1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// We don't vectorize loops with a known constant trip count below this number. 118 static cl::opt<unsigned> TinyTripCountVectorThreshold( 119 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 120 cl::desc("Don't vectorize loops with a constant " 121 "trip count that is smaller than this " 122 "value.")); 123 124 static cl::opt<bool> MaximizeBandwidth( 125 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 126 cl::desc("Maximize bandwidth when selecting vectorization factor which " 127 "will be determined by the smallest type in loop.")); 128 129 static cl::opt<bool> EnableInterleavedMemAccesses( 130 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 131 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 132 133 /// Maximum factor for an interleaved memory access. 134 static cl::opt<unsigned> MaxInterleaveGroupFactor( 135 "max-interleave-group-factor", cl::Hidden, 136 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 137 cl::init(8)); 138 139 /// We don't interleave loops with a known constant trip count below this 140 /// number. 141 static const unsigned TinyTripCountInterleaveThreshold = 128; 142 143 static cl::opt<unsigned> ForceTargetNumScalarRegs( 144 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of scalar registers.")); 146 147 static cl::opt<unsigned> ForceTargetNumVectorRegs( 148 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of vector registers.")); 150 151 /// Maximum vectorization interleave count. 152 static const unsigned MaxInterleaveFactor = 16; 153 154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 155 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's max interleave factor for " 157 "scalar loops.")); 158 159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 160 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's max interleave factor for " 162 "vectorized loops.")); 163 164 static cl::opt<unsigned> ForceTargetInstructionCost( 165 "force-target-instruction-cost", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's expected cost for " 167 "an instruction to a single constant value. Mostly " 168 "useful for getting consistent testing.")); 169 170 static cl::opt<unsigned> SmallLoopCost( 171 "small-loop-cost", cl::init(20), cl::Hidden, 172 cl::desc( 173 "The cost of a loop that is considered 'small' by the interleaver.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime interleave loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 183 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 184 cl::desc( 185 "Enable runtime interleaving until load/store ports are saturated")); 186 187 /// The number of stores in a loop that are allowed to need predication. 188 static cl::opt<unsigned> NumberOfStoresToPredicate( 189 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 190 cl::desc("Max number of stores to be predicated behind an if.")); 191 192 static cl::opt<bool> EnableIndVarRegisterHeur( 193 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 194 cl::desc("Count the induction variable only once when interleaving")); 195 196 static cl::opt<bool> EnableCondStoresVectorization( 197 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 198 cl::desc("Enable if predication of stores during vectorization.")); 199 200 static cl::opt<unsigned> MaxNestedScalarReductionIC( 201 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 202 cl::desc("The maximum interleave count to use when interleaving a scalar " 203 "reduction in a nested loop.")); 204 205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 206 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 207 cl::desc("The maximum allowed number of runtime memory checks with a " 208 "vectorize(enable) pragma.")); 209 210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 211 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed.")); 213 214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 215 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed with a " 217 "vectorize(enable) pragma")); 218 219 /// Create an analysis remark that explains why vectorization failed 220 /// 221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 222 /// RemarkName is the identifier for the remark. If \p I is passed it is an 223 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 224 /// the location of the remark. \return the remark object that can be 225 /// streamed to. 226 static OptimizationRemarkAnalysis 227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 228 Instruction *I = nullptr) { 229 Value *CodeRegion = TheLoop->getHeader(); 230 DebugLoc DL = TheLoop->getStartLoc(); 231 232 if (I) { 233 CodeRegion = I->getParent(); 234 // If there is no debug location attached to the instruction, revert back to 235 // using the loop's. 236 if (I->getDebugLoc()) 237 DL = I->getDebugLoc(); 238 } 239 240 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 241 R << "loop not vectorized: "; 242 return R; 243 } 244 245 namespace { 246 247 // Forward declarations. 248 class LoopVectorizeHints; 249 class LoopVectorizationLegality; 250 class LoopVectorizationCostModel; 251 class LoopVectorizationRequirements; 252 253 /// Returns true if the given loop body has a cycle, excluding the loop 254 /// itself. 255 static bool hasCyclesInLoopBody(const Loop &L) { 256 if (!L.empty()) 257 return true; 258 259 for (const auto &SCC : 260 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 261 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 262 if (SCC.size() > 1) { 263 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 264 DEBUG(L.dump()); 265 return true; 266 } 267 } 268 return false; 269 } 270 271 /// A helper function for converting Scalar types to vector types. 272 /// If the incoming type is void, we return void. If the VF is 1, we return 273 /// the scalar type. 274 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 275 if (Scalar->isVoidTy() || VF == 1) 276 return Scalar; 277 return VectorType::get(Scalar, VF); 278 } 279 280 // FIXME: The following helper functions have multiple implementations 281 // in the project. They can be effectively organized in a common Load/Store 282 // utilities unit. 283 284 /// A helper function that returns the pointer operand of a load or store 285 /// instruction. 286 static Value *getPointerOperand(Value *I) { 287 if (auto *LI = dyn_cast<LoadInst>(I)) 288 return LI->getPointerOperand(); 289 if (auto *SI = dyn_cast<StoreInst>(I)) 290 return SI->getPointerOperand(); 291 return nullptr; 292 } 293 294 /// A helper function that returns the type of loaded or stored value. 295 static Type *getMemInstValueType(Value *I) { 296 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 297 "Expected Load or Store instruction"); 298 if (auto *LI = dyn_cast<LoadInst>(I)) 299 return LI->getType(); 300 return cast<StoreInst>(I)->getValueOperand()->getType(); 301 } 302 303 /// A helper function that returns the alignment of load or store instruction. 304 static unsigned getMemInstAlignment(Value *I) { 305 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 306 "Expected Load or Store instruction"); 307 if (auto *LI = dyn_cast<LoadInst>(I)) 308 return LI->getAlignment(); 309 return cast<StoreInst>(I)->getAlignment(); 310 } 311 312 /// A helper function that returns the address space of the pointer operand of 313 /// load or store instruction. 314 static unsigned getMemInstAddressSpace(Value *I) { 315 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 316 "Expected Load or Store instruction"); 317 if (auto *LI = dyn_cast<LoadInst>(I)) 318 return LI->getPointerAddressSpace(); 319 return cast<StoreInst>(I)->getPointerAddressSpace(); 320 } 321 322 /// A helper function that returns true if the given type is irregular. The 323 /// type is irregular if its allocated size doesn't equal the store size of an 324 /// element of the corresponding vector type at the given vectorization factor. 325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 326 327 // Determine if an array of VF elements of type Ty is "bitcast compatible" 328 // with a <VF x Ty> vector. 329 if (VF > 1) { 330 auto *VectorTy = VectorType::get(Ty, VF); 331 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 332 } 333 334 // If the vectorization factor is one, we just check if an array of type Ty 335 // requires padding between elements. 336 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 337 } 338 339 /// A helper function that returns the reciprocal of the block probability of 340 /// predicated blocks. If we return X, we are assuming the predicated block 341 /// will execute once for for every X iterations of the loop header. 342 /// 343 /// TODO: We should use actual block probability here, if available. Currently, 344 /// we always assume predicated blocks have a 50% chance of executing. 345 static unsigned getReciprocalPredBlockProb() { return 2; } 346 347 /// A helper function that adds a 'fast' flag to floating-point operations. 348 static Value *addFastMathFlag(Value *V) { 349 if (isa<FPMathOperator>(V)) { 350 FastMathFlags Flags; 351 Flags.setUnsafeAlgebra(); 352 cast<Instruction>(V)->setFastMathFlags(Flags); 353 } 354 return V; 355 } 356 357 /// A helper function that returns an integer or floating-point constant with 358 /// value C. 359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 360 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 361 : ConstantFP::get(Ty, C); 362 } 363 364 /// InnerLoopVectorizer vectorizes loops which contain only one basic 365 /// block to a specified vectorization factor (VF). 366 /// This class performs the widening of scalars into vectors, or multiple 367 /// scalars. This class also implements the following features: 368 /// * It inserts an epilogue loop for handling loops that don't have iteration 369 /// counts that are known to be a multiple of the vectorization factor. 370 /// * It handles the code generation for reduction variables. 371 /// * Scalarization (implementation using scalars) of un-vectorizable 372 /// instructions. 373 /// InnerLoopVectorizer does not perform any vectorization-legality 374 /// checks, and relies on the caller to check for the different legality 375 /// aspects. The InnerLoopVectorizer relies on the 376 /// LoopVectorizationLegality class to provide information about the induction 377 /// and reduction variables that were found to a given vectorization factor. 378 class InnerLoopVectorizer { 379 public: 380 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 381 LoopInfo *LI, DominatorTree *DT, 382 const TargetLibraryInfo *TLI, 383 const TargetTransformInfo *TTI, AssumptionCache *AC, 384 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 385 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 386 LoopVectorizationCostModel *CM) 387 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 388 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 389 Builder(PSE.getSE()->getContext()), Induction(nullptr), 390 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 391 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 392 AddedSafetyChecks(false) {} 393 394 // Perform the actual loop widening (vectorization). 395 void vectorize() { 396 // Create a new empty loop. Unlink the old loop and connect the new one. 397 createEmptyLoop(); 398 // Widen each instruction in the old loop to a new one in the new loop. 399 vectorizeLoop(); 400 } 401 402 // Return true if any runtime check is added. 403 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 404 405 virtual ~InnerLoopVectorizer() {} 406 407 protected: 408 /// A small list of PHINodes. 409 typedef SmallVector<PHINode *, 4> PhiVector; 410 411 /// A type for vectorized values in the new loop. Each value from the 412 /// original loop, when vectorized, is represented by UF vector values in the 413 /// new unrolled loop, where UF is the unroll factor. 414 typedef SmallVector<Value *, 2> VectorParts; 415 416 /// A type for scalarized values in the new loop. Each value from the 417 /// original loop, when scalarized, is represented by UF x VF scalar values 418 /// in the new unrolled loop, where UF is the unroll factor and VF is the 419 /// vectorization factor. 420 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 421 422 // When we if-convert we need to create edge masks. We have to cache values 423 // so that we don't end up with exponential recursion/IR. 424 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 425 EdgeMaskCacheTy; 426 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 427 428 /// Create an empty loop, based on the loop ranges of the old loop. 429 void createEmptyLoop(); 430 431 /// Set up the values of the IVs correctly when exiting the vector loop. 432 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 433 Value *CountRoundDown, Value *EndValue, 434 BasicBlock *MiddleBlock); 435 436 /// Create a new induction variable inside L. 437 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 438 Value *Step, Instruction *DL); 439 /// Copy and widen the instructions from the old loop. 440 virtual void vectorizeLoop(); 441 442 /// Handle all cross-iteration phis in the header. 443 void fixCrossIterationPHIs(); 444 445 /// Fix a first-order recurrence. This is the second phase of vectorizing 446 /// this phi node. 447 void fixFirstOrderRecurrence(PHINode *Phi); 448 449 /// Fix a reduction cross-iteration phi. This is the second phase of 450 /// vectorizing this phi node. 451 void fixReduction(PHINode *Phi); 452 453 /// \brief The Loop exit block may have single value PHI nodes where the 454 /// incoming value is 'Undef'. While vectorizing we only handled real values 455 /// that were defined inside the loop. Here we fix the 'undef case'. 456 /// See PR14725. 457 void fixLCSSAPHIs(); 458 459 /// Iteratively sink the scalarized operands of a predicated instruction into 460 /// the block that was created for it. 461 void sinkScalarOperands(Instruction *PredInst); 462 463 /// Predicate conditional instructions that require predication on their 464 /// respective conditions. 465 void predicateInstructions(); 466 467 /// Collect the instructions from the original loop that would be trivially 468 /// dead in the vectorized loop if generated. 469 void collectTriviallyDeadInstructions( 470 SmallPtrSetImpl<Instruction *> &DeadInstructions); 471 472 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 473 /// represented as. 474 void truncateToMinimalBitwidths(); 475 476 /// A helper function that computes the predicate of the block BB, assuming 477 /// that the header block of the loop is set to True. It returns the *entry* 478 /// mask for the block BB. 479 VectorParts createBlockInMask(BasicBlock *BB); 480 /// A helper function that computes the predicate of the edge between SRC 481 /// and DST. 482 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 483 484 /// A helper function to vectorize a single instruction within the innermost 485 /// loop. 486 void vectorizeInstruction(Instruction &I); 487 488 /// Vectorize a single PHINode in a block. This method handles the induction 489 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 490 /// arbitrary length vectors. 491 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 492 493 /// Insert the new loop to the loop hierarchy and pass manager 494 /// and update the analysis passes. 495 void updateAnalysis(); 496 497 /// This instruction is un-vectorizable. Implement it as a sequence 498 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 499 /// scalarized instruction behind an if block predicated on the control 500 /// dependence of the instruction. 501 virtual void scalarizeInstruction(Instruction *Instr, 502 bool IfPredicateInstr = false); 503 504 /// Vectorize Load and Store instructions, 505 virtual void vectorizeMemoryInstruction(Instruction *Instr); 506 507 /// Create a broadcast instruction. This method generates a broadcast 508 /// instruction (shuffle) for loop invariant values and for the induction 509 /// value. If this is the induction variable then we extend it to N, N+1, ... 510 /// this is needed because each iteration in the loop corresponds to a SIMD 511 /// element. 512 virtual Value *getBroadcastInstrs(Value *V); 513 514 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 515 /// to each vector element of Val. The sequence starts at StartIndex. 516 /// \p Opcode is relevant for FP induction variable. 517 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 518 Instruction::BinaryOps Opcode = 519 Instruction::BinaryOpsEnd); 520 521 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 522 /// variable on which to base the steps, \p Step is the size of the step, and 523 /// \p EntryVal is the value from the original loop that maps to the steps. 524 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 525 /// can be a truncate instruction). 526 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 527 const InductionDescriptor &ID); 528 529 /// Create a vector induction phi node based on an existing scalar one. \p 530 /// EntryVal is the value from the original loop that maps to the vector phi 531 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 532 /// truncate instruction, instead of widening the original IV, we widen a 533 /// version of the IV truncated to \p EntryVal's type. 534 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 535 Value *Step, Instruction *EntryVal); 536 537 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 538 /// is provided, the integer induction variable will first be truncated to 539 /// the corresponding type. 540 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 541 542 /// Returns true if an instruction \p I should be scalarized instead of 543 /// vectorized for the chosen vectorization factor. 544 bool shouldScalarizeInstruction(Instruction *I) const; 545 546 /// Returns true if we should generate a scalar version of \p IV. 547 bool needsScalarInduction(Instruction *IV) const; 548 549 /// Return a constant reference to the VectorParts corresponding to \p V from 550 /// the original loop. If the value has already been vectorized, the 551 /// corresponding vector entry in VectorLoopValueMap is returned. If, 552 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 553 /// new vector values on-demand by inserting the scalar values into vectors 554 /// with an insertelement sequence. If the value has been neither vectorized 555 /// nor scalarized, it must be loop invariant, so we simply broadcast the 556 /// value into vectors. 557 const VectorParts &getVectorValue(Value *V); 558 559 /// Return a value in the new loop corresponding to \p V from the original 560 /// loop at unroll index \p Part and vector index \p Lane. If the value has 561 /// been vectorized but not scalarized, the necessary extractelement 562 /// instruction will be generated. 563 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 564 565 /// Try to vectorize the interleaved access group that \p Instr belongs to. 566 void vectorizeInterleaveGroup(Instruction *Instr); 567 568 /// Generate a shuffle sequence that will reverse the vector Vec. 569 virtual Value *reverseVector(Value *Vec); 570 571 /// Returns (and creates if needed) the original loop trip count. 572 Value *getOrCreateTripCount(Loop *NewLoop); 573 574 /// Returns (and creates if needed) the trip count of the widened loop. 575 Value *getOrCreateVectorTripCount(Loop *NewLoop); 576 577 /// Emit a bypass check to see if the trip count would overflow, or we 578 /// wouldn't have enough iterations to execute one vector loop. 579 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 580 /// Emit a bypass check to see if the vector trip count is nonzero. 581 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 582 /// Emit a bypass check to see if all of the SCEV assumptions we've 583 /// had to make are correct. 584 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 585 /// Emit bypass checks to check any memory assumptions we may have made. 586 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 587 588 /// Add additional metadata to \p To that was not present on \p Orig. 589 /// 590 /// Currently this is used to add the noalias annotations based on the 591 /// inserted memchecks. Use this for instructions that are *cloned* into the 592 /// vector loop. 593 void addNewMetadata(Instruction *To, const Instruction *Orig); 594 595 /// Add metadata from one instruction to another. 596 /// 597 /// This includes both the original MDs from \p From and additional ones (\see 598 /// addNewMetadata). Use this for *newly created* instructions in the vector 599 /// loop. 600 void addMetadata(Instruction *To, Instruction *From); 601 602 /// \brief Similar to the previous function but it adds the metadata to a 603 /// vector of instructions. 604 void addMetadata(ArrayRef<Value *> To, Instruction *From); 605 606 /// \brief Set the debug location in the builder using the debug location in 607 /// the instruction. 608 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 609 610 /// This is a helper class for maintaining vectorization state. It's used for 611 /// mapping values from the original loop to their corresponding values in 612 /// the new loop. Two mappings are maintained: one for vectorized values and 613 /// one for scalarized values. Vectorized values are represented with UF 614 /// vector values in the new loop, and scalarized values are represented with 615 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 616 /// vectorization factors, respectively. 617 /// 618 /// Entries can be added to either map with initVector and initScalar, which 619 /// initialize and return a constant reference to the new entry. If a 620 /// non-constant reference to a vector entry is required, getVector can be 621 /// used to retrieve a mutable entry. We currently directly modify the mapped 622 /// values during "fix-up" operations that occur once the first phase of 623 /// widening is complete. These operations include type truncation and the 624 /// second phase of recurrence widening. 625 /// 626 /// Otherwise, entries from either map should be accessed using the 627 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 628 /// getVectorValue and getScalarValue coordinate to generate a vector or 629 /// scalar value on-demand if one is not yet available. When vectorizing a 630 /// loop, we visit the definition of an instruction before its uses. When 631 /// visiting the definition, we either vectorize or scalarize the 632 /// instruction, creating an entry for it in the corresponding map. (In some 633 /// cases, such as induction variables, we will create both vector and scalar 634 /// entries.) Then, as we encounter uses of the definition, we derive values 635 /// for each scalar or vector use unless such a value is already available. 636 /// For example, if we scalarize a definition and one of its uses is vector, 637 /// we build the required vector on-demand with an insertelement sequence 638 /// when visiting the use. Otherwise, if the use is scalar, we can use the 639 /// existing scalar definition. 640 struct ValueMap { 641 642 /// Construct an empty map with the given unroll and vectorization factors. 643 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 644 : UF(UnrollFactor), VF(VecWidth) { 645 // The unroll and vectorization factors are only used in asserts builds 646 // to verify map entries are sized appropriately. 647 (void)UF; 648 (void)VF; 649 } 650 651 /// \return True if the map has a vector entry for \p Key. 652 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 653 654 /// \return True if the map has a scalar entry for \p Key. 655 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 656 657 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 658 /// constant reference to the new vector map entry. The given key should 659 /// not already be in the map, and the given VectorParts should be 660 /// correctly sized for the current unroll factor. 661 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 662 assert(!hasVector(Key) && "Vector entry already initialized"); 663 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 664 VectorMapStorage[Key] = Entry; 665 return VectorMapStorage[Key]; 666 } 667 668 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 669 /// constant reference to the new scalar map entry. The given key should 670 /// not already be in the map, and the given ScalarParts should be 671 /// correctly sized for the current unroll and vectorization factors. 672 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 673 assert(!hasScalar(Key) && "Scalar entry already initialized"); 674 assert(Entry.size() == UF && 675 all_of(make_range(Entry.begin(), Entry.end()), 676 [&](const SmallVectorImpl<Value *> &Values) -> bool { 677 return Values.size() == VF; 678 }) && 679 "ScalarParts has wrong dimensions"); 680 ScalarMapStorage[Key] = Entry; 681 return ScalarMapStorage[Key]; 682 } 683 684 /// \return A reference to the vector map entry corresponding to \p Key. 685 /// The key should already be in the map. This function should only be used 686 /// when it's necessary to update values that have already been vectorized. 687 /// This is the case for "fix-up" operations including type truncation and 688 /// the second phase of recurrence vectorization. If a non-const reference 689 /// isn't required, getVectorValue should be used instead. 690 VectorParts &getVector(Value *Key) { 691 assert(hasVector(Key) && "Vector entry not initialized"); 692 return VectorMapStorage.find(Key)->second; 693 } 694 695 /// Retrieve an entry from the vector or scalar maps. The preferred way to 696 /// access an existing mapped entry is with getVectorValue or 697 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 698 /// moved inside ValueMap, we have to declare them as friends. 699 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 700 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 701 unsigned Lane); 702 703 private: 704 /// The unroll factor. Each entry in the vector map contains UF vector 705 /// values. 706 unsigned UF; 707 708 /// The vectorization factor. Each entry in the scalar map contains UF x VF 709 /// scalar values. 710 unsigned VF; 711 712 /// The vector and scalar map storage. We use std::map and not DenseMap 713 /// because insertions to DenseMap invalidate its iterators. 714 std::map<Value *, VectorParts> VectorMapStorage; 715 std::map<Value *, ScalarParts> ScalarMapStorage; 716 }; 717 718 /// The original loop. 719 Loop *OrigLoop; 720 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 721 /// dynamic knowledge to simplify SCEV expressions and converts them to a 722 /// more usable form. 723 PredicatedScalarEvolution &PSE; 724 /// Loop Info. 725 LoopInfo *LI; 726 /// Dominator Tree. 727 DominatorTree *DT; 728 /// Alias Analysis. 729 AliasAnalysis *AA; 730 /// Target Library Info. 731 const TargetLibraryInfo *TLI; 732 /// Target Transform Info. 733 const TargetTransformInfo *TTI; 734 /// Assumption Cache. 735 AssumptionCache *AC; 736 /// Interface to emit optimization remarks. 737 OptimizationRemarkEmitter *ORE; 738 739 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 740 /// used. 741 /// 742 /// This is currently only used to add no-alias metadata based on the 743 /// memchecks. The actually versioning is performed manually. 