1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/LoopUtils.h" 95 #include "llvm/Transforms/Utils/LoopVersioning.h" 96 #include "llvm/Transforms/Vectorize.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> TinyTripCountVectorThreshold( 116 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 static cl::opt<bool> MaximizeBandwidth( 122 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 123 cl::desc("Maximize bandwidth when selecting vectorization factor which " 124 "will be determined by the smallest type in loop.")); 125 126 static cl::opt<bool> EnableInterleavedMemAccesses( 127 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 128 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 129 130 /// Maximum factor for an interleaved memory access. 131 static cl::opt<unsigned> MaxInterleaveGroupFactor( 132 "max-interleave-group-factor", cl::Hidden, 133 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 134 cl::init(8)); 135 136 /// We don't interleave loops with a known constant trip count below this 137 /// number. 138 static const unsigned TinyTripCountInterleaveThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc( 170 "The cost of a loop that is considered 'small' by the interleaver.")); 171 172 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 173 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 174 cl::desc("Enable the use of the block frequency analysis to access PGO " 175 "heuristics minimizing code growth in cold regions and being more " 176 "aggressive in hot regions.")); 177 178 // Runtime interleave loops for load/store throughput. 179 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 180 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 181 cl::desc( 182 "Enable runtime interleaving until load/store ports are saturated")); 183 184 /// The number of stores in a loop that are allowed to need predication. 185 static cl::opt<unsigned> NumberOfStoresToPredicate( 186 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 187 cl::desc("Max number of stores to be predicated behind an if.")); 188 189 static cl::opt<bool> EnableIndVarRegisterHeur( 190 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 191 cl::desc("Count the induction variable only once when interleaving")); 192 193 static cl::opt<bool> EnableCondStoresVectorization( 194 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 195 cl::desc("Enable if predication of stores during vectorization.")); 196 197 static cl::opt<unsigned> MaxNestedScalarReductionIC( 198 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 199 cl::desc("The maximum interleave count to use when interleaving a scalar " 200 "reduction in a nested loop.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 208 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 209 cl::desc("The maximum number of SCEV checks allowed.")); 210 211 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 212 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed with a " 214 "vectorize(enable) pragma")); 215 216 /// Create an analysis remark that explains why vectorization failed 217 /// 218 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 219 /// RemarkName is the identifier for the remark. If \p I is passed it is an 220 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 221 /// the location of the remark. \return the remark object that can be 222 /// streamed to. 223 static OptimizationRemarkAnalysis 224 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 225 Instruction *I = nullptr) { 226 Value *CodeRegion = TheLoop->getHeader(); 227 DebugLoc DL = TheLoop->getStartLoc(); 228 229 if (I) { 230 CodeRegion = I->getParent(); 231 // If there is no debug location attached to the instruction, revert back to 232 // using the loop's. 233 if (I->getDebugLoc()) 234 DL = I->getDebugLoc(); 235 } 236 237 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 238 R << "loop not vectorized: "; 239 return R; 240 } 241 242 namespace { 243 244 // Forward declarations. 245 class LoopVectorizeHints; 246 class LoopVectorizationLegality; 247 class LoopVectorizationCostModel; 248 class LoopVectorizationRequirements; 249 250 /// Returns true if the given loop body has a cycle, excluding the loop 251 /// itself. 252 static bool hasCyclesInLoopBody(const Loop &L) { 253 if (!L.empty()) 254 return true; 255 256 for (const auto &SCC : 257 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 258 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 259 if (SCC.size() > 1) { 260 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 261 DEBUG(L.dump()); 262 return true; 263 } 264 } 265 return false; 266 } 267 268 /// \brief This modifies LoopAccessReport to initialize message with 269 /// loop-vectorizer-specific part. 270 class VectorizationReport : public LoopAccessReport { 271 public: 272 VectorizationReport(Instruction *I = nullptr) 273 : LoopAccessReport("loop not vectorized: ", I) {} 274 275 /// \brief This allows promotion of the loop-access analysis report into the 276 /// loop-vectorizer report. It modifies the message to add the 277 /// loop-vectorizer-specific part of the message. 278 explicit VectorizationReport(const LoopAccessReport &R) 279 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 280 R.getInstr()) {} 281 }; 282 283 /// A helper function for converting Scalar types to vector types. 284 /// If the incoming type is void, we return void. If the VF is 1, we return 285 /// the scalar type. 286 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 287 if (Scalar->isVoidTy() || VF == 1) 288 return Scalar; 289 return VectorType::get(Scalar, VF); 290 } 291 292 /// A helper function that returns GEP instruction and knows to skip a 293 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 294 /// pointee types of the 'bitcast' have the same size. 295 /// For example: 296 /// bitcast double** %var to i64* - can be skipped 297 /// bitcast double** %var to i8* - can not 298 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 299 300 if (isa<GetElementPtrInst>(Ptr)) 301 return cast<GetElementPtrInst>(Ptr); 302 303 if (isa<BitCastInst>(Ptr) && 304 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 305 Type *BitcastTy = Ptr->getType(); 306 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 307 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 308 return nullptr; 309 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 310 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 311 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 312 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 313 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 314 } 315 return nullptr; 316 } 317 318 /// A helper function that returns the pointer operand of a load or store 319 /// instruction. 320 static Value *getPointerOperand(Value *I) { 321 if (auto *LI = dyn_cast<LoadInst>(I)) 322 return LI->getPointerOperand(); 323 if (auto *SI = dyn_cast<StoreInst>(I)) 324 return SI->getPointerOperand(); 325 return nullptr; 326 } 327 328 /// A helper function that returns true if the given type is irregular. The 329 /// type is irregular if its allocated size doesn't equal the store size of an 330 /// element of the corresponding vector type at the given vectorization factor. 331 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 332 333 // Determine if an array of VF elements of type Ty is "bitcast compatible" 334 // with a <VF x Ty> vector. 335 if (VF > 1) { 336 auto *VectorTy = VectorType::get(Ty, VF); 337 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 338 } 339 340 // If the vectorization factor is one, we just check if an array of type Ty 341 // requires padding between elements. 342 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 343 } 344 345 /// A helper function that returns the reciprocal of the block probability of 346 /// predicated blocks. If we return X, we are assuming the predicated block 347 /// will execute once for for every X iterations of the loop header. 348 /// 349 /// TODO: We should use actual block probability here, if available. Currently, 350 /// we always assume predicated blocks have a 50% chance of executing. 351 static unsigned getReciprocalPredBlockProb() { return 2; } 352 353 /// InnerLoopVectorizer vectorizes loops which contain only one basic 354 /// block to a specified vectorization factor (VF). 355 /// This class performs the widening of scalars into vectors, or multiple 356 /// scalars. This class also implements the following features: 357 /// * It inserts an epilogue loop for handling loops that don't have iteration 358 /// counts that are known to be a multiple of the vectorization factor. 359 /// * It handles the code generation for reduction variables. 360 /// * Scalarization (implementation using scalars) of un-vectorizable 361 /// instructions. 362 /// InnerLoopVectorizer does not perform any vectorization-legality 363 /// checks, and relies on the caller to check for the different legality 364 /// aspects. The InnerLoopVectorizer relies on the 365 /// LoopVectorizationLegality class to provide information about the induction 366 /// and reduction variables that were found to a given vectorization factor. 367 class InnerLoopVectorizer { 368 public: 369 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 370 LoopInfo *LI, DominatorTree *DT, 371 const TargetLibraryInfo *TLI, 372 const TargetTransformInfo *TTI, AssumptionCache *AC, 373 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 374 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 375 LoopVectorizationCostModel *CM) 376 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 377 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 378 Builder(PSE.getSE()->getContext()), Induction(nullptr), 379 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 380 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 381 AddedSafetyChecks(false) {} 382 383 // Perform the actual loop widening (vectorization). 384 void vectorize() { 385 // Create a new empty loop. Unlink the old loop and connect the new one. 386 createEmptyLoop(); 387 // Widen each instruction in the old loop to a new one in the new loop. 388 vectorizeLoop(); 389 } 390 391 // Return true if any runtime check is added. 392 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 393 394 virtual ~InnerLoopVectorizer() {} 395 396 protected: 397 /// A small list of PHINodes. 398 typedef SmallVector<PHINode *, 4> PhiVector; 399 400 /// A type for vectorized values in the new loop. Each value from the 401 /// original loop, when vectorized, is represented by UF vector values in the 402 /// new unrolled loop, where UF is the unroll factor. 403 typedef SmallVector<Value *, 2> VectorParts; 404 405 /// A type for scalarized values in the new loop. Each value from the 406 /// original loop, when scalarized, is represented by UF x VF scalar values 407 /// in the new unrolled loop, where UF is the unroll factor and VF is the 408 /// vectorization factor. 409 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 410 411 // When we if-convert we need to create edge masks. We have to cache values 412 // so that we don't end up with exponential recursion/IR. 413 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 414 EdgeMaskCache; 415 416 /// Create an empty loop, based on the loop ranges of the old loop. 417 void createEmptyLoop(); 418 419 /// Set up the values of the IVs correctly when exiting the vector loop. 420 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 421 Value *CountRoundDown, Value *EndValue, 422 BasicBlock *MiddleBlock); 423 424 /// Create a new induction variable inside L. 425 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 426 Value *Step, Instruction *DL); 427 /// Copy and widen the instructions from the old loop. 428 virtual void vectorizeLoop(); 429 430 /// Fix a first-order recurrence. This is the second phase of vectorizing 431 /// this phi node. 432 void fixFirstOrderRecurrence(PHINode *Phi); 433 434 /// \brief The Loop exit block may have single value PHI nodes where the 435 /// incoming value is 'Undef'. While vectorizing we only handled real values 436 /// that were defined inside the loop. Here we fix the 'undef case'. 437 /// See PR14725. 438 void fixLCSSAPHIs(); 439 440 /// Iteratively sink the scalarized operands of a predicated instruction into 441 /// the block that was created for it. 442 void sinkScalarOperands(Instruction *PredInst); 443 444 /// Predicate conditional instructions that require predication on their 445 /// respective conditions. 446 void predicateInstructions(); 447 448 /// Collect the instructions from the original loop that would be trivially 449 /// dead in the vectorized loop if generated. 450 void collectTriviallyDeadInstructions(); 451 452 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 453 /// represented as. 454 void truncateToMinimalBitwidths(); 455 456 /// A helper function that computes the predicate of the block BB, assuming 457 /// that the header block of the loop is set to True. It returns the *entry* 458 /// mask for the block BB. 459 VectorParts createBlockInMask(BasicBlock *BB); 460 /// A helper function that computes the predicate of the edge between SRC 461 /// and DST. 462 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 463 464 /// A helper function to vectorize a single BB within the innermost loop. 465 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 466 467 /// Vectorize a single PHINode in a block. This method handles the induction 468 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 469 /// arbitrary length vectors. 470 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF, 471 PhiVector *PV); 472 473 /// Insert the new loop to the loop hierarchy and pass manager 474 /// and update the analysis passes. 475 void updateAnalysis(); 476 477 /// This instruction is un-vectorizable. Implement it as a sequence 478 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 479 /// scalarized instruction behind an if block predicated on the control 480 /// dependence of the instruction. 481 virtual void scalarizeInstruction(Instruction *Instr, 482 bool IfPredicateInstr = false); 483 484 /// Vectorize Load and Store instructions, 485 virtual void vectorizeMemoryInstruction(Instruction *Instr); 486 487 /// Create a broadcast instruction. This method generates a broadcast 488 /// instruction (shuffle) for loop invariant values and for the induction 489 /// value. If this is the induction variable then we extend it to N, N+1, ... 490 /// this is needed because each iteration in the loop corresponds to a SIMD 491 /// element. 492 virtual Value *getBroadcastInstrs(Value *V); 493 494 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 495 /// to each vector element of Val. The sequence starts at StartIndex. 496 /// \p Opcode is relevant for FP induction variable. 497 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 498 Instruction::BinaryOps Opcode = 499 Instruction::BinaryOpsEnd); 500 501 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 502 /// variable on which to base the steps, \p Step is the size of the step, and 503 /// \p EntryVal is the value from the original loop that maps to the steps. 504 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 505 /// can be a truncate instruction). 506 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 507 508 /// Create a vector induction phi node based on an existing scalar one. This 509 /// currently only works for integer induction variables with a constant 510 /// step. \p EntryVal is the value from the original loop that maps to the 511 /// vector phi node. If \p EntryVal is a truncate instruction, instead of 512 /// widening the original IV, we widen a version of the IV truncated to \p 513 /// EntryVal's type. 514 void createVectorIntInductionPHI(const InductionDescriptor &II, 515 Instruction *EntryVal); 516 517 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 518 /// induction variable will first be truncated to the corresponding type. 519 void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr); 520 521 /// Returns true if an instruction \p I should be scalarized instead of 522 /// vectorized for the chosen vectorization factor. 523 bool shouldScalarizeInstruction(Instruction *I) const; 524 525 /// Returns true if we should generate a scalar version of \p IV. 526 bool needsScalarInduction(Instruction *IV) const; 527 528 /// Return a constant reference to the VectorParts corresponding to \p V from 529 /// the original loop. If the value has already been vectorized, the 530 /// corresponding vector entry in VectorLoopValueMap is returned. If, 531 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 532 /// new vector values on-demand by inserting the scalar values into vectors 533 /// with an insertelement sequence. If the value has been neither vectorized 534 /// nor scalarized, it must be loop invariant, so we simply broadcast the 535 /// value into vectors. 536 const VectorParts &getVectorValue(Value *V); 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll index \p Part and vector index \p Lane. If the value has 540 /// been vectorized but not scalarized, the necessary extractelement 541 /// instruction will be generated. 542 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 543 544 /// Try to vectorize the interleaved access group that \p Instr belongs to. 545 void vectorizeInterleaveGroup(Instruction *Instr); 546 547 /// Generate a shuffle sequence that will reverse the vector Vec. 548 virtual Value *reverseVector(Value *Vec); 549 550 /// Returns (and creates if needed) the original loop trip count. 551 Value *getOrCreateTripCount(Loop *NewLoop); 552 553 /// Returns (and creates if needed) the trip count of the widened loop. 554 Value *getOrCreateVectorTripCount(Loop *NewLoop); 555 556 /// Emit a bypass check to see if the trip count would overflow, or we 557 /// wouldn't have enough iterations to execute one vector loop. 558 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 559 /// Emit a bypass check to see if the vector trip count is nonzero. 560 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 561 /// Emit a bypass check to see if all of the SCEV assumptions we've 562 /// had to make are correct. 563 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 564 /// Emit bypass checks to check any memory assumptions we may have made. 565 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 566 567 /// Add additional metadata to \p To that was not present on \p Orig. 568 /// 569 /// Currently this is used to add the noalias annotations based on the 570 /// inserted memchecks. Use this for instructions that are *cloned* into the 571 /// vector loop. 572 void addNewMetadata(Instruction *To, const Instruction *Orig); 573 574 /// Add metadata from one instruction to another. 575 /// 576 /// This includes both the original MDs from \p From and additional ones (\see 577 /// addNewMetadata). Use this for *newly created* instructions in the vector 578 /// loop. 579 void addMetadata(Instruction *To, Instruction *From); 580 581 /// \brief Similar to the previous function but it adds the metadata to a 582 /// vector of instructions. 583 void addMetadata(ArrayRef<Value *> To, Instruction *From); 584 585 /// This is a helper class for maintaining vectorization state. It's used for 586 /// mapping values from the original loop to their corresponding values in 587 /// the new loop. Two mappings are maintained: one for vectorized values and 588 /// one for scalarized values. Vectorized values are represented with UF 589 /// vector values in the new loop, and scalarized values are represented with 590 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 591 /// vectorization factors, respectively. 592 /// 593 /// Entries can be added to either map with initVector and initScalar, which 594 /// initialize and return a constant reference to the new entry. If a 595 /// non-constant reference to a vector entry is required, getVector can be 596 /// used to retrieve a mutable entry. We currently directly modify the mapped 597 /// values during "fix-up" operations that occur once the first phase of 598 /// widening is complete. These operations include type truncation and the 599 /// second phase of recurrence widening. 600 /// 601 /// Otherwise, entries from either map should be accessed using the 602 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 603 /// getVectorValue and getScalarValue coordinate to generate a vector or 604 /// scalar value on-demand if one is not yet available. When vectorizing a 605 /// loop, we visit the definition of an instruction before its uses. When 606 /// visiting the definition, we either vectorize or scalarize the 607 /// instruction, creating an entry for it in the corresponding map. (In some 608 /// cases, such as induction variables, we will create both vector and scalar 609 /// entries.) Then, as we encounter uses of the definition, we derive values 610 /// for each scalar or vector use unless such a value is already available. 611 /// For example, if we scalarize a definition and one of its uses is vector, 612 /// we build the required vector on-demand with an insertelement sequence 613 /// when visiting the use. Otherwise, if the use is scalar, we can use the 614 /// existing scalar definition. 615 struct ValueMap { 616 617 /// Construct an empty map with the given unroll and vectorization factors. 618 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 619 : UF(UnrollFactor), VF(VecWidth) { 620 // The unroll and vectorization factors are only used in asserts builds 621 // to verify map entries are sized appropriately. 622 (void)UF; 623 (void)VF; 624 } 625 626 /// \return True if the map has a vector entry for \p Key. 627 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 628 629 /// \return True if the map has a scalar entry for \p Key. 630 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 631 632 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 633 /// constant reference to the new vector map entry. The given key should 634 /// not already be in the map, and the given VectorParts should be 635 /// correctly sized for the current unroll factor. 636 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 637 assert(!hasVector(Key) && "Vector entry already initialized"); 638 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 639 VectorMapStorage[Key] = Entry; 640 return VectorMapStorage[Key]; 641 } 642 643 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 644 /// constant reference to the new scalar map entry. The given key should 645 /// not already be in the map, and the given ScalarParts should be 646 /// correctly sized for the current unroll and vectorization factors. 647 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 648 assert(!hasScalar(Key) && "Scalar entry already initialized"); 649 assert(Entry.size() == UF && 650 all_of(make_range(Entry.begin(), Entry.end()), 651 [&](const SmallVectorImpl<Value *> &Values) -> bool { 652 return Values.size() == VF; 653 }) && 654 "ScalarParts has wrong dimensions"); 655 ScalarMapStorage[Key] = Entry; 656 return ScalarMapStorage[Key]; 657 } 658 659 /// \return A reference to the vector map entry corresponding to \p Key. 660 /// The key should already be in the map. This function should only be used 661 /// when it's necessary to update values that have already been vectorized. 662 /// This is the case for "fix-up" operations including type truncation and 663 /// the second phase of recurrence vectorization. If a non-const reference 664 /// isn't required, getVectorValue should be used instead. 665 VectorParts &getVector(Value *Key) { 666 assert(hasVector(Key) && "Vector entry not initialized"); 667 return VectorMapStorage.find(Key)->second; 668 } 669 670 /// Retrieve an entry from the vector or scalar maps. The preferred way to 671 /// access an existing mapped entry is with getVectorValue or 672 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 673 /// moved inside ValueMap, we have to declare them as friends. 674 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 675 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 676 unsigned Lane); 677 678 private: 679 /// The unroll factor. Each entry in the vector map contains UF vector 680 /// values. 681 unsigned UF; 682 683 /// The vectorization factor. Each entry in the scalar map contains UF x VF 684 /// scalar values. 685 unsigned VF; 686 687 /// The vector and scalar map storage. We use std::map and not DenseMap 688 /// because insertions to DenseMap invalidate its iterators. 689 std::map<Value *, VectorParts> VectorMapStorage; 690 std::map<Value *, ScalarParts> ScalarMapStorage; 691 }; 692 693 /// The original loop. 694 Loop *OrigLoop; 695 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 696 /// dynamic knowledge to simplify SCEV expressions and converts them to a 697 /// more usable form. 698 PredicatedScalarEvolution &PSE; 699 /// Loop Info. 700 LoopInfo *LI; 701 /// Dominator Tree. 702 DominatorTree *DT; 703 /// Alias Analysis. 704 AliasAnalysis *AA; 705 /// Target Library Info. 706 const TargetLibraryInfo *TLI; 707 /// Target Transform Info. 708 const TargetTransformInfo *TTI; 709 /// Assumption Cache. 710 AssumptionCache *AC; 711 /// Interface to emit optimization remarks. 712 OptimizationRemarkEmitter *ORE; 713 714 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 715 /// used. 716 /// 717 /// This is currently only used to add no-alias metadata based on the 718 /// memchecks. The actually versioning is performed manually. 719 std::unique_ptr<LoopVersioning> LVer; 720 721 /// The vectorization SIMD factor to use. Each vector will have this many 722 /// vector elements. 723 unsigned VF; 724 725 protected: 726 /// The vectorization unroll factor to use. Each scalar is vectorized to this 727 /// many different vector instructions. 728 unsigned UF; 729 730 /// The builder that we use 731 IRBuilder<> Builder; 732 733 // --- Vectorization state --- 734 735 /// The vector-loop preheader. 736 BasicBlock *LoopVectorPreHeader; 737 /// The scalar-loop preheader. 738 BasicBlock *LoopScalarPreHeader; 739 /// Middle Block between the vector and the scalar. 740 BasicBlock *LoopMiddleBlock; 741 /// The ExitBlock of the scalar loop. 742 BasicBlock *LoopExitBlock; 743 /// The vector loop body. 744 BasicBlock *LoopVectorBody; 745 /// The scalar loop body. 746 BasicBlock *LoopScalarBody; 747 /// A list of all bypass blocks. The first block is the entry of the loop. 748 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 749 750 /// The new Induction variable which was added to the new block. 751 PHINode *Induction; 752 /// The induction variable of the old basic block. 753 PHINode *OldInduction; 754 755 /// Maps values from the original loop to their corresponding values in the 756 /// vectorized loop. A key value can map to either vector values, scalar 757 /// values or both kinds of values, depending on whether the key was 758 /// vectorized and scalarized. 759 ValueMap VectorLoopValueMap; 760 761 /// Store instructions that should be predicated, as a pair 762 /// <StoreInst, Predicate> 763 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 764 EdgeMaskCache MaskCache; 765 /// Trip count of the original loop. 766 Value *TripCount; 767 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 768 Value *VectorTripCount; 769 770 /// The legality analysis. 771 LoopVectorizationLegality *Legal; 772 773 /// The profitablity analysis. 774 LoopVectorizationCostModel *Cost; 775 776 // Record whether runtime checks are added. 777 bool AddedSafetyChecks; 778 779 // Holds instructions from the original loop whose counterparts in the 780 // vectorized loop would be trivially dead if generated. For example, 781 // original induction update instructions can become dead because we 782 // separately emit induction "steps" when generating code for the new loop. 783 // Similarly, we create a new latch condition when setting up the structure 784 // of the new loop, so the old one can become dead. 785 SmallPtrSet<Instruction *, 4> DeadInstructions; 786 787 // Holds the end values for each induction variable. We save the end values 788 // so we can later fix-up the external users of the induction variables. 789 DenseMap<PHINode *, Value *> IVEndValues; 790 }; 791 792 class InnerLoopUnroller : public InnerLoopVectorizer { 793 public: 794 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 795 LoopInfo *LI, DominatorTree *DT, 796 const TargetLibraryInfo *TLI, 797 const TargetTransformInfo *TTI, AssumptionCache *AC, 798 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 799 LoopVectorizationLegality *LVL, 800 LoopVectorizationCostModel *CM) 801 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 802 UnrollFactor, LVL, CM) {} 803 804 private: 805 void scalarizeInstruction(Instruction *Instr, 806 bool IfPredicateInstr = false) override; 807 void vectorizeMemoryInstruction(Instruction *Instr) override; 808 Value *getBroadcastInstrs(Value *V) override; 809 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 810 Instruction::BinaryOps Opcode = 811 Instruction::BinaryOpsEnd) override; 812 Value *reverseVector(Value *Vec) override; 813 }; 814 815 /// \brief Look for a meaningful debug location on the instruction or it's 816 /// operands. 817 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 818 if (!I) 819 return I; 820 821 DebugLoc Empty; 822 if (I->getDebugLoc() != Empty) 823 return I; 824 825 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 826 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 827 if (OpInst->getDebugLoc() != Empty) 828 return OpInst; 829 } 830 831 return I; 832 } 833 834 /// \brief Set the debug location in the builder using the debug location in the 835 /// instruction. 836 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 837 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 838 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 839 else 840 B.SetCurrentDebugLocation(DebugLoc()); 841 } 842 843 #ifndef NDEBUG 844 /// \return string containing a file name and a line # for the given loop. 845 static std::string getDebugLocString(const Loop *L) { 846 std::string Result; 847 if (L) { 848 raw_string_ostream OS(Result); 849 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 850 LoopDbgLoc.print(OS); 851 else 852 // Just print the module name. 853 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 854 OS.flush(); 855 } 856 return Result; 857 } 858 #endif 859 860 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 861 const Instruction *Orig) { 862 // If the loop was versioned with memchecks, add the corresponding no-alias 863 // metadata. 864 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 865 LVer->annotateInstWithNoAlias(To, Orig); 866 } 867 868 void InnerLoopVectorizer::addMetadata(Instruction *To, 869 Instruction *From) { 870 propagateMetadata(To, From); 871 addNewMetadata(To, From); 872 } 873 874 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 875 Instruction *From) { 876 for (Value *V : To) { 877 if (Instruction *I = dyn_cast<Instruction>(V)) 878 addMetadata(I, From); 879 } 880 } 881 882 /// \brief The group of interleaved loads/stores sharing the same stride and 883 /// close to each other. 884 /// 885 /// Each member in this group has an index starting from 0, and the largest 886 /// index should be less than interleaved factor, which is equal to the absolute 887 /// value of the access's stride. 888 /// 889 /// E.g. An interleaved load group of factor 4: 890 /// for (unsigned i = 0; i < 1024; i+=4) { 891 /// a = A[i]; // Member of index 0 892 /// b = A[i+1]; // Member of index 1 893 /// d = A[i+3]; // Member of index 3 894 /// ... 895 /// } 896 /// 897 /// An interleaved store group of factor 4: 898 /// for (unsigned i = 0; i < 1024; i+=4) { 899 /// ... 900 /// A[i] = a; // Member of index 0 901 /// A[i+1] = b; // Member of index 1 902 /// A[i+2] = c; // Member of index 2 903 /// A[i+3] = d; // Member of index 3 904 /// } 905 /// 906 /// Note: the interleaved load group could have gaps (missing members), but 907 /// the interleaved store group doesn't allow gaps. 908 class InterleaveGroup { 909 public: 910 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 911 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 912 assert(Align && "The alignment should be non-zero"); 913 914 Factor = std::abs(Stride); 915 assert(Factor > 1 && "Invalid interleave factor"); 916 917 Reverse = Stride < 0; 918 Members[0] = Instr; 919 } 920 921 bool isReverse() const { return Reverse; } 922 unsigned getFactor() const { return Factor; } 923 unsigned getAlignment() const { return Align; } 924 unsigned getNumMembers() const { return Members.size(); } 925 926 /// \brief Try to insert a new member \p Instr with index \p Index and 927 /// alignment \p NewAlign. The index is related to the leader and it could be 928 /// negative if it is the new leader. 929 /// 930 /// \returns false if the instruction doesn't belong to the group. 931 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 932 assert(NewAlign && "The new member's alignment should be non-zero"); 933 934 int Key = Index + SmallestKey; 935 936 // Skip if there is already a member with the same index. 937 if (Members.count(Key)) 938 return false; 939 940 if (Key > LargestKey) { 941 // The largest index is always less than the interleave factor. 942 if (Index >= static_cast<int>(Factor)) 943 return false; 944 945 LargestKey = Key; 946 } else if (Key < SmallestKey) { 947 // The largest index is always less than the interleave factor. 948 if (LargestKey - Key >= static_cast<int>(Factor)) 949 return false; 950 951 SmallestKey = Key; 952 } 953 954 // It's always safe to select the minimum alignment. 955 Align = std::min(Align, NewAlign); 956 Members[Key] = Instr; 957 return true; 958 } 959 960 /// \brief Get the member with the given index \p Index 961 /// 962 /// \returns nullptr if contains no such member. 963 Instruction *getMember(unsigned Index) const { 964 int Key = SmallestKey + Index; 965 if (!Members.count(Key)) 966 return nullptr; 967 968 return Members.find(Key)->second; 969 } 970 971 /// \brief Get the index for the given member. Unlike the key in the member 972 /// map, the index starts from 0. 973 unsigned getIndex(Instruction *Instr) const { 974 for (auto I : Members) 975 if (I.second == Instr) 976 return I.first - SmallestKey; 977 978 llvm_unreachable("InterleaveGroup contains no such member"); 979 } 980 981 Instruction *getInsertPos() const { return InsertPos; } 982 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 983 984 private: 985 unsigned Factor; // Interleave Factor. 986 bool Reverse; 987 unsigned Align; 988 DenseMap<int, Instruction *> Members; 989 int SmallestKey; 990 int LargestKey; 991 992 // To avoid breaking dependences, vectorized instructions of an interleave 993 // group should be inserted at either the first load or the last store in 994 // program order. 995 // 996 // E.g. %even = load i32 // Insert Position 997 // %add = add i32 %even // Use of %even 998 // %odd = load i32 999 // 1000 // store i32 %even 1001 // %odd = add i32 // Def of %odd 1002 // store i32 %odd // Insert Position 1003 Instruction *InsertPos; 1004 }; 1005 1006 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1007 /// 1008 /// Use this class to analyze interleaved accesses only when we can vectorize 1009 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1010 /// on interleaved accesses is unsafe. 1011 /// 1012 /// The analysis collects interleave groups and records the relationships 1013 /// between the member and the group in a map. 1014 class InterleavedAccessInfo { 1015 public: 1016 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1017 DominatorTree *DT, LoopInfo *LI) 1018 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1019 RequiresScalarEpilogue(false) {} 1020 1021 ~InterleavedAccessInfo() { 1022 SmallSet<InterleaveGroup *, 4> DelSet; 1023 // Avoid releasing a pointer twice. 1024 for (auto &I : InterleaveGroupMap) 1025 DelSet.insert(I.second); 1026 for (auto *Ptr : DelSet) 1027 delete Ptr; 1028 } 1029 1030 /// \brief Analyze the interleaved accesses and collect them in interleave 1031 /// groups. Substitute symbolic strides using \p Strides. 1032 void analyzeInterleaving(const ValueToValueMap &Strides); 1033 1034 /// \brief Check if \p Instr belongs to any interleave group. 1035 bool isInterleaved(Instruction *Instr) const { 1036 return InterleaveGroupMap.count(Instr); 1037 } 1038 1039 /// \brief Return the maximum interleave factor of all interleaved groups. 1040 unsigned getMaxInterleaveFactor() const { 1041 unsigned MaxFactor = 1; 1042 for (auto &Entry : InterleaveGroupMap) 1043 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1044 return MaxFactor; 1045 } 1046 1047 /// \brief Get the interleave group that \p Instr belongs to. 1048 /// 1049 /// \returns nullptr if doesn't have such group. 