1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/EquivalenceClasses.h" 52 #include "llvm/ADT/Hashing.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/AliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfo.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/DiagnosticInfo.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/IRBuilder.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/IntrinsicInst.h" 84 #include "llvm/IR/LLVMContext.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/IR/ValueHandle.h" 90 #include "llvm/IR/Verifier.h" 91 #include "llvm/Pass.h" 92 #include "llvm/Support/BranchProbability.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Transforms/Scalar.h" 97 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include "llvm/Transforms/Utils/VectorUtils.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include <algorithm> 102 #include <map> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define LV_NAME "loop-vectorize" 109 #define DEBUG_TYPE LV_NAME 110 111 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 112 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 static cl::opt<bool> EnableInterleavedMemAccesses( 142 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 143 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 144 145 /// Maximum factor for an interleaved memory access. 146 static cl::opt<unsigned> MaxInterleaveGroupFactor( 147 "max-interleave-group-factor", cl::Hidden, 148 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 149 cl::init(8)); 150 151 /// We don't unroll loops with a known constant trip count below this number. 152 static const unsigned TinyTripCountUnrollThreshold = 128; 153 154 static cl::opt<unsigned> ForceTargetNumScalarRegs( 155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's number of scalar registers.")); 157 158 static cl::opt<unsigned> ForceTargetNumVectorRegs( 159 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of vector registers.")); 161 162 /// Maximum vectorization interleave count. 163 static const unsigned MaxInterleaveFactor = 16; 164 165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's max interleave factor for " 168 "scalar loops.")); 169 170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 172 cl::desc("A flag that overrides the target's max interleave factor for " 173 "vectorized loops.")); 174 175 static cl::opt<unsigned> ForceTargetInstructionCost( 176 "force-target-instruction-cost", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's expected cost for " 178 "an instruction to a single constant value. Mostly " 179 "useful for getting consistent testing.")); 180 181 static cl::opt<unsigned> SmallLoopCost( 182 "small-loop-cost", cl::init(20), cl::Hidden, 183 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 184 185 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 187 cl::desc("Enable the use of the block frequency analysis to access PGO " 188 "heuristics minimizing code growth in cold regions and being more " 189 "aggressive in hot regions.")); 190 191 // Runtime unroll loops for load/store throughput. 192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 194 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 195 196 /// The number of stores in a loop that are allowed to need predication. 197 static cl::opt<unsigned> NumberOfStoresToPredicate( 198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 199 cl::desc("Max number of stores to be predicated behind an if.")); 200 201 static cl::opt<bool> EnableIndVarRegisterHeur( 202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 203 cl::desc("Count the induction variable only once when unrolling")); 204 205 static cl::opt<bool> EnableCondStoresVectorization( 206 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 207 cl::desc("Enable if predication of stores during vectorization.")); 208 209 static cl::opt<unsigned> MaxNestedScalarReductionUF( 210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 211 cl::desc("The maximum unroll factor to use when unrolling a scalar " 212 "reduction in a nested loop.")); 213 214 namespace { 215 216 // Forward declarations. 217 class LoopVectorizationLegality; 218 class LoopVectorizationCostModel; 219 class LoopVectorizeHints; 220 221 /// \brief This modifies LoopAccessReport to initialize message with 222 /// loop-vectorizer-specific part. 223 class VectorizationReport : public LoopAccessReport { 224 public: 225 VectorizationReport(Instruction *I = nullptr) 226 : LoopAccessReport("loop not vectorized: ", I) {} 227 228 /// \brief This allows promotion of the loop-access analysis report into the 229 /// loop-vectorizer report. It modifies the message to add the 230 /// loop-vectorizer-specific part of the message. 231 explicit VectorizationReport(const LoopAccessReport &R) 232 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 233 R.getInstr()) {} 234 }; 235 236 /// A helper function for converting Scalar types to vector types. 237 /// If the incoming type is void, we return void. If the VF is 1, we return 238 /// the scalar type. 239 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 240 if (Scalar->isVoidTy() || VF == 1) 241 return Scalar; 242 return VectorType::get(Scalar, VF); 243 } 244 245 /// InnerLoopVectorizer vectorizes loops which contain only one basic 246 /// block to a specified vectorization factor (VF). 247 /// This class performs the widening of scalars into vectors, or multiple 248 /// scalars. This class also implements the following features: 249 /// * It inserts an epilogue loop for handling loops that don't have iteration 250 /// counts that are known to be a multiple of the vectorization factor. 251 /// * It handles the code generation for reduction variables. 252 /// * Scalarization (implementation using scalars) of un-vectorizable 253 /// instructions. 254 /// InnerLoopVectorizer does not perform any vectorization-legality 255 /// checks, and relies on the caller to check for the different legality 256 /// aspects. The InnerLoopVectorizer relies on the 257 /// LoopVectorizationLegality class to provide information about the induction 258 /// and reduction variables that were found to a given vectorization factor. 259 class InnerLoopVectorizer { 260 public: 261 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 262 DominatorTree *DT, const TargetLibraryInfo *TLI, 263 const TargetTransformInfo *TTI, unsigned VecWidth, 264 unsigned UnrollFactor) 265 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 266 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 267 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 268 Legal(nullptr), AddedSafetyChecks(false) {} 269 270 // Perform the actual loop widening (vectorization). 271 void vectorize(LoopVectorizationLegality *L) { 272 Legal = L; 273 // Create a new empty loop. Unlink the old loop and connect the new one. 274 createEmptyLoop(); 275 // Widen each instruction in the old loop to a new one in the new loop. 276 // Use the Legality module to find the induction and reduction variables. 277 vectorizeLoop(); 278 // Register the new loop and update the analysis passes. 279 updateAnalysis(); 280 } 281 282 // Return true if any runtime check is added. 283 bool IsSafetyChecksAdded() { 284 return AddedSafetyChecks; 285 } 286 287 virtual ~InnerLoopVectorizer() {} 288 289 protected: 290 /// A small list of PHINodes. 291 typedef SmallVector<PHINode*, 4> PhiVector; 292 /// When we unroll loops we have multiple vector values for each scalar. 293 /// This data structure holds the unrolled and vectorized values that 294 /// originated from one scalar instruction. 295 typedef SmallVector<Value*, 2> VectorParts; 296 297 // When we if-convert we need to create edge masks. We have to cache values 298 // so that we don't end up with exponential recursion/IR. 299 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 300 VectorParts> EdgeMaskCache; 301 302 /// \brief Add checks for strides that were assumed to be 1. 303 /// 304 /// Returns the last check instruction and the first check instruction in the 305 /// pair as (first, last). 306 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 307 308 /// Create an empty loop, based on the loop ranges of the old loop. 309 void createEmptyLoop(); 310 /// Copy and widen the instructions from the old loop. 311 virtual void vectorizeLoop(); 312 313 /// \brief The Loop exit block may have single value PHI nodes where the 314 /// incoming value is 'Undef'. While vectorizing we only handled real values 315 /// that were defined inside the loop. Here we fix the 'undef case'. 316 /// See PR14725. 317 void fixLCSSAPHIs(); 318 319 /// A helper function that computes the predicate of the block BB, assuming 320 /// that the header block of the loop is set to True. It returns the *entry* 321 /// mask for the block BB. 322 VectorParts createBlockInMask(BasicBlock *BB); 323 /// A helper function that computes the predicate of the edge between SRC 324 /// and DST. 325 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 326 327 /// A helper function to vectorize a single BB within the innermost loop. 328 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 329 330 /// Vectorize a single PHINode in a block. This method handles the induction 331 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 332 /// arbitrary length vectors. 333 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 334 unsigned UF, unsigned VF, PhiVector *PV); 335 336 /// Insert the new loop to the loop hierarchy and pass manager 337 /// and update the analysis passes. 338 void updateAnalysis(); 339 340 /// This instruction is un-vectorizable. Implement it as a sequence 341 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 342 /// scalarized instruction behind an if block predicated on the control 343 /// dependence of the instruction. 344 virtual void scalarizeInstruction(Instruction *Instr, 345 bool IfPredicateStore=false); 346 347 /// Vectorize Load and Store instructions, 348 virtual void vectorizeMemoryInstruction(Instruction *Instr); 349 350 /// Create a broadcast instruction. This method generates a broadcast 351 /// instruction (shuffle) for loop invariant values and for the induction 352 /// value. If this is the induction variable then we extend it to N, N+1, ... 353 /// this is needed because each iteration in the loop corresponds to a SIMD 354 /// element. 355 virtual Value *getBroadcastInstrs(Value *V); 356 357 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 358 /// to each vector element of Val. The sequence starts at StartIndex. 359 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 360 361 /// When we go over instructions in the basic block we rely on previous 362 /// values within the current basic block or on loop invariant values. 363 /// When we widen (vectorize) values we place them in the map. If the values 364 /// are not within the map, they have to be loop invariant, so we simply 365 /// broadcast them into a vector. 366 VectorParts &getVectorValue(Value *V); 367 368 /// Try to vectorize the interleaved access group that \p Instr belongs to. 369 void vectorizeInterleaveGroup(Instruction *Instr); 370 371 /// Generate a shuffle sequence that will reverse the vector Vec. 372 virtual Value *reverseVector(Value *Vec); 373 374 /// This is a helper class that holds the vectorizer state. It maps scalar 375 /// instructions to vector instructions. When the code is 'unrolled' then 376 /// then a single scalar value is mapped to multiple vector parts. The parts 377 /// are stored in the VectorPart type. 378 struct ValueMap { 379 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 380 /// are mapped. 381 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 382 383 /// \return True if 'Key' is saved in the Value Map. 384 bool has(Value *Key) const { return MapStorage.count(Key); } 385 386 /// Initializes a new entry in the map. Sets all of the vector parts to the 387 /// save value in 'Val'. 388 /// \return A reference to a vector with splat values. 389 VectorParts &splat(Value *Key, Value *Val) { 390 VectorParts &Entry = MapStorage[Key]; 391 Entry.assign(UF, Val); 392 return Entry; 393 } 394 395 ///\return A reference to the value that is stored at 'Key'. 396 VectorParts &get(Value *Key) { 397 VectorParts &Entry = MapStorage[Key]; 398 if (Entry.empty()) 399 Entry.resize(UF); 400 assert(Entry.size() == UF); 401 return Entry; 402 } 403 404 private: 405 /// The unroll factor. Each entry in the map stores this number of vector 406 /// elements. 407 unsigned UF; 408 409 /// Map storage. We use std::map and not DenseMap because insertions to a 410 /// dense map invalidates its iterators. 411 std::map<Value *, VectorParts> MapStorage; 412 }; 413 414 /// The original loop. 415 Loop *OrigLoop; 416 /// Scev analysis to use. 417 ScalarEvolution *SE; 418 /// Loop Info. 419 LoopInfo *LI; 420 /// Dominator Tree. 421 DominatorTree *DT; 422 /// Alias Analysis. 423 AliasAnalysis *AA; 424 /// Target Library Info. 425 const TargetLibraryInfo *TLI; 426 /// Target Transform Info. 427 const TargetTransformInfo *TTI; 428 429 /// The vectorization SIMD factor to use. Each vector will have this many 430 /// vector elements. 431 unsigned VF; 432 433 protected: 434 /// The vectorization unroll factor to use. Each scalar is vectorized to this 435 /// many different vector instructions. 436 unsigned UF; 437 438 /// The builder that we use 439 IRBuilder<> Builder; 440 441 // --- Vectorization state --- 442 443 /// The vector-loop preheader. 444 BasicBlock *LoopVectorPreHeader; 445 /// The scalar-loop preheader. 446 BasicBlock *LoopScalarPreHeader; 447 /// Middle Block between the vector and the scalar. 448 BasicBlock *LoopMiddleBlock; 449 ///The ExitBlock of the scalar loop. 450 BasicBlock *LoopExitBlock; 451 ///The vector loop body. 452 SmallVector<BasicBlock *, 4> LoopVectorBody; 453 ///The scalar loop body. 454 BasicBlock *LoopScalarBody; 455 /// A list of all bypass blocks. The first block is the entry of the loop. 456 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 457 458 /// The new Induction variable which was added to the new block. 459 PHINode *Induction; 460 /// The induction variable of the old basic block. 461 PHINode *OldInduction; 462 /// Holds the extended (to the widest induction type) start index. 463 Value *ExtendedIdx; 464 /// Maps scalars to widened vectors. 465 ValueMap WidenMap; 466 EdgeMaskCache MaskCache; 467 468 LoopVectorizationLegality *Legal; 469 470 // Record whether runtime check is added. 471 bool AddedSafetyChecks; 472 }; 473 474 class InnerLoopUnroller : public InnerLoopVectorizer { 475 public: 476 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 477 DominatorTree *DT, const TargetLibraryInfo *TLI, 478 const TargetTransformInfo *TTI, unsigned UnrollFactor) 479 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {} 480 481 private: 482 void scalarizeInstruction(Instruction *Instr, 483 bool IfPredicateStore = false) override; 484 void vectorizeMemoryInstruction(Instruction *Instr) override; 485 Value *getBroadcastInstrs(Value *V) override; 486 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 487 Value *reverseVector(Value *Vec) override; 488 }; 489 490 /// \brief Look for a meaningful debug location on the instruction or it's 491 /// operands. 492 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 493 if (!I) 494 return I; 495 496 DebugLoc Empty; 497 if (I->getDebugLoc() != Empty) 498 return I; 499 500 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 501 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 502 if (OpInst->getDebugLoc() != Empty) 503 return OpInst; 504 } 505 506 return I; 507 } 508 509 /// \brief Set the debug location in the builder using the debug location in the 510 /// instruction. 511 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 512 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 513 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 514 else 515 B.SetCurrentDebugLocation(DebugLoc()); 516 } 517 518 #ifndef NDEBUG 519 /// \return string containing a file name and a line # for the given loop. 520 static std::string getDebugLocString(const Loop *L) { 521 std::string Result; 522 if (L) { 523 raw_string_ostream OS(Result); 524 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 525 LoopDbgLoc.print(OS); 526 else 527 // Just print the module name. 528 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 529 OS.flush(); 530 } 531 return Result; 532 } 533 #endif 534 535 /// \brief Propagate known metadata from one instruction to another. 536 static void propagateMetadata(Instruction *To, const Instruction *From) { 537 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 538 From->getAllMetadataOtherThanDebugLoc(Metadata); 539 540 for (auto M : Metadata) { 541 unsigned Kind = M.first; 542 543 // These are safe to transfer (this is safe for TBAA, even when we 544 // if-convert, because should that metadata have had a control dependency 545 // on the condition, and thus actually aliased with some other 546 // non-speculated memory access when the condition was false, this would be 547 // caught by the runtime overlap checks). 548 if (Kind != LLVMContext::MD_tbaa && 549 Kind != LLVMContext::MD_alias_scope && 550 Kind != LLVMContext::MD_noalias && 551 Kind != LLVMContext::MD_fpmath) 552 continue; 553 554 To->setMetadata(Kind, M.second); 555 } 556 } 557 558 /// \brief Propagate known metadata from one instruction to a vector of others. 559 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 560 for (Value *V : To) 561 if (Instruction *I = dyn_cast<Instruction>(V)) 562 propagateMetadata(I, From); 563 } 564 565 /// \brief The group of interleaved loads/stores sharing the same stride and 566 /// close to each other. 567 /// 568 /// Each member in this group has an index starting from 0, and the largest 569 /// index should be less than interleaved factor, which is equal to the absolute 570 /// value of the access's stride. 571 /// 572 /// E.g. An interleaved load group of factor 4: 573 /// for (unsigned i = 0; i < 1024; i+=4) { 574 /// a = A[i]; // Member of index 0 575 /// b = A[i+1]; // Member of index 1 576 /// d = A[i+3]; // Member of index 3 577 /// ... 578 /// } 579 /// 580 /// An interleaved store group of factor 4: 581 /// for (unsigned i = 0; i < 1024; i+=4) { 582 /// ... 583 /// A[i] = a; // Member of index 0 584 /// A[i+1] = b; // Member of index 1 585 /// A[i+2] = c; // Member of index 2 586 /// A[i+3] = d; // Member of index 3 587 /// } 588 /// 589 /// Note: the interleaved load group could have gaps (missing members), but 590 /// the interleaved store group doesn't allow gaps. 591 class InterleaveGroup { 592 public: 593 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 594 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 595 assert(Align && "The alignment should be non-zero"); 596 597 Factor = std::abs(Stride); 598 assert(Factor > 1 && "Invalid interleave factor"); 599 600 Reverse = Stride < 0; 601 Members[0] = Instr; 602 } 603 604 bool isReverse() const { return Reverse; } 605 unsigned getFactor() const { return Factor; } 606 unsigned getAlignment() const { return Align; } 607 unsigned getNumMembers() const { return Members.size(); } 608 609 /// \brief Try to insert a new member \p Instr with index \p Index and 610 /// alignment \p NewAlign. The index is related to the leader and it could be 611 /// negative if it is the new leader. 612 /// 613 /// \returns false if the instruction doesn't belong to the group. 614 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 615 assert(NewAlign && "The new member's alignment should be non-zero"); 616 617 int Key = Index + SmallestKey; 618 619 // Skip if there is already a member with the same index. 620 if (Members.count(Key)) 621 return false; 622 623 if (Key > LargestKey) { 624 // The largest index is always less than the interleave factor. 625 if (Index >= static_cast<int>(Factor)) 626 return false; 627 628 LargestKey = Key; 629 } else if (Key < SmallestKey) { 630 // The largest index is always less than the interleave factor. 631 if (LargestKey - Key >= static_cast<int>(Factor)) 632 return false; 633 634 SmallestKey = Key; 635 } 636 637 // It's always safe to select the minimum alignment. 638 Align = std::min(Align, NewAlign); 639 Members[Key] = Instr; 640 return true; 641 } 642 643 /// \brief Get the member with the given index \p Index 644 /// 645 /// \returns nullptr if contains no such member. 646 Instruction *getMember(unsigned Index) const { 647 int Key = SmallestKey + Index; 648 if (!Members.count(Key)) 649 return nullptr; 650 651 return Members.find(Key)->second; 652 } 653 654 /// \brief Get the index for the given member. Unlike the key in the member 655 /// map, the index starts from 0. 656 unsigned getIndex(Instruction *Instr) const { 657 for (auto I : Members) 658 if (I.second == Instr) 659 return I.first - SmallestKey; 660 661 llvm_unreachable("InterleaveGroup contains no such member"); 662 } 663 664 Instruction *getInsertPos() const { return InsertPos; } 665 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 666 667 private: 668 unsigned Factor; // Interleave Factor. 669 bool Reverse; 670 unsigned Align; 671 DenseMap<int, Instruction *> Members; 672 int SmallestKey; 673 int LargestKey; 674 675 // To avoid breaking dependences, vectorized instructions of an interleave 676 // group should be inserted at either the first load or the last store in 677 // program order. 678 // 679 // E.g. %even = load i32 // Insert Position 680 // %add = add i32 %even // Use of %even 681 // %odd = load i32 682 // 683 // store i32 %even 684 // %odd = add i32 // Def of %odd 685 // store i32 %odd // Insert Position 686 Instruction *InsertPos; 687 }; 688 689 /// \brief Drive the analysis of interleaved memory accesses in the loop. 690 /// 691 /// Use this class to analyze interleaved accesses only when we can vectorize 692 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 693 /// on interleaved accesses is unsafe. 694 /// 695 /// The analysis collects interleave groups and records the relationships 696 /// between the member and the group in a map. 697 class InterleavedAccessInfo { 698 public: 699 InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT) 700 : SE(SE), TheLoop(L), DT(DT) {} 701 702 ~InterleavedAccessInfo() { 703 SmallSet<InterleaveGroup *, 4> DelSet; 704 // Avoid releasing a pointer twice. 705 for (auto &I : InterleaveGroupMap) 706 DelSet.insert(I.second); 707 for (auto *Ptr : DelSet) 708 delete Ptr; 709 } 710 711 /// \brief Analyze the interleaved accesses and collect them in interleave 712 /// groups. Substitute symbolic strides using \p Strides. 713 void analyzeInterleaving(const ValueToValueMap &Strides); 714 715 /// \brief Check if \p Instr belongs to any interleave group. 716 bool isInterleaved(Instruction *Instr) const { 717 return InterleaveGroupMap.count(Instr); 718 } 719 720 /// \brief Get the interleave group that \p Instr belongs to. 721 /// 722 /// \returns nullptr if doesn't have such group. 723 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 724 if (InterleaveGroupMap.count(Instr)) 725 return InterleaveGroupMap.find(Instr)->second; 726 return nullptr; 727 } 728 729 private: 730 ScalarEvolution *SE; 731 Loop *TheLoop; 732 DominatorTree *DT; 733 734 /// Holds the relationships between the members and the interleave group. 735 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 736 737 /// \brief The descriptor for a strided memory access. 738 struct StrideDescriptor { 739 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 740 unsigned Align) 741 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 742 743 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 744 745 int Stride; // The access's stride. It is negative for a reverse access. 746 const SCEV *Scev; // The scalar expression of this access 747 unsigned Size; // The size of the memory object. 748 unsigned Align; // The alignment of this access. 749 }; 750 751 /// \brief Create a new interleave group with the given instruction \p Instr, 752 /// stride \p Stride and alignment \p Align. 753 /// 754 /// \returns the newly created interleave group. 755 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 756 unsigned Align) { 757 assert(!InterleaveGroupMap.count(Instr) && 758 "Already in an interleaved access group"); 759 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 760 return InterleaveGroupMap[Instr]; 761 } 762 763 /// \brief Release the group and remove all the relationships. 764 void releaseGroup(InterleaveGroup *Group) { 765 for (unsigned i = 0; i < Group->getFactor(); i++) 766 if (Instruction *Member = Group->getMember(i)) 767 InterleaveGroupMap.erase(Member); 768 769 delete Group; 770 } 771 772 /// \brief Collect all the accesses with a constant stride in program order. 773 void collectConstStridedAccesses( 774 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 775 const ValueToValueMap &Strides); 776 }; 777 778 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 779 /// to what vectorization factor. 780 /// This class does not look at the profitability of vectorization, only the 781 /// legality. This class has two main kinds of checks: 782 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 783 /// will change the order of memory accesses in a way that will change the 784 /// correctness of the program. 