744 std::unique_ptr<LoopVersioning> LVer; 745 746 /// The vectorization SIMD factor to use. Each vector will have this many 747 /// vector elements. 748 unsigned VF; 749 750 protected: 751 /// The vectorization unroll factor to use. Each scalar is vectorized to this 752 /// many different vector instructions. 753 unsigned UF; 754 755 /// The builder that we use 756 IRBuilder<> Builder; 757 758 // --- Vectorization state --- 759 760 /// The vector-loop preheader. 761 BasicBlock *LoopVectorPreHeader; 762 /// The scalar-loop preheader. 763 BasicBlock *LoopScalarPreHeader; 764 /// Middle Block between the vector and the scalar. 765 BasicBlock *LoopMiddleBlock; 766 /// The ExitBlock of the scalar loop. 767 BasicBlock *LoopExitBlock; 768 /// The vector loop body. 769 BasicBlock *LoopVectorBody; 770 /// The scalar loop body. 771 BasicBlock *LoopScalarBody; 772 /// A list of all bypass blocks. The first block is the entry of the loop. 773 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 774 775 /// The new Induction variable which was added to the new block. 776 PHINode *Induction; 777 /// The induction variable of the old basic block. 778 PHINode *OldInduction; 779 780 /// Maps values from the original loop to their corresponding values in the 781 /// vectorized loop. A key value can map to either vector values, scalar 782 /// values or both kinds of values, depending on whether the key was 783 /// vectorized and scalarized. 784 ValueMap VectorLoopValueMap; 785 786 /// Store instructions that should be predicated, as a pair 787 /// <StoreInst, Predicate> 788 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 789 EdgeMaskCacheTy EdgeMaskCache; 790 BlockMaskCacheTy BlockMaskCache; 791 /// Trip count of the original loop. 792 Value *TripCount; 793 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 794 Value *VectorTripCount; 795 796 /// The legality analysis. 797 LoopVectorizationLegality *Legal; 798 799 /// The profitablity analysis. 800 LoopVectorizationCostModel *Cost; 801 802 // Record whether runtime checks are added. 803 bool AddedSafetyChecks; 804 805 // Holds the end values for each induction variable. We save the end values 806 // so we can later fix-up the external users of the induction variables. 807 DenseMap<PHINode *, Value *> IVEndValues; 808 }; 809 810 class InnerLoopUnroller : public InnerLoopVectorizer { 811 public: 812 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 813 LoopInfo *LI, DominatorTree *DT, 814 const TargetLibraryInfo *TLI, 815 const TargetTransformInfo *TTI, AssumptionCache *AC, 816 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 817 LoopVectorizationLegality *LVL, 818 LoopVectorizationCostModel *CM) 819 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 820 UnrollFactor, LVL, CM) {} 821 822 private: 823 void vectorizeMemoryInstruction(Instruction *Instr) override; 824 Value *getBroadcastInstrs(Value *V) override; 825 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 826 Instruction::BinaryOps Opcode = 827 Instruction::BinaryOpsEnd) override; 828 Value *reverseVector(Value *Vec) override; 829 }; 830 831 /// \brief Look for a meaningful debug location on the instruction or it's 832 /// operands. 833 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 834 if (!I) 835 return I; 836 837 DebugLoc Empty; 838 if (I->getDebugLoc() != Empty) 839 return I; 840 841 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 842 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 843 if (OpInst->getDebugLoc() != Empty) 844 return OpInst; 845 } 846 847 return I; 848 } 849 850 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 851 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 852 const DILocation *DIL = Inst->getDebugLoc(); 853 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 854 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 855 else 856 B.SetCurrentDebugLocation(DIL); 857 } else 858 B.SetCurrentDebugLocation(DebugLoc()); 859 } 860 861 #ifndef NDEBUG 862 /// \return string containing a file name and a line # for the given loop. 863 static std::string getDebugLocString(const Loop *L) { 864 std::string Result; 865 if (L) { 866 raw_string_ostream OS(Result); 867 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 868 LoopDbgLoc.print(OS); 869 else 870 // Just print the module name. 871 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 872 OS.flush(); 873 } 874 return Result; 875 } 876 #endif 877 878 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 879 const Instruction *Orig) { 880 // If the loop was versioned with memchecks, add the corresponding no-alias 881 // metadata. 882 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 883 LVer->annotateInstWithNoAlias(To, Orig); 884 } 885 886 void InnerLoopVectorizer::addMetadata(Instruction *To, 887 Instruction *From) { 888 propagateMetadata(To, From); 889 addNewMetadata(To, From); 890 } 891 892 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 893 Instruction *From) { 894 for (Value *V : To) { 895 if (Instruction *I = dyn_cast<Instruction>(V)) 896 addMetadata(I, From); 897 } 898 } 899 900 /// \brief The group of interleaved loads/stores sharing the same stride and 901 /// close to each other. 902 /// 903 /// Each member in this group has an index starting from 0, and the largest 904 /// index should be less than interleaved factor, which is equal to the absolute 905 /// value of the access's stride. 906 /// 907 /// E.g. An interleaved load group of factor 4: 908 /// for (unsigned i = 0; i < 1024; i+=4) { 909 /// a = A[i]; // Member of index 0 910 /// b = A[i+1]; // Member of index 1 911 /// d = A[i+3]; // Member of index 3 912 /// ... 913 /// } 914 /// 915 /// An interleaved store group of factor 4: 916 /// for (unsigned i = 0; i < 1024; i+=4) { 917 /// ... 918 /// A[i] = a; // Member of index 0 919 /// A[i+1] = b; // Member of index 1 920 /// A[i+2] = c; // Member of index 2 921 /// A[i+3] = d; // Member of index 3 922 /// } 923 /// 924 /// Note: the interleaved load group could have gaps (missing members), but 925 /// the interleaved store group doesn't allow gaps. 926 class InterleaveGroup { 927 public: 928 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 929 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 930 assert(Align && "The alignment should be non-zero"); 931 932 Factor = std::abs(Stride); 933 assert(Factor > 1 && "Invalid interleave factor"); 934 935 Reverse = Stride < 0; 936 Members[0] = Instr; 937 } 938 939 bool isReverse() const { return Reverse; } 940 unsigned getFactor() const { return Factor; } 941 unsigned getAlignment() const { return Align; } 942 unsigned getNumMembers() const { return Members.size(); } 943 944 /// \brief Try to insert a new member \p Instr with index \p Index and 945 /// alignment \p NewAlign. The index is related to the leader and it could be 946 /// negative if it is the new leader. 947 /// 948 /// \returns false if the instruction doesn't belong to the group. 949 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 950 assert(NewAlign && "The new member's alignment should be non-zero"); 951 952 int Key = Index + SmallestKey; 953 954 // Skip if there is already a member with the same index. 955 if (Members.count(Key)) 956 return false; 957 958 if (Key > LargestKey) { 959 // The largest index is always less than the interleave factor. 960 if (Index >= static_cast<int>(Factor)) 961 return false; 962 963 LargestKey = Key; 964 } else if (Key < SmallestKey) { 965 // The largest index is always less than the interleave factor. 966 if (LargestKey - Key >= static_cast<int>(Factor)) 967 return false; 968 969 SmallestKey = Key; 970 } 971 972 // It's always safe to select the minimum alignment. 973 Align = std::min(Align, NewAlign); 974 Members[Key] = Instr; 975 return true; 976 } 977 978 /// \brief Get the member with the given index \p Index 979 /// 980 /// \returns nullptr if contains no such member. 981 Instruction *getMember(unsigned Index) const { 982 int Key = SmallestKey + Index; 983 if (!Members.count(Key)) 984 return nullptr; 985 986 return Members.find(Key)->second; 987 } 988 989 /// \brief Get the index for the given member. Unlike the key in the member 990 /// map, the index starts from 0. 991 unsigned getIndex(Instruction *Instr) const { 992 for (auto I : Members) 993 if (I.second == Instr) 994 return I.first - SmallestKey; 995 996 llvm_unreachable("InterleaveGroup contains no such member"); 997 } 998 999 Instruction *getInsertPos() const { return InsertPos; } 1000 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 1001 1002 private: 1003 unsigned Factor; // Interleave Factor. 1004 bool Reverse; 1005 unsigned Align; 1006 DenseMap<int, Instruction *> Members; 1007 int SmallestKey; 1008 int LargestKey; 1009 1010 // To avoid breaking dependences, vectorized instructions of an interleave 1011 // group should be inserted at either the first load or the last store in 1012 // program order. 1013 // 1014 // E.g. %even = load i32 // Insert Position 1015 // %add = add i32 %even // Use of %even 1016 // %odd = load i32 1017 // 1018 // store i32 %even 1019 // %odd = add i32 // Def of %odd 1020 // store i32 %odd // Insert Position 1021 Instruction *InsertPos; 1022 }; 1023 1024 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1025 /// 1026 /// Use this class to analyze interleaved accesses only when we can vectorize 1027 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1028 /// on interleaved accesses is unsafe. 1029 /// 1030 /// The analysis collects interleave groups and records the relationships 1031 /// between the member and the group in a map. 1032 class InterleavedAccessInfo { 1033 public: 1034 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1035 DominatorTree *DT, LoopInfo *LI) 1036 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1037 RequiresScalarEpilogue(false) {} 1038 1039 ~InterleavedAccessInfo() { 1040 SmallSet<InterleaveGroup *, 4> DelSet; 1041 // Avoid releasing a pointer twice. 1042 for (auto &I : InterleaveGroupMap) 1043 DelSet.insert(I.second); 1044 for (auto *Ptr : DelSet) 1045 delete Ptr; 1046 } 1047 1048 /// \brief Analyze the interleaved accesses and collect them in interleave 1049 /// groups. Substitute symbolic strides using \p Strides. 1050 void analyzeInterleaving(const ValueToValueMap &Strides); 1051 1052 /// \brief Check if \p Instr belongs to any interleave group. 1053 bool isInterleaved(Instruction *Instr) const { 1054 return InterleaveGroupMap.count(Instr); 1055 } 1056 1057 /// \brief Return the maximum interleave factor of all interleaved groups. 1058 unsigned getMaxInterleaveFactor() const { 1059 unsigned MaxFactor = 1; 1060 for (auto &Entry : InterleaveGroupMap) 1061 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1062 return MaxFactor; 1063 } 1064 1065 /// \brief Get the interleave group that \p Instr belongs to. 1066 /// 1067 /// \returns nullptr if doesn't have such group. 1068 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1069 if (InterleaveGroupMap.count(Instr)) 1070 return InterleaveGroupMap.find(Instr)->second; 1071 return nullptr; 1072 } 1073 1074 /// \brief Returns true if an interleaved group that may access memory 1075 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1076 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1077 1078 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1079 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1080 1081 private: 1082 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1083 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1084 /// The interleaved access analysis can also add new predicates (for example 1085 /// by versioning strides of pointers). 1086 PredicatedScalarEvolution &PSE; 1087 Loop *TheLoop; 1088 DominatorTree *DT; 1089 LoopInfo *LI; 1090 const LoopAccessInfo *LAI; 1091 1092 /// True if the loop may contain non-reversed interleaved groups with 1093 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1094 /// out-of-bounds by executing at least one scalar epilogue iteration. 1095 bool RequiresScalarEpilogue; 1096 1097 /// Holds the relationships between the members and the interleave group. 1098 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1099 1100 /// Holds dependences among the memory accesses in the loop. It maps a source 1101 /// access to a set of dependent sink accesses. 1102 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1103 1104 /// \brief The descriptor for a strided memory access. 1105 struct StrideDescriptor { 1106 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1107 unsigned Align) 1108 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1109 1110 StrideDescriptor() = default; 1111 1112 // The access's stride. It is negative for a reverse access. 1113 int64_t Stride = 0; 1114 const SCEV *Scev = nullptr; // The scalar expression of this access 1115 uint64_t Size = 0; // The size of the memory object. 1116 unsigned Align = 0; // The alignment of this access. 1117 }; 1118 1119 /// \brief A type for holding instructions and their stride descriptors. 1120 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1121 1122 /// \brief Create a new interleave group with the given instruction \p Instr, 1123 /// stride \p Stride and alignment \p Align. 1124 /// 1125 /// \returns the newly created interleave group. 1126 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1127 unsigned Align) { 1128 assert(!InterleaveGroupMap.count(Instr) && 1129 "Already in an interleaved access group"); 1130 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1131 return InterleaveGroupMap[Instr]; 1132 } 1133 1134 /// \brief Release the group and remove all the relationships. 1135 void releaseGroup(InterleaveGroup *Group) { 1136 for (unsigned i = 0; i < Group->getFactor(); i++) 1137 if (Instruction *Member = Group->getMember(i)) 1138 InterleaveGroupMap.erase(Member); 1139 1140 delete Group; 1141 } 1142 1143 /// \brief Collect all the accesses with a constant stride in program order. 1144 void collectConstStrideAccesses( 1145 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1146 const ValueToValueMap &Strides); 1147 1148 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1149 static bool isStrided(int Stride) { 1150 unsigned Factor = std::abs(Stride); 1151 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1152 } 1153 1154 /// \brief Returns true if \p BB is a predicated block. 1155 bool isPredicated(BasicBlock *BB) const { 1156 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1157 } 1158 1159 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1160 bool areDependencesValid() const { 1161 return LAI && LAI->getDepChecker().getDependences(); 1162 } 1163 1164 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1165 /// necessary, when constructing interleaved groups. 1166 /// 1167 /// \p A must precede \p B in program order. We return false if reordering is 1168 /// not necessary or is prevented because \p A and \p B may be dependent. 1169 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1170 StrideEntry *B) const { 1171 1172 // Code motion for interleaved accesses can potentially hoist strided loads 1173 // and sink strided stores. The code below checks the legality of the 1174 // following two conditions: 1175 // 1176 // 1. Potentially moving a strided load (B) before any store (A) that 1177 // precedes B, or 1178 // 1179 // 2. Potentially moving a strided store (A) after any load or store (B) 1180 // that A precedes. 1181 // 1182 // It's legal to reorder A and B if we know there isn't a dependence from A 1183 // to B. Note that this determination is conservative since some 1184 // dependences could potentially be reordered safely. 1185 1186 // A is potentially the source of a dependence. 1187 auto *Src = A->first; 1188 auto SrcDes = A->second; 1189 1190 // B is potentially the sink of a dependence. 1191 auto *Sink = B->first; 1192 auto SinkDes = B->second; 1193 1194 // Code motion for interleaved accesses can't violate WAR dependences. 1195 // Thus, reordering is legal if the source isn't a write. 1196 if (!Src->mayWriteToMemory()) 1197 return true; 1198 1199 // At least one of the accesses must be strided. 1200 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1201 return true; 1202 1203 // If dependence information is not available from LoopAccessInfo, 1204 // conservatively assume the instructions can't be reordered. 1205 if (!areDependencesValid()) 1206 return false; 1207 1208 // If we know there is a dependence from source to sink, assume the 1209 // instructions can't be reordered. Otherwise, reordering is legal. 1210 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1211 } 1212 1213 /// \brief Collect the dependences from LoopAccessInfo. 1214 /// 1215 /// We process the dependences once during the interleaved access analysis to 1216 /// enable constant-time dependence queries. 1217 void collectDependences() { 1218 if (!areDependencesValid()) 1219 return; 1220 auto *Deps = LAI->getDepChecker().getDependences(); 1221 for (auto Dep : *Deps) 1222 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1223 } 1224 }; 1225 1226 /// Utility class for getting and setting loop vectorizer hints in the form 1227 /// of loop metadata. 1228 /// This class keeps a number of loop annotations locally (as member variables) 1229 /// and can, upon request, write them back as metadata on the loop. It will 1230 /// initially scan the loop for existing metadata, and will update the local 1231 /// values based on information in the loop. 1232 /// We cannot write all values to metadata, as the mere presence of some info, 1233 /// for example 'force', means a decision has been made. So, we need to be 1234 /// careful NOT to add them if the user hasn't specifically asked so. 1235 class LoopVectorizeHints { 1236 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1237 1238 /// Hint - associates name and validation with the hint value. 1239 struct Hint { 1240 const char *Name; 1241 unsigned Value; // This may have to change for non-numeric values. 1242 HintKind Kind; 1243 1244 Hint(const char *Name, unsigned Value, HintKind Kind) 1245 : Name(Name), Value(Value), Kind(Kind) {} 1246 1247 bool validate(unsigned Val) { 1248 switch (Kind) { 1249 case HK_WIDTH: 1250 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1251 case HK_UNROLL: 1252 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1253 case HK_FORCE: 1254 return (Val <= 1); 1255 } 1256 return false; 1257 } 1258 }; 1259 1260 /// Vectorization width. 1261 Hint Width; 1262 /// Vectorization interleave factor. 1263 Hint Interleave; 1264 /// Vectorization forced 1265 Hint Force; 1266 1267 /// Return the loop metadata prefix. 1268 static StringRef Prefix() { return "llvm.loop."; } 1269 1270 /// True if there is any unsafe math in the loop. 1271 bool PotentiallyUnsafe; 1272 1273 public: 1274 enum ForceKind { 1275 FK_Undefined = -1, ///< Not selected. 1276 FK_Disabled = 0, ///< Forcing disabled. 1277 FK_Enabled = 1, ///< Forcing enabled. 1278 }; 1279 1280 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1281 OptimizationRemarkEmitter &ORE) 1282 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1283 HK_WIDTH), 1284 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1285 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1286 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1287 // Populate values with existing loop metadata. 1288 getHintsFromMetadata(); 1289 1290 // force-vector-interleave overrides DisableInterleaving. 1291 if (VectorizerParams::isInterleaveForced()) 1292 Interleave.Value = VectorizerParams::VectorizationInterleave; 1293 1294 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1295 << "LV: Interleaving disabled by the pass manager\n"); 1296 } 1297 1298 /// Mark the loop L as already vectorized by setting the width to 1. 1299 void setAlreadyVectorized() { 1300 Width.Value = Interleave.Value = 1; 1301 Hint Hints[] = {Width, Interleave}; 1302 writeHintsToMetadata(Hints); 1303 } 1304 1305 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1306 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1307 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1308 emitRemarkWithHints(); 1309 return false; 1310 } 1311 1312 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1313 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1314 emitRemarkWithHints(); 1315 return false; 1316 } 1317 1318 if (getWidth() == 1 && getInterleave() == 1) { 1319 // FIXME: Add a separate metadata to indicate when the loop has already 1320 // been vectorized instead of setting width and count to 1. 1321 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1322 // FIXME: Add interleave.disable metadata. This will allow 1323 // vectorize.disable to be used without disabling the pass and errors 1324 // to differentiate between disabled vectorization and a width of 1. 1325 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1326 "AllDisabled", L->getStartLoc(), 1327 L->getHeader()) 1328 << "loop not vectorized: vectorization and interleaving are " 1329 "explicitly disabled, or vectorize width and interleave " 1330 "count are both set to 1"); 1331 return false; 1332 } 1333 1334 return true; 1335 } 1336 1337 /// Dumps all the hint information. 1338 void emitRemarkWithHints() const { 1339 using namespace ore; 1340 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1341 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1342 TheLoop->getStartLoc(), 1343 TheLoop->getHeader()) 1344 << "loop not vectorized: vectorization is explicitly disabled"); 1345 else { 1346 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1347 TheLoop->getStartLoc(), TheLoop->getHeader()); 1348 R << "loop not vectorized"; 1349 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1350 R << " (Force=" << NV("Force", true); 1351 if (Width.Value != 0) 1352 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1353 if (Interleave.Value != 0) 1354 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1355 R << ")"; 1356 } 1357 ORE.emit(R); 1358 } 1359 } 1360 1361 unsigned getWidth() const { return Width.Value; } 1362 unsigned getInterleave() const { return Interleave.Value; } 1363 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1364 1365 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1366 /// pass name to force the frontend to print the diagnostic. 1367 const char *vectorizeAnalysisPassName() const { 1368 if (getWidth() == 1) 1369 return LV_NAME; 1370 if (getForce() == LoopVectorizeHints::FK_Disabled) 1371 return LV_NAME; 1372 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1373 return LV_NAME; 1374 return OptimizationRemarkAnalysis::AlwaysPrint; 1375 } 1376 1377 bool allowReordering() const { 1378 // When enabling loop hints are provided we allow the vectorizer to change 1379 // the order of operations that is given by the scalar loop. This is not 1380 // enabled by default because can be unsafe or inefficient. For example, 1381 // reordering floating-point operations will change the way round-off 1382 // error accumulates in the loop. 1383 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1384 } 1385 1386 bool isPotentiallyUnsafe() const { 1387 // Avoid FP vectorization if the target is unsure about proper support. 1388 // This may be related to the SIMD unit in the target not handling 1389 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1390 // Otherwise, a sequence of vectorized loops, even without reduction, 1391 // could lead to different end results on the destination vectors. 1392 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1393 } 1394 1395 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1396 1397 private: 1398 /// Find hints specified in the loop metadata and update local values. 1399 void getHintsFromMetadata() { 1400 MDNode *LoopID = TheLoop->getLoopID(); 1401 if (!LoopID) 1402 return; 1403 1404 // First operand should refer to the loop id itself. 1405 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1406 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1407 1408 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1409 const MDString *S = nullptr; 1410 SmallVector<Metadata *, 4> Args; 1411 1412 // The expected hint is either a MDString or a MDNode with the first 1413 // operand a MDString. 1414 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1415 if (!MD || MD->getNumOperands() == 0) 1416 continue; 1417 S = dyn_cast<MDString>(MD->getOperand(0)); 1418 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1419 Args.push_back(MD->getOperand(i)); 1420 } else { 1421 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1422 assert(Args.size() == 0 && "too many arguments for MDString"); 1423 } 1424 1425 if (!S) 1426 continue; 1427 1428 // Check if the hint starts with the loop metadata prefix. 1429 StringRef Name = S->getString(); 1430 if (Args.size() == 1) 1431 setHint(Name, Args[0]); 1432 } 1433 } 1434 1435 /// Checks string hint with one operand and set value if valid. 1436 void setHint(StringRef Name, Metadata *Arg) { 1437 if (!Name.startswith(Prefix())) 1438 return; 1439 Name = Name.substr(Prefix().size(), StringRef::npos); 1440 1441 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1442 if (!C) 1443 return; 1444 unsigned Val = C->getZExtValue(); 1445 1446 Hint *Hints[] = {&Width, &Interleave, &Force}; 1447 for (auto H : Hints) { 1448 if (Name == H->Name) { 1449 if (H->validate(Val)) 1450 H->Value = Val; 1451 else 1452 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1453 break; 1454 } 1455 } 1456 } 1457 1458 /// Create a new hint from name / value pair. 1459 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1460 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1461 Metadata *MDs[] = {MDString::get(Context, Name), 1462 ConstantAsMetadata::get( 1463 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1464 return MDNode::get(Context, MDs); 1465 } 1466 1467 /// Matches metadata with hint name. 1468 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1469 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1470 if (!Name) 1471 return false; 1472 1473 for (auto H : HintTypes) 1474 if (Name->getString().endswith(H.Name)) 1475 return true; 1476 return false; 1477 } 1478 1479 /// Sets current hints into loop metadata, keeping other values intact. 1480 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1481 if (HintTypes.size() == 0) 1482 return; 1483 1484 // Reserve the first element to LoopID (see below). 1485 SmallVector<Metadata *, 4> MDs(1); 1486 // If the loop already has metadata, then ignore the existing operands. 1487 MDNode *LoopID = TheLoop->getLoopID(); 1488 if (LoopID) { 1489 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1490 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1491 // If node in update list, ignore old value. 1492 if (!matchesHintMetadataName(Node, HintTypes)) 1493 MDs.push_back(Node); 1494 } 1495 } 1496 1497 // Now, add the missing hints. 1498 for (auto H : HintTypes) 1499 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1500 1501 // Replace current metadata node with new one. 1502 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1503 MDNode *NewLoopID = MDNode::get(Context, MDs); 1504 // Set operand 0 to refer to the loop id itself. 