1050 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1051 if (InterleaveGroupMap.count(Instr)) 1052 return InterleaveGroupMap.find(Instr)->second; 1053 return nullptr; 1054 } 1055 1056 /// \brief Returns true if an interleaved group that may access memory 1057 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1058 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1059 1060 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1061 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1062 1063 private: 1064 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1065 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1066 /// The interleaved access analysis can also add new predicates (for example 1067 /// by versioning strides of pointers). 1068 PredicatedScalarEvolution &PSE; 1069 Loop *TheLoop; 1070 DominatorTree *DT; 1071 LoopInfo *LI; 1072 const LoopAccessInfo *LAI; 1073 1074 /// True if the loop may contain non-reversed interleaved groups with 1075 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1076 /// out-of-bounds by executing at least one scalar epilogue iteration. 1077 bool RequiresScalarEpilogue; 1078 1079 /// Holds the relationships between the members and the interleave group. 1080 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1081 1082 /// Holds dependences among the memory accesses in the loop. It maps a source 1083 /// access to a set of dependent sink accesses. 1084 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1085 1086 /// \brief The descriptor for a strided memory access. 1087 struct StrideDescriptor { 1088 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1089 unsigned Align) 1090 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1091 1092 StrideDescriptor() = default; 1093 1094 // The access's stride. It is negative for a reverse access. 1095 int64_t Stride = 0; 1096 const SCEV *Scev = nullptr; // The scalar expression of this access 1097 uint64_t Size = 0; // The size of the memory object. 1098 unsigned Align = 0; // The alignment of this access. 1099 }; 1100 1101 /// \brief A type for holding instructions and their stride descriptors. 1102 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1103 1104 /// \brief Create a new interleave group with the given instruction \p Instr, 1105 /// stride \p Stride and alignment \p Align. 1106 /// 1107 /// \returns the newly created interleave group. 1108 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1109 unsigned Align) { 1110 assert(!InterleaveGroupMap.count(Instr) && 1111 "Already in an interleaved access group"); 1112 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1113 return InterleaveGroupMap[Instr]; 1114 } 1115 1116 /// \brief Release the group and remove all the relationships. 1117 void releaseGroup(InterleaveGroup *Group) { 1118 for (unsigned i = 0; i < Group->getFactor(); i++) 1119 if (Instruction *Member = Group->getMember(i)) 1120 InterleaveGroupMap.erase(Member); 1121 1122 delete Group; 1123 } 1124 1125 /// \brief Collect all the accesses with a constant stride in program order. 1126 void collectConstStrideAccesses( 1127 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1128 const ValueToValueMap &Strides); 1129 1130 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1131 static bool isStrided(int Stride) { 1132 unsigned Factor = std::abs(Stride); 1133 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1134 } 1135 1136 /// \brief Returns true if \p BB is a predicated block. 1137 bool isPredicated(BasicBlock *BB) const { 1138 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1139 } 1140 1141 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1142 bool areDependencesValid() const { 1143 return LAI && LAI->getDepChecker().getDependences(); 1144 } 1145 1146 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1147 /// necessary, when constructing interleaved groups. 1148 /// 1149 /// \p A must precede \p B in program order. We return false if reordering is 1150 /// not necessary or is prevented because \p A and \p B may be dependent. 1151 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1152 StrideEntry *B) const { 1153 1154 // Code motion for interleaved accesses can potentially hoist strided loads 1155 // and sink strided stores. The code below checks the legality of the 1156 // following two conditions: 1157 // 1158 // 1. Potentially moving a strided load (B) before any store (A) that 1159 // precedes B, or 1160 // 1161 // 2. Potentially moving a strided store (A) after any load or store (B) 1162 // that A precedes. 1163 // 1164 // It's legal to reorder A and B if we know there isn't a dependence from A 1165 // to B. Note that this determination is conservative since some 1166 // dependences could potentially be reordered safely. 1167 1168 // A is potentially the source of a dependence. 1169 auto *Src = A->first; 1170 auto SrcDes = A->second; 1171 1172 // B is potentially the sink of a dependence. 1173 auto *Sink = B->first; 1174 auto SinkDes = B->second; 1175 1176 // Code motion for interleaved accesses can't violate WAR dependences. 1177 // Thus, reordering is legal if the source isn't a write. 1178 if (!Src->mayWriteToMemory()) 1179 return true; 1180 1181 // At least one of the accesses must be strided. 1182 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1183 return true; 1184 1185 // If dependence information is not available from LoopAccessInfo, 1186 // conservatively assume the instructions can't be reordered. 1187 if (!areDependencesValid()) 1188 return false; 1189 1190 // If we know there is a dependence from source to sink, assume the 1191 // instructions can't be reordered. Otherwise, reordering is legal. 1192 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1193 } 1194 1195 /// \brief Collect the dependences from LoopAccessInfo. 1196 /// 1197 /// We process the dependences once during the interleaved access analysis to 1198 /// enable constant-time dependence queries. 1199 void collectDependences() { 1200 if (!areDependencesValid()) 1201 return; 1202 auto *Deps = LAI->getDepChecker().getDependences(); 1203 for (auto Dep : *Deps) 1204 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1205 } 1206 }; 1207 1208 /// Utility class for getting and setting loop vectorizer hints in the form 1209 /// of loop metadata. 1210 /// This class keeps a number of loop annotations locally (as member variables) 1211 /// and can, upon request, write them back as metadata on the loop. It will 1212 /// initially scan the loop for existing metadata, and will update the local 1213 /// values based on information in the loop. 1214 /// We cannot write all values to metadata, as the mere presence of some info, 1215 /// for example 'force', means a decision has been made. So, we need to be 1216 /// careful NOT to add them if the user hasn't specifically asked so. 1217 class LoopVectorizeHints { 1218 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1219 1220 /// Hint - associates name and validation with the hint value. 1221 struct Hint { 1222 const char *Name; 1223 unsigned Value; // This may have to change for non-numeric values. 1224 HintKind Kind; 1225 1226 Hint(const char *Name, unsigned Value, HintKind Kind) 1227 : Name(Name), Value(Value), Kind(Kind) {} 1228 1229 bool validate(unsigned Val) { 1230 switch (Kind) { 1231 case HK_WIDTH: 1232 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1233 case HK_UNROLL: 1234 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1235 case HK_FORCE: 1236 return (Val <= 1); 1237 } 1238 return false; 1239 } 1240 }; 1241 1242 /// Vectorization width. 1243 Hint Width; 1244 /// Vectorization interleave factor. 1245 Hint Interleave; 1246 /// Vectorization forced 1247 Hint Force; 1248 1249 /// Return the loop metadata prefix. 1250 static StringRef Prefix() { return "llvm.loop."; } 1251 1252 /// True if there is any unsafe math in the loop. 1253 bool PotentiallyUnsafe; 1254 1255 public: 1256 enum ForceKind { 1257 FK_Undefined = -1, ///< Not selected. 1258 FK_Disabled = 0, ///< Forcing disabled. 1259 FK_Enabled = 1, ///< Forcing enabled. 1260 }; 1261 1262 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1263 OptimizationRemarkEmitter &ORE) 1264 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1265 HK_WIDTH), 1266 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1267 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1268 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1269 // Populate values with existing loop metadata. 1270 getHintsFromMetadata(); 1271 1272 // force-vector-interleave overrides DisableInterleaving. 1273 if (VectorizerParams::isInterleaveForced()) 1274 Interleave.Value = VectorizerParams::VectorizationInterleave; 1275 1276 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1277 << "LV: Interleaving disabled by the pass manager\n"); 1278 } 1279 1280 /// Mark the loop L as already vectorized by setting the width to 1. 1281 void setAlreadyVectorized() { 1282 Width.Value = Interleave.Value = 1; 1283 Hint Hints[] = {Width, Interleave}; 1284 writeHintsToMetadata(Hints); 1285 } 1286 1287 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1288 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1289 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1290 emitRemarkWithHints(); 1291 return false; 1292 } 1293 1294 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1295 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1296 emitRemarkWithHints(); 1297 return false; 1298 } 1299 1300 if (getWidth() == 1 && getInterleave() == 1) { 1301 // FIXME: Add a separate metadata to indicate when the loop has already 1302 // been vectorized instead of setting width and count to 1. 1303 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1304 // FIXME: Add interleave.disable metadata. This will allow 1305 // vectorize.disable to be used without disabling the pass and errors 1306 // to differentiate between disabled vectorization and a width of 1. 1307 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1308 "AllDisabled", L->getStartLoc(), 1309 L->getHeader()) 1310 << "loop not vectorized: vectorization and interleaving are " 1311 "explicitly disabled, or vectorize width and interleave " 1312 "count are both set to 1"); 1313 return false; 1314 } 1315 1316 return true; 1317 } 1318 1319 /// Dumps all the hint information. 1320 void emitRemarkWithHints() const { 1321 using namespace ore; 1322 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1323 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1324 TheLoop->getStartLoc(), 1325 TheLoop->getHeader()) 1326 << "loop not vectorized: vectorization is explicitly disabled"); 1327 else { 1328 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1329 TheLoop->getStartLoc(), TheLoop->getHeader()); 1330 R << "loop not vectorized"; 1331 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1332 R << " (Force=" << NV("Force", true); 1333 if (Width.Value != 0) 1334 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1335 if (Interleave.Value != 0) 1336 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1337 R << ")"; 1338 } 1339 ORE.emit(R); 1340 } 1341 } 1342 1343 unsigned getWidth() const { return Width.Value; } 1344 unsigned getInterleave() const { return Interleave.Value; } 1345 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1346 1347 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1348 /// pass name to force the frontend to print the diagnostic. 1349 const char *vectorizeAnalysisPassName() const { 1350 if (getWidth() == 1) 1351 return LV_NAME; 1352 if (getForce() == LoopVectorizeHints::FK_Disabled) 1353 return LV_NAME; 1354 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1355 return LV_NAME; 1356 return OptimizationRemarkAnalysis::AlwaysPrint; 1357 } 1358 1359 bool allowReordering() const { 1360 // When enabling loop hints are provided we allow the vectorizer to change 1361 // the order of operations that is given by the scalar loop. This is not 1362 // enabled by default because can be unsafe or inefficient. For example, 1363 // reordering floating-point operations will change the way round-off 1364 // error accumulates in the loop. 1365 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1366 } 1367 1368 bool isPotentiallyUnsafe() const { 1369 // Avoid FP vectorization if the target is unsure about proper support. 1370 // This may be related to the SIMD unit in the target not handling 1371 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1372 // Otherwise, a sequence of vectorized loops, even without reduction, 1373 // could lead to different end results on the destination vectors. 1374 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1375 } 1376 1377 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1378 1379 private: 1380 /// Find hints specified in the loop metadata and update local values. 1381 void getHintsFromMetadata() { 1382 MDNode *LoopID = TheLoop->getLoopID(); 1383 if (!LoopID) 1384 return; 1385 1386 // First operand should refer to the loop id itself. 1387 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1388 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1389 1390 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1391 const MDString *S = nullptr; 1392 SmallVector<Metadata *, 4> Args; 1393 1394 // The expected hint is either a MDString or a MDNode with the first 1395 // operand a MDString. 1396 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1397 if (!MD || MD->getNumOperands() == 0) 1398 continue; 1399 S = dyn_cast<MDString>(MD->getOperand(0)); 1400 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1401 Args.push_back(MD->getOperand(i)); 1402 } else { 1403 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1404 assert(Args.size() == 0 && "too many arguments for MDString"); 1405 } 1406 1407 if (!S) 1408 continue; 1409 1410 // Check if the hint starts with the loop metadata prefix. 1411 StringRef Name = S->getString(); 1412 if (Args.size() == 1) 1413 setHint(Name, Args[0]); 1414 } 1415 } 1416 1417 /// Checks string hint with one operand and set value if valid. 1418 void setHint(StringRef Name, Metadata *Arg) { 1419 if (!Name.startswith(Prefix())) 1420 return; 1421 Name = Name.substr(Prefix().size(), StringRef::npos); 1422 1423 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1424 if (!C) 1425 return; 1426 unsigned Val = C->getZExtValue(); 1427 1428 Hint *Hints[] = {&Width, &Interleave, &Force}; 1429 for (auto H : Hints) { 1430 if (Name == H->Name) { 1431 if (H->validate(Val)) 1432 H->Value = Val; 1433 else 1434 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1435 break; 1436 } 1437 } 1438 } 1439 1440 /// Create a new hint from name / value pair. 1441 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1442 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1443 Metadata *MDs[] = {MDString::get(Context, Name), 1444 ConstantAsMetadata::get( 1445 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1446 return MDNode::get(Context, MDs); 1447 } 1448 1449 /// Matches metadata with hint name. 1450 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1451 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1452 if (!Name) 1453 return false; 1454 1455 for (auto H : HintTypes) 1456 if (Name->getString().endswith(H.Name)) 1457 return true; 1458 return false; 1459 } 1460 1461 /// Sets current hints into loop metadata, keeping other values intact. 1462 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1463 if (HintTypes.size() == 0) 1464 return; 1465 1466 // Reserve the first element to LoopID (see below). 1467 SmallVector<Metadata *, 4> MDs(1); 1468 // If the loop already has metadata, then ignore the existing operands. 1469 MDNode *LoopID = TheLoop->getLoopID(); 1470 if (LoopID) { 1471 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1472 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1473 // If node in update list, ignore old value. 1474 if (!matchesHintMetadataName(Node, HintTypes)) 1475 MDs.push_back(Node); 1476 } 1477 } 1478 1479 // Now, add the missing hints. 1480 for (auto H : HintTypes) 1481 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1482 1483 // Replace current metadata node with new one. 1484 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1485 MDNode *NewLoopID = MDNode::get(Context, MDs); 1486 // Set operand 0 to refer to the loop id itself. 1487 NewLoopID->replaceOperandWith(0, NewLoopID); 1488 1489 TheLoop->setLoopID(NewLoopID); 1490 } 1491 1492 /// The loop these hints belong to. 1493 const Loop *TheLoop; 1494 1495 /// Interface to emit optimization remarks. 1496 OptimizationRemarkEmitter &ORE; 1497 }; 1498 1499 static void emitAnalysisDiag(const Loop *TheLoop, 1500 const LoopVectorizeHints &Hints, 1501 OptimizationRemarkEmitter &ORE, 1502 const LoopAccessReport &Message) { 1503 const char *Name = Hints.vectorizeAnalysisPassName(); 1504 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1505 } 1506 1507 static void emitMissedWarning(Function *F, Loop *L, 1508 const LoopVectorizeHints &LH, 1509 OptimizationRemarkEmitter *ORE) { 1510 LH.emitRemarkWithHints(); 1511 1512 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1513 if (LH.getWidth() != 1) 1514 emitLoopVectorizeWarning( 1515 F->getContext(), *F, L->getStartLoc(), 1516 "failed explicitly specified loop vectorization"); 1517 else if (LH.getInterleave() != 1) 1518 emitLoopInterleaveWarning( 1519 F->getContext(), *F, L->getStartLoc(), 1520 "failed explicitly specified loop interleaving"); 1521 } 1522 } 1523 1524 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1525 /// to what vectorization factor. 1526 /// This class does not look at the profitability of vectorization, only the 1527 /// legality. This class has two main kinds of checks: 1528 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1529 /// will change the order of memory accesses in a way that will change the 1530 /// correctness of the program. 1531 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1532 /// checks for a number of different conditions, such as the availability of a 1533 /// single induction variable, that all types are supported and vectorize-able, 1534 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1535 /// This class is also used by InnerLoopVectorizer for identifying 1536 /// induction variable and the different reduction variables. 1537 class LoopVectorizationLegality { 1538 public: 1539 LoopVectorizationLegality( 1540 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1541 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1542 const TargetTransformInfo *TTI, 1543 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1544 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1545 LoopVectorizeHints *H) 1546 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1547 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1548 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1549 Requirements(R), Hints(H) {} 1550 1551 /// ReductionList contains the reduction descriptors for all 1552 /// of the reductions that were found in the loop. 1553 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1554 1555 /// InductionList saves induction variables and maps them to the 1556 /// induction descriptor. 1557 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1558 1559 /// RecurrenceSet contains the phi nodes that are recurrences other than 1560 /// inductions and reductions. 1561 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1562 1563 /// Returns true if it is legal to vectorize this loop. 1564 /// This does not mean that it is profitable to vectorize this 1565 /// loop, only that it is legal to do so. 1566 bool canVectorize(); 1567 1568 /// Returns the Induction variable. 1569 PHINode *getInduction() { return Induction; } 1570 1571 /// Returns the reduction variables found in the loop. 1572 ReductionList *getReductionVars() { return &Reductions; } 1573 1574 /// Returns the induction variables found in the loop. 1575 InductionList *getInductionVars() { return &Inductions; } 1576 1577 /// Return the first-order recurrences found in the loop. 1578 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1579 1580 /// Returns the widest induction type. 1581 Type *getWidestInductionType() { return WidestIndTy; } 1582 1583 /// Returns True if V is an induction variable in this loop. 1584 bool isInductionVariable(const Value *V); 1585 1586 /// Returns True if PN is a reduction variable in this loop. 1587 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1588 1589 /// Returns True if Phi is a first-order recurrence in this loop. 1590 bool isFirstOrderRecurrence(const PHINode *Phi); 1591 1592 /// Return true if the block BB needs to be predicated in order for the loop 1593 /// to be vectorized. 1594 bool blockNeedsPredication(BasicBlock *BB); 1595 1596 /// Check if this pointer is consecutive when vectorizing. This happens 1597 /// when the last index of the GEP is the induction variable, or that the 1598 /// pointer itself is an induction variable. 1599 /// This check allows us to vectorize A[idx] into a wide load/store. 1600 /// Returns: 1601 /// 0 - Stride is unknown or non-consecutive. 1602 /// 1 - Address is consecutive. 1603 /// -1 - Address is consecutive, and decreasing. 1604 int isConsecutivePtr(Value *Ptr); 1605 1606 /// Returns true if the value V is uniform within the loop. 1607 bool isUniform(Value *V); 1608 1609 /// Returns true if \p I is known to be uniform after vectorization. 1610 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1611 1612 /// Returns true if \p I is known to be scalar after vectorization. 1613 bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); } 1614 1615 /// Returns the information that we collected about runtime memory check. 1616 const RuntimePointerChecking *getRuntimePointerChecking() const { 1617 return LAI->getRuntimePointerChecking(); 1618 } 1619 1620 const LoopAccessInfo *getLAI() const { return LAI; } 1621 1622 /// \brief Check if \p Instr belongs to any interleaved access group. 1623 bool isAccessInterleaved(Instruction *Instr) { 1624 return InterleaveInfo.isInterleaved(Instr); 1625 } 1626 1627 /// \brief Return the maximum interleave factor of all interleaved groups. 1628 unsigned getMaxInterleaveFactor() const { 1629 return InterleaveInfo.getMaxInterleaveFactor(); 1630 } 1631 1632 /// \brief Get the interleaved access group that \p Instr belongs to. 1633 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1634 return InterleaveInfo.getInterleaveGroup(Instr); 1635 } 1636 1637 /// \brief Returns true if an interleaved group requires a scalar iteration 1638 /// to handle accesses with gaps. 1639 bool requiresScalarEpilogue() const { 1640 return InterleaveInfo.requiresScalarEpilogue(); 1641 } 1642 1643 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1644 1645 bool hasStride(Value *V) { return LAI->hasStride(V); } 1646 1647 /// Returns true if the target machine supports masked store operation 1648 /// for the given \p DataType and kind of access to \p Ptr. 1649 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1650 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1651 } 1652 /// Returns true if the target machine supports masked load operation 1653 /// for the given \p DataType and kind of access to \p Ptr. 1654 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1655 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1656 } 1657 /// Returns true if the target machine supports masked scatter operation 1658 /// for the given \p DataType. 1659 bool isLegalMaskedScatter(Type *DataType) { 1660 return TTI->isLegalMaskedScatter(DataType); 1661 } 1662 /// Returns true if the target machine supports masked gather operation 1663 /// for the given \p DataType. 1664 bool isLegalMaskedGather(Type *DataType) { 1665 return TTI->isLegalMaskedGather(DataType); 1666 } 1667 /// Returns true if the target machine can represent \p V as a masked gather 1668 /// or scatter operation. 1669 bool isLegalGatherOrScatter(Value *V) { 1670 auto *LI = dyn_cast<LoadInst>(V); 1671 auto *SI = dyn_cast<StoreInst>(V); 1672 if (!LI && !SI) 1673 return false; 1674 auto *Ptr = getPointerOperand(V); 1675 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1676 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1677 } 1678 1679 /// Returns true if vector representation of the instruction \p I 1680 /// requires mask. 1681 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1682 unsigned getNumStores() const { return LAI->getNumStores(); } 1683 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1684 unsigned getNumPredStores() const { return NumPredStores; } 1685 1686 /// Returns true if \p I is an instruction that will be scalarized with 1687 /// predication. Such instructions include conditional stores and 1688 /// instructions that may divide by zero. 1689 bool isScalarWithPredication(Instruction *I); 1690 1691 /// Returns true if \p I is a memory instruction that has a consecutive or 1692 /// consecutive-like pointer operand. Consecutive-like pointers are pointers 1693 /// that are treated like consecutive pointers during vectorization. The 1694 /// pointer operands of interleaved accesses are an example. 1695 bool hasConsecutiveLikePtrOperand(Instruction *I); 1696 1697 /// Returns true if \p I is a memory instruction that must be scalarized 1698 /// during vectorization. 1699 bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1); 1700 1701 private: 1702 /// Check if a single basic block loop is vectorizable. 1703 /// At this point we know that this is a loop with a constant trip count 1704 /// and we only need to check individual instructions. 1705 bool canVectorizeInstrs(); 1706 1707 /// When we vectorize loops we may change the order in which 1708 /// we read and write from memory. This method checks if it is 1709 /// legal to vectorize the code, considering only memory constrains. 1710 /// Returns true if the loop is vectorizable 1711 bool canVectorizeMemory(); 1712 1713 /// Return true if we can vectorize this loop using the IF-conversion 1714 /// transformation. 1715 bool canVectorizeWithIfConvert(); 1716 1717 /// Collect the instructions that are uniform after vectorization. An 1718 /// instruction is uniform if we represent it with a single scalar value in 1719 /// the vectorized loop corresponding to each vector iteration. Examples of 1720 /// uniform instructions include pointer operands of consecutive or 1721 /// interleaved memory accesses. Note that although uniformity implies an 1722 /// instruction will be scalar, the reverse is not true. In general, a 1723 /// scalarized instruction will be represented by VF scalar values in the 1724 /// vectorized loop, each corresponding to an iteration of the original 1725 /// scalar loop. 1726 void collectLoopUniforms(); 1727 1728 /// Collect the instructions that are scalar after vectorization. An 1729 /// instruction is scalar if it is known to be uniform or will be scalarized 1730 /// during vectorization. Non-uniform scalarized instructions will be 1731 /// represented by VF values in the vectorized loop, each corresponding to an 1732 /// iteration of the original scalar loop. 1733 void collectLoopScalars(); 1734 1735 /// Return true if all of the instructions in the block can be speculatively 1736 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1737 /// and we know that we can read from them without segfault. 1738 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1739 1740 /// Updates the vectorization state by adding \p Phi to the inductions list. 1741 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1742 /// better choice for the main induction than the existing one. 1743 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1744 SmallPtrSetImpl<Value *> &AllowedExit); 1745 1746 /// Report an analysis message to assist the user in diagnosing loops that are 1747 /// not vectorized. These are handled as LoopAccessReport rather than 1748 /// VectorizationReport because the << operator of VectorizationReport returns 1749 /// LoopAccessReport. 1750 void emitAnalysis(const LoopAccessReport &Message) const { 1751 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1752 } 1753 1754 /// Create an analysis remark that explains why vectorization failed 1755 /// 1756 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1757 /// an instruction that prevents vectorization. Otherwise the loop is used 1758 /// for the location of the remark. \return the remark object that can be 1759 /// streamed to. 1760 OptimizationRemarkAnalysis 1761 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1762 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1763 RemarkName, TheLoop, I); 1764 } 1765 1766 /// \brief If an access has a symbolic strides, this maps the pointer value to 1767 /// the stride symbol. 1768 const ValueToValueMap *getSymbolicStrides() { 1769 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1770 // it's collected. This happens from canVectorizeWithIfConvert, when the 1771 // pointer is checked to reference consecutive elements suitable for a 1772 // masked access. 1773 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1774 } 1775 1776 unsigned NumPredStores; 1777 1778 /// The loop that we evaluate. 1779 Loop *TheLoop; 1780 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1781 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1782 /// of existing SCEV assumptions. The analysis will also add a minimal set 1783 /// of new predicates if this is required to enable vectorization and 1784 /// unrolling. 1785 PredicatedScalarEvolution &PSE; 1786 /// Target Library Info. 1787 TargetLibraryInfo *TLI; 1788 /// Target Transform Info 1789 const TargetTransformInfo *TTI; 1790 /// Dominator Tree. 1791 DominatorTree *DT; 1792 // LoopAccess analysis. 1793 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1794 // And the loop-accesses info corresponding to this loop. This pointer is 1795 // null until canVectorizeMemory sets it up. 1796 const LoopAccessInfo *LAI; 1797 /// Interface to emit optimization remarks. 1798 OptimizationRemarkEmitter *ORE; 1799 1800 /// The interleave access information contains groups of interleaved accesses 1801 /// with the same stride and close to each other. 1802 InterleavedAccessInfo InterleaveInfo; 1803 1804 // --- vectorization state --- // 1805 1806 /// Holds the integer induction variable. This is the counter of the 1807 /// loop. 1808 PHINode *Induction; 1809 /// Holds the reduction variables. 1810 ReductionList Reductions; 1811 /// Holds all of the induction variables that we found in the loop. 1812 /// Notice that inductions don't need to start at zero and that induction 1813 /// variables can be pointers. 1814 InductionList Inductions; 1815 /// Holds the phi nodes that are first-order recurrences. 1816 RecurrenceSet FirstOrderRecurrences; 1817 /// Holds the widest induction type encountered. 1818 Type *WidestIndTy; 1819 1820 /// Allowed outside users. This holds the induction and reduction 1821 /// vars which can be accessed from outside the loop. 1822 SmallPtrSet<Value *, 4> AllowedExit; 1823 1824 /// Holds the instructions known to be uniform after vectorization. 1825 SmallPtrSet<Instruction *, 4> Uniforms; 1826 1827 /// Holds the instructions known to be scalar after vectorization. 1828 SmallPtrSet<Instruction *, 4> Scalars; 1829 1830 /// Can we assume the absence of NaNs. 1831 bool HasFunNoNaNAttr; 1832 1833 /// Vectorization requirements that will go through late-evaluation. 1834 LoopVectorizationRequirements *Requirements; 1835 1836 /// Used to emit an analysis of any legality issues. 1837 LoopVectorizeHints *Hints; 1838 1839 /// While vectorizing these instructions we have to generate a 1840 /// call to the appropriate masked intrinsic 1841 SmallPtrSet<const Instruction *, 8> MaskedOp; 1842 }; 1843 1844 /// LoopVectorizationCostModel - estimates the expected speedups due to 1845 /// vectorization. 1846 /// In many cases vectorization is not profitable. This can happen because of 1847 /// a number of reasons. In this class we mainly attempt to predict the 1848 /// expected speedup/slowdowns due to the supported instruction set. We use the 1849 /// TargetTransformInfo to query the different backends for the cost of 1850 /// different operations. 1851 class LoopVectorizationCostModel { 1852 public: 1853 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1854 LoopInfo *LI, LoopVectorizationLegality *Legal, 1855 const TargetTransformInfo &TTI, 1856 const TargetLibraryInfo *TLI, DemandedBits *DB, 1857 AssumptionCache *AC, 1858 OptimizationRemarkEmitter *ORE, const Function *F, 1859 const LoopVectorizeHints *Hints) 1860 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1861 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1862 1863 /// Information about vectorization costs 1864 struct VectorizationFactor { 1865 unsigned Width; // Vector width with best cost 1866 unsigned Cost; // Cost of the loop with that width 1867 }; 1868 /// \return The most profitable vectorization factor and the cost of that VF. 1869 /// This method checks every power of two up to VF. If UserVF is not ZERO 1870 /// then this vectorization factor will be selected if vectorization is 1871 /// possible. 1872 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1873 1874 /// \return The size (in bits) of the smallest and widest types in the code 1875 /// that needs to be vectorized. We ignore values that remain scalar such as 1876 /// 64 bit loop indices. 1877 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1878 1879 /// \return The desired interleave count. 1880 /// If interleave count has been specified by metadata it will be returned. 1881 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1882 /// are the selected vectorization factor and the cost of the selected VF. 1883 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1884 unsigned LoopCost); 1885 1886 /// \brief A struct that represents some properties of the register usage 1887 /// of a loop. 1888 struct RegisterUsage { 1889 /// Holds the number of loop invariant values that are used in the loop. 1890 unsigned LoopInvariantRegs; 1891 /// Holds the maximum number of concurrent live intervals in the loop. 1892 unsigned MaxLocalUsers; 1893 /// Holds the number of instructions in the loop. 1894 unsigned NumInstructions; 1895 }; 1896 1897 /// \return Returns information about the register usages of the loop for the 1898 /// given vectorization factors. 1899 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1900 1901 /// Collect values we want to ignore in the cost model. 1902 void collectValuesToIgnore(); 1903 1904 /// \returns The smallest bitwidth each instruction can be represented with. 1905 /// The vector equivalents of these instructions should be truncated to this 1906 /// type. 1907 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1908 return MinBWs; 1909 } 1910 1911 /// \returns True if it is more profitable to scalarize instruction \p I for 1912 /// vectorization factor \p VF. 1913 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1914 auto Scalars = InstsToScalarize.find(VF); 1915 assert(Scalars != InstsToScalarize.end() && 1916 "VF not yet analyzed for scalarization profitability"); 1917 return Scalars->second.count(I); 1918 } 1919 1920 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1921 /// for vectorization factor \p VF. 1922 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1923 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1924 !Legal->isScalarAfterVectorization(I); 1925 } 1926 1927 private: 1928 /// The vectorization cost is a combination of the cost itself and a boolean 1929 /// indicating whether any of the contributing operations will actually 1930 /// operate on 1931 /// vector values after type legalization in the backend. If this latter value 1932 /// is 1933 /// false, then all operations will be scalarized (i.e. no vectorization has 1934 /// actually taken place). 1935 typedef std::pair<unsigned, bool> VectorizationCostTy; 1936 1937 /// Returns the expected execution cost. The unit of the cost does 1938 /// not matter because we use the 'cost' units to compare different 1939 /// vector widths. The cost that is returned is *not* normalized by 1940 /// the factor width. 1941 VectorizationCostTy expectedCost(unsigned VF); 1942 1943 /// Returns the execution time cost of an instruction for a given vector 1944 /// width. Vector width of one means scalar. 1945 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1946 1947 /// The cost-computation logic from getInstructionCost which provides 1948 /// the vector type as an output parameter. 1949 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1950 1951 /// Returns whether the instruction is a load or store and will be a emitted 1952 /// as a vector operation. 