 return true; 5847 5848 // We are looking for a gep with all loop invariant indices except for one 5849 // which should be an induction variable. 5850 unsigned NumOperands = Gep->getNumOperands(); 5851 for (unsigned i = 1; i < NumOperands; ++i) { 5852 Value *Opd = Gep->getOperand(i); 5853 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5854 !Legal->isInductionVariable(Opd)) 5855 return true; 5856 } 5857 5858 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5859 // can likely be merged into the address computation. 5860 unsigned MaxMergeDistance = 64; 5861 5862 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5863 if (!AddRec) 5864 return true; 5865 5866 // Check the step is constant. 5867 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5868 // Calculate the pointer stride and check if it is consecutive. 5869 const auto *C = dyn_cast<SCEVConstant>(Step); 5870 if (!C) 5871 return true; 5872 5873 const APInt &APStepVal = C->getAPInt(); 5874 5875 // Huge step value - give up. 5876 if (APStepVal.getBitWidth() > 64) 5877 return true; 5878 5879 int64_t StepVal = APStepVal.getSExtValue(); 5880 5881 return StepVal > MaxMergeDistance; 5882 } 5883 5884 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5885 return Legal->hasStride(I->getOperand(0)) || 5886 Legal->hasStride(I->getOperand(1)); 5887 } 5888 5889 LoopVectorizationCostModel::VectorizationCostTy 5890 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5891 // If we know that this instruction will remain uniform, check the cost of 5892 // the scalar version. 5893 if (Legal->isUniformAfterVectorization(I)) 5894 VF = 1; 5895 5896 Type *VectorTy; 5897 unsigned C = getInstructionCost(I, VF, VectorTy); 5898 5899 bool TypeNotScalarized = 5900 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 5901 return VectorizationCostTy(C, TypeNotScalarized); 5902 } 5903 5904 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5905 unsigned VF, 5906 Type *&VectorTy) { 5907 Type *RetTy = I->getType(); 5908 if (VF > 1 && MinBWs.count(I)) 5909 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5910 VectorTy = ToVectorTy(RetTy, VF); 5911 auto SE = PSE.getSE(); 5912 5913 // TODO: We need to estimate the cost of intrinsic calls. 5914 switch (I->getOpcode()) { 5915 case Instruction::GetElementPtr: 5916 // We mark this instruction as zero-cost because the cost of GEPs in 5917 // vectorized code depends on whether the corresponding memory instruction 5918 // is scalarized or not. Therefore, we handle GEPs with the memory 5919 // instruction cost. 5920 return 0; 5921 case Instruction::Br: { 5922 return TTI.getCFInstrCost(I->getOpcode()); 5923 } 5924 case Instruction::PHI: { 5925 auto *Phi = cast<PHINode>(I); 5926 5927 // First-order recurrences are replaced by vector shuffles inside the loop. 5928 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5929 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5930 VectorTy, VF - 1, VectorTy); 5931 5932 // TODO: IF-converted IFs become selects. 5933 return 0; 5934 } 5935 case Instruction::Add: 5936 case Instruction::FAdd: 5937 case Instruction::Sub: 5938 case Instruction::FSub: 5939 case Instruction::Mul: 5940 case Instruction::FMul: 5941 case Instruction::UDiv: 5942 case Instruction::SDiv: 5943 case Instruction::FDiv: 5944 case Instruction::URem: 5945 case Instruction::SRem: 5946 case Instruction::FRem: 5947 case Instruction::Shl: 5948 case Instruction::LShr: 5949 case Instruction::AShr: 5950 case Instruction::And: 5951 case Instruction::Or: 5952 case Instruction::Xor: { 5953 // Since we will replace the stride by 1 the multiplication should go away. 5954 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5955 return 0; 5956 // Certain instructions can be cheaper to vectorize if they have a constant 5957 // second vector operand. One example of this are shifts on x86. 5958 TargetTransformInfo::OperandValueKind Op1VK = 5959 TargetTransformInfo::OK_AnyValue; 5960 TargetTransformInfo::OperandValueKind Op2VK = 5961 TargetTransformInfo::OK_AnyValue; 5962 TargetTransformInfo::OperandValueProperties Op1VP = 5963 TargetTransformInfo::OP_None; 5964 TargetTransformInfo::OperandValueProperties Op2VP = 5965 TargetTransformInfo::OP_None; 5966 Value *Op2 = I->getOperand(1); 5967 5968 // Check for a splat of a constant or for a non uniform vector of constants. 