785 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 786 /// checks for a number of different conditions, such as the availability of a 787 /// single induction variable, that all types are supported and vectorize-able, 788 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 789 /// This class is also used by InnerLoopVectorizer for identifying 790 /// induction variable and the different reduction variables. 791 class LoopVectorizationLegality { 792 public: 793 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 794 TargetLibraryInfo *TLI, AliasAnalysis *AA, 795 Function *F, const TargetTransformInfo *TTI, 796 LoopAccessAnalysis *LAA) 797 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), 798 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT), 799 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 800 801 /// This enum represents the kinds of inductions that we support. 802 enum InductionKind { 803 IK_NoInduction, ///< Not an induction variable. 804 IK_IntInduction, ///< Integer induction variable. Step = C. 805 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 806 }; 807 808 /// A struct for saving information about induction variables. 809 struct InductionInfo { 810 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 811 : StartValue(Start), IK(K), StepValue(Step) { 812 assert(IK != IK_NoInduction && "Not an induction"); 813 assert(StartValue && "StartValue is null"); 814 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 815 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 816 "StartValue is not a pointer for pointer induction"); 817 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 818 "StartValue is not an integer for integer induction"); 819 assert(StepValue->getType()->isIntegerTy() && 820 "StepValue is not an integer"); 821 } 822 InductionInfo() 823 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 824 825 /// Get the consecutive direction. Returns: 826 /// 0 - unknown or non-consecutive. 827 /// 1 - consecutive and increasing. 828 /// -1 - consecutive and decreasing. 829 int getConsecutiveDirection() const { 830 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 831 return StepValue->getSExtValue(); 832 return 0; 833 } 834 835 /// Compute the transformed value of Index at offset StartValue using step 836 /// StepValue. 837 /// For integer induction, returns StartValue + Index * StepValue. 838 /// For pointer induction, returns StartValue[Index * StepValue]. 839 /// FIXME: The newly created binary instructions should contain nsw/nuw 840 /// flags, which can be found from the original scalar operations. 841 Value *transform(IRBuilder<> &B, Value *Index) const { 842 switch (IK) { 843 case IK_IntInduction: 844 assert(Index->getType() == StartValue->getType() && 845 "Index type does not match StartValue type"); 846 if (StepValue->isMinusOne()) 847 return B.CreateSub(StartValue, Index); 848 if (!StepValue->isOne()) 849 Index = B.CreateMul(Index, StepValue); 850 return B.CreateAdd(StartValue, Index); 851 852 case IK_PtrInduction: 853 if (StepValue->isMinusOne()) 854 Index = B.CreateNeg(Index); 855 else if (!StepValue->isOne()) 856 Index = B.CreateMul(Index, StepValue); 857 return B.CreateGEP(nullptr, StartValue, Index); 858 859 case IK_NoInduction: 860 return nullptr; 861 } 862 llvm_unreachable("invalid enum"); 863 } 864 865 /// Start value. 866 TrackingVH<Value> StartValue; 867 /// Induction kind. 868 InductionKind IK; 869 /// Step value. 870 ConstantInt *StepValue; 871 }; 872 873 /// ReductionList contains the reduction descriptors for all 874 /// of the reductions that were found in the loop. 875 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 876 877 /// InductionList saves induction variables and maps them to the 878 /// induction descriptor. 879 typedef MapVector<PHINode*, InductionInfo> InductionList; 880 881 /// Returns true if it is legal to vectorize this loop. 882 /// This does not mean that it is profitable to vectorize this 883 /// loop, only that it is legal to do so. 884 bool canVectorize(); 885 886 /// Returns the Induction variable. 887 PHINode *getInduction() { return Induction; } 888 889 /// Returns the reduction variables found in the loop. 890 ReductionList *getReductionVars() { return &Reductions; } 891 892 /// Returns the induction variables found in the loop. 893 InductionList *getInductionVars() { return &Inductions; } 894 895 /// Returns the widest induction type. 896 Type *getWidestInductionType() { return WidestIndTy; } 897 898 /// Returns True if V is an induction variable in this loop. 899 bool isInductionVariable(const Value *V); 900 901 /// Return true if the block BB needs to be predicated in order for the loop 902 /// to be vectorized. 903 bool blockNeedsPredication(BasicBlock *BB); 904 905 /// Check if this pointer is consecutive when vectorizing. This happens 906 /// when the last index of the GEP is the induction variable, or that the 907 /// pointer itself is an induction variable. 908 /// This check allows us to vectorize A[idx] into a wide load/store. 909 /// Returns: 910 /// 0 - Stride is unknown or non-consecutive. 911 /// 1 - Address is consecutive. 912 /// -1 - Address is consecutive, and decreasing. 913 int isConsecutivePtr(Value *Ptr); 914 915 /// Returns true if the value V is uniform within the loop. 916 bool isUniform(Value *V); 917 918 /// Returns true if this instruction will remain scalar after vectorization. 919 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 920 921 /// Returns the information that we collected about runtime memory check. 922 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const { 923 return LAI->getRuntimePointerCheck(); 924 } 925 926 const LoopAccessInfo *getLAI() const { 927 return LAI; 928 } 929 930 /// \brief Check if \p Instr belongs to any interleaved access group. 931 bool isAccessInterleaved(Instruction *Instr) { 932 return InterleaveInfo.isInterleaved(Instr); 933 } 934 935 /// \brief Get the interleaved access group that \p Instr belongs to. 936 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 937 return InterleaveInfo.getInterleaveGroup(Instr); 938 } 939 940 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 941 942 bool hasStride(Value *V) { return StrideSet.count(V); } 943 bool mustCheckStrides() { return !StrideSet.empty(); } 944 SmallPtrSet<Value *, 8>::iterator strides_begin() { 945 return StrideSet.begin(); 946 } 947 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 948 949 /// Returns true if the target machine supports masked store operation 950 /// for the given \p DataType and kind of access to \p Ptr. 951 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 952 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 953 } 954 /// Returns true if the target machine supports masked load operation 955 /// for the given \p DataType and kind of access to \p Ptr. 956 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 957 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 958 } 959 /// Returns true if vector representation of the instruction \p I 960 /// requires mask. 961 bool isMaskRequired(const Instruction* I) { 962 return (MaskedOp.count(I) != 0); 963 } 964 unsigned getNumStores() const { 965 return LAI->getNumStores(); 966 } 967 unsigned getNumLoads() const { 968 return LAI->getNumLoads(); 969 } 970 unsigned getNumPredStores() const { 971 return NumPredStores; 972 } 973 private: 974 /// Check if a single basic block loop is vectorizable. 975 /// At this point we know that this is a loop with a constant trip count 976 /// and we only need to check individual instructions. 977 bool canVectorizeInstrs(); 978 979 /// When we vectorize loops we may change the order in which 980 /// we read and write from memory. This method checks if it is 981 /// legal to vectorize the code, considering only memory constrains. 982 /// Returns true if the loop is vectorizable 983 bool canVectorizeMemory(); 984 985 /// Return true if we can vectorize this loop using the IF-conversion 986 /// transformation. 987 bool canVectorizeWithIfConvert(); 988 989 /// Collect the variables that need to stay uniform after vectorization. 990 void collectLoopUniforms(); 991 992 /// Return true if all of the instructions in the block can be speculatively 993 /// executed. \p SafePtrs is a list of addresses that are known to be legal 994 /// and we know that we can read from them without segfault. 995 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 996 997 /// Returns the induction kind of Phi and record the step. This function may 998 /// return NoInduction if the PHI is not an induction variable. 999 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 1000 1001 /// \brief Collect memory access with loop invariant strides. 1002 /// 1003 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1004 /// invariant. 1005 void collectStridedAccess(Value *LoadOrStoreInst); 1006 1007 /// Report an analysis message to assist the user in diagnosing loops that are 1008 /// not vectorized. These are handled as LoopAccessReport rather than 1009 /// VectorizationReport because the << operator of VectorizationReport returns 1010 /// LoopAccessReport. 1011 void emitAnalysis(const LoopAccessReport &Message) { 1012 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 1013 } 1014 1015 unsigned NumPredStores; 1016 1017 /// The loop that we evaluate. 1018 Loop *TheLoop; 1019 /// Scev analysis. 1020 ScalarEvolution *SE; 1021 /// Target Library Info. 1022 TargetLibraryInfo *TLI; 1023 /// Parent function 1024 Function *TheFunction; 1025 /// Target Transform Info 1026 const TargetTransformInfo *TTI; 1027 /// Dominator Tree. 1028 DominatorTree *DT; 1029 // LoopAccess analysis. 1030 LoopAccessAnalysis *LAA; 1031 // And the loop-accesses info corresponding to this loop. This pointer is 1032 // null until canVectorizeMemory sets it up. 1033 const LoopAccessInfo *LAI; 1034 1035 /// The interleave access information contains groups of interleaved accesses 1036 /// with the same stride and close to each other. 1037 InterleavedAccessInfo InterleaveInfo; 1038 1039 // --- vectorization state --- // 1040 1041 /// Holds the integer induction variable. This is the counter of the 1042 /// loop. 1043 PHINode *Induction; 1044 /// Holds the reduction variables. 1045 ReductionList Reductions; 1046 /// Holds all of the induction variables that we found in the loop. 1047 /// Notice that inductions don't need to start at zero and that induction 1048 /// variables can be pointers. 1049 InductionList Inductions; 1050 /// Holds the widest induction type encountered. 1051 Type *WidestIndTy; 1052 1053 /// Allowed outside users. This holds the reduction 1054 /// vars which can be accessed from outside the loop. 1055 SmallPtrSet<Value*, 4> AllowedExit; 1056 /// This set holds the variables which are known to be uniform after 1057 /// vectorization. 1058 SmallPtrSet<Instruction*, 4> Uniforms; 1059 1060 /// Can we assume the absence of NaNs. 1061 bool HasFunNoNaNAttr; 1062 1063 ValueToValueMap Strides; 1064 SmallPtrSet<Value *, 8> StrideSet; 1065 1066 /// While vectorizing these instructions we have to generate a 1067 /// call to the appropriate masked intrinsic 1068 SmallPtrSet<const Instruction*, 8> MaskedOp; 1069 }; 1070 1071 /// LoopVectorizationCostModel - estimates the expected speedups due to 1072 /// vectorization. 1073 /// In many cases vectorization is not profitable. This can happen because of 1074 /// a number of reasons. In this class we mainly attempt to predict the 1075 /// expected speedup/slowdowns due to the supported instruction set. We use the 1076 /// TargetTransformInfo to query the different backends for the cost of 1077 /// different operations. 1078 class LoopVectorizationCostModel { 1079 public: 1080 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1081 LoopVectorizationLegality *Legal, 1082 const TargetTransformInfo &TTI, 1083 const TargetLibraryInfo *TLI, AssumptionCache *AC, 1084 const Function *F, const LoopVectorizeHints *Hints) 1085 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), 1086 TheFunction(F), Hints(Hints) { 1087 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 1088 } 1089 1090 /// Information about vectorization costs 1091 struct VectorizationFactor { 1092 unsigned Width; // Vector width with best cost 1093 unsigned Cost; // Cost of the loop with that width 1094 }; 1095 /// \return The most profitable vectorization factor and the cost of that VF. 1096 /// This method checks every power of two up to VF. If UserVF is not ZERO 1097 /// then this vectorization factor will be selected if vectorization is 1098 /// possible. 1099 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1100 1101 /// \return The size (in bits) of the widest type in the code that 1102 /// needs to be vectorized. We ignore values that remain scalar such as 1103 /// 64 bit loop indices. 1104 unsigned getWidestType(); 1105 1106 /// \return The most profitable unroll factor. 1107 /// If UserUF is non-zero then this method finds the best unroll-factor 1108 /// based on register pressure and other parameters. 1109 /// VF and LoopCost are the selected vectorization factor and the cost of the 1110 /// selected VF. 1111 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 1112 1113 /// \brief A struct that represents some properties of the register usage 1114 /// of a loop. 1115 struct RegisterUsage { 1116 /// Holds the number of loop invariant values that are used in the loop. 1117 unsigned LoopInvariantRegs; 1118 /// Holds the maximum number of concurrent live intervals in the loop. 1119 unsigned MaxLocalUsers; 1120 /// Holds the number of instructions in the loop. 1121 unsigned NumInstructions; 1122 }; 1123 1124 /// \return information about the register usage of the loop. 1125 RegisterUsage calculateRegisterUsage(); 1126 1127 private: 1128 /// Returns the expected execution cost. The unit of the cost does 1129 /// not matter because we use the 'cost' units to compare different 1130 /// vector widths. The cost that is returned is *not* normalized by 1131 /// the factor width. 1132 unsigned expectedCost(unsigned VF); 1133 1134 /// Returns the execution time cost of an instruction for a given vector 1135 /// width. Vector width of one means scalar. 1136 unsigned getInstructionCost(Instruction *I, unsigned VF); 1137 1138 /// Returns whether the instruction is a load or store and will be a emitted 1139 /// as a vector operation. 1140 bool isConsecutiveLoadOrStore(Instruction *I); 1141 1142 /// Report an analysis message to assist the user in diagnosing loops that are 1143 /// not vectorized. These are handled as LoopAccessReport rather than 1144 /// VectorizationReport because the << operator of VectorizationReport returns 1145 /// LoopAccessReport. 1146 void emitAnalysis(const LoopAccessReport &Message) { 1147 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 1148 } 1149 1150 /// Values used only by @llvm.assume calls. 1151 SmallPtrSet<const Value *, 32> EphValues; 1152 1153 /// The loop that we evaluate. 1154 Loop *TheLoop; 1155 /// Scev analysis. 1156 ScalarEvolution *SE; 1157 /// Loop Info analysis. 1158 LoopInfo *LI; 1159 /// Vectorization legality. 1160 LoopVectorizationLegality *Legal; 1161 /// Vector target information. 1162 const TargetTransformInfo &TTI; 1163 /// Target Library Info. 1164 const TargetLibraryInfo *TLI; 1165 const Function *TheFunction; 1166 // Loop Vectorize Hint. 1167 const LoopVectorizeHints *Hints; 1168 }; 1169 1170 /// Utility class for getting and setting loop vectorizer hints in the form 1171 /// of loop metadata. 1172 /// This class keeps a number of loop annotations locally (as member variables) 1173 /// and can, upon request, write them back as metadata on the loop. It will 1174 /// initially scan the loop for existing metadata, and will update the local 1175 /// values based on information in the loop. 1176 /// We cannot write all values to metadata, as the mere presence of some info, 1177 /// for example 'force', means a decision has been made. So, we need to be 1178 /// careful NOT to add them if the user hasn't specifically asked so. 1179 class LoopVectorizeHints { 1180 enum HintKind { 1181 HK_WIDTH, 1182 HK_UNROLL, 1183 HK_FORCE 1184 }; 1185 1186 /// Hint - associates name and validation with the hint value. 1187 struct Hint { 1188 const char * Name; 1189 unsigned Value; // This may have to change for non-numeric values. 1190 HintKind Kind; 1191 1192 Hint(const char * Name, unsigned Value, HintKind Kind) 1193 : Name(Name), Value(Value), Kind(Kind) { } 1194 1195 bool validate(unsigned Val) { 1196 switch (Kind) { 1197 case HK_WIDTH: 1198 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1199 case HK_UNROLL: 1200 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1201 case HK_FORCE: 1202 return (Val <= 1); 1203 } 1204 return false; 1205 } 1206 }; 1207 1208 /// Vectorization width. 1209 Hint Width; 1210 /// Vectorization interleave factor. 1211 Hint Interleave; 1212 /// Vectorization forced 1213 Hint Force; 1214 1215 /// Return the loop metadata prefix. 1216 static StringRef Prefix() { return "llvm.loop."; } 1217 1218 public: 1219 enum ForceKind { 1220 FK_Undefined = -1, ///< Not selected. 1221 FK_Disabled = 0, ///< Forcing disabled. 1222 FK_Enabled = 1, ///< Forcing enabled. 1223 }; 1224 1225 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1226 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1227 HK_WIDTH), 1228 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1229 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1230 TheLoop(L) { 1231 // Populate values with existing loop metadata. 1232 getHintsFromMetadata(); 1233 1234 // force-vector-interleave overrides DisableInterleaving. 1235 if (VectorizerParams::isInterleaveForced()) 1236 Interleave.Value = VectorizerParams::VectorizationInterleave; 1237 1238 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1239 << "LV: Interleaving disabled by the pass manager\n"); 1240 } 1241 1242 /// Mark the loop L as already vectorized by setting the width to 1. 1243 void setAlreadyVectorized() { 1244 Width.Value = Interleave.Value = 1; 1245 Hint Hints[] = {Width, Interleave}; 1246 writeHintsToMetadata(Hints); 1247 } 1248 1249 /// Dumps all the hint information. 1250 std::string emitRemark() const { 1251 VectorizationReport R; 1252 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1253 R << "vectorization is explicitly disabled"; 1254 else { 1255 R << "use -Rpass-analysis=loop-vectorize for more info"; 1256 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1257 R << " (Force=true"; 1258 if (Width.Value != 0) 1259 R << ", Vector Width=" << Width.Value; 1260 if (Interleave.Value != 0) 1261 R << ", Interleave Count=" << Interleave.Value; 1262 R << ")"; 1263 } 1264 } 1265 1266 return R.str(); 1267 } 1268 1269 unsigned getWidth() const { return Width.Value; } 1270 unsigned getInterleave() const { return Interleave.Value; } 1271 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1272 1273 private: 1274 /// Find hints specified in the loop metadata and update local values. 1275 void getHintsFromMetadata() { 1276 MDNode *LoopID = TheLoop->getLoopID(); 1277 if (!LoopID) 1278 return; 1279 1280 // First operand should refer to the loop id itself. 1281 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1282 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1283 1284 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1285 const MDString *S = nullptr; 1286 SmallVector<Metadata *, 4> Args; 1287 1288 // The expected hint is either a MDString or a MDNode with the first 1289 // operand a MDString. 1290 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1291 if (!MD || MD->getNumOperands() == 0) 1292 continue; 1293 S = dyn_cast<MDString>(MD->getOperand(0)); 1294 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1295 Args.push_back(MD->getOperand(i)); 1296 } else { 1297 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1298 assert(Args.size() == 0 && "too many arguments for MDString"); 1299 } 1300 1301 if (!S) 1302 continue; 1303 1304 // Check if the hint starts with the loop metadata prefix. 1305 StringRef Name = S->getString(); 1306 if (Args.size() == 1) 1307 setHint(Name, Args[0]); 1308 } 1309 } 1310 1311 /// Checks string hint with one operand and set value if valid. 1312 void setHint(StringRef Name, Metadata *Arg) { 1313 if (!Name.startswith(Prefix())) 1314 return; 1315 Name = Name.substr(Prefix().size(), StringRef::npos); 1316 1317 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1318 if (!C) return; 1319 unsigned Val = C->getZExtValue(); 1320 1321 Hint *Hints[] = {&Width, &Interleave, &Force}; 1322 for (auto H : Hints) { 1323 if (Name == H->Name) { 1324 if (H->validate(Val)) 1325 H->Value = Val; 1326 else 1327 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1328 break; 1329 } 1330 } 1331 } 1332 1333 /// Create a new hint from name / value pair. 1334 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1335 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1336 Metadata *MDs[] = {MDString::get(Context, Name), 1337 ConstantAsMetadata::get( 1338 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1339 return MDNode::get(Context, MDs); 1340 } 1341 1342 /// Matches metadata with hint name. 1343 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1344 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1345 if (!Name) 1346 return false; 1347 1348 for (auto H : HintTypes) 1349 if (Name->getString().endswith(H.Name)) 1350 return true; 1351 return false; 1352 } 1353 1354 /// Sets current hints into loop metadata, keeping other values intact. 1355 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1356 if (HintTypes.size() == 0) 1357 return; 1358 1359 // Reserve the first element to LoopID (see below). 1360 SmallVector<Metadata *, 4> MDs(1); 1361 // If the loop already has metadata, then ignore the existing operands. 1362 MDNode *LoopID = TheLoop->getLoopID(); 1363 if (LoopID) { 1364 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1365 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1366 // If node in update list, ignore old value. 1367 if (!matchesHintMetadataName(Node, HintTypes)) 1368 MDs.push_back(Node); 1369 } 1370 } 1371 1372 // Now, add the missing hints. 1373 for (auto H : HintTypes) 1374 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1375 1376 // Replace current metadata node with new one. 1377 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1378 MDNode *NewLoopID = MDNode::get(Context, MDs); 1379 // Set operand 0 to refer to the loop id itself. 1380 NewLoopID->replaceOperandWith(0, NewLoopID); 1381 1382 TheLoop->setLoopID(NewLoopID); 1383 } 1384 1385 /// The loop these hints belong to. 1386 const Loop *TheLoop; 1387 }; 1388 1389 static void emitMissedWarning(Function *F, Loop *L, 1390 const LoopVectorizeHints &LH) { 1391 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1392 L->getStartLoc(), LH.emitRemark()); 1393 1394 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1395 if (LH.getWidth() != 1) 1396 emitLoopVectorizeWarning( 1397 F->getContext(), *F, L->getStartLoc(), 1398 "failed explicitly specified loop vectorization"); 1399 else if (LH.getInterleave() != 1) 1400 emitLoopInterleaveWarning( 1401 F->getContext(), *F, L->getStartLoc(), 1402 "failed explicitly specified loop interleaving"); 1403 } 1404 } 1405 1406 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1407 if (L.empty()) 1408 return V.push_back(&L); 1409 1410 for (Loop *InnerL : L) 1411 addInnerLoop(*InnerL, V); 1412 } 1413 1414 /// The LoopVectorize Pass. 1415 struct LoopVectorize : public FunctionPass { 1416 /// Pass identification, replacement for typeid 1417 static char ID; 1418 1419 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1420 : FunctionPass(ID), 1421 DisableUnrolling(NoUnrolling), 1422 AlwaysVectorize(AlwaysVectorize) { 1423 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1424 } 1425 1426 ScalarEvolution *SE; 1427 LoopInfo *LI; 1428 TargetTransformInfo *TTI; 1429 DominatorTree *DT; 1430 BlockFrequencyInfo *BFI; 1431 TargetLibraryInfo *TLI; 1432 AliasAnalysis *AA; 1433 AssumptionCache *AC; 1434 LoopAccessAnalysis *LAA; 1435 bool DisableUnrolling; 1436 bool AlwaysVectorize; 1437 1438 BlockFrequency ColdEntryFreq; 1439 1440 bool runOnFunction(Function &F) override { 1441 SE = &getAnalysis<ScalarEvolution>(); 1442 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1443 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1444 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1445 BFI = &getAnalysis<BlockFrequencyInfo>(); 1446 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1447 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1448 AA = &getAnalysis<AliasAnalysis>(); 1449 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1450 LAA = &getAnalysis<LoopAccessAnalysis>(); 1451 1452 // Compute some weights outside of the loop over the loops. Compute this 1453 // using a BranchProbability to re-use its scaling math. 1454 const BranchProbability ColdProb(1, 5); // 20% 1455 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1456 1457 // If the target claims to have no vector registers don't attempt 1458 // vectorization. 1459 if (!TTI->getNumberOfRegisters(true)) 1460 return false; 1461 1462 // Build up a worklist of inner-loops to vectorize. This is necessary as 1463 // the act of vectorizing or partially unrolling a loop creates new loops 1464 // and can invalidate iterators across the loops. 