1953 bool isConsecutiveLoadOrStore(Instruction *I); 1954 1955 /// Create an analysis remark that explains why vectorization failed 1956 /// 1957 /// \p RemarkName is the identifier for the remark. \return the remark object 1958 /// that can be streamed to. 1959 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1960 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1961 RemarkName, TheLoop); 1962 } 1963 1964 /// Map of scalar integer values to the smallest bitwidth they can be legally 1965 /// represented as. The vector equivalents of these values should be truncated 1966 /// to this type. 1967 MapVector<Instruction *, uint64_t> MinBWs; 1968 1969 /// A type representing the costs for instructions if they were to be 1970 /// scalarized rather than vectorized. The entries are Instruction-Cost 1971 /// pairs. 1972 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 1973 1974 /// A map holding scalar costs for different vectorization factors. The 1975 /// presence of a cost for an instruction in the mapping indicates that the 1976 /// instruction will be scalarized when vectorizing with the associated 1977 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1978 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1979 1980 /// Returns the expected difference in cost from scalarizing the expression 1981 /// feeding a predicated instruction \p PredInst. The instructions to 1982 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1983 /// non-negative return value implies the expression will be scalarized. 1984 /// Currently, only single-use chains are considered for scalarization. 1985 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1986 unsigned VF); 1987 1988 /// Collects the instructions to scalarize for each predicated instruction in 1989 /// the loop. 1990 void collectInstsToScalarize(unsigned VF); 1991 1992 public: 1993 /// The loop that we evaluate. 1994 Loop *TheLoop; 1995 /// Predicated scalar evolution analysis. 1996 PredicatedScalarEvolution &PSE; 1997 /// Loop Info analysis. 1998 LoopInfo *LI; 1999 /// Vectorization legality. 2000 LoopVectorizationLegality *Legal; 2001 /// Vector target information. 2002 const TargetTransformInfo &TTI; 2003 /// Target Library Info. 2004 const TargetLibraryInfo *TLI; 2005 /// Demanded bits analysis. 2006 DemandedBits *DB; 2007 /// Assumption cache. 2008 AssumptionCache *AC; 2009 /// Interface to emit optimization remarks. 2010 OptimizationRemarkEmitter *ORE; 2011 2012 const Function *TheFunction; 2013 /// Loop Vectorize Hint. 2014 const LoopVectorizeHints *Hints; 2015 /// Values to ignore in the cost model. 2016 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2017 /// Values to ignore in the cost model when VF > 1. 2018 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2019 }; 2020 2021 /// \brief This holds vectorization requirements that must be verified late in 2022 /// the process. The requirements are set by legalize and costmodel. Once 2023 /// vectorization has been determined to be possible and profitable the 2024 /// requirements can be verified by looking for metadata or compiler options. 2025 /// For example, some loops require FP commutativity which is only allowed if 2026 /// vectorization is explicitly specified or if the fast-math compiler option 2027 /// has been provided. 2028 /// Late evaluation of these requirements allows helpful diagnostics to be 2029 /// composed that tells the user what need to be done to vectorize the loop. For 2030 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2031 /// evaluation should be used only when diagnostics can generated that can be 2032 /// followed by a non-expert user. 2033 class LoopVectorizationRequirements { 2034 public: 2035 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2036 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2037 2038 void addUnsafeAlgebraInst(Instruction *I) { 2039 // First unsafe algebra instruction. 2040 if (!UnsafeAlgebraInst) 2041 UnsafeAlgebraInst = I; 2042 } 2043 2044 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2045 2046 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2047 const char *PassName = Hints.vectorizeAnalysisPassName(); 2048 bool Failed = false; 2049 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2050 ORE.emit( 2051 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2052 UnsafeAlgebraInst->getDebugLoc(), 2053 UnsafeAlgebraInst->getParent()) 2054 << "loop not vectorized: cannot prove it is safe to reorder " 2055 "floating-point operations"); 2056 Failed = true; 2057 } 2058 2059 // Test if runtime memcheck thresholds are exceeded. 2060 bool PragmaThresholdReached = 2061 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2062 bool ThresholdReached = 2063 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2064 if ((ThresholdReached && !Hints.allowReordering()) || 2065 PragmaThresholdReached) { 2066 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2067 L->getStartLoc(), 2068 L->getHeader()) 2069 << "loop not vectorized: cannot prove it is safe to reorder " 2070 "memory operations"); 2071 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2072 Failed = true; 2073 } 2074 2075 return Failed; 2076 } 2077 2078 private: 2079 unsigned NumRuntimePointerChecks; 2080 Instruction *UnsafeAlgebraInst; 2081 2082 /// Interface to emit optimization remarks. 2083 OptimizationRemarkEmitter &ORE; 2084 }; 2085 2086 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2087 if (L.empty()) { 2088 if (!hasCyclesInLoopBody(L)) 2089 V.push_back(&L); 2090 return; 2091 } 2092 for (Loop *InnerL : L) 2093 addAcyclicInnerLoop(*InnerL, V); 2094 } 2095 2096 /// The LoopVectorize Pass. 2097 struct LoopVectorize : public FunctionPass { 2098 /// Pass identification, replacement for typeid 2099 static char ID; 2100 2101 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2102 : FunctionPass(ID) { 2103 Impl.DisableUnrolling = NoUnrolling; 2104 Impl.AlwaysVectorize = AlwaysVectorize; 2105 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2106 } 2107 2108 LoopVectorizePass Impl; 2109 2110 bool runOnFunction(Function &F) override { 2111 if (skipFunction(F)) 2112 return false; 2113 2114 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2115 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2116 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2117 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2118 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2119 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2120 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2121 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2122 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2123 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2124 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2125 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2126 2127 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2128 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2129 2130 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2131 GetLAA, *ORE); 2132 } 2133 2134 void getAnalysisUsage(AnalysisUsage &AU) const override { 2135 AU.addRequired<AssumptionCacheTracker>(); 2136 AU.addRequiredID(LoopSimplifyID); 2137 AU.addRequiredID(LCSSAID); 2138 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2139 AU.addRequired<DominatorTreeWrapperPass>(); 2140 AU.addRequired<LoopInfoWrapperPass>(); 2141 AU.addRequired<ScalarEvolutionWrapperPass>(); 2142 AU.addRequired<TargetTransformInfoWrapperPass>(); 2143 AU.addRequired<AAResultsWrapperPass>(); 2144 AU.addRequired<LoopAccessLegacyAnalysis>(); 2145 AU.addRequired<DemandedBitsWrapperPass>(); 2146 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2147 AU.addPreserved<LoopInfoWrapperPass>(); 2148 AU.addPreserved<DominatorTreeWrapperPass>(); 2149 AU.addPreserved<BasicAAWrapperPass>(); 2150 AU.addPreserved<GlobalsAAWrapperPass>(); 2151 } 2152 }; 2153 2154 } // end anonymous namespace 2155 2156 //===----------------------------------------------------------------------===// 2157 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2158 // LoopVectorizationCostModel. 2159 //===----------------------------------------------------------------------===// 2160 2161 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2162 // We need to place the broadcast of invariant variables outside the loop. 2163 Instruction *Instr = dyn_cast<Instruction>(V); 2164 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2165 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2166 2167 // Place the code for broadcasting invariant variables in the new preheader. 2168 IRBuilder<>::InsertPointGuard Guard(Builder); 2169 if (Invariant) 2170 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2171 2172 // Broadcast the scalar into all locations in the vector. 2173 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2174 2175 return Shuf; 2176 } 2177 2178 void InnerLoopVectorizer::createVectorIntInductionPHI( 2179 const InductionDescriptor &II, Instruction *EntryVal) { 2180 Value *Start = II.getStartValue(); 2181 ConstantInt *Step = II.getConstIntStepValue(); 2182 assert(Step && "Can not widen an IV with a non-constant step"); 2183 2184 // Construct the initial value of the vector IV in the vector loop preheader 2185 auto CurrIP = Builder.saveIP(); 2186 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2187 if (isa<TruncInst>(EntryVal)) { 2188 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2189 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2190 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2191 } 2192 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2193 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2194 Builder.restoreIP(CurrIP); 2195 2196 Value *SplatVF = 2197 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2198 VF * Step->getSExtValue())); 2199 // We may need to add the step a number of times, depending on the unroll 2200 // factor. The last of those goes into the PHI. 2201 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2202 &*LoopVectorBody->getFirstInsertionPt()); 2203 Instruction *LastInduction = VecInd; 2204 VectorParts Entry(UF); 2205 for (unsigned Part = 0; Part < UF; ++Part) { 2206 Entry[Part] = LastInduction; 2207 LastInduction = cast<Instruction>( 2208 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2209 } 2210 VectorLoopValueMap.initVector(EntryVal, Entry); 2211 if (isa<TruncInst>(EntryVal)) 2212 addMetadata(Entry, EntryVal); 2213 2214 // Move the last step to the end of the latch block. This ensures consistent 2215 // placement of all induction updates. 2216 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2217 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2218 auto *ICmp = cast<Instruction>(Br->getCondition()); 2219 LastInduction->moveBefore(ICmp); 2220 LastInduction->setName("vec.ind.next"); 2221 2222 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2223 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2224 } 2225 2226 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2227 return Legal->isScalarAfterVectorization(I) || 2228 Cost->isProfitableToScalarize(I, VF); 2229 } 2230 2231 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2232 if (shouldScalarizeInstruction(IV)) 2233 return true; 2234 auto isScalarInst = [&](User *U) -> bool { 2235 auto *I = cast<Instruction>(U); 2236 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2237 }; 2238 return any_of(IV->users(), isScalarInst); 2239 } 2240 2241 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) { 2242 2243 auto II = Legal->getInductionVars()->find(IV); 2244 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2245 2246 auto ID = II->second; 2247 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2248 2249 // The scalar value to broadcast. This will be derived from the canonical 2250 // induction variable. 2251 Value *ScalarIV = nullptr; 2252 2253 // The step of the induction. 2254 Value *Step = nullptr; 2255 2256 // The value from the original loop to which we are mapping the new induction 2257 // variable. 2258 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2259 2260 // True if we have vectorized the induction variable. 2261 auto VectorizedIV = false; 2262 2263 // Determine if we want a scalar version of the induction variable. This is 2264 // true if the induction variable itself is not widened, or if it has at 2265 // least one user in the loop that is not widened. 2266 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2267 2268 // If the induction variable has a constant integer step value, go ahead and 2269 // get it now. 2270 if (ID.getConstIntStepValue()) 2271 Step = ID.getConstIntStepValue(); 2272 2273 // Try to create a new independent vector induction variable. If we can't 2274 // create the phi node, we will splat the scalar induction variable in each 2275 // loop iteration. 2276 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2277 !shouldScalarizeInstruction(EntryVal)) { 2278 createVectorIntInductionPHI(ID, EntryVal); 2279 VectorizedIV = true; 2280 } 2281 2282 // If we haven't yet vectorized the induction variable, or if we will create 2283 // a scalar one, we need to define the scalar induction variable and step 2284 // values. If we were given a truncation type, truncate the canonical 2285 // induction variable and constant step. Otherwise, derive these values from 2286 // the induction descriptor. 2287 if (!VectorizedIV || NeedsScalarIV) { 2288 if (Trunc) { 2289 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2290 assert(Step && "Truncation requires constant integer step"); 2291 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2292 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2293 Step = ConstantInt::getSigned(TruncType, StepInt); 2294 } else { 2295 ScalarIV = Induction; 2296 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2297 if (IV != OldInduction) { 2298 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2299 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2300 ScalarIV->setName("offset.idx"); 2301 } 2302 if (!Step) { 2303 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2304 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2305 &*Builder.GetInsertPoint()); 2306 } 2307 } 2308 } 2309 2310 // If we haven't yet vectorized the induction variable, splat the scalar 2311 // induction variable, and build the necessary step vectors. 2312 if (!VectorizedIV) { 2313 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2314 VectorParts Entry(UF); 2315 for (unsigned Part = 0; Part < UF; ++Part) 2316 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2317 VectorLoopValueMap.initVector(EntryVal, Entry); 2318 if (Trunc) 2319 addMetadata(Entry, Trunc); 2320 } 2321 2322 // If an induction variable is only used for counting loop iterations or 2323 // calculating addresses, it doesn't need to be widened. Create scalar steps 2324 // that can be used by instructions we will later scalarize. Note that the 2325 // addition of the scalar steps will not increase the number of instructions 2326 // in the loop in the common case prior to InstCombine. We will be trading 2327 // one vector extract for each scalar step. 2328 if (NeedsScalarIV) 2329 buildScalarSteps(ScalarIV, Step, EntryVal); 2330 } 2331 2332 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2333 Instruction::BinaryOps BinOp) { 2334 // Create and check the types. 2335 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2336 int VLen = Val->getType()->getVectorNumElements(); 2337 2338 Type *STy = Val->getType()->getScalarType(); 2339 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2340 "Induction Step must be an integer or FP"); 2341 assert(Step->getType() == STy && "Step has wrong type"); 2342 2343 SmallVector<Constant *, 8> Indices; 2344 2345 if (STy->isIntegerTy()) { 2346 // Create a vector of consecutive numbers from zero to VF. 2347 for (int i = 0; i < VLen; ++i) 2348 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2349 2350 // Add the consecutive indices to the vector value. 2351 Constant *Cv = ConstantVector::get(Indices); 2352 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2353 Step = Builder.CreateVectorSplat(VLen, Step); 2354 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2355 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2356 // which can be found from the original scalar operations. 2357 Step = Builder.CreateMul(Cv, Step); 2358 return Builder.CreateAdd(Val, Step, "induction"); 2359 } 2360 2361 // Floating point induction. 2362 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2363 "Binary Opcode should be specified for FP induction"); 2364 // Create a vector of consecutive numbers from zero to VF. 2365 for (int i = 0; i < VLen; ++i) 2366 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2367 2368 // Add the consecutive indices to the vector value. 2369 Constant *Cv = ConstantVector::get(Indices); 2370 2371 Step = Builder.CreateVectorSplat(VLen, Step); 2372 2373 // Floating point operations had to be 'fast' to enable the induction. 2374 FastMathFlags Flags; 2375 Flags.setUnsafeAlgebra(); 2376 2377 Value *MulOp = Builder.CreateFMul(Cv, Step); 2378 if (isa<Instruction>(MulOp)) 2379 // Have to check, MulOp may be a constant 2380 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2381 2382 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2383 if (isa<Instruction>(BOp)) 2384 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2385 return BOp; 2386 } 2387 2388 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2389 Value *EntryVal) { 2390 2391 // We shouldn't have to build scalar steps if we aren't vectorizing. 2392 assert(VF > 1 && "VF should be greater than one"); 2393 2394 // Get the value type and ensure it and the step have the same integer type. 2395 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2396 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2397 "Val and Step should have the same integer type"); 2398 2399 // Determine the number of scalars we need to generate for each unroll 2400 // iteration. If EntryVal is uniform, we only need to generate the first 2401 // lane. Otherwise, we generate all VF values. 2402 unsigned Lanes = 2403 Legal->isUniformAfterVectorization(cast<Instruction>(EntryVal)) ? 1 : VF; 2404 2405 // Compute the scalar steps and save the results in VectorLoopValueMap. 2406 ScalarParts Entry(UF); 2407 for (unsigned Part = 0; Part < UF; ++Part) { 2408 Entry[Part].resize(VF); 2409 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2410 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2411 auto *Mul = Builder.CreateMul(StartIdx, Step); 2412 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2413 Entry[Part][Lane] = Add; 2414 } 2415 } 2416 VectorLoopValueMap.initScalar(EntryVal, Entry); 2417 } 2418 2419 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2420 2421 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2422 ValueToValueMap(); 2423 2424 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2425 if (Stride == 1 || Stride == -1) 2426 return Stride; 2427 return 0; 2428 } 2429 2430 bool LoopVectorizationLegality::isUniform(Value *V) { 2431 return LAI->isUniform(V); 2432 } 2433 2434 const InnerLoopVectorizer::VectorParts & 2435 InnerLoopVectorizer::getVectorValue(Value *V) { 2436 assert(V != Induction && "The new induction variable should not be used."); 2437 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2438 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2439 2440 // If we have a stride that is replaced by one, do it here. 2441 if (Legal->hasStride(V)) 2442 V = ConstantInt::get(V->getType(), 1); 2443 2444 // If we have this scalar in the map, return it. 2445 if (VectorLoopValueMap.hasVector(V)) 2446 return VectorLoopValueMap.VectorMapStorage[V]; 2447 2448 // If the value has not been vectorized, check if it has been scalarized 2449 // instead. If it has been scalarized, and we actually need the value in 2450 // vector form, we will construct the vector values on demand. 2451 if (VectorLoopValueMap.hasScalar(V)) { 2452 2453 // Initialize a new vector map entry. 2454 VectorParts Entry(UF); 2455 2456 // If we've scalarized a value, that value should be an instruction. 2457 auto *I = cast<Instruction>(V); 2458 2459 // If we aren't vectorizing, we can just copy the scalar map values over to 2460 // the vector map. 2461 if (VF == 1) { 2462 for (unsigned Part = 0; Part < UF; ++Part) 2463 Entry[Part] = getScalarValue(V, Part, 0); 2464 return VectorLoopValueMap.initVector(V, Entry); 2465 } 2466 2467 // Get the last scalar instruction we generated for V. If the value is 2468 // known to be uniform after vectorization, this corresponds to lane zero 2469 // of the last unroll iteration. Otherwise, the last instruction is the one 2470 // we created for the last vector lane of the last unroll iteration. 2471 unsigned LastLane = Legal->isUniformAfterVectorization(I) ? 0 : VF - 1; 2472 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2473 2474 // Set the insert point after the last scalarized instruction. This ensures 2475 // the insertelement sequence will directly follow the scalar definitions. 2476 auto OldIP = Builder.saveIP(); 2477 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2478 Builder.SetInsertPoint(&*NewIP); 2479 2480 // However, if we are vectorizing, we need to construct the vector values. 2481 // If the value is known to be uniform after vectorization, we can just 2482 // broadcast the scalar value corresponding to lane zero for each unroll 2483 // iteration. Otherwise, we construct the vector values using insertelement 2484 // instructions. Since the resulting vectors are stored in 2485 // VectorLoopValueMap, we will only generate the insertelements once. 2486 for (unsigned Part = 0; Part < UF; ++Part) { 2487 Value *VectorValue = nullptr; 2488 if (Legal->isUniformAfterVectorization(I)) { 2489 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2490 } else { 2491 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2492 for (unsigned Lane = 0; Lane < VF; ++Lane) 2493 VectorValue = Builder.CreateInsertElement( 2494 VectorValue, getScalarValue(V, Part, Lane), 2495 Builder.getInt32(Lane)); 2496 } 2497 Entry[Part] = VectorValue; 2498 } 2499 Builder.restoreIP(OldIP); 2500 return VectorLoopValueMap.initVector(V, Entry); 2501 } 2502 2503 // If this scalar is unknown, assume that it is a constant or that it is 2504 // loop invariant. Broadcast V and save the value for future uses. 2505 Value *B = getBroadcastInstrs(V); 2506 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2507 } 2508 2509 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2510 unsigned Lane) { 2511 2512 // If the value is not an instruction contained in the loop, it should 2513 // already be scalar. 2514 if (OrigLoop->isLoopInvariant(V)) 2515 return V; 2516 2517 assert(Lane > 0 ? !Legal->isUniformAfterVectorization(cast<Instruction>(V)) 2518 : true && "Uniform values only have lane zero"); 2519 2520 // If the value from the original loop has not been vectorized, it is 2521 // represented by UF x VF scalar values in the new loop. Return the requested 2522 // scalar value. 2523 if (VectorLoopValueMap.hasScalar(V)) 2524 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2525 2526 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2527 // for the given unroll part. If this entry is not a vector type (i.e., the 2528 // vectorization factor is one), there is no need to generate an 2529 // extractelement instruction. 2530 auto *U = getVectorValue(V)[Part]; 2531 if (!U->getType()->isVectorTy()) { 2532 assert(VF == 1 && "Value not scalarized has non-vector type"); 2533 return U; 2534 } 2535 2536 // Otherwise, the value from the original loop has been vectorized and is 2537 // represented by UF vector values. Extract and return the requested scalar 2538 // value from the appropriate vector lane. 2539 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2540 } 2541 2542 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2543 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2544 SmallVector<Constant *, 8> ShuffleMask; 2545 for (unsigned i = 0; i < VF; ++i) 2546 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2547 2548 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2549 ConstantVector::get(ShuffleMask), 2550 "reverse"); 2551 } 2552 2553 // Get a mask to interleave \p NumVec vectors into a wide vector. 2554 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2555 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2556 // <0, 4, 1, 5, 2, 6, 3, 7> 2557 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2558 unsigned NumVec) { 2559 SmallVector<Constant *, 16> Mask; 2560 for (unsigned i = 0; i < VF; i++) 2561 for (unsigned j = 0; j < NumVec; j++) 2562 Mask.push_back(Builder.getInt32(j * VF + i)); 2563 2564 return ConstantVector::get(Mask); 2565 } 2566 2567 // Get the strided mask starting from index \p Start. 2568 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2569 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2570 unsigned Stride, unsigned VF) { 2571 SmallVector<Constant *, 16> Mask; 2572 for (unsigned i = 0; i < VF; i++) 2573 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2574 2575 return ConstantVector::get(Mask); 2576 } 2577 2578 // Get a mask of two parts: The first part consists of sequential integers 2579 // starting from 0, The second part consists of UNDEFs. 2580 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2581 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2582 unsigned NumUndef) { 2583 SmallVector<Constant *, 16> Mask; 2584 for (unsigned i = 0; i < NumInt; i++) 2585 Mask.push_back(Builder.getInt32(i)); 2586 2587 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2588 for (unsigned i = 0; i < NumUndef; i++) 2589 Mask.push_back(Undef); 2590 2591 return ConstantVector::get(Mask); 2592 } 2593 2594 // Concatenate two vectors with the same element type. The 2nd vector should 2595 // not have more elements than the 1st vector. If the 2nd vector has less 2596 // elements, extend it with UNDEFs. 2597 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2598 Value *V2) { 2599 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2600 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2601 assert(VecTy1 && VecTy2 && 2602 VecTy1->getScalarType() == VecTy2->getScalarType() && 2603 "Expect two vectors with the same element type"); 2604 2605 unsigned NumElts1 = VecTy1->getNumElements(); 2606 unsigned NumElts2 = VecTy2->getNumElements(); 2607 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2608 2609 if (NumElts1 > NumElts2) { 2610 // Extend with UNDEFs. 2611 Constant *ExtMask = 2612 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2613 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2614 } 2615 2616 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2617 return Builder.CreateShuffleVector(V1, V2, Mask); 2618 } 2619 2620 // Concatenate vectors in the given list. All vectors have the same type. 2621 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2622 ArrayRef<Value *> InputList) { 2623 unsigned NumVec = InputList.size(); 2624 assert(NumVec > 1 && "Should be at least two vectors"); 2625 2626 SmallVector<Value *, 8> ResList; 2627 ResList.append(InputList.begin(), InputList.end()); 2628 do { 2629 SmallVector<Value *, 8> TmpList; 2630 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2631 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2632 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2633 "Only the last vector may have a different type"); 2634 2635 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2636 } 2637 2638 // Push the last vector if the total number of vectors is odd. 2639 if (NumVec % 2 != 0) 2640 TmpList.push_back(ResList[NumVec - 1]); 2641 2642 ResList = TmpList; 2643 NumVec = ResList.size(); 2644 } while (NumVec > 1); 2645 2646 return ResList[0]; 2647 } 2648 2649 // Try to vectorize the interleave group that \p Instr belongs to. 2650 // 2651 // E.g. Translate following interleaved load group (factor = 3): 2652 // for (i = 0; i < N; i+=3) { 2653 // R = Pic[i]; // Member of index 0 2654 // G = Pic[i+1]; // Member of index 1 2655 // B = Pic[i+2]; // Member of index 2 2656 // ... // do something to R, G, B 2657 // } 2658 // To: 2659 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2660 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2661 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2662 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2663 // 2664 // Or translate following interleaved store group (factor = 3): 2665 // for (i = 0; i < N; i+=3) { 2666 // ... do something to R, G, B 2667 // Pic[i] = R; // Member of index 0 2668 // Pic[i+1] = G; // Member of index 1 2669 // Pic[i+2] = B; // Member of index 2 2670 // } 2671 // To: 2672 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2673 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2674 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2675 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2676 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2677 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2678 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2679 assert(Group && "Fail to get an interleaved access group."); 2680 2681 // Skip if current instruction is not the insert position. 2682 if (Instr != Group->getInsertPos()) 2683 return; 2684 2685 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2686 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2687 Value *Ptr = getPointerOperand(Instr); 2688 2689 // Prepare for the vector type of the interleaved load/store. 2690 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2691 unsigned InterleaveFactor = Group->getFactor(); 2692 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2693 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2694 2695 // Prepare for the new pointers. 2696 setDebugLocFromInst(Builder, Ptr); 2697 SmallVector<Value *, 2> NewPtrs; 2698 unsigned Index = Group->getIndex(Instr); 2699 2700 // If the group is reverse, adjust the index to refer to the last vector lane 2701 // instead of the first. We adjust the index from the first vector lane, 2702 // rather than directly getting the pointer for lane VF - 1, because the 2703 // pointer operand of the interleaved access is supposed to be uniform. For 2704 // uniform instructions, we're only required to generate a value for the 2705 // first vector lane in each unroll iteration. 2706 if (Group->isReverse()) 2707 Index += (VF - 1) * Group->getFactor(); 2708 2709 for (unsigned Part = 0; Part < UF; Part++) { 2710 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2711 2712 // Notice current instruction could be any index. Need to adjust the address 2713 // to the member of index 0. 2714 // 2715 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2716 // b = A[i]; // Member of index 0 2717 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2718 // 2719 // E.g. A[i+1] = a; // Member of index 1 2720 // A[i] = b; // Member of index 0 2721 // A[i+2] = c; // Member of index 2 (Current instruction) 2722 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2723 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2724 2725 // Cast to the vector pointer type. 2726 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2727 } 2728 2729 setDebugLocFromInst(Builder, Instr); 2730 Value *UndefVec = UndefValue::get(VecTy); 2731 2732 // Vectorize the interleaved load group. 2733 if (LI) { 2734 2735 // For each unroll part, create a wide load for the group. 2736 SmallVector<Value *, 2> NewLoads; 2737 for (unsigned Part = 0; Part < UF; Part++) { 2738 auto *NewLoad = Builder.CreateAlignedLoad( 2739 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2740 addMetadata(NewLoad, Instr); 2741 NewLoads.push_back(NewLoad); 2742 } 2743 2744 // For each member in the group, shuffle out the appropriate data from the 2745 // wide loads. 2746 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2747 Instruction *Member = Group->getMember(I); 2748 2749 // Skip the gaps in the group. 2750 if (!Member) 2751 continue; 2752 2753 VectorParts Entry(UF); 2754 Constant *StrideMask = getStridedMask(Builder, I, InterleaveFactor, VF); 2755 for (unsigned Part = 0; Part < UF; Part++) { 2756 Value *StridedVec = Builder.CreateShuffleVector( 2757 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2758 2759 // If this member has different type, cast the result type. 2760 if (Member->getType() != ScalarTy) { 2761 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2762 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2763 } 2764 2765 Entry[Part] = 2766 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2767 } 2768 VectorLoopValueMap.initVector(Member, Entry); 2769 } 2770 return; 2771 } 2772 2773 // The sub vector type for current instruction. 2774 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2775 2776 // Vectorize the interleaved store group. 2777 for (unsigned Part = 0; Part < UF; Part++) { 2778 // Collect the stored vector from each member. 2779 SmallVector<Value *, 4> StoredVecs; 2780 for (unsigned i = 0; i < InterleaveFactor; i++) { 2781 // Interleaved store group doesn't allow a gap, so each index has a member 2782 Instruction *Member = Group->getMember(i); 2783 assert(Member && "Fail to get a member from an interleaved store group"); 2784 2785 Value *StoredVec = 2786 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2787 if (Group->isReverse()) 2788 StoredVec = reverseVector(StoredVec); 2789 2790 // If this member has different type, cast it to an unified type. 2791 if (StoredVec->getType() != SubVT) 2792 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2793 2794 StoredVecs.push_back(StoredVec); 2795 } 2796 2797 // Concatenate all vectors into a wide vector. 2798 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2799 2800 // Interleave the elements in the wide vector. 2801 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2802 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2803 "interleaved.vec"); 2804 2805 Instruction *NewStoreInstr = 2806 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2807 addMetadata(NewStoreInstr, Instr); 2808 } 2809 } 2810 2811 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2812 // Attempt to issue a wide load. 2813 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2814 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2815 2816 assert((LI || SI) && "Invalid Load/Store instruction"); 2817 2818 // Try to vectorize the interleave group if this access is interleaved. 2819 if (Legal->isAccessInterleaved(Instr)) 2820 return vectorizeInterleaveGroup(Instr); 2821 2822 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2823 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2824 Value *Ptr = getPointerOperand(Instr); 2825 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2826 // An alignment of 0 means target abi alignment. We need to use the scalar's 2827 // target abi alignment in such a case. 2828 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2829 if (!Alignment) 2830 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2831 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2832 2833 // Scalarize the memory instruction if necessary. 2834 if (Legal->memoryInstructionMustBeScalarized(Instr, VF)) 2835 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2836 2837 // Determine if the pointer operand of the access is either consecutive or 2838 // reverse consecutive. 2839 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2840 bool Reverse = ConsecutiveStride < 0; 2841 2842 // Determine if either a gather or scatter operation is legal. 2843 bool CreateGatherScatter = 2844 !ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr); 2845 2846 VectorParts VectorGep; 2847 2848 // Handle consecutive loads/stores. 2849 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2850 if (ConsecutiveStride) { 2851 if (Gep) { 2852 unsigned NumOperands = Gep->getNumOperands(); 2853 #ifndef NDEBUG 2854 // The original GEP that identified as a consecutive memory access 2855 // should have only one loop-variant operand. 2856 unsigned NumOfLoopVariantOps = 0; 2857 for (unsigned i = 0; i < NumOperands; ++i) 2858 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 2859 OrigLoop)) 2860 NumOfLoopVariantOps++; 2861 assert(NumOfLoopVariantOps == 1 && 2862 "Consecutive GEP should have only one loop-variant operand"); 2863 #endif 2864 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2865 Gep2->setName("gep.indvar"); 2866 2867 // A new GEP is created for a 0-lane value of the first unroll iteration. 2868 // The GEPs for the rest of the unroll iterations are computed below as an 2869 // offset from this GEP. 2870 for (unsigned i = 0; i < NumOperands; ++i) 2871 // We can apply getScalarValue() for all GEP indices. It returns an 2872 // original value for loop-invariant operand and 0-lane for consecutive 2873 // operand. 2874 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 2875 0, /* First unroll iteration */ 2876 0 /* 0-lane of the vector */ )); 2877 setDebugLocFromInst(Builder, Gep); 2878 Ptr = Builder.Insert(Gep2); 2879 2880 } else { // No GEP 2881 setDebugLocFromInst(Builder, Ptr); 2882 Ptr = getScalarValue(Ptr, 0, 0); 2883 } 2884 } else { 2885 // At this point we should vector version of GEP for Gather or Scatter 2886 assert(CreateGatherScatter && "The instruction should be scalarized"); 2887 if (Gep) { 2888 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2889 // and each index that's defined inside the loop, even if it is 2890 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2891 // scalar. 