5969 if (isa<ConstantInt>(Op2)) { 5970 ConstantInt *CInt = cast<ConstantInt>(Op2); 5971 if (CInt && CInt->getValue().isPowerOf2()) 5972 Op2VP = TargetTransformInfo::OP_PowerOf2; 5973 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5974 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5975 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5976 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5977 if (SplatValue) { 5978 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5979 if (CInt && CInt->getValue().isPowerOf2()) 5980 Op2VP = TargetTransformInfo::OP_PowerOf2; 5981 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5982 } 5983 } 5984 5985 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5986 Op1VP, Op2VP); 5987 } 5988 case Instruction::Select: { 5989 SelectInst *SI = cast<SelectInst>(I); 5990 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5991 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5992 Type *CondTy = SI->getCondition()->getType(); 5993 if (!ScalarCond) 5994 CondTy = VectorType::get(CondTy, VF); 5995 5996 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5997 } 5998 case Instruction::ICmp: 5999 case Instruction::FCmp: { 6000 Type *ValTy = I->getOperand(0)->getType(); 6001 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6002 auto It = MinBWs.find(Op0AsInstruction); 6003 if (VF > 1 && It != MinBWs.end()) 6004 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6005 VectorTy = ToVectorTy(ValTy, VF); 6006 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6007 } 6008 case Instruction::Store: 6009 case Instruction::Load: { 6010 StoreInst *SI = dyn_cast<StoreInst>(I); 6011 LoadInst *LI = dyn_cast<LoadInst>(I); 6012 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6013 VectorTy = ToVectorTy(ValTy, VF); 6014 6015 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6016 unsigned AS = 6017 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6018 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6019 // We add the cost of address computation here instead of with the gep 6020 // instruction because only here we know whether the operation is 6021 // scalarized. 6022 if (VF == 1) 6023 return TTI.getAddressComputationCost(VectorTy) + 6024 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6025 6026 if (LI && Legal->isUniform(Ptr)) { 6027 // Scalar load + broadcast 6028 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6029 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6030 Alignment, AS); 6031 return Cost + 6032 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6033 } 6034 6035 // For an interleaved access, calculate the total cost of the whole 6036 // interleave group. 6037 if (Legal->isAccessInterleaved(I)) { 6038 auto Group = Legal->getInterleavedAccessGroup(I); 6039 assert(Group && "Fail to get an interleaved access group."); 6040 6041 // Only calculate the cost once at the insert position. 6042 if (Group->getInsertPos() != I) 6043 return 0; 6044 6045 unsigned InterleaveFactor = Group->getFactor(); 6046 Type *WideVecTy = 6047 VectorType::get(VectorTy->getVectorElementType(), 6048 VectorTy->getVectorNumElements() * InterleaveFactor); 6049 6050 // Holds the indices of existing members in an interleaved load group. 6051 // An interleaved store group doesn't need this as it doesn't allow gaps. 6052 SmallVector<unsigned, 4> Indices; 6053 if (LI) { 6054 for (unsigned i = 0; i < InterleaveFactor; i++) 6055 if (Group->getMember(i)) 6056 Indices.push_back(i); 6057 } 6058 6059 // Calculate the cost of the whole interleaved group. 6060 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6061 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6062 Group->getAlignment(), AS); 6063 6064 if (Group->isReverse()) 6065 Cost += 6066 Group->getNumMembers() * 6067 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6068 6069 // FIXME: The interleaved load group with a huge gap could be even more 6070 // expensive than scalar operations. Then we could ignore such group and 6071 // use scalar operations instead. 6072 return Cost; 6073 } 6074 6075 // Scalarized loads/stores. 