1505 NewLoopID->replaceOperandWith(0, NewLoopID); 1506 1507 TheLoop->setLoopID(NewLoopID); 1508 } 1509 1510 /// The loop these hints belong to. 1511 const Loop *TheLoop; 1512 1513 /// Interface to emit optimization remarks. 1514 OptimizationRemarkEmitter &ORE; 1515 }; 1516 1517 static void emitMissedWarning(Function *F, Loop *L, 1518 const LoopVectorizeHints &LH, 1519 OptimizationRemarkEmitter *ORE) { 1520 LH.emitRemarkWithHints(); 1521 1522 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1523 if (LH.getWidth() != 1) 1524 ORE->emit(DiagnosticInfoOptimizationFailure( 1525 DEBUG_TYPE, "FailedRequestedVectorization", 1526 L->getStartLoc(), L->getHeader()) 1527 << "loop not vectorized: " 1528 << "failed explicitly specified loop vectorization"); 1529 else if (LH.getInterleave() != 1) 1530 ORE->emit(DiagnosticInfoOptimizationFailure( 1531 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1532 L->getHeader()) 1533 << "loop not interleaved: " 1534 << "failed explicitly specified loop interleaving"); 1535 } 1536 } 1537 1538 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1539 /// to what vectorization factor. 1540 /// This class does not look at the profitability of vectorization, only the 1541 /// legality. This class has two main kinds of checks: 1542 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1543 /// will change the order of memory accesses in a way that will change the 1544 /// correctness of the program. 1545 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1546 /// checks for a number of different conditions, such as the availability of a 1547 /// single induction variable, that all types are supported and vectorize-able, 1548 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1549 /// This class is also used by InnerLoopVectorizer for identifying 1550 /// induction variable and the different reduction variables. 1551 class LoopVectorizationLegality { 1552 public: 1553 LoopVectorizationLegality( 1554 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1555 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1556 const TargetTransformInfo *TTI, 1557 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1558 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1559 LoopVectorizeHints *H) 1560 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1561 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1562 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1563 Requirements(R), Hints(H) {} 1564 1565 /// ReductionList contains the reduction descriptors for all 1566 /// of the reductions that were found in the loop. 1567 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1568 1569 /// InductionList saves induction variables and maps them to the 1570 /// induction descriptor. 1571 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1572 1573 /// RecurrenceSet contains the phi nodes that are recurrences other than 1574 /// inductions and reductions. 1575 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1576 1577 /// Returns true if it is legal to vectorize this loop. 1578 /// This does not mean that it is profitable to vectorize this 1579 /// loop, only that it is legal to do so. 1580 bool canVectorize(); 1581 1582 /// Returns the primary induction variable. 1583 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1584 1585 /// Returns the reduction variables found in the loop. 1586 ReductionList *getReductionVars() { return &Reductions; } 1587 1588 /// Returns the induction variables found in the loop. 1589 InductionList *getInductionVars() { return &Inductions; } 1590 1591 /// Return the first-order recurrences found in the loop. 1592 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1593 1594 /// Returns the widest induction type. 1595 Type *getWidestInductionType() { return WidestIndTy; } 1596 1597 /// Returns True if V is an induction variable in this loop. 1598 bool isInductionVariable(const Value *V); 1599 1600 /// Returns True if PN is a reduction variable in this loop. 1601 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1602 1603 /// Returns True if Phi is a first-order recurrence in this loop. 1604 bool isFirstOrderRecurrence(const PHINode *Phi); 1605 1606 /// Return true if the block BB needs to be predicated in order for the loop 1607 /// to be vectorized. 1608 bool blockNeedsPredication(BasicBlock *BB); 1609 1610 /// Check if this pointer is consecutive when vectorizing. This happens 1611 /// when the last index of the GEP is the induction variable, or that the 1612 /// pointer itself is an induction variable. 1613 /// This check allows us to vectorize A[idx] into a wide load/store. 1614 /// Returns: 1615 /// 0 - Stride is unknown or non-consecutive. 1616 /// 1 - Address is consecutive. 1617 /// -1 - Address is consecutive, and decreasing. 1618 int isConsecutivePtr(Value *Ptr); 1619 1620 /// Returns true if the value V is uniform within the loop. 1621 bool isUniform(Value *V); 1622 1623 /// Returns the information that we collected about runtime memory check. 1624 const RuntimePointerChecking *getRuntimePointerChecking() const { 1625 return LAI->getRuntimePointerChecking(); 1626 } 1627 1628 const LoopAccessInfo *getLAI() const { return LAI; } 1629 1630 /// \brief Check if \p Instr belongs to any interleaved access group. 1631 bool isAccessInterleaved(Instruction *Instr) { 1632 return InterleaveInfo.isInterleaved(Instr); 1633 } 1634 1635 /// \brief Return the maximum interleave factor of all interleaved groups. 1636 unsigned getMaxInterleaveFactor() const { 1637 return InterleaveInfo.getMaxInterleaveFactor(); 1638 } 1639 1640 /// \brief Get the interleaved access group that \p Instr belongs to. 1641 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1642 return InterleaveInfo.getInterleaveGroup(Instr); 1643 } 1644 1645 /// \brief Returns true if an interleaved group requires a scalar iteration 1646 /// to handle accesses with gaps. 1647 bool requiresScalarEpilogue() const { 1648 return InterleaveInfo.requiresScalarEpilogue(); 1649 } 1650 1651 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1652 1653 bool hasStride(Value *V) { return LAI->hasStride(V); } 1654 1655 /// Returns true if the target machine supports masked store operation 1656 /// for the given \p DataType and kind of access to \p Ptr. 1657 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1658 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1659 } 1660 /// Returns true if the target machine supports masked load operation 1661 /// for the given \p DataType and kind of access to \p Ptr. 1662 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1663 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1664 } 1665 /// Returns true if the target machine supports masked scatter operation 1666 /// for the given \p DataType. 1667 bool isLegalMaskedScatter(Type *DataType) { 1668 return TTI->isLegalMaskedScatter(DataType); 1669 } 1670 /// Returns true if the target machine supports masked gather operation 1671 /// for the given \p DataType. 1672 bool isLegalMaskedGather(Type *DataType) { 1673 return TTI->isLegalMaskedGather(DataType); 1674 } 1675 /// Returns true if the target machine can represent \p V as a masked gather 1676 /// or scatter operation. 1677 bool isLegalGatherOrScatter(Value *V) { 1678 auto *LI = dyn_cast<LoadInst>(V); 1679 auto *SI = dyn_cast<StoreInst>(V); 1680 if (!LI && !SI) 1681 return false; 1682 auto *Ptr = getPointerOperand(V); 1683 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1684 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1685 } 1686 1687 /// Returns true if vector representation of the instruction \p I 1688 /// requires mask. 1689 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1690 unsigned getNumStores() const { return LAI->getNumStores(); } 1691 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1692 unsigned getNumPredStores() const { return NumPredStores; } 1693 1694 /// Returns true if \p I is an instruction that will be scalarized with 1695 /// predication. Such instructions include conditional stores and 1696 /// instructions that may divide by zero. 1697 bool isScalarWithPredication(Instruction *I); 1698 1699 /// Returns true if \p I is a memory instruction with consecutive memory 1700 /// access that can be widened. 1701 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1702 1703 private: 1704 /// Check if a single basic block loop is vectorizable. 1705 /// At this point we know that this is a loop with a constant trip count 1706 /// and we only need to check individual instructions. 1707 bool canVectorizeInstrs(); 1708 1709 /// When we vectorize loops we may change the order in which 1710 /// we read and write from memory. This method checks if it is 1711 /// legal to vectorize the code, considering only memory constrains. 1712 /// Returns true if the loop is vectorizable 1713 bool canVectorizeMemory(); 1714 1715 /// Return true if we can vectorize this loop using the IF-conversion 1716 /// transformation. 1717 bool canVectorizeWithIfConvert(); 1718 1719 /// Return true if all of the instructions in the block can be speculatively 1720 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1721 /// and we know that we can read from them without segfault. 1722 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1723 1724 /// Updates the vectorization state by adding \p Phi to the inductions list. 1725 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1726 /// better choice for the main induction than the existing one. 1727 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1728 SmallPtrSetImpl<Value *> &AllowedExit); 1729 1730 /// Create an analysis remark that explains why vectorization failed 1731 /// 1732 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1733 /// an instruction that prevents vectorization. Otherwise the loop is used 1734 /// for the location of the remark. \return the remark object that can be 1735 /// streamed to. 1736 OptimizationRemarkAnalysis 1737 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1738 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1739 RemarkName, TheLoop, I); 1740 } 1741 1742 /// \brief If an access has a symbolic strides, this maps the pointer value to 1743 /// the stride symbol. 1744 const ValueToValueMap *getSymbolicStrides() { 1745 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1746 // it's collected. This happens from canVectorizeWithIfConvert, when the 1747 // pointer is checked to reference consecutive elements suitable for a 1748 // masked access. 1749 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1750 } 1751 1752 unsigned NumPredStores; 1753 1754 /// The loop that we evaluate. 1755 Loop *TheLoop; 1756 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1757 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1758 /// of existing SCEV assumptions. The analysis will also add a minimal set 1759 /// of new predicates if this is required to enable vectorization and 1760 /// unrolling. 1761 PredicatedScalarEvolution &PSE; 1762 /// Target Library Info. 1763 TargetLibraryInfo *TLI; 1764 /// Target Transform Info 1765 const TargetTransformInfo *TTI; 1766 /// Dominator Tree. 1767 DominatorTree *DT; 1768 // LoopAccess analysis. 1769 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1770 // And the loop-accesses info corresponding to this loop. This pointer is 1771 // null until canVectorizeMemory sets it up. 1772 const LoopAccessInfo *LAI; 1773 /// Interface to emit optimization remarks. 1774 OptimizationRemarkEmitter *ORE; 1775 1776 /// The interleave access information contains groups of interleaved accesses 1777 /// with the same stride and close to each other. 1778 InterleavedAccessInfo InterleaveInfo; 1779 1780 // --- vectorization state --- // 1781 1782 /// Holds the primary induction variable. This is the counter of the 1783 /// loop. 1784 PHINode *PrimaryInduction; 1785 /// Holds the reduction variables. 1786 ReductionList Reductions; 1787 /// Holds all of the induction variables that we found in the loop. 1788 /// Notice that inductions don't need to start at zero and that induction 1789 /// variables can be pointers. 1790 InductionList Inductions; 1791 /// Holds the phi nodes that are first-order recurrences. 1792 RecurrenceSet FirstOrderRecurrences; 1793 /// Holds the widest induction type encountered. 1794 Type *WidestIndTy; 1795 1796 /// Allowed outside users. This holds the induction and reduction 1797 /// vars which can be accessed from outside the loop. 1798 SmallPtrSet<Value *, 4> AllowedExit; 1799 1800 /// Can we assume the absence of NaNs. 1801 bool HasFunNoNaNAttr; 1802 1803 /// Vectorization requirements that will go through late-evaluation. 1804 LoopVectorizationRequirements *Requirements; 1805 1806 /// Used to emit an analysis of any legality issues. 1807 LoopVectorizeHints *Hints; 1808 1809 /// While vectorizing these instructions we have to generate a 1810 /// call to the appropriate masked intrinsic 1811 SmallPtrSet<const Instruction *, 8> MaskedOp; 1812 }; 1813 1814 /// LoopVectorizationCostModel - estimates the expected speedups due to 1815 /// vectorization. 1816 /// In many cases vectorization is not profitable. This can happen because of 1817 /// a number of reasons. In this class we mainly attempt to predict the 1818 /// expected speedup/slowdowns due to the supported instruction set. We use the 1819 /// TargetTransformInfo to query the different backends for the cost of 1820 /// different operations. 1821 class LoopVectorizationCostModel { 1822 public: 1823 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1824 LoopInfo *LI, LoopVectorizationLegality *Legal, 1825 const TargetTransformInfo &TTI, 1826 const TargetLibraryInfo *TLI, DemandedBits *DB, 1827 AssumptionCache *AC, 1828 OptimizationRemarkEmitter *ORE, const Function *F, 1829 const LoopVectorizeHints *Hints) 1830 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1831 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1832 1833 /// \return An upper bound for the vectorization factor, or None if 1834 /// vectorization should be avoided up front. 1835 Optional<unsigned> computeMaxVF(bool OptForSize); 1836 1837 /// Information about vectorization costs 1838 struct VectorizationFactor { 1839 unsigned Width; // Vector width with best cost 1840 unsigned Cost; // Cost of the loop with that width 1841 }; 1842 /// \return The most profitable vectorization factor and the cost of that VF. 1843 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1844 /// then this vectorization factor will be selected if vectorization is 1845 /// possible. 1846 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1847 1848 /// Setup cost-based decisions for user vectorization factor. 1849 void selectUserVectorizationFactor(unsigned UserVF) { 1850 collectUniformsAndScalars(UserVF); 1851 collectInstsToScalarize(UserVF); 1852 } 1853 1854 /// \return The size (in bits) of the smallest and widest types in the code 1855 /// that needs to be vectorized. We ignore values that remain scalar such as 1856 /// 64 bit loop indices. 1857 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1858 1859 /// \return The desired interleave count. 1860 /// If interleave count has been specified by metadata it will be returned. 1861 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1862 /// are the selected vectorization factor and the cost of the selected VF. 1863 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1864 unsigned LoopCost); 1865 1866 /// Memory access instruction may be vectorized in more than one way. 1867 /// Form of instruction after vectorization depends on cost. 1868 /// This function takes cost-based decisions for Load/Store instructions 1869 /// and collects them in a map. This decisions map is used for building 1870 /// the lists of loop-uniform and loop-scalar instructions. 1871 /// The calculated cost is saved with widening decision in order to 1872 /// avoid redundant calculations. 1873 void setCostBasedWideningDecision(unsigned VF); 1874 1875 /// \brief A struct that represents some properties of the register usage 1876 /// of a loop. 1877 struct RegisterUsage { 1878 /// Holds the number of loop invariant values that are used in the loop. 1879 unsigned LoopInvariantRegs; 1880 /// Holds the maximum number of concurrent live intervals in the loop. 1881 unsigned MaxLocalUsers; 1882 /// Holds the number of instructions in the loop. 1883 unsigned NumInstructions; 1884 }; 1885 1886 /// \return Returns information about the register usages of the loop for the 1887 /// given vectorization factors. 1888 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1889 1890 /// Collect values we want to ignore in the cost model. 1891 void collectValuesToIgnore(); 1892 1893 /// \returns The smallest bitwidth each instruction can be represented with. 1894 /// The vector equivalents of these instructions should be truncated to this 1895 /// type. 1896 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1897 return MinBWs; 1898 } 1899 1900 /// \returns True if it is more profitable to scalarize instruction \p I for 1901 /// vectorization factor \p VF. 1902 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1903 auto Scalars = InstsToScalarize.find(VF); 1904 assert(Scalars != InstsToScalarize.end() && 1905 "VF not yet analyzed for scalarization profitability"); 1906 return Scalars->second.count(I); 1907 } 1908 1909 /// Returns true if \p I is known to be uniform after vectorization. 1910 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1911 if (VF == 1) 1912 return true; 1913 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1914 auto UniformsPerVF = Uniforms.find(VF); 1915 return UniformsPerVF->second.count(I); 1916 } 1917 1918 /// Returns true if \p I is known to be scalar after vectorization. 1919 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1920 if (VF == 1) 1921 return true; 1922 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1923 auto ScalarsPerVF = Scalars.find(VF); 1924 return ScalarsPerVF->second.count(I); 1925 } 1926 1927 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1928 /// for vectorization factor \p VF. 1929 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1930 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1931 !isScalarAfterVectorization(I, VF); 1932 } 1933 1934 /// Decision that was taken during cost calculation for memory instruction. 1935 enum InstWidening { 1936 CM_Unknown, 1937 CM_Widen, 1938 CM_Interleave, 1939 CM_GatherScatter, 1940 CM_Scalarize 1941 }; 1942 1943 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1944 /// instruction \p I and vector width \p VF. 1945 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1946 unsigned Cost) { 1947 assert(VF >= 2 && "Expected VF >=2"); 1948 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1949 } 1950 1951 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1952 /// interleaving group \p Grp and vector width \p VF. 1953 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1954 InstWidening W, unsigned Cost) { 1955 assert(VF >= 2 && "Expected VF >=2"); 1956 /// Broadcast this decicion to all instructions inside the group. 1957 /// But the cost will be assigned to one instruction only. 1958 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1959 if (auto *I = Grp->getMember(i)) { 1960 if (Grp->getInsertPos() == I) 1961 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1962 else 1963 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1964 } 1965 } 1966 } 1967 1968 /// Return the cost model decision for the given instruction \p I and vector 1969 /// width \p VF. Return CM_Unknown if this instruction did not pass 1970 /// through the cost modeling. 1971 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1972 assert(VF >= 2 && "Expected VF >=2"); 1973 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1974 auto Itr = WideningDecisions.find(InstOnVF); 1975 if (Itr == WideningDecisions.end()) 1976 return CM_Unknown; 1977 return Itr->second.first; 1978 } 1979 1980 /// Return the vectorization cost for the given instruction \p I and vector 1981 /// width \p VF. 1982 unsigned getWideningCost(Instruction *I, unsigned VF) { 1983 assert(VF >= 2 && "Expected VF >=2"); 1984 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1985 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1986 return WideningDecisions[InstOnVF].second; 1987 } 1988 1989 /// Return True if instruction \p I is an optimizable truncate whose operand 1990 /// is an induction variable. Such a truncate will be removed by adding a new 1991 /// induction variable with the destination type. 1992 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1993 1994 // If the instruction is not a truncate, return false. 1995 auto *Trunc = dyn_cast<TruncInst>(I); 1996 if (!Trunc) 1997 return false; 1998 1999 // Get the source and destination types of the truncate. 2000 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2001 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2002 2003 // If the truncate is free for the given types, return false. Replacing a 2004 // free truncate with an induction variable would add an induction variable 2005 // update instruction to each iteration of the loop. We exclude from this 2006 // check the primary induction variable since it will need an update 2007 // instruction regardless. 2008 Value *Op = Trunc->getOperand(0); 2009 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2010 return false; 2011 2012 // If the truncated value is not an induction variable, return false. 2013 return Legal->isInductionVariable(Op); 2014 } 2015 2016 private: 2017 /// \return An upper bound for the vectorization factor, larger than zero. 2018 /// One is returned if vectorization should best be avoided due to cost. 2019 unsigned computeFeasibleMaxVF(bool OptForSize); 2020 2021 /// The vectorization cost is a combination of the cost itself and a boolean 2022 /// indicating whether any of the contributing operations will actually 2023 /// operate on 2024 /// vector values after type legalization in the backend. If this latter value 2025 /// is 2026 /// false, then all operations will be scalarized (i.e. no vectorization has 2027 /// actually taken place). 2028 typedef std::pair<unsigned, bool> VectorizationCostTy; 2029 2030 /// Returns the expected execution cost. The unit of the cost does 2031 /// not matter because we use the 'cost' units to compare different 2032 /// vector widths. The cost that is returned is *not* normalized by 2033 /// the factor width. 2034 VectorizationCostTy expectedCost(unsigned VF); 2035 2036 /// Returns the execution time cost of an instruction for a given vector 2037 /// width. Vector width of one means scalar. 2038 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2039 2040 /// The cost-computation logic from getInstructionCost which provides 2041 /// the vector type as an output parameter. 2042 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2043 2044 /// Calculate vectorization cost of memory instruction \p I. 2045 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2046 2047 /// The cost computation for scalarized memory instruction. 2048 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2049 2050 /// The cost computation for interleaving group of memory instructions. 2051 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2052 2053 /// The cost computation for Gather/Scatter instruction. 2054 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2055 2056 /// The cost computation for widening instruction \p I with consecutive 2057 /// memory access. 2058 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2059 2060 /// The cost calculation for Load instruction \p I with uniform pointer - 2061 /// scalar load + broadcast. 2062 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2063 2064 /// Returns whether the instruction is a load or store and will be a emitted 2065 /// as a vector operation. 2066 bool isConsecutiveLoadOrStore(Instruction *I); 2067 2068 /// Create an analysis remark that explains why vectorization failed 2069 /// 2070 /// \p RemarkName is the identifier for the remark. \return the remark object 2071 /// that can be streamed to. 2072 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2073 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2074 RemarkName, TheLoop); 2075 } 2076 2077 /// Map of scalar integer values to the smallest bitwidth they can be legally 2078 /// represented as. The vector equivalents of these values should be truncated 2079 /// to this type. 2080 MapVector<Instruction *, uint64_t> MinBWs; 2081 2082 /// A type representing the costs for instructions if they were to be 2083 /// scalarized rather than vectorized. The entries are Instruction-Cost 2084 /// pairs. 2085 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2086 2087 /// A set containing all BasicBlocks that are known to present after 2088 /// vectorization as a predicated block. 2089 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2090 2091 /// A map holding scalar costs for different vectorization factors. The 2092 /// presence of a cost for an instruction in the mapping indicates that the 2093 /// instruction will be scalarized when vectorizing with the associated 2094 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2095 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2096 2097 /// Holds the instructions known to be uniform after vectorization. 2098 /// The data is collected per VF. 2099 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2100 2101 /// Holds the instructions known to be scalar after vectorization. 2102 /// The data is collected per VF. 2103 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2104 2105 /// Returns the expected difference in cost from scalarizing the expression 2106 /// feeding a predicated instruction \p PredInst. The instructions to 2107 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2108 /// non-negative return value implies the expression will be scalarized. 2109 /// Currently, only single-use chains are considered for scalarization. 2110 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2111 unsigned VF); 2112 2113 /// Collects the instructions to scalarize for each predicated instruction in 2114 /// the loop. 2115 void collectInstsToScalarize(unsigned VF); 2116 2117 /// Collect the instructions that are uniform after vectorization. An 2118 /// instruction is uniform if we represent it with a single scalar value in 2119 /// the vectorized loop corresponding to each vector iteration. Examples of 2120 /// uniform instructions include pointer operands of consecutive or 2121 /// interleaved memory accesses. Note that although uniformity implies an 2122 /// instruction will be scalar, the reverse is not true. In general, a 2123 /// scalarized instruction will be represented by VF scalar values in the 2124 /// vectorized loop, each corresponding to an iteration of the original 2125 /// scalar loop. 2126 void collectLoopUniforms(unsigned VF); 2127 2128 /// Collect the instructions that are scalar after vectorization. An 2129 /// instruction is scalar if it is known to be uniform or will be scalarized 2130 /// during vectorization. Non-uniform scalarized instructions will be 2131 /// represented by VF values in the vectorized loop, each corresponding to an 2132 /// iteration of the original scalar loop. 2133 void collectLoopScalars(unsigned VF); 2134 2135 /// Collect Uniform and Scalar values for the given \p VF. 2136 /// The sets depend on CM decision for Load/Store instructions 2137 /// that may be vectorized as interleave, gather-scatter or scalarized. 