2892 SmallVector<VectorParts, 4> OpsV; 2893 for (Value *Op : Gep->operands()) { 2894 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2895 if (SrcInst && OrigLoop->contains(SrcInst)) 2896 OpsV.push_back(getVectorValue(Op)); 2897 else 2898 OpsV.push_back(VectorParts(UF, Op)); 2899 } 2900 for (unsigned Part = 0; Part < UF; ++Part) { 2901 SmallVector<Value *, 4> Ops; 2902 Value *GEPBasePtr = OpsV[0][Part]; 2903 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2904 Ops.push_back(OpsV[i][Part]); 2905 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2906 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2907 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2908 2909 NewGep = 2910 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2911 VectorGep.push_back(NewGep); 2912 } 2913 } else 2914 VectorGep = getVectorValue(Ptr); 2915 } 2916 2917 VectorParts Mask = createBlockInMask(Instr->getParent()); 2918 // Handle Stores: 2919 if (SI) { 2920 assert(!Legal->isUniform(SI->getPointerOperand()) && 2921 "We do not allow storing to uniform addresses"); 2922 setDebugLocFromInst(Builder, SI); 2923 // We don't want to update the value in the map as it might be used in 2924 // another expression. So don't use a reference type for "StoredVal". 2925 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2926 2927 for (unsigned Part = 0; Part < UF; ++Part) { 2928 Instruction *NewSI = nullptr; 2929 if (CreateGatherScatter) { 2930 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2931 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2932 Alignment, MaskPart); 2933 } else { 2934 // Calculate the pointer for the specific unroll-part. 2935 Value *PartPtr = 2936 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2937 2938 if (Reverse) { 2939 // If we store to reverse consecutive memory locations, then we need 2940 // to reverse the order of elements in the stored value. 2941 StoredVal[Part] = reverseVector(StoredVal[Part]); 2942 // If the address is consecutive but reversed, then the 2943 // wide store needs to start at the last vector element. 2944 PartPtr = 2945 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2946 PartPtr = 2947 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2948 Mask[Part] = reverseVector(Mask[Part]); 2949 } 2950 2951 Value *VecPtr = 2952 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2953 2954 if (Legal->isMaskRequired(SI)) 2955 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2956 Mask[Part]); 2957 else 2958 NewSI = 2959 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2960 } 2961 addMetadata(NewSI, SI); 2962 } 2963 return; 2964 } 2965 2966 // Handle loads. 2967 assert(LI && "Must have a load instruction"); 2968 setDebugLocFromInst(Builder, LI); 2969 VectorParts Entry(UF); 2970 for (unsigned Part = 0; Part < UF; ++Part) { 2971 Instruction *NewLI; 2972 if (CreateGatherScatter) { 2973 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2974 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2975 0, "wide.masked.gather"); 2976 Entry[Part] = NewLI; 2977 } else { 2978 // Calculate the pointer for the specific unroll-part. 2979 Value *PartPtr = 2980 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2981 2982 if (Reverse) { 2983 // If the address is consecutive but reversed, then the 2984 // wide load needs to start at the last vector element. 2985 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2986 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2987 Mask[Part] = reverseVector(Mask[Part]); 2988 } 2989 2990 Value *VecPtr = 2991 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2992 if (Legal->isMaskRequired(LI)) 2993 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2994 UndefValue::get(DataTy), 2995 "wide.masked.load"); 2996 else 2997 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2998 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2999 } 3000 addMetadata(NewLI, LI); 3001 } 3002 VectorLoopValueMap.initVector(Instr, Entry); 3003 } 3004 3005 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3006 bool IfPredicateInstr) { 3007 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3008 DEBUG(dbgs() << "LV: Scalarizing" 3009 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3010 << '\n'); 3011 // Holds vector parameters or scalars, in case of uniform vals. 3012 SmallVector<VectorParts, 4> Params; 3013 3014 setDebugLocFromInst(Builder, Instr); 3015 3016 // Does this instruction return a value ? 3017 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3018 3019 // Initialize a new scalar map entry. 3020 ScalarParts Entry(UF); 3021 3022 VectorParts Cond; 3023 if (IfPredicateInstr) 3024 Cond = createBlockInMask(Instr->getParent()); 3025 3026 // Determine the number of scalars we need to generate for each unroll 3027 // iteration. If the instruction is uniform, we only need to generate the 3028 // first lane. Otherwise, we generate all VF values. 3029 unsigned Lanes = Legal->isUniformAfterVectorization(Instr) ? 1 : VF; 3030 3031 // For each vector unroll 'part': 3032 for (unsigned Part = 0; Part < UF; ++Part) { 3033 Entry[Part].resize(VF); 3034 // For each scalar that we create: 3035 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3036 3037 // Start if-block. 3038 Value *Cmp = nullptr; 3039 if (IfPredicateInstr) { 3040 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane)); 3041 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3042 ConstantInt::get(Cmp->getType(), 1)); 3043 } 3044 3045 Instruction *Cloned = Instr->clone(); 3046 if (!IsVoidRetTy) 3047 Cloned->setName(Instr->getName() + ".cloned"); 3048 3049 // Replace the operands of the cloned instructions with their scalar 3050 // equivalents in the new loop. 3051 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3052 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3053 Cloned->setOperand(op, NewOp); 3054 } 3055 addNewMetadata(Cloned, Instr); 3056 3057 // Place the cloned scalar in the new loop. 3058 Builder.Insert(Cloned); 3059 3060 // Add the cloned scalar to the scalar map entry. 3061 Entry[Part][Lane] = Cloned; 3062 3063 // If we just cloned a new assumption, add it the assumption cache. 3064 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3065 if (II->getIntrinsicID() == Intrinsic::assume) 3066 AC->registerAssumption(II); 3067 3068 // End if-block. 3069 if (IfPredicateInstr) 3070 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3071 } 3072 } 3073 VectorLoopValueMap.initScalar(Instr, Entry); 3074 } 3075 3076 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3077 Value *End, Value *Step, 3078 Instruction *DL) { 3079 BasicBlock *Header = L->getHeader(); 3080 BasicBlock *Latch = L->getLoopLatch(); 3081 // As we're just creating this loop, it's possible no latch exists 3082 // yet. If so, use the header as this will be a single block loop. 3083 if (!Latch) 3084 Latch = Header; 3085 3086 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3087 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3088 setDebugLocFromInst(Builder, OldInst); 3089 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3090 3091 Builder.SetInsertPoint(Latch->getTerminator()); 3092 setDebugLocFromInst(Builder, OldInst); 3093 3094 // Create i+1 and fill the PHINode. 3095 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3096 Induction->addIncoming(Start, L->getLoopPreheader()); 3097 Induction->addIncoming(Next, Latch); 3098 // Create the compare. 3099 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3100 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3101 3102 // Now we have two terminators. Remove the old one from the block. 3103 Latch->getTerminator()->eraseFromParent(); 3104 3105 return Induction; 3106 } 3107 3108 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3109 if (TripCount) 3110 return TripCount; 3111 3112 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3113 // Find the loop boundaries. 3114 ScalarEvolution *SE = PSE.getSE(); 3115 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3116 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3117 "Invalid loop count"); 3118 3119 Type *IdxTy = Legal->getWidestInductionType(); 3120 3121 // The exit count might have the type of i64 while the phi is i32. This can 3122 // happen if we have an induction variable that is sign extended before the 3123 // compare. The only way that we get a backedge taken count is that the 3124 // induction variable was signed and as such will not overflow. In such a case 3125 // truncation is legal. 3126 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3127 IdxTy->getPrimitiveSizeInBits()) 3128 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3129 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3130 3131 // Get the total trip count from the count by adding 1. 3132 const SCEV *ExitCount = SE->getAddExpr( 3133 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3134 3135 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3136 3137 // Expand the trip count and place the new instructions in the preheader. 3138 // Notice that the pre-header does not change, only the loop body. 3139 SCEVExpander Exp(*SE, DL, "induction"); 3140 3141 // Count holds the overall loop count (N). 3142 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3143 L->getLoopPreheader()->getTerminator()); 3144 3145 if (TripCount->getType()->isPointerTy()) 3146 TripCount = 3147 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3148 L->getLoopPreheader()->getTerminator()); 3149 3150 return TripCount; 3151 } 3152 3153 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3154 if (VectorTripCount) 3155 return VectorTripCount; 3156 3157 Value *TC = getOrCreateTripCount(L); 3158 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3159 3160 // Now we need to generate the expression for the part of the loop that the 3161 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3162 // iterations are not required for correctness, or N - Step, otherwise. Step 3163 // is equal to the vectorization factor (number of SIMD elements) times the 3164 // unroll factor (number of SIMD instructions). 3165 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3166 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3167 3168 // If there is a non-reversed interleaved group that may speculatively access 3169 // memory out-of-bounds, we need to ensure that there will be at least one 3170 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3171 // the trip count, we set the remainder to be equal to the step. If the step 3172 // does not evenly divide the trip count, no adjustment is necessary since 3173 // there will already be scalar iterations. Note that the minimum iterations 3174 // check ensures that N >= Step. 3175 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3176 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3177 R = Builder.CreateSelect(IsZero, Step, R); 3178 } 3179 3180 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3181 3182 return VectorTripCount; 3183 } 3184 3185 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3186 BasicBlock *Bypass) { 3187 Value *Count = getOrCreateTripCount(L); 3188 BasicBlock *BB = L->getLoopPreheader(); 3189 IRBuilder<> Builder(BB->getTerminator()); 3190 3191 // Generate code to check that the loop's trip count that we computed by 3192 // adding one to the backedge-taken count will not overflow. 3193 Value *CheckMinIters = Builder.CreateICmpULT( 3194 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3195 3196 BasicBlock *NewBB = 3197 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3198 // Update dominator tree immediately if the generated block is a 3199 // LoopBypassBlock because SCEV expansions to generate loop bypass 3200 // checks may query it before the current function is finished. 3201 DT->addNewBlock(NewBB, BB); 3202 if (L->getParentLoop()) 3203 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3204 ReplaceInstWithInst(BB->getTerminator(), 3205 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3206 LoopBypassBlocks.push_back(BB); 3207 } 3208 3209 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3210 BasicBlock *Bypass) { 3211 Value *TC = getOrCreateVectorTripCount(L); 3212 BasicBlock *BB = L->getLoopPreheader(); 3213 IRBuilder<> Builder(BB->getTerminator()); 3214 3215 // Now, compare the new count to zero. If it is zero skip the vector loop and 3216 // jump to the scalar loop. 3217 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3218 "cmp.zero"); 3219 3220 // Generate code to check that the loop's trip count that we computed by 3221 // adding one to the backedge-taken count will not overflow. 3222 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3223 // Update dominator tree immediately if the generated block is a 3224 // LoopBypassBlock because SCEV expansions to generate loop bypass 3225 // checks may query it before the current function is finished. 3226 DT->addNewBlock(NewBB, BB); 3227 if (L->getParentLoop()) 3228 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3229 ReplaceInstWithInst(BB->getTerminator(), 3230 BranchInst::Create(Bypass, NewBB, Cmp)); 3231 LoopBypassBlocks.push_back(BB); 3232 } 3233 3234 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3235 BasicBlock *BB = L->getLoopPreheader(); 3236 3237 // Generate the code to check that the SCEV assumptions that we made. 3238 // We want the new basic block to start at the first instruction in a 3239 // sequence of instructions that form a check. 3240 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3241 "scev.check"); 3242 Value *SCEVCheck = 3243 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3244 3245 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3246 if (C->isZero()) 3247 return; 3248 3249 // Create a new block containing the stride check. 3250 BB->setName("vector.scevcheck"); 3251 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3252 // Update dominator tree immediately if the generated block is a 3253 // LoopBypassBlock because SCEV expansions to generate loop bypass 3254 // checks may query it before the current function is finished. 3255 DT->addNewBlock(NewBB, BB); 3256 if (L->getParentLoop()) 3257 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3258 ReplaceInstWithInst(BB->getTerminator(), 3259 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3260 LoopBypassBlocks.push_back(BB); 3261 AddedSafetyChecks = true; 3262 } 3263 3264 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3265 BasicBlock *BB = L->getLoopPreheader(); 3266 3267 // Generate the code that checks in runtime if arrays overlap. We put the 3268 // checks into a separate block to make the more common case of few elements 3269 // faster. 3270 Instruction *FirstCheckInst; 3271 Instruction *MemRuntimeCheck; 3272 std::tie(FirstCheckInst, MemRuntimeCheck) = 3273 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3274 if (!MemRuntimeCheck) 3275 return; 3276 3277 // Create a new block containing the memory check. 3278 BB->setName("vector.memcheck"); 3279 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3280 // Update dominator tree immediately if the generated block is a 3281 // LoopBypassBlock because SCEV expansions to generate loop bypass 3282 // checks may query it before the current function is finished. 3283 DT->addNewBlock(NewBB, BB); 3284 if (L->getParentLoop()) 3285 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3286 ReplaceInstWithInst(BB->getTerminator(), 3287 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3288 LoopBypassBlocks.push_back(BB); 3289 AddedSafetyChecks = true; 3290 3291 // We currently don't use LoopVersioning for the actual loop cloning but we 3292 // still use it to add the noalias metadata. 3293 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3294 PSE.getSE()); 3295 LVer->prepareNoAliasMetadata(); 3296 } 3297 3298 void InnerLoopVectorizer::createEmptyLoop() { 3299 /* 3300 In this function we generate a new loop. The new loop will contain 3301 the vectorized instructions while the old loop will continue to run the 3302 scalar remainder. 3303 3304 [ ] <-- loop iteration number check. 3305 / | 3306 / v 3307 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3308 | / | 3309 | / v 3310 || [ ] <-- vector pre header. 3311 |/ | 3312 | v 3313 | [ ] \ 3314 | [ ]_| <-- vector loop. 3315 | | 3316 | v 3317 | -[ ] <--- middle-block. 3318 | / | 3319 | / v 3320 -|- >[ ] <--- new preheader. 3321 | | 3322 | v 3323 | [ ] \ 3324 | [ ]_| <-- old scalar loop to handle remainder. 3325 \ | 3326 \ v 3327 >[ ] <-- exit block. 3328 ... 3329 */ 3330 3331 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3332 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3333 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3334 assert(VectorPH && "Invalid loop structure"); 3335 assert(ExitBlock && "Must have an exit block"); 3336 3337 // Some loops have a single integer induction variable, while other loops 3338 // don't. One example is c++ iterators that often have multiple pointer 3339 // induction variables. In the code below we also support a case where we 3340 // don't have a single induction variable. 3341 // 3342 // We try to obtain an induction variable from the original loop as hard 3343 // as possible. However if we don't find one that: 3344 // - is an integer 3345 // - counts from zero, stepping by one 3346 // - is the size of the widest induction variable type 3347 // then we create a new one. 3348 OldInduction = Legal->getInduction(); 3349 Type *IdxTy = Legal->getWidestInductionType(); 3350 3351 // Split the single block loop into the two loop structure described above. 3352 BasicBlock *VecBody = 3353 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3354 BasicBlock *MiddleBlock = 3355 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3356 BasicBlock *ScalarPH = 3357 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3358 3359 // Create and register the new vector loop. 3360 Loop *Lp = new Loop(); 3361 Loop *ParentLoop = OrigLoop->getParentLoop(); 3362 3363 // Insert the new loop into the loop nest and register the new basic blocks 3364 // before calling any utilities such as SCEV that require valid LoopInfo. 3365 if (ParentLoop) { 3366 ParentLoop->addChildLoop(Lp); 3367 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3368 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3369 } else { 3370 LI->addTopLevelLoop(Lp); 3371 } 3372 Lp->addBasicBlockToLoop(VecBody, *LI); 3373 3374 // Find the loop boundaries. 3375 Value *Count = getOrCreateTripCount(Lp); 3376 3377 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3378 3379 // We need to test whether the backedge-taken count is uint##_max. Adding one 3380 // to it will cause overflow and an incorrect loop trip count in the vector 3381 // body. In case of overflow we want to directly jump to the scalar remainder 3382 // loop. 3383 emitMinimumIterationCountCheck(Lp, ScalarPH); 3384 // Now, compare the new count to zero. If it is zero skip the vector loop and 3385 // jump to the scalar loop. 3386 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3387 // Generate the code to check any assumptions that we've made for SCEV 3388 // expressions. 3389 emitSCEVChecks(Lp, ScalarPH); 3390 3391 // Generate the code that checks in runtime if arrays overlap. We put the 3392 // checks into a separate block to make the more common case of few elements 3393 // faster. 3394 emitMemRuntimeChecks(Lp, ScalarPH); 3395 3396 // Generate the induction variable. 3397 // The loop step is equal to the vectorization factor (num of SIMD elements) 3398 // times the unroll factor (num of SIMD instructions). 3399 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3400 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3401 Induction = 3402 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3403 getDebugLocFromInstOrOperands(OldInduction)); 3404 3405 // We are going to resume the execution of the scalar loop. 3406 // Go over all of the induction variables that we found and fix the 3407 // PHIs that are left in the scalar version of the loop. 3408 // The starting values of PHI nodes depend on the counter of the last 3409 // iteration in the vectorized loop. 3410 // If we come from a bypass edge then we need to start from the original 3411 // start value. 3412 3413 // This variable saves the new starting index for the scalar loop. It is used 3414 // to test if there are any tail iterations left once the vector loop has 3415 // completed. 3416 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3417 for (auto &InductionEntry : *List) { 3418 PHINode *OrigPhi = InductionEntry.first; 3419 InductionDescriptor II = InductionEntry.second; 3420 3421 // Create phi nodes to merge from the backedge-taken check block. 3422 PHINode *BCResumeVal = PHINode::Create( 3423 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3424 Value *&EndValue = IVEndValues[OrigPhi]; 3425 if (OrigPhi == OldInduction) { 3426 // We know what the end value is. 3427 EndValue = CountRoundDown; 3428 } else { 3429 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3430 Type *StepType = II.getStep()->getType(); 3431 Instruction::CastOps CastOp = 3432 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3433 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3434 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3435 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3436 EndValue->setName("ind.end"); 3437 } 3438 3439 // The new PHI merges the original incoming value, in case of a bypass, 3440 // or the value at the end of the vectorized loop. 3441 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3442 3443 // Fix the scalar body counter (PHI node). 3444 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3445 3446 // The old induction's phi node in the scalar body needs the truncated 3447 // value. 3448 for (BasicBlock *BB : LoopBypassBlocks) 3449 BCResumeVal->addIncoming(II.getStartValue(), BB); 3450 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3451 } 3452 3453 // Add a check in the middle block to see if we have completed 3454 // all of the iterations in the first vector loop. 3455 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3456 Value *CmpN = 3457 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3458 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3459 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3460 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3461 3462 // Get ready to start creating new instructions into the vectorized body. 3463 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3464 3465 // Save the state. 3466 LoopVectorPreHeader = Lp->getLoopPreheader(); 3467 LoopScalarPreHeader = ScalarPH; 3468 LoopMiddleBlock = MiddleBlock; 3469 LoopExitBlock = ExitBlock; 3470 LoopVectorBody = VecBody; 3471 LoopScalarBody = OldBasicBlock; 3472 3473 // Keep all loop hints from the original loop on the vector loop (we'll 3474 // replace the vectorizer-specific hints below). 3475 if (MDNode *LID = OrigLoop->getLoopID()) 3476 Lp->setLoopID(LID); 3477 3478 LoopVectorizeHints Hints(Lp, true, *ORE); 3479 Hints.setAlreadyVectorized(); 3480 } 3481 3482 // Fix up external users of the induction variable. At this point, we are 3483 // in LCSSA form, with all external PHIs that use the IV having one input value, 3484 // coming from the remainder loop. We need those PHIs to also have a correct 3485 // value for the IV when arriving directly from the middle block. 3486 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3487 const InductionDescriptor &II, 3488 Value *CountRoundDown, Value *EndValue, 3489 BasicBlock *MiddleBlock) { 3490 // There are two kinds of external IV usages - those that use the value 3491 // computed in the last iteration (the PHI) and those that use the penultimate 3492 // value (the value that feeds into the phi from the loop latch). 3493 // We allow both, but they, obviously, have different values. 3494 3495 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3496 3497 DenseMap<Value *, Value *> MissingVals; 3498 3499 // An external user of the last iteration's value should see the value that 3500 // the remainder loop uses to initialize its own IV. 3501 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3502 for (User *U : PostInc->users()) { 3503 Instruction *UI = cast<Instruction>(U); 3504 if (!OrigLoop->contains(UI)) { 3505 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3506 MissingVals[UI] = EndValue; 3507 } 3508 } 3509 3510 // An external user of the penultimate value need to see EndValue - Step. 3511 // The simplest way to get this is to recompute it from the constituent SCEVs, 3512 // that is Start + (Step * (CRD - 1)). 3513 for (User *U : OrigPhi->users()) { 3514 auto *UI = cast<Instruction>(U); 3515 if (!OrigLoop->contains(UI)) { 3516 const DataLayout &DL = 3517 OrigLoop->getHeader()->getModule()->getDataLayout(); 3518 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3519 3520 IRBuilder<> B(MiddleBlock->getTerminator()); 3521 Value *CountMinusOne = B.CreateSub( 3522 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3523 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3524 "cast.cmo"); 3525 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3526 Escape->setName("ind.escape"); 3527 MissingVals[UI] = Escape; 3528 } 3529 } 3530 3531 for (auto &I : MissingVals) { 3532 PHINode *PHI = cast<PHINode>(I.first); 3533 // One corner case we have to handle is two IVs "chasing" each-other, 3534 // that is %IV2 = phi [...], [ %IV1, %latch ] 3535 // In this case, if IV1 has an external use, we need to avoid adding both 3536 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3537 // don't already have an incoming value for the middle block. 3538 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3539 PHI->addIncoming(I.second, MiddleBlock); 3540 } 3541 } 3542 3543 namespace { 3544 struct CSEDenseMapInfo { 3545 static bool canHandle(Instruction *I) { 3546 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3547 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3548 } 3549 static inline Instruction *getEmptyKey() { 3550 return DenseMapInfo<Instruction *>::getEmptyKey(); 3551 } 3552 static inline Instruction *getTombstoneKey() { 3553 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3554 } 3555 static unsigned getHashValue(Instruction *I) { 3556 assert(canHandle(I) && "Unknown instruction!"); 3557 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3558 I->value_op_end())); 3559 } 3560 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3561 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3562 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3563 return LHS == RHS; 3564 return LHS->isIdenticalTo(RHS); 3565 } 3566 }; 3567 } 3568 3569 ///\brief Perform cse of induction variable instructions. 3570 static void cse(BasicBlock *BB) { 3571 // Perform simple cse. 3572 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3573 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3574 Instruction *In = &*I++; 3575 3576 if (!CSEDenseMapInfo::canHandle(In)) 3577 continue; 3578 3579 // Check if we can replace this instruction with any of the 3580 // visited instructions. 3581 if (Instruction *V = CSEMap.lookup(In)) { 3582 In->replaceAllUsesWith(V); 3583 In->eraseFromParent(); 3584 continue; 3585 } 3586 3587 CSEMap[In] = In; 3588 } 3589 } 3590 3591 /// \brief Adds a 'fast' flag to floating point operations. 3592 static Value *addFastMathFlag(Value *V) { 3593 if (isa<FPMathOperator>(V)) { 3594 FastMathFlags Flags; 3595 Flags.setUnsafeAlgebra(); 3596 cast<Instruction>(V)->setFastMathFlags(Flags); 3597 } 3598 return V; 3599 } 3600 3601 /// \brief Estimate the overhead of scalarizing a value based on its type. 3602 /// Insert and Extract are set if the result needs to be inserted and/or 3603 /// extracted from vectors. 3604 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3605 const TargetTransformInfo &TTI) { 3606 if (Ty->isVoidTy()) 3607 return 0; 3608 3609 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3610 unsigned Cost = 0; 3611 3612 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3613 if (Extract) 3614 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3615 if (Insert) 3616 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3617 } 3618 3619 return Cost; 3620 } 3621 3622 /// \brief Estimate the overhead of scalarizing an Instruction based on the 3623 /// types of its operands and return value. 3624 static unsigned getScalarizationOverhead(SmallVectorImpl<Type *> &OpTys, 3625 Type *RetTy, 3626 const TargetTransformInfo &TTI) { 3627 unsigned ScalarizationCost = 3628 getScalarizationOverhead(RetTy, true, false, TTI); 3629 3630 for (Type *Ty : OpTys) 3631 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); 3632 3633 return ScalarizationCost; 3634 } 3635 3636 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3637 /// convenience wrapper for the type-based getScalarizationOverhead API. 3638 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3639 const TargetTransformInfo &TTI) { 3640 if (VF == 1) 3641 return 0; 3642 3643 Type *RetTy = ToVectorTy(I->getType(), VF); 3644 3645 SmallVector<Type *, 4> OpTys; 3646 unsigned OperandsNum = I->getNumOperands(); 3647 for (unsigned OpInd = 0; OpInd < OperandsNum; ++OpInd) 3648 OpTys.push_back(ToVectorTy(I->getOperand(OpInd)->getType(), VF)); 3649 3650 return getScalarizationOverhead(OpTys, RetTy, TTI); 3651 } 3652 3653 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3654 // Return the cost of the instruction, including scalarization overhead if it's 3655 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3656 // i.e. either vector version isn't available, or is too expensive. 3657 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3658 const TargetTransformInfo &TTI, 3659 const TargetLibraryInfo *TLI, 3660 bool &NeedToScalarize) { 3661 Function *F = CI->getCalledFunction(); 3662 StringRef FnName = CI->getCalledFunction()->getName(); 3663 Type *ScalarRetTy = CI->getType(); 3664 SmallVector<Type *, 4> Tys, ScalarTys; 3665 for (auto &ArgOp : CI->arg_operands()) 3666 ScalarTys.push_back(ArgOp->getType()); 3667 3668 // Estimate cost of scalarized vector call. The source operands are assumed 3669 // to be vectors, so we need to extract individual elements from there, 3670 // execute VF scalar calls, and then gather the result into the vector return 3671 // value. 3672 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3673 if (VF == 1) 3674 return ScalarCallCost; 3675 3676 // Compute corresponding vector type for return value and arguments. 3677 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3678 for (Type *ScalarTy : ScalarTys) 3679 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3680 3681 // Compute costs of unpacking argument values for the scalar calls and 3682 // packing the return values to a vector. 3683 unsigned ScalarizationCost = getScalarizationOverhead(Tys, RetTy, TTI); 3684 3685 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3686 3687 // If we can't emit a vector call for this function, then the currently found 3688 // cost is the cost we need to return. 3689 NeedToScalarize = true; 3690 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3691 return Cost; 3692 3693 // If the corresponding vector cost is cheaper, return its cost. 3694 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3695 if (VectorCallCost < Cost) { 3696 NeedToScalarize = false; 3697 return VectorCallCost; 3698 } 3699 return Cost; 3700 } 3701 3702 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3703 // factor VF. Return the cost of the instruction, including scalarization 3704 // overhead if it's needed. 3705 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3706 const TargetTransformInfo &TTI, 3707 const TargetLibraryInfo *TLI) { 3708 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3709 assert(ID && "Expected intrinsic call!"); 3710 3711 Type *RetTy = ToVectorTy(CI->getType(), VF); 3712 SmallVector<Type *, 4> Tys; 3713 for (Value *ArgOperand : CI->arg_operands()) 3714 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3715 3716 FastMathFlags FMF; 3717 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3718 FMF = FPMO->getFastMathFlags(); 3719 3720 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3721 } 3722 3723 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3724 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3725 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3726 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3727 } 3728 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3729 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3730 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3731 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3732 } 3733 3734 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3735 // For every instruction `I` in MinBWs, truncate the operands, create a 3736 // truncated version of `I` and reextend its result. InstCombine runs 3737 // later and will remove any ext/trunc pairs. 3738 // 3739 SmallPtrSet<Value *, 4> Erased; 3740 for (const auto &KV : Cost->getMinimalBitwidths()) { 3741 // If the value wasn't vectorized, we must maintain the original scalar 3742 // type. The absence of the value from VectorLoopValueMap indicates that it 3743 // wasn't vectorized. 3744 if (!VectorLoopValueMap.hasVector(KV.first)) 3745 continue; 3746 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3747 for (Value *&I : Parts) { 3748 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3749 continue; 3750 Type *OriginalTy = I->getType(); 3751 Type *ScalarTruncatedTy = 3752 IntegerType::get(OriginalTy->getContext(), KV.second); 3753 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3754 OriginalTy->getVectorNumElements()); 3755 if (TruncatedTy == OriginalTy) 3756 continue; 3757 3758 IRBuilder<> B(cast<Instruction>(I)); 3759 auto ShrinkOperand = [&](Value *V) -> Value * { 3760 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3761 if (ZI->getSrcTy() == TruncatedTy) 3762 return ZI->getOperand(0); 3763 return B.CreateZExtOrTrunc(V, TruncatedTy); 3764 }; 3765 3766 // The actual instruction modification depends on the instruction type, 3767 // unfortunately. 3768 Value *NewI = nullptr; 3769 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3770 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3771 ShrinkOperand(BO->getOperand(1))); 3772 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3773 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3774 NewI = 3775 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3776 ShrinkOperand(CI->getOperand(1))); 3777 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3778 NewI = B.CreateSelect(SI->getCondition(), 3779 ShrinkOperand(SI->getTrueValue()), 3780 ShrinkOperand(SI->getFalseValue())); 3781 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3782 switch (CI->getOpcode()) { 3783 default: 3784 llvm_unreachable("Unhandled cast!"); 3785 case Instruction::Trunc: 3786 NewI = ShrinkOperand(CI->getOperand(0)); 3787 break; 3788 case Instruction::SExt: 3789 NewI = B.CreateSExtOrTrunc( 3790 CI->getOperand(0), 3791 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3792 break; 3793 case Instruction::ZExt: 3794 NewI = B.CreateZExtOrTrunc( 3795 CI->getOperand(0), 3796 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3797 break; 3798 } 3799 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3800 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3801 auto *O0 = B.CreateZExtOrTrunc( 3802 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3803 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3804 auto *O1 = B.CreateZExtOrTrunc( 3805 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3806 3807 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3808 } else if (isa<LoadInst>(I)) { 3809 // Don't do anything with the operands, just extend the result. 3810 continue; 3811 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3812 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3813 auto *O0 = B.CreateZExtOrTrunc( 3814 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3815 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3816 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3817 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3818 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3819 auto *O0 = B.CreateZExtOrTrunc( 3820 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3821 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3822 } else { 3823 llvm_unreachable("Unhandled instruction type!"); 3824 } 3825 3826 // Lastly, extend the result. 