6076 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6077 bool UseGatherOrScatter = 6078 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 6079 6080 bool Reverse = ConsecutiveStride < 0; 6081 const DataLayout &DL = I->getModule()->getDataLayout(); 6082 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6083 uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6084 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6085 ScalarAllocatedSize != VectorElementSize) { 6086 bool IsComplexComputation = 6087 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6088 unsigned Cost = 0; 6089 // The cost of extracting from the value vector and pointer vector. 6090 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6091 for (unsigned i = 0; i < VF; ++i) { 6092 // The cost of extracting the pointer operand. 6093 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6094 // In case of STORE, the cost of ExtractElement from the vector. 6095 // In case of LOAD, the cost of InsertElement into the returned 6096 // vector. 6097 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6098 : Instruction::InsertElement, 6099 VectorTy, i); 6100 } 6101 6102 // The cost of the scalar loads/stores. 6103 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6104 Cost += VF * 6105 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6106 Alignment, AS); 6107 return Cost; 6108 } 6109 6110 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6111 if (UseGatherOrScatter) { 6112 assert(ConsecutiveStride == 0 && 6113 "Gather/Scatter are not used for consecutive stride"); 6114 return Cost + 6115 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6116 Legal->isMaskRequired(I), Alignment); 6117 } 6118 // Wide load/stores. 6119 if (Legal->isMaskRequired(I)) 6120 Cost += 6121 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6122 else 6123 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6124 6125 if (Reverse) 6126 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6127 return Cost; 6128 } 6129 case Instruction::ZExt: 6130 case Instruction::SExt: 6131 case Instruction::FPToUI: 6132 case Instruction::FPToSI: 6133 case Instruction::FPExt: 6134 case Instruction::PtrToInt: 6135 case Instruction::IntToPtr: 6136 case Instruction::SIToFP: 6137 case Instruction::UIToFP: 6138 case Instruction::Trunc: 6139 case Instruction::FPTrunc: 6140 case Instruction::BitCast: { 6141 // We optimize the truncation of induction variable. 6142 // The cost of these is the same as the scalar operation. 6143 if (I->getOpcode() == Instruction::Trunc && 6144 Legal->isInductionVariable(I->getOperand(0))) 6145 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6146 I->getOperand(0)->getType()); 6147 6148 Type *SrcScalarTy = I->getOperand(0)->getType(); 6149 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6150 if (VF > 1 && MinBWs.count(I)) { 6151 // This cast is going to be shrunk. This may remove the cast or it might 6152 // turn it into slightly different cast. For example, if MinBW == 16, 6153 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6154 // 6155 // Calculate the modified src and dest types. 6156 Type *MinVecTy = VectorTy; 6157 if (I->getOpcode() == Instruction::Trunc) { 6158 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6159 VectorTy = 6160 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6161 } else if (I->getOpcode() == Instruction::ZExt || 6162 I->getOpcode() == Instruction::SExt) { 6163 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6164 VectorTy = 6165 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6166 } 6167 } 6168 6169 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6170 } 6171 case Instruction::Call: { 6172 bool NeedToScalarize; 6173 CallInst *CI = cast<CallInst>(I); 6174 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6175 if (getVectorIntrinsicIDForCall(CI, TLI)) 6176 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6177 return CallCost; 6178 } 6179 default: { 6180 // We are scalarizing the instruction. Return the cost of the scalar 6181 // instruction, plus the cost of insert and extract into vector 6182 // elements, times the vector width. 6183 unsigned Cost = 0; 6184 6185 if (!RetTy->isVoidTy() && VF != 1) { 6186 unsigned InsCost = 6187 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6188 unsigned ExtCost = 6189 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6190 6191 // The cost of inserting the results plus extracting each one of the 6192 // operands. 