1465 SmallVector<Loop *, 8> Worklist; 1466 1467 for (Loop *L : *LI) 1468 addInnerLoop(*L, Worklist); 1469 1470 LoopsAnalyzed += Worklist.size(); 1471 1472 // Now walk the identified inner loops. 1473 bool Changed = false; 1474 while (!Worklist.empty()) 1475 Changed |= processLoop(Worklist.pop_back_val()); 1476 1477 // Process each loop nest in the function. 1478 return Changed; 1479 } 1480 1481 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1482 SmallVector<Metadata *, 4> MDs; 1483 // Reserve first location for self reference to the LoopID metadata node. 1484 MDs.push_back(nullptr); 1485 bool IsUnrollMetadata = false; 1486 MDNode *LoopID = L->getLoopID(); 1487 if (LoopID) { 1488 // First find existing loop unrolling disable metadata. 1489 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1490 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1491 if (MD) { 1492 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1493 IsUnrollMetadata = 1494 S && S->getString().startswith("llvm.loop.unroll.disable"); 1495 } 1496 MDs.push_back(LoopID->getOperand(i)); 1497 } 1498 } 1499 1500 if (!IsUnrollMetadata) { 1501 // Add runtime unroll disable metadata. 1502 LLVMContext &Context = L->getHeader()->getContext(); 1503 SmallVector<Metadata *, 1> DisableOperands; 1504 DisableOperands.push_back( 1505 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1506 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1507 MDs.push_back(DisableNode); 1508 MDNode *NewLoopID = MDNode::get(Context, MDs); 1509 // Set operand 0 to refer to the loop id itself. 1510 NewLoopID->replaceOperandWith(0, NewLoopID); 1511 L->setLoopID(NewLoopID); 1512 } 1513 } 1514 1515 bool processLoop(Loop *L) { 1516 assert(L->empty() && "Only process inner loops."); 1517 1518 #ifndef NDEBUG 1519 const std::string DebugLocStr = getDebugLocString(L); 1520 #endif /* NDEBUG */ 1521 1522 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1523 << L->getHeader()->getParent()->getName() << "\" from " 1524 << DebugLocStr << "\n"); 1525 1526 LoopVectorizeHints Hints(L, DisableUnrolling); 1527 1528 DEBUG(dbgs() << "LV: Loop hints:" 1529 << " force=" 1530 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1531 ? "disabled" 1532 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1533 ? "enabled" 1534 : "?")) << " width=" << Hints.getWidth() 1535 << " unroll=" << Hints.getInterleave() << "\n"); 1536 1537 // Function containing loop 1538 Function *F = L->getHeader()->getParent(); 1539 1540 // Looking at the diagnostic output is the only way to determine if a loop 1541 // was vectorized (other than looking at the IR or machine code), so it 1542 // is important to generate an optimization remark for each loop. Most of 1543 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1544 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1545 // less verbose reporting vectorized loops and unvectorized loops that may 1546 // benefit from vectorization, respectively. 1547 1548 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1549 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1550 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1551 L->getStartLoc(), Hints.emitRemark()); 1552 return false; 1553 } 1554 1555 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1556 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1557 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1558 L->getStartLoc(), Hints.emitRemark()); 1559 return false; 1560 } 1561 1562 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1563 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1564 emitOptimizationRemarkAnalysis( 1565 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1566 "loop not vectorized: vector width and interleave count are " 1567 "explicitly set to 1"); 1568 return false; 1569 } 1570 1571 // Check the loop for a trip count threshold: 1572 // do not vectorize loops with a tiny trip count. 1573 const unsigned TC = SE->getSmallConstantTripCount(L); 1574 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1575 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1576 << "This loop is not worth vectorizing."); 1577 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1578 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1579 else { 1580 DEBUG(dbgs() << "\n"); 1581 emitOptimizationRemarkAnalysis( 1582 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1583 "vectorization is not beneficial and is not explicitly forced"); 1584 return false; 1585 } 1586 } 1587 1588 // Check if it is legal to vectorize the loop. 1589 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA); 1590 if (!LVL.canVectorize()) { 1591 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1592 emitMissedWarning(F, L, Hints); 1593 return false; 1594 } 1595 1596 // Use the cost model. 1597 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints); 1598 1599 // Check the function attributes to find out if this function should be 1600 // optimized for size. 1601 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1602 F->hasFnAttribute(Attribute::OptimizeForSize); 1603 1604 // Compute the weighted frequency of this loop being executed and see if it 1605 // is less than 20% of the function entry baseline frequency. Note that we 1606 // always have a canonical loop here because we think we *can* vectoriez. 1607 // FIXME: This is hidden behind a flag due to pervasive problems with 1608 // exactly what block frequency models. 1609 if (LoopVectorizeWithBlockFrequency) { 1610 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1611 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1612 LoopEntryFreq < ColdEntryFreq) 1613 OptForSize = true; 1614 } 1615 1616 // Check the function attributes to see if implicit floats are allowed.a 1617 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1618 // an integer loop and the vector instructions selected are purely integer 1619 // vector instructions? 1620 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1621 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1622 "attribute is used.\n"); 1623 emitOptimizationRemarkAnalysis( 1624 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1625 "loop not vectorized due to NoImplicitFloat attribute"); 1626 emitMissedWarning(F, L, Hints); 1627 return false; 1628 } 1629 1630 // Select the optimal vectorization factor. 1631 const LoopVectorizationCostModel::VectorizationFactor VF = 1632 CM.selectVectorizationFactor(OptForSize); 1633 1634 // Select the unroll factor. 1635 const unsigned UF = 1636 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1637 1638 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1639 << DebugLocStr << '\n'); 1640 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1641 1642 if (VF.Width == 1) { 1643 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1644 1645 if (UF == 1) { 1646 emitOptimizationRemarkAnalysis( 1647 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1648 "not beneficial to vectorize and user disabled interleaving"); 1649 return false; 1650 } 1651 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1652 1653 // Report the unrolling decision. 1654 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1655 Twine("unrolled with interleaving factor " + 1656 Twine(UF) + 1657 " (vectorization not beneficial)")); 1658 1659 // We decided not to vectorize, but we may want to unroll. 1660 1661 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, UF); 1662 Unroller.vectorize(&LVL); 1663 } else { 1664 // If we decided that it is *legal* to vectorize the loop then do it. 1665 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, UF); 1666 LB.vectorize(&LVL); 1667 ++LoopsVectorized; 1668 1669 // Add metadata to disable runtime unrolling scalar loop when there's no 1670 // runtime check about strides and memory. Because at this situation, 1671 // scalar loop is rarely used not worthy to be unrolled. 1672 if (!LB.IsSafetyChecksAdded()) 1673 AddRuntimeUnrollDisableMetaData(L); 1674 1675 // Report the vectorization decision. 1676 emitOptimizationRemark( 1677 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1678 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1679 ", unrolling interleave factor: " + Twine(UF) + ")"); 1680 } 1681 1682 // Mark the loop as already vectorized to avoid vectorizing again. 1683 Hints.setAlreadyVectorized(); 1684 1685 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1686 return true; 1687 } 1688 1689 void getAnalysisUsage(AnalysisUsage &AU) const override { 1690 AU.addRequired<AssumptionCacheTracker>(); 1691 AU.addRequiredID(LoopSimplifyID); 1692 AU.addRequiredID(LCSSAID); 1693 AU.addRequired<BlockFrequencyInfo>(); 1694 AU.addRequired<DominatorTreeWrapperPass>(); 1695 AU.addRequired<LoopInfoWrapperPass>(); 1696 AU.addRequired<ScalarEvolution>(); 1697 AU.addRequired<TargetTransformInfoWrapperPass>(); 1698 AU.addRequired<AliasAnalysis>(); 1699 AU.addRequired<LoopAccessAnalysis>(); 1700 AU.addPreserved<LoopInfoWrapperPass>(); 1701 AU.addPreserved<DominatorTreeWrapperPass>(); 1702 AU.addPreserved<AliasAnalysis>(); 1703 } 1704 1705 }; 1706 1707 } // end anonymous namespace 1708 1709 //===----------------------------------------------------------------------===// 1710 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1711 // LoopVectorizationCostModel. 1712 //===----------------------------------------------------------------------===// 1713 1714 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1715 // We need to place the broadcast of invariant variables outside the loop. 1716 Instruction *Instr = dyn_cast<Instruction>(V); 1717 bool NewInstr = 1718 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1719 Instr->getParent()) != LoopVectorBody.end()); 1720 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1721 1722 // Place the code for broadcasting invariant variables in the new preheader. 1723 IRBuilder<>::InsertPointGuard Guard(Builder); 1724 if (Invariant) 1725 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1726 1727 // Broadcast the scalar into all locations in the vector. 1728 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1729 1730 return Shuf; 1731 } 1732 1733 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1734 Value *Step) { 1735 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1736 assert(Val->getType()->getScalarType()->isIntegerTy() && 1737 "Elem must be an integer"); 1738 assert(Step->getType() == Val->getType()->getScalarType() && 1739 "Step has wrong type"); 1740 // Create the types. 1741 Type *ITy = Val->getType()->getScalarType(); 1742 VectorType *Ty = cast<VectorType>(Val->getType()); 1743 int VLen = Ty->getNumElements(); 1744 SmallVector<Constant*, 8> Indices; 1745 1746 // Create a vector of consecutive numbers from zero to VF. 1747 for (int i = 0; i < VLen; ++i) 1748 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1749 1750 // Add the consecutive indices to the vector value. 1751 Constant *Cv = ConstantVector::get(Indices); 1752 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1753 Step = Builder.CreateVectorSplat(VLen, Step); 1754 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1755 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1756 // which can be found from the original scalar operations. 1757 Step = Builder.CreateMul(Cv, Step); 1758 return Builder.CreateAdd(Val, Step, "induction"); 1759 } 1760 1761 /// \brief Find the operand of the GEP that should be checked for consecutive 1762 /// stores. This ignores trailing indices that have no effect on the final 1763 /// pointer. 1764 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 1765 const DataLayout &DL = Gep->getModule()->getDataLayout(); 1766 unsigned LastOperand = Gep->getNumOperands() - 1; 1767 unsigned GEPAllocSize = DL.getTypeAllocSize( 1768 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1769 1770 // Walk backwards and try to peel off zeros. 1771 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1772 // Find the type we're currently indexing into. 1773 gep_type_iterator GEPTI = gep_type_begin(Gep); 1774 std::advance(GEPTI, LastOperand - 1); 1775 1776 // If it's a type with the same allocation size as the result of the GEP we 1777 // can peel off the zero index. 1778 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize) 1779 break; 1780 --LastOperand; 1781 } 1782 1783 return LastOperand; 1784 } 1785 1786 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1787 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1788 // Make sure that the pointer does not point to structs. 1789 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1790 return 0; 1791 1792 // If this value is a pointer induction variable we know it is consecutive. 1793 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1794 if (Phi && Inductions.count(Phi)) { 1795 InductionInfo II = Inductions[Phi]; 1796 return II.getConsecutiveDirection(); 1797 } 1798 1799 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1800 if (!Gep) 1801 return 0; 1802 1803 unsigned NumOperands = Gep->getNumOperands(); 1804 Value *GpPtr = Gep->getPointerOperand(); 1805 // If this GEP value is a consecutive pointer induction variable and all of 1806 // the indices are constant then we know it is consecutive. We can 1807 Phi = dyn_cast<PHINode>(GpPtr); 1808 if (Phi && Inductions.count(Phi)) { 1809 1810 // Make sure that the pointer does not point to structs. 1811 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1812 if (GepPtrType->getElementType()->isAggregateType()) 1813 return 0; 1814 1815 // Make sure that all of the index operands are loop invariant. 1816 for (unsigned i = 1; i < NumOperands; ++i) 1817 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1818 return 0; 1819 1820 InductionInfo II = Inductions[Phi]; 1821 return II.getConsecutiveDirection(); 1822 } 1823 1824 unsigned InductionOperand = getGEPInductionOperand(Gep); 1825 1826 // Check that all of the gep indices are uniform except for our induction 1827 // operand. 1828 for (unsigned i = 0; i != NumOperands; ++i) 1829 if (i != InductionOperand && 1830 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1831 return 0; 1832 1833 // We can emit wide load/stores only if the last non-zero index is the 1834 // induction variable. 1835 const SCEV *Last = nullptr; 1836 if (!Strides.count(Gep)) 1837 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1838 else { 1839 // Because of the multiplication by a stride we can have a s/zext cast. 1840 // We are going to replace this stride by 1 so the cast is safe to ignore. 1841 // 1842 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1843 // %0 = trunc i64 %indvars.iv to i32 1844 // %mul = mul i32 %0, %Stride1 1845 // %idxprom = zext i32 %mul to i64 << Safe cast. 1846 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1847 // 1848 Last = replaceSymbolicStrideSCEV(SE, Strides, 1849 Gep->getOperand(InductionOperand), Gep); 1850 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1851 Last = 1852 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1853 ? C->getOperand() 1854 : Last; 1855 } 1856 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1857 const SCEV *Step = AR->getStepRecurrence(*SE); 1858 1859 // The memory is consecutive because the last index is consecutive 1860 // and all other indices are loop invariant. 1861 if (Step->isOne()) 1862 return 1; 1863 if (Step->isAllOnesValue()) 1864 return -1; 1865 } 1866 1867 return 0; 1868 } 1869 1870 bool LoopVectorizationLegality::isUniform(Value *V) { 1871 return LAI->isUniform(V); 1872 } 1873 1874 InnerLoopVectorizer::VectorParts& 1875 InnerLoopVectorizer::getVectorValue(Value *V) { 1876 assert(V != Induction && "The new induction variable should not be used."); 1877 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1878 1879 // If we have a stride that is replaced by one, do it here. 1880 if (Legal->hasStride(V)) 1881 V = ConstantInt::get(V->getType(), 1); 1882 1883 // If we have this scalar in the map, return it. 1884 if (WidenMap.has(V)) 1885 return WidenMap.get(V); 1886 1887 // If this scalar is unknown, assume that it is a constant or that it is 1888 // loop invariant. Broadcast V and save the value for future uses. 1889 Value *B = getBroadcastInstrs(V); 1890 return WidenMap.splat(V, B); 1891 } 1892 1893 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1894 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1895 SmallVector<Constant*, 8> ShuffleMask; 1896 for (unsigned i = 0; i < VF; ++i) 1897 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1898 1899 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1900 ConstantVector::get(ShuffleMask), 1901 "reverse"); 1902 } 1903 1904 // Get a mask to interleave \p NumVec vectors into a wide vector. 1905 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 1906 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 1907 // <0, 4, 1, 5, 2, 6, 3, 7> 1908 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 1909 unsigned NumVec) { 1910 SmallVector<Constant *, 16> Mask; 1911 for (unsigned i = 0; i < VF; i++) 1912 for (unsigned j = 0; j < NumVec; j++) 1913 Mask.push_back(Builder.getInt32(j * VF + i)); 1914 1915 return ConstantVector::get(Mask); 1916 } 1917 1918 // Get the strided mask starting from index \p Start. 1919 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 1920 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 1921 unsigned Stride, unsigned VF) { 1922 SmallVector<Constant *, 16> Mask; 1923 for (unsigned i = 0; i < VF; i++) 1924 Mask.push_back(Builder.getInt32(Start + i * Stride)); 1925 1926 return ConstantVector::get(Mask); 1927 } 1928 1929 // Get a mask of two parts: The first part consists of sequential integers 1930 // starting from 0, The second part consists of UNDEFs. 1931 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 1932 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 1933 unsigned NumUndef) { 1934 SmallVector<Constant *, 16> Mask; 1935 for (unsigned i = 0; i < NumInt; i++) 1936 Mask.push_back(Builder.getInt32(i)); 1937 1938 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 1939 for (unsigned i = 0; i < NumUndef; i++) 1940 Mask.push_back(Undef); 1941 1942 return ConstantVector::get(Mask); 1943 } 1944 1945 // Concatenate two vectors with the same element type. The 2nd vector should 1946 // not have more elements than the 1st vector. If the 2nd vector has less 1947 // elements, extend it with UNDEFs. 1948 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 1949 Value *V2) { 1950 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 1951 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 1952 assert(VecTy1 && VecTy2 && 1953 VecTy1->getScalarType() == VecTy2->getScalarType() && 1954 "Expect two vectors with the same element type"); 1955 1956 unsigned NumElts1 = VecTy1->getNumElements(); 1957 unsigned NumElts2 = VecTy2->getNumElements(); 1958 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 1959 1960 if (NumElts1 > NumElts2) { 1961 // Extend with UNDEFs. 1962 Constant *ExtMask = 1963 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 1964 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 1965 } 1966 1967 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 1968 return Builder.CreateShuffleVector(V1, V2, Mask); 1969 } 1970 1971 // Concatenate vectors in the given list. All vectors have the same type. 1972 static Value *ConcatenateVectors(IRBuilder<> &Builder, 1973 ArrayRef<Value *> InputList) { 1974 unsigned NumVec = InputList.size(); 1975 assert(NumVec > 1 && "Should be at least two vectors"); 1976 1977 SmallVector<Value *, 8> ResList; 1978 ResList.append(InputList.begin(), InputList.end()); 1979 do { 1980 SmallVector<Value *, 8> TmpList; 1981 for (unsigned i = 0; i < NumVec - 1; i += 2) { 1982 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1983 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 1984 "Only the last vector may have a different type"); 1985 1986 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 1987 } 1988 1989 // Push the last vector if the total number of vectors is odd. 1990 if (NumVec % 2 != 0) 1991 TmpList.push_back(ResList[NumVec - 1]); 1992 1993 ResList = TmpList; 1994 NumVec = ResList.size(); 1995 } while (NumVec > 1); 1996 1997 return ResList[0]; 1998 } 1999 2000 // Try to vectorize the interleave group that \p Instr belongs to. 2001 // 2002 // E.g. Translate following interleaved load group (factor = 3): 2003 // for (i = 0; i < N; i+=3) { 2004 // R = Pic[i]; // Member of index 0 2005 // G = Pic[i+1]; // Member of index 1 2006 // B = Pic[i+2]; // Member of index 2 2007 // ... // do something to R, G, B 2008 // } 2009 // To: 2010 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2011 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2012 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2013 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2014 // 2015 // Or translate following interleaved store group (factor = 3): 2016 // for (i = 0; i < N; i+=3) { 2017 // ... do something to R, G, B 2018 // Pic[i] = R; // Member of index 0 2019 // Pic[i+1] = G; // Member of index 1 2020 // Pic[i+2] = B; // Member of index 2 2021 // } 2022 // To: 2023 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2024 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2025 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2026 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2027 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2028 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2029 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2030 assert(Group && "Fail to get an interleaved access group."); 2031 2032 // Skip if current instruction is not the insert position. 2033 if (Instr != Group->getInsertPos()) 2034 return; 2035 2036 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2037 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2038 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2039 2040 // Prepare for the vector type of the interleaved load/store. 2041 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2042 unsigned InterleaveFactor = Group->getFactor(); 2043 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2044 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2045 2046 // Prepare for the new pointers. 2047 setDebugLocFromInst(Builder, Ptr); 2048 VectorParts &PtrParts = getVectorValue(Ptr); 2049 SmallVector<Value *, 2> NewPtrs; 2050 unsigned Index = Group->getIndex(Instr); 2051 for (unsigned Part = 0; Part < UF; Part++) { 2052 // Extract the pointer for current instruction from the pointer vector. A 2053 // reverse access uses the pointer in the last lane. 2054 Value *NewPtr = Builder.CreateExtractElement( 2055 PtrParts[Part], 2056 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2057 2058 // Notice current instruction could be any index. Need to adjust the address 2059 // to the member of index 0. 2060 // 2061 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2062 // b = A[i]; // Member of index 0 2063 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2064 // 2065 // E.g. A[i+1] = a; // Member of index 1 2066 // A[i] = b; // Member of index 0 2067 // A[i+2] = c; // Member of index 2 (Current instruction) 2068 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2069 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2070 2071 // Cast to the vector pointer type. 2072 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2073 } 2074 2075 setDebugLocFromInst(Builder, Instr); 2076 Value *UndefVec = UndefValue::get(VecTy); 2077 2078 // Vectorize the interleaved load group. 2079 if (LI) { 2080 for (unsigned Part = 0; Part < UF; Part++) { 2081 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2082 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2083 2084 for (unsigned i = 0; i < InterleaveFactor; i++) { 2085 Instruction *Member = Group->getMember(i); 2086 2087 // Skip the gaps in the group. 2088 if (!Member) 2089 continue; 2090 2091 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2092 Value *StridedVec = Builder.CreateShuffleVector( 2093 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2094 2095 // If this member has different type, cast the result type. 2096 if (Member->getType() != ScalarTy) { 2097 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2098 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2099 } 2100 2101 VectorParts &Entry = WidenMap.get(Member); 2102 Entry[Part] = 2103 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2104 } 2105 2106 propagateMetadata(NewLoadInstr, Instr); 2107 } 2108 return; 2109 } 2110 2111 // The sub vector type for current instruction. 2112 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2113 2114 // Vectorize the interleaved store group. 2115 for (unsigned Part = 0; Part < UF; Part++) { 2116 // Collect the stored vector from each member. 2117 SmallVector<Value *, 4> StoredVecs; 2118 for (unsigned i = 0; i < InterleaveFactor; i++) { 2119 // Interleaved store group doesn't allow a gap, so each index has a member 2120 Instruction *Member = Group->getMember(i); 2121 assert(Member && "Fail to get a member from an interleaved store group"); 2122 2123 Value *StoredVec = 2124 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2125 if (Group->isReverse()) 2126 StoredVec = reverseVector(StoredVec); 2127 2128 // If this member has different type, cast it to an unified type. 2129 if (StoredVec->getType() != SubVT) 2130 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2131 2132 StoredVecs.push_back(StoredVec); 2133 } 2134 2135 // Concatenate all vectors into a wide vector. 