3827 NewI->takeName(cast<Instruction>(I)); 3828 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3829 I->replaceAllUsesWith(Res); 3830 cast<Instruction>(I)->eraseFromParent(); 3831 Erased.insert(I); 3832 I = Res; 3833 } 3834 } 3835 3836 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3837 for (const auto &KV : Cost->getMinimalBitwidths()) { 3838 // If the value wasn't vectorized, we must maintain the original scalar 3839 // type. The absence of the value from VectorLoopValueMap indicates that it 3840 // wasn't vectorized. 3841 if (!VectorLoopValueMap.hasVector(KV.first)) 3842 continue; 3843 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3844 for (Value *&I : Parts) { 3845 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3846 if (Inst && Inst->use_empty()) { 3847 Value *NewI = Inst->getOperand(0); 3848 Inst->eraseFromParent(); 3849 I = NewI; 3850 } 3851 } 3852 } 3853 } 3854 3855 void InnerLoopVectorizer::vectorizeLoop() { 3856 //===------------------------------------------------===// 3857 // 3858 // Notice: any optimization or new instruction that go 3859 // into the code below should be also be implemented in 3860 // the cost-model. 3861 // 3862 //===------------------------------------------------===// 3863 Constant *Zero = Builder.getInt32(0); 3864 3865 // In order to support recurrences we need to be able to vectorize Phi nodes. 3866 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3867 // we create a new vector PHI node with no incoming edges. We use this value 3868 // when we vectorize all of the instructions that use the PHI. Next, after 3869 // all of the instructions in the block are complete we add the new incoming 3870 // edges to the PHI. At this point all of the instructions in the basic block 3871 // are vectorized, so we can use them to construct the PHI. 3872 PhiVector PHIsToFix; 3873 3874 // Collect instructions from the original loop that will become trivially 3875 // dead in the vectorized loop. We don't need to vectorize these 3876 // instructions. 3877 collectTriviallyDeadInstructions(); 3878 3879 // Scan the loop in a topological order to ensure that defs are vectorized 3880 // before users. 3881 LoopBlocksDFS DFS(OrigLoop); 3882 DFS.perform(LI); 3883 3884 // Vectorize all of the blocks in the original loop. 3885 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3886 vectorizeBlockInLoop(BB, &PHIsToFix); 3887 3888 // Insert truncates and extends for any truncated instructions as hints to 3889 // InstCombine. 3890 if (VF > 1) 3891 truncateToMinimalBitwidths(); 3892 3893 // At this point every instruction in the original loop is widened to a 3894 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3895 // nodes are currently empty because we did not want to introduce cycles. 3896 // This is the second stage of vectorizing recurrences. 3897 for (PHINode *Phi : PHIsToFix) { 3898 assert(Phi && "Unable to recover vectorized PHI"); 3899 3900 // Handle first-order recurrences that need to be fixed. 3901 if (Legal->isFirstOrderRecurrence(Phi)) { 3902 fixFirstOrderRecurrence(Phi); 3903 continue; 3904 } 3905 3906 // If the phi node is not a first-order recurrence, it must be a reduction. 3907 // Get it's reduction variable descriptor. 3908 assert(Legal->isReductionVariable(Phi) && 3909 "Unable to find the reduction variable"); 3910 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3911 3912 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3913 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3914 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3915 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3916 RdxDesc.getMinMaxRecurrenceKind(); 3917 setDebugLocFromInst(Builder, ReductionStartValue); 3918 3919 // We need to generate a reduction vector from the incoming scalar. 3920 // To do so, we need to generate the 'identity' vector and override 3921 // one of the elements with the incoming scalar reduction. We need 3922 // to do it in the vector-loop preheader. 3923 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3924 3925 // This is the vector-clone of the value that leaves the loop. 3926 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3927 Type *VecTy = VectorExit[0]->getType(); 3928 3929 // Find the reduction identity variable. Zero for addition, or, xor, 3930 // one for multiplication, -1 for And. 3931 Value *Identity; 3932 Value *VectorStart; 3933 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3934 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3935 // MinMax reduction have the start value as their identify. 3936 if (VF == 1) { 3937 VectorStart = Identity = ReductionStartValue; 3938 } else { 3939 VectorStart = Identity = 3940 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3941 } 3942 } else { 3943 // Handle other reduction kinds: 3944 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3945 RK, VecTy->getScalarType()); 3946 if (VF == 1) { 3947 Identity = Iden; 3948 // This vector is the Identity vector where the first element is the 3949 // incoming scalar reduction. 3950 VectorStart = ReductionStartValue; 3951 } else { 3952 Identity = ConstantVector::getSplat(VF, Iden); 3953 3954 // This vector is the Identity vector where the first element is the 3955 // incoming scalar reduction. 3956 VectorStart = 3957 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3958 } 3959 } 3960 3961 // Fix the vector-loop phi. 3962 3963 // Reductions do not have to start at zero. They can start with 3964 // any loop invariant values. 3965 const VectorParts &VecRdxPhi = getVectorValue(Phi); 3966 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3967 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3968 const VectorParts &Val = getVectorValue(LoopVal); 3969 for (unsigned part = 0; part < UF; ++part) { 3970 // Make sure to add the reduction stat value only to the 3971 // first unroll part. 3972 Value *StartVal = (part == 0) ? VectorStart : Identity; 3973 cast<PHINode>(VecRdxPhi[part]) 3974 ->addIncoming(StartVal, LoopVectorPreHeader); 3975 cast<PHINode>(VecRdxPhi[part]) 3976 ->addIncoming(Val[part], LoopVectorBody); 3977 } 3978 3979 // Before each round, move the insertion point right between 3980 // the PHIs and the values we are going to write. 3981 // This allows us to write both PHINodes and the extractelement 3982 // instructions. 3983 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3984 3985 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 3986 setDebugLocFromInst(Builder, LoopExitInst); 3987 3988 // If the vector reduction can be performed in a smaller type, we truncate 3989 // then extend the loop exit value to enable InstCombine to evaluate the 3990 // entire expression in the smaller type. 3991 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3992 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3993 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3994 for (unsigned part = 0; part < UF; ++part) { 3995 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3996 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3997 : Builder.CreateZExt(Trunc, VecTy); 3998 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3999 UI != RdxParts[part]->user_end();) 4000 if (*UI != Trunc) { 4001 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4002 RdxParts[part] = Extnd; 4003 } else { 4004 ++UI; 4005 } 4006 } 4007 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4008 for (unsigned part = 0; part < UF; ++part) 4009 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4010 } 4011 4012 // Reduce all of the unrolled parts into a single vector. 4013 Value *ReducedPartRdx = RdxParts[0]; 4014 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4015 setDebugLocFromInst(Builder, ReducedPartRdx); 4016 for (unsigned part = 1; part < UF; ++part) { 4017 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4018 // Floating point operations had to be 'fast' to enable the reduction. 4019 ReducedPartRdx = addFastMathFlag( 4020 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4021 ReducedPartRdx, "bin.rdx")); 4022 else 4023 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4024 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4025 } 4026 4027 if (VF > 1) { 4028 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4029 // and vector ops, reducing the set of values being computed by half each 4030 // round. 4031 assert(isPowerOf2_32(VF) && 4032 "Reduction emission only supported for pow2 vectors!"); 4033 Value *TmpVec = ReducedPartRdx; 4034 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4035 for (unsigned i = VF; i != 1; i >>= 1) { 4036 // Move the upper half of the vector to the lower half. 4037 for (unsigned j = 0; j != i / 2; ++j) 4038 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4039 4040 // Fill the rest of the mask with undef. 4041 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4042 UndefValue::get(Builder.getInt32Ty())); 4043 4044 Value *Shuf = Builder.CreateShuffleVector( 4045 TmpVec, UndefValue::get(TmpVec->getType()), 4046 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4047 4048 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4049 // Floating point operations had to be 'fast' to enable the reduction. 4050 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4051 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4052 else 4053 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4054 TmpVec, Shuf); 4055 } 4056 4057 // The result is in the first element of the vector. 4058 ReducedPartRdx = 4059 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4060 4061 // If the reduction can be performed in a smaller type, we need to extend 4062 // the reduction to the wider type before we branch to the original loop. 4063 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4064 ReducedPartRdx = 4065 RdxDesc.isSigned() 4066 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4067 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4068 } 4069 4070 // Create a phi node that merges control-flow from the backedge-taken check 4071 // block and the middle block. 4072 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4073 LoopScalarPreHeader->getTerminator()); 4074 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4075 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4076 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4077 4078 // Now, we need to fix the users of the reduction variable 4079 // inside and outside of the scalar remainder loop. 4080 // We know that the loop is in LCSSA form. We need to update the 4081 // PHI nodes in the exit blocks. 4082 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4083 LEE = LoopExitBlock->end(); 4084 LEI != LEE; ++LEI) { 4085 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4086 if (!LCSSAPhi) 4087 break; 4088 4089 // All PHINodes need to have a single entry edge, or two if 4090 // we already fixed them. 4091 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4092 4093 // We found our reduction value exit-PHI. Update it with the 4094 // incoming bypass edge. 4095 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 4096 // Add an edge coming from the bypass. 4097 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4098 break; 4099 } 4100 } // end of the LCSSA phi scan. 4101 4102 // Fix the scalar loop reduction variable with the incoming reduction sum 4103 // from the vector body and from the backedge value. 4104 int IncomingEdgeBlockIdx = 4105 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4106 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4107 // Pick the other block. 4108 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4109 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4110 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4111 } // end of for each Phi in PHIsToFix. 4112 4113 // Update the dominator tree. 4114 // 4115 // FIXME: After creating the structure of the new loop, the dominator tree is 4116 // no longer up-to-date, and it remains that way until we update it 4117 // here. An out-of-date dominator tree is problematic for SCEV, 4118 // because SCEVExpander uses it to guide code generation. The 4119 // vectorizer use SCEVExpanders in several places. Instead, we should 4120 // keep the dominator tree up-to-date as we go. 4121 updateAnalysis(); 4122 4123 // Fix-up external users of the induction variables. 4124 for (auto &Entry : *Legal->getInductionVars()) 4125 fixupIVUsers(Entry.first, Entry.second, 4126 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4127 IVEndValues[Entry.first], LoopMiddleBlock); 4128 4129 fixLCSSAPHIs(); 4130 predicateInstructions(); 4131 4132 // Remove redundant induction instructions. 4133 cse(LoopVectorBody); 4134 } 4135 4136 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4137 4138 // This is the second phase of vectorizing first-order recurrences. An 4139 // overview of the transformation is described below. Suppose we have the 4140 // following loop. 4141 // 4142 // for (int i = 0; i < n; ++i) 4143 // b[i] = a[i] - a[i - 1]; 4144 // 4145 // There is a first-order recurrence on "a". For this loop, the shorthand 4146 // scalar IR looks like: 4147 // 4148 // scalar.ph: 4149 // s_init = a[-1] 4150 // br scalar.body 4151 // 4152 // scalar.body: 4153 // i = phi [0, scalar.ph], [i+1, scalar.body] 4154 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4155 // s2 = a[i] 4156 // b[i] = s2 - s1 4157 // br cond, scalar.body, ... 4158 // 4159 // In this example, s1 is a recurrence because it's value depends on the 4160 // previous iteration. In the first phase of vectorization, we created a 4161 // temporary value for s1. We now complete the vectorization and produce the 4162 // shorthand vector IR shown below (for VF = 4, UF = 1). 4163 // 4164 // vector.ph: 4165 // v_init = vector(..., ..., ..., a[-1]) 4166 // br vector.body 4167 // 4168 // vector.body 4169 // i = phi [0, vector.ph], [i+4, vector.body] 4170 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4171 // v2 = a[i, i+1, i+2, i+3]; 4172 // v3 = vector(v1(3), v2(0, 1, 2)) 4173 // b[i, i+1, i+2, i+3] = v2 - v3 4174 // br cond, vector.body, middle.block 4175 // 4176 // middle.block: 4177 // x = v2(3) 4178 // br scalar.ph 4179 // 4180 // scalar.ph: 4181 // s_init = phi [x, middle.block], [a[-1], otherwise] 4182 // br scalar.body 4183 // 4184 // After execution completes the vector loop, we extract the next value of 4185 // the recurrence (x) to use as the initial value in the scalar loop. 4186 4187 // Get the original loop preheader and single loop latch. 4188 auto *Preheader = OrigLoop->getLoopPreheader(); 4189 auto *Latch = OrigLoop->getLoopLatch(); 4190 4191 // Get the initial and previous values of the scalar recurrence. 4192 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4193 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4194 4195 // Create a vector from the initial value. 4196 auto *VectorInit = ScalarInit; 4197 if (VF > 1) { 4198 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4199 VectorInit = Builder.CreateInsertElement( 4200 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4201 Builder.getInt32(VF - 1), "vector.recur.init"); 4202 } 4203 4204 // We constructed a temporary phi node in the first phase of vectorization. 4205 // This phi node will eventually be deleted. 4206 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4207 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4208 4209 // Create a phi node for the new recurrence. The current value will either be 4210 // the initial value inserted into a vector or loop-varying vector value. 4211 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4212 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4213 4214 // Get the vectorized previous value. We ensured the previous values was an 4215 // instruction when detecting the recurrence. 4216 auto &PreviousParts = getVectorValue(Previous); 4217 4218 // Set the insertion point to be after this instruction. We ensured the 4219 // previous value dominated all uses of the phi when detecting the 4220 // recurrence. 4221 Builder.SetInsertPoint( 4222 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4223 4224 // We will construct a vector for the recurrence by combining the values for 4225 // the current and previous iterations. This is the required shuffle mask. 4226 SmallVector<Constant *, 8> ShuffleMask(VF); 4227 ShuffleMask[0] = Builder.getInt32(VF - 1); 4228 for (unsigned I = 1; I < VF; ++I) 4229 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4230 4231 // The vector from which to take the initial value for the current iteration 4232 // (actual or unrolled). Initially, this is the vector phi node. 4233 Value *Incoming = VecPhi; 4234 4235 // Shuffle the current and previous vector and update the vector parts. 4236 for (unsigned Part = 0; Part < UF; ++Part) { 4237 auto *Shuffle = 4238 VF > 1 4239 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4240 ConstantVector::get(ShuffleMask)) 4241 : Incoming; 4242 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4243 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4244 PhiParts[Part] = Shuffle; 4245 Incoming = PreviousParts[Part]; 4246 } 4247 4248 // Fix the latch value of the new recurrence in the vector loop. 4249 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4250 4251 // Extract the last vector element in the middle block. This will be the 4252 // initial value for the recurrence when jumping to the scalar loop. 4253 auto *Extract = Incoming; 4254 if (VF > 1) { 4255 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4256 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4257 "vector.recur.extract"); 4258 } 4259 4260 // Fix the initial value of the original recurrence in the scalar loop. 4261 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4262 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4263 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4264 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4265 Start->addIncoming(Incoming, BB); 4266 } 4267 4268 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4269 Phi->setName("scalar.recur"); 4270 4271 // Finally, fix users of the recurrence outside the loop. The users will need 4272 // either the last value of the scalar recurrence or the last value of the 4273 // vector recurrence we extracted in the middle block. Since the loop is in 4274 // LCSSA form, we just need to find the phi node for the original scalar 4275 // recurrence in the exit block, and then add an edge for the middle block. 4276 for (auto &I : *LoopExitBlock) { 4277 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4278 if (!LCSSAPhi) 4279 break; 4280 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4281 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4282 break; 4283 } 4284 } 4285 } 4286 4287 void InnerLoopVectorizer::fixLCSSAPHIs() { 4288 for (Instruction &LEI : *LoopExitBlock) { 4289 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4290 if (!LCSSAPhi) 4291 break; 4292 if (LCSSAPhi->getNumIncomingValues() == 1) 4293 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4294 LoopMiddleBlock); 4295 } 4296 } 4297 4298 void InnerLoopVectorizer::collectTriviallyDeadInstructions() { 4299 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4300 4301 // We create new control-flow for the vectorized loop, so the original 4302 // condition will be dead after vectorization if it's only used by the 4303 // branch. 4304 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4305 if (Cmp && Cmp->hasOneUse()) 4306 DeadInstructions.insert(Cmp); 4307 4308 // We create new "steps" for induction variable updates to which the original 4309 // induction variables map. An original update instruction will be dead if 4310 // all its users except the induction variable are dead. 4311 for (auto &Induction : *Legal->getInductionVars()) { 4312 PHINode *Ind = Induction.first; 4313 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4314 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4315 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4316 })) 4317 DeadInstructions.insert(IndUpdate); 4318 } 4319 } 4320 4321 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4322 4323 // The basic block and loop containing the predicated instruction. 4324 auto *PredBB = PredInst->getParent(); 4325 auto *VectorLoop = LI->getLoopFor(PredBB); 4326 4327 // Initialize a worklist with the operands of the predicated instruction. 4328 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4329 4330 // Holds instructions that we need to analyze again. An instruction may be 4331 // reanalyzed if we don't yet know if we can sink it or not. 4332 SmallVector<Instruction *, 8> InstsToReanalyze; 4333 4334 // Returns true if a given use occurs in the predicated block. Phi nodes use 4335 // their operands in their corresponding predecessor blocks. 4336 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4337 auto *I = cast<Instruction>(U.getUser()); 4338 BasicBlock *BB = I->getParent(); 4339 if (auto *Phi = dyn_cast<PHINode>(I)) 4340 BB = Phi->getIncomingBlock( 4341 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4342 return BB == PredBB; 4343 }; 4344 4345 // Iteratively sink the scalarized operands of the predicated instruction 4346 // into the block we created for it. When an instruction is sunk, it's 4347 // operands are then added to the worklist. The algorithm ends after one pass 4348 // through the worklist doesn't sink a single instruction. 4349 bool Changed; 4350 do { 4351 4352 // Add the instructions that need to be reanalyzed to the worklist, and 4353 // reset the changed indicator. 4354 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4355 InstsToReanalyze.clear(); 4356 Changed = false; 4357 4358 while (!Worklist.empty()) { 4359 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4360 4361 // We can't sink an instruction if it is a phi node, is already in the 4362 // predicated block, is not in the loop, or may have side effects. 4363 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4364 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4365 continue; 4366 4367 // It's legal to sink the instruction if all its uses occur in the 4368 // predicated block. Otherwise, there's nothing to do yet, and we may 4369 // need to reanalyze the instruction. 4370 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4371 InstsToReanalyze.push_back(I); 4372 continue; 4373 } 4374 4375 // Move the instruction to the beginning of the predicated block, and add 4376 // it's operands to the worklist. 4377 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4378 Worklist.insert(I->op_begin(), I->op_end()); 4379 4380 // The sinking may have enabled other instructions to be sunk, so we will 4381 // need to iterate. 4382 Changed = true; 4383 } 4384 } while (Changed); 4385 } 4386 4387 void InnerLoopVectorizer::predicateInstructions() { 4388 4389 // For each instruction I marked for predication on value C, split I into its 4390 // own basic block to form an if-then construct over C. Since I may be fed by 4391 // an extractelement instruction or other scalar operand, we try to 4392 // iteratively sink its scalar operands into the predicated block. If I feeds 4393 // an insertelement instruction, we try to move this instruction into the 4394 // predicated block as well. For non-void types, a phi node will be created 4395 // for the resulting value (either vector or scalar). 4396 // 4397 // So for some predicated instruction, e.g. the conditional sdiv in: 4398 // 4399 // for.body: 4400 // ... 4401 // %add = add nsw i32 %mul, %0 4402 // %cmp5 = icmp sgt i32 %2, 7 4403 // br i1 %cmp5, label %if.then, label %if.end 4404 // 4405 // if.then: 4406 // %div = sdiv i32 %0, %1 4407 // br label %if.end 4408 // 4409 // if.end: 4410 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4411 // 4412 // the sdiv at this point is scalarized and if-converted using a select. 4413 // The inactive elements in the vector are not used, but the predicated 4414 // instruction is still executed for all vector elements, essentially: 4415 // 4416 // vector.body: 4417 // ... 4418 // %17 = add nsw <2 x i32> %16, %wide.load 4419 // %29 = extractelement <2 x i32> %wide.load, i32 0 4420 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4421 // %31 = sdiv i32 %29, %30 4422 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4423 // %35 = extractelement <2 x i32> %wide.load, i32 1 4424 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4425 // %37 = sdiv i32 %35, %36 4426 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4427 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4428 // 4429 // Predication will now re-introduce the original control flow to avoid false 4430 // side-effects by the sdiv instructions on the inactive elements, yielding 4431 // (after cleanup): 4432 // 4433 // vector.body: 4434 // ... 4435 // %5 = add nsw <2 x i32> %4, %wide.load 4436 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4437 // %9 = extractelement <2 x i1> %8, i32 0 4438 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4439 // 4440 // pred.sdiv.if: 4441 // %10 = extractelement <2 x i32> %wide.load, i32 0 4442 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4443 // %12 = sdiv i32 %10, %11 4444 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4445 // br label %pred.sdiv.continue 4446 // 4447 // pred.sdiv.continue: 4448 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4449 // %15 = extractelement <2 x i1> %8, i32 1 4450 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4451 // 4452 // pred.sdiv.if54: 4453 // %16 = extractelement <2 x i32> %wide.load, i32 1 4454 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4455 // %18 = sdiv i32 %16, %17 4456 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4457 // br label %pred.sdiv.continue55 4458 // 4459 // pred.sdiv.continue55: 4460 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4461 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4462 4463 for (auto KV : PredicatedInstructions) { 4464 BasicBlock::iterator I(KV.first); 4465 BasicBlock *Head = I->getParent(); 4466 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4467 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4468 /*BranchWeights=*/nullptr, DT, LI); 4469 I->moveBefore(T); 4470 sinkScalarOperands(&*I); 4471 4472 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4473 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4474 4475 // If the instruction is non-void create a Phi node at reconvergence point. 4476 if (!I->getType()->isVoidTy()) { 4477 Value *IncomingTrue = nullptr; 4478 Value *IncomingFalse = nullptr; 4479 4480 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4481 // If the predicated instruction is feeding an insert-element, move it 4482 // into the Then block; Phi node will be created for the vector. 4483 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4484 IEI->moveBefore(T); 4485 IncomingTrue = IEI; // the new vector with the inserted element. 4486 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4487 } else { 4488 // Phi node will be created for the scalar predicated instruction. 4489 IncomingTrue = &*I; 4490 IncomingFalse = UndefValue::get(I->getType()); 4491 } 4492 4493 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4494 assert(PostDom && "Then block has multiple successors"); 4495 PHINode *Phi = 4496 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4497 IncomingTrue->replaceAllUsesWith(Phi); 4498 Phi->addIncoming(IncomingFalse, Head); 4499 Phi->addIncoming(IncomingTrue, I->getParent()); 4500 } 4501 } 4502 4503 DEBUG(DT->verifyDomTree()); 4504 } 4505 4506 InnerLoopVectorizer::VectorParts 4507 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4508 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4509 4510 // Look for cached value. 4511 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4512 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4513 if (ECEntryIt != MaskCache.end()) 4514 return ECEntryIt->second; 4515 4516 VectorParts SrcMask = createBlockInMask(Src); 4517 4518 // The terminator has to be a branch inst! 4519 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4520 assert(BI && "Unexpected terminator found"); 4521 4522 if (BI->isConditional()) { 4523 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4524 4525 if (BI->getSuccessor(0) != Dst) 4526 for (unsigned part = 0; part < UF; ++part) 4527 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4528 4529 for (unsigned part = 0; part < UF; ++part) 4530 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4531 4532 MaskCache[Edge] = EdgeMask; 4533 return EdgeMask; 4534 } 4535 4536 MaskCache[Edge] = SrcMask; 4537 return SrcMask; 4538 } 4539 4540 InnerLoopVectorizer::VectorParts 4541 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4542 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4543 4544 // Loop incoming mask is all-one. 4545 if (OrigLoop->getHeader() == BB) { 4546 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4547 return getVectorValue(C); 4548 } 4549 4550 // This is the block mask. We OR all incoming edges, and with zero. 4551 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4552 VectorParts BlockMask = getVectorValue(Zero); 4553 4554 // For each pred: 4555 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4556 VectorParts EM = createEdgeMask(*it, BB); 4557 for (unsigned part = 0; part < UF; ++part) 4558 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4559 } 4560 4561 return BlockMask; 4562 } 4563 4564 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4565 unsigned VF, PhiVector *PV) { 4566 PHINode *P = cast<PHINode>(PN); 4567 // Handle recurrences. 4568 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4569 VectorParts Entry(UF); 4570 for (unsigned part = 0; part < UF; ++part) { 4571 // This is phase one of vectorizing PHIs. 4572 Type *VecTy = 4573 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4574 Entry[part] = PHINode::Create( 4575 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4576 } 4577 VectorLoopValueMap.initVector(P, Entry); 4578 PV->push_back(P); 4579 return; 4580 } 4581 4582 setDebugLocFromInst(Builder, P); 4583 // Check for PHI nodes that are lowered to vector selects. 4584 if (P->getParent() != OrigLoop->getHeader()) { 4585 // We know that all PHIs in non-header blocks are converted into 4586 // selects, so we don't have to worry about the insertion order and we 4587 // can just use the builder. 4588 // At this point we generate the predication tree. There may be 4589 // duplications since this is a simple recursive scan, but future 4590 // optimizations will clean it up. 4591 4592 unsigned NumIncoming = P->getNumIncomingValues(); 4593 4594 // Generate a sequence of selects of the form: 4595 // SELECT(Mask3, In3, 4596 // SELECT(Mask2, In2, 4597 // ( ...))) 4598 VectorParts Entry(UF); 4599 for (unsigned In = 0; In < NumIncoming; In++) { 4600 VectorParts Cond = 4601 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4602 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4603 4604 for (unsigned part = 0; part < UF; ++part) { 4605 // We might have single edge PHIs (blocks) - use an identity 4606 // 'select' for the first PHI operand. 4607 if (In == 0) 4608 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4609 else 4610 // Select between the current value and the previous incoming edge 4611 // based on the incoming mask. 4612 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4613 "predphi"); 4614 } 4615 } 4616 VectorLoopValueMap.initVector(P, Entry); 4617 return; 4618 } 4619 4620 // This PHINode must be an induction variable. 4621 // Make sure that we know about it. 4622 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4623 4624 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4625 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4626 4627 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4628 // which can be found from the original scalar operations. 4629 switch (II.getKind()) { 4630 case InductionDescriptor::IK_NoInduction: 4631 llvm_unreachable("Unknown induction"); 4632 case InductionDescriptor::IK_IntInduction: 4633 return widenIntInduction(P); 4634 case InductionDescriptor::IK_PtrInduction: { 4635 // Handle the pointer induction variable case. 4636 assert(P->getType()->isPointerTy() && "Unexpected type."); 4637 // This is the normalized GEP that starts counting at zero. 4638 Value *PtrInd = Induction; 4639 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4640 // Determine the number of scalars we need to generate for each unroll 4641 // iteration. If the instruction is uniform, we only need to generate the 4642 // first lane. Otherwise, we generate all VF values. 4643 unsigned Lanes = Legal->isUniformAfterVectorization(P) ? 1 : VF; 4644 // These are the scalar results. Notice that we don't generate vector GEPs 4645 // because scalar GEPs result in better code. 4646 ScalarParts Entry(UF); 4647 for (unsigned Part = 0; Part < UF; ++Part) { 4648 Entry[Part].resize(VF); 4649 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4650 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4651 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4652 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4653 SclrGep->setName("next.gep"); 4654 Entry[Part][Lane] = SclrGep; 4655 } 4656 } 4657 VectorLoopValueMap.initScalar(P, Entry); 4658 return; 4659 } 4660 case InductionDescriptor::IK_FpInduction: { 4661 assert(P->getType() == II.getStartValue()->getType() && 4662 "Types must match"); 4663 // Handle other induction variables that are now based on the 4664 // canonical one. 4665 assert(P != OldInduction && "Primary induction can be integer only"); 4666 4667 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4668 V = II.transform(Builder, V, PSE.getSE(), DL); 4669 V->setName("fp.offset.idx"); 4670 4671 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4672 4673 Value *Broadcasted = getBroadcastInstrs(V); 4674 // After broadcasting the induction variable we need to make the vector 4675 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4676 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4677 VectorParts Entry(UF); 4678 for (unsigned part = 0; part < UF; ++part) 4679 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4680 II.getInductionOpcode()); 4681 VectorLoopValueMap.initVector(P, Entry); 4682 return; 4683 } 4684 } 4685 } 4686 4687 /// A helper function for checking whether an integer division-related 4688 /// instruction may divide by zero (in which case it must be predicated if 4689 /// executed conditionally in the scalar code). 4690 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4691 /// Non-zero divisors that are non compile-time constants will not be 4692 /// converted into multiplication, so we will still end up scalarizing 4693 /// the division, but can do so w/o predication. 4694 static bool mayDivideByZero(Instruction &I) { 4695 assert((I.getOpcode() == Instruction::UDiv || 4696 I.getOpcode() == Instruction::SDiv || 4697 I.getOpcode() == Instruction::URem || 4698 I.getOpcode() == Instruction::SRem) && 4699 "Unexpected instruction"); 4700 Value *Divisor = I.getOperand(1); 4701 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4702 return !CInt || CInt->isZero(); 4703 } 4704 4705 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4706 // For each instruction in the old loop. 4707 for (Instruction &I : *BB) { 4708 4709 // If the instruction will become trivially dead when vectorized, we don't 4710 // need to generate it. 4711 if (DeadInstructions.count(&I)) 4712 continue; 4713 4714 // Scalarize instructions that should remain scalar after vectorization. 4715 if (VF > 1 && 4716 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4717 isa<DbgInfoIntrinsic>(&I)) && 4718 shouldScalarizeInstruction(&I)) { 4719 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4720 continue; 4721 } 4722 4723 switch (I.getOpcode()) { 4724 case Instruction::Br: 4725 // Nothing to do for PHIs and BR, since we already took care of the 4726 // loop control flow instructions. 4727 continue; 4728 case Instruction::PHI: { 4729 // Vectorize PHINodes. 4730 widenPHIInstruction(&I, UF, VF, PV); 4731 continue; 4732 } // End of PHI. 4733 4734 case Instruction::UDiv: 4735 case Instruction::SDiv: 4736 case Instruction::SRem: 4737 case Instruction::URem: 4738 // Scalarize with predication if this instruction may divide by zero and 4739 // block execution is conditional, otherwise fallthrough. 4740 if (Legal->isScalarWithPredication(&I)) { 4741 scalarizeInstruction(&I, true); 4742 continue; 4743 } 4744 case Instruction::Add: 4745 case Instruction::FAdd: 4746 case Instruction::Sub: 4747 case Instruction::FSub: 4748 case Instruction::Mul: 4749 case Instruction::FMul: 4750 case Instruction::FDiv: 4751 case Instruction::FRem: 4752 case Instruction::Shl: 4753 case Instruction::LShr: 4754 case Instruction::AShr: 4755 case Instruction::And: 4756 case Instruction::Or: 4757 case Instruction::Xor: { 4758 // Just widen binops. 