6193 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6194 } 6195 6196 // The cost of executing VF copies of the scalar instruction. This opcode 6197 // is unknown. Assume that it is the same as 'mul'. 6198 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6199 return Cost; 6200 } 6201 } // end of switch. 6202 } 6203 6204 char LoopVectorize::ID = 0; 6205 static const char lv_name[] = "Loop Vectorization"; 6206 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6207 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6208 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6209 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6210 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6211 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6212 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6213 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6214 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6215 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6216 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6217 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6218 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6219 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6220 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6221 6222 namespace llvm { 6223 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6224 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6225 } 6226 } 6227 6228 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6229 // Check for a store. 6230 if (auto *ST = dyn_cast<StoreInst>(Inst)) 6231 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6232 6233 // Check for a load. 6234 if (auto *LI = dyn_cast<LoadInst>(Inst)) 6235 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6236 6237 return false; 6238 } 6239 6240 void LoopVectorizationCostModel::collectValuesToIgnore() { 6241 // Ignore ephemeral values. 6242 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6243 6244 // Ignore type-promoting instructions we identified during reduction 6245 // detection. 6246 for (auto &Reduction : *Legal->getReductionVars()) { 6247 RecurrenceDescriptor &RedDes = Reduction.second; 6248 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6249 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6250 } 6251 6252 // Ignore induction phis that are only used in either GetElementPtr or ICmp 6253 // instruction to exit loop. Induction variables usually have large types and 6254 // can have big impact when estimating register usage. 6255 // This is for when VF > 1. 6256 for (auto &Induction : *Legal->getInductionVars()) { 6257 auto *PN = Induction.first; 6258 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6259 6260 // Check that the PHI is only used by the induction increment (UpdateV) or 6261 // by GEPs. Then check that UpdateV is only used by a compare instruction, 6262 // the loop header PHI, or by GEPs. 6263 // FIXME: Need precise def-use analysis to determine if this instruction 6264 // variable will be vectorized. 6265 if (all_of(PN->users(), 6266 [&](const User *U) -> bool { 6267 return U == UpdateV || isa<GetElementPtrInst>(U); 6268 }) && 6269 all_of(UpdateV->users(), [&](const User *U) -> bool { 6270 return U == PN || isa<ICmpInst>(U) || isa<GetElementPtrInst>(U); 6271 })) { 6272 VecValuesToIgnore.insert(PN); 6273 VecValuesToIgnore.insert(UpdateV); 6274 } 6275 } 6276 6277 // Ignore instructions that will not be vectorized. 6278 // This is for when VF > 1. 6279 for (BasicBlock *BB : TheLoop->blocks()) { 6280 for (auto &Inst : *BB) { 6281 switch (Inst.getOpcode()) 6282 case Instruction::GetElementPtr: { 6283 // Ignore GEP if its last operand is an induction variable so that it is 6284 // a consecutive load/store and won't be vectorized as scatter/gather 6285 // pattern. 6286 6287 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst); 6288 unsigned NumOperands = Gep->getNumOperands(); 6289 unsigned InductionOperand = getGEPInductionOperand(Gep); 6290 bool GepToIgnore = true; 6291 6292 // Check that all of the gep indices are uniform except for the 6293 // induction operand. 