2136 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2137 2138 // Interleave the elements in the wide vector. 2139 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2140 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2141 "interleaved.vec"); 2142 2143 Instruction *NewStoreInstr = 2144 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2145 propagateMetadata(NewStoreInstr, Instr); 2146 } 2147 } 2148 2149 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2150 // Attempt to issue a wide load. 2151 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2152 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2153 2154 assert((LI || SI) && "Invalid Load/Store instruction"); 2155 2156 // Try to vectorize the interleave group if this access is interleaved. 2157 if (Legal->isAccessInterleaved(Instr)) 2158 return vectorizeInterleaveGroup(Instr); 2159 2160 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2161 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2162 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2163 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2164 // An alignment of 0 means target abi alignment. We need to use the scalar's 2165 // target abi alignment in such a case. 2166 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2167 if (!Alignment) 2168 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2169 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2170 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2171 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2172 2173 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2174 !Legal->isMaskRequired(SI)) 2175 return scalarizeInstruction(Instr, true); 2176 2177 if (ScalarAllocatedSize != VectorElementSize) 2178 return scalarizeInstruction(Instr); 2179 2180 // If the pointer is loop invariant or if it is non-consecutive, 2181 // scalarize the load. 2182 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2183 bool Reverse = ConsecutiveStride < 0; 2184 bool UniformLoad = LI && Legal->isUniform(Ptr); 2185 if (!ConsecutiveStride || UniformLoad) 2186 return scalarizeInstruction(Instr); 2187 2188 Constant *Zero = Builder.getInt32(0); 2189 VectorParts &Entry = WidenMap.get(Instr); 2190 2191 // Handle consecutive loads/stores. 2192 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 2193 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2194 setDebugLocFromInst(Builder, Gep); 2195 Value *PtrOperand = Gep->getPointerOperand(); 2196 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2197 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2198 2199 // Create the new GEP with the new induction variable. 2200 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2201 Gep2->setOperand(0, FirstBasePtr); 2202 Gep2->setName("gep.indvar.base"); 2203 Ptr = Builder.Insert(Gep2); 2204 } else if (Gep) { 2205 setDebugLocFromInst(Builder, Gep); 2206 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 2207 OrigLoop) && "Base ptr must be invariant"); 2208 2209 // The last index does not have to be the induction. It can be 2210 // consecutive and be a function of the index. For example A[I+1]; 2211 unsigned NumOperands = Gep->getNumOperands(); 2212 unsigned InductionOperand = getGEPInductionOperand(Gep); 2213 // Create the new GEP with the new induction variable. 2214 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2215 2216 for (unsigned i = 0; i < NumOperands; ++i) { 2217 Value *GepOperand = Gep->getOperand(i); 2218 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2219 2220 // Update last index or loop invariant instruction anchored in loop. 2221 if (i == InductionOperand || 2222 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2223 assert((i == InductionOperand || 2224 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 2225 "Must be last index or loop invariant"); 2226 2227 VectorParts &GEPParts = getVectorValue(GepOperand); 2228 Value *Index = GEPParts[0]; 2229 Index = Builder.CreateExtractElement(Index, Zero); 2230 Gep2->setOperand(i, Index); 2231 Gep2->setName("gep.indvar.idx"); 2232 } 2233 } 2234 Ptr = Builder.Insert(Gep2); 2235 } else { 2236 // Use the induction element ptr. 2237 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2238 setDebugLocFromInst(Builder, Ptr); 2239 VectorParts &PtrVal = getVectorValue(Ptr); 2240 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2241 } 2242 2243 VectorParts Mask = createBlockInMask(Instr->getParent()); 2244 // Handle Stores: 2245 if (SI) { 2246 assert(!Legal->isUniform(SI->getPointerOperand()) && 2247 "We do not allow storing to uniform addresses"); 2248 setDebugLocFromInst(Builder, SI); 2249 // We don't want to update the value in the map as it might be used in 2250 // another expression. So don't use a reference type for "StoredVal". 2251 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2252 2253 for (unsigned Part = 0; Part < UF; ++Part) { 2254 // Calculate the pointer for the specific unroll-part. 2255 Value *PartPtr = 2256 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2257 2258 if (Reverse) { 2259 // If we store to reverse consecutive memory locations then we need 2260 // to reverse the order of elements in the stored value. 2261 StoredVal[Part] = reverseVector(StoredVal[Part]); 2262 // If the address is consecutive but reversed, then the 2263 // wide store needs to start at the last vector element. 2264 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2265 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2266 Mask[Part] = reverseVector(Mask[Part]); 2267 } 2268 2269 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2270 DataTy->getPointerTo(AddressSpace)); 2271 2272 Instruction *NewSI; 2273 if (Legal->isMaskRequired(SI)) 2274 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2275 Mask[Part]); 2276 else 2277 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2278 propagateMetadata(NewSI, SI); 2279 } 2280 return; 2281 } 2282 2283 // Handle loads. 2284 assert(LI && "Must have a load instruction"); 2285 setDebugLocFromInst(Builder, LI); 2286 for (unsigned Part = 0; Part < UF; ++Part) { 2287 // Calculate the pointer for the specific unroll-part. 2288 Value *PartPtr = 2289 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2290 2291 if (Reverse) { 2292 // If the address is consecutive but reversed, then the 2293 // wide load needs to start at the last vector element. 2294 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2295 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2296 Mask[Part] = reverseVector(Mask[Part]); 2297 } 2298 2299 Instruction* NewLI; 2300 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2301 DataTy->getPointerTo(AddressSpace)); 2302 if (Legal->isMaskRequired(LI)) 2303 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2304 UndefValue::get(DataTy), 2305 "wide.masked.load"); 2306 else 2307 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2308 propagateMetadata(NewLI, LI); 2309 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2310 } 2311 } 2312 2313 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 2314 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2315 // Holds vector parameters or scalars, in case of uniform vals. 2316 SmallVector<VectorParts, 4> Params; 2317 2318 setDebugLocFromInst(Builder, Instr); 2319 2320 // Find all of the vectorized parameters. 2321 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2322 Value *SrcOp = Instr->getOperand(op); 2323 2324 // If we are accessing the old induction variable, use the new one. 2325 if (SrcOp == OldInduction) { 2326 Params.push_back(getVectorValue(SrcOp)); 2327 continue; 2328 } 2329 2330 // Try using previously calculated values. 2331 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2332 2333 // If the src is an instruction that appeared earlier in the basic block 2334 // then it should already be vectorized. 2335 if (SrcInst && OrigLoop->contains(SrcInst)) { 2336 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2337 // The parameter is a vector value from earlier. 2338 Params.push_back(WidenMap.get(SrcInst)); 2339 } else { 2340 // The parameter is a scalar from outside the loop. Maybe even a constant. 2341 VectorParts Scalars; 2342 Scalars.append(UF, SrcOp); 2343 Params.push_back(Scalars); 2344 } 2345 } 2346 2347 assert(Params.size() == Instr->getNumOperands() && 2348 "Invalid number of operands"); 2349 2350 // Does this instruction return a value ? 2351 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2352 2353 Value *UndefVec = IsVoidRetTy ? nullptr : 2354 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2355 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2356 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2357 2358 Instruction *InsertPt = Builder.GetInsertPoint(); 2359 BasicBlock *IfBlock = Builder.GetInsertBlock(); 2360 BasicBlock *CondBlock = nullptr; 2361 2362 VectorParts Cond; 2363 Loop *VectorLp = nullptr; 2364 if (IfPredicateStore) { 2365 assert(Instr->getParent()->getSinglePredecessor() && 2366 "Only support single predecessor blocks"); 2367 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2368 Instr->getParent()); 2369 VectorLp = LI->getLoopFor(IfBlock); 2370 assert(VectorLp && "Must have a loop for this block"); 2371 } 2372 2373 // For each vector unroll 'part': 2374 for (unsigned Part = 0; Part < UF; ++Part) { 2375 // For each scalar that we create: 2376 for (unsigned Width = 0; Width < VF; ++Width) { 2377 2378 // Start if-block. 2379 Value *Cmp = nullptr; 2380 if (IfPredicateStore) { 2381 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2382 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 2383 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 2384 LoopVectorBody.push_back(CondBlock); 2385 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 2386 // Update Builder with newly created basic block. 2387 Builder.SetInsertPoint(InsertPt); 2388 } 2389 2390 Instruction *Cloned = Instr->clone(); 2391 if (!IsVoidRetTy) 2392 Cloned->setName(Instr->getName() + ".cloned"); 2393 // Replace the operands of the cloned instructions with extracted scalars. 2394 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2395 Value *Op = Params[op][Part]; 2396 // Param is a vector. Need to extract the right lane. 2397 if (Op->getType()->isVectorTy()) 2398 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2399 Cloned->setOperand(op, Op); 2400 } 2401 2402 // Place the cloned scalar in the new loop. 2403 Builder.Insert(Cloned); 2404 2405 // If the original scalar returns a value we need to place it in a vector 2406 // so that future users will be able to use it. 2407 if (!IsVoidRetTy) 2408 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2409 Builder.getInt32(Width)); 2410 // End if-block. 2411 if (IfPredicateStore) { 2412 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2413 LoopVectorBody.push_back(NewIfBlock); 2414 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 2415 Builder.SetInsertPoint(InsertPt); 2416 Instruction *OldBr = IfBlock->getTerminator(); 2417 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2418 OldBr->eraseFromParent(); 2419 IfBlock = NewIfBlock; 2420 } 2421 } 2422 } 2423 } 2424 2425 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2426 Instruction *Loc) { 2427 if (FirstInst) 2428 return FirstInst; 2429 if (Instruction *I = dyn_cast<Instruction>(V)) 2430 return I->getParent() == Loc->getParent() ? I : nullptr; 2431 return nullptr; 2432 } 2433 2434 std::pair<Instruction *, Instruction *> 2435 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2436 Instruction *tnullptr = nullptr; 2437 if (!Legal->mustCheckStrides()) 2438 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2439 2440 IRBuilder<> ChkBuilder(Loc); 2441 2442 // Emit checks. 2443 Value *Check = nullptr; 2444 Instruction *FirstInst = nullptr; 2445 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2446 SE = Legal->strides_end(); 2447 SI != SE; ++SI) { 2448 Value *Ptr = stripIntegerCast(*SI); 2449 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2450 "stride.chk"); 2451 // Store the first instruction we create. 2452 FirstInst = getFirstInst(FirstInst, C, Loc); 2453 if (Check) 2454 Check = ChkBuilder.CreateOr(Check, C); 2455 else 2456 Check = C; 2457 } 2458 2459 // We have to do this trickery because the IRBuilder might fold the check to a 2460 // constant expression in which case there is no Instruction anchored in a 2461 // the block. 2462 LLVMContext &Ctx = Loc->getContext(); 2463 Instruction *TheCheck = 2464 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2465 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2466 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2467 2468 return std::make_pair(FirstInst, TheCheck); 2469 } 2470 2471 void InnerLoopVectorizer::createEmptyLoop() { 2472 /* 2473 In this function we generate a new loop. The new loop will contain 2474 the vectorized instructions while the old loop will continue to run the 2475 scalar remainder. 2476 2477 [ ] <-- Back-edge taken count overflow check. 2478 / | 2479 / v 2480 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2481 | / | 2482 | / v 2483 || [ ] <-- vector pre header. 2484 || | 2485 || v 2486 || [ ] \ 2487 || [ ]_| <-- vector loop. 2488 || | 2489 | \ v 2490 | >[ ] <--- middle-block. 2491 | / | 2492 | / v 2493 -|- >[ ] <--- new preheader. 2494 | | 2495 | v 2496 | [ ] \ 2497 | [ ]_| <-- old scalar loop to handle remainder. 2498 \ | 2499 \ v 2500 >[ ] <-- exit block. 2501 ... 2502 */ 2503 2504 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2505 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2506 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2507 assert(BypassBlock && "Invalid loop structure"); 2508 assert(ExitBlock && "Must have an exit block"); 2509 2510 // Some loops have a single integer induction variable, while other loops 2511 // don't. One example is c++ iterators that often have multiple pointer 2512 // induction variables. In the code below we also support a case where we 2513 // don't have a single induction variable. 2514 OldInduction = Legal->getInduction(); 2515 Type *IdxTy = Legal->getWidestInductionType(); 2516 2517 // Find the loop boundaries. 2518 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2519 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2520 2521 // The exit count might have the type of i64 while the phi is i32. This can 2522 // happen if we have an induction variable that is sign extended before the 2523 // compare. The only way that we get a backedge taken count is that the 2524 // induction variable was signed and as such will not overflow. In such a case 2525 // truncation is legal. 2526 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2527 IdxTy->getPrimitiveSizeInBits()) 2528 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2529 2530 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2531 // Get the total trip count from the count by adding 1. 2532 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2533 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2534 2535 const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout(); 2536 2537 // Expand the trip count and place the new instructions in the preheader. 2538 // Notice that the pre-header does not change, only the loop body. 2539 SCEVExpander Exp(*SE, DL, "induction"); 2540 2541 // We need to test whether the backedge-taken count is uint##_max. Adding one 2542 // to it will cause overflow and an incorrect loop trip count in the vector 2543 // body. In case of overflow we want to directly jump to the scalar remainder 2544 // loop. 2545 Value *BackedgeCount = 2546 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2547 BypassBlock->getTerminator()); 2548 if (BackedgeCount->getType()->isPointerTy()) 2549 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2550 "backedge.ptrcnt.to.int", 2551 BypassBlock->getTerminator()); 2552 Instruction *CheckBCOverflow = 2553 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2554 Constant::getAllOnesValue(BackedgeCount->getType()), 2555 "backedge.overflow", BypassBlock->getTerminator()); 2556 2557 // The loop index does not have to start at Zero. Find the original start 2558 // value from the induction PHI node. If we don't have an induction variable 2559 // then we know that it starts at zero. 2560 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2561 Value *StartIdx = ExtendedIdx = OldInduction ? 2562 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2563 IdxTy): 2564 ConstantInt::get(IdxTy, 0); 2565 2566 // We need an instruction to anchor the overflow check on. StartIdx needs to 2567 // be defined before the overflow check branch. Because the scalar preheader 2568 // is going to merge the start index and so the overflow branch block needs to 2569 // contain a definition of the start index. 2570 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2571 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2572 BypassBlock->getTerminator()); 2573 2574 // Count holds the overall loop count (N). 2575 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2576 BypassBlock->getTerminator()); 2577 2578 LoopBypassBlocks.push_back(BypassBlock); 2579 2580 // Split the single block loop into the two loop structure described above. 2581 BasicBlock *VectorPH = 2582 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2583 BasicBlock *VecBody = 2584 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2585 BasicBlock *MiddleBlock = 2586 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2587 BasicBlock *ScalarPH = 2588 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2589 2590 // Create and register the new vector loop. 2591 Loop* Lp = new Loop(); 2592 Loop *ParentLoop = OrigLoop->getParentLoop(); 2593 2594 // Insert the new loop into the loop nest and register the new basic blocks 2595 // before calling any utilities such as SCEV that require valid LoopInfo. 2596 if (ParentLoop) { 2597 ParentLoop->addChildLoop(Lp); 2598 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2599 ParentLoop->addBasicBlockToLoop(VectorPH, *LI); 2600 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2601 } else { 2602 LI->addTopLevelLoop(Lp); 2603 } 2604 Lp->addBasicBlockToLoop(VecBody, *LI); 2605 2606 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2607 // inside the loop. 2608 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2609 2610 // Generate the induction variable. 2611 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2612 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2613 // The loop step is equal to the vectorization factor (num of SIMD elements) 2614 // times the unroll factor (num of SIMD instructions). 2615 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2616 2617 // This is the IR builder that we use to add all of the logic for bypassing 2618 // the new vector loop. 2619 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2620 setDebugLocFromInst(BypassBuilder, 2621 getDebugLocFromInstOrOperands(OldInduction)); 2622 2623 // We may need to extend the index in case there is a type mismatch. 2624 // We know that the count starts at zero and does not overflow. 2625 if (Count->getType() != IdxTy) { 2626 // The exit count can be of pointer type. Convert it to the correct 2627 // integer type. 2628 if (ExitCount->getType()->isPointerTy()) 2629 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2630 else 2631 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2632 } 2633 2634 // Add the start index to the loop count to get the new end index. 2635 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2636 2637 // Now we need to generate the expression for N - (N % VF), which is 2638 // the part that the vectorized body will execute. 2639 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2640 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2641 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2642 "end.idx.rnd.down"); 2643 2644 // Now, compare the new count to zero. If it is zero skip the vector loop and 2645 // jump to the scalar loop. 2646 Value *Cmp = 2647 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2648 2649 BasicBlock *LastBypassBlock = BypassBlock; 2650 2651 // Generate code to check that the loops trip count that we computed by adding 2652 // one to the backedge-taken count will not overflow. 2653 { 2654 auto PastOverflowCheck = 2655 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2656 BasicBlock *CheckBlock = 2657 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2658 if (ParentLoop) 2659 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2660 LoopBypassBlocks.push_back(CheckBlock); 2661 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2662 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2663 OldTerm->eraseFromParent(); 2664 LastBypassBlock = CheckBlock; 2665 } 2666 2667 // Generate the code to check that the strides we assumed to be one are really 2668 // one. We want the new basic block to start at the first instruction in a 2669 // sequence of instructions that form a check. 2670 Instruction *StrideCheck; 2671 Instruction *FirstCheckInst; 2672 std::tie(FirstCheckInst, StrideCheck) = 2673 addStrideCheck(LastBypassBlock->getTerminator()); 2674 if (StrideCheck) { 2675 AddedSafetyChecks = true; 2676 // Create a new block containing the stride check. 2677 BasicBlock *CheckBlock = 2678 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2679 if (ParentLoop) 2680 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2681 LoopBypassBlocks.push_back(CheckBlock); 2682 2683 // Replace the branch into the memory check block with a conditional branch 2684 // for the "few elements case". 2685 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2686 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2687 OldTerm->eraseFromParent(); 2688 2689 Cmp = StrideCheck; 2690 LastBypassBlock = CheckBlock; 2691 } 2692 2693 // Generate the code that checks in runtime if arrays overlap. We put the 2694 // checks into a separate block to make the more common case of few elements 2695 // faster. 2696 Instruction *MemRuntimeCheck; 2697 std::tie(FirstCheckInst, MemRuntimeCheck) = 2698 Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator()); 2699 if (MemRuntimeCheck) { 2700 AddedSafetyChecks = true; 2701 // Create a new block containing the memory check. 2702 BasicBlock *CheckBlock = 2703 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck"); 2704 if (ParentLoop) 2705 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2706 LoopBypassBlocks.push_back(CheckBlock); 2707 2708 // Replace the branch into the memory check block with a conditional branch 2709 // for the "few elements case". 2710 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2711 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2712 OldTerm->eraseFromParent(); 2713 2714 Cmp = MemRuntimeCheck; 2715 LastBypassBlock = CheckBlock; 2716 } 2717 2718 LastBypassBlock->getTerminator()->eraseFromParent(); 2719 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2720 LastBypassBlock); 2721 2722 // We are going to resume the execution of the scalar loop. 2723 // Go over all of the induction variables that we found and fix the 2724 // PHIs that are left in the scalar version of the loop. 2725 // The starting values of PHI nodes depend on the counter of the last 2726 // iteration in the vectorized loop. 2727 // If we come from a bypass edge then we need to start from the original 2728 // start value. 2729 2730 // This variable saves the new starting index for the scalar loop. 2731 PHINode *ResumeIndex = nullptr; 2732 LoopVectorizationLegality::InductionList::iterator I, E; 2733 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2734 // Set builder to point to last bypass block. 2735 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2736 for (I = List->begin(), E = List->end(); I != E; ++I) { 2737 PHINode *OrigPhi = I->first; 2738 LoopVectorizationLegality::InductionInfo II = I->second; 2739 2740 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2741 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2742 MiddleBlock->getTerminator()); 2743 // We might have extended the type of the induction variable but we need a 2744 // truncated version for the scalar loop. 2745 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2746 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2747 MiddleBlock->getTerminator()) : nullptr; 2748 2749 // Create phi nodes to merge from the backedge-taken check block. 2750 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2751 ScalarPH->getTerminator()); 2752 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2753 2754 PHINode *BCTruncResumeVal = nullptr; 2755 if (OrigPhi == OldInduction) { 2756 BCTruncResumeVal = 2757 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2758 ScalarPH->getTerminator()); 2759 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2760 } 2761 2762 Value *EndValue = nullptr; 2763 switch (II.IK) { 2764 case LoopVectorizationLegality::IK_NoInduction: 2765 llvm_unreachable("Unknown induction"); 2766 case LoopVectorizationLegality::IK_IntInduction: { 2767 // Handle the integer induction counter. 