2138 void collectUniformsAndScalars(unsigned VF) { 2139 // Do the analysis once. 2140 if (VF == 1 || Uniforms.count(VF)) 2141 return; 2142 setCostBasedWideningDecision(VF); 2143 collectLoopUniforms(VF); 2144 collectLoopScalars(VF); 2145 } 2146 2147 /// Keeps cost model vectorization decision and cost for instructions. 2148 /// Right now it is used for memory instructions only. 2149 typedef DenseMap<std::pair<Instruction *, unsigned>, 2150 std::pair<InstWidening, unsigned>> 2151 DecisionList; 2152 2153 DecisionList WideningDecisions; 2154 2155 public: 2156 /// The loop that we evaluate. 2157 Loop *TheLoop; 2158 /// Predicated scalar evolution analysis. 2159 PredicatedScalarEvolution &PSE; 2160 /// Loop Info analysis. 2161 LoopInfo *LI; 2162 /// Vectorization legality. 2163 LoopVectorizationLegality *Legal; 2164 /// Vector target information. 2165 const TargetTransformInfo &TTI; 2166 /// Target Library Info. 2167 const TargetLibraryInfo *TLI; 2168 /// Demanded bits analysis. 2169 DemandedBits *DB; 2170 /// Assumption cache. 2171 AssumptionCache *AC; 2172 /// Interface to emit optimization remarks. 2173 OptimizationRemarkEmitter *ORE; 2174 2175 const Function *TheFunction; 2176 /// Loop Vectorize Hint. 2177 const LoopVectorizeHints *Hints; 2178 /// Values to ignore in the cost model. 2179 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2180 /// Values to ignore in the cost model when VF > 1. 2181 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2182 }; 2183 2184 /// LoopVectorizationPlanner - drives the vectorization process after having 2185 /// passed Legality checks. 2186 class LoopVectorizationPlanner { 2187 public: 2188 LoopVectorizationPlanner(LoopVectorizationCostModel &CM) : CM(CM) {} 2189 2190 ~LoopVectorizationPlanner() {} 2191 2192 /// Plan how to best vectorize, return the best VF and its cost. 2193 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2194 unsigned UserVF); 2195 2196 private: 2197 /// The profitablity analysis. 2198 LoopVectorizationCostModel &CM; 2199 }; 2200 2201 /// \brief This holds vectorization requirements that must be verified late in 2202 /// the process. The requirements are set by legalize and costmodel. Once 2203 /// vectorization has been determined to be possible and profitable the 2204 /// requirements can be verified by looking for metadata or compiler options. 2205 /// For example, some loops require FP commutativity which is only allowed if 2206 /// vectorization is explicitly specified or if the fast-math compiler option 2207 /// has been provided. 2208 /// Late evaluation of these requirements allows helpful diagnostics to be 2209 /// composed that tells the user what need to be done to vectorize the loop. For 2210 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2211 /// evaluation should be used only when diagnostics can generated that can be 2212 /// followed by a non-expert user. 2213 class LoopVectorizationRequirements { 2214 public: 2215 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2216 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2217 2218 void addUnsafeAlgebraInst(Instruction *I) { 2219 // First unsafe algebra instruction. 2220 if (!UnsafeAlgebraInst) 2221 UnsafeAlgebraInst = I; 2222 } 2223 2224 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2225 2226 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2227 const char *PassName = Hints.vectorizeAnalysisPassName(); 2228 bool Failed = false; 2229 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2230 ORE.emit( 2231 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2232 UnsafeAlgebraInst->getDebugLoc(), 2233 UnsafeAlgebraInst->getParent()) 2234 << "loop not vectorized: cannot prove it is safe to reorder " 2235 "floating-point operations"); 2236 Failed = true; 2237 } 2238 2239 // Test if runtime memcheck thresholds are exceeded. 2240 bool PragmaThresholdReached = 2241 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2242 bool ThresholdReached = 2243 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2244 if ((ThresholdReached && !Hints.allowReordering()) || 2245 PragmaThresholdReached) { 2246 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2247 L->getStartLoc(), 2248 L->getHeader()) 2249 << "loop not vectorized: cannot prove it is safe to reorder " 2250 "memory operations"); 2251 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2252 Failed = true; 2253 } 2254 2255 return Failed; 2256 } 2257 2258 private: 2259 unsigned NumRuntimePointerChecks; 2260 Instruction *UnsafeAlgebraInst; 2261 2262 /// Interface to emit optimization remarks. 2263 OptimizationRemarkEmitter &ORE; 2264 }; 2265 2266 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2267 if (L.empty()) { 2268 if (!hasCyclesInLoopBody(L)) 2269 V.push_back(&L); 2270 return; 2271 } 2272 for (Loop *InnerL : L) 2273 addAcyclicInnerLoop(*InnerL, V); 2274 } 2275 2276 /// The LoopVectorize Pass. 2277 struct LoopVectorize : public FunctionPass { 2278 /// Pass identification, replacement for typeid 2279 static char ID; 2280 2281 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2282 : FunctionPass(ID) { 2283 Impl.DisableUnrolling = NoUnrolling; 2284 Impl.AlwaysVectorize = AlwaysVectorize; 2285 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2286 } 2287 2288 LoopVectorizePass Impl; 2289 2290 bool runOnFunction(Function &F) override { 2291 if (skipFunction(F)) 2292 return false; 2293 2294 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2295 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2296 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2297 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2298 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2299 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2300 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2301 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2302 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2303 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2304 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2305 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2306 2307 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2308 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2309 2310 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2311 GetLAA, *ORE); 2312 } 2313 2314 void getAnalysisUsage(AnalysisUsage &AU) const override { 2315 AU.addRequired<AssumptionCacheTracker>(); 2316 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2317 AU.addRequired<DominatorTreeWrapperPass>(); 2318 AU.addRequired<LoopInfoWrapperPass>(); 2319 AU.addRequired<ScalarEvolutionWrapperPass>(); 2320 AU.addRequired<TargetTransformInfoWrapperPass>(); 2321 AU.addRequired<AAResultsWrapperPass>(); 2322 AU.addRequired<LoopAccessLegacyAnalysis>(); 2323 AU.addRequired<DemandedBitsWrapperPass>(); 2324 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2325 AU.addPreserved<LoopInfoWrapperPass>(); 2326 AU.addPreserved<DominatorTreeWrapperPass>(); 2327 AU.addPreserved<BasicAAWrapperPass>(); 2328 AU.addPreserved<GlobalsAAWrapperPass>(); 2329 } 2330 }; 2331 2332 } // end anonymous namespace 2333 2334 //===----------------------------------------------------------------------===// 2335 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2336 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2337 //===----------------------------------------------------------------------===// 2338 2339 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2340 // We need to place the broadcast of invariant variables outside the loop. 2341 Instruction *Instr = dyn_cast<Instruction>(V); 2342 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2343 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2344 2345 // Place the code for broadcasting invariant variables in the new preheader. 2346 IRBuilder<>::InsertPointGuard Guard(Builder); 2347 if (Invariant) 2348 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2349 2350 // Broadcast the scalar into all locations in the vector. 2351 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2352 2353 return Shuf; 2354 } 2355 2356 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2357 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2358 Value *Start = II.getStartValue(); 2359 2360 // Construct the initial value of the vector IV in the vector loop preheader 2361 auto CurrIP = Builder.saveIP(); 2362 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2363 if (isa<TruncInst>(EntryVal)) { 2364 assert(Start->getType()->isIntegerTy() && 2365 "Truncation requires an integer type"); 2366 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2367 Step = Builder.CreateTrunc(Step, TruncType); 2368 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2369 } 2370 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2371 Value *SteppedStart = 2372 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2373 2374 // We create vector phi nodes for both integer and floating-point induction 2375 // variables. Here, we determine the kind of arithmetic we will perform. 2376 Instruction::BinaryOps AddOp; 2377 Instruction::BinaryOps MulOp; 2378 if (Step->getType()->isIntegerTy()) { 2379 AddOp = Instruction::Add; 2380 MulOp = Instruction::Mul; 2381 } else { 2382 AddOp = II.getInductionOpcode(); 2383 MulOp = Instruction::FMul; 2384 } 2385 2386 // Multiply the vectorization factor by the step using integer or 2387 // floating-point arithmetic as appropriate. 2388 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2389 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2390 2391 // Create a vector splat to use in the induction update. 2392 // 2393 // FIXME: If the step is non-constant, we create the vector splat with 2394 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2395 // handle a constant vector splat. 2396 Value *SplatVF = isa<Constant>(Mul) 2397 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2398 : Builder.CreateVectorSplat(VF, Mul); 2399 Builder.restoreIP(CurrIP); 2400 2401 // We may need to add the step a number of times, depending on the unroll 2402 // factor. The last of those goes into the PHI. 2403 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2404 &*LoopVectorBody->getFirstInsertionPt()); 2405 Instruction *LastInduction = VecInd; 2406 VectorParts Entry(UF); 2407 for (unsigned Part = 0; Part < UF; ++Part) { 2408 Entry[Part] = LastInduction; 2409 LastInduction = cast<Instruction>(addFastMathFlag( 2410 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2411 } 2412 VectorLoopValueMap.initVector(EntryVal, Entry); 2413 if (isa<TruncInst>(EntryVal)) 2414 addMetadata(Entry, EntryVal); 2415 2416 // Move the last step to the end of the latch block. This ensures consistent 2417 // placement of all induction updates. 2418 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2419 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2420 auto *ICmp = cast<Instruction>(Br->getCondition()); 2421 LastInduction->moveBefore(ICmp); 2422 LastInduction->setName("vec.ind.next"); 2423 2424 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2425 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2426 } 2427 2428 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2429 return Cost->isScalarAfterVectorization(I, VF) || 2430 Cost->isProfitableToScalarize(I, VF); 2431 } 2432 2433 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2434 if (shouldScalarizeInstruction(IV)) 2435 return true; 2436 auto isScalarInst = [&](User *U) -> bool { 2437 auto *I = cast<Instruction>(U); 2438 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2439 }; 2440 return any_of(IV->users(), isScalarInst); 2441 } 2442 2443 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2444 2445 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2446 "Primary induction variable must have an integer type"); 2447 2448 auto II = Legal->getInductionVars()->find(IV); 2449 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2450 2451 auto ID = II->second; 2452 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2453 2454 // The scalar value to broadcast. This will be derived from the canonical 2455 // induction variable. 2456 Value *ScalarIV = nullptr; 2457 2458 // The value from the original loop to which we are mapping the new induction 2459 // variable. 2460 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2461 2462 // True if we have vectorized the induction variable. 2463 auto VectorizedIV = false; 2464 2465 // Determine if we want a scalar version of the induction variable. This is 2466 // true if the induction variable itself is not widened, or if it has at 2467 // least one user in the loop that is not widened. 2468 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2469 2470 // Generate code for the induction step. Note that induction steps are 2471 // required to be loop-invariant 2472 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2473 "Induction step should be loop invariant"); 2474 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2475 Value *Step = nullptr; 2476 if (PSE.getSE()->isSCEVable(IV->getType())) { 2477 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2478 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2479 LoopVectorPreHeader->getTerminator()); 2480 } else { 2481 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2482 } 2483 2484 // Try to create a new independent vector induction variable. If we can't 2485 // create the phi node, we will splat the scalar induction variable in each 2486 // loop iteration. 2487 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2488 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2489 VectorizedIV = true; 2490 } 2491 2492 // If we haven't yet vectorized the induction variable, or if we will create 2493 // a scalar one, we need to define the scalar induction variable and step 2494 // values. If we were given a truncation type, truncate the canonical 2495 // induction variable and step. Otherwise, derive these values from the 2496 // induction descriptor. 2497 if (!VectorizedIV || NeedsScalarIV) { 2498 ScalarIV = Induction; 2499 if (IV != OldInduction) { 2500 ScalarIV = IV->getType()->isIntegerTy() 2501 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2502 : Builder.CreateCast(Instruction::SIToFP, Induction, 2503 IV->getType()); 2504 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2505 ScalarIV->setName("offset.idx"); 2506 } 2507 if (Trunc) { 2508 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2509 assert(Step->getType()->isIntegerTy() && 2510 "Truncation requires an integer step"); 2511 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2512 Step = Builder.CreateTrunc(Step, TruncType); 2513 } 2514 } 2515 2516 // If we haven't yet vectorized the induction variable, splat the scalar 2517 // induction variable, and build the necessary step vectors. 2518 if (!VectorizedIV) { 2519 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2520 VectorParts Entry(UF); 2521 for (unsigned Part = 0; Part < UF; ++Part) 2522 Entry[Part] = 2523 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2524 VectorLoopValueMap.initVector(EntryVal, Entry); 2525 if (Trunc) 2526 addMetadata(Entry, Trunc); 2527 } 2528 2529 // If an induction variable is only used for counting loop iterations or 2530 // calculating addresses, it doesn't need to be widened. Create scalar steps 2531 // that can be used by instructions we will later scalarize. Note that the 2532 // addition of the scalar steps will not increase the number of instructions 2533 // in the loop in the common case prior to InstCombine. We will be trading 2534 // one vector extract for each scalar step. 2535 if (NeedsScalarIV) 2536 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2537 } 2538 2539 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2540 Instruction::BinaryOps BinOp) { 2541 // Create and check the types. 2542 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2543 int VLen = Val->getType()->getVectorNumElements(); 2544 2545 Type *STy = Val->getType()->getScalarType(); 2546 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2547 "Induction Step must be an integer or FP"); 2548 assert(Step->getType() == STy && "Step has wrong type"); 2549 2550 SmallVector<Constant *, 8> Indices; 2551 2552 if (STy->isIntegerTy()) { 2553 // Create a vector of consecutive numbers from zero to VF. 2554 for (int i = 0; i < VLen; ++i) 2555 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2556 2557 // Add the consecutive indices to the vector value. 2558 Constant *Cv = ConstantVector::get(Indices); 2559 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2560 Step = Builder.CreateVectorSplat(VLen, Step); 2561 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2562 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2563 // which can be found from the original scalar operations. 2564 Step = Builder.CreateMul(Cv, Step); 2565 return Builder.CreateAdd(Val, Step, "induction"); 2566 } 2567 2568 // Floating point induction. 2569 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2570 "Binary Opcode should be specified for FP induction"); 2571 // Create a vector of consecutive numbers from zero to VF. 2572 for (int i = 0; i < VLen; ++i) 2573 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2574 2575 // Add the consecutive indices to the vector value. 2576 Constant *Cv = ConstantVector::get(Indices); 2577 2578 Step = Builder.CreateVectorSplat(VLen, Step); 2579 2580 // Floating point operations had to be 'fast' to enable the induction. 2581 FastMathFlags Flags; 2582 Flags.setUnsafeAlgebra(); 2583 2584 Value *MulOp = Builder.CreateFMul(Cv, Step); 2585 if (isa<Instruction>(MulOp)) 2586 // Have to check, MulOp may be a constant 2587 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2588 2589 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2590 if (isa<Instruction>(BOp)) 2591 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2592 return BOp; 2593 } 2594 2595 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2596 Value *EntryVal, 2597 const InductionDescriptor &ID) { 2598 2599 // We shouldn't have to build scalar steps if we aren't vectorizing. 2600 assert(VF > 1 && "VF should be greater than one"); 2601 2602 // Get the value type and ensure it and the step have the same integer type. 2603 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2604 assert(ScalarIVTy == Step->getType() && 2605 "Val and Step should have the same type"); 2606 2607 // We build scalar steps for both integer and floating-point induction 2608 // variables. Here, we determine the kind of arithmetic we will perform. 2609 Instruction::BinaryOps AddOp; 2610 Instruction::BinaryOps MulOp; 2611 if (ScalarIVTy->isIntegerTy()) { 2612 AddOp = Instruction::Add; 2613 MulOp = Instruction::Mul; 2614 } else { 2615 AddOp = ID.getInductionOpcode(); 2616 MulOp = Instruction::FMul; 2617 } 2618 2619 // Determine the number of scalars we need to generate for each unroll 2620 // iteration. If EntryVal is uniform, we only need to generate the first 2621 // lane. Otherwise, we generate all VF values. 2622 unsigned Lanes = 2623 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2624 2625 // Compute the scalar steps and save the results in VectorLoopValueMap. 2626 ScalarParts Entry(UF); 2627 for (unsigned Part = 0; Part < UF; ++Part) { 2628 Entry[Part].resize(VF); 2629 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2630 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2631 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2632 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2633 Entry[Part][Lane] = Add; 2634 } 2635 } 2636 VectorLoopValueMap.initScalar(EntryVal, Entry); 2637 } 2638 2639 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2640 2641 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2642 ValueToValueMap(); 2643 2644 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2645 if (Stride == 1 || Stride == -1) 2646 return Stride; 2647 return 0; 2648 } 2649 2650 bool LoopVectorizationLegality::isUniform(Value *V) { 2651 return LAI->isUniform(V); 2652 } 2653 2654 const InnerLoopVectorizer::VectorParts & 2655 InnerLoopVectorizer::getVectorValue(Value *V) { 2656 assert(V != Induction && "The new induction variable should not be used."); 2657 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2658 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2659 2660 // If we have a stride that is replaced by one, do it here. 2661 if (Legal->hasStride(V)) 2662 V = ConstantInt::get(V->getType(), 1); 2663 2664 // If we have this scalar in the map, return it. 2665 if (VectorLoopValueMap.hasVector(V)) 2666 return VectorLoopValueMap.VectorMapStorage[V]; 2667 2668 // If the value has not been vectorized, check if it has been scalarized 2669 // instead. If it has been scalarized, and we actually need the value in 2670 // vector form, we will construct the vector values on demand. 2671 if (VectorLoopValueMap.hasScalar(V)) { 2672 2673 // Initialize a new vector map entry. 2674 VectorParts Entry(UF); 2675 2676 // If we've scalarized a value, that value should be an instruction. 2677 auto *I = cast<Instruction>(V); 2678 2679 // If we aren't vectorizing, we can just copy the scalar map values over to 2680 // the vector map. 2681 if (VF == 1) { 2682 for (unsigned Part = 0; Part < UF; ++Part) 2683 Entry[Part] = getScalarValue(V, Part, 0); 2684 return VectorLoopValueMap.initVector(V, Entry); 2685 } 2686 2687 // Get the last scalar instruction we generated for V. If the value is 2688 // known to be uniform after vectorization, this corresponds to lane zero 2689 // of the last unroll iteration. Otherwise, the last instruction is the one 2690 // we created for the last vector lane of the last unroll iteration. 2691 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2692 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2693 2694 // Set the insert point after the last scalarized instruction. This ensures 2695 // the insertelement sequence will directly follow the scalar definitions. 2696 auto OldIP = Builder.saveIP(); 2697 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2698 Builder.SetInsertPoint(&*NewIP); 2699 2700 // However, if we are vectorizing, we need to construct the vector values. 2701 // If the value is known to be uniform after vectorization, we can just 2702 // broadcast the scalar value corresponding to lane zero for each unroll 2703 // iteration. Otherwise, we construct the vector values using insertelement 2704 // instructions. Since the resulting vectors are stored in 2705 // VectorLoopValueMap, we will only generate the insertelements once. 2706 for (unsigned Part = 0; Part < UF; ++Part) { 2707 Value *VectorValue = nullptr; 2708 if (Cost->isUniformAfterVectorization(I, VF)) { 2709 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2710 } else { 2711 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2712 for (unsigned Lane = 0; Lane < VF; ++Lane) 2713 VectorValue = Builder.CreateInsertElement( 2714 VectorValue, getScalarValue(V, Part, Lane), 2715 Builder.getInt32(Lane)); 2716 } 2717 Entry[Part] = VectorValue; 2718 } 2719 Builder.restoreIP(OldIP); 2720 return VectorLoopValueMap.initVector(V, Entry); 2721 } 2722 2723 // If this scalar is unknown, assume that it is a constant or that it is 2724 // loop invariant. Broadcast V and save the value for future uses. 2725 Value *B = getBroadcastInstrs(V); 2726 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2727 } 2728 2729 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2730 unsigned Lane) { 2731 2732 // If the value is not an instruction contained in the loop, it should 2733 // already be scalar. 2734 if (OrigLoop->isLoopInvariant(V)) 2735 return V; 2736 2737 assert(Lane > 0 ? 2738 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2739 : true && "Uniform values only have lane zero"); 2740 2741 // If the value from the original loop has not been vectorized, it is 2742 // represented by UF x VF scalar values in the new loop. Return the requested 2743 // scalar value. 2744 if (VectorLoopValueMap.hasScalar(V)) 2745 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2746 2747 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2748 // for the given unroll part. If this entry is not a vector type (i.e., the 2749 // vectorization factor is one), there is no need to generate an 2750 // extractelement instruction. 2751 auto *U = getVectorValue(V)[Part]; 2752 if (!U->getType()->isVectorTy()) { 2753 assert(VF == 1 && "Value not scalarized has non-vector type"); 2754 return U; 2755 } 2756 2757 // Otherwise, the value from the original loop has been vectorized and is 2758 // represented by UF vector values. Extract and return the requested scalar 2759 // value from the appropriate vector lane. 2760 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2761 } 2762 2763 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2764 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2765 SmallVector<Constant *, 8> ShuffleMask; 2766 for (unsigned i = 0; i < VF; ++i) 2767 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2768 2769 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2770 ConstantVector::get(ShuffleMask), 2771 "reverse"); 2772 } 2773 2774 // Try to vectorize the interleave group that \p Instr belongs to. 2775 // 2776 // E.g. Translate following interleaved load group (factor = 3): 2777 // for (i = 0; i < N; i+=3) { 2778 // R = Pic[i]; // Member of index 0 2779 // G = Pic[i+1]; // Member of index 1 2780 // B = Pic[i+2]; // Member of index 2 2781 // ... // do something to R, G, B 2782 // } 2783 // To: 2784 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2785 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2786 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2787 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2788 // 2789 // Or translate following interleaved store group (factor = 3): 2790 // for (i = 0; i < N; i+=3) { 2791 // ... do something to R, G, B 2792 // Pic[i] = R; // Member of index 0 2793 // Pic[i+1] = G; // Member of index 1 2794 // Pic[i+2] = B; // Member of index 2 2795 // } 2796 // To: 2797 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2798 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2799 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2800 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2801 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2802 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2803 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2804 assert(Group && "Fail to get an interleaved access group."); 2805 2806 // Skip if current instruction is not the insert position. 2807 if (Instr != Group->getInsertPos()) 2808 return; 2809 2810 Value *Ptr = getPointerOperand(Instr); 2811 2812 // Prepare for the vector type of the interleaved load/store. 