4759 auto *BinOp = cast<BinaryOperator>(&I); 4760 setDebugLocFromInst(Builder, BinOp); 4761 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4762 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4763 4764 // Use this vector value for all users of the original instruction. 4765 VectorParts Entry(UF); 4766 for (unsigned Part = 0; Part < UF; ++Part) { 4767 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4768 4769 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4770 VecOp->copyIRFlags(BinOp); 4771 4772 Entry[Part] = V; 4773 } 4774 4775 VectorLoopValueMap.initVector(&I, Entry); 4776 addMetadata(Entry, BinOp); 4777 break; 4778 } 4779 case Instruction::Select: { 4780 // Widen selects. 4781 // If the selector is loop invariant we can create a select 4782 // instruction with a scalar condition. Otherwise, use vector-select. 4783 auto *SE = PSE.getSE(); 4784 bool InvariantCond = 4785 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4786 setDebugLocFromInst(Builder, &I); 4787 4788 // The condition can be loop invariant but still defined inside the 4789 // loop. This means that we can't just use the original 'cond' value. 4790 // We have to take the 'vectorized' value and pick the first lane. 4791 // Instcombine will make this a no-op. 4792 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4793 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4794 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4795 4796 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4797 4798 VectorParts Entry(UF); 4799 for (unsigned Part = 0; Part < UF; ++Part) { 4800 Entry[Part] = Builder.CreateSelect( 4801 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4802 } 4803 4804 VectorLoopValueMap.initVector(&I, Entry); 4805 addMetadata(Entry, &I); 4806 break; 4807 } 4808 4809 case Instruction::ICmp: 4810 case Instruction::FCmp: { 4811 // Widen compares. Generate vector compares. 4812 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4813 auto *Cmp = dyn_cast<CmpInst>(&I); 4814 setDebugLocFromInst(Builder, Cmp); 4815 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4816 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4817 VectorParts Entry(UF); 4818 for (unsigned Part = 0; Part < UF; ++Part) { 4819 Value *C = nullptr; 4820 if (FCmp) { 4821 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4822 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4823 } else { 4824 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4825 } 4826 Entry[Part] = C; 4827 } 4828 4829 VectorLoopValueMap.initVector(&I, Entry); 4830 addMetadata(Entry, &I); 4831 break; 4832 } 4833 4834 case Instruction::Store: 4835 case Instruction::Load: 4836 vectorizeMemoryInstruction(&I); 4837 break; 4838 case Instruction::ZExt: 4839 case Instruction::SExt: 4840 case Instruction::FPToUI: 4841 case Instruction::FPToSI: 4842 case Instruction::FPExt: 4843 case Instruction::PtrToInt: 4844 case Instruction::IntToPtr: 4845 case Instruction::SIToFP: 4846 case Instruction::UIToFP: 4847 case Instruction::Trunc: 4848 case Instruction::FPTrunc: 4849 case Instruction::BitCast: { 4850 auto *CI = dyn_cast<CastInst>(&I); 4851 setDebugLocFromInst(Builder, CI); 4852 4853 // Optimize the special case where the source is a constant integer 4854 // induction variable. Notice that we can only optimize the 'trunc' case 4855 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4856 // (c) other casts depend on pointer size. 4857 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4858 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4859 ID.getConstIntStepValue()) { 4860 widenIntInduction(OldInduction, cast<TruncInst>(CI)); 4861 break; 4862 } 4863 4864 /// Vectorize casts. 4865 Type *DestTy = 4866 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4867 4868 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4869 VectorParts Entry(UF); 4870 for (unsigned Part = 0; Part < UF; ++Part) 4871 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4872 VectorLoopValueMap.initVector(&I, Entry); 4873 addMetadata(Entry, &I); 4874 break; 4875 } 4876 4877 case Instruction::Call: { 4878 // Ignore dbg intrinsics. 4879 if (isa<DbgInfoIntrinsic>(I)) 4880 break; 4881 setDebugLocFromInst(Builder, &I); 4882 4883 Module *M = BB->getParent()->getParent(); 4884 auto *CI = cast<CallInst>(&I); 4885 4886 StringRef FnName = CI->getCalledFunction()->getName(); 4887 Function *F = CI->getCalledFunction(); 4888 Type *RetTy = ToVectorTy(CI->getType(), VF); 4889 SmallVector<Type *, 4> Tys; 4890 for (Value *ArgOperand : CI->arg_operands()) 4891 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4892 4893 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4894 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4895 ID == Intrinsic::lifetime_start)) { 4896 scalarizeInstruction(&I); 4897 break; 4898 } 4899 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4900 // version of the instruction. 4901 // Is it beneficial to perform intrinsic call compared to lib call? 4902 bool NeedToScalarize; 4903 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4904 bool UseVectorIntrinsic = 4905 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4906 if (!UseVectorIntrinsic && NeedToScalarize) { 4907 scalarizeInstruction(&I); 4908 break; 4909 } 4910 4911 VectorParts Entry(UF); 4912 for (unsigned Part = 0; Part < UF; ++Part) { 4913 SmallVector<Value *, 4> Args; 4914 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4915 Value *Arg = CI->getArgOperand(i); 4916 // Some intrinsics have a scalar argument - don't replace it with a 4917 // vector. 4918 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4919 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4920 Arg = VectorArg[Part]; 4921 } 4922 Args.push_back(Arg); 4923 } 4924 4925 Function *VectorF; 4926 if (UseVectorIntrinsic) { 4927 // Use vector version of the intrinsic. 4928 Type *TysForDecl[] = {CI->getType()}; 4929 if (VF > 1) 4930 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4931 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4932 } else { 4933 // Use vector version of the library call. 4934 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4935 assert(!VFnName.empty() && "Vector function name is empty."); 4936 VectorF = M->getFunction(VFnName); 4937 if (!VectorF) { 4938 // Generate a declaration 4939 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4940 VectorF = 4941 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4942 VectorF->copyAttributesFrom(F); 4943 } 4944 } 4945 assert(VectorF && "Can't create vector function."); 4946 4947 SmallVector<OperandBundleDef, 1> OpBundles; 4948 CI->getOperandBundlesAsDefs(OpBundles); 4949 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4950 4951 if (isa<FPMathOperator>(V)) 4952 V->copyFastMathFlags(CI); 4953 4954 Entry[Part] = V; 4955 } 4956 4957 VectorLoopValueMap.initVector(&I, Entry); 4958 addMetadata(Entry, &I); 4959 break; 4960 } 4961 4962 default: 4963 // All other instructions are unsupported. Scalarize them. 4964 scalarizeInstruction(&I); 4965 break; 4966 } // end of switch. 4967 } // end of for_each instr. 4968 } 4969 4970 void InnerLoopVectorizer::updateAnalysis() { 4971 // Forget the original basic block. 4972 PSE.getSE()->forgetLoop(OrigLoop); 4973 4974 // Update the dominator tree information. 4975 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4976 "Entry does not dominate exit."); 4977 4978 // We don't predicate stores by this point, so the vector body should be a 4979 // single loop. 4980 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4981 4982 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4983 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4984 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4985 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4986 4987 DEBUG(DT->verifyDomTree()); 4988 } 4989 4990 /// \brief Check whether it is safe to if-convert this phi node. 4991 /// 4992 /// Phi nodes with constant expressions that can trap are not safe to if 4993 /// convert. 4994 static bool canIfConvertPHINodes(BasicBlock *BB) { 4995 for (Instruction &I : *BB) { 4996 auto *Phi = dyn_cast<PHINode>(&I); 4997 if (!Phi) 4998 return true; 4999 for (Value *V : Phi->incoming_values()) 5000 if (auto *C = dyn_cast<Constant>(V)) 5001 if (C->canTrap()) 5002 return false; 5003 } 5004 return true; 5005 } 5006 5007 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5008 if (!EnableIfConversion) { 5009 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5010 << "if-conversion is disabled"); 5011 return false; 5012 } 5013 5014 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5015 5016 // A list of pointers that we can safely read and write to. 5017 SmallPtrSet<Value *, 8> SafePointes; 5018 5019 // Collect safe addresses. 5020 for (BasicBlock *BB : TheLoop->blocks()) { 5021 if (blockNeedsPredication(BB)) 5022 continue; 5023 5024 for (Instruction &I : *BB) 5025 if (auto *Ptr = getPointerOperand(&I)) 5026 SafePointes.insert(Ptr); 5027 } 5028 5029 // Collect the blocks that need predication. 5030 BasicBlock *Header = TheLoop->getHeader(); 5031 for (BasicBlock *BB : TheLoop->blocks()) { 5032 // We don't support switch statements inside loops. 5033 if (!isa<BranchInst>(BB->getTerminator())) { 5034 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5035 << "loop contains a switch statement"); 5036 return false; 5037 } 5038 5039 // We must be able to predicate all blocks that need to be predicated. 5040 if (blockNeedsPredication(BB)) { 5041 if (!blockCanBePredicated(BB, SafePointes)) { 5042 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5043 << "control flow cannot be substituted for a select"); 5044 return false; 5045 } 5046 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5047 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5048 << "control flow cannot be substituted for a select"); 5049 return false; 5050 } 5051 } 5052 5053 // We can if-convert this loop. 5054 return true; 5055 } 5056 5057 bool LoopVectorizationLegality::canVectorize() { 5058 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5059 // be canonicalized. 5060 if (!TheLoop->getLoopPreheader()) { 5061 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5062 << "loop control flow is not understood by vectorizer"); 5063 return false; 5064 } 5065 5066 // FIXME: The code is currently dead, since the loop gets sent to 5067 // LoopVectorizationLegality is already an innermost loop. 5068 // 5069 // We can only vectorize innermost loops. 5070 if (!TheLoop->empty()) { 5071 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5072 << "loop is not the innermost loop"); 5073 return false; 5074 } 5075 5076 // We must have a single backedge. 5077 if (TheLoop->getNumBackEdges() != 1) { 5078 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5079 << "loop control flow is not understood by vectorizer"); 5080 return false; 5081 } 5082 5083 // We must have a single exiting block. 5084 if (!TheLoop->getExitingBlock()) { 5085 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5086 << "loop control flow is not understood by vectorizer"); 5087 return false; 5088 } 5089 5090 // We only handle bottom-tested loops, i.e. loop in which the condition is 5091 // checked at the end of each iteration. With that we can assume that all 5092 // instructions in the loop are executed the same number of times. 5093 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5094 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5095 << "loop control flow is not understood by vectorizer"); 5096 return false; 5097 } 5098 5099 // We need to have a loop header. 5100 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5101 << '\n'); 5102 5103 // Check if we can if-convert non-single-bb loops. 5104 unsigned NumBlocks = TheLoop->getNumBlocks(); 5105 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5106 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5107 return false; 5108 } 5109 5110 // ScalarEvolution needs to be able to find the exit count. 5111 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5112 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5113 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5114 << "could not determine number of loop iterations"); 5115 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5116 return false; 5117 } 5118 5119 // Check if we can vectorize the instructions and CFG in this loop. 5120 if (!canVectorizeInstrs()) { 5121 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5122 return false; 5123 } 5124 5125 // Go over each instruction and look at memory deps. 5126 if (!canVectorizeMemory()) { 5127 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5128 return false; 5129 } 5130 5131 DEBUG(dbgs() << "LV: We can vectorize this loop" 5132 << (LAI->getRuntimePointerChecking()->Need 5133 ? " (with a runtime bound check)" 5134 : "") 5135 << "!\n"); 5136 5137 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5138 5139 // If an override option has been passed in for interleaved accesses, use it. 5140 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5141 UseInterleaved = EnableInterleavedMemAccesses; 5142 5143 // Analyze interleaved memory accesses. 5144 if (UseInterleaved) 5145 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5146 5147 // Collect all instructions that are known to be uniform after vectorization. 5148 collectLoopUniforms(); 5149 5150 // Collect all instructions that are known to be scalar after vectorization. 5151 collectLoopScalars(); 5152 5153 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5154 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5155 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5156 5157 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5158 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5159 << "Too many SCEV assumptions need to be made and checked " 5160 << "at runtime"); 5161 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5162 return false; 5163 } 5164 5165 // Okay! We can vectorize. At this point we don't have any other mem analysis 5166 // which may limit our maximum vectorization factor, so just return true with 5167 // no restrictions. 5168 return true; 5169 } 5170 5171 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5172 if (Ty->isPointerTy()) 5173 return DL.getIntPtrType(Ty); 5174 5175 // It is possible that char's or short's overflow when we ask for the loop's 5176 // trip count, work around this by changing the type size. 5177 if (Ty->getScalarSizeInBits() < 32) 5178 return Type::getInt32Ty(Ty->getContext()); 5179 5180 return Ty; 5181 } 5182 5183 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5184 Ty0 = convertPointerToIntegerType(DL, Ty0); 5185 Ty1 = convertPointerToIntegerType(DL, Ty1); 5186 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5187 return Ty0; 5188 return Ty1; 5189 } 5190 5191 /// \brief Check that the instruction has outside loop users and is not an 5192 /// identified reduction variable. 5193 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5194 SmallPtrSetImpl<Value *> &AllowedExit) { 5195 // Reduction and Induction instructions are allowed to have exit users. All 5196 // other instructions must not have external users. 5197 if (!AllowedExit.count(Inst)) 5198 // Check that all of the users of the loop are inside the BB. 5199 for (User *U : Inst->users()) { 5200 Instruction *UI = cast<Instruction>(U); 5201 // This user may be a reduction exit value. 5202 if (!TheLoop->contains(UI)) { 5203 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5204 return true; 5205 } 5206 } 5207 return false; 5208 } 5209 5210 void LoopVectorizationLegality::addInductionPhi( 5211 PHINode *Phi, const InductionDescriptor &ID, 5212 SmallPtrSetImpl<Value *> &AllowedExit) { 5213 Inductions[Phi] = ID; 5214 Type *PhiTy = Phi->getType(); 5215 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5216 5217 // Get the widest type. 5218 if (!PhiTy->isFloatingPointTy()) { 5219 if (!WidestIndTy) 5220 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5221 else 5222 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5223 } 5224 5225 // Int inductions are special because we only allow one IV. 5226 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5227 ID.getConstIntStepValue() && 5228 ID.getConstIntStepValue()->isOne() && 5229 isa<Constant>(ID.getStartValue()) && 5230 cast<Constant>(ID.getStartValue())->isNullValue()) { 5231 5232 // Use the phi node with the widest type as induction. Use the last 5233 // one if there are multiple (no good reason for doing this other 5234 // than it is expedient). We've checked that it begins at zero and 5235 // steps by one, so this is a canonical induction variable. 5236 if (!Induction || PhiTy == WidestIndTy) 5237 Induction = Phi; 5238 } 5239 5240 // Both the PHI node itself, and the "post-increment" value feeding 5241 // back into the PHI node may have external users. 5242 AllowedExit.insert(Phi); 5243 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5244 5245 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5246 return; 5247 } 5248 5249 bool LoopVectorizationLegality::canVectorizeInstrs() { 5250 BasicBlock *Header = TheLoop->getHeader(); 5251 5252 // Look for the attribute signaling the absence of NaNs. 5253 Function &F = *Header->getParent(); 5254 HasFunNoNaNAttr = 5255 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5256 5257 // For each block in the loop. 5258 for (BasicBlock *BB : TheLoop->blocks()) { 5259 // Scan the instructions in the block and look for hazards. 5260 for (Instruction &I : *BB) { 5261 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5262 Type *PhiTy = Phi->getType(); 5263 // Check that this PHI type is allowed. 5264 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5265 !PhiTy->isPointerTy()) { 5266 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5267 << "loop control flow is not understood by vectorizer"); 5268 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5269 return false; 5270 } 5271 5272 // If this PHINode is not in the header block, then we know that we 5273 // can convert it to select during if-conversion. No need to check if 5274 // the PHIs in this block are induction or reduction variables. 5275 if (BB != Header) { 5276 // Check that this instruction has no outside users or is an 5277 // identified reduction value with an outside user. 5278 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5279 continue; 5280 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5281 << "value could not be identified as " 5282 "an induction or reduction variable"); 5283 return false; 5284 } 5285 5286 // We only allow if-converted PHIs with exactly two incoming values. 5287 if (Phi->getNumIncomingValues() != 2) { 5288 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5289 << "control flow not understood by vectorizer"); 5290 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5291 return false; 5292 } 5293 5294 RecurrenceDescriptor RedDes; 5295 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5296 if (RedDes.hasUnsafeAlgebra()) 5297 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5298 AllowedExit.insert(RedDes.getLoopExitInstr()); 5299 Reductions[Phi] = RedDes; 5300 continue; 5301 } 5302 5303 InductionDescriptor ID; 5304 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5305 addInductionPhi(Phi, ID, AllowedExit); 5306 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5307 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5308 continue; 5309 } 5310 5311 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5312 FirstOrderRecurrences.insert(Phi); 5313 continue; 5314 } 5315 5316 // As a last resort, coerce the PHI to a AddRec expression 5317 // and re-try classifying it a an induction PHI. 5318 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5319 addInductionPhi(Phi, ID, AllowedExit); 5320 continue; 5321 } 5322 5323 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5324 << "value that could not be identified as " 5325 "reduction is used outside the loop"); 5326 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5327 return false; 5328 } // end of PHI handling 5329 5330 // We handle calls that: 5331 // * Are debug info intrinsics. 5332 // * Have a mapping to an IR intrinsic. 5333 // * Have a vector version available. 5334 auto *CI = dyn_cast<CallInst>(&I); 5335 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5336 !isa<DbgInfoIntrinsic>(CI) && 5337 !(CI->getCalledFunction() && TLI && 5338 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5339 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5340 << "call instruction cannot be vectorized"); 5341 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5342 return false; 5343 } 5344 5345 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5346 // second argument is the same (i.e. loop invariant) 5347 if (CI && hasVectorInstrinsicScalarOpd( 5348 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5349 auto *SE = PSE.getSE(); 5350 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5351 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5352 << "intrinsic instruction cannot be vectorized"); 5353 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5354 return false; 5355 } 5356 } 5357 5358 // Check that the instruction return type is vectorizable. 5359 // Also, we can't vectorize extractelement instructions. 5360 if ((!VectorType::isValidElementType(I.getType()) && 5361 !I.getType()->isVoidTy()) || 5362 isa<ExtractElementInst>(I)) { 5363 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5364 << "instruction return type cannot be vectorized"); 5365 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5366 return false; 5367 } 5368 5369 // Check that the stored type is vectorizable. 5370 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5371 Type *T = ST->getValueOperand()->getType(); 5372 if (!VectorType::isValidElementType(T)) { 5373 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5374 << "store instruction cannot be vectorized"); 5375 return false; 5376 } 5377 5378 // FP instructions can allow unsafe algebra, thus vectorizable by 5379 // non-IEEE-754 compliant SIMD units. 5380 // This applies to floating-point math operations and calls, not memory 5381 // operations, shuffles, or casts, as they don't change precision or 5382 // semantics. 5383 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5384 !I.hasUnsafeAlgebra()) { 5385 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5386 Hints->setPotentiallyUnsafe(); 5387 } 5388 5389 // Reduction instructions are allowed to have exit users. 5390 // All other instructions must not have external users. 5391 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5392 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5393 << "value cannot be used outside the loop"); 5394 return false; 5395 } 5396 5397 } // next instr. 5398 } 5399 5400 if (!Induction) { 5401 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5402 if (Inductions.empty()) { 5403 ORE->emit(createMissedAnalysis("NoInductionVariable") 5404 << "loop induction variable could not be identified"); 5405 return false; 5406 } 5407 } 5408 5409 // Now we know the widest induction type, check if our found induction 5410 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5411 // will create another. 5412 if (Induction && WidestIndTy != Induction->getType()) 5413 Induction = nullptr; 5414 5415 return true; 5416 } 5417 5418 void LoopVectorizationLegality::collectLoopScalars() { 5419 5420 // If an instruction is uniform after vectorization, it will remain scalar. 5421 Scalars.insert(Uniforms.begin(), Uniforms.end()); 5422 5423 // Collect the getelementptr instructions that will not be vectorized. A 5424 // getelementptr instruction is only vectorized if it is used for a legal 5425 // gather or scatter operation. 5426 for (auto *BB : TheLoop->blocks()) 5427 for (auto &I : *BB) { 5428 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5429 Scalars.insert(GEP); 5430 continue; 5431 } 5432 auto *Ptr = getPointerOperand(&I); 5433 if (!Ptr) 5434 continue; 5435 auto *GEP = getGEPInstruction(Ptr); 5436 if (GEP && isLegalGatherOrScatter(&I)) 5437 Scalars.erase(GEP); 5438 } 5439 5440 // An induction variable will remain scalar if all users of the induction 5441 // variable and induction variable update remain scalar. 5442 auto *Latch = TheLoop->getLoopLatch(); 5443 for (auto &Induction : *getInductionVars()) { 5444 auto *Ind = Induction.first; 5445 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5446 5447 // Determine if all users of the induction variable are scalar after 5448 // vectorization. 5449 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5450 auto *I = cast<Instruction>(U); 5451 return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I); 5452 }); 5453 if (!ScalarInd) 5454 continue; 5455 5456 // Determine if all users of the induction variable update instruction are 5457 // scalar after vectorization. 5458 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5459 auto *I = cast<Instruction>(U); 5460 return I == Ind || !TheLoop->contains(I) || Scalars.count(I); 5461 }); 5462 if (!ScalarIndUpdate) 5463 continue; 5464 5465 // The induction variable and its update instruction will remain scalar. 5466 Scalars.insert(Ind); 5467 Scalars.insert(IndUpdate); 5468 } 5469 } 5470 5471 bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) { 5472 if (isAccessInterleaved(I)) 5473 return true; 5474 if (auto *Ptr = getPointerOperand(I)) 5475 return isConsecutivePtr(Ptr); 5476 return false; 5477 } 5478 5479 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5480 if (!blockNeedsPredication(I->getParent())) 5481 return false; 5482 switch(I->getOpcode()) { 5483 default: 5484 break; 5485 case Instruction::Store: 5486 return !isMaskRequired(I); 5487 case Instruction::UDiv: 5488 case Instruction::SDiv: 5489 case Instruction::SRem: 5490 case Instruction::URem: 5491 return mayDivideByZero(*I); 5492 } 5493 return false; 5494 } 5495 5496 bool LoopVectorizationLegality::memoryInstructionMustBeScalarized( 5497 Instruction *I, unsigned VF) { 5498 5499 // If the memory instruction is in an interleaved group, it will be 5500 // vectorized and its pointer will remain uniform. 5501 if (isAccessInterleaved(I)) 5502 return false; 5503 5504 // Get and ensure we have a valid memory instruction. 5505 LoadInst *LI = dyn_cast<LoadInst>(I); 5506 StoreInst *SI = dyn_cast<StoreInst>(I); 5507 assert((LI || SI) && "Invalid memory instruction"); 5508 5509 // If the pointer operand is uniform (loop invariant), the memory instruction 5510 // will be scalarized. 5511 auto *Ptr = getPointerOperand(I); 5512 if (LI && isUniform(Ptr)) 5513 return true; 5514 5515 // If the pointer operand is non-consecutive and neither a gather nor a 5516 // scatter operation is legal, the memory instruction will be scalarized. 5517 if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I)) 5518 return true; 5519 5520 // If the instruction is a store located in a predicated block, it will be 5521 // scalarized. 5522 if (isScalarWithPredication(I)) 5523 return true; 5524 5525 // If the instruction's allocated size doesn't equal it's type size, it 5526 // requires padding and will be scalarized. 5527 auto &DL = I->getModule()->getDataLayout(); 5528 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5529 if (hasIrregularType(ScalarTy, DL, VF)) 5530 return true; 5531 5532 // Otherwise, the memory instruction should be vectorized if the rest of the 5533 // loop is. 5534 return false; 5535 } 5536 5537 void LoopVectorizationLegality::collectLoopUniforms() { 5538 // We now know that the loop is vectorizable! 5539 // Collect instructions inside the loop that will remain uniform after 5540 // vectorization. 5541 5542 // Global values, params and instructions outside of current loop are out of 5543 // scope. 5544 auto isOutOfScope = [&](Value *V) -> bool { 5545 Instruction *I = dyn_cast<Instruction>(V); 5546 return (!I || !TheLoop->contains(I)); 5547 }; 5548 5549 SetVector<Instruction *> Worklist; 5550 BasicBlock *Latch = TheLoop->getLoopLatch(); 5551 5552 // Start with the conditional branch. If the branch condition is an 5553 // instruction contained in the loop that is only used by the branch, it is 5554 // uniform. 5555 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5556 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5557 Worklist.insert(Cmp); 5558 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5559 } 5560 5561 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5562 // are pointers that are treated like consecutive pointers during 5563 // vectorization. The pointer operands of interleaved accesses are an 5564 // example. 5565 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5566 5567 // Holds pointer operands of instructions that are possibly non-uniform. 5568 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5569 5570 // Iterate over the instructions in the loop, and collect all 5571 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5572 // that a consecutive-like pointer operand will be scalarized, we collect it 5573 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5574 // getelementptr instruction can be used by both vectorized and scalarized 5575 // memory instructions. For example, if a loop loads and stores from the same 5576 // location, but the store is conditional, the store will be scalarized, and 5577 // the getelementptr won't remain uniform. 5578 for (auto *BB : TheLoop->blocks()) 5579 for (auto &I : *BB) { 5580 5581 // If there's no pointer operand, there's nothing to do. 5582 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5583 if (!Ptr) 5584 continue; 5585 5586 // True if all users of Ptr are memory accesses that have Ptr as their 5587 // pointer operand. 5588 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5589 return getPointerOperand(U) == Ptr; 5590 }); 5591 5592 // Ensure the memory instruction will not be scalarized, making its 5593 // pointer operand non-uniform. If the pointer operand is used by some 5594 // instruction other than a memory access, we're not going to check if 5595 // that other instruction may be scalarized here. Thus, conservatively 5596 // assume the pointer operand may be non-uniform. 5597 if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I)) 5598 PossibleNonUniformPtrs.insert(Ptr); 5599 5600 // If the memory instruction will be vectorized and its pointer operand 5601 // is consecutive-like, the pointer operand should remain uniform. 5602 else if (hasConsecutiveLikePtrOperand(&I)) 5603 ConsecutiveLikePtrs.insert(Ptr); 5604 } 5605 5606 // Add to the Worklist all consecutive and consecutive-like pointers that 5607 // aren't also identified as possibly non-uniform. 5608 for (auto *V : ConsecutiveLikePtrs) 5609 if (!PossibleNonUniformPtrs.count(V)) { 5610 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5611 Worklist.insert(V); 5612 } 5613 5614 // Expand Worklist in topological order: whenever a new instruction 5615 // is added , its users should be either already inside Worklist, or 5616 // out of scope. It ensures a uniform instruction will only be used 5617 // by uniform instructions or out of scope instructions. 5618 unsigned idx = 0; 5619 while (idx != Worklist.size()) { 5620 Instruction *I = Worklist[idx++]; 5621 5622 for (auto OV : I->operand_values()) { 5623 if (isOutOfScope(OV)) 5624 continue; 5625 auto *OI = cast<Instruction>(OV); 5626 if (all_of(OI->users(), [&](User *U) -> bool { 5627 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5628 })) { 5629 Worklist.insert(OI); 5630 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5631 } 5632 } 5633 } 5634 5635 // Returns true if Ptr is the pointer operand of a memory access instruction 5636 // I, and I is known to not require scalarization. 5637 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5638 return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I); 5639 }; 5640 5641 // For an instruction to be added into Worklist above, all its users inside 5642 // the loop should also be in Worklist. However, this condition cannot be 5643 // true for phi nodes that form a cyclic dependence. We must process phi 5644 // nodes separately. An induction variable will remain uniform if all users 5645 // of the induction variable and induction variable update remain uniform. 5646 // The code below handles both pointer and non-pointer induction variables. 5647 for (auto &Induction : Inductions) { 5648 auto *Ind = Induction.first; 5649 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5650 5651 // Determine if all users of the induction variable are uniform after 5652 // vectorization. 5653 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5654 auto *I = cast<Instruction>(U); 5655 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5656 isVectorizedMemAccessUse(I, Ind); 5657 }); 5658 if (!UniformInd) 5659 continue; 5660 5661 // Determine if all users of the induction variable update instruction are 5662 // uniform after vectorization. 5663 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5664 auto *I = cast<Instruction>(U); 5665 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5666 isVectorizedMemAccessUse(I, IndUpdate); 5667 }); 5668 if (!UniformIndUpdate) 5669 continue; 5670 5671 // The induction variable and its update instruction will remain uniform. 5672 Worklist.insert(Ind); 5673 Worklist.insert(IndUpdate); 5674 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5675 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5676 } 5677 5678 Uniforms.insert(Worklist.begin(), Worklist.end()); 5679 } 5680 5681 bool LoopVectorizationLegality::canVectorizeMemory() { 5682 LAI = &(*GetLAA)(*TheLoop); 5683 InterleaveInfo.setLAI(LAI); 5684 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5685 if (LAR) { 5686 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5687 "loop not vectorized: ", *LAR); 5688 ORE->emit(VR); 5689 } 5690 if (!LAI->canVectorizeMemory()) 5691 return false; 5692 5693 if (LAI->hasStoreToLoopInvariantAddress()) { 5694 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5695 << "write to a loop invariant address could not be vectorized"); 5696 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5697 return false; 5698 } 5699 5700 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5701 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5702 5703 return true; 5704 } 5705 5706 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5707 Value *In0 = const_cast<Value *>(V); 5708 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5709 if (!PN) 5710 return false; 5711 5712 return Inductions.count(PN); 5713 } 5714 5715 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5716 return FirstOrderRecurrences.count(Phi); 5717 } 5718 5719 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5720 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5721 } 5722 5723 bool LoopVectorizationLegality::blockCanBePredicated( 5724 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5725 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5726 5727 for (Instruction &I : *BB) { 5728 // Check that we don't have a constant expression that can trap as operand. 5729 for (Value *Operand : I.operands()) { 5730 if (auto *C = dyn_cast<Constant>(Operand)) 5731 if (C->canTrap()) 5732 return false; 5733 } 5734 // We might be able to hoist the load. 5735 if (I.mayReadFromMemory()) { 5736 auto *LI = dyn_cast<LoadInst>(&I); 5737 if (!LI) 5738 return false; 5739 if (!SafePtrs.count(LI->getPointerOperand())) { 5740 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5741 isLegalMaskedGather(LI->getType())) { 5742 MaskedOp.insert(LI); 5743 continue; 5744 } 5745 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5746 if (IsAnnotatedParallel) 5747 continue; 5748 return false; 5749 } 5750 } 5751 5752 if (I.mayWriteToMemory()) { 5753 auto *SI = dyn_cast<StoreInst>(&I); 5754 // We only support predication of stores in basic blocks with one 5755 // predecessor. 5756 if (!SI) 5757 return false; 5758 5759 // Build a masked store if it is legal for the target. 5760 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5761 SI->getPointerOperand()) || 5762 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5763 MaskedOp.insert(SI); 5764 continue; 5765 } 5766 5767 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5768 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5769 5770 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5771 !isSinglePredecessor) 5772 return false; 5773 } 5774 if (I.mayThrow()) 5775 return false; 5776 } 5777 5778 return true; 5779 } 5780 5781 void InterleavedAccessInfo::collectConstStrideAccesses( 5782 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5783 const ValueToValueMap &Strides) { 5784 5785 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5786 5787 // Since it's desired that the load/store instructions be maintained in 5788 // "program order" for the interleaved access analysis, we have to visit the 5789 // blocks in the loop in reverse postorder (i.e., in a topological order). 