6294 for (unsigned i = 0; i != NumOperands; ++i) { 6295 if (i != InductionOperand && 6296 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 6297 TheLoop)) { 6298 GepToIgnore = false; 6299 break; 6300 } 6301 } 6302 6303 if (GepToIgnore) 6304 VecValuesToIgnore.insert(&Inst); 6305 break; 6306 } 6307 } 6308 } 6309 } 6310 6311 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6312 bool IfPredicateStore) { 6313 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6314 // Holds vector parameters or scalars, in case of uniform vals. 6315 SmallVector<VectorParts, 4> Params; 6316 6317 setDebugLocFromInst(Builder, Instr); 6318 6319 // Find all of the vectorized parameters. 6320 for (Value *SrcOp : Instr->operands()) { 6321 // If we are accessing the old induction variable, use the new one. 6322 if (SrcOp == OldInduction) { 6323 Params.push_back(getVectorValue(SrcOp)); 6324 continue; 6325 } 6326 6327 // Try using previously calculated values. 6328 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6329 6330 // If the src is an instruction that appeared earlier in the basic block 6331 // then it should already be vectorized. 6332 if (SrcInst && OrigLoop->contains(SrcInst)) { 6333 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6334 // The parameter is a vector value from earlier. 6335 Params.push_back(WidenMap.get(SrcInst)); 6336 } else { 6337 // The parameter is a scalar from outside the loop. Maybe even a constant. 6338 VectorParts Scalars; 6339 Scalars.append(UF, SrcOp); 6340 Params.push_back(Scalars); 6341 } 6342 } 6343 6344 assert(Params.size() == Instr->getNumOperands() && 6345 "Invalid number of operands"); 6346 6347 // Does this instruction return a value ? 6348 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6349 6350 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6351 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6352 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6353 6354 VectorParts Cond; 6355 if (IfPredicateStore) { 6356 assert(Instr->getParent()->getSinglePredecessor() && 6357 "Only support single predecessor blocks"); 6358 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6359 Instr->getParent()); 6360 } 6361 6362 // For each vector unroll 'part': 6363 for (unsigned Part = 0; Part < UF; ++Part) { 6364 // For each scalar that we create: 6365 6366 // Start an "if (pred) a[i] = ..." block. 6367 Value *Cmp = nullptr; 6368 if (IfPredicateStore) { 6369 if (Cond[Part]->getType()->isVectorTy()) 6370 Cond[Part] = 6371 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6372 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6373 ConstantInt::get(Cond[Part]->getType(), 1)); 6374 } 6375 6376 Instruction *Cloned = Instr->clone(); 6377 if (!IsVoidRetTy) 6378 Cloned->setName(Instr->getName() + ".cloned"); 6379 // Replace the operands of the cloned instructions with extracted scalars. 6380 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6381 Value *Op = Params[op][Part]; 6382 Cloned->setOperand(op, Op); 6383 } 6384 6385 // Place the cloned scalar in the new loop. 6386 Builder.Insert(Cloned); 6387 6388 // If we just cloned a new assumption, add it the assumption cache. 6389 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6390 if (II->getIntrinsicID() == Intrinsic::assume) 6391 AC->registerAssumption(II); 6392 6393 // If the original scalar returns a value we need to place it in a vector 6394 // so that future users will be able to use it. 6395 if (!IsVoidRetTy) 6396 VecResults[Part] = Cloned; 6397 6398 // End if-block. 6399 if (IfPredicateStore) 6400 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6401 } 6402 } 6403 6404 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6405 auto *SI = dyn_cast<StoreInst>(Instr); 6406 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6407 6408 return scalarizeInstruction(Instr, IfPredicateStore); 6409 } 6410 6411 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6412 6413 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6414 6415 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6416 // When unrolling and the VF is 1, we only need to add a simple scalar. 6417 Type *ITy = Val->getType(); 6418 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6419 Constant *C = ConstantInt::get(ITy, StartIdx); 6420 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6421 } 6422 6423 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6424 SmallVector<Metadata *, 4> MDs; 6425 // Reserve first location for self reference to the LoopID metadata node. 6426 MDs.push_back(nullptr); 6427 bool IsUnrollMetadata = false; 6428 MDNode *LoopID = L->getLoopID(); 6429 if (LoopID) { 6430 // First find existing loop unrolling disable metadata. 