2813 Type *ScalarTy = getMemInstValueType(Instr); 2814 unsigned InterleaveFactor = Group->getFactor(); 2815 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2816 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2817 2818 // Prepare for the new pointers. 2819 setDebugLocFromInst(Builder, Ptr); 2820 SmallVector<Value *, 2> NewPtrs; 2821 unsigned Index = Group->getIndex(Instr); 2822 2823 // If the group is reverse, adjust the index to refer to the last vector lane 2824 // instead of the first. We adjust the index from the first vector lane, 2825 // rather than directly getting the pointer for lane VF - 1, because the 2826 // pointer operand of the interleaved access is supposed to be uniform. For 2827 // uniform instructions, we're only required to generate a value for the 2828 // first vector lane in each unroll iteration. 2829 if (Group->isReverse()) 2830 Index += (VF - 1) * Group->getFactor(); 2831 2832 for (unsigned Part = 0; Part < UF; Part++) { 2833 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2834 2835 // Notice current instruction could be any index. Need to adjust the address 2836 // to the member of index 0. 2837 // 2838 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2839 // b = A[i]; // Member of index 0 2840 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2841 // 2842 // E.g. A[i+1] = a; // Member of index 1 2843 // A[i] = b; // Member of index 0 2844 // A[i+2] = c; // Member of index 2 (Current instruction) 2845 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2846 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2847 2848 // Cast to the vector pointer type. 2849 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2850 } 2851 2852 setDebugLocFromInst(Builder, Instr); 2853 Value *UndefVec = UndefValue::get(VecTy); 2854 2855 // Vectorize the interleaved load group. 2856 if (isa<LoadInst>(Instr)) { 2857 2858 // For each unroll part, create a wide load for the group. 2859 SmallVector<Value *, 2> NewLoads; 2860 for (unsigned Part = 0; Part < UF; Part++) { 2861 auto *NewLoad = Builder.CreateAlignedLoad( 2862 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2863 addMetadata(NewLoad, Instr); 2864 NewLoads.push_back(NewLoad); 2865 } 2866 2867 // For each member in the group, shuffle out the appropriate data from the 2868 // wide loads. 2869 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2870 Instruction *Member = Group->getMember(I); 2871 2872 // Skip the gaps in the group. 2873 if (!Member) 2874 continue; 2875 2876 VectorParts Entry(UF); 2877 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2878 for (unsigned Part = 0; Part < UF; Part++) { 2879 Value *StridedVec = Builder.CreateShuffleVector( 2880 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2881 2882 // If this member has different type, cast the result type. 2883 if (Member->getType() != ScalarTy) { 2884 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2885 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2886 } 2887 2888 Entry[Part] = 2889 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2890 } 2891 VectorLoopValueMap.initVector(Member, Entry); 2892 } 2893 return; 2894 } 2895 2896 // The sub vector type for current instruction. 2897 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2898 2899 // Vectorize the interleaved store group. 2900 for (unsigned Part = 0; Part < UF; Part++) { 2901 // Collect the stored vector from each member. 2902 SmallVector<Value *, 4> StoredVecs; 2903 for (unsigned i = 0; i < InterleaveFactor; i++) { 2904 // Interleaved store group doesn't allow a gap, so each index has a member 2905 Instruction *Member = Group->getMember(i); 2906 assert(Member && "Fail to get a member from an interleaved store group"); 2907 2908 Value *StoredVec = 2909 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2910 if (Group->isReverse()) 2911 StoredVec = reverseVector(StoredVec); 2912 2913 // If this member has different type, cast it to an unified type. 2914 if (StoredVec->getType() != SubVT) 2915 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2916 2917 StoredVecs.push_back(StoredVec); 2918 } 2919 2920 // Concatenate all vectors into a wide vector. 2921 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2922 2923 // Interleave the elements in the wide vector. 2924 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2925 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2926 "interleaved.vec"); 2927 2928 Instruction *NewStoreInstr = 2929 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2930 addMetadata(NewStoreInstr, Instr); 2931 } 2932 } 2933 2934 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2935 // Attempt to issue a wide load. 2936 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2937 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2938 2939 assert((LI || SI) && "Invalid Load/Store instruction"); 2940 2941 LoopVectorizationCostModel::InstWidening Decision = 2942 Cost->getWideningDecision(Instr, VF); 2943 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2944 "CM decision should be taken at this point"); 2945 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2946 return vectorizeInterleaveGroup(Instr); 2947 2948 Type *ScalarDataTy = getMemInstValueType(Instr); 2949 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2950 Value *Ptr = getPointerOperand(Instr); 2951 unsigned Alignment = getMemInstAlignment(Instr); 2952 // An alignment of 0 means target abi alignment. We need to use the scalar's 2953 // target abi alignment in such a case. 2954 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2955 if (!Alignment) 2956 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2957 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2958 2959 // Scalarize the memory instruction if necessary. 2960 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2961 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2962 2963 // Determine if the pointer operand of the access is either consecutive or 2964 // reverse consecutive. 2965 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2966 bool Reverse = ConsecutiveStride < 0; 2967 bool CreateGatherScatter = 2968 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2969 2970 VectorParts VectorGep; 2971 2972 // Handle consecutive loads/stores. 2973 if (ConsecutiveStride) { 2974 Ptr = getScalarValue(Ptr, 0, 0); 2975 } else { 2976 // At this point we should vector version of GEP for Gather or Scatter 2977 assert(CreateGatherScatter && "The instruction should be scalarized"); 2978 VectorGep = getVectorValue(Ptr); 2979 } 2980 2981 VectorParts Mask = createBlockInMask(Instr->getParent()); 2982 // Handle Stores: 2983 if (SI) { 2984 assert(!Legal->isUniform(SI->getPointerOperand()) && 2985 "We do not allow storing to uniform addresses"); 2986 setDebugLocFromInst(Builder, SI); 2987 // We don't want to update the value in the map as it might be used in 2988 // another expression. So don't use a reference type for "StoredVal". 2989 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2990 2991 for (unsigned Part = 0; Part < UF; ++Part) { 2992 Instruction *NewSI = nullptr; 2993 if (CreateGatherScatter) { 2994 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2995 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2996 Alignment, MaskPart); 2997 } else { 2998 // Calculate the pointer for the specific unroll-part. 2999 Value *PartPtr = 3000 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3001 3002 if (Reverse) { 3003 // If we store to reverse consecutive memory locations, then we need 3004 // to reverse the order of elements in the stored value. 3005 StoredVal[Part] = reverseVector(StoredVal[Part]); 3006 // If the address is consecutive but reversed, then the 3007 // wide store needs to start at the last vector element. 3008 PartPtr = 3009 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3010 PartPtr = 3011 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3012 Mask[Part] = reverseVector(Mask[Part]); 3013 } 3014 3015 Value *VecPtr = 3016 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3017 3018 if (Legal->isMaskRequired(SI)) 3019 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3020 Mask[Part]); 3021 else 3022 NewSI = 3023 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3024 } 3025 addMetadata(NewSI, SI); 3026 } 3027 return; 3028 } 3029 3030 // Handle loads. 3031 assert(LI && "Must have a load instruction"); 3032 setDebugLocFromInst(Builder, LI); 3033 VectorParts Entry(UF); 3034 for (unsigned Part = 0; Part < UF; ++Part) { 3035 Instruction *NewLI; 3036 if (CreateGatherScatter) { 3037 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3038 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3039 0, "wide.masked.gather"); 3040 Entry[Part] = NewLI; 3041 } else { 3042 // Calculate the pointer for the specific unroll-part. 3043 Value *PartPtr = 3044 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3045 3046 if (Reverse) { 3047 // If the address is consecutive but reversed, then the 3048 // wide load needs to start at the last vector element. 3049 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3050 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3051 Mask[Part] = reverseVector(Mask[Part]); 3052 } 3053 3054 Value *VecPtr = 3055 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3056 if (Legal->isMaskRequired(LI)) 3057 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3058 UndefValue::get(DataTy), 3059 "wide.masked.load"); 3060 else 3061 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3062 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3063 } 3064 addMetadata(NewLI, LI); 3065 } 3066 VectorLoopValueMap.initVector(Instr, Entry); 3067 } 3068 3069 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3070 bool IfPredicateInstr) { 3071 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3072 DEBUG(dbgs() << "LV: Scalarizing" 3073 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3074 << '\n'); 3075 // Holds vector parameters or scalars, in case of uniform vals. 3076 SmallVector<VectorParts, 4> Params; 3077 3078 setDebugLocFromInst(Builder, Instr); 3079 3080 // Does this instruction return a value ? 3081 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3082 3083 // Initialize a new scalar map entry. 3084 ScalarParts Entry(UF); 3085 3086 VectorParts Cond; 3087 if (IfPredicateInstr) 3088 Cond = createBlockInMask(Instr->getParent()); 3089 3090 // Determine the number of scalars we need to generate for each unroll 3091 // iteration. If the instruction is uniform, we only need to generate the 3092 // first lane. Otherwise, we generate all VF values. 3093 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3094 3095 // For each vector unroll 'part': 3096 for (unsigned Part = 0; Part < UF; ++Part) { 3097 Entry[Part].resize(VF); 3098 // For each scalar that we create: 3099 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3100 3101 // Start if-block. 3102 Value *Cmp = nullptr; 3103 if (IfPredicateInstr) { 3104 Cmp = Cond[Part]; 3105 if (Cmp->getType()->isVectorTy()) 3106 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3107 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3108 ConstantInt::get(Cmp->getType(), 1)); 3109 } 3110 3111 Instruction *Cloned = Instr->clone(); 3112 if (!IsVoidRetTy) 3113 Cloned->setName(Instr->getName() + ".cloned"); 3114 3115 // Replace the operands of the cloned instructions with their scalar 3116 // equivalents in the new loop. 3117 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3118 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3119 Cloned->setOperand(op, NewOp); 3120 } 3121 addNewMetadata(Cloned, Instr); 3122 3123 // Place the cloned scalar in the new loop. 3124 Builder.Insert(Cloned); 3125 3126 // Add the cloned scalar to the scalar map entry. 3127 Entry[Part][Lane] = Cloned; 3128 3129 // If we just cloned a new assumption, add it the assumption cache. 3130 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3131 if (II->getIntrinsicID() == Intrinsic::assume) 3132 AC->registerAssumption(II); 3133 3134 // End if-block. 3135 if (IfPredicateInstr) 3136 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3137 } 3138 } 3139 VectorLoopValueMap.initScalar(Instr, Entry); 3140 } 3141 3142 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3143 Value *End, Value *Step, 3144 Instruction *DL) { 3145 BasicBlock *Header = L->getHeader(); 3146 BasicBlock *Latch = L->getLoopLatch(); 3147 // As we're just creating this loop, it's possible no latch exists 3148 // yet. If so, use the header as this will be a single block loop. 3149 if (!Latch) 3150 Latch = Header; 3151 3152 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3153 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3154 setDebugLocFromInst(Builder, OldInst); 3155 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3156 3157 Builder.SetInsertPoint(Latch->getTerminator()); 3158 setDebugLocFromInst(Builder, OldInst); 3159 3160 // Create i+1 and fill the PHINode. 3161 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3162 Induction->addIncoming(Start, L->getLoopPreheader()); 3163 Induction->addIncoming(Next, Latch); 3164 // Create the compare. 3165 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3166 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3167 3168 // Now we have two terminators. Remove the old one from the block. 3169 Latch->getTerminator()->eraseFromParent(); 3170 3171 return Induction; 3172 } 3173 3174 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3175 if (TripCount) 3176 return TripCount; 3177 3178 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3179 // Find the loop boundaries. 3180 ScalarEvolution *SE = PSE.getSE(); 3181 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3182 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3183 "Invalid loop count"); 3184 3185 Type *IdxTy = Legal->getWidestInductionType(); 3186 3187 // The exit count might have the type of i64 while the phi is i32. This can 3188 // happen if we have an induction variable that is sign extended before the 3189 // compare. The only way that we get a backedge taken count is that the 3190 // induction variable was signed and as such will not overflow. In such a case 3191 // truncation is legal. 3192 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3193 IdxTy->getPrimitiveSizeInBits()) 3194 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3195 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3196 3197 // Get the total trip count from the count by adding 1. 3198 const SCEV *ExitCount = SE->getAddExpr( 3199 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3200 3201 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3202 3203 // Expand the trip count and place the new instructions in the preheader. 3204 // Notice that the pre-header does not change, only the loop body. 3205 SCEVExpander Exp(*SE, DL, "induction"); 3206 3207 // Count holds the overall loop count (N). 3208 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3209 L->getLoopPreheader()->getTerminator()); 3210 3211 if (TripCount->getType()->isPointerTy()) 3212 TripCount = 3213 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3214 L->getLoopPreheader()->getTerminator()); 3215 3216 return TripCount; 3217 } 3218 3219 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3220 if (VectorTripCount) 3221 return VectorTripCount; 3222 3223 Value *TC = getOrCreateTripCount(L); 3224 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3225 3226 // Now we need to generate the expression for the part of the loop that the 3227 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3228 // iterations are not required for correctness, or N - Step, otherwise. Step 3229 // is equal to the vectorization factor (number of SIMD elements) times the 3230 // unroll factor (number of SIMD instructions). 3231 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3232 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3233 3234 // If there is a non-reversed interleaved group that may speculatively access 3235 // memory out-of-bounds, we need to ensure that there will be at least one 3236 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3237 // the trip count, we set the remainder to be equal to the step. If the step 3238 // does not evenly divide the trip count, no adjustment is necessary since 3239 // there will already be scalar iterations. Note that the minimum iterations 3240 // check ensures that N >= Step. 3241 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3242 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3243 R = Builder.CreateSelect(IsZero, Step, R); 3244 } 3245 3246 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3247 3248 return VectorTripCount; 3249 } 3250 3251 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3252 BasicBlock *Bypass) { 3253 Value *Count = getOrCreateTripCount(L); 3254 BasicBlock *BB = L->getLoopPreheader(); 3255 IRBuilder<> Builder(BB->getTerminator()); 3256 3257 // Generate code to check that the loop's trip count that we computed by 3258 // adding one to the backedge-taken count will not overflow. 3259 Value *CheckMinIters = Builder.CreateICmpULT( 3260 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3261 3262 BasicBlock *NewBB = 3263 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3264 // Update dominator tree immediately if the generated block is a 3265 // LoopBypassBlock because SCEV expansions to generate loop bypass 3266 // checks may query it before the current function is finished. 3267 DT->addNewBlock(NewBB, BB); 3268 if (L->getParentLoop()) 3269 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3270 ReplaceInstWithInst(BB->getTerminator(), 3271 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3272 LoopBypassBlocks.push_back(BB); 3273 } 3274 3275 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3276 BasicBlock *Bypass) { 3277 Value *TC = getOrCreateVectorTripCount(L); 3278 BasicBlock *BB = L->getLoopPreheader(); 3279 IRBuilder<> Builder(BB->getTerminator()); 3280 3281 // Now, compare the new count to zero. If it is zero skip the vector loop and 3282 // jump to the scalar loop. 3283 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3284 "cmp.zero"); 3285 3286 // Generate code to check that the loop's trip count that we computed by 3287 // adding one to the backedge-taken count will not overflow. 3288 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3289 // Update dominator tree immediately if the generated block is a 3290 // LoopBypassBlock because SCEV expansions to generate loop bypass 3291 // checks may query it before the current function is finished. 3292 DT->addNewBlock(NewBB, BB); 3293 if (L->getParentLoop()) 3294 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3295 ReplaceInstWithInst(BB->getTerminator(), 3296 BranchInst::Create(Bypass, NewBB, Cmp)); 3297 LoopBypassBlocks.push_back(BB); 3298 } 3299 3300 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3301 BasicBlock *BB = L->getLoopPreheader(); 3302 3303 // Generate the code to check that the SCEV assumptions that we made. 3304 // We want the new basic block to start at the first instruction in a 3305 // sequence of instructions that form a check. 3306 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3307 "scev.check"); 3308 Value *SCEVCheck = 3309 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3310 3311 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3312 if (C->isZero()) 3313 return; 3314 3315 // Create a new block containing the stride check. 3316 BB->setName("vector.scevcheck"); 3317 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3318 // Update dominator tree immediately if the generated block is a 3319 // LoopBypassBlock because SCEV expansions to generate loop bypass 3320 // checks may query it before the current function is finished. 3321 DT->addNewBlock(NewBB, BB); 3322 if (L->getParentLoop()) 3323 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3324 ReplaceInstWithInst(BB->getTerminator(), 3325 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3326 LoopBypassBlocks.push_back(BB); 3327 AddedSafetyChecks = true; 3328 } 3329 3330 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3331 BasicBlock *BB = L->getLoopPreheader(); 3332 3333 // Generate the code that checks in runtime if arrays overlap. We put the 3334 // checks into a separate block to make the more common case of few elements 3335 // faster. 3336 Instruction *FirstCheckInst; 3337 Instruction *MemRuntimeCheck; 3338 std::tie(FirstCheckInst, MemRuntimeCheck) = 3339 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3340 if (!MemRuntimeCheck) 3341 return; 3342 3343 // Create a new block containing the memory check. 3344 BB->setName("vector.memcheck"); 3345 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3346 // Update dominator tree immediately if the generated block is a 3347 // LoopBypassBlock because SCEV expansions to generate loop bypass 3348 // checks may query it before the current function is finished. 3349 DT->addNewBlock(NewBB, BB); 3350 if (L->getParentLoop()) 3351 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3352 ReplaceInstWithInst(BB->getTerminator(), 3353 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3354 LoopBypassBlocks.push_back(BB); 3355 AddedSafetyChecks = true; 3356 3357 // We currently don't use LoopVersioning for the actual loop cloning but we 3358 // still use it to add the noalias metadata. 3359 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3360 PSE.getSE()); 3361 LVer->prepareNoAliasMetadata(); 3362 } 3363 3364 void InnerLoopVectorizer::createEmptyLoop() { 3365 /* 3366 In this function we generate a new loop. The new loop will contain 3367 the vectorized instructions while the old loop will continue to run the 3368 scalar remainder. 3369 3370 [ ] <-- loop iteration number check. 3371 / | 3372 / v 3373 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3374 | / | 3375 | / v 3376 || [ ] <-- vector pre header. 3377 |/ | 3378 | v 3379 | [ ] \ 3380 | [ ]_| <-- vector loop. 3381 | | 3382 | v 3383 | -[ ] <--- middle-block. 3384 | / | 3385 | / v 3386 -|- >[ ] <--- new preheader. 3387 | | 3388 | v 3389 | [ ] \ 3390 | [ ]_| <-- old scalar loop to handle remainder. 3391 \ | 3392 \ v 3393 >[ ] <-- exit block. 3394 ... 3395 */ 3396 3397 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3398 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3399 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3400 assert(VectorPH && "Invalid loop structure"); 3401 assert(ExitBlock && "Must have an exit block"); 3402 3403 // Some loops have a single integer induction variable, while other loops 3404 // don't. One example is c++ iterators that often have multiple pointer 3405 // induction variables. In the code below we also support a case where we 3406 // don't have a single induction variable. 3407 // 3408 // We try to obtain an induction variable from the original loop as hard 3409 // as possible. However if we don't find one that: 3410 // - is an integer 3411 // - counts from zero, stepping by one 3412 // - is the size of the widest induction variable type 3413 // then we create a new one. 3414 OldInduction = Legal->getPrimaryInduction(); 3415 Type *IdxTy = Legal->getWidestInductionType(); 3416 3417 // Split the single block loop into the two loop structure described above. 3418 BasicBlock *VecBody = 3419 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3420 BasicBlock *MiddleBlock = 3421 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3422 BasicBlock *ScalarPH = 3423 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3424 3425 // Create and register the new vector loop. 3426 Loop *Lp = new Loop(); 3427 Loop *ParentLoop = OrigLoop->getParentLoop(); 3428 3429 // Insert the new loop into the loop nest and register the new basic blocks 3430 // before calling any utilities such as SCEV that require valid LoopInfo. 3431 if (ParentLoop) { 3432 ParentLoop->addChildLoop(Lp); 3433 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3434 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3435 } else { 3436 LI->addTopLevelLoop(Lp); 3437 } 3438 Lp->addBasicBlockToLoop(VecBody, *LI); 3439 3440 // Find the loop boundaries. 3441 Value *Count = getOrCreateTripCount(Lp); 3442 3443 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3444 3445 // We need to test whether the backedge-taken count is uint##_max. Adding one 3446 // to it will cause overflow and an incorrect loop trip count in the vector 3447 // body. In case of overflow we want to directly jump to the scalar remainder 3448 // loop. 3449 emitMinimumIterationCountCheck(Lp, ScalarPH); 3450 // Now, compare the new count to zero. If it is zero skip the vector loop and 3451 // jump to the scalar loop. 3452 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3453 // Generate the code to check any assumptions that we've made for SCEV 3454 // expressions. 3455 emitSCEVChecks(Lp, ScalarPH); 3456 3457 // Generate the code that checks in runtime if arrays overlap. We put the 3458 // checks into a separate block to make the more common case of few elements 3459 // faster. 3460 emitMemRuntimeChecks(Lp, ScalarPH); 3461 3462 // Generate the induction variable. 3463 // The loop step is equal to the vectorization factor (num of SIMD elements) 3464 // times the unroll factor (num of SIMD instructions). 3465 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3466 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3467 Induction = 3468 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3469 getDebugLocFromInstOrOperands(OldInduction)); 3470 3471 // We are going to resume the execution of the scalar loop. 3472 // Go over all of the induction variables that we found and fix the 3473 // PHIs that are left in the scalar version of the loop. 3474 // The starting values of PHI nodes depend on the counter of the last 3475 // iteration in the vectorized loop. 3476 // If we come from a bypass edge then we need to start from the original 3477 // start value. 3478 3479 // This variable saves the new starting index for the scalar loop. It is used 3480 // to test if there are any tail iterations left once the vector loop has 3481 // completed. 3482 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3483 for (auto &InductionEntry : *List) { 3484 PHINode *OrigPhi = InductionEntry.first; 3485 InductionDescriptor II = InductionEntry.second; 3486 3487 // Create phi nodes to merge from the backedge-taken check block. 3488 PHINode *BCResumeVal = PHINode::Create( 3489 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3490 Value *&EndValue = IVEndValues[OrigPhi]; 3491 if (OrigPhi == OldInduction) { 3492 // We know what the end value is. 3493 EndValue = CountRoundDown; 3494 } else { 3495 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3496 Type *StepType = II.getStep()->getType(); 3497 Instruction::CastOps CastOp = 3498 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3499 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3500 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3501 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3502 EndValue->setName("ind.end"); 3503 } 3504 3505 // The new PHI merges the original incoming value, in case of a bypass, 3506 // or the value at the end of the vectorized loop. 3507 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3508 3509 // Fix the scalar body counter (PHI node). 