2768 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2769 2770 // We have the canonical induction variable. 2771 if (OrigPhi == OldInduction) { 2772 // Create a truncated version of the resume value for the scalar loop, 2773 // we might have promoted the type to a larger width. 2774 EndValue = 2775 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2776 // The new PHI merges the original incoming value, in case of a bypass, 2777 // or the value at the end of the vectorized loop. 2778 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2779 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2780 TruncResumeVal->addIncoming(EndValue, VecBody); 2781 2782 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2783 2784 // We know what the end value is. 2785 EndValue = IdxEndRoundDown; 2786 // We also know which PHI node holds it. 2787 ResumeIndex = ResumeVal; 2788 break; 2789 } 2790 2791 // Not the canonical induction variable - add the vector loop count to the 2792 // start value. 2793 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2794 II.StartValue->getType(), 2795 "cast.crd"); 2796 EndValue = II.transform(BypassBuilder, CRD); 2797 EndValue->setName("ind.end"); 2798 break; 2799 } 2800 case LoopVectorizationLegality::IK_PtrInduction: { 2801 EndValue = II.transform(BypassBuilder, CountRoundDown); 2802 EndValue->setName("ptr.ind.end"); 2803 break; 2804 } 2805 }// end of case 2806 2807 // The new PHI merges the original incoming value, in case of a bypass, 2808 // or the value at the end of the vectorized loop. 2809 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2810 if (OrigPhi == OldInduction) 2811 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2812 else 2813 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2814 } 2815 ResumeVal->addIncoming(EndValue, VecBody); 2816 2817 // Fix the scalar body counter (PHI node). 2818 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2819 2820 // The old induction's phi node in the scalar body needs the truncated 2821 // value. 2822 if (OrigPhi == OldInduction) { 2823 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2824 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2825 } else { 2826 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2827 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2828 } 2829 } 2830 2831 // If we are generating a new induction variable then we also need to 2832 // generate the code that calculates the exit value. This value is not 2833 // simply the end of the counter because we may skip the vectorized body 2834 // in case of a runtime check. 2835 if (!OldInduction){ 2836 assert(!ResumeIndex && "Unexpected resume value found"); 2837 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2838 MiddleBlock->getTerminator()); 2839 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2840 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2841 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2842 } 2843 2844 // Make sure that we found the index where scalar loop needs to continue. 2845 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2846 "Invalid resume Index"); 2847 2848 // Add a check in the middle block to see if we have completed 2849 // all of the iterations in the first vector loop. 2850 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2851 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2852 ResumeIndex, "cmp.n", 2853 MiddleBlock->getTerminator()); 2854 2855 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2856 // Remove the old terminator. 2857 MiddleBlock->getTerminator()->eraseFromParent(); 2858 2859 // Create i+1 and fill the PHINode. 2860 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2861 Induction->addIncoming(StartIdx, VectorPH); 2862 Induction->addIncoming(NextIdx, VecBody); 2863 // Create the compare. 2864 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2865 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2866 2867 // Now we have two terminators. Remove the old one from the block. 2868 VecBody->getTerminator()->eraseFromParent(); 2869 2870 // Get ready to start creating new instructions into the vectorized body. 2871 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2872 2873 // Save the state. 2874 LoopVectorPreHeader = VectorPH; 2875 LoopScalarPreHeader = ScalarPH; 2876 LoopMiddleBlock = MiddleBlock; 2877 LoopExitBlock = ExitBlock; 2878 LoopVectorBody.push_back(VecBody); 2879 LoopScalarBody = OldBasicBlock; 2880 2881 LoopVectorizeHints Hints(Lp, true); 2882 Hints.setAlreadyVectorized(); 2883 } 2884 2885 namespace { 2886 struct CSEDenseMapInfo { 2887 static bool canHandle(Instruction *I) { 2888 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2889 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2890 } 2891 static inline Instruction *getEmptyKey() { 2892 return DenseMapInfo<Instruction *>::getEmptyKey(); 2893 } 2894 static inline Instruction *getTombstoneKey() { 2895 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2896 } 2897 static unsigned getHashValue(Instruction *I) { 2898 assert(canHandle(I) && "Unknown instruction!"); 2899 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2900 I->value_op_end())); 2901 } 2902 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2903 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2904 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2905 return LHS == RHS; 2906 return LHS->isIdenticalTo(RHS); 2907 } 2908 }; 2909 } // namespace 2910 2911 /// \brief Check whether this block is a predicated block. 2912 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2913 /// = ...; " blocks. We start with one vectorized basic block. For every 2914 /// conditional block we split this vectorized block. Therefore, every second 2915 /// block will be a predicated one. 2916 static bool isPredicatedBlock(unsigned BlockNum) { 2917 return BlockNum % 2; 2918 } 2919 2920 ///\brief Perform cse of induction variable instructions. 2921 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2922 // Perform simple cse. 2923 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2924 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2925 BasicBlock *BB = BBs[i]; 2926 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2927 Instruction *In = I++; 2928 2929 if (!CSEDenseMapInfo::canHandle(In)) 2930 continue; 2931 2932 // Check if we can replace this instruction with any of the 2933 // visited instructions. 2934 if (Instruction *V = CSEMap.lookup(In)) { 2935 In->replaceAllUsesWith(V); 2936 In->eraseFromParent(); 2937 continue; 2938 } 2939 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2940 // ...;" blocks for predicated stores. Every second block is a predicated 2941 // block. 2942 if (isPredicatedBlock(i)) 2943 continue; 2944 2945 CSEMap[In] = In; 2946 } 2947 } 2948 } 2949 2950 /// \brief Adds a 'fast' flag to floating point operations. 2951 static Value *addFastMathFlag(Value *V) { 2952 if (isa<FPMathOperator>(V)){ 2953 FastMathFlags Flags; 2954 Flags.setUnsafeAlgebra(); 2955 cast<Instruction>(V)->setFastMathFlags(Flags); 2956 } 2957 return V; 2958 } 2959 2960 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 2961 /// the result needs to be inserted and/or extracted from vectors. 2962 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 2963 const TargetTransformInfo &TTI) { 2964 if (Ty->isVoidTy()) 2965 return 0; 2966 2967 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 2968 unsigned Cost = 0; 2969 2970 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 2971 if (Insert) 2972 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 2973 if (Extract) 2974 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 2975 } 2976 2977 return Cost; 2978 } 2979 2980 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 2981 // Return the cost of the instruction, including scalarization overhead if it's 2982 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 2983 // i.e. either vector version isn't available, or is too expensive. 2984 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 2985 const TargetTransformInfo &TTI, 2986 const TargetLibraryInfo *TLI, 2987 bool &NeedToScalarize) { 2988 Function *F = CI->getCalledFunction(); 2989 StringRef FnName = CI->getCalledFunction()->getName(); 2990 Type *ScalarRetTy = CI->getType(); 2991 SmallVector<Type *, 4> Tys, ScalarTys; 2992 for (auto &ArgOp : CI->arg_operands()) 2993 ScalarTys.push_back(ArgOp->getType()); 2994 2995 // Estimate cost of scalarized vector call. The source operands are assumed 2996 // to be vectors, so we need to extract individual elements from there, 2997 // execute VF scalar calls, and then gather the result into the vector return 2998 // value. 2999 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3000 if (VF == 1) 3001 return ScalarCallCost; 3002 3003 // Compute corresponding vector type for return value and arguments. 3004 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3005 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3006 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3007 3008 // Compute costs of unpacking argument values for the scalar calls and 3009 // packing the return values to a vector. 3010 unsigned ScalarizationCost = 3011 getScalarizationOverhead(RetTy, true, false, TTI); 3012 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3013 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3014 3015 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3016 3017 // If we can't emit a vector call for this function, then the currently found 3018 // cost is the cost we need to return. 3019 NeedToScalarize = true; 3020 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3021 return Cost; 3022 3023 // If the corresponding vector cost is cheaper, return its cost. 3024 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3025 if (VectorCallCost < Cost) { 3026 NeedToScalarize = false; 3027 return VectorCallCost; 3028 } 3029 return Cost; 3030 } 3031 3032 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3033 // factor VF. Return the cost of the instruction, including scalarization 3034 // overhead if it's needed. 3035 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3036 const TargetTransformInfo &TTI, 3037 const TargetLibraryInfo *TLI) { 3038 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3039 assert(ID && "Expected intrinsic call!"); 3040 3041 Type *RetTy = ToVectorTy(CI->getType(), VF); 3042 SmallVector<Type *, 4> Tys; 3043 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3044 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3045 3046 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 3047 } 3048 3049 void InnerLoopVectorizer::vectorizeLoop() { 3050 //===------------------------------------------------===// 3051 // 3052 // Notice: any optimization or new instruction that go 3053 // into the code below should be also be implemented in 3054 // the cost-model. 3055 // 3056 //===------------------------------------------------===// 3057 Constant *Zero = Builder.getInt32(0); 3058 3059 // In order to support reduction variables we need to be able to vectorize 3060 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 3061 // stages. First, we create a new vector PHI node with no incoming edges. 3062 // We use this value when we vectorize all of the instructions that use the 3063 // PHI. Next, after all of the instructions in the block are complete we 3064 // add the new incoming edges to the PHI. At this point all of the 3065 // instructions in the basic block are vectorized, so we can use them to 3066 // construct the PHI. 3067 PhiVector RdxPHIsToFix; 3068 3069 // Scan the loop in a topological order to ensure that defs are vectorized 3070 // before users. 3071 LoopBlocksDFS DFS(OrigLoop); 3072 DFS.perform(LI); 3073 3074 // Vectorize all of the blocks in the original loop. 3075 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3076 be = DFS.endRPO(); bb != be; ++bb) 3077 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 3078 3079 // At this point every instruction in the original loop is widened to 3080 // a vector form. We are almost done. Now, we need to fix the PHI nodes 3081 // that we vectorized. The PHI nodes are currently empty because we did 3082 // not want to introduce cycles. Notice that the remaining PHI nodes 3083 // that we need to fix are reduction variables. 3084 3085 // Create the 'reduced' values for each of the induction vars. 3086 // The reduced values are the vector values that we scalarize and combine 3087 // after the loop is finished. 3088 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 3089 it != e; ++it) { 3090 PHINode *RdxPhi = *it; 3091 assert(RdxPhi && "Unable to recover vectorized PHI"); 3092 3093 // Find the reduction variable descriptor. 3094 assert(Legal->getReductionVars()->count(RdxPhi) && 3095 "Unable to find the reduction variable"); 3096 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 3097 3098 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3099 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3100 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3101 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3102 RdxDesc.getMinMaxRecurrenceKind(); 3103 setDebugLocFromInst(Builder, ReductionStartValue); 3104 3105 // We need to generate a reduction vector from the incoming scalar. 3106 // To do so, we need to generate the 'identity' vector and override 3107 // one of the elements with the incoming scalar reduction. We need 3108 // to do it in the vector-loop preheader. 3109 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3110 3111 // This is the vector-clone of the value that leaves the loop. 3112 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3113 Type *VecTy = VectorExit[0]->getType(); 3114 3115 // Find the reduction identity variable. Zero for addition, or, xor, 3116 // one for multiplication, -1 for And. 3117 Value *Identity; 3118 Value *VectorStart; 3119 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3120 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3121 // MinMax reduction have the start value as their identify. 3122 if (VF == 1) { 3123 VectorStart = Identity = ReductionStartValue; 3124 } else { 3125 VectorStart = Identity = 3126 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3127 } 3128 } else { 3129 // Handle other reduction kinds: 3130 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3131 RK, VecTy->getScalarType()); 3132 if (VF == 1) { 3133 Identity = Iden; 3134 // This vector is the Identity vector where the first element is the 3135 // incoming scalar reduction. 3136 VectorStart = ReductionStartValue; 3137 } else { 3138 Identity = ConstantVector::getSplat(VF, Iden); 3139 3140 // This vector is the Identity vector where the first element is the 3141 // incoming scalar reduction. 3142 VectorStart = 3143 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3144 } 3145 } 3146 3147 // Fix the vector-loop phi. 3148 3149 // Reductions do not have to start at zero. They can start with 3150 // any loop invariant values. 3151 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 3152 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3153 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 3154 VectorParts &Val = getVectorValue(LoopVal); 3155 for (unsigned part = 0; part < UF; ++part) { 3156 // Make sure to add the reduction stat value only to the 3157 // first unroll part. 3158 Value *StartVal = (part == 0) ? VectorStart : Identity; 3159 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3160 LoopVectorPreHeader); 3161 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3162 LoopVectorBody.back()); 3163 } 3164 3165 // Before each round, move the insertion point right between 3166 // the PHIs and the values we are going to write. 3167 // This allows us to write both PHINodes and the extractelement 3168 // instructions. 3169 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 3170 3171 VectorParts RdxParts; 3172 setDebugLocFromInst(Builder, LoopExitInst); 3173 for (unsigned part = 0; part < UF; ++part) { 3174 // This PHINode contains the vectorized reduction variable, or 3175 // the initial value vector, if we bypass the vector loop. 3176 VectorParts &RdxExitVal = getVectorValue(LoopExitInst); 3177 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 3178 Value *StartVal = (part == 0) ? VectorStart : Identity; 3179 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3180 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 3181 NewPhi->addIncoming(RdxExitVal[part], 3182 LoopVectorBody.back()); 3183 RdxParts.push_back(NewPhi); 3184 } 3185 3186 // Reduce all of the unrolled parts into a single vector. 3187 Value *ReducedPartRdx = RdxParts[0]; 3188 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3189 setDebugLocFromInst(Builder, ReducedPartRdx); 3190 for (unsigned part = 1; part < UF; ++part) { 3191 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3192 // Floating point operations had to be 'fast' to enable the reduction. 3193 ReducedPartRdx = addFastMathFlag( 3194 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3195 ReducedPartRdx, "bin.rdx")); 3196 else 3197 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3198 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3199 } 3200 3201 if (VF > 1) { 3202 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3203 // and vector ops, reducing the set of values being computed by half each 3204 // round. 3205 assert(isPowerOf2_32(VF) && 3206 "Reduction emission only supported for pow2 vectors!"); 3207 Value *TmpVec = ReducedPartRdx; 3208 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3209 for (unsigned i = VF; i != 1; i >>= 1) { 3210 // Move the upper half of the vector to the lower half. 3211 for (unsigned j = 0; j != i/2; ++j) 3212 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3213 3214 // Fill the rest of the mask with undef. 3215 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3216 UndefValue::get(Builder.getInt32Ty())); 3217 3218 Value *Shuf = 3219 Builder.CreateShuffleVector(TmpVec, 3220 UndefValue::get(TmpVec->getType()), 3221 ConstantVector::get(ShuffleMask), 3222 "rdx.shuf"); 3223 3224 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3225 // Floating point operations had to be 'fast' to enable the reduction. 3226 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3227 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3228 else 3229 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3230 TmpVec, Shuf); 3231 } 3232 3233 // The result is in the first element of the vector. 3234 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3235 Builder.getInt32(0)); 3236 } 3237 3238 // Create a phi node that merges control-flow from the backedge-taken check 3239 // block and the middle block. 3240 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 3241 LoopScalarPreHeader->getTerminator()); 3242 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[0]); 3243 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3244 3245 // Now, we need to fix the users of the reduction variable 3246 // inside and outside of the scalar remainder loop. 3247 // We know that the loop is in LCSSA form. We need to update the 3248 // PHI nodes in the exit blocks. 3249 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3250 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3251 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3252 if (!LCSSAPhi) break; 3253 3254 // All PHINodes need to have a single entry edge, or two if 3255 // we already fixed them. 3256 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3257 3258 // We found our reduction value exit-PHI. Update it with the 3259 // incoming bypass edge. 3260 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3261 // Add an edge coming from the bypass. 3262 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3263 break; 3264 } 3265 }// end of the LCSSA phi scan. 3266 3267 // Fix the scalar loop reduction variable with the incoming reduction sum 3268 // from the vector body and from the backedge value. 3269 int IncomingEdgeBlockIdx = 3270 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3271 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3272 // Pick the other block. 3273 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3274 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3275 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3276 }// end of for each redux variable. 3277 3278 fixLCSSAPHIs(); 3279 3280 // Remove redundant induction instructions. 3281 cse(LoopVectorBody); 3282 } 3283 3284 void InnerLoopVectorizer::fixLCSSAPHIs() { 3285 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3286 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3287 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3288 if (!LCSSAPhi) break; 3289 if (LCSSAPhi->getNumIncomingValues() == 1) 3290 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3291 LoopMiddleBlock); 3292 } 3293 } 3294 3295 InnerLoopVectorizer::VectorParts 3296 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3297 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3298 "Invalid edge"); 3299 3300 // Look for cached value. 3301 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3302 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3303 if (ECEntryIt != MaskCache.end()) 3304 return ECEntryIt->second; 3305 3306 VectorParts SrcMask = createBlockInMask(Src); 3307 3308 // The terminator has to be a branch inst! 3309 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3310 assert(BI && "Unexpected terminator found"); 3311 3312 if (BI->isConditional()) { 3313 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3314 3315 if (BI->getSuccessor(0) != Dst) 3316 for (unsigned part = 0; part < UF; ++part) 3317 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3318 3319 for (unsigned part = 0; part < UF; ++part) 3320 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3321 3322 MaskCache[Edge] = EdgeMask; 3323 return EdgeMask; 3324 } 3325 3326 MaskCache[Edge] = SrcMask; 3327 return SrcMask; 3328 } 3329 3330 InnerLoopVectorizer::VectorParts 3331 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3332 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3333 3334 // Loop incoming mask is all-one. 3335 if (OrigLoop->getHeader() == BB) { 3336 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3337 return getVectorValue(C); 3338 } 3339 3340 // This is the block mask. We OR all incoming edges, and with zero. 3341 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3342 VectorParts BlockMask = getVectorValue(Zero); 3343 3344 // For each pred: 3345 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3346 VectorParts EM = createEdgeMask(*it, BB); 3347 for (unsigned part = 0; part < UF; ++part) 3348 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3349 } 3350 3351 return BlockMask; 3352 } 3353 3354 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3355 InnerLoopVectorizer::VectorParts &Entry, 3356 unsigned UF, unsigned VF, PhiVector *PV) { 3357 PHINode* P = cast<PHINode>(PN); 3358 // Handle reduction variables: 3359 if (Legal->getReductionVars()->count(P)) { 3360 for (unsigned part = 0; part < UF; ++part) { 3361 // This is phase one of vectorizing PHIs. 3362 Type *VecTy = (VF == 1) ? PN->getType() : 3363 VectorType::get(PN->getType(), VF); 3364 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3365 LoopVectorBody.back()-> getFirstInsertionPt()); 3366 } 3367 PV->push_back(P); 3368 return; 3369 } 3370 3371 setDebugLocFromInst(Builder, P); 3372 // Check for PHI nodes that are lowered to vector selects. 3373 if (P->getParent() != OrigLoop->getHeader()) { 3374 // We know that all PHIs in non-header blocks are converted into 3375 // selects, so we don't have to worry about the insertion order and we 3376 // can just use the builder. 3377 // At this point we generate the predication tree. There may be 3378 // duplications since this is a simple recursive scan, but future 3379 // optimizations will clean it up. 3380 3381 unsigned NumIncoming = P->getNumIncomingValues(); 3382 3383 // Generate a sequence of selects of the form: 3384 // SELECT(Mask3, In3, 3385 // SELECT(Mask2, In2, 3386 // ( ...))) 3387 for (unsigned In = 0; In < NumIncoming; In++) { 3388 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3389 P->getParent()); 3390 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3391 3392 for (unsigned part = 0; part < UF; ++part) { 3393 // We might have single edge PHIs (blocks) - use an identity 3394 // 'select' for the first PHI operand. 3395 if (In == 0) 3396 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3397 In0[part]); 3398 else 3399 // Select between the current value and the previous incoming edge 3400 // based on the incoming mask. 3401 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3402 Entry[part], "predphi"); 3403 } 3404 } 3405 return; 3406 } 3407 3408 // This PHINode must be an induction variable. 3409 // Make sure that we know about it. 3410 assert(Legal->getInductionVars()->count(P) && 3411 "Not an induction variable"); 3412 3413 LoopVectorizationLegality::InductionInfo II = 3414 Legal->getInductionVars()->lookup(P); 3415 3416 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3417 // which can be found from the original scalar operations. 