5790 // Such an ordering will ensure that any load/store that may be executed 5791 // before a second load/store will precede the second load/store in 5792 // AccessStrideInfo. 5793 LoopBlocksDFS DFS(TheLoop); 5794 DFS.perform(LI); 5795 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5796 for (auto &I : *BB) { 5797 auto *LI = dyn_cast<LoadInst>(&I); 5798 auto *SI = dyn_cast<StoreInst>(&I); 5799 if (!LI && !SI) 5800 continue; 5801 5802 Value *Ptr = getPointerOperand(&I); 5803 // We don't check wrapping here because we don't know yet if Ptr will be 5804 // part of a full group or a group with gaps. Checking wrapping for all 5805 // pointers (even those that end up in groups with no gaps) will be overly 5806 // conservative. For full groups, wrapping should be ok since if we would 5807 // wrap around the address space we would do a memory access at nullptr 5808 // even without the transformation. The wrapping checks are therefore 5809 // deferred until after we've formed the interleaved groups. 5810 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5811 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5812 5813 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5814 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5815 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5816 5817 // An alignment of 0 means target ABI alignment. 5818 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5819 if (!Align) 5820 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5821 5822 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5823 } 5824 } 5825 5826 // Analyze interleaved accesses and collect them into interleaved load and 5827 // store groups. 5828 // 5829 // When generating code for an interleaved load group, we effectively hoist all 5830 // loads in the group to the location of the first load in program order. When 5831 // generating code for an interleaved store group, we sink all stores to the 5832 // location of the last store. This code motion can change the order of load 5833 // and store instructions and may break dependences. 5834 // 5835 // The code generation strategy mentioned above ensures that we won't violate 5836 // any write-after-read (WAR) dependences. 5837 // 5838 // E.g., for the WAR dependence: a = A[i]; // (1) 5839 // A[i] = b; // (2) 5840 // 5841 // The store group of (2) is always inserted at or below (2), and the load 5842 // group of (1) is always inserted at or above (1). Thus, the instructions will 5843 // never be reordered. All other dependences are checked to ensure the 5844 // correctness of the instruction reordering. 5845 // 5846 // The algorithm visits all memory accesses in the loop in bottom-up program 5847 // order. Program order is established by traversing the blocks in the loop in 5848 // reverse postorder when collecting the accesses. 5849 // 5850 // We visit the memory accesses in bottom-up order because it can simplify the 5851 // construction of store groups in the presence of write-after-write (WAW) 5852 // dependences. 5853 // 5854 // E.g., for the WAW dependence: A[i] = a; // (1) 5855 // A[i] = b; // (2) 5856 // A[i + 1] = c; // (3) 5857 // 5858 // We will first create a store group with (3) and (2). (1) can't be added to 5859 // this group because it and (2) are dependent. However, (1) can be grouped 5860 // with other accesses that may precede it in program order. Note that a 5861 // bottom-up order does not imply that WAW dependences should not be checked. 5862 void InterleavedAccessInfo::analyzeInterleaving( 5863 const ValueToValueMap &Strides) { 5864 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5865 5866 // Holds all accesses with a constant stride. 5867 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5868 collectConstStrideAccesses(AccessStrideInfo, Strides); 5869 5870 if (AccessStrideInfo.empty()) 5871 return; 5872 5873 // Collect the dependences in the loop. 5874 collectDependences(); 5875 5876 // Holds all interleaved store groups temporarily. 5877 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5878 // Holds all interleaved load groups temporarily. 5879 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5880 5881 // Search in bottom-up program order for pairs of accesses (A and B) that can 5882 // form interleaved load or store groups. In the algorithm below, access A 5883 // precedes access B in program order. We initialize a group for B in the 5884 // outer loop of the algorithm, and then in the inner loop, we attempt to 5885 // insert each A into B's group if: 5886 // 5887 // 1. A and B have the same stride, 5888 // 2. A and B have the same memory object size, and 5889 // 3. A belongs in B's group according to its distance from B. 5890 // 5891 // Special care is taken to ensure group formation will not break any 5892 // dependences. 5893 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5894 BI != E; ++BI) { 5895 Instruction *B = BI->first; 5896 StrideDescriptor DesB = BI->second; 5897 5898 // Initialize a group for B if it has an allowable stride. Even if we don't 5899 // create a group for B, we continue with the bottom-up algorithm to ensure 5900 // we don't break any of B's dependences. 5901 InterleaveGroup *Group = nullptr; 5902 if (isStrided(DesB.Stride)) { 5903 Group = getInterleaveGroup(B); 5904 if (!Group) { 5905 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5906 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5907 } 5908 if (B->mayWriteToMemory()) 5909 StoreGroups.insert(Group); 5910 else 5911 LoadGroups.insert(Group); 5912 } 5913 5914 for (auto AI = std::next(BI); AI != E; ++AI) { 5915 Instruction *A = AI->first; 5916 StrideDescriptor DesA = AI->second; 5917 5918 // Our code motion strategy implies that we can't have dependences 5919 // between accesses in an interleaved group and other accesses located 5920 // between the first and last member of the group. Note that this also 5921 // means that a group can't have more than one member at a given offset. 5922 // The accesses in a group can have dependences with other accesses, but 5923 // we must ensure we don't extend the boundaries of the group such that 5924 // we encompass those dependent accesses. 5925 // 5926 // For example, assume we have the sequence of accesses shown below in a 5927 // stride-2 loop: 5928 // 5929 // (1, 2) is a group | A[i] = a; // (1) 5930 // | A[i-1] = b; // (2) | 5931 // A[i-3] = c; // (3) 5932 // A[i] = d; // (4) | (2, 4) is not a group 5933 // 5934 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5935 // but not with (4). If we did, the dependent access (3) would be within 5936 // the boundaries of the (2, 4) group. 5937 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5938 5939 // If a dependence exists and A is already in a group, we know that A 5940 // must be a store since A precedes B and WAR dependences are allowed. 5941 // Thus, A would be sunk below B. We release A's group to prevent this 5942 // illegal code motion. A will then be free to form another group with 5943 // instructions that precede it. 5944 if (isInterleaved(A)) { 5945 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5946 StoreGroups.remove(StoreGroup); 5947 releaseGroup(StoreGroup); 5948 } 5949 5950 // If a dependence exists and A is not already in a group (or it was 5951 // and we just released it), B might be hoisted above A (if B is a 5952 // load) or another store might be sunk below A (if B is a store). In 5953 // either case, we can't add additional instructions to B's group. B 5954 // will only form a group with instructions that it precedes. 5955 break; 5956 } 5957 5958 // At this point, we've checked for illegal code motion. If either A or B 5959 // isn't strided, there's nothing left to do. 5960 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5961 continue; 5962 5963 // Ignore A if it's already in a group or isn't the same kind of memory 5964 // operation as B. 5965 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5966 continue; 5967 5968 // Check rules 1 and 2. Ignore A if its stride or size is different from 5969 // that of B. 5970 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5971 continue; 5972 5973 // Calculate the distance from A to B. 5974 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5975 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5976 if (!DistToB) 5977 continue; 5978 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5979 5980 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5981 // size. 5982 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5983 continue; 5984 5985 // Ignore A if either A or B is in a predicated block. Although we 5986 // currently prevent group formation for predicated accesses, we may be 5987 // able to relax this limitation in the future once we handle more 5988 // complicated blocks. 5989 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5990 continue; 5991 5992 // The index of A is the index of B plus A's distance to B in multiples 5993 // of the size. 5994 int IndexA = 5995 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5996 5997 // Try to insert A into B's group. 5998 if (Group->insertMember(A, IndexA, DesA.Align)) { 5999 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6000 << " into the interleave group with" << *B << '\n'); 6001 InterleaveGroupMap[A] = Group; 6002 6003 // Set the first load in program order as the insert position. 6004 if (A->mayReadFromMemory()) 6005 Group->setInsertPos(A); 6006 } 6007 } // Iteration over A accesses. 6008 } // Iteration over B accesses. 6009 6010 // Remove interleaved store groups with gaps. 6011 for (InterleaveGroup *Group : StoreGroups) 6012 if (Group->getNumMembers() != Group->getFactor()) 6013 releaseGroup(Group); 6014 6015 // Remove interleaved groups with gaps (currently only loads) whose memory 6016 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6017 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6018 // not check wrapping (see documentation there). 6019 // FORNOW we use Assume=false; 6020 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6021 // of runtime SCEV assumptions checks (thereby potentially failing to 6022 // vectorize altogether). 6023 // Additional optional optimizations: 6024 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6025 // wrap then we can deduce that all pointers in the group don't wrap. 6026 // This means that we can forcefully peel the loop in order to only have to 6027 // check the first pointer for no-wrap. When we'll change to use Assume=true 6028 // we'll only need at most one runtime check per interleaved group. 6029 // 6030 for (InterleaveGroup *Group : LoadGroups) { 6031 6032 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6033 // load would wrap around the address space we would do a memory access at 6034 // nullptr even without the transformation. 6035 if (Group->getNumMembers() == Group->getFactor()) 6036 continue; 6037 6038 // Case 2: If first and last members of the group don't wrap this implies 6039 // that all the pointers in the group don't wrap. 6040 // So we check only group member 0 (which is always guaranteed to exist), 6041 // and group member Factor - 1; If the latter doesn't exist we rely on 6042 // peeling (if it is a non-reveresed accsess -- see Case 3). 6043 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6044 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6045 /*ShouldCheckWrap=*/true)) { 6046 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6047 "first group member potentially pointer-wrapping.\n"); 6048 releaseGroup(Group); 6049 continue; 6050 } 6051 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6052 if (LastMember) { 6053 Value *LastMemberPtr = getPointerOperand(LastMember); 6054 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6055 /*ShouldCheckWrap=*/true)) { 6056 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6057 "last group member potentially pointer-wrapping.\n"); 6058 releaseGroup(Group); 6059 } 6060 } 6061 else { 6062 // Case 3: A non-reversed interleaved load group with gaps: We need 6063 // to execute at least one scalar epilogue iteration. This will ensure 6064 // we don't speculatively access memory out-of-bounds. We only need 6065 // to look for a member at index factor - 1, since every group must have 6066 // a member at index zero. 6067 if (Group->isReverse()) { 6068 releaseGroup(Group); 6069 continue; 6070 } 6071 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6072 RequiresScalarEpilogue = true; 6073 } 6074 } 6075 } 6076 6077 LoopVectorizationCostModel::VectorizationFactor 6078 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 6079 // Width 1 means no vectorize 6080 VectorizationFactor Factor = {1U, 0U}; 6081 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 6082 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6083 << "runtime pointer checks needed. Enable vectorization of this " 6084 "loop with '#pragma clang loop vectorize(enable)' when " 6085 "compiling with -Os/-Oz"); 6086 DEBUG(dbgs() 6087 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6088 return Factor; 6089 } 6090 6091 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6092 ORE->emit(createMissedAnalysis("ConditionalStore") 6093 << "store that is conditionally executed prevents vectorization"); 6094 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6095 return Factor; 6096 } 6097 6098 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6099 unsigned SmallestType, WidestType; 6100 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6101 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6102 unsigned MaxSafeDepDist = -1U; 6103 6104 // Get the maximum safe dependence distance in bits computed by LAA. If the 6105 // loop contains any interleaved accesses, we divide the dependence distance 6106 // by the maximum interleave factor of all interleaved groups. Note that 6107 // although the division ensures correctness, this is a fairly conservative 6108 // computation because the maximum distance computed by LAA may not involve 6109 // any of the interleaved accesses. 6110 if (Legal->getMaxSafeDepDistBytes() != -1U) 6111 MaxSafeDepDist = 6112 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6113 6114 WidestRegister = 6115 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6116 unsigned MaxVectorSize = WidestRegister / WidestType; 6117 6118 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6119 << WidestType << " bits.\n"); 6120 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6121 << " bits.\n"); 6122 6123 if (MaxVectorSize == 0) { 6124 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6125 MaxVectorSize = 1; 6126 } 6127 6128 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6129 " into one vector!"); 6130 6131 unsigned VF = MaxVectorSize; 6132 if (MaximizeBandwidth && !OptForSize) { 6133 // Collect all viable vectorization factors. 6134 SmallVector<unsigned, 8> VFs; 6135 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6136 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6137 VFs.push_back(VS); 6138 6139 // For each VF calculate its register usage. 6140 auto RUs = calculateRegisterUsage(VFs); 6141 6142 // Select the largest VF which doesn't require more registers than existing 6143 // ones. 6144 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6145 for (int i = RUs.size() - 1; i >= 0; --i) { 6146 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6147 VF = VFs[i]; 6148 break; 6149 } 6150 } 6151 } 6152 6153 // If we optimize the program for size, avoid creating the tail loop. 6154 if (OptForSize) { 6155 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6156 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6157 6158 // If we don't know the precise trip count, don't try to vectorize. 6159 if (TC < 2) { 6160 ORE->emit( 6161 createMissedAnalysis("UnknownLoopCountComplexCFG") 6162 << "unable to calculate the loop count due to complex control flow"); 6163 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6164 return Factor; 6165 } 6166 6167 // Find the maximum SIMD width that can fit within the trip count. 6168 VF = TC % MaxVectorSize; 6169 6170 if (VF == 0) 6171 VF = MaxVectorSize; 6172 else { 6173 // If the trip count that we found modulo the vectorization factor is not 6174 // zero then we require a tail. 6175 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6176 << "cannot optimize for size and vectorize at the " 6177 "same time. Enable vectorization of this loop " 6178 "with '#pragma clang loop vectorize(enable)' " 6179 "when compiling with -Os/-Oz"); 6180 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6181 return Factor; 6182 } 6183 } 6184 6185 int UserVF = Hints->getWidth(); 6186 if (UserVF != 0) { 6187 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6188 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6189 6190 Factor.Width = UserVF; 6191 collectInstsToScalarize(UserVF); 6192 return Factor; 6193 } 6194 6195 float Cost = expectedCost(1).first; 6196 #ifndef NDEBUG 6197 const float ScalarCost = Cost; 6198 #endif /* NDEBUG */ 6199 unsigned Width = 1; 6200 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6201 6202 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6203 // Ignore scalar width, because the user explicitly wants vectorization. 6204 if (ForceVectorization && VF > 1) { 6205 Width = 2; 6206 Cost = expectedCost(Width).first / (float)Width; 6207 } 6208 6209 for (unsigned i = 2; i <= VF; i *= 2) { 6210 // Notice that the vector loop needs to be executed less times, so 6211 // we need to divide the cost of the vector loops by the width of 6212 // the vector elements. 6213 VectorizationCostTy C = expectedCost(i); 6214 float VectorCost = C.first / (float)i; 6215 DEBUG(dbgs() << "LV: Vector loop of width " << i 6216 << " costs: " << (int)VectorCost << ".\n"); 6217 if (!C.second && !ForceVectorization) { 6218 DEBUG( 6219 dbgs() << "LV: Not considering vector loop of width " << i 6220 << " because it will not generate any vector instructions.\n"); 6221 continue; 6222 } 6223 if (VectorCost < Cost) { 6224 Cost = VectorCost; 6225 Width = i; 6226 } 6227 } 6228 6229 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6230 << "LV: Vectorization seems to be not beneficial, " 6231 << "but was forced by a user.\n"); 6232 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6233 Factor.Width = Width; 6234 Factor.Cost = Width * Cost; 6235 return Factor; 6236 } 6237 6238 std::pair<unsigned, unsigned> 6239 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6240 unsigned MinWidth = -1U; 6241 unsigned MaxWidth = 8; 6242 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6243 6244 // For each block. 6245 for (BasicBlock *BB : TheLoop->blocks()) { 6246 // For each instruction in the loop. 6247 for (Instruction &I : *BB) { 6248 Type *T = I.getType(); 6249 6250 // Skip ignored values. 6251 if (ValuesToIgnore.count(&I)) 6252 continue; 6253 6254 // Only examine Loads, Stores and PHINodes. 6255 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6256 continue; 6257 6258 // Examine PHI nodes that are reduction variables. Update the type to 6259 // account for the recurrence type. 6260 if (auto *PN = dyn_cast<PHINode>(&I)) { 6261 if (!Legal->isReductionVariable(PN)) 6262 continue; 6263 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6264 T = RdxDesc.getRecurrenceType(); 6265 } 6266 6267 // Examine the stored values. 6268 if (auto *ST = dyn_cast<StoreInst>(&I)) 6269 T = ST->getValueOperand()->getType(); 6270 6271 // Ignore loaded pointer types and stored pointer types that are not 6272 // consecutive. However, we do want to take consecutive stores/loads of 6273 // pointer vectors into account. 6274 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 6275 continue; 6276 6277 MinWidth = std::min(MinWidth, 6278 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6279 MaxWidth = std::max(MaxWidth, 6280 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6281 } 6282 } 6283 6284 return {MinWidth, MaxWidth}; 6285 } 6286 6287 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6288 unsigned VF, 6289 unsigned LoopCost) { 6290 6291 // -- The interleave heuristics -- 6292 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6293 // There are many micro-architectural considerations that we can't predict 6294 // at this level. For example, frontend pressure (on decode or fetch) due to 6295 // code size, or the number and capabilities of the execution ports. 6296 // 6297 // We use the following heuristics to select the interleave count: 6298 // 1. If the code has reductions, then we interleave to break the cross 6299 // iteration dependency. 6300 // 2. If the loop is really small, then we interleave to reduce the loop 6301 // overhead. 6302 // 3. We don't interleave if we think that we will spill registers to memory 6303 // due to the increased register pressure. 6304 6305 // When we optimize for size, we don't interleave. 6306 if (OptForSize) 6307 return 1; 6308 6309 // We used the distance for the interleave count. 6310 if (Legal->getMaxSafeDepDistBytes() != -1U) 6311 return 1; 6312 6313 // Do not interleave loops with a relatively small trip count. 6314 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6315 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6316 return 1; 6317 6318 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6319 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6320 << " registers\n"); 6321 6322 if (VF == 1) { 6323 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6324 TargetNumRegisters = ForceTargetNumScalarRegs; 6325 } else { 6326 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6327 TargetNumRegisters = ForceTargetNumVectorRegs; 6328 } 6329 6330 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6331 // We divide by these constants so assume that we have at least one 6332 // instruction that uses at least one register. 6333 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6334 R.NumInstructions = std::max(R.NumInstructions, 1U); 6335 6336 // We calculate the interleave count using the following formula. 6337 // Subtract the number of loop invariants from the number of available 6338 // registers. These registers are used by all of the interleaved instances. 6339 // Next, divide the remaining registers by the number of registers that is 6340 // required by the loop, in order to estimate how many parallel instances 6341 // fit without causing spills. All of this is rounded down if necessary to be 6342 // a power of two. We want power of two interleave count to simplify any 6343 // addressing operations or alignment considerations. 6344 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6345 R.MaxLocalUsers); 6346 6347 // Don't count the induction variable as interleaved. 6348 if (EnableIndVarRegisterHeur) 6349 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6350 std::max(1U, (R.MaxLocalUsers - 1))); 6351 6352 // Clamp the interleave ranges to reasonable counts. 6353 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6354 6355 // Check if the user has overridden the max. 6356 if (VF == 1) { 6357 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6358 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6359 } else { 6360 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6361 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6362 } 6363 6364 // If we did not calculate the cost for VF (because the user selected the VF) 6365 // then we calculate the cost of VF here. 6366 if (LoopCost == 0) 6367 LoopCost = expectedCost(VF).first; 6368 6369 // Clamp the calculated IC to be between the 1 and the max interleave count 6370 // that the target allows. 6371 if (IC > MaxInterleaveCount) 6372 IC = MaxInterleaveCount; 6373 else if (IC < 1) 6374 IC = 1; 6375 6376 // Interleave if we vectorized this loop and there is a reduction that could 6377 // benefit from interleaving. 6378 if (VF > 1 && Legal->getReductionVars()->size()) { 6379 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6380 return IC; 6381 } 6382 6383 // Note that if we've already vectorized the loop we will have done the 6384 // runtime check and so interleaving won't require further checks. 6385 bool InterleavingRequiresRuntimePointerCheck = 6386 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6387 6388 // We want to interleave small loops in order to reduce the loop overhead and 6389 // potentially expose ILP opportunities. 6390 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6391 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6392 // We assume that the cost overhead is 1 and we use the cost model 6393 // to estimate the cost of the loop and interleave until the cost of the 6394 // loop overhead is about 5% of the cost of the loop. 6395 unsigned SmallIC = 6396 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6397 6398 // Interleave until store/load ports (estimated by max interleave count) are 6399 // saturated. 6400 unsigned NumStores = Legal->getNumStores(); 6401 unsigned NumLoads = Legal->getNumLoads(); 6402 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6403 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6404 6405 // If we have a scalar reduction (vector reductions are already dealt with 6406 // by this point), we can increase the critical path length if the loop 6407 // we're interleaving is inside another loop. Limit, by default to 2, so the 6408 // critical path only gets increased by one reduction operation. 6409 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6410 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6411 SmallIC = std::min(SmallIC, F); 6412 StoresIC = std::min(StoresIC, F); 6413 LoadsIC = std::min(LoadsIC, F); 6414 } 6415 6416 if (EnableLoadStoreRuntimeInterleave && 6417 std::max(StoresIC, LoadsIC) > SmallIC) { 6418 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6419 return std::max(StoresIC, LoadsIC); 6420 } 6421 6422 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6423 return SmallIC; 6424 } 6425 6426 // Interleave if this is a large loop (small loops are already dealt with by 6427 // this point) that could benefit from interleaving. 6428 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6429 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6430 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6431 return IC; 6432 } 6433 6434 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6435 return 1; 6436 } 6437 6438 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6439 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6440 // This function calculates the register usage by measuring the highest number 6441 // of values that are alive at a single location. Obviously, this is a very 6442 // rough estimation. We scan the loop in a topological order in order and 6443 // assign a number to each instruction. We use RPO to ensure that defs are 6444 // met before their users. We assume that each instruction that has in-loop 6445 // users starts an interval. We record every time that an in-loop value is 6446 // used, so we have a list of the first and last occurrences of each 6447 // instruction. Next, we transpose this data structure into a multi map that 6448 // holds the list of intervals that *end* at a specific location. This multi 6449 // map allows us to perform a linear search. We scan the instructions linearly 6450 // and record each time that a new interval starts, by placing it in a set. 6451 // If we find this value in the multi-map then we remove it from the set. 6452 // The max register usage is the maximum size of the set. 6453 // We also search for instructions that are defined outside the loop, but are 6454 // used inside the loop. We need this number separately from the max-interval 6455 // usage number because when we unroll, loop-invariant values do not take 6456 // more register. 6457 LoopBlocksDFS DFS(TheLoop); 6458 DFS.perform(LI); 6459 6460 RegisterUsage RU; 6461 RU.NumInstructions = 0; 6462 6463 // Each 'key' in the map opens a new interval. The values 6464 // of the map are the index of the 'last seen' usage of the 6465 // instruction that is the key. 6466 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6467 // Maps instruction to its index. 6468 DenseMap<unsigned, Instruction *> IdxToInstr; 6469 // Marks the end of each interval. 6470 IntervalMap EndPoint; 6471 // Saves the list of instruction indices that are used in the loop. 6472 SmallSet<Instruction *, 8> Ends; 6473 // Saves the list of values that are used in the loop but are 6474 // defined outside the loop, such as arguments and constants. 6475 SmallPtrSet<Value *, 8> LoopInvariants; 6476 6477 unsigned Index = 0; 6478 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6479 RU.NumInstructions += BB->size(); 6480 for (Instruction &I : *BB) { 6481 IdxToInstr[Index++] = &I; 6482 6483 // Save the end location of each USE. 6484 for (Value *U : I.operands()) { 6485 auto *Instr = dyn_cast<Instruction>(U); 6486 6487 // Ignore non-instruction values such as arguments, constants, etc. 6488 if (!Instr) 6489 continue; 6490 6491 // If this instruction is outside the loop then record it and continue. 6492 if (!TheLoop->contains(Instr)) { 6493 LoopInvariants.insert(Instr); 6494 continue; 6495 } 6496 6497 // Overwrite previous end points. 6498 EndPoint[Instr] = Index; 6499 Ends.insert(Instr); 6500 } 6501 } 6502 } 6503 6504 // Saves the list of intervals that end with the index in 'key'. 6505 typedef SmallVector<Instruction *, 2> InstrList; 6506 DenseMap<unsigned, InstrList> TransposeEnds; 6507 6508 // Transpose the EndPoints to a list of values that end at each index. 6509 for (auto &Interval : EndPoint) 6510 TransposeEnds[Interval.second].push_back(Interval.first); 6511 6512 SmallSet<Instruction *, 8> OpenIntervals; 6513 6514 // Get the size of the widest register. 6515 unsigned MaxSafeDepDist = -1U; 6516 if (Legal->getMaxSafeDepDistBytes() != -1U) 6517 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6518 unsigned WidestRegister = 6519 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6520 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6521 6522 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6523 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6524 6525 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6526 6527 // A lambda that gets the register usage for the given type and VF. 6528 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6529 if (Ty->isTokenTy()) 6530 return 0U; 6531 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6532 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6533 }; 6534 6535 for (unsigned int i = 0; i < Index; ++i) { 6536 Instruction *I = IdxToInstr[i]; 6537 6538 // Remove all of the instructions that end at this location. 6539 InstrList &List = TransposeEnds[i]; 6540 for (Instruction *ToRemove : List) 6541 OpenIntervals.erase(ToRemove); 6542 6543 // Ignore instructions that are never used within the loop. 6544 if (!Ends.count(I)) 6545 continue; 6546 6547 // Skip ignored values. 6548 if (ValuesToIgnore.count(I)) 6549 continue; 6550 6551 // For each VF find the maximum usage of registers. 6552 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6553 if (VFs[j] == 1) { 6554 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6555 continue; 6556 } 6557 6558 // Count the number of live intervals. 6559 unsigned RegUsage = 0; 6560 for (auto Inst : OpenIntervals) { 6561 // Skip ignored values for VF > 1. 6562 if (VecValuesToIgnore.count(Inst)) 6563 continue; 6564 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6565 } 6566 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6567 } 6568 6569 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6570 << OpenIntervals.size() << '\n'); 6571 6572 // Add the current instruction to the list of open intervals. 6573 OpenIntervals.insert(I); 6574 } 6575 6576 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6577 unsigned Invariant = 0; 6578 if (VFs[i] == 1) 6579 Invariant = LoopInvariants.size(); 6580 else { 6581 for (auto Inst : LoopInvariants) 6582 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6583 } 6584 6585 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6586 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6587 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6588 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6589 6590 RU.LoopInvariantRegs = Invariant; 6591 RU.MaxLocalUsers = MaxUsages[i]; 6592 RUs[i] = RU; 6593 } 6594 6595 return RUs; 6596 } 6597 6598 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6599 6600 // If we aren't vectorizing the loop, or if we've already collected the 6601 // instructions to scalarize, there's nothing to do. Collection may already 6602 // have occurred if we have a user-selected VF and are now computing the 6603 // expected cost for interleaving. 6604 if (VF < 2 || InstsToScalarize.count(VF)) 6605 return; 6606 6607 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6608 // not profitable to scalarize any instructions, the presence of VF in the 6609 // map will indicate that we've analyzed it already. 6610 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6611 6612 // Find all the instructions that are scalar with predication in the loop and 6613 // determine if it would be better to not if-convert the blocks they are in. 6614 // If so, we also record the instructions to scalarize. 6615 for (BasicBlock *BB : TheLoop->blocks()) { 6616 if (!Legal->blockNeedsPredication(BB)) 6617 continue; 6618 for (Instruction &I : *BB) 6619 if (Legal->isScalarWithPredication(&I)) { 6620 ScalarCostsTy ScalarCosts; 6621 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6622 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6623 } 6624 } 6625 } 6626 6627 int LoopVectorizationCostModel::computePredInstDiscount( 6628 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6629 unsigned VF) { 6630 6631 assert(!Legal->isUniformAfterVectorization(PredInst) && 6632 "Instruction marked uniform-after-vectorization will be predicated"); 6633 6634 // Initialize the discount to zero, meaning that the scalar version and the 6635 // vector version cost the same. 6636 int Discount = 0; 6637 6638 // Holds instructions to analyze. The instructions we visit are mapped in 6639 // ScalarCosts. Those instructions are the ones that would be scalarized if 6640 // we find that the scalar version costs less. 6641 SmallVector<Instruction *, 8> Worklist; 6642 6643 // Returns true if the given instruction can be scalarized. 6644 auto canBeScalarized = [&](Instruction *I) -> bool { 6645 6646 // We only attempt to scalarize instructions forming a single-use chain 6647 // from the original predicated block that would otherwise be vectorized. 6648 // Although not strictly necessary, we give up on instructions we know will 6649 // already be scalar to avoid traversing chains that are unlikely to be 6650 // beneficial. 6651 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6652 Legal->isScalarAfterVectorization(I)) 6653 return false; 6654 6655 // If the instruction is scalar with predication, it will be analyzed 6656 // separately. We ignore it within the context of PredInst. 6657 if (Legal->isScalarWithPredication(I)) 6658 return false; 6659 6660 // If any of the instruction's operands are uniform after vectorization, 6661 // the instruction cannot be scalarized. This prevents, for example, a 6662 // masked load from being scalarized. 6663 // 6664 // We assume we will only emit a value for lane zero of an instruction 6665 // marked uniform after vectorization, rather than VF identical values. 6666 // Thus, if we scalarize an instruction that uses a uniform, we would 6667 // create uses of values corresponding to the lanes we aren't emitting code 6668 // for. This behavior can be changed by allowing getScalarValue to clone 6669 // the lane zero values for uniforms rather than asserting. 6670 for (Use &U : I->operands()) 6671 if (auto *J = dyn_cast<Instruction>(U.get())) 6672 if (Legal->isUniformAfterVectorization(J)) 6673 return false; 6674 6675 // Otherwise, we can scalarize the instruction. 6676 return true; 6677 }; 6678 6679 // Returns true if an operand that cannot be scalarized must be extracted 6680 // from a vector. We will account for this scalarization overhead below. Note 6681 // that the non-void predicated instructions are placed in their own blocks, 6682 // and their return values are inserted into vectors. Thus, an extract would 6683 // still be required. 6684 auto needsExtract = [&](Instruction *I) -> bool { 6685 return TheLoop->contains(I) && !Legal->isScalarAfterVectorization(I); 6686 }; 6687 6688 // Compute the expected cost discount from scalarizing the entire expression 6689 // feeding the predicated instruction. We currently only consider expressions 6690 // that are single-use instruction chains. 