3510 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3511 3512 // The old induction's phi node in the scalar body needs the truncated 3513 // value. 3514 for (BasicBlock *BB : LoopBypassBlocks) 3515 BCResumeVal->addIncoming(II.getStartValue(), BB); 3516 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3517 } 3518 3519 // Add a check in the middle block to see if we have completed 3520 // all of the iterations in the first vector loop. 3521 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3522 Value *CmpN = 3523 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3524 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3525 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3526 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3527 3528 // Get ready to start creating new instructions into the vectorized body. 3529 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3530 3531 // Save the state. 3532 LoopVectorPreHeader = Lp->getLoopPreheader(); 3533 LoopScalarPreHeader = ScalarPH; 3534 LoopMiddleBlock = MiddleBlock; 3535 LoopExitBlock = ExitBlock; 3536 LoopVectorBody = VecBody; 3537 LoopScalarBody = OldBasicBlock; 3538 3539 // Keep all loop hints from the original loop on the vector loop (we'll 3540 // replace the vectorizer-specific hints below). 3541 if (MDNode *LID = OrigLoop->getLoopID()) 3542 Lp->setLoopID(LID); 3543 3544 LoopVectorizeHints Hints(Lp, true, *ORE); 3545 Hints.setAlreadyVectorized(); 3546 } 3547 3548 // Fix up external users of the induction variable. At this point, we are 3549 // in LCSSA form, with all external PHIs that use the IV having one input value, 3550 // coming from the remainder loop. We need those PHIs to also have a correct 3551 // value for the IV when arriving directly from the middle block. 3552 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3553 const InductionDescriptor &II, 3554 Value *CountRoundDown, Value *EndValue, 3555 BasicBlock *MiddleBlock) { 3556 // There are two kinds of external IV usages - those that use the value 3557 // computed in the last iteration (the PHI) and those that use the penultimate 3558 // value (the value that feeds into the phi from the loop latch). 3559 // We allow both, but they, obviously, have different values. 3560 3561 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3562 3563 DenseMap<Value *, Value *> MissingVals; 3564 3565 // An external user of the last iteration's value should see the value that 3566 // the remainder loop uses to initialize its own IV. 3567 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3568 for (User *U : PostInc->users()) { 3569 Instruction *UI = cast<Instruction>(U); 3570 if (!OrigLoop->contains(UI)) { 3571 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3572 MissingVals[UI] = EndValue; 3573 } 3574 } 3575 3576 // An external user of the penultimate value need to see EndValue - Step. 3577 // The simplest way to get this is to recompute it from the constituent SCEVs, 3578 // that is Start + (Step * (CRD - 1)). 3579 for (User *U : OrigPhi->users()) { 3580 auto *UI = cast<Instruction>(U); 3581 if (!OrigLoop->contains(UI)) { 3582 const DataLayout &DL = 3583 OrigLoop->getHeader()->getModule()->getDataLayout(); 3584 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3585 3586 IRBuilder<> B(MiddleBlock->getTerminator()); 3587 Value *CountMinusOne = B.CreateSub( 3588 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3589 Value *CMO = 3590 !II.getStep()->getType()->isIntegerTy() 3591 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3592 II.getStep()->getType()) 3593 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3594 CMO->setName("cast.cmo"); 3595 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3596 Escape->setName("ind.escape"); 3597 MissingVals[UI] = Escape; 3598 } 3599 } 3600 3601 for (auto &I : MissingVals) { 3602 PHINode *PHI = cast<PHINode>(I.first); 3603 // One corner case we have to handle is two IVs "chasing" each-other, 3604 // that is %IV2 = phi [...], [ %IV1, %latch ] 3605 // In this case, if IV1 has an external use, we need to avoid adding both 3606 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3607 // don't already have an incoming value for the middle block. 3608 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3609 PHI->addIncoming(I.second, MiddleBlock); 3610 } 3611 } 3612 3613 namespace { 3614 struct CSEDenseMapInfo { 3615 static bool canHandle(const Instruction *I) { 3616 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3617 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3618 } 3619 static inline Instruction *getEmptyKey() { 3620 return DenseMapInfo<Instruction *>::getEmptyKey(); 3621 } 3622 static inline Instruction *getTombstoneKey() { 3623 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3624 } 3625 static unsigned getHashValue(const Instruction *I) { 3626 assert(canHandle(I) && "Unknown instruction!"); 3627 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3628 I->value_op_end())); 3629 } 3630 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3631 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3632 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3633 return LHS == RHS; 3634 return LHS->isIdenticalTo(RHS); 3635 } 3636 }; 3637 } 3638 3639 ///\brief Perform cse of induction variable instructions. 3640 static void cse(BasicBlock *BB) { 3641 // Perform simple cse. 3642 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3643 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3644 Instruction *In = &*I++; 3645 3646 if (!CSEDenseMapInfo::canHandle(In)) 3647 continue; 3648 3649 // Check if we can replace this instruction with any of the 3650 // visited instructions. 3651 if (Instruction *V = CSEMap.lookup(In)) { 3652 In->replaceAllUsesWith(V); 3653 In->eraseFromParent(); 3654 continue; 3655 } 3656 3657 CSEMap[In] = In; 3658 } 3659 } 3660 3661 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3662 /// convenience wrapper for the type-based getScalarizationOverhead API. 3663 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3664 const TargetTransformInfo &TTI) { 3665 if (VF == 1) 3666 return 0; 3667 3668 unsigned Cost = 0; 3669 Type *RetTy = ToVectorTy(I->getType(), VF); 3670 if (!RetTy->isVoidTy() && 3671 (!isa<LoadInst>(I) || 3672 !TTI.supportsEfficientVectorElementLoadStore())) 3673 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3674 3675 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3676 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3677 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3678 } 3679 else if (!isa<StoreInst>(I) || 3680 !TTI.supportsEfficientVectorElementLoadStore()) { 3681 SmallVector<const Value *, 4> Operands(I->operand_values()); 3682 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3683 } 3684 3685 return Cost; 3686 } 3687 3688 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3689 // Return the cost of the instruction, including scalarization overhead if it's 3690 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3691 // i.e. either vector version isn't available, or is too expensive. 3692 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3693 const TargetTransformInfo &TTI, 3694 const TargetLibraryInfo *TLI, 3695 bool &NeedToScalarize) { 3696 Function *F = CI->getCalledFunction(); 3697 StringRef FnName = CI->getCalledFunction()->getName(); 3698 Type *ScalarRetTy = CI->getType(); 3699 SmallVector<Type *, 4> Tys, ScalarTys; 3700 for (auto &ArgOp : CI->arg_operands()) 3701 ScalarTys.push_back(ArgOp->getType()); 3702 3703 // Estimate cost of scalarized vector call. The source operands are assumed 3704 // to be vectors, so we need to extract individual elements from there, 3705 // execute VF scalar calls, and then gather the result into the vector return 3706 // value. 3707 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3708 if (VF == 1) 3709 return ScalarCallCost; 3710 3711 // Compute corresponding vector type for return value and arguments. 3712 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3713 for (Type *ScalarTy : ScalarTys) 3714 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3715 3716 // Compute costs of unpacking argument values for the scalar calls and 3717 // packing the return values to a vector. 3718 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3719 3720 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3721 3722 // If we can't emit a vector call for this function, then the currently found 3723 // cost is the cost we need to return. 3724 NeedToScalarize = true; 3725 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3726 return Cost; 3727 3728 // If the corresponding vector cost is cheaper, return its cost. 3729 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3730 if (VectorCallCost < Cost) { 3731 NeedToScalarize = false; 3732 return VectorCallCost; 3733 } 3734 return Cost; 3735 } 3736 3737 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3738 // factor VF. Return the cost of the instruction, including scalarization 3739 // overhead if it's needed. 3740 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3741 const TargetTransformInfo &TTI, 3742 const TargetLibraryInfo *TLI) { 3743 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3744 assert(ID && "Expected intrinsic call!"); 3745 3746 FastMathFlags FMF; 3747 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3748 FMF = FPMO->getFastMathFlags(); 3749 3750 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3751 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3752 } 3753 3754 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3755 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3756 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3757 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3758 } 3759 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3760 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3761 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3762 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3763 } 3764 3765 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3766 // For every instruction `I` in MinBWs, truncate the operands, create a 3767 // truncated version of `I` and reextend its result. InstCombine runs 3768 // later and will remove any ext/trunc pairs. 3769 // 3770 SmallPtrSet<Value *, 4> Erased; 3771 for (const auto &KV : Cost->getMinimalBitwidths()) { 3772 // If the value wasn't vectorized, we must maintain the original scalar 3773 // type. The absence of the value from VectorLoopValueMap indicates that it 3774 // wasn't vectorized. 3775 if (!VectorLoopValueMap.hasVector(KV.first)) 3776 continue; 3777 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3778 for (Value *&I : Parts) { 3779 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3780 continue; 3781 Type *OriginalTy = I->getType(); 3782 Type *ScalarTruncatedTy = 3783 IntegerType::get(OriginalTy->getContext(), KV.second); 3784 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3785 OriginalTy->getVectorNumElements()); 3786 if (TruncatedTy == OriginalTy) 3787 continue; 3788 3789 IRBuilder<> B(cast<Instruction>(I)); 3790 auto ShrinkOperand = [&](Value *V) -> Value * { 3791 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3792 if (ZI->getSrcTy() == TruncatedTy) 3793 return ZI->getOperand(0); 3794 return B.CreateZExtOrTrunc(V, TruncatedTy); 3795 }; 3796 3797 // The actual instruction modification depends on the instruction type, 3798 // unfortunately. 3799 Value *NewI = nullptr; 3800 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3801 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3802 ShrinkOperand(BO->getOperand(1))); 3803 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3804 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3805 NewI = 3806 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3807 ShrinkOperand(CI->getOperand(1))); 3808 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3809 NewI = B.CreateSelect(SI->getCondition(), 3810 ShrinkOperand(SI->getTrueValue()), 3811 ShrinkOperand(SI->getFalseValue())); 3812 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3813 switch (CI->getOpcode()) { 3814 default: 3815 llvm_unreachable("Unhandled cast!"); 3816 case Instruction::Trunc: 3817 NewI = ShrinkOperand(CI->getOperand(0)); 3818 break; 3819 case Instruction::SExt: 3820 NewI = B.CreateSExtOrTrunc( 3821 CI->getOperand(0), 3822 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3823 break; 3824 case Instruction::ZExt: 3825 NewI = B.CreateZExtOrTrunc( 3826 CI->getOperand(0), 3827 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3828 break; 3829 } 3830 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3831 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3832 auto *O0 = B.CreateZExtOrTrunc( 3833 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3834 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3835 auto *O1 = B.CreateZExtOrTrunc( 3836 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3837 3838 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3839 } else if (isa<LoadInst>(I)) { 3840 // Don't do anything with the operands, just extend the result. 3841 continue; 3842 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3843 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3844 auto *O0 = B.CreateZExtOrTrunc( 3845 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3846 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3847 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3848 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3849 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3850 auto *O0 = B.CreateZExtOrTrunc( 3851 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3852 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3853 } else { 3854 llvm_unreachable("Unhandled instruction type!"); 3855 } 3856 3857 // Lastly, extend the result. 3858 NewI->takeName(cast<Instruction>(I)); 3859 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3860 I->replaceAllUsesWith(Res); 3861 cast<Instruction>(I)->eraseFromParent(); 3862 Erased.insert(I); 3863 I = Res; 3864 } 3865 } 3866 3867 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3868 for (const auto &KV : Cost->getMinimalBitwidths()) { 3869 // If the value wasn't vectorized, we must maintain the original scalar 3870 // type. The absence of the value from VectorLoopValueMap indicates that it 3871 // wasn't vectorized. 3872 if (!VectorLoopValueMap.hasVector(KV.first)) 3873 continue; 3874 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3875 for (Value *&I : Parts) { 3876 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3877 if (Inst && Inst->use_empty()) { 3878 Value *NewI = Inst->getOperand(0); 3879 Inst->eraseFromParent(); 3880 I = NewI; 3881 } 3882 } 3883 } 3884 } 3885 3886 void InnerLoopVectorizer::vectorizeLoop() { 3887 //===------------------------------------------------===// 3888 // 3889 // Notice: any optimization or new instruction that go 3890 // into the code below should be also be implemented in 3891 // the cost-model. 3892 // 3893 //===------------------------------------------------===// 3894 3895 // Collect instructions from the original loop that will become trivially dead 3896 // in the vectorized loop. We don't need to vectorize these instructions. For 3897 // example, original induction update instructions can become dead because we 3898 // separately emit induction "steps" when generating code for the new loop. 3899 // Similarly, we create a new latch condition when setting up the structure 3900 // of the new loop, so the old one can become dead. 3901 SmallPtrSet<Instruction *, 4> DeadInstructions; 3902 collectTriviallyDeadInstructions(DeadInstructions); 3903 3904 // Scan the loop in a topological order to ensure that defs are vectorized 3905 // before users. 3906 LoopBlocksDFS DFS(OrigLoop); 3907 DFS.perform(LI); 3908 3909 // Vectorize all instructions in the original loop that will not become 3910 // trivially dead when vectorized. 3911 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3912 for (Instruction &I : *BB) 3913 if (!DeadInstructions.count(&I)) 3914 vectorizeInstruction(I); 3915 3916 // Insert truncates and extends for any truncated instructions as hints to 3917 // InstCombine. 3918 if (VF > 1) 3919 truncateToMinimalBitwidths(); 3920 3921 // At this point every instruction in the original loop is widened to a 3922 // vector form. Now we need to fix the recurrences in the loop. These PHI 3923 // nodes are currently empty because we did not want to introduce cycles. 3924 // This is the second stage of vectorizing recurrences. 3925 fixCrossIterationPHIs(); 3926 3927 // Update the dominator tree. 3928 // 3929 // FIXME: After creating the structure of the new loop, the dominator tree is 3930 // no longer up-to-date, and it remains that way until we update it 3931 // here. An out-of-date dominator tree is problematic for SCEV, 3932 // because SCEVExpander uses it to guide code generation. The 3933 // vectorizer use SCEVExpanders in several places. Instead, we should 3934 // keep the dominator tree up-to-date as we go. 3935 updateAnalysis(); 3936 3937 // Fix-up external users of the induction variables. 3938 for (auto &Entry : *Legal->getInductionVars()) 3939 fixupIVUsers(Entry.first, Entry.second, 3940 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3941 IVEndValues[Entry.first], LoopMiddleBlock); 3942 3943 fixLCSSAPHIs(); 3944 predicateInstructions(); 3945 3946 // Remove redundant induction instructions. 3947 cse(LoopVectorBody); 3948 } 3949 3950 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3951 // In order to support recurrences we need to be able to vectorize Phi nodes. 3952 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3953 // stage #2: We now need to fix the recurrences by adding incoming edges to 3954 // the currently empty PHI nodes. At this point every instruction in the 3955 // original loop is widened to a vector form so we can use them to construct 3956 // the incoming edges. 3957 for (Instruction &I : *OrigLoop->getHeader()) { 3958 PHINode *Phi = dyn_cast<PHINode>(&I); 3959 if (!Phi) 3960 break; 3961 // Handle first-order recurrences and reductions that need to be fixed. 3962 if (Legal->isFirstOrderRecurrence(Phi)) 3963 fixFirstOrderRecurrence(Phi); 3964 else if (Legal->isReductionVariable(Phi)) 3965 fixReduction(Phi); 3966 } 3967 } 3968 3969 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3970 3971 // This is the second phase of vectorizing first-order recurrences. An 3972 // overview of the transformation is described below. Suppose we have the 3973 // following loop. 3974 // 3975 // for (int i = 0; i < n; ++i) 3976 // b[i] = a[i] - a[i - 1]; 3977 // 3978 // There is a first-order recurrence on "a". For this loop, the shorthand 3979 // scalar IR looks like: 3980 // 3981 // scalar.ph: 3982 // s_init = a[-1] 3983 // br scalar.body 3984 // 3985 // scalar.body: 3986 // i = phi [0, scalar.ph], [i+1, scalar.body] 3987 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3988 // s2 = a[i] 3989 // b[i] = s2 - s1 3990 // br cond, scalar.body, ... 3991 // 3992 // In this example, s1 is a recurrence because it's value depends on the 3993 // previous iteration. In the first phase of vectorization, we created a 3994 // temporary value for s1. We now complete the vectorization and produce the 3995 // shorthand vector IR shown below (for VF = 4, UF = 1). 3996 // 3997 // vector.ph: 3998 // v_init = vector(..., ..., ..., a[-1]) 3999 // br vector.body 4000 // 4001 // vector.body 4002 // i = phi [0, vector.ph], [i+4, vector.body] 4003 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4004 // v2 = a[i, i+1, i+2, i+3]; 4005 // v3 = vector(v1(3), v2(0, 1, 2)) 4006 // b[i, i+1, i+2, i+3] = v2 - v3 4007 // br cond, vector.body, middle.block 4008 // 4009 // middle.block: 4010 // x = v2(3) 4011 // br scalar.ph 4012 // 4013 // scalar.ph: 4014 // s_init = phi [x, middle.block], [a[-1], otherwise] 4015 // br scalar.body 4016 // 4017 // After execution completes the vector loop, we extract the next value of 4018 // the recurrence (x) to use as the initial value in the scalar loop. 4019 4020 // Get the original loop preheader and single loop latch. 4021 auto *Preheader = OrigLoop->getLoopPreheader(); 4022 auto *Latch = OrigLoop->getLoopLatch(); 4023 4024 // Get the initial and previous values of the scalar recurrence. 4025 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4026 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4027 4028 // Create a vector from the initial value. 4029 auto *VectorInit = ScalarInit; 4030 if (VF > 1) { 4031 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4032 VectorInit = Builder.CreateInsertElement( 4033 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4034 Builder.getInt32(VF - 1), "vector.recur.init"); 4035 } 4036 4037 // We constructed a temporary phi node in the first phase of vectorization. 4038 // This phi node will eventually be deleted. 4039 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4040 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4041 4042 // Create a phi node for the new recurrence. The current value will either be 4043 // the initial value inserted into a vector or loop-varying vector value. 4044 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4045 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4046 4047 // Get the vectorized previous value. 4048 auto &PreviousParts = getVectorValue(Previous); 4049 4050 // Set the insertion point after the previous value if it is an instruction. 4051 // Note that the previous value may have been constant-folded so it is not 4052 // guaranteed to be an instruction in the vector loop. 4053 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1])) 4054 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4055 else 4056 Builder.SetInsertPoint( 4057 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4058 4059 // We will construct a vector for the recurrence by combining the values for 4060 // the current and previous iterations. This is the required shuffle mask. 4061 SmallVector<Constant *, 8> ShuffleMask(VF); 4062 ShuffleMask[0] = Builder.getInt32(VF - 1); 4063 for (unsigned I = 1; I < VF; ++I) 4064 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4065 4066 // The vector from which to take the initial value for the current iteration 4067 // (actual or unrolled). Initially, this is the vector phi node. 4068 Value *Incoming = VecPhi; 4069 4070 // Shuffle the current and previous vector and update the vector parts. 4071 for (unsigned Part = 0; Part < UF; ++Part) { 4072 auto *Shuffle = 4073 VF > 1 4074 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4075 ConstantVector::get(ShuffleMask)) 4076 : Incoming; 4077 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4078 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4079 PhiParts[Part] = Shuffle; 4080 Incoming = PreviousParts[Part]; 4081 } 4082 4083 // Fix the latch value of the new recurrence in the vector loop. 4084 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4085 4086 // Extract the last vector element in the middle block. This will be the 4087 // initial value for the recurrence when jumping to the scalar loop. 4088 auto *ExtractForScalar = Incoming; 4089 if (VF > 1) { 4090 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4091 ExtractForScalar = Builder.CreateExtractElement( 4092 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4093 } 4094 // Extract the second last element in the middle block if the 4095 // Phi is used outside the loop. We need to extract the phi itself 4096 // and not the last element (the phi update in the current iteration). This 4097 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4098 // when the scalar loop is not run at all. 4099 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4100 if (VF > 1) 4101 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4102 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4103 // When loop is unrolled without vectorizing, initialize 4104 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4105 // `Incoming`. This is analogous to the vectorized case above: extracting the 4106 // second last element when VF > 1. 4107 else if (UF > 1) 4108 ExtractForPhiUsedOutsideLoop = PreviousParts[UF - 2]; 4109 4110 // Fix the initial value of the original recurrence in the scalar loop. 4111 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4112 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4113 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4114 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4115 Start->addIncoming(Incoming, BB); 4116 } 4117 4118 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4119 Phi->setName("scalar.recur"); 4120 4121 // Finally, fix users of the recurrence outside the loop. The users will need 4122 // either the last value of the scalar recurrence or the last value of the 4123 // vector recurrence we extracted in the middle block. Since the loop is in 4124 // LCSSA form, we just need to find the phi node for the original scalar 4125 // recurrence in the exit block, and then add an edge for the middle block. 4126 for (auto &I : *LoopExitBlock) { 4127 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4128 if (!LCSSAPhi) 4129 break; 4130 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4131 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4132 break; 4133 } 4134 } 4135 } 4136 4137 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4138 Constant *Zero = Builder.getInt32(0); 4139 4140 // Get it's reduction variable descriptor. 4141 assert(Legal->isReductionVariable(Phi) && 4142 "Unable to find the reduction variable"); 4143 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4144 4145 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4146 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4147 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4148 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4149 RdxDesc.getMinMaxRecurrenceKind(); 4150 setDebugLocFromInst(Builder, ReductionStartValue); 4151 4152 // We need to generate a reduction vector from the incoming scalar. 4153 // To do so, we need to generate the 'identity' vector and override 4154 // one of the elements with the incoming scalar reduction. We need 4155 // to do it in the vector-loop preheader. 4156 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4157 4158 // This is the vector-clone of the value that leaves the loop. 4159 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 4160 Type *VecTy = VectorExit[0]->getType(); 4161 4162 // Find the reduction identity variable. Zero for addition, or, xor, 4163 // one for multiplication, -1 for And. 4164 Value *Identity; 4165 Value *VectorStart; 4166 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4167 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4168 // MinMax reduction have the start value as their identify. 