3418 switch (II.IK) { 3419 case LoopVectorizationLegality::IK_NoInduction: 3420 llvm_unreachable("Unknown induction"); 3421 case LoopVectorizationLegality::IK_IntInduction: { 3422 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3423 Type *PhiTy = P->getType(); 3424 Value *Broadcasted; 3425 if (P == OldInduction) { 3426 // Handle the canonical induction variable. We might have had to 3427 // extend the type. 3428 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3429 } else { 3430 // Handle other induction variables that are now based on the 3431 // canonical one. 3432 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3433 "normalized.idx"); 3434 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3435 Broadcasted = II.transform(Builder, NormalizedIdx); 3436 Broadcasted->setName("offset.idx"); 3437 } 3438 Broadcasted = getBroadcastInstrs(Broadcasted); 3439 // After broadcasting the induction variable we need to make the vector 3440 // consecutive by adding 0, 1, 2, etc. 3441 for (unsigned part = 0; part < UF; ++part) 3442 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 3443 return; 3444 } 3445 case LoopVectorizationLegality::IK_PtrInduction: 3446 // Handle the pointer induction variable case. 3447 assert(P->getType()->isPointerTy() && "Unexpected type."); 3448 // This is the normalized GEP that starts counting at zero. 3449 Value *NormalizedIdx = 3450 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 3451 // This is the vector of results. Notice that we don't generate 3452 // vector geps because scalar geps result in better code. 3453 for (unsigned part = 0; part < UF; ++part) { 3454 if (VF == 1) { 3455 int EltIndex = part; 3456 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3457 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3458 Value *SclrGep = II.transform(Builder, GlobalIdx); 3459 SclrGep->setName("next.gep"); 3460 Entry[part] = SclrGep; 3461 continue; 3462 } 3463 3464 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3465 for (unsigned int i = 0; i < VF; ++i) { 3466 int EltIndex = i + part * VF; 3467 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3468 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3469 Value *SclrGep = II.transform(Builder, GlobalIdx); 3470 SclrGep->setName("next.gep"); 3471 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3472 Builder.getInt32(i), 3473 "insert.gep"); 3474 } 3475 Entry[part] = VecVal; 3476 } 3477 return; 3478 } 3479 } 3480 3481 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3482 // For each instruction in the old loop. 3483 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3484 VectorParts &Entry = WidenMap.get(it); 3485 switch (it->getOpcode()) { 3486 case Instruction::Br: 3487 // Nothing to do for PHIs and BR, since we already took care of the 3488 // loop control flow instructions. 3489 continue; 3490 case Instruction::PHI: { 3491 // Vectorize PHINodes. 3492 widenPHIInstruction(it, Entry, UF, VF, PV); 3493 continue; 3494 }// End of PHI. 3495 3496 case Instruction::Add: 3497 case Instruction::FAdd: 3498 case Instruction::Sub: 3499 case Instruction::FSub: 3500 case Instruction::Mul: 3501 case Instruction::FMul: 3502 case Instruction::UDiv: 3503 case Instruction::SDiv: 3504 case Instruction::FDiv: 3505 case Instruction::URem: 3506 case Instruction::SRem: 3507 case Instruction::FRem: 3508 case Instruction::Shl: 3509 case Instruction::LShr: 3510 case Instruction::AShr: 3511 case Instruction::And: 3512 case Instruction::Or: 3513 case Instruction::Xor: { 3514 // Just widen binops. 3515 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3516 setDebugLocFromInst(Builder, BinOp); 3517 VectorParts &A = getVectorValue(it->getOperand(0)); 3518 VectorParts &B = getVectorValue(it->getOperand(1)); 3519 3520 // Use this vector value for all users of the original instruction. 3521 for (unsigned Part = 0; Part < UF; ++Part) { 3522 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3523 3524 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3525 VecOp->copyIRFlags(BinOp); 3526 3527 Entry[Part] = V; 3528 } 3529 3530 propagateMetadata(Entry, it); 3531 break; 3532 } 3533 case Instruction::Select: { 3534 // Widen selects. 3535 // If the selector is loop invariant we can create a select 3536 // instruction with a scalar condition. Otherwise, use vector-select. 3537 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3538 OrigLoop); 3539 setDebugLocFromInst(Builder, it); 3540 3541 // The condition can be loop invariant but still defined inside the 3542 // loop. This means that we can't just use the original 'cond' value. 3543 // We have to take the 'vectorized' value and pick the first lane. 3544 // Instcombine will make this a no-op. 3545 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3546 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3547 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3548 3549 Value *ScalarCond = (VF == 1) ? Cond[0] : 3550 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3551 3552 for (unsigned Part = 0; Part < UF; ++Part) { 3553 Entry[Part] = Builder.CreateSelect( 3554 InvariantCond ? ScalarCond : Cond[Part], 3555 Op0[Part], 3556 Op1[Part]); 3557 } 3558 3559 propagateMetadata(Entry, it); 3560 break; 3561 } 3562 3563 case Instruction::ICmp: 3564 case Instruction::FCmp: { 3565 // Widen compares. Generate vector compares. 3566 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3567 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3568 setDebugLocFromInst(Builder, it); 3569 VectorParts &A = getVectorValue(it->getOperand(0)); 3570 VectorParts &B = getVectorValue(it->getOperand(1)); 3571 for (unsigned Part = 0; Part < UF; ++Part) { 3572 Value *C = nullptr; 3573 if (FCmp) 3574 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3575 else 3576 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3577 Entry[Part] = C; 3578 } 3579 3580 propagateMetadata(Entry, it); 3581 break; 3582 } 3583 3584 case Instruction::Store: 3585 case Instruction::Load: 3586 vectorizeMemoryInstruction(it); 3587 break; 3588 case Instruction::ZExt: 3589 case Instruction::SExt: 3590 case Instruction::FPToUI: 3591 case Instruction::FPToSI: 3592 case Instruction::FPExt: 3593 case Instruction::PtrToInt: 3594 case Instruction::IntToPtr: 3595 case Instruction::SIToFP: 3596 case Instruction::UIToFP: 3597 case Instruction::Trunc: 3598 case Instruction::FPTrunc: 3599 case Instruction::BitCast: { 3600 CastInst *CI = dyn_cast<CastInst>(it); 3601 setDebugLocFromInst(Builder, it); 3602 /// Optimize the special case where the source is the induction 3603 /// variable. Notice that we can only optimize the 'trunc' case 3604 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3605 /// c. other casts depend on pointer size. 3606 if (CI->getOperand(0) == OldInduction && 3607 it->getOpcode() == Instruction::Trunc) { 3608 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3609 CI->getType()); 3610 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3611 LoopVectorizationLegality::InductionInfo II = 3612 Legal->getInductionVars()->lookup(OldInduction); 3613 Constant *Step = 3614 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3615 for (unsigned Part = 0; Part < UF; ++Part) 3616 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3617 propagateMetadata(Entry, it); 3618 break; 3619 } 3620 /// Vectorize casts. 3621 Type *DestTy = (VF == 1) ? CI->getType() : 3622 VectorType::get(CI->getType(), VF); 3623 3624 VectorParts &A = getVectorValue(it->getOperand(0)); 3625 for (unsigned Part = 0; Part < UF; ++Part) 3626 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3627 propagateMetadata(Entry, it); 3628 break; 3629 } 3630 3631 case Instruction::Call: { 3632 // Ignore dbg intrinsics. 3633 if (isa<DbgInfoIntrinsic>(it)) 3634 break; 3635 setDebugLocFromInst(Builder, it); 3636 3637 Module *M = BB->getParent()->getParent(); 3638 CallInst *CI = cast<CallInst>(it); 3639 3640 StringRef FnName = CI->getCalledFunction()->getName(); 3641 Function *F = CI->getCalledFunction(); 3642 Type *RetTy = ToVectorTy(CI->getType(), VF); 3643 SmallVector<Type *, 4> Tys; 3644 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3645 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3646 3647 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3648 if (ID && 3649 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3650 ID == Intrinsic::lifetime_start)) { 3651 scalarizeInstruction(it); 3652 break; 3653 } 3654 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3655 // version of the instruction. 3656 // Is it beneficial to perform intrinsic call compared to lib call? 3657 bool NeedToScalarize; 3658 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3659 bool UseVectorIntrinsic = 3660 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3661 if (!UseVectorIntrinsic && NeedToScalarize) { 3662 scalarizeInstruction(it); 3663 break; 3664 } 3665 3666 for (unsigned Part = 0; Part < UF; ++Part) { 3667 SmallVector<Value *, 4> Args; 3668 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3669 Value *Arg = CI->getArgOperand(i); 3670 // Some intrinsics have a scalar argument - don't replace it with a 3671 // vector. 3672 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3673 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3674 Arg = VectorArg[Part]; 3675 } 3676 Args.push_back(Arg); 3677 } 3678 3679 Function *VectorF; 3680 if (UseVectorIntrinsic) { 3681 // Use vector version of the intrinsic. 3682 Type *TysForDecl[] = {CI->getType()}; 3683 if (VF > 1) 3684 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3685 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3686 } else { 3687 // Use vector version of the library call. 3688 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3689 assert(!VFnName.empty() && "Vector function name is empty."); 3690 VectorF = M->getFunction(VFnName); 3691 if (!VectorF) { 3692 // Generate a declaration 3693 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3694 VectorF = 3695 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3696 VectorF->copyAttributesFrom(F); 3697 } 3698 } 3699 assert(VectorF && "Can't create vector function."); 3700 Entry[Part] = Builder.CreateCall(VectorF, Args); 3701 } 3702 3703 propagateMetadata(Entry, it); 3704 break; 3705 } 3706 3707 default: 3708 // All other instructions are unsupported. Scalarize them. 3709 scalarizeInstruction(it); 3710 break; 3711 }// end of switch. 3712 }// end of for_each instr. 3713 } 3714 3715 void InnerLoopVectorizer::updateAnalysis() { 3716 // Forget the original basic block. 3717 SE->forgetLoop(OrigLoop); 3718 3719 // Update the dominator tree information. 3720 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3721 "Entry does not dominate exit."); 3722 3723 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3724 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3725 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3726 3727 // Due to if predication of stores we might create a sequence of "if(pred) 3728 // a[i] = ...; " blocks. 3729 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3730 if (i == 0) 3731 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3732 else if (isPredicatedBlock(i)) { 3733 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3734 } else { 3735 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3736 } 3737 } 3738 3739 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3740 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3741 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3742 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3743 3744 DEBUG(DT->verifyDomTree()); 3745 } 3746 3747 /// \brief Check whether it is safe to if-convert this phi node. 3748 /// 3749 /// Phi nodes with constant expressions that can trap are not safe to if 3750 /// convert. 3751 static bool canIfConvertPHINodes(BasicBlock *BB) { 3752 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3753 PHINode *Phi = dyn_cast<PHINode>(I); 3754 if (!Phi) 3755 return true; 3756 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3757 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3758 if (C->canTrap()) 3759 return false; 3760 } 3761 return true; 3762 } 3763 3764 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3765 if (!EnableIfConversion) { 3766 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3767 return false; 3768 } 3769 3770 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3771 3772 // A list of pointers that we can safely read and write to. 3773 SmallPtrSet<Value *, 8> SafePointes; 3774 3775 // Collect safe addresses. 3776 for (Loop::block_iterator BI = TheLoop->block_begin(), 3777 BE = TheLoop->block_end(); BI != BE; ++BI) { 3778 BasicBlock *BB = *BI; 3779 3780 if (blockNeedsPredication(BB)) 3781 continue; 3782 3783 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3784 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3785 SafePointes.insert(LI->getPointerOperand()); 3786 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3787 SafePointes.insert(SI->getPointerOperand()); 3788 } 3789 } 3790 3791 // Collect the blocks that need predication. 3792 BasicBlock *Header = TheLoop->getHeader(); 3793 for (Loop::block_iterator BI = TheLoop->block_begin(), 3794 BE = TheLoop->block_end(); BI != BE; ++BI) { 3795 BasicBlock *BB = *BI; 3796 3797 // We don't support switch statements inside loops. 3798 if (!isa<BranchInst>(BB->getTerminator())) { 3799 emitAnalysis(VectorizationReport(BB->getTerminator()) 3800 << "loop contains a switch statement"); 3801 return false; 3802 } 3803 3804 // We must be able to predicate all blocks that need to be predicated. 3805 if (blockNeedsPredication(BB)) { 3806 if (!blockCanBePredicated(BB, SafePointes)) { 3807 emitAnalysis(VectorizationReport(BB->getTerminator()) 3808 << "control flow cannot be substituted for a select"); 3809 return false; 3810 } 3811 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3812 emitAnalysis(VectorizationReport(BB->getTerminator()) 3813 << "control flow cannot be substituted for a select"); 3814 return false; 3815 } 3816 } 3817 3818 // We can if-convert this loop. 3819 return true; 3820 } 3821 3822 bool LoopVectorizationLegality::canVectorize() { 3823 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3824 // be canonicalized. 3825 if (!TheLoop->getLoopPreheader()) { 3826 emitAnalysis( 3827 VectorizationReport() << 3828 "loop control flow is not understood by vectorizer"); 3829 return false; 3830 } 3831 3832 // We can only vectorize innermost loops. 3833 if (!TheLoop->getSubLoopsVector().empty()) { 3834 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3835 return false; 3836 } 3837 3838 // We must have a single backedge. 3839 if (TheLoop->getNumBackEdges() != 1) { 3840 emitAnalysis( 3841 VectorizationReport() << 3842 "loop control flow is not understood by vectorizer"); 3843 return false; 3844 } 3845 3846 // We must have a single exiting block. 3847 if (!TheLoop->getExitingBlock()) { 3848 emitAnalysis( 3849 VectorizationReport() << 3850 "loop control flow is not understood by vectorizer"); 3851 return false; 3852 } 3853 3854 // We only handle bottom-tested loops, i.e. loop in which the condition is 3855 // checked at the end of each iteration. With that we can assume that all 3856 // instructions in the loop are executed the same number of times. 3857 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3858 emitAnalysis( 3859 VectorizationReport() << 3860 "loop control flow is not understood by vectorizer"); 3861 return false; 3862 } 3863 3864 // We need to have a loop header. 3865 DEBUG(dbgs() << "LV: Found a loop: " << 3866 TheLoop->getHeader()->getName() << '\n'); 3867 3868 // Check if we can if-convert non-single-bb loops. 3869 unsigned NumBlocks = TheLoop->getNumBlocks(); 3870 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3871 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3872 return false; 3873 } 3874 3875 // ScalarEvolution needs to be able to find the exit count. 3876 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3877 if (ExitCount == SE->getCouldNotCompute()) { 3878 emitAnalysis(VectorizationReport() << 3879 "could not determine number of loop iterations"); 3880 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3881 return false; 3882 } 3883 3884 // Check if we can vectorize the instructions and CFG in this loop. 3885 if (!canVectorizeInstrs()) { 3886 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3887 return false; 3888 } 3889 3890 // Go over each instruction and look at memory deps. 3891 if (!canVectorizeMemory()) { 3892 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3893 return false; 3894 } 3895 3896 // Collect all of the variables that remain uniform after vectorization. 3897 collectLoopUniforms(); 3898 3899 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3900 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3901 "") 3902 <<"!\n"); 3903 3904 // Analyze interleaved memory accesses. 3905 if (EnableInterleavedMemAccesses) 3906 InterleaveInfo.analyzeInterleaving(Strides); 3907 3908 // Okay! We can vectorize. At this point we don't have any other mem analysis 3909 // which may limit our maximum vectorization factor, so just return true with 3910 // no restrictions. 3911 return true; 3912 } 3913 3914 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3915 if (Ty->isPointerTy()) 3916 return DL.getIntPtrType(Ty); 3917 3918 // It is possible that char's or short's overflow when we ask for the loop's 3919 // trip count, work around this by changing the type size. 3920 if (Ty->getScalarSizeInBits() < 32) 3921 return Type::getInt32Ty(Ty->getContext()); 3922 3923 return Ty; 3924 } 3925 3926 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3927 Ty0 = convertPointerToIntegerType(DL, Ty0); 3928 Ty1 = convertPointerToIntegerType(DL, Ty1); 3929 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3930 return Ty0; 3931 return Ty1; 3932 } 3933 3934 /// \brief Check that the instruction has outside loop users and is not an 3935 /// identified reduction variable. 3936 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3937 SmallPtrSetImpl<Value *> &Reductions) { 3938 // Reduction instructions are allowed to have exit users. All other 3939 // instructions must not have external users. 3940 if (!Reductions.count(Inst)) 3941 //Check that all of the users of the loop are inside the BB. 3942 for (User *U : Inst->users()) { 3943 Instruction *UI = cast<Instruction>(U); 3944 // This user may be a reduction exit value. 3945 if (!TheLoop->contains(UI)) { 3946 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3947 return true; 3948 } 3949 } 3950 return false; 3951 } 3952 3953 bool LoopVectorizationLegality::canVectorizeInstrs() { 3954 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3955 BasicBlock *Header = TheLoop->getHeader(); 3956 3957 // Look for the attribute signaling the absence of NaNs. 3958 Function &F = *Header->getParent(); 3959 const DataLayout &DL = F.getParent()->getDataLayout(); 3960 if (F.hasFnAttribute("no-nans-fp-math")) 3961 HasFunNoNaNAttr = 3962 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3963 3964 // For each block in the loop. 3965 for (Loop::block_iterator bb = TheLoop->block_begin(), 3966 be = TheLoop->block_end(); bb != be; ++bb) { 3967 3968 // Scan the instructions in the block and look for hazards. 3969 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3970 ++it) { 3971 3972 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3973 Type *PhiTy = Phi->getType(); 3974 // Check that this PHI type is allowed. 3975 if (!PhiTy->isIntegerTy() && 3976 !PhiTy->isFloatingPointTy() && 3977 !PhiTy->isPointerTy()) { 3978 emitAnalysis(VectorizationReport(it) 3979 << "loop control flow is not understood by vectorizer"); 3980 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3981 return false; 3982 } 3983 3984 // If this PHINode is not in the header block, then we know that we 3985 // can convert it to select during if-conversion. No need to check if 3986 // the PHIs in this block are induction or reduction variables. 3987 if (*bb != Header) { 3988 // Check that this instruction has no outside users or is an 3989 // identified reduction value with an outside user. 3990 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3991 continue; 3992 emitAnalysis(VectorizationReport(it) << 3993 "value could not be identified as " 3994 "an induction or reduction variable"); 3995 return false; 3996 } 3997 3998 // We only allow if-converted PHIs with exactly two incoming values. 3999 if (Phi->getNumIncomingValues() != 2) { 4000 emitAnalysis(VectorizationReport(it) 4001 << "control flow not understood by vectorizer"); 4002 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4003 return false; 4004 } 4005 4006 // This is the value coming from the preheader. 4007 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 4008 ConstantInt *StepValue = nullptr; 4009 // Check if this is an induction variable. 4010 InductionKind IK = isInductionVariable(Phi, StepValue); 4011 4012 if (IK_NoInduction != IK) { 4013 // Get the widest type. 4014 if (!WidestIndTy) 4015 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4016 else 4017 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4018 4019 // Int inductions are special because we only allow one IV. 4020 if (IK == IK_IntInduction && StepValue->isOne()) { 4021 // Use the phi node with the widest type as induction. Use the last 4022 // one if there are multiple (no good reason for doing this other 4023 // than it is expedient). 4024 if (!Induction || PhiTy == WidestIndTy) 4025 Induction = Phi; 4026 } 4027 4028 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4029 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 4030 4031 // Until we explicitly handle the case of an induction variable with 4032 // an outside loop user we have to give up vectorizing this loop. 4033 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 4034 emitAnalysis(VectorizationReport(it) << 4035 "use of induction value outside of the " 4036 "loop is not handled by vectorizer"); 4037 return false; 4038 } 4039 4040 continue; 4041 } 4042 4043 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, 4044 Reductions[Phi])) { 4045 AllowedExit.insert(Reductions[Phi].getLoopExitInstr()); 4046 continue; 4047 } 4048 4049 emitAnalysis(VectorizationReport(it) << 4050 "value that could not be identified as " 4051 "reduction is used outside the loop"); 4052 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4053 return false; 4054 }// end of PHI handling 4055 4056 // We handle calls that: 4057 // * Are debug info intrinsics. 4058 // * Have a mapping to an IR intrinsic. 4059 // * Have a vector version available. 4060 CallInst *CI = dyn_cast<CallInst>(it); 4061 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4062 !(CI->getCalledFunction() && TLI && 4063 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4064 emitAnalysis(VectorizationReport(it) << 4065 "call instruction cannot be vectorized"); 4066 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4067 return false; 4068 } 4069 4070 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4071 // second argument is the same (i.e. loop invariant) 4072 if (CI && 4073 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4074 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 4075 emitAnalysis(VectorizationReport(it) 4076 << "intrinsic instruction cannot be vectorized"); 4077 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4078 return false; 4079 } 4080 } 4081 4082 // Check that the instruction return type is vectorizable. 4083 // Also, we can't vectorize extractelement instructions. 4084 if ((!VectorType::isValidElementType(it->getType()) && 4085 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4086 emitAnalysis(VectorizationReport(it) 4087 << "instruction return type cannot be vectorized"); 4088 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4089 return false; 4090 } 4091 4092 // Check that the stored type is vectorizable. 4093 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4094 Type *T = ST->getValueOperand()->getType(); 4095 if (!VectorType::isValidElementType(T)) { 4096 emitAnalysis(VectorizationReport(ST) << 4097 "store instruction cannot be vectorized"); 4098 return false; 4099 } 4100 if (EnableMemAccessVersioning) 4101 collectStridedAccess(ST); 4102 } 4103 4104 if (EnableMemAccessVersioning) 4105 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 4106 collectStridedAccess(LI); 4107 4108 // Reduction instructions are allowed to have exit users. 4109 // All other instructions must not have external users. 4110 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 4111 emitAnalysis(VectorizationReport(it) << 4112 "value cannot be used outside the loop"); 4113 return false; 4114 } 4115 4116 } // next instr. 4117 4118 } 4119 4120 if (!Induction) { 4121 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4122 if (Inductions.empty()) { 4123 emitAnalysis(VectorizationReport() 4124 << "loop induction variable could not be identified"); 4125 return false; 4126 } 4127 } 4128 4129 return true; 4130 } 4131 4132 ///\brief Remove GEPs whose indices but the last one are loop invariant and 4133 /// return the induction operand of the gep pointer. 4134 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 4135 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4136 if (!GEP) 4137 return Ptr; 4138 4139 unsigned InductionOperand = getGEPInductionOperand(GEP); 4140 4141 // Check that all of the gep indices are uniform except for our induction 4142 // operand. 