6431 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6432 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6433 if (MD) { 6434 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6435 IsUnrollMetadata = 6436 S && S->getString().startswith("llvm.loop.unroll.disable"); 6437 } 6438 MDs.push_back(LoopID->getOperand(i)); 6439 } 6440 } 6441 6442 if (!IsUnrollMetadata) { 6443 // Add runtime unroll disable metadata. 6444 LLVMContext &Context = L->getHeader()->getContext(); 6445 SmallVector<Metadata *, 1> DisableOperands; 6446 DisableOperands.push_back( 6447 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6448 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6449 MDs.push_back(DisableNode); 6450 MDNode *NewLoopID = MDNode::get(Context, MDs); 6451 // Set operand 0 to refer to the loop id itself. 6452 NewLoopID->replaceOperandWith(0, NewLoopID); 6453 L->setLoopID(NewLoopID); 6454 } 6455 } 6456 6457 bool LoopVectorizePass::processLoop(Loop *L) { 6458 assert(L->empty() && "Only process inner loops."); 6459 6460 #ifndef NDEBUG 6461 const std::string DebugLocStr = getDebugLocString(L); 6462 #endif /* NDEBUG */ 6463 6464 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 6465 << L->getHeader()->getParent()->getName() << "\" from " 6466 << DebugLocStr << "\n"); 6467 6468 LoopVectorizeHints Hints(L, DisableUnrolling); 6469 6470 DEBUG(dbgs() << "LV: Loop hints:" 6471 << " force=" 6472 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 6473 ? "disabled" 6474 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 6475 ? "enabled" 6476 : "?")) 6477 << " width=" << Hints.getWidth() 6478 << " unroll=" << Hints.getInterleave() << "\n"); 6479 6480 // Function containing loop 6481 Function *F = L->getHeader()->getParent(); 6482 6483 // Looking at the diagnostic output is the only way to determine if a loop 6484 // was vectorized (other than looking at the IR or machine code), so it 6485 // is important to generate an optimization remark for each loop. Most of 6486 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 6487 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 6488 // less verbose reporting vectorized loops and unvectorized loops that may 6489 // benefit from vectorization, respectively. 6490 6491 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 6492 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 6493 return false; 6494 } 6495 6496 // Check the loop for a trip count threshold: 6497 // do not vectorize loops with a tiny trip count. 6498 const unsigned TC = SE->getSmallConstantTripCount(L); 6499 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 6500 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 6501 << "This loop is not worth vectorizing."); 6502 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 6503 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 6504 else { 6505 DEBUG(dbgs() << "\n"); 6506 emitAnalysisDiag(F, L, Hints, VectorizationReport() 6507 << "vectorization is not beneficial " 6508 "and is not explicitly forced"); 6509 return false; 6510 } 6511 } 6512 6513 PredicatedScalarEvolution PSE(*SE, *L); 6514 6515 // Check if it is legal to vectorize the loop. 6516 LoopVectorizationRequirements Requirements; 6517 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, 6518 &Requirements, &Hints); 6519 if (!LVL.canVectorize()) { 6520 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 6521 emitMissedWarning(F, L, Hints); 6522 return false; 6523 } 6524 6525 // Use the cost model. 6526 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, 6527 &Hints); 6528 CM.collectValuesToIgnore(); 6529 6530 // Check the function attributes to find out if this function should be 6531 // optimized for size. 6532 bool OptForSize = 6533 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 6534 6535 // Compute the weighted frequency of this loop being executed and see if it 6536 // is less than 20% of the function entry baseline frequency. Note that we 6537 // always have a canonical loop here because we think we *can* vectorize. 6538 // FIXME: This is hidden behind a flag due to pervasive problems with 6539 // exactly what block frequency models. 