4169 if (VF == 1) { 4170 VectorStart = Identity = ReductionStartValue; 4171 } else { 4172 VectorStart = Identity = 4173 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4174 } 4175 } else { 4176 // Handle other reduction kinds: 4177 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4178 RK, VecTy->getScalarType()); 4179 if (VF == 1) { 4180 Identity = Iden; 4181 // This vector is the Identity vector where the first element is the 4182 // incoming scalar reduction. 4183 VectorStart = ReductionStartValue; 4184 } else { 4185 Identity = ConstantVector::getSplat(VF, Iden); 4186 4187 // This vector is the Identity vector where the first element is the 4188 // incoming scalar reduction. 4189 VectorStart = 4190 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4191 } 4192 } 4193 4194 // Fix the vector-loop phi. 4195 4196 // Reductions do not have to start at zero. They can start with 4197 // any loop invariant values. 4198 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4199 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4200 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4201 const VectorParts &Val = getVectorValue(LoopVal); 4202 for (unsigned part = 0; part < UF; ++part) { 4203 // Make sure to add the reduction stat value only to the 4204 // first unroll part. 4205 Value *StartVal = (part == 0) ? VectorStart : Identity; 4206 cast<PHINode>(VecRdxPhi[part]) 4207 ->addIncoming(StartVal, LoopVectorPreHeader); 4208 cast<PHINode>(VecRdxPhi[part]) 4209 ->addIncoming(Val[part], LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4210 } 4211 4212 // Before each round, move the insertion point right between 4213 // the PHIs and the values we are going to write. 4214 // This allows us to write both PHINodes and the extractelement 4215 // instructions. 4216 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4217 4218 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4219 setDebugLocFromInst(Builder, LoopExitInst); 4220 4221 // If the vector reduction can be performed in a smaller type, we truncate 4222 // then extend the loop exit value to enable InstCombine to evaluate the 4223 // entire expression in the smaller type. 4224 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4225 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4226 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4227 for (unsigned part = 0; part < UF; ++part) { 4228 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4229 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4230 : Builder.CreateZExt(Trunc, VecTy); 4231 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4232 UI != RdxParts[part]->user_end();) 4233 if (*UI != Trunc) { 4234 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4235 RdxParts[part] = Extnd; 4236 } else { 4237 ++UI; 4238 } 4239 } 4240 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4241 for (unsigned part = 0; part < UF; ++part) 4242 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4243 } 4244 4245 // Reduce all of the unrolled parts into a single vector. 4246 Value *ReducedPartRdx = RdxParts[0]; 4247 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4248 setDebugLocFromInst(Builder, ReducedPartRdx); 4249 for (unsigned part = 1; part < UF; ++part) { 4250 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4251 // Floating point operations had to be 'fast' to enable the reduction. 4252 ReducedPartRdx = addFastMathFlag( 4253 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4254 ReducedPartRdx, "bin.rdx")); 4255 else 4256 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4257 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4258 } 4259 4260 if (VF > 1) { 4261 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4262 // and vector ops, reducing the set of values being computed by half each 4263 // round. 4264 assert(isPowerOf2_32(VF) && 4265 "Reduction emission only supported for pow2 vectors!"); 4266 Value *TmpVec = ReducedPartRdx; 4267 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4268 for (unsigned i = VF; i != 1; i >>= 1) { 4269 // Move the upper half of the vector to the lower half. 4270 for (unsigned j = 0; j != i / 2; ++j) 4271 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4272 4273 // Fill the rest of the mask with undef. 4274 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4275 UndefValue::get(Builder.getInt32Ty())); 4276 4277 Value *Shuf = Builder.CreateShuffleVector( 4278 TmpVec, UndefValue::get(TmpVec->getType()), 4279 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4280 4281 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4282 // Floating point operations had to be 'fast' to enable the reduction. 4283 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4284 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4285 else 4286 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4287 TmpVec, Shuf); 4288 } 4289 4290 // The result is in the first element of the vector. 4291 ReducedPartRdx = 4292 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4293 4294 // If the reduction can be performed in a smaller type, we need to extend 4295 // the reduction to the wider type before we branch to the original loop. 4296 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4297 ReducedPartRdx = 4298 RdxDesc.isSigned() 4299 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4300 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4301 } 4302 4303 // Create a phi node that merges control-flow from the backedge-taken check 4304 // block and the middle block. 4305 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4306 LoopScalarPreHeader->getTerminator()); 4307 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4308 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4309 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4310 4311 // Now, we need to fix the users of the reduction variable 4312 // inside and outside of the scalar remainder loop. 4313 // We know that the loop is in LCSSA form. We need to update the 4314 // PHI nodes in the exit blocks. 4315 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4316 LEE = LoopExitBlock->end(); 4317 LEI != LEE; ++LEI) { 4318 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4319 if (!LCSSAPhi) 4320 break; 4321 4322 // All PHINodes need to have a single entry edge, or two if 4323 // we already fixed them. 4324 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4325 4326 // We found a reduction value exit-PHI. Update it with the 4327 // incoming bypass edge. 4328 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4329 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4330 } // end of the LCSSA phi scan. 4331 4332 // Fix the scalar loop reduction variable with the incoming reduction sum 4333 // from the vector body and from the backedge value. 4334 int IncomingEdgeBlockIdx = 4335 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4336 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4337 // Pick the other block. 4338 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4339 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4340 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4341 } 4342 4343 void InnerLoopVectorizer::fixLCSSAPHIs() { 4344 for (Instruction &LEI : *LoopExitBlock) { 4345 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4346 if (!LCSSAPhi) 4347 break; 4348 if (LCSSAPhi->getNumIncomingValues() == 1) 4349 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4350 LoopMiddleBlock); 4351 } 4352 } 4353 4354 void InnerLoopVectorizer::collectTriviallyDeadInstructions( 4355 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 4356 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4357 4358 // We create new control-flow for the vectorized loop, so the original 4359 // condition will be dead after vectorization if it's only used by the 4360 // branch. 4361 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4362 if (Cmp && Cmp->hasOneUse()) 4363 DeadInstructions.insert(Cmp); 4364 4365 // We create new "steps" for induction variable updates to which the original 4366 // induction variables map. An original update instruction will be dead if 4367 // all its users except the induction variable are dead. 4368 for (auto &Induction : *Legal->getInductionVars()) { 4369 PHINode *Ind = Induction.first; 4370 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4371 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4372 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4373 })) 4374 DeadInstructions.insert(IndUpdate); 4375 } 4376 } 4377 4378 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4379 4380 // The basic block and loop containing the predicated instruction. 4381 auto *PredBB = PredInst->getParent(); 4382 auto *VectorLoop = LI->getLoopFor(PredBB); 4383 4384 // Initialize a worklist with the operands of the predicated instruction. 4385 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4386 4387 // Holds instructions that we need to analyze again. An instruction may be 4388 // reanalyzed if we don't yet know if we can sink it or not. 4389 SmallVector<Instruction *, 8> InstsToReanalyze; 4390 4391 // Returns true if a given use occurs in the predicated block. Phi nodes use 4392 // their operands in their corresponding predecessor blocks. 4393 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4394 auto *I = cast<Instruction>(U.getUser()); 4395 BasicBlock *BB = I->getParent(); 4396 if (auto *Phi = dyn_cast<PHINode>(I)) 4397 BB = Phi->getIncomingBlock( 4398 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4399 return BB == PredBB; 4400 }; 4401 4402 // Iteratively sink the scalarized operands of the predicated instruction 4403 // into the block we created for it. When an instruction is sunk, it's 4404 // operands are then added to the worklist. The algorithm ends after one pass 4405 // through the worklist doesn't sink a single instruction. 4406 bool Changed; 4407 do { 4408 4409 // Add the instructions that need to be reanalyzed to the worklist, and 4410 // reset the changed indicator. 4411 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4412 InstsToReanalyze.clear(); 4413 Changed = false; 4414 4415 while (!Worklist.empty()) { 4416 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4417 4418 // We can't sink an instruction if it is a phi node, is already in the 4419 // predicated block, is not in the loop, or may have side effects. 4420 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4421 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4422 continue; 4423 4424 // It's legal to sink the instruction if all its uses occur in the 4425 // predicated block. Otherwise, there's nothing to do yet, and we may 4426 // need to reanalyze the instruction. 4427 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4428 InstsToReanalyze.push_back(I); 4429 continue; 4430 } 4431 4432 // Move the instruction to the beginning of the predicated block, and add 4433 // it's operands to the worklist. 4434 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4435 Worklist.insert(I->op_begin(), I->op_end()); 4436 4437 // The sinking may have enabled other instructions to be sunk, so we will 4438 // need to iterate. 4439 Changed = true; 4440 } 4441 } while (Changed); 4442 } 4443 4444 void InnerLoopVectorizer::predicateInstructions() { 4445 4446 // For each instruction I marked for predication on value C, split I into its 4447 // own basic block to form an if-then construct over C. Since I may be fed by 4448 // an extractelement instruction or other scalar operand, we try to 4449 // iteratively sink its scalar operands into the predicated block. If I feeds 4450 // an insertelement instruction, we try to move this instruction into the 4451 // predicated block as well. For non-void types, a phi node will be created 4452 // for the resulting value (either vector or scalar). 4453 // 4454 // So for some predicated instruction, e.g. the conditional sdiv in: 4455 // 4456 // for.body: 4457 // ... 4458 // %add = add nsw i32 %mul, %0 4459 // %cmp5 = icmp sgt i32 %2, 7 4460 // br i1 %cmp5, label %if.then, label %if.end 4461 // 4462 // if.then: 4463 // %div = sdiv i32 %0, %1 4464 // br label %if.end 4465 // 4466 // if.end: 4467 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4468 // 4469 // the sdiv at this point is scalarized and if-converted using a select. 4470 // The inactive elements in the vector are not used, but the predicated 4471 // instruction is still executed for all vector elements, essentially: 4472 // 4473 // vector.body: 4474 // ... 4475 // %17 = add nsw <2 x i32> %16, %wide.load 4476 // %29 = extractelement <2 x i32> %wide.load, i32 0 4477 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4478 // %31 = sdiv i32 %29, %30 4479 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4480 // %35 = extractelement <2 x i32> %wide.load, i32 1 4481 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4482 // %37 = sdiv i32 %35, %36 4483 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4484 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4485 // 4486 // Predication will now re-introduce the original control flow to avoid false 4487 // side-effects by the sdiv instructions on the inactive elements, yielding 4488 // (after cleanup): 4489 // 4490 // vector.body: 4491 // ... 4492 // %5 = add nsw <2 x i32> %4, %wide.load 4493 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4494 // %9 = extractelement <2 x i1> %8, i32 0 4495 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4496 // 4497 // pred.sdiv.if: 4498 // %10 = extractelement <2 x i32> %wide.load, i32 0 4499 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4500 // %12 = sdiv i32 %10, %11 4501 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4502 // br label %pred.sdiv.continue 4503 // 4504 // pred.sdiv.continue: 4505 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4506 // %15 = extractelement <2 x i1> %8, i32 1 4507 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4508 // 4509 // pred.sdiv.if54: 4510 // %16 = extractelement <2 x i32> %wide.load, i32 1 4511 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4512 // %18 = sdiv i32 %16, %17 4513 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4514 // br label %pred.sdiv.continue55 4515 // 4516 // pred.sdiv.continue55: 4517 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4518 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4519 4520 for (auto KV : PredicatedInstructions) { 4521 BasicBlock::iterator I(KV.first); 4522 BasicBlock *Head = I->getParent(); 4523 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4524 /*BranchWeights=*/nullptr, DT, LI); 4525 I->moveBefore(T); 4526 sinkScalarOperands(&*I); 4527 4528 BasicBlock *PredicatedBlock = I->getParent(); 4529 Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName(); 4530 PredicatedBlock->setName(BBNamePrefix + ".if"); 4531 PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue"); 4532 4533 // If the instruction is non-void create a Phi node at reconvergence point. 4534 if (!I->getType()->isVoidTy()) { 4535 Value *IncomingTrue = nullptr; 4536 Value *IncomingFalse = nullptr; 4537 4538 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4539 // If the predicated instruction is feeding an insert-element, move it 4540 // into the Then block; Phi node will be created for the vector. 4541 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4542 IEI->moveBefore(T); 4543 IncomingTrue = IEI; // the new vector with the inserted element. 4544 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4545 } else { 4546 // Phi node will be created for the scalar predicated instruction. 4547 IncomingTrue = &*I; 4548 IncomingFalse = UndefValue::get(I->getType()); 4549 } 4550 4551 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4552 assert(PostDom && "Then block has multiple successors"); 4553 PHINode *Phi = 4554 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4555 IncomingTrue->replaceAllUsesWith(Phi); 4556 Phi->addIncoming(IncomingFalse, Head); 4557 Phi->addIncoming(IncomingTrue, I->getParent()); 4558 } 4559 } 4560 4561 DEBUG(DT->verifyDomTree()); 4562 } 4563 4564 InnerLoopVectorizer::VectorParts 4565 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4566 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4567 4568 // Look for cached value. 4569 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4570 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4571 if (ECEntryIt != EdgeMaskCache.end()) 4572 return ECEntryIt->second; 4573 4574 VectorParts SrcMask = createBlockInMask(Src); 4575 4576 // The terminator has to be a branch inst! 4577 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4578 assert(BI && "Unexpected terminator found"); 4579 4580 if (BI->isConditional()) { 4581 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4582 4583 if (BI->getSuccessor(0) != Dst) 4584 for (unsigned part = 0; part < UF; ++part) 4585 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4586 4587 for (unsigned part = 0; part < UF; ++part) 4588 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4589 4590 EdgeMaskCache[Edge] = EdgeMask; 4591 return EdgeMask; 4592 } 4593 4594 EdgeMaskCache[Edge] = SrcMask; 4595 return SrcMask; 4596 } 4597 4598 InnerLoopVectorizer::VectorParts 4599 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4600 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4601 4602 // Look for cached value. 4603 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4604 if (BCEntryIt != BlockMaskCache.end()) 4605 return BCEntryIt->second; 4606 4607 // Loop incoming mask is all-one. 4608 if (OrigLoop->getHeader() == BB) { 4609 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4610 const VectorParts &BlockMask = getVectorValue(C); 4611 BlockMaskCache[BB] = BlockMask; 4612 return BlockMask; 4613 } 4614 4615 // This is the block mask. We OR all incoming edges, and with zero. 4616 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4617 VectorParts BlockMask = getVectorValue(Zero); 4618 4619 // For each pred: 4620 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4621 VectorParts EM = createEdgeMask(*it, BB); 4622 for (unsigned part = 0; part < UF; ++part) 4623 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4624 } 4625 4626 BlockMaskCache[BB] = BlockMask; 4627 return BlockMask; 4628 } 4629 4630 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4631 unsigned VF) { 4632 PHINode *P = cast<PHINode>(PN); 4633 // In order to support recurrences we need to be able to vectorize Phi nodes. 4634 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4635 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4636 // this value when we vectorize all of the instructions that use the PHI. 4637 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4638 VectorParts Entry(UF); 4639 for (unsigned part = 0; part < UF; ++part) { 4640 // This is phase one of vectorizing PHIs. 4641 Type *VecTy = 4642 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4643 Entry[part] = PHINode::Create( 4644 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4645 } 4646 VectorLoopValueMap.initVector(P, Entry); 4647 return; 4648 } 4649 4650 setDebugLocFromInst(Builder, P); 4651 // Check for PHI nodes that are lowered to vector selects. 4652 if (P->getParent() != OrigLoop->getHeader()) { 4653 // We know that all PHIs in non-header blocks are converted into 4654 // selects, so we don't have to worry about the insertion order and we 4655 // can just use the builder. 4656 // At this point we generate the predication tree. There may be 4657 // duplications since this is a simple recursive scan, but future 4658 // optimizations will clean it up. 4659 4660 unsigned NumIncoming = P->getNumIncomingValues(); 4661 4662 // Generate a sequence of selects of the form: 4663 // SELECT(Mask3, In3, 4664 // SELECT(Mask2, In2, 4665 // ( ...))) 4666 VectorParts Entry(UF); 4667 for (unsigned In = 0; In < NumIncoming; In++) { 4668 VectorParts Cond = 4669 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4670 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4671 4672 for (unsigned part = 0; part < UF; ++part) { 4673 // We might have single edge PHIs (blocks) - use an identity 4674 // 'select' for the first PHI operand. 4675 if (In == 0) 4676 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4677 else 4678 // Select between the current value and the previous incoming edge 4679 // based on the incoming mask. 4680 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4681 "predphi"); 4682 } 4683 } 4684 VectorLoopValueMap.initVector(P, Entry); 4685 return; 4686 } 4687 4688 // This PHINode must be an induction variable. 4689 // Make sure that we know about it. 4690 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4691 4692 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4693 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4694 4695 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4696 // which can be found from the original scalar operations. 4697 switch (II.getKind()) { 4698 case InductionDescriptor::IK_NoInduction: 4699 llvm_unreachable("Unknown induction"); 4700 case InductionDescriptor::IK_IntInduction: 4701 case InductionDescriptor::IK_FpInduction: 4702 return widenIntOrFpInduction(P); 4703 case InductionDescriptor::IK_PtrInduction: { 4704 // Handle the pointer induction variable case. 4705 assert(P->getType()->isPointerTy() && "Unexpected type."); 4706 // This is the normalized GEP that starts counting at zero. 4707 Value *PtrInd = Induction; 4708 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4709 // Determine the number of scalars we need to generate for each unroll 4710 // iteration. If the instruction is uniform, we only need to generate the 4711 // first lane. Otherwise, we generate all VF values. 4712 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4713 // These are the scalar results. Notice that we don't generate vector GEPs 4714 // because scalar GEPs result in better code. 4715 ScalarParts Entry(UF); 4716 for (unsigned Part = 0; Part < UF; ++Part) { 4717 Entry[Part].resize(VF); 4718 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4719 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4720 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4721 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4722 SclrGep->setName("next.gep"); 4723 Entry[Part][Lane] = SclrGep; 4724 } 4725 } 4726 VectorLoopValueMap.initScalar(P, Entry); 4727 return; 4728 } 4729 } 4730 } 4731 4732 /// A helper function for checking whether an integer division-related 4733 /// instruction may divide by zero (in which case it must be predicated if 4734 /// executed conditionally in the scalar code). 4735 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4736 /// Non-zero divisors that are non compile-time constants will not be 4737 /// converted into multiplication, so we will still end up scalarizing 4738 /// the division, but can do so w/o predication. 4739 static bool mayDivideByZero(Instruction &I) { 4740 assert((I.getOpcode() == Instruction::UDiv || 4741 I.getOpcode() == Instruction::SDiv || 4742 I.getOpcode() == Instruction::URem || 4743 I.getOpcode() == Instruction::SRem) && 4744 "Unexpected instruction"); 4745 Value *Divisor = I.getOperand(1); 4746 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4747 return !CInt || CInt->isZero(); 4748 } 4749 4750 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4751 // Scalarize instructions that should remain scalar after vectorization. 4752 if (VF > 1 && 4753 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4754 shouldScalarizeInstruction(&I)) { 4755 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4756 return; 4757 } 4758 4759 switch (I.getOpcode()) { 4760 case Instruction::Br: 4761 // Nothing to do for PHIs and BR, since we already took care of the 4762 // loop control flow instructions. 4763 break; 4764 case Instruction::PHI: { 4765 // Vectorize PHINodes. 4766 widenPHIInstruction(&I, UF, VF); 4767 break; 4768 } // End of PHI. 4769 case Instruction::GetElementPtr: { 4770 // Construct a vector GEP by widening the operands of the scalar GEP as 4771 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4772 // results in a vector of pointers when at least one operand of the GEP 4773 // is vector-typed. Thus, to keep the representation compact, we only use 4774 // vector-typed operands for loop-varying values. 4775 auto *GEP = cast<GetElementPtrInst>(&I); 4776 VectorParts Entry(UF); 4777 4778 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4779 // If we are vectorizing, but the GEP has only loop-invariant operands, 4780 // the GEP we build (by only using vector-typed operands for 4781 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4782 // produce a vector of pointers, we need to either arbitrarily pick an 4783 // operand to broadcast, or broadcast a clone of the original GEP. 4784 // Here, we broadcast a clone of the original. 4785 // 4786 // TODO: If at some point we decide to scalarize instructions having 4787 // loop-invariant operands, this special case will no longer be 4788 // required. We would add the scalarization decision to 4789 // collectLoopScalars() and teach getVectorValue() to broadcast 4790 // the lane-zero scalar value. 4791 auto *Clone = Builder.Insert(GEP->clone()); 4792 for (unsigned Part = 0; Part < UF; ++Part) 4793 Entry[Part] = Builder.CreateVectorSplat(VF, Clone); 4794 } else { 4795 // If the GEP has at least one loop-varying operand, we are sure to 4796 // produce a vector of pointers. But if we are only unrolling, we want 4797 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4798 // produce with the code below will be scalar (if VF == 1) or vector 4799 // (otherwise). Note that for the unroll-only case, we still maintain 4800 // values in the vector mapping with initVector, as we do for other 4801 // instructions. 4802 for (unsigned Part = 0; Part < UF; ++Part) { 4803 4804 // The pointer operand of the new GEP. If it's loop-invariant, we 4805 // won't broadcast it. 4806 auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4807 ? GEP->getPointerOperand() 4808 : getVectorValue(GEP->getPointerOperand())[Part]; 4809 4810 // Collect all the indices for the new GEP. If any index is 4811 // loop-invariant, we won't broadcast it. 4812 SmallVector<Value *, 4> Indices; 4813 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4814 if (OrigLoop->isLoopInvariant(U.get())) 4815 Indices.push_back(U.get()); 4816 else 4817 Indices.push_back(getVectorValue(U.get())[Part]); 4818 } 4819 4820 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4821 // but it should be a vector, otherwise. 4822 auto *NewGEP = GEP->isInBounds() 4823 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4824 : Builder.CreateGEP(Ptr, Indices); 4825 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4826 "NewGEP is not a pointer vector"); 4827 Entry[Part] = NewGEP; 4828 } 4829 } 4830 4831 VectorLoopValueMap.initVector(&I, Entry); 4832 addMetadata(Entry, GEP); 4833 break; 4834 } 4835 case Instruction::UDiv: 4836 case Instruction::SDiv: 4837 case Instruction::SRem: 4838 case Instruction::URem: 4839 // Scalarize with predication if this instruction may divide by zero and 4840 // block execution is conditional, otherwise fallthrough. 