6691 Worklist.push_back(PredInst); 6692 while (!Worklist.empty()) { 6693 Instruction *I = Worklist.pop_back_val(); 6694 6695 // If we've already analyzed the instruction, there's nothing to do. 6696 if (ScalarCosts.count(I)) 6697 continue; 6698 6699 // Compute the cost of the vector instruction. Note that this cost already 6700 // includes the scalarization overhead of the predicated instruction. 6701 unsigned VectorCost = getInstructionCost(I, VF).first; 6702 6703 // Compute the cost of the scalarized instruction. This cost is the cost of 6704 // the instruction as if it wasn't if-converted and instead remained in the 6705 // predicated block. We will scale this cost by block probability after 6706 // computing the scalarization overhead. 6707 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6708 6709 // Compute the scalarization overhead of needed insertelement instructions 6710 // and phi nodes. 6711 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6712 ScalarCost += getScalarizationOverhead(ToVectorTy(I->getType(), VF), true, 6713 false, TTI); 6714 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6715 } 6716 6717 // Compute the scalarization overhead of needed extractelement 6718 // instructions. For each of the instruction's operands, if the operand can 6719 // be scalarized, add it to the worklist; otherwise, account for the 6720 // overhead. 6721 for (Use &U : I->operands()) 6722 if (auto *J = dyn_cast<Instruction>(U.get())) { 6723 assert(VectorType::isValidElementType(J->getType()) && 6724 "Instruction has non-scalar type"); 6725 if (canBeScalarized(J)) 6726 Worklist.push_back(J); 6727 else if (needsExtract(J)) 6728 ScalarCost += getScalarizationOverhead(ToVectorTy(J->getType(), VF), 6729 false, true, TTI); 6730 } 6731 6732 // Scale the total scalar cost by block probability. 6733 ScalarCost /= getReciprocalPredBlockProb(); 6734 6735 // Compute the discount. A non-negative discount means the vector version 6736 // of the instruction costs more, and scalarizing would be beneficial. 6737 Discount += VectorCost - ScalarCost; 6738 ScalarCosts[I] = ScalarCost; 6739 } 6740 6741 return Discount; 6742 } 6743 6744 LoopVectorizationCostModel::VectorizationCostTy 6745 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6746 VectorizationCostTy Cost; 6747 6748 // Collect the instructions (and their associated costs) that will be more 6749 // profitable to scalarize. 6750 collectInstsToScalarize(VF); 6751 6752 // For each block. 6753 for (BasicBlock *BB : TheLoop->blocks()) { 6754 VectorizationCostTy BlockCost; 6755 6756 // For each instruction in the old loop. 6757 for (Instruction &I : *BB) { 6758 // Skip dbg intrinsics. 6759 if (isa<DbgInfoIntrinsic>(I)) 6760 continue; 6761 6762 // Skip ignored values. 6763 if (ValuesToIgnore.count(&I)) 6764 continue; 6765 6766 VectorizationCostTy C = getInstructionCost(&I, VF); 6767 6768 // Check if we should override the cost. 6769 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6770 C.first = ForceTargetInstructionCost; 6771 6772 BlockCost.first += C.first; 6773 BlockCost.second |= C.second; 6774 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6775 << VF << " For instruction: " << I << '\n'); 6776 } 6777 6778 // If we are vectorizing a predicated block, it will have been 6779 // if-converted. This means that the block's instructions (aside from 6780 // stores and instructions that may divide by zero) will now be 6781 // unconditionally executed. For the scalar case, we may not always execute 6782 // the predicated block. Thus, scale the block's cost by the probability of 6783 // executing it. 6784 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6785 BlockCost.first /= getReciprocalPredBlockProb(); 6786 6787 Cost.first += BlockCost.first; 6788 Cost.second |= BlockCost.second; 6789 } 6790 6791 return Cost; 6792 } 6793 6794 /// \brief Gets Address Access SCEV after verifying that the access pattern 6795 /// is loop invariant except the induction variable dependence. 6796 /// 6797 /// This SCEV can be sent to the Target in order to estimate the address 6798 /// calculation cost. 6799 static const SCEV *getAddressAccessSCEV( 6800 Value *Ptr, 6801 LoopVectorizationLegality *Legal, 6802 ScalarEvolution *SE, 6803 const Loop *TheLoop) { 6804 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6805 if (!Gep) 6806 return nullptr; 6807 6808 // We are looking for a gep with all loop invariant indices except for one 6809 // which should be an induction variable. 6810 unsigned NumOperands = Gep->getNumOperands(); 6811 for (unsigned i = 1; i < NumOperands; ++i) { 6812 Value *Opd = Gep->getOperand(i); 6813 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6814 !Legal->isInductionVariable(Opd)) 6815 return nullptr; 6816 } 6817 6818 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6819 return SE->getSCEV(Ptr); 6820 } 6821 6822 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6823 return Legal->hasStride(I->getOperand(0)) || 6824 Legal->hasStride(I->getOperand(1)); 6825 } 6826 6827 LoopVectorizationCostModel::VectorizationCostTy 6828 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6829 // If we know that this instruction will remain uniform, check the cost of 6830 // the scalar version. 6831 if (Legal->isUniformAfterVectorization(I)) 6832 VF = 1; 6833 6834 if (VF > 1 && isProfitableToScalarize(I, VF)) 6835 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6836 6837 Type *VectorTy; 6838 unsigned C = getInstructionCost(I, VF, VectorTy); 6839 6840 bool TypeNotScalarized = 6841 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6842 return VectorizationCostTy(C, TypeNotScalarized); 6843 } 6844 6845 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6846 unsigned VF, 6847 Type *&VectorTy) { 6848 Type *RetTy = I->getType(); 6849 if (canTruncateToMinimalBitwidth(I, VF)) 6850 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6851 VectorTy = ToVectorTy(RetTy, VF); 6852 auto SE = PSE.getSE(); 6853 6854 // TODO: We need to estimate the cost of intrinsic calls. 6855 switch (I->getOpcode()) { 6856 case Instruction::GetElementPtr: 6857 // We mark this instruction as zero-cost because the cost of GEPs in 6858 // vectorized code depends on whether the corresponding memory instruction 6859 // is scalarized or not. Therefore, we handle GEPs with the memory 6860 // instruction cost. 6861 return 0; 6862 case Instruction::Br: { 6863 return TTI.getCFInstrCost(I->getOpcode()); 6864 } 6865 case Instruction::PHI: { 6866 auto *Phi = cast<PHINode>(I); 6867 6868 // First-order recurrences are replaced by vector shuffles inside the loop. 6869 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6870 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6871 VectorTy, VF - 1, VectorTy); 6872 6873 // TODO: IF-converted IFs become selects. 6874 return 0; 6875 } 6876 case Instruction::UDiv: 6877 case Instruction::SDiv: 6878 case Instruction::URem: 6879 case Instruction::SRem: 6880 // If we have a predicated instruction, it may not be executed for each 6881 // vector lane. Get the scalarization cost and scale this amount by the 6882 // probability of executing the predicated block. If the instruction is not 6883 // predicated, we fall through to the next case. 6884 if (VF > 1 && Legal->isScalarWithPredication(I)) { 6885 unsigned Cost = 0; 6886 6887 // These instructions have a non-void type, so account for the phi nodes 6888 // that we will create. This cost is likely to be zero. The phi node 6889 // cost, if any, should be scaled by the block probability because it 6890 // models a copy at the end of each predicated block. 6891 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6892 6893 // The cost of the non-predicated instruction. 6894 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6895 6896 // The cost of insertelement and extractelement instructions needed for 6897 // scalarization. 6898 Cost += getScalarizationOverhead(I, VF, TTI); 6899 6900 // Scale the cost by the probability of executing the predicated blocks. 6901 // This assumes the predicated block for each vector lane is equally 6902 // likely. 6903 return Cost / getReciprocalPredBlockProb(); 6904 } 6905 case Instruction::Add: 6906 case Instruction::FAdd: 6907 case Instruction::Sub: 6908 case Instruction::FSub: 6909 case Instruction::Mul: 6910 case Instruction::FMul: 6911 case Instruction::FDiv: 6912 case Instruction::FRem: 6913 case Instruction::Shl: 6914 case Instruction::LShr: 6915 case Instruction::AShr: 6916 case Instruction::And: 6917 case Instruction::Or: 6918 case Instruction::Xor: { 6919 // Since we will replace the stride by 1 the multiplication should go away. 6920 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6921 return 0; 6922 // Certain instructions can be cheaper to vectorize if they have a constant 6923 // second vector operand. One example of this are shifts on x86. 6924 TargetTransformInfo::OperandValueKind Op1VK = 6925 TargetTransformInfo::OK_AnyValue; 6926 TargetTransformInfo::OperandValueKind Op2VK = 6927 TargetTransformInfo::OK_AnyValue; 6928 TargetTransformInfo::OperandValueProperties Op1VP = 6929 TargetTransformInfo::OP_None; 6930 TargetTransformInfo::OperandValueProperties Op2VP = 6931 TargetTransformInfo::OP_None; 6932 Value *Op2 = I->getOperand(1); 6933 6934 // Check for a splat or for a non uniform vector of constants. 6935 if (isa<ConstantInt>(Op2)) { 6936 ConstantInt *CInt = cast<ConstantInt>(Op2); 6937 if (CInt && CInt->getValue().isPowerOf2()) 6938 Op2VP = TargetTransformInfo::OP_PowerOf2; 6939 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6940 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6941 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6942 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6943 if (SplatValue) { 6944 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6945 if (CInt && CInt->getValue().isPowerOf2()) 6946 Op2VP = TargetTransformInfo::OP_PowerOf2; 6947 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6948 } 6949 } else if (Legal->isUniform(Op2)) { 6950 Op2VK = TargetTransformInfo::OK_UniformValue; 6951 } 6952 6953 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6954 Op1VP, Op2VP); 6955 } 6956 case Instruction::Select: { 6957 SelectInst *SI = cast<SelectInst>(I); 6958 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6959 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6960 Type *CondTy = SI->getCondition()->getType(); 6961 if (!ScalarCond) 6962 CondTy = VectorType::get(CondTy, VF); 6963 6964 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6965 } 6966 case Instruction::ICmp: 6967 case Instruction::FCmp: { 6968 Type *ValTy = I->getOperand(0)->getType(); 6969 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6970 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6971 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6972 VectorTy = ToVectorTy(ValTy, VF); 6973 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6974 } 6975 case Instruction::Store: 6976 case Instruction::Load: { 6977 StoreInst *SI = dyn_cast<StoreInst>(I); 6978 LoadInst *LI = dyn_cast<LoadInst>(I); 6979 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6980 VectorTy = ToVectorTy(ValTy, VF); 6981 6982 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6983 unsigned AS = 6984 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6985 Value *Ptr = getPointerOperand(I); 6986 // We add the cost of address computation here instead of with the gep 6987 // instruction because only here we know whether the operation is 6988 // scalarized. 6989 if (VF == 1) 6990 return TTI.getAddressComputationCost(VectorTy) + 6991 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6992 6993 if (LI && Legal->isUniform(Ptr)) { 6994 // Scalar load + broadcast 6995 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6996 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6997 Alignment, AS); 6998 return Cost + 6999 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 7000 } 7001 7002 // For an interleaved access, calculate the total cost of the whole 7003 // interleave group. 7004 if (Legal->isAccessInterleaved(I)) { 7005 auto Group = Legal->getInterleavedAccessGroup(I); 7006 assert(Group && "Fail to get an interleaved access group."); 7007 7008 // Only calculate the cost once at the insert position. 7009 if (Group->getInsertPos() != I) 7010 return 0; 7011 7012 unsigned InterleaveFactor = Group->getFactor(); 7013 Type *WideVecTy = 7014 VectorType::get(VectorTy->getVectorElementType(), 7015 VectorTy->getVectorNumElements() * InterleaveFactor); 7016 7017 // Holds the indices of existing members in an interleaved load group. 7018 // An interleaved store group doesn't need this as it doesn't allow gaps. 7019 SmallVector<unsigned, 4> Indices; 7020 if (LI) { 7021 for (unsigned i = 0; i < InterleaveFactor; i++) 7022 if (Group->getMember(i)) 7023 Indices.push_back(i); 7024 } 7025 7026 // Calculate the cost of the whole interleaved group. 7027 unsigned Cost = TTI.getInterleavedMemoryOpCost( 7028 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 7029 Group->getAlignment(), AS); 7030 7031 if (Group->isReverse()) 7032 Cost += 7033 Group->getNumMembers() * 7034 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7035 7036 // FIXME: The interleaved load group with a huge gap could be even more 7037 // expensive than scalar operations. Then we could ignore such group and 7038 // use scalar operations instead. 7039 return Cost; 7040 } 7041 7042 // Check if the memory instruction will be scalarized. 7043 if (Legal->memoryInstructionMustBeScalarized(I, VF)) { 7044 unsigned Cost = 0; 7045 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7046 7047 // Figure out whether the access is strided and get the stride value 7048 // if it's known in compile time 7049 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7050 7051 // Get the cost of the scalar memory instruction and address computation. 7052 Cost += VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7053 Cost += VF * 7054 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 7055 Alignment, AS); 7056 7057 // Get the overhead of the extractelement and insertelement instructions 7058 // we might create due to scalarization. 7059 Cost += getScalarizationOverhead(I, VF, TTI); 7060 7061 // If we have a predicated store, it may not be executed for each vector 7062 // lane. Scale the cost by the probability of executing the predicated 7063 // block. 7064 if (Legal->isScalarWithPredication(I)) 7065 Cost /= getReciprocalPredBlockProb(); 7066 7067 return Cost; 7068 } 7069 7070 // Determine if the pointer operand of the access is either consecutive or 7071 // reverse consecutive. 7072 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7073 bool Reverse = ConsecutiveStride < 0; 7074 7075 // Determine if either a gather or scatter operation is legal. 7076 bool UseGatherOrScatter = 7077 !ConsecutiveStride && Legal->isLegalGatherOrScatter(I); 7078 7079 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 7080 if (UseGatherOrScatter) { 7081 assert(ConsecutiveStride == 0 && 7082 "Gather/Scatter are not used for consecutive stride"); 7083 return Cost + 7084 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7085 Legal->isMaskRequired(I), Alignment); 7086 } 7087 // Wide load/stores. 7088 if (Legal->isMaskRequired(I)) 7089 Cost += 7090 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7091 else 7092 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7093 7094 if (Reverse) 7095 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7096 return Cost; 7097 } 7098 case Instruction::ZExt: 7099 case Instruction::SExt: 7100 case Instruction::FPToUI: 7101 case Instruction::FPToSI: 7102 case Instruction::FPExt: 7103 case Instruction::PtrToInt: 7104 case Instruction::IntToPtr: 7105 case Instruction::SIToFP: 7106 case Instruction::UIToFP: 7107 case Instruction::Trunc: 7108 case Instruction::FPTrunc: 7109 case Instruction::BitCast: { 7110 // We optimize the truncation of induction variable. 7111 // The cost of these is the same as the scalar operation. 7112 if (I->getOpcode() == Instruction::Trunc && 7113 Legal->isInductionVariable(I->getOperand(0))) 7114 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 7115 I->getOperand(0)->getType()); 7116 7117 Type *SrcScalarTy = I->getOperand(0)->getType(); 7118 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7119 if (canTruncateToMinimalBitwidth(I, VF)) { 7120 // This cast is going to be shrunk. This may remove the cast or it might 7121 // turn it into slightly different cast. For example, if MinBW == 16, 7122 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7123 // 7124 // Calculate the modified src and dest types. 7125 Type *MinVecTy = VectorTy; 7126 if (I->getOpcode() == Instruction::Trunc) { 7127 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7128 VectorTy = 7129 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7130 } else if (I->getOpcode() == Instruction::ZExt || 7131 I->getOpcode() == Instruction::SExt) { 7132 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7133 VectorTy = 7134 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7135 } 7136 } 7137 7138 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 7139 } 7140 case Instruction::Call: { 7141 bool NeedToScalarize; 7142 CallInst *CI = cast<CallInst>(I); 7143 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7144 if (getVectorIntrinsicIDForCall(CI, TLI)) 7145 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7146 return CallCost; 7147 } 7148 default: 7149 // The cost of executing VF copies of the scalar instruction. This opcode 7150 // is unknown. Assume that it is the same as 'mul'. 7151 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7152 getScalarizationOverhead(I, VF, TTI); 7153 } // end of switch. 7154 } 7155 7156 char LoopVectorize::ID = 0; 7157 static const char lv_name[] = "Loop Vectorization"; 7158 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7159 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7160 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7161 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7162 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7163 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7164 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7165 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7166 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7167 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 7168 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7169 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7170 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7171 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7172 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7173 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7174 7175 namespace llvm { 7176 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7177 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7178 } 7179 } 7180 7181 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7182 7183 // Check if the pointer operand of a load or store instruction is 7184 // consecutive. 7185 if (auto *Ptr = getPointerOperand(Inst)) 7186 return Legal->isConsecutivePtr(Ptr); 7187 return false; 7188 } 7189 7190 void LoopVectorizationCostModel::collectValuesToIgnore() { 7191 // Ignore ephemeral values. 7192 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7193 7194 // Ignore type-promoting instructions we identified during reduction 7195 // detection. 7196 for (auto &Reduction : *Legal->getReductionVars()) { 7197 RecurrenceDescriptor &RedDes = Reduction.second; 7198 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7199 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7200 } 7201 7202 // Insert values known to be scalar into VecValuesToIgnore. This is a 7203 // conservative estimation of the values that will later be scalarized. 7204 // 7205 // FIXME: Even though an instruction is not scalar-after-vectoriztion, it may 7206 // still be scalarized. For example, we may find an instruction to be 7207 // more profitable for a given vectorization factor if it were to be 7208 // scalarized. But at this point, we haven't yet computed the 7209 // vectorization factor. 7210 for (auto *BB : TheLoop->getBlocks()) 7211 for (auto &I : *BB) 7212 if (Legal->isScalarAfterVectorization(&I)) 7213 VecValuesToIgnore.insert(&I); 7214 } 7215 7216 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 7217 bool IfPredicateInstr) { 7218 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 7219 // Holds vector parameters or scalars, in case of uniform vals. 7220 SmallVector<VectorParts, 4> Params; 7221 7222 setDebugLocFromInst(Builder, Instr); 7223 7224 // Does this instruction return a value ? 7225 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 7226 7227 // Initialize a new scalar map entry. 7228 ScalarParts Entry(UF); 7229 7230 VectorParts Cond; 7231 if (IfPredicateInstr) 7232 Cond = createBlockInMask(Instr->getParent()); 7233 7234 // For each vector unroll 'part': 7235 for (unsigned Part = 0; Part < UF; ++Part) { 7236 Entry[Part].resize(1); 7237 // For each scalar that we create: 7238 7239 // Start an "if (pred) a[i] = ..." block. 7240 Value *Cmp = nullptr; 7241 if (IfPredicateInstr) { 7242 if (Cond[Part]->getType()->isVectorTy()) 7243 Cond[Part] = 7244 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 7245 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 7246 ConstantInt::get(Cond[Part]->getType(), 1)); 7247 } 7248 7249 Instruction *Cloned = Instr->clone(); 7250 if (!IsVoidRetTy) 7251 Cloned->setName(Instr->getName() + ".cloned"); 7252 7253 // Replace the operands of the cloned instructions with their scalar 7254 // equivalents in the new loop. 7255 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 7256 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 7257 Cloned->setOperand(op, NewOp); 7258 } 7259 7260 // Place the cloned scalar in the new loop. 7261 Builder.Insert(Cloned); 7262 7263 // Add the cloned scalar to the scalar map entry. 7264 Entry[Part][0] = Cloned; 7265 7266 // If we just cloned a new assumption, add it the assumption cache. 7267 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 7268 if (II->getIntrinsicID() == Intrinsic::assume) 7269 AC->registerAssumption(II); 7270 7271 // End if-block. 7272 if (IfPredicateInstr) 7273 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 7274 } 7275 VectorLoopValueMap.initScalar(Instr, Entry); 7276 } 7277 7278 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7279 auto *SI = dyn_cast<StoreInst>(Instr); 7280 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7281 7282 return scalarizeInstruction(Instr, IfPredicateInstr); 7283 } 7284 7285 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7286 7287 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7288 7289 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7290 Instruction::BinaryOps BinOp) { 7291 // When unrolling and the VF is 1, we only need to add a simple scalar. 7292 Type *Ty = Val->getType(); 7293 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7294 7295 if (Ty->isFloatingPointTy()) { 7296 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7297 7298 // Floating point operations had to be 'fast' to enable the unrolling. 7299 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7300 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7301 } 7302 Constant *C = ConstantInt::get(Ty, StartIdx); 7303 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7304 } 7305 7306 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7307 SmallVector<Metadata *, 4> MDs; 7308 // Reserve first location for self reference to the LoopID metadata node. 7309 MDs.push_back(nullptr); 7310 bool IsUnrollMetadata = false; 7311 MDNode *LoopID = L->getLoopID(); 7312 if (LoopID) { 7313 // First find existing loop unrolling disable metadata. 7314 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7315 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7316 if (MD) { 7317 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7318 IsUnrollMetadata = 7319 S && S->getString().startswith("llvm.loop.unroll.disable"); 7320 } 7321 MDs.push_back(LoopID->getOperand(i)); 7322 } 7323 } 7324 7325 if (!IsUnrollMetadata) { 7326 // Add runtime unroll disable metadata. 7327 LLVMContext &Context = L->getHeader()->getContext(); 7328 SmallVector<Metadata *, 1> DisableOperands; 7329 DisableOperands.push_back( 7330 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7331 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7332 MDs.push_back(DisableNode); 7333 MDNode *NewLoopID = MDNode::get(Context, MDs); 7334 // Set operand 0 to refer to the loop id itself. 7335 NewLoopID->replaceOperandWith(0, NewLoopID); 7336 L->setLoopID(NewLoopID); 7337 } 7338 } 7339 7340 bool LoopVectorizePass::processLoop(Loop *L) { 7341 assert(L->empty() && "Only process inner loops."); 7342 7343 #ifndef NDEBUG 7344 const std::string DebugLocStr = getDebugLocString(L); 7345 #endif /* NDEBUG */ 7346 7347 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7348 << L->getHeader()->getParent()->getName() << "\" from " 7349 << DebugLocStr << "\n"); 7350 7351 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7352 7353 DEBUG(dbgs() << "LV: Loop hints:" 7354 << " force=" 7355 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7356 ? "disabled" 7357 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7358 ? "enabled" 7359 : "?")) 7360 << " width=" << Hints.getWidth() 7361 << " unroll=" << Hints.getInterleave() << "\n"); 7362 7363 // Function containing loop 7364 Function *F = L->getHeader()->getParent(); 7365 7366 // Looking at the diagnostic output is the only way to determine if a loop 7367 // was vectorized (other than looking at the IR or machine code), so it 7368 // is important to generate an optimization remark for each loop. Most of 7369 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7370 // generated as OptimizationRemark and OptimizationRemarkMissed are 7371 // less verbose reporting vectorized loops and unvectorized loops that may 7372 // benefit from vectorization, respectively. 7373 7374 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7375 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7376 return false; 7377 } 7378 7379 // Check the loop for a trip count threshold: 7380 // do not vectorize loops with a tiny trip count. 7381 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7382 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7383 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7384 << "This loop is not worth vectorizing."); 7385 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7386 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7387 else { 7388 DEBUG(dbgs() << "\n"); 7389 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7390 "NotBeneficial", L) 7391 << "vectorization is not beneficial " 7392 "and is not explicitly forced"); 7393 return false; 7394 } 7395 } 7396 7397 PredicatedScalarEvolution PSE(*SE, *L); 7398 7399 // Check if it is legal to vectorize the loop. 7400 LoopVectorizationRequirements Requirements(*ORE); 7401 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7402 &Requirements, &Hints); 7403 if (!LVL.canVectorize()) { 7404 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7405 emitMissedWarning(F, L, Hints, ORE); 7406 return false; 7407 } 7408 7409 // Use the cost model. 7410 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7411 &Hints); 7412 CM.collectValuesToIgnore(); 7413 7414 // Check the function attributes to find out if this function should be 7415 // optimized for size. 7416 bool OptForSize = 7417 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7418 7419 // Compute the weighted frequency of this loop being executed and see if it 7420 // is less than 20% of the function entry baseline frequency. Note that we 7421 // always have a canonical loop here because we think we *can* vectorize. 7422 // FIXME: This is hidden behind a flag due to pervasive problems with 7423 // exactly what block frequency models. 7424 if (LoopVectorizeWithBlockFrequency) { 7425 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7426 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7427 LoopEntryFreq < ColdEntryFreq) 7428 OptForSize = true; 7429 } 7430 7431 // Check the function attributes to see if implicit floats are allowed. 7432 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7433 // an integer loop and the vector instructions selected are purely integer 7434 // vector instructions? 7435 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7436 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7437 "attribute is used.\n"); 7438 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7439 "NoImplicitFloat", L) 7440 << "loop not vectorized due to NoImplicitFloat attribute"); 7441 emitMissedWarning(F, L, Hints, ORE); 7442 return false; 7443 } 7444 7445 // Check if the target supports potentially unsafe FP vectorization. 7446 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7447 // for the target we're vectorizing for, to make sure none of the 7448 // additional fp-math flags can help. 7449 if (Hints.isPotentiallyUnsafe() && 7450 TTI->isFPVectorizationPotentiallyUnsafe()) { 7451 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7452 ORE->emit( 7453 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7454 << "loop not vectorized due to unsafe FP support."); 7455 emitMissedWarning(F, L, Hints, ORE); 7456 return false; 7457 } 7458 7459 // Select the optimal vectorization factor. 7460 const LoopVectorizationCostModel::VectorizationFactor VF = 7461 CM.selectVectorizationFactor(OptForSize); 7462 7463 // Select the interleave count. 7464 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7465 7466 // Get user interleave count. 7467 unsigned UserIC = Hints.getInterleave(); 7468 7469 // Identify the diagnostic messages that should be produced. 7470 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7471 bool VectorizeLoop = true, InterleaveLoop = true; 7472 if (Requirements.doesNotMeet(F, L, Hints)) { 7473 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7474 "requirements.\n"); 7475 emitMissedWarning(F, L, Hints, ORE); 7476 return false; 7477 } 7478 7479 if (VF.Width == 1) { 7480 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7481 VecDiagMsg = std::make_pair( 7482 "VectorizationNotBeneficial", 7483 "the cost-model indicates that vectorization is not beneficial"); 7484 VectorizeLoop = false; 7485 } 7486 7487 if (IC == 1 && UserIC <= 1) { 7488 // Tell the user interleaving is not beneficial. 7489 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7490 IntDiagMsg = std::make_pair( 7491 "InterleavingNotBeneficial", 7492 "the cost-model indicates that interleaving is not beneficial"); 7493 InterleaveLoop = false; 7494 if (UserIC == 1) { 7495 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7496 IntDiagMsg.second += 7497 " and is explicitly disabled or interleave count is set to 1"; 7498 } 7499 } else if (IC > 1 && UserIC == 1) { 7500 // Tell the user interleaving is beneficial, but it explicitly disabled. 7501 DEBUG(dbgs() 7502 << "LV: Interleaving is beneficial but is explicitly disabled."); 7503 IntDiagMsg = std::make_pair( 7504 "InterleavingBeneficialButDisabled", 7505 "the cost-model indicates that interleaving is beneficial " 7506 "but is explicitly disabled or interleave count is set to 1"); 7507 InterleaveLoop = false; 7508 } 7509 7510 // Override IC if user provided an interleave count. 7511 IC = UserIC > 0 ? UserIC : IC; 7512 7513 // Emit diagnostic messages, if any. 7514 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7515 if (!VectorizeLoop && !InterleaveLoop) { 7516 // Do not vectorize or interleaving the loop. 7517 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7518 L->getStartLoc(), L->getHeader()) 7519 << VecDiagMsg.second); 7520 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7521 L->getStartLoc(), L->getHeader()) 7522 << IntDiagMsg.second); 7523 return false; 7524 } else if (!VectorizeLoop && InterleaveLoop) { 7525 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7526 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7527 L->getStartLoc(), L->getHeader()) 7528 << VecDiagMsg.second); 7529 } else if (VectorizeLoop && !InterleaveLoop) { 7530 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7531 << DebugLocStr << '\n'); 7532 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7533 L->getStartLoc(), L->getHeader()) 7534 << IntDiagMsg.second); 7535 } else if (VectorizeLoop && InterleaveLoop) { 7536 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7537 << DebugLocStr << '\n'); 7538 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7539 } 7540 7541 using namespace ore; 7542 if (!VectorizeLoop) { 7543 assert(IC > 1 && "interleave count should not be 1 or 0"); 7544 // If we decided that it is not legal to vectorize the loop, then 7545 // interleave it. 7546 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7547 &CM); 7548 Unroller.vectorize(); 7549 7550 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7551 L->getHeader()) 7552 << "interleaved loop (interleaved count: " 7553 << NV("InterleaveCount", IC) << ")"); 7554 } else { 7555 // If we decided that it is *legal* to vectorize the loop, then do it. 7556 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7557 &LVL, &CM); 7558 LB.vectorize(); 7559 ++LoopsVectorized; 7560 7561 // Add metadata to disable runtime unrolling a scalar loop when there are 7562 // no runtime checks about strides and memory. A scalar loop that is 7563 // rarely used is not worth unrolling. 7564 if (!LB.areSafetyChecksAdded()) 7565 AddRuntimeUnrollDisableMetaData(L); 7566 7567 // Report the vectorization decision. 7568 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7569 L->getHeader()) 7570 << "vectorized loop (vectorization width: " 7571 << NV("VectorizationFactor", VF.Width) 7572 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7573 } 7574 7575 // Mark the loop as already vectorized to avoid vectorizing again. 7576 Hints.setAlreadyVectorized(); 7577 7578 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7579 return true; 7580 } 7581 7582 bool LoopVectorizePass::runImpl( 7583 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7584 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7585 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7586 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7587 OptimizationRemarkEmitter &ORE_) { 7588 7589 SE = &SE_; 7590 LI = &LI_; 7591 TTI = &TTI_; 7592 DT = &DT_; 7593 BFI = &BFI_; 7594 TLI = TLI_; 7595 AA = &AA_; 7596 AC = &AC_; 7597 GetLAA = &GetLAA_; 7598 DB = &DB_; 7599 ORE = &ORE_; 7600 7601 // Compute some weights outside of the loop over the loops. Compute this 7602 // using a BranchProbability to re-use its scaling math. 7603 const BranchProbability ColdProb(1, 5); // 20% 7604 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7605 7606 // Don't attempt if 7607 // 1. the target claims to have no vector registers, and 7608 // 2. interleaving won't help ILP. 7609 // 7610 // The second condition is necessary because, even if the target has no 7611 // vector registers, loop vectorization may still enable scalar 7612 // interleaving. 7613 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7614 return false; 7615 7616 // Build up a worklist of inner-loops to vectorize. This is necessary as 7617 // the act of vectorizing or partially unrolling a loop creates new loops 7618 // and can invalidate iterators across the loops. 7619 SmallVector<Loop *, 8> Worklist; 7620 7621 for (Loop *L : *LI) 7622 addAcyclicInnerLoop(*L, Worklist); 7623 7624 LoopsAnalyzed += Worklist.size(); 7625 7626 // Now walk the identified inner loops. 7627 bool Changed = false; 7628 while (!Worklist.empty()) 7629 Changed |= processLoop(Worklist.pop_back_val()); 7630 7631 // Process each loop nest in the function. 7632 return Changed; 7633 7634 } 7635 7636 7637 PreservedAnalyses LoopVectorizePass::run(Function &F, 7638 FunctionAnalysisManager &AM) { 7639 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7640 auto &LI = AM.getResult<LoopAnalysis>(F); 7641 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7642 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7643 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7644 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7645 auto &AA = AM.getResult<AAManager>(F); 7646 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7647 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7648 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7649 7650 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7651 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7652 [&](Loop &L) -> const LoopAccessInfo & { 7653 return LAM.getResult<LoopAccessAnalysis>(L); 7654 }; 7655 bool Changed = 7656 runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA, ORE); 7657 if (!Changed) 7658 return PreservedAnalyses::all(); 7659 PreservedAnalyses PA; 7660 PA.preserve<LoopAnalysis>(); 7661 PA.preserve<DominatorTreeAnalysis>(); 7662 PA.preserve<BasicAA>(); 7663 PA.preserve<GlobalsAA>(); 7664 return PA; 7665 } 7666