6540 if (LoopVectorizeWithBlockFrequency) { 6541 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 6542 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 6543 LoopEntryFreq < ColdEntryFreq) 6544 OptForSize = true; 6545 } 6546 6547 // Check the function attributes to see if implicit floats are allowed. 6548 // FIXME: This check doesn't seem possibly correct -- what if the loop is 6549 // an integer loop and the vector instructions selected are purely integer 6550 // vector instructions? 6551 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 6552 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 6553 "attribute is used.\n"); 6554 emitAnalysisDiag( 6555 F, L, Hints, 6556 VectorizationReport() 6557 << "loop not vectorized due to NoImplicitFloat attribute"); 6558 emitMissedWarning(F, L, Hints); 6559 return false; 6560 } 6561 6562 // Check if the target supports potentially unsafe FP vectorization. 6563 // FIXME: Add a check for the type of safety issue (denormal, signaling) 6564 // for the target we're vectorizing for, to make sure none of the 6565 // additional fp-math flags can help. 6566 if (Hints.isPotentiallyUnsafe() && 6567 TTI->isFPVectorizationPotentiallyUnsafe()) { 6568 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 6569 emitAnalysisDiag(F, L, Hints, 6570 VectorizationReport() 6571 << "loop not vectorized due to unsafe FP support."); 6572 emitMissedWarning(F, L, Hints); 6573 return false; 6574 } 6575 6576 // Select the optimal vectorization factor. 6577 const LoopVectorizationCostModel::VectorizationFactor VF = 6578 CM.selectVectorizationFactor(OptForSize); 6579 6580 // Select the interleave count. 6581 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 6582 6583 // Get user interleave count. 6584 unsigned UserIC = Hints.getInterleave(); 6585 6586 // Identify the diagnostic messages that should be produced. 6587 std::string VecDiagMsg, IntDiagMsg; 6588 bool VectorizeLoop = true, InterleaveLoop = true; 6589 6590 if (Requirements.doesNotMeet(F, L, Hints)) { 6591 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 6592 "requirements.\n"); 6593 emitMissedWarning(F, L, Hints); 6594 return false; 6595 } 6596 6597 if (VF.Width == 1) { 6598 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 6599 VecDiagMsg = 6600 "the cost-model indicates that vectorization is not beneficial"; 6601 VectorizeLoop = false; 6602 } 6603 6604 if (IC == 1 && UserIC <= 1) { 6605 // Tell the user interleaving is not beneficial. 6606 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 6607 IntDiagMsg = 6608 "the cost-model indicates that interleaving is not beneficial"; 6609 InterleaveLoop = false; 6610 if (UserIC == 1) 6611 IntDiagMsg += 6612 " and is explicitly disabled or interleave count is set to 1"; 6613 } else if (IC > 1 && UserIC == 1) { 6614 // Tell the user interleaving is beneficial, but it explicitly disabled. 6615 DEBUG(dbgs() 6616 << "LV: Interleaving is beneficial but is explicitly disabled."); 6617 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 6618 "but is explicitly disabled or interleave count is set to 1"; 6619 InterleaveLoop = false; 6620 } 6621 6622 // Override IC if user provided an interleave count. 6623 IC = UserIC > 0 ? UserIC : IC; 6624 6625 // Emit diagnostic messages, if any. 6626 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 6627 if (!VectorizeLoop && !InterleaveLoop) { 6628 // Do not vectorize or interleaving the loop. 6629 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 6630 L->getStartLoc(), VecDiagMsg); 6631 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 6632 L->getStartLoc(), IntDiagMsg); 6633 return false; 6634 } else if (!VectorizeLoop && InterleaveLoop) { 6635 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 6636 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 6637 L->getStartLoc(), VecDiagMsg); 6638 } else if (VectorizeLoop && !InterleaveLoop) { 6639 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 6640 << DebugLocStr << '\n'); 6641 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 6642 L->getStartLoc(), IntDiagMsg); 6643 } else if (VectorizeLoop && InterleaveLoop) { 6644 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 6645 << DebugLocStr << '\n'); 6646 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 6647 } 6648 6649 if (!VectorizeLoop) { 6650 assert(IC > 1 && "interleave count should not be 1 or 0"); 6651 // If we decided that it is not legal to vectorize the loop, then 6652 // interleave it. 6653 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 6654 Unroller.