4841 if (Legal->isScalarWithPredication(&I)) { 4842 scalarizeInstruction(&I, true); 4843 break; 4844 } 4845 case Instruction::Add: 4846 case Instruction::FAdd: 4847 case Instruction::Sub: 4848 case Instruction::FSub: 4849 case Instruction::Mul: 4850 case Instruction::FMul: 4851 case Instruction::FDiv: 4852 case Instruction::FRem: 4853 case Instruction::Shl: 4854 case Instruction::LShr: 4855 case Instruction::AShr: 4856 case Instruction::And: 4857 case Instruction::Or: 4858 case Instruction::Xor: { 4859 // Just widen binops. 4860 auto *BinOp = cast<BinaryOperator>(&I); 4861 setDebugLocFromInst(Builder, BinOp); 4862 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4863 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4864 4865 // Use this vector value for all users of the original instruction. 4866 VectorParts Entry(UF); 4867 for (unsigned Part = 0; Part < UF; ++Part) { 4868 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4869 4870 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4871 VecOp->copyIRFlags(BinOp); 4872 4873 Entry[Part] = V; 4874 } 4875 4876 VectorLoopValueMap.initVector(&I, Entry); 4877 addMetadata(Entry, BinOp); 4878 break; 4879 } 4880 case Instruction::Select: { 4881 // Widen selects. 4882 // If the selector is loop invariant we can create a select 4883 // instruction with a scalar condition. Otherwise, use vector-select. 4884 auto *SE = PSE.getSE(); 4885 bool InvariantCond = 4886 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4887 setDebugLocFromInst(Builder, &I); 4888 4889 // The condition can be loop invariant but still defined inside the 4890 // loop. This means that we can't just use the original 'cond' value. 4891 // We have to take the 'vectorized' value and pick the first lane. 4892 // Instcombine will make this a no-op. 4893 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4894 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4895 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4896 4897 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4898 4899 VectorParts Entry(UF); 4900 for (unsigned Part = 0; Part < UF; ++Part) { 4901 Entry[Part] = Builder.CreateSelect( 4902 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4903 } 4904 4905 VectorLoopValueMap.initVector(&I, Entry); 4906 addMetadata(Entry, &I); 4907 break; 4908 } 4909 4910 case Instruction::ICmp: 4911 case Instruction::FCmp: { 4912 // Widen compares. Generate vector compares. 4913 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4914 auto *Cmp = dyn_cast<CmpInst>(&I); 4915 setDebugLocFromInst(Builder, Cmp); 4916 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4917 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4918 VectorParts Entry(UF); 4919 for (unsigned Part = 0; Part < UF; ++Part) { 4920 Value *C = nullptr; 4921 if (FCmp) { 4922 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4923 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4924 } else { 4925 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4926 } 4927 Entry[Part] = C; 4928 } 4929 4930 VectorLoopValueMap.initVector(&I, Entry); 4931 addMetadata(Entry, &I); 4932 break; 4933 } 4934 4935 case Instruction::Store: 4936 case Instruction::Load: 4937 vectorizeMemoryInstruction(&I); 4938 break; 4939 case Instruction::ZExt: 4940 case Instruction::SExt: 4941 case Instruction::FPToUI: 4942 case Instruction::FPToSI: 4943 case Instruction::FPExt: 4944 case Instruction::PtrToInt: 4945 case Instruction::IntToPtr: 4946 case Instruction::SIToFP: 4947 case Instruction::UIToFP: 4948 case Instruction::Trunc: 4949 case Instruction::FPTrunc: 4950 case Instruction::BitCast: { 4951 auto *CI = dyn_cast<CastInst>(&I); 4952 setDebugLocFromInst(Builder, CI); 4953 4954 // Optimize the special case where the source is a constant integer 4955 // induction variable. Notice that we can only optimize the 'trunc' case 4956 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4957 // (c) other casts depend on pointer size. 4958 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4959 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4960 cast<TruncInst>(CI)); 4961 break; 4962 } 4963 4964 /// Vectorize casts. 4965 Type *DestTy = 4966 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4967 4968 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4969 VectorParts Entry(UF); 4970 for (unsigned Part = 0; Part < UF; ++Part) 4971 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4972 VectorLoopValueMap.initVector(&I, Entry); 4973 addMetadata(Entry, &I); 4974 break; 4975 } 4976 4977 case Instruction::Call: { 4978 // Ignore dbg intrinsics. 4979 if (isa<DbgInfoIntrinsic>(I)) 4980 break; 4981 setDebugLocFromInst(Builder, &I); 4982 4983 Module *M = I.getParent()->getParent()->getParent(); 4984 auto *CI = cast<CallInst>(&I); 4985 4986 StringRef FnName = CI->getCalledFunction()->getName(); 4987 Function *F = CI->getCalledFunction(); 4988 Type *RetTy = ToVectorTy(CI->getType(), VF); 4989 SmallVector<Type *, 4> Tys; 4990 for (Value *ArgOperand : CI->arg_operands()) 4991 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4992 4993 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4994 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4995 ID == Intrinsic::lifetime_start)) { 4996 scalarizeInstruction(&I); 4997 break; 4998 } 4999 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5000 // version of the instruction. 5001 // Is it beneficial to perform intrinsic call compared to lib call? 5002 bool NeedToScalarize; 5003 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 5004 bool UseVectorIntrinsic = 5005 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 5006 if (!UseVectorIntrinsic && NeedToScalarize) { 5007 scalarizeInstruction(&I); 5008 break; 5009 } 5010 5011 VectorParts Entry(UF); 5012 for (unsigned Part = 0; Part < UF; ++Part) { 5013 SmallVector<Value *, 4> Args; 5014 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 5015 Value *Arg = CI->getArgOperand(i); 5016 // Some intrinsics have a scalar argument - don't replace it with a 5017 // vector. 5018 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 5019 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 5020 Arg = VectorArg[Part]; 5021 } 5022 Args.push_back(Arg); 5023 } 5024 5025 Function *VectorF; 5026 if (UseVectorIntrinsic) { 5027 // Use vector version of the intrinsic. 5028 Type *TysForDecl[] = {CI->getType()}; 5029 if (VF > 1) 5030 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5031 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5032 } else { 5033 // Use vector version of the library call. 5034 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 5035 assert(!VFnName.empty() && "Vector function name is empty."); 5036 VectorF = M->getFunction(VFnName); 5037 if (!VectorF) { 5038 // Generate a declaration 5039 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 5040 VectorF = 5041 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 5042 VectorF->copyAttributesFrom(F); 5043 } 5044 } 5045 assert(VectorF && "Can't create vector function."); 5046 5047 SmallVector<OperandBundleDef, 1> OpBundles; 5048 CI->getOperandBundlesAsDefs(OpBundles); 5049 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5050 5051 if (isa<FPMathOperator>(V)) 5052 V->copyFastMathFlags(CI); 5053 5054 Entry[Part] = V; 5055 } 5056 5057 VectorLoopValueMap.initVector(&I, Entry); 5058 addMetadata(Entry, &I); 5059 break; 5060 } 5061 5062 default: 5063 // All other instructions are unsupported. Scalarize them. 5064 scalarizeInstruction(&I); 5065 break; 5066 } // end of switch. 5067 } 5068 5069 void InnerLoopVectorizer::updateAnalysis() { 5070 // Forget the original basic block. 5071 PSE.getSE()->forgetLoop(OrigLoop); 5072 5073 // Update the dominator tree information. 5074 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5075 "Entry does not dominate exit."); 5076 5077 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5078 LoopVectorPreHeader); 5079 DT->addNewBlock(LoopMiddleBlock, 5080 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5081 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5082 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5083 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5084 5085 DEBUG(DT->verifyDomTree()); 5086 } 5087 5088 /// \brief Check whether it is safe to if-convert this phi node. 5089 /// 5090 /// Phi nodes with constant expressions that can trap are not safe to if 5091 /// convert. 5092 static bool canIfConvertPHINodes(BasicBlock *BB) { 5093 for (Instruction &I : *BB) { 5094 auto *Phi = dyn_cast<PHINode>(&I); 5095 if (!Phi) 5096 return true; 5097 for (Value *V : Phi->incoming_values()) 5098 if (auto *C = dyn_cast<Constant>(V)) 5099 if (C->canTrap()) 5100 return false; 5101 } 5102 return true; 5103 } 5104 5105 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5106 if (!EnableIfConversion) { 5107 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5108 << "if-conversion is disabled"); 5109 return false; 5110 } 5111 5112 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5113 5114 // A list of pointers that we can safely read and write to. 5115 SmallPtrSet<Value *, 8> SafePointes; 5116 5117 // Collect safe addresses. 5118 for (BasicBlock *BB : TheLoop->blocks()) { 5119 if (blockNeedsPredication(BB)) 5120 continue; 5121 5122 for (Instruction &I : *BB) 5123 if (auto *Ptr = getPointerOperand(&I)) 5124 SafePointes.insert(Ptr); 5125 } 5126 5127 // Collect the blocks that need predication. 5128 BasicBlock *Header = TheLoop->getHeader(); 5129 for (BasicBlock *BB : TheLoop->blocks()) { 5130 // We don't support switch statements inside loops. 5131 if (!isa<BranchInst>(BB->getTerminator())) { 5132 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5133 << "loop contains a switch statement"); 5134 return false; 5135 } 5136 5137 // We must be able to predicate all blocks that need to be predicated. 5138 if (blockNeedsPredication(BB)) { 5139 if (!blockCanBePredicated(BB, SafePointes)) { 5140 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5141 << "control flow cannot be substituted for a select"); 5142 return false; 5143 } 5144 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5145 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5146 << "control flow cannot be substituted for a select"); 5147 return false; 5148 } 5149 } 5150 5151 // We can if-convert this loop. 5152 return true; 5153 } 5154 5155 bool LoopVectorizationLegality::canVectorize() { 5156 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5157 // be canonicalized. 5158 if (!TheLoop->getLoopPreheader()) { 5159 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5160 << "loop control flow is not understood by vectorizer"); 5161 return false; 5162 } 5163 5164 // FIXME: The code is currently dead, since the loop gets sent to 5165 // LoopVectorizationLegality is already an innermost loop. 5166 // 5167 // We can only vectorize innermost loops. 5168 if (!TheLoop->empty()) { 5169 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5170 << "loop is not the innermost loop"); 5171 return false; 5172 } 5173 5174 // We must have a single backedge. 5175 if (TheLoop->getNumBackEdges() != 1) { 5176 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5177 << "loop control flow is not understood by vectorizer"); 5178 return false; 5179 } 5180 5181 // We must have a single exiting block. 5182 if (!TheLoop->getExitingBlock()) { 5183 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5184 << "loop control flow is not understood by vectorizer"); 5185 return false; 5186 } 5187 5188 // We only handle bottom-tested loops, i.e. loop in which the condition is 5189 // checked at the end of each iteration. With that we can assume that all 5190 // instructions in the loop are executed the same number of times. 5191 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5192 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5193 << "loop control flow is not understood by vectorizer"); 5194 return false; 5195 } 5196 5197 // We need to have a loop header. 5198 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5199 << '\n'); 5200 5201 // Check if we can if-convert non-single-bb loops. 5202 unsigned NumBlocks = TheLoop->getNumBlocks(); 5203 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5204 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5205 return false; 5206 } 5207 5208 // ScalarEvolution needs to be able to find the exit count. 5209 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5210 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5211 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5212 << "could not determine number of loop iterations"); 5213 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5214 return false; 5215 } 5216 5217 // Check if we can vectorize the instructions and CFG in this loop. 5218 if (!canVectorizeInstrs()) { 5219 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5220 return false; 5221 } 5222 5223 // Go over each instruction and look at memory deps. 5224 if (!canVectorizeMemory()) { 5225 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5226 return false; 5227 } 5228 5229 DEBUG(dbgs() << "LV: We can vectorize this loop" 5230 << (LAI->getRuntimePointerChecking()->Need 5231 ? " (with a runtime bound check)" 5232 : "") 5233 << "!\n"); 5234 5235 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5236 5237 // If an override option has been passed in for interleaved accesses, use it. 5238 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5239 UseInterleaved = EnableInterleavedMemAccesses; 5240 5241 // Analyze interleaved memory accesses. 5242 if (UseInterleaved) 5243 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5244 5245 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5246 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5247 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5248 5249 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5250 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5251 << "Too many SCEV assumptions need to be made and checked " 5252 << "at runtime"); 5253 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5254 return false; 5255 } 5256 5257 // Okay! We can vectorize. At this point we don't have any other mem analysis 5258 // which may limit our maximum vectorization factor, so just return true with 5259 // no restrictions. 5260 return true; 5261 } 5262 5263 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5264 if (Ty->isPointerTy()) 5265 return DL.getIntPtrType(Ty); 5266 5267 // It is possible that char's or short's overflow when we ask for the loop's 5268 // trip count, work around this by changing the type size. 5269 if (Ty->getScalarSizeInBits() < 32) 5270 return Type::getInt32Ty(Ty->getContext()); 5271 5272 return Ty; 5273 } 5274 5275 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5276 Ty0 = convertPointerToIntegerType(DL, Ty0); 5277 Ty1 = convertPointerToIntegerType(DL, Ty1); 5278 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5279 return Ty0; 5280 return Ty1; 5281 } 5282 5283 /// \brief Check that the instruction has outside loop users and is not an 5284 /// identified reduction variable. 5285 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5286 SmallPtrSetImpl<Value *> &AllowedExit) { 5287 // Reduction and Induction instructions are allowed to have exit users. All 5288 // other instructions must not have external users. 5289 if (!AllowedExit.count(Inst)) 5290 // Check that all of the users of the loop are inside the BB. 5291 for (User *U : Inst->users()) { 5292 Instruction *UI = cast<Instruction>(U); 5293 // This user may be a reduction exit value. 5294 if (!TheLoop->contains(UI)) { 5295 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5296 return true; 5297 } 5298 } 5299 return false; 5300 } 5301 5302 void LoopVectorizationLegality::addInductionPhi( 5303 PHINode *Phi, const InductionDescriptor &ID, 5304 SmallPtrSetImpl<Value *> &AllowedExit) { 5305 Inductions[Phi] = ID; 5306 Type *PhiTy = Phi->getType(); 5307 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5308 5309 // Get the widest type. 5310 if (!PhiTy->isFloatingPointTy()) { 5311 if (!WidestIndTy) 5312 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5313 else 5314 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5315 } 5316 5317 // Int inductions are special because we only allow one IV. 5318 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5319 ID.getConstIntStepValue() && 5320 ID.getConstIntStepValue()->isOne() && 5321 isa<Constant>(ID.getStartValue()) && 5322 cast<Constant>(ID.getStartValue())->isNullValue()) { 5323 5324 // Use the phi node with the widest type as induction. Use the last 5325 // one if there are multiple (no good reason for doing this other 5326 // than it is expedient). We've checked that it begins at zero and 5327 // steps by one, so this is a canonical induction variable. 5328 if (!PrimaryInduction || PhiTy == WidestIndTy) 5329 PrimaryInduction = Phi; 5330 } 5331 5332 // Both the PHI node itself, and the "post-increment" value feeding 5333 // back into the PHI node may have external users. 5334 AllowedExit.insert(Phi); 5335 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5336 5337 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5338 return; 5339 } 5340 5341 bool LoopVectorizationLegality::canVectorizeInstrs() { 5342 BasicBlock *Header = TheLoop->getHeader(); 5343 5344 // Look for the attribute signaling the absence of NaNs. 5345 Function &F = *Header->getParent(); 5346 HasFunNoNaNAttr = 5347 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5348 5349 // For each block in the loop. 5350 for (BasicBlock *BB : TheLoop->blocks()) { 5351 // Scan the instructions in the block and look for hazards. 5352 for (Instruction &I : *BB) { 5353 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5354 Type *PhiTy = Phi->getType(); 5355 // Check that this PHI type is allowed. 5356 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5357 !PhiTy->isPointerTy()) { 5358 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5359 << "loop control flow is not understood by vectorizer"); 5360 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5361 return false; 5362 } 5363 5364 // If this PHINode is not in the header block, then we know that we 5365 // can convert it to select during if-conversion. No need to check if 5366 // the PHIs in this block are induction or reduction variables. 5367 if (BB != Header) { 5368 // Check that this instruction has no outside users or is an 5369 // identified reduction value with an outside user. 5370 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5371 continue; 5372 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5373 << "value could not be identified as " 5374 "an induction or reduction variable"); 5375 return false; 5376 } 5377 5378 // We only allow if-converted PHIs with exactly two incoming values. 5379 if (Phi->getNumIncomingValues() != 2) { 5380 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5381 << "control flow not understood by vectorizer"); 5382 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5383 return false; 5384 } 5385 5386 RecurrenceDescriptor RedDes; 5387 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5388 if (RedDes.hasUnsafeAlgebra()) 5389 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5390 AllowedExit.insert(RedDes.getLoopExitInstr()); 5391 Reductions[Phi] = RedDes; 5392 continue; 5393 } 5394 5395 InductionDescriptor ID; 5396 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5397 addInductionPhi(Phi, ID, AllowedExit); 5398 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5399 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5400 continue; 5401 } 5402 5403 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5404 FirstOrderRecurrences.insert(Phi); 5405 continue; 5406 } 5407 5408 // As a last resort, coerce the PHI to a AddRec expression 5409 // and re-try classifying it a an induction PHI. 5410 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5411 addInductionPhi(Phi, ID, AllowedExit); 5412 continue; 5413 } 5414 5415 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5416 << "value that could not be identified as " 5417 "reduction is used outside the loop"); 5418 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5419 return false; 5420 } // end of PHI handling 5421 5422 // We handle calls that: 5423 // * Are debug info intrinsics. 5424 // * Have a mapping to an IR intrinsic. 5425 // * Have a vector version available. 5426 auto *CI = dyn_cast<CallInst>(&I); 5427 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5428 !isa<DbgInfoIntrinsic>(CI) && 5429 !(CI->getCalledFunction() && TLI && 5430 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5431 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5432 << "call instruction cannot be vectorized"); 5433 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5434 return false; 5435 } 5436 5437 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5438 // second argument is the same (i.e. loop invariant) 5439 if (CI && hasVectorInstrinsicScalarOpd( 5440 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5441 auto *SE = PSE.getSE(); 5442 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5443 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5444 << "intrinsic instruction cannot be vectorized"); 5445 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5446 return false; 5447 } 5448 } 5449 5450 // Check that the instruction return type is vectorizable. 5451 // Also, we can't vectorize extractelement instructions. 5452 if ((!VectorType::isValidElementType(I.getType()) && 5453 !I.getType()->isVoidTy()) || 5454 isa<ExtractElementInst>(I)) { 5455 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5456 << "instruction return type cannot be vectorized"); 5457 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5458 return false; 5459 } 5460 5461 // Check that the stored type is vectorizable. 5462 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5463 Type *T = ST->getValueOperand()->getType(); 5464 if (!VectorType::isValidElementType(T)) { 5465 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5466 << "store instruction cannot be vectorized"); 5467 return false; 5468 } 5469 5470 // FP instructions can allow unsafe algebra, thus vectorizable by 5471 // non-IEEE-754 compliant SIMD units. 5472 // This applies to floating-point math operations and calls, not memory 5473 // operations, shuffles, or casts, as they don't change precision or 5474 // semantics. 5475 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5476 !I.hasUnsafeAlgebra()) { 5477 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5478 Hints->setPotentiallyUnsafe(); 5479 } 5480 5481 // Reduction instructions are allowed to have exit users. 5482 // All other instructions must not have external users. 5483 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5484 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5485 << "value cannot be used outside the loop"); 5486 return false; 5487 } 5488 5489 } // next instr. 5490 } 5491 5492 if (!PrimaryInduction) { 5493 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5494 if (Inductions.empty()) { 5495 ORE->emit(createMissedAnalysis("NoInductionVariable") 5496 << "loop induction variable could not be identified"); 5497 return false; 5498 } 5499 } 5500 5501 // Now we know the widest induction type, check if our found induction 5502 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5503 // will create another. 5504 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5505 PrimaryInduction = nullptr; 5506 5507 return true; 5508 } 5509 5510 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5511 5512 // We should not collect Scalars more than once per VF. Right now, this 5513 // function is called from collectUniformsAndScalars(), which already does 5514 // this check. Collecting Scalars for VF=1 does not make any sense. 5515 assert(VF >= 2 && !Scalars.count(VF) && 5516 "This function should not be visited twice for the same VF"); 5517 5518 SmallSetVector<Instruction *, 8> Worklist; 5519 5520 // These sets are used to seed the analysis with pointers used by memory 5521 // accesses that will remain scalar. 5522 SmallSetVector<Instruction *, 8> ScalarPtrs; 5523 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5524 5525 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5526 // The pointer operands of loads and stores will be scalar as long as the 5527 // memory access is not a gather or scatter operation. The value operand of a 5528 // store will remain scalar if the store is scalarized. 5529 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5530 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5531 assert(WideningDecision != CM_Unknown && 5532 "Widening decision should be ready at this moment"); 5533 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5534 if (Ptr == Store->getValueOperand()) 5535 return WideningDecision == CM_Scalarize; 5536 assert(Ptr == getPointerOperand(MemAccess) && 5537 "Ptr is neither a value or pointer operand"); 5538 return WideningDecision != CM_GatherScatter; 5539 }; 5540 5541 // A helper that returns true if the given value is a bitcast or 5542 // getelementptr instruction contained in the loop. 5543 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5544 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5545 isa<GetElementPtrInst>(V)) && 5546 !TheLoop->isLoopInvariant(V); 5547 }; 5548 5549 // A helper that evaluates a memory access's use of a pointer. If the use 5550 // will be a scalar use, and the pointer is only used by memory accesses, we 5551 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5552 // PossibleNonScalarPtrs. 5553 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5554 5555 // We only care about bitcast and getelementptr instructions contained in 5556 // the loop. 5557 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5558 return; 5559 5560 // If the pointer has already been identified as scalar (e.g., if it was 5561 // also identified as uniform), there's nothing to do. 5562 auto *I = cast<Instruction>(Ptr); 5563 if (Worklist.count(I)) 5564 return; 5565 5566 // If the use of the pointer will be a scalar use, and all users of the 5567 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5568 // place the pointer in PossibleNonScalarPtrs. 5569 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5570 return isa<LoadInst>(U) || isa<StoreInst>(U); 5571 })) 5572 ScalarPtrs.insert(I); 5573 else 5574 PossibleNonScalarPtrs.insert(I); 5575 }; 5576 5577 // We seed the scalars analysis with three classes of instructions: (1) 5578 // instructions marked uniform-after-vectorization, (2) bitcast and 5579 // getelementptr instructions used by memory accesses requiring a scalar use, 5580 // and (3) pointer induction variables and their update instructions (we 5581 // currently only scalarize these). 5582 // 5583 // (1) Add to the worklist all instructions that have been identified as 5584 // uniform-after-vectorization. 5585 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5586 5587 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5588 // memory accesses requiring a scalar use. The pointer operands of loads and 5589 // stores will be scalar as long as the memory accesses is not a gather or 5590 // scatter operation. The value operand of a store will remain scalar if the 5591 // store is scalarized. 