4143 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 4144 if (i != InductionOperand && 4145 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 4146 return Ptr; 4147 return GEP->getOperand(InductionOperand); 4148 } 4149 4150 ///\brief Look for a cast use of the passed value. 4151 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 4152 Value *UniqueCast = nullptr; 4153 for (User *U : Ptr->users()) { 4154 CastInst *CI = dyn_cast<CastInst>(U); 4155 if (CI && CI->getType() == Ty) { 4156 if (!UniqueCast) 4157 UniqueCast = CI; 4158 else 4159 return nullptr; 4160 } 4161 } 4162 return UniqueCast; 4163 } 4164 4165 ///\brief Get the stride of a pointer access in a loop. 4166 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 4167 /// pointer to the Value, or null otherwise. 4168 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 4169 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4170 if (!PtrTy || PtrTy->isAggregateType()) 4171 return nullptr; 4172 4173 // Try to remove a gep instruction to make the pointer (actually index at this 4174 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 4175 // pointer, otherwise, we are analyzing the index. 4176 Value *OrigPtr = Ptr; 4177 4178 // The size of the pointer access. 4179 int64_t PtrAccessSize = 1; 4180 4181 Ptr = stripGetElementPtr(Ptr, SE, Lp); 4182 const SCEV *V = SE->getSCEV(Ptr); 4183 4184 if (Ptr != OrigPtr) 4185 // Strip off casts. 4186 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 4187 V = C->getOperand(); 4188 4189 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 4190 if (!S) 4191 return nullptr; 4192 4193 V = S->getStepRecurrence(*SE); 4194 if (!V) 4195 return nullptr; 4196 4197 // Strip off the size of access multiplication if we are still analyzing the 4198 // pointer. 4199 if (OrigPtr == Ptr) { 4200 const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout(); 4201 DL.getTypeAllocSize(PtrTy->getElementType()); 4202 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 4203 if (M->getOperand(0)->getSCEVType() != scConstant) 4204 return nullptr; 4205 4206 const APInt &APStepVal = 4207 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 4208 4209 // Huge step value - give up. 4210 if (APStepVal.getBitWidth() > 64) 4211 return nullptr; 4212 4213 int64_t StepVal = APStepVal.getSExtValue(); 4214 if (PtrAccessSize != StepVal) 4215 return nullptr; 4216 V = M->getOperand(1); 4217 } 4218 } 4219 4220 // Strip off casts. 4221 Type *StripedOffRecurrenceCast = nullptr; 4222 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 4223 StripedOffRecurrenceCast = C->getType(); 4224 V = C->getOperand(); 4225 } 4226 4227 // Look for the loop invariant symbolic value. 4228 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 4229 if (!U) 4230 return nullptr; 4231 4232 Value *Stride = U->getValue(); 4233 if (!Lp->isLoopInvariant(Stride)) 4234 return nullptr; 4235 4236 // If we have stripped off the recurrence cast we have to make sure that we 4237 // return the value that is used in this loop so that we can replace it later. 4238 if (StripedOffRecurrenceCast) 4239 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 4240 4241 return Stride; 4242 } 4243 4244 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4245 Value *Ptr = nullptr; 4246 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4247 Ptr = LI->getPointerOperand(); 4248 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4249 Ptr = SI->getPointerOperand(); 4250 else 4251 return; 4252 4253 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop); 4254 if (!Stride) 4255 return; 4256 4257 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4258 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4259 Strides[Ptr] = Stride; 4260 StrideSet.insert(Stride); 4261 } 4262 4263 void LoopVectorizationLegality::collectLoopUniforms() { 4264 // We now know that the loop is vectorizable! 4265 // Collect variables that will remain uniform after vectorization. 4266 std::vector<Value*> Worklist; 4267 BasicBlock *Latch = TheLoop->getLoopLatch(); 4268 4269 // Start with the conditional branch and walk up the block. 4270 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4271 4272 // Also add all consecutive pointer values; these values will be uniform 4273 // after vectorization (and subsequent cleanup) and, until revectorization is 4274 // supported, all dependencies must also be uniform. 4275 for (Loop::block_iterator B = TheLoop->block_begin(), 4276 BE = TheLoop->block_end(); B != BE; ++B) 4277 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4278 I != IE; ++I) 4279 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 4280 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4281 4282 while (!Worklist.empty()) { 4283 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4284 Worklist.pop_back(); 4285 4286 // Look at instructions inside this loop. 4287 // Stop when reaching PHI nodes. 4288 // TODO: we need to follow values all over the loop, not only in this block. 4289 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4290 continue; 4291 4292 // This is a known uniform. 4293 Uniforms.insert(I); 4294 4295 // Insert all operands. 4296 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4297 } 4298 } 4299 4300 bool LoopVectorizationLegality::canVectorizeMemory() { 4301 LAI = &LAA->getInfo(TheLoop, Strides); 4302 auto &OptionalReport = LAI->getReport(); 4303 if (OptionalReport) 4304 emitAnalysis(VectorizationReport(*OptionalReport)); 4305 if (!LAI->canVectorizeMemory()) 4306 return false; 4307 4308 if (LAI->hasStoreToLoopInvariantAddress()) { 4309 emitAnalysis( 4310 VectorizationReport() 4311 << "write to a loop invariant address could not be vectorized"); 4312 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4313 return false; 4314 } 4315 4316 if (LAI->getNumRuntimePointerChecks() > 4317 VectorizerParams::RuntimeMemoryCheckThreshold) { 4318 emitAnalysis(VectorizationReport() 4319 << LAI->getNumRuntimePointerChecks() << " exceeds limit of " 4320 << VectorizerParams::RuntimeMemoryCheckThreshold 4321 << " dependent memory operations checked at runtime"); 4322 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 4323 return false; 4324 } 4325 return true; 4326 } 4327 4328 LoopVectorizationLegality::InductionKind 4329 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4330 ConstantInt *&StepValue) { 4331 if (!isInductionPHI(Phi, SE, StepValue)) 4332 return IK_NoInduction; 4333 4334 Type *PhiTy = Phi->getType(); 4335 // Found an Integer induction variable. 4336 if (PhiTy->isIntegerTy()) 4337 return IK_IntInduction; 4338 // Found an Pointer induction variable. 4339 return IK_PtrInduction; 4340 } 4341 4342 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4343 Value *In0 = const_cast<Value*>(V); 4344 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4345 if (!PN) 4346 return false; 4347 4348 return Inductions.count(PN); 4349 } 4350 4351 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4352 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4353 } 4354 4355 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4356 SmallPtrSetImpl<Value *> &SafePtrs) { 4357 4358 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4359 // Check that we don't have a constant expression that can trap as operand. 4360 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4361 OI != OE; ++OI) { 4362 if (Constant *C = dyn_cast<Constant>(*OI)) 4363 if (C->canTrap()) 4364 return false; 4365 } 4366 // We might be able to hoist the load. 4367 if (it->mayReadFromMemory()) { 4368 LoadInst *LI = dyn_cast<LoadInst>(it); 4369 if (!LI) 4370 return false; 4371 if (!SafePtrs.count(LI->getPointerOperand())) { 4372 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4373 MaskedOp.insert(LI); 4374 continue; 4375 } 4376 return false; 4377 } 4378 } 4379 4380 // We don't predicate stores at the moment. 4381 if (it->mayWriteToMemory()) { 4382 StoreInst *SI = dyn_cast<StoreInst>(it); 4383 // We only support predication of stores in basic blocks with one 4384 // predecessor. 4385 if (!SI) 4386 return false; 4387 4388 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4389 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4390 4391 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4392 !isSinglePredecessor) { 4393 // Build a masked store if it is legal for the target, otherwise scalarize 4394 // the block. 4395 bool isLegalMaskedOp = 4396 isLegalMaskedStore(SI->getValueOperand()->getType(), 4397 SI->getPointerOperand()); 4398 if (isLegalMaskedOp) { 4399 --NumPredStores; 4400 MaskedOp.insert(SI); 4401 continue; 4402 } 4403 return false; 4404 } 4405 } 4406 if (it->mayThrow()) 4407 return false; 4408 4409 // The instructions below can trap. 4410 switch (it->getOpcode()) { 4411 default: continue; 4412 case Instruction::UDiv: 4413 case Instruction::SDiv: 4414 case Instruction::URem: 4415 case Instruction::SRem: 4416 return false; 4417 } 4418 } 4419 4420 return true; 4421 } 4422 4423 void InterleavedAccessInfo::collectConstStridedAccesses( 4424 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4425 const ValueToValueMap &Strides) { 4426 // Holds load/store instructions in program order. 4427 SmallVector<Instruction *, 16> AccessList; 4428 4429 for (auto *BB : TheLoop->getBlocks()) { 4430 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4431 4432 for (auto &I : *BB) { 4433 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4434 continue; 4435 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4436 if (IsPred) 4437 return; 4438 4439 AccessList.push_back(&I); 4440 } 4441 } 4442 4443 if (AccessList.empty()) 4444 return; 4445 4446 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4447 for (auto I : AccessList) { 4448 LoadInst *LI = dyn_cast<LoadInst>(I); 4449 StoreInst *SI = dyn_cast<StoreInst>(I); 4450 4451 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4452 int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides); 4453 4454 // The factor of the corresponding interleave group. 4455 unsigned Factor = std::abs(Stride); 4456 4457 // Ignore the access if the factor is too small or too large. 4458 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4459 continue; 4460 4461 const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4462 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4463 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4464 4465 // An alignment of 0 means target ABI alignment. 4466 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4467 if (!Align) 4468 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4469 4470 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4471 } 4472 } 4473 4474 // Analyze interleaved accesses and collect them into interleave groups. 4475 // 4476 // Notice that the vectorization on interleaved groups will change instruction 4477 // orders and may break dependences. But the memory dependence check guarantees 4478 // that there is no overlap between two pointers of different strides, element 4479 // sizes or underlying bases. 4480 // 4481 // For pointers sharing the same stride, element size and underlying base, no 4482 // need to worry about Read-After-Write dependences and Write-After-Read 4483 // dependences. 4484 // 4485 // E.g. The RAW dependence: A[i] = a; 4486 // b = A[i]; 4487 // This won't exist as it is a store-load forwarding conflict, which has 4488 // already been checked and forbidden in the dependence check. 4489 // 4490 // E.g. The WAR dependence: a = A[i]; // (1) 4491 // A[i] = b; // (2) 4492 // The store group of (2) is always inserted at or below (2), and the load group 4493 // of (1) is always inserted at or above (1). The dependence is safe. 4494 void InterleavedAccessInfo::analyzeInterleaving( 4495 const ValueToValueMap &Strides) { 4496 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4497 4498 // Holds all the stride accesses. 4499 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 4500 collectConstStridedAccesses(StrideAccesses, Strides); 4501 4502 if (StrideAccesses.empty()) 4503 return; 4504 4505 // Holds all interleaved store groups temporarily. 4506 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4507 4508 // Search the load-load/write-write pair B-A in bottom-up order and try to 4509 // insert B into the interleave group of A according to 3 rules: 4510 // 1. A and B have the same stride. 4511 // 2. A and B have the same memory object size. 4512 // 3. B belongs to the group according to the distance. 4513 // 4514 // The bottom-up order can avoid breaking the Write-After-Write dependences 4515 // between two pointers of the same base. 4516 // E.g. A[i] = a; (1) 4517 // A[i] = b; (2) 4518 // A[i+1] = c (3) 4519 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 4520 // above (1), which guarantees that (1) is always above (2). 4521 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 4522 ++I) { 4523 Instruction *A = I->first; 4524 StrideDescriptor DesA = I->second; 4525 4526 InterleaveGroup *Group = getInterleaveGroup(A); 4527 if (!Group) { 4528 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 4529 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 4530 } 4531 4532 if (A->mayWriteToMemory()) 4533 StoreGroups.insert(Group); 4534 4535 for (auto II = std::next(I); II != E; ++II) { 4536 Instruction *B = II->first; 4537 StrideDescriptor DesB = II->second; 4538 4539 // Ignore if B is already in a group or B is a different memory operation. 4540 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 4541 continue; 4542 4543 // Check the rule 1 and 2. 4544 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 4545 continue; 4546 4547 // Calculate the distance and prepare for the rule 3. 4548 const SCEVConstant *DistToA = 4549 dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev)); 4550 if (!DistToA) 4551 continue; 4552 4553 int DistanceToA = DistToA->getValue()->getValue().getSExtValue(); 4554 4555 // Skip if the distance is not multiple of size as they are not in the 4556 // same group. 4557 if (DistanceToA % static_cast<int>(DesA.Size)) 4558 continue; 4559 4560 // The index of B is the index of A plus the related index to A. 4561 int IndexB = 4562 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 4563 4564 // Try to insert B into the group. 4565 if (Group->insertMember(B, IndexB, DesB.Align)) { 4566 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 4567 << " into the interleave group with" << *A << '\n'); 4568 InterleaveGroupMap[B] = Group; 4569 4570 // Set the first load in program order as the insert position. 4571 if (B->mayReadFromMemory()) 4572 Group->setInsertPos(B); 4573 } 4574 } // Iteration on instruction B 4575 } // Iteration on instruction A 4576 4577 // Remove interleaved store groups with gaps. 4578 for (InterleaveGroup *Group : StoreGroups) 4579 if (Group->getNumMembers() != Group->getFactor()) 4580 releaseGroup(Group); 4581 } 4582 4583 LoopVectorizationCostModel::VectorizationFactor 4584 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4585 // Width 1 means no vectorize 4586 VectorizationFactor Factor = { 1U, 0U }; 4587 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4588 emitAnalysis(VectorizationReport() << 4589 "runtime pointer checks needed. Enable vectorization of this " 4590 "loop with '#pragma clang loop vectorize(enable)' when " 4591 "compiling with -Os"); 4592 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4593 return Factor; 4594 } 4595 4596 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4597 emitAnalysis(VectorizationReport() << 4598 "store that is conditionally executed prevents vectorization"); 4599 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4600 return Factor; 4601 } 4602 4603 // Find the trip count. 4604 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4605 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4606 4607 unsigned WidestType = getWidestType(); 4608 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4609 unsigned MaxSafeDepDist = -1U; 4610 if (Legal->getMaxSafeDepDistBytes() != -1U) 4611 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4612 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4613 WidestRegister : MaxSafeDepDist); 4614 unsigned MaxVectorSize = WidestRegister / WidestType; 4615 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4616 DEBUG(dbgs() << "LV: The Widest register is: " 4617 << WidestRegister << " bits.\n"); 4618 4619 if (MaxVectorSize == 0) { 4620 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4621 MaxVectorSize = 1; 4622 } 4623 4624 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4625 " into one vector!"); 4626 4627 unsigned VF = MaxVectorSize; 4628 4629 // If we optimize the program for size, avoid creating the tail loop. 4630 if (OptForSize) { 4631 // If we are unable to calculate the trip count then don't try to vectorize. 4632 if (TC < 2) { 4633 emitAnalysis 4634 (VectorizationReport() << 4635 "unable to calculate the loop count due to complex control flow"); 4636 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4637 return Factor; 4638 } 4639 4640 // Find the maximum SIMD width that can fit within the trip count. 4641 VF = TC % MaxVectorSize; 4642 4643 if (VF == 0) 4644 VF = MaxVectorSize; 4645 4646 // If the trip count that we found modulo the vectorization factor is not 4647 // zero then we require a tail. 4648 if (VF < 2) { 4649 emitAnalysis(VectorizationReport() << 4650 "cannot optimize for size and vectorize at the " 4651 "same time. Enable vectorization of this loop " 4652 "with '#pragma clang loop vectorize(enable)' " 4653 "when compiling with -Os"); 4654 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4655 return Factor; 4656 } 4657 } 4658 4659 int UserVF = Hints->getWidth(); 4660 if (UserVF != 0) { 4661 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4662 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4663 4664 Factor.Width = UserVF; 4665 return Factor; 4666 } 4667 4668 float Cost = expectedCost(1); 4669 #ifndef NDEBUG 4670 const float ScalarCost = Cost; 4671 #endif /* NDEBUG */ 4672 unsigned Width = 1; 4673 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4674 4675 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4676 // Ignore scalar width, because the user explicitly wants vectorization. 4677 if (ForceVectorization && VF > 1) { 4678 Width = 2; 4679 Cost = expectedCost(Width) / (float)Width; 4680 } 4681 4682 for (unsigned i=2; i <= VF; i*=2) { 4683 // Notice that the vector loop needs to be executed less times, so 4684 // we need to divide the cost of the vector loops by the width of 4685 // the vector elements. 4686 float VectorCost = expectedCost(i) / (float)i; 4687 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4688 (int)VectorCost << ".\n"); 4689 if (VectorCost < Cost) { 4690 Cost = VectorCost; 4691 Width = i; 4692 } 4693 } 4694 4695 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4696 << "LV: Vectorization seems to be not beneficial, " 4697 << "but was forced by a user.\n"); 4698 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4699 Factor.Width = Width; 4700 Factor.Cost = Width * Cost; 4701 return Factor; 4702 } 4703 4704 unsigned LoopVectorizationCostModel::getWidestType() { 4705 unsigned MaxWidth = 8; 4706 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4707 4708 // For each block. 4709 for (Loop::block_iterator bb = TheLoop->block_begin(), 4710 be = TheLoop->block_end(); bb != be; ++bb) { 4711 BasicBlock *BB = *bb; 4712 4713 // For each instruction in the loop. 4714 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4715 Type *T = it->getType(); 4716 4717 // Ignore ephemeral values. 4718 if (EphValues.count(it)) 4719 continue; 4720 4721 // Only examine Loads, Stores and PHINodes. 4722 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4723 continue; 4724 4725 // Examine PHI nodes that are reduction variables. 4726 if (PHINode *PN = dyn_cast<PHINode>(it)) 4727 if (!Legal->getReductionVars()->count(PN)) 4728 continue; 4729 4730 // Examine the stored values. 4731 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4732 T = ST->getValueOperand()->getType(); 4733 4734 // Ignore loaded pointer types and stored pointer types that are not 4735 // consecutive. However, we do want to take consecutive stores/loads of 4736 // pointer vectors into account. 4737 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4738 continue; 4739 4740 MaxWidth = std::max(MaxWidth, 4741 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4742 } 4743 } 4744 4745 return MaxWidth; 4746 } 4747 4748 unsigned 4749 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4750 unsigned VF, 4751 unsigned LoopCost) { 4752 4753 // -- The unroll heuristics -- 4754 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4755 // There are many micro-architectural considerations that we can't predict 4756 // at this level. For example, frontend pressure (on decode or fetch) due to 4757 // code size, or the number and capabilities of the execution ports. 4758 // 4759 // We use the following heuristics to select the unroll factor: 4760 // 1. If the code has reductions, then we unroll in order to break the cross 4761 // iteration dependency. 4762 // 2. If the loop is really small, then we unroll in order to reduce the loop 4763 // overhead. 4764 // 3. We don't unroll if we think that we will spill registers to memory due 4765 // to the increased register pressure. 4766 4767 // Use the user preference, unless 'auto' is selected. 4768 int UserUF = Hints->getInterleave(); 4769 if (UserUF != 0) 4770 return UserUF; 4771 4772 // When we optimize for size, we don't unroll. 4773 if (OptForSize) 4774 return 1; 4775 4776 // We used the distance for the unroll factor. 4777 if (Legal->getMaxSafeDepDistBytes() != -1U) 4778 return 1; 4779 4780 // Do not unroll loops with a relatively small trip count. 4781 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4782 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4783 return 1; 4784 4785 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4786 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4787 " registers\n"); 4788 4789 if (VF == 1) { 4790 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4791 TargetNumRegisters = ForceTargetNumScalarRegs; 4792 } else { 4793 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4794 TargetNumRegisters = ForceTargetNumVectorRegs; 4795 } 4796 4797 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4798 // We divide by these constants so assume that we have at least one 4799 // instruction that uses at least one register. 4800 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4801 R.NumInstructions = std::max(R.NumInstructions, 1U); 4802 4803 // We calculate the unroll factor using the following formula. 4804 // Subtract the number of loop invariants from the number of available 4805 // registers. These registers are used by all of the unrolled instances. 4806 // Next, divide the remaining registers by the number of registers that is 4807 // required by the loop, in order to estimate how many parallel instances 4808 // fit without causing spills. All of this is rounded down if necessary to be 4809 // a power of two. We want power of two unroll factors to simplify any 4810 // addressing operations or alignment considerations. 4811 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4812 R.MaxLocalUsers); 4813 4814 // Don't count the induction variable as unrolled. 4815 if (EnableIndVarRegisterHeur) 4816 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4817 std::max(1U, (R.MaxLocalUsers - 1))); 4818 4819 // Clamp the unroll factor ranges to reasonable factors. 4820 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(VF); 4821 4822 // Check if the user has overridden the unroll max. 4823 if (VF == 1) { 4824 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4825 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4826 } else { 4827 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4828 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4829 } 4830 4831 // If we did not calculate the cost for VF (because the user selected the VF) 4832 // then we calculate the cost of VF here. 4833 if (LoopCost == 0) 4834 LoopCost = expectedCost(VF); 4835 4836 // Clamp the calculated UF to be between the 1 and the max unroll factor 4837 // that the target allows. 4838 if (UF > MaxInterleaveSize) 4839 UF = MaxInterleaveSize; 4840 else if (UF < 1) 4841 UF = 1; 4842 4843 // Unroll if we vectorized this loop and there is a reduction that could 4844 // benefit from unrolling. 4845 if (VF > 1 && Legal->getReductionVars()->size()) { 4846 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4847 return UF; 4848 } 4849 4850 // Note that if we've already vectorized the loop we will have done the 4851 // runtime check and so unrolling won't require further checks. 4852 bool UnrollingRequiresRuntimePointerCheck = 4853 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4854 4855 // We want to unroll small loops in order to reduce the loop overhead and 4856 // potentially expose ILP opportunities. 4857 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4858 if (!UnrollingRequiresRuntimePointerCheck && 4859 LoopCost < SmallLoopCost) { 4860 // We assume that the cost overhead is 1 and we use the cost model 4861 // to estimate the cost of the loop and unroll until the cost of the 4862 // loop overhead is about 5% of the cost of the loop. 4863 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4864 4865 // Unroll until store/load ports (estimated by max unroll factor) are 4866 // saturated. 4867 unsigned NumStores = Legal->getNumStores(); 4868 unsigned NumLoads = Legal->getNumLoads(); 4869 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4870 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4871 4872 // If we have a scalar reduction (vector reductions are already dealt with 4873 // by this point), we can increase the critical path length if the loop 4874 // we're unrolling is inside another loop. Limit, by default to 2, so the 4875 // critical path only gets increased by one reduction operation. 4876 if (Legal->getReductionVars()->size() && 4877 TheLoop->getLoopDepth() > 1) { 4878 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4879 SmallUF = std::min(SmallUF, F); 4880 StoresUF = std::min(StoresUF, F); 4881 LoadsUF = std::min(LoadsUF, F); 4882 } 4883 4884 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4885 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4886 return std::max(StoresUF, LoadsUF); 4887 } 4888 4889 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4890 return SmallUF; 4891 } 4892 4893 // Unroll if this is a large loop (small loops are already dealt with by this 4894 // point) that could benefit from interleaved unrolling. 4895 bool HasReductions = (Legal->getReductionVars()->size() > 0); 4896 if (TTI.enableAggressiveInterleaving(HasReductions)) { 4897 DEBUG(dbgs() << "LV: Unrolling to expose ILP.\n"); 4898 return UF; 4899 } 4900 4901 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4902 return 1; 4903 } 4904 4905 LoopVectorizationCostModel::RegisterUsage 4906 LoopVectorizationCostModel::calculateRegisterUsage() { 4907 // This function calculates the register usage by measuring the highest number 4908 // of values that are alive at a single location. Obviously, this is a very 4909 // rough estimation. We scan the loop in a topological order in order and 4910 // assign a number to each instruction. We use RPO to ensure that defs are 4911 // met before their users. We assume that each instruction that has in-loop 4912 // users starts an interval. We record every time that an in-loop value is 4913 // used, so we have a list of the first and last occurrences of each 4914 // instruction. Next, we transpose this data structure into a multi map that 4915 // holds the list of intervals that *end* at a specific location. This multi 4916 // map allows us to perform a linear search. We scan the instructions linearly 4917 // and record each time that a new interval starts, by placing it in a set. 4918 // If we find this value in the multi-map then we remove it from the set. 4919 // The max register usage is the maximum size of the set. 4920 // We also search for instructions that are defined outside the loop, but are 4921 // used inside the loop. We need this number separately from the max-interval 4922 // usage number because when we unroll, loop-invariant values do not take 4923 // more register. 4924 LoopBlocksDFS DFS(TheLoop); 4925 DFS.perform(LI); 4926 4927 RegisterUsage R; 4928 R.NumInstructions = 0; 4929 4930 // Each 'key' in the map opens a new interval. The values 4931 // of the map are the index of the 'last seen' usage of the 4932 // instruction that is the key. 4933 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4934 // Maps instruction to its index. 4935 DenseMap<unsigned, Instruction*> IdxToInstr; 4936 // Marks the end of each interval. 4937 IntervalMap EndPoint; 4938 // Saves the list of instruction indices that are used in the loop. 4939 SmallSet<Instruction*, 8> Ends; 4940 // Saves the list of values that are used in the loop but are 4941 // defined outside the loop, such as arguments and constants. 4942 SmallPtrSet<Value*, 8> LoopInvariants; 4943 4944 unsigned Index = 0; 4945 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4946 be = DFS.endRPO(); bb != be; ++bb) { 4947 R.NumInstructions += (*bb)->size(); 4948 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4949 ++it) { 4950 Instruction *I = it; 4951 IdxToInstr[Index++] = I; 4952 4953 // Save the end location of each USE. 4954 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4955 Value *U = I->getOperand(i); 4956 Instruction *Instr = dyn_cast<Instruction>(U); 4957 4958 // Ignore non-instruction values such as arguments, constants, etc. 4959 if (!Instr) continue; 4960 4961 // If this instruction is outside the loop then record it and continue. 4962 if (!TheLoop->contains(Instr)) { 4963 LoopInvariants.insert(Instr); 4964 continue; 4965 } 4966 4967 // Overwrite previous end points. 4968 EndPoint[Instr] = Index; 4969 Ends.insert(Instr); 4970 } 4971 } 4972 } 4973 4974 // Saves the list of intervals that end with the index in 'key'. 4975 typedef SmallVector<Instruction*, 2> InstrList; 4976 DenseMap<unsigned, InstrList> TransposeEnds; 4977 4978 // Transpose the EndPoints to a list of values that end at each index. 4979 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4980 it != e; ++it) 4981 TransposeEnds[it->second].push_back(it->first); 4982 4983 SmallSet<Instruction*, 8> OpenIntervals; 4984 unsigned MaxUsage = 0; 4985 4986 4987 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4988 for (unsigned int i = 0; i < Index; ++i) { 4989 Instruction *I = IdxToInstr[i]; 4990 // Ignore instructions that are never used within the loop. 4991 if (!Ends.count(I)) continue; 4992 4993 // Ignore ephemeral values. 4994 if (EphValues.count(I)) 4995 continue; 4996 4997 // Remove all of the instructions that end at this location. 4998 InstrList &List = TransposeEnds[i]; 4999 for (unsigned int j=0, e = List.size(); j < e; ++j) 5000 OpenIntervals.erase(List[j]); 5001 5002 // Count the number of live interals. 5003 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5004 5005 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5006 OpenIntervals.size() << '\n'); 5007 5008 // Add the current instruction to the list of open intervals. 5009 OpenIntervals.insert(I); 5010 } 5011 5012 unsigned Invariant = LoopInvariants.size(); 5013 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5014 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5015 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5016 5017 R.LoopInvariantRegs = Invariant; 5018 R.MaxLocalUsers = MaxUsage; 5019 return R; 5020 } 5021 5022 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5023 unsigned Cost = 0; 5024 5025 // For each block. 5026 for (Loop::block_iterator bb = TheLoop->block_begin(), 5027 be = TheLoop->block_end(); bb != be; ++bb) { 5028 unsigned BlockCost = 0; 5029 BasicBlock *BB = *bb; 5030 5031 // For each instruction in the old loop. 5032 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5033 // Skip dbg intrinsics. 5034 if (isa<DbgInfoIntrinsic>(it)) 5035 continue; 5036 5037 // Ignore ephemeral values. 5038 if (EphValues.count(it)) 5039 continue; 5040 5041 unsigned C = getInstructionCost(it, VF); 5042 5043 // Check if we should override the cost. 5044 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5045 C = ForceTargetInstructionCost; 5046 5047 BlockCost += C; 5048 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5049 VF << " For instruction: " << *it << '\n'); 5050 } 5051 5052 // We assume that if-converted blocks have a 50% chance of being executed. 5053 // When the code is scalar then some of the blocks are avoided due to CF. 5054 // When the code is vectorized we execute all code paths. 5055 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5056 BlockCost /= 2; 5057 5058 Cost += BlockCost; 5059 } 5060 5061 return Cost; 5062 } 5063 5064 /// \brief Check whether the address computation for a non-consecutive memory 5065 /// access looks like an unlikely candidate for being merged into the indexing 5066 /// mode. 5067 /// 5068 /// We look for a GEP which has one index that is an induction variable and all 5069 /// other indices are loop invariant. If the stride of this access is also 5070 /// within a small bound we decide that this address computation can likely be 5071 /// merged into the addressing mode. 5072 /// In all other cases, we identify the address computation as complex. 5073 static bool isLikelyComplexAddressComputation(Value *Ptr, 5074 LoopVectorizationLegality *Legal, 5075 ScalarEvolution *SE, 5076 const Loop *TheLoop) { 5077 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5078 if (!Gep) 5079 return true; 5080 5081 // We are looking for a gep with all loop invariant indices except for one 5082 // which should be an induction variable. 5083 unsigned NumOperands = Gep->getNumOperands(); 5084 for (unsigned i = 1; i < NumOperands; ++i) { 5085 Value *Opd = Gep->getOperand(i); 5086 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5087 !Legal->isInductionVariable(Opd)) 5088 return true; 5089 } 5090 5091 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5092 // can likely be merged into the address computation. 5093 unsigned MaxMergeDistance = 64; 5094 5095 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5096 if (!AddRec) 5097 return true; 5098 5099 // Check the step is constant. 5100 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5101 // Calculate the pointer stride and check if it is consecutive. 5102 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5103 if (!C) 5104 return true; 5105 5106 const APInt &APStepVal = C->getValue()->getValue(); 5107 5108 // Huge step value - give up. 5109 if (APStepVal.getBitWidth() > 64) 5110 return true; 5111 5112 int64_t StepVal = APStepVal.getSExtValue(); 5113 5114 return StepVal > MaxMergeDistance; 5115 } 5116 5117 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5118 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5119 return true; 5120 return false; 5121 } 5122 5123 unsigned 5124 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5125 // If we know that this instruction will remain uniform, check the cost of 5126 // the scalar version. 5127 if (Legal->isUniformAfterVectorization(I)) 5128 VF = 1; 5129 5130 Type *RetTy = I->getType(); 5131 Type *VectorTy = ToVectorTy(RetTy, VF); 5132 5133 // TODO: We need to estimate the cost of intrinsic calls. 5134 switch (I->getOpcode()) { 5135 case Instruction::GetElementPtr: 5136 // We mark this instruction as zero-cost because the cost of GEPs in 5137 // vectorized code depends on whether the corresponding memory instruction 5138 // is scalarized or not. Therefore, we handle GEPs with the memory 5139 // instruction cost. 5140 return 0; 5141 case Instruction::Br: { 5142 return TTI.getCFInstrCost(I->getOpcode()); 5143 } 5144 case Instruction::PHI: 5145 //TODO: IF-converted IFs become selects. 5146 return 0; 5147 case Instruction::Add: 5148 case Instruction::FAdd: 5149 case Instruction::Sub: 5150 case Instruction::FSub: 5151 case Instruction::Mul: 5152 case Instruction::FMul: 5153 case Instruction::UDiv: 5154 case Instruction::SDiv: 5155 case Instruction::FDiv: 5156 case Instruction::URem: 5157 case Instruction::SRem: 5158 case Instruction::FRem: 5159 case Instruction::Shl: 5160 case Instruction::LShr: 5161 case Instruction::AShr: 5162 case Instruction::And: 5163 case Instruction::Or: 5164 case Instruction::Xor: { 5165 // Since we will replace the stride by 1 the multiplication should go away. 5166 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5167 return 0; 5168 // Certain instructions can be cheaper to vectorize if they have a constant 5169 // second vector operand. One example of this are shifts on x86. 5170 TargetTransformInfo::OperandValueKind Op1VK = 5171 TargetTransformInfo::OK_AnyValue; 5172 TargetTransformInfo::OperandValueKind Op2VK = 5173 TargetTransformInfo::OK_AnyValue; 5174 TargetTransformInfo::OperandValueProperties Op1VP = 5175 TargetTransformInfo::OP_None; 5176 TargetTransformInfo::OperandValueProperties Op2VP = 5177 TargetTransformInfo::OP_None; 5178 Value *Op2 = I->getOperand(1); 5179 5180 // Check for a splat of a constant or for a non uniform vector of constants. 5181 if (isa<ConstantInt>(Op2)) { 5182 ConstantInt *CInt = cast<ConstantInt>(Op2); 5183 if (CInt && CInt->getValue().isPowerOf2()) 5184 Op2VP = TargetTransformInfo::OP_PowerOf2; 5185 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5186 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5187 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5188 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5189 if (SplatValue) { 5190 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5191 if (CInt && CInt->getValue().isPowerOf2()) 5192 Op2VP = TargetTransformInfo::OP_PowerOf2; 5193 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5194 } 5195 } 5196 5197 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5198 Op1VP, Op2VP); 5199 } 5200 case Instruction::Select: { 5201 SelectInst *SI = cast<SelectInst>(I); 5202 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5203 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5204 Type *CondTy = SI->getCondition()->getType(); 5205 if (!ScalarCond) 5206 CondTy = VectorType::get(CondTy, VF); 5207 5208 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5209 } 5210 case Instruction::ICmp: 5211 case Instruction::FCmp: { 5212 Type *ValTy = I->getOperand(0)->getType(); 5213 VectorTy = ToVectorTy(ValTy, VF); 5214 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5215 } 5216 case Instruction::Store: 5217 case Instruction::Load: { 5218 StoreInst *SI = dyn_cast<StoreInst>(I); 5219 LoadInst *LI = dyn_cast<LoadInst>(I); 5220 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5221 LI->getType()); 5222 VectorTy = ToVectorTy(ValTy, VF); 5223 5224 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5225 unsigned AS = SI ? SI->getPointerAddressSpace() : 5226 LI->getPointerAddressSpace(); 5227 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5228 // We add the cost of address computation here instead of with the gep 5229 // instruction because only here we know whether the operation is 5230 // scalarized. 5231 if (VF == 1) 5232 return TTI.getAddressComputationCost(VectorTy) + 5233 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5234 5235 // For an interleaved access, calculate the total cost of the whole 5236 // interleave group. 5237 if (Legal->isAccessInterleaved(I)) { 5238 auto Group = Legal->getInterleavedAccessGroup(I); 5239 assert(Group && "Fail to get an interleaved access group."); 5240 5241 // Only calculate the cost once at the insert position. 5242 if (Group->getInsertPos() != I) 5243 return 0; 5244 5245 unsigned InterleaveFactor = Group->getFactor(); 5246 Type *WideVecTy = 5247 VectorType::get(VectorTy->getVectorElementType(), 5248 VectorTy->getVectorNumElements() * InterleaveFactor); 5249 5250 // Holds the indices of existing members in an interleaved load group. 5251 // An interleaved store group doesn't need this as it dones't allow gaps. 5252 SmallVector<unsigned, 4> Indices; 5253 if (LI) { 5254 for (unsigned i = 0; i < InterleaveFactor; i++) 5255 if (Group->getMember(i)) 5256 Indices.push_back(i); 5257 } 5258 5259 // Calculate the cost of the whole interleaved group. 5260 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5261 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5262 Group->getAlignment(), AS); 5263 5264 if (Group->isReverse()) 5265 Cost += 5266 Group->getNumMembers() * 5267 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5268 5269 // FIXME: The interleaved load group with a huge gap could be even more 5270 // expensive than scalar operations. Then we could ignore such group and 5271 // use scalar operations instead. 5272 return Cost; 5273 } 5274 5275 // Scalarized loads/stores. 5276 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5277 bool Reverse = ConsecutiveStride < 0; 5278 const DataLayout &DL = I->getModule()->getDataLayout(); 5279 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5280 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5281 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5282 bool IsComplexComputation = 5283 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5284 unsigned Cost = 0; 5285 // The cost of extracting from the value vector and pointer vector. 5286 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5287 for (unsigned i = 0; i < VF; ++i) { 5288 // The cost of extracting the pointer operand. 5289 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5290 // In case of STORE, the cost of ExtractElement from the vector. 5291 // In case of LOAD, the cost of InsertElement into the returned 5292 // vector. 5293 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5294 Instruction::InsertElement, 5295 VectorTy, i); 5296 } 5297 5298 // The cost of the scalar loads/stores. 5299 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5300 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5301 Alignment, AS); 5302 return Cost; 5303 } 5304 5305 // Wide load/stores. 5306 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5307 if (Legal->isMaskRequired(I)) 5308 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5309 AS); 5310 else 5311 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5312 5313 if (Reverse) 5314 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5315 VectorTy, 0); 5316 return Cost; 5317 } 5318 case Instruction::ZExt: 5319 case Instruction::SExt: 5320 case Instruction::FPToUI: 5321 case Instruction::FPToSI: 5322 case Instruction::FPExt: 5323 case Instruction::PtrToInt: 5324 case Instruction::IntToPtr: 5325 case Instruction::SIToFP: 5326 case Instruction::UIToFP: 5327 case Instruction::Trunc: 5328 case Instruction::FPTrunc: 5329 case Instruction::BitCast: { 5330 // We optimize the truncation of induction variable. 5331 // The cost of these is the same as the scalar operation. 5332 if (I->getOpcode() == Instruction::Trunc && 5333 Legal->isInductionVariable(I->getOperand(0))) 5334 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5335 I->getOperand(0)->getType()); 5336 5337 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5338 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5339 } 5340 case Instruction::Call: { 5341 bool NeedToScalarize; 5342 CallInst *CI = cast<CallInst>(I); 5343 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5344 if (getIntrinsicIDForCall(CI, TLI)) 5345 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5346 return CallCost; 5347 } 5348 default: { 5349 // We are scalarizing the instruction. Return the cost of the scalar 5350 // instruction, plus the cost of insert and extract into vector 5351 // elements, times the vector width. 5352 unsigned Cost = 0; 5353 5354 if (!RetTy->isVoidTy() && VF != 1) { 5355 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5356 VectorTy); 5357 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5358 VectorTy); 5359 5360 // The cost of inserting the results plus extracting each one of the 5361 // operands. 5362 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5363 } 5364 5365 // The cost of executing VF copies of the scalar instruction. This opcode 5366 // is unknown. Assume that it is the same as 'mul'. 5367 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5368 return Cost; 5369 } 5370 }// end of switch. 5371 } 5372 5373 char LoopVectorize::ID = 0; 5374 static const char lv_name[] = "Loop Vectorization"; 5375 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5376 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5377 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5378 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5379 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5380 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5381 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5382 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5383 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5384 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5385 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5386 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5387 5388 namespace llvm { 5389 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5390 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5391 } 5392 } 5393 5394 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5395 // Check for a store. 5396 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5397 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5398 5399 // Check for a load. 5400 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5401 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5402 5403 return false; 5404 } 5405 5406 5407 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5408 bool IfPredicateStore) { 5409 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5410 // Holds vector parameters or scalars, in case of uniform vals. 5411 SmallVector<VectorParts, 4> Params; 5412 5413 setDebugLocFromInst(Builder, Instr); 5414 5415 // Find all of the vectorized parameters. 5416 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5417 Value *SrcOp = Instr->getOperand(op); 5418 5419 // If we are accessing the old induction variable, use the new one. 5420 if (SrcOp == OldInduction) { 5421 Params.push_back(getVectorValue(SrcOp)); 5422 continue; 5423 } 5424 5425 // Try using previously calculated values. 5426 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5427 5428 // If the src is an instruction that appeared earlier in the basic block 5429 // then it should already be vectorized. 5430 if (SrcInst && OrigLoop->contains(SrcInst)) { 5431 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5432 // The parameter is a vector value from earlier. 5433 Params.push_back(WidenMap.get(SrcInst)); 5434 } else { 5435 // The parameter is a scalar from outside the loop. Maybe even a constant. 5436 VectorParts Scalars; 5437 Scalars.append(UF, SrcOp); 5438 Params.push_back(Scalars); 5439 } 5440 } 5441 5442 assert(Params.size() == Instr->getNumOperands() && 5443 "Invalid number of operands"); 5444 5445 // Does this instruction return a value ? 5446 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5447 5448 Value *UndefVec = IsVoidRetTy ? nullptr : 5449 UndefValue::get(Instr->getType()); 5450 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5451 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5452 5453 Instruction *InsertPt = Builder.GetInsertPoint(); 5454 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5455 BasicBlock *CondBlock = nullptr; 5456 5457 VectorParts Cond; 5458 Loop *VectorLp = nullptr; 5459 if (IfPredicateStore) { 5460 assert(Instr->getParent()->getSinglePredecessor() && 5461 "Only support single predecessor blocks"); 5462 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5463 Instr->getParent()); 5464 VectorLp = LI->getLoopFor(IfBlock); 5465 assert(VectorLp && "Must have a loop for this block"); 5466 } 5467 5468 // For each vector unroll 'part': 5469 for (unsigned Part = 0; Part < UF; ++Part) { 5470 // For each scalar that we create: 5471 5472 // Start an "if (pred) a[i] = ..." block. 5473 Value *Cmp = nullptr; 5474 if (IfPredicateStore) { 5475 if (Cond[Part]->getType()->isVectorTy()) 5476 Cond[Part] = 5477 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5478 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5479 ConstantInt::get(Cond[Part]->getType(), 1)); 5480 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5481 LoopVectorBody.push_back(CondBlock); 5482 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5483 // Update Builder with newly created basic block. 5484 Builder.SetInsertPoint(InsertPt); 5485 } 5486 5487 Instruction *Cloned = Instr->clone(); 5488 if (!IsVoidRetTy) 5489 Cloned->setName(Instr->getName() + ".cloned"); 5490 // Replace the operands of the cloned instructions with extracted scalars. 5491 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5492 Value *Op = Params[op][Part]; 5493 Cloned->setOperand(op, Op); 5494 } 5495 5496 // Place the cloned scalar in the new loop. 5497 Builder.Insert(Cloned); 5498 5499 // If the original scalar returns a value we need to place it in a vector 5500 // so that future users will be able to use it. 5501 if (!IsVoidRetTy) 5502 VecResults[Part] = Cloned; 5503 5504 // End if-block. 5505 if (IfPredicateStore) { 5506 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5507 LoopVectorBody.push_back(NewIfBlock); 5508 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5509 Builder.SetInsertPoint(InsertPt); 5510 Instruction *OldBr = IfBlock->getTerminator(); 5511 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5512 OldBr->eraseFromParent(); 5513 IfBlock = NewIfBlock; 5514 } 5515 } 5516 } 5517 5518 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5519 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5520 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5521 5522 return scalarizeInstruction(Instr, IfPredicateStore); 5523 } 5524 5525 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5526 return Vec; 5527 } 5528 5529 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5530 return V; 5531 } 5532 5533 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5534 // When unrolling and the VF is 1, we only need to add a simple scalar. 5535 Type *ITy = Val->getType(); 5536 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5537 Constant *C = ConstantInt::get(ITy, StartIdx); 5538 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5539 } 5540