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore); 6655 6656 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 6657 Twine("interleaved loop (interleaved count: ") + 6658 Twine(IC) + ")"); 6659 } else { 6660 // If we decided that it is *legal* to vectorize the loop, then do it. 6661 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 6662 LB.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore); 6663 ++LoopsVectorized; 6664 6665 // Add metadata to disable runtime unrolling a scalar loop when there are 6666 // no runtime checks about strides and memory. A scalar loop that is 6667 // rarely used is not worth unrolling. 6668 if (!LB.areSafetyChecksAdded()) 6669 AddRuntimeUnrollDisableMetaData(L); 6670 6671 // Report the vectorization decision. 6672 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 6673 Twine("vectorized loop (vectorization width: ") + 6674 Twine(VF.Width) + ", interleaved count: " + 6675 Twine(IC) + ")"); 6676 } 6677 6678 // Mark the loop as already vectorized to avoid vectorizing again. 6679 Hints.setAlreadyVectorized(); 6680 6681 DEBUG(verifyFunction(*L->getHeader()->getParent())); 6682 return true; 6683 } 6684 6685 bool LoopVectorizePass::runImpl( 6686 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 6687 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 6688 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 6689 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_) { 6690 6691 SE = &SE_; 6692 LI = &LI_; 6693 TTI = &TTI_; 6694 DT = &DT_; 6695 BFI = &BFI_; 6696 TLI = TLI_; 6697 AA = &AA_; 6698 AC = &AC_; 6699 GetLAA = &GetLAA_; 6700 DB = &DB_; 6701 6702 // Compute some weights outside of the loop over the loops. Compute this 6703 // using a BranchProbability to re-use its scaling math. 6704 const BranchProbability ColdProb(1, 5); // 20% 6705 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 6706 6707 // Don't attempt if 6708 // 1. the target claims to have no vector registers, and 6709 // 2. interleaving won't help ILP. 6710 // 6711 // The second condition is necessary because, even if the target has no 6712 // vector registers, loop vectorization may still enable scalar 6713 // interleaving. 6714 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 6715 return false; 6716 6717 // Build up a worklist of inner-loops to vectorize. This is necessary as 6718 // the act of vectorizing or partially unrolling a loop creates new loops 6719 // and can invalidate iterators across the loops. 6720 SmallVector<Loop *, 8> Worklist; 6721 6722 for (Loop *L : *LI) 6723 addAcyclicInnerLoop(*L, Worklist); 6724 6725 LoopsAnalyzed += Worklist.size(); 6726 6727 // Now walk the identified inner loops. 6728 bool Changed = false; 6729 while (!Worklist.empty()) 6730 Changed |= processLoop(Worklist.pop_back_val()); 6731 6732 // Process each loop nest in the function. 6733 return Changed; 6734 6735 } 6736 6737 6738 PreservedAnalyses LoopVectorizePass::run(Function &F, 6739 FunctionAnalysisManager &AM) { 6740 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 6741 auto &LI = AM.getResult<LoopAnalysis>(F); 6742 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 6743 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 6744 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 6745 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6746 auto &AA = AM.getResult<AAManager>(F); 6747 auto &AC = AM.getResult<AssumptionAnalysis>(F); 6748 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 6749 6750 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 6751 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 6752 [&](Loop &L) -> const LoopAccessInfo & { 6753 return LAM.getResult<LoopAccessAnalysis>(L); 6754 }; 6755 bool Changed = runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA); 6756 if (!Changed) 6757 return PreservedAnalyses::all(); 6758 PreservedAnalyses PA; 6759 PA.preserve<LoopAnalysis>(); 6760 PA.preserve<DominatorTreeAnalysis>(); 6761 PA.preserve<BasicAA>(); 6762 PA.preserve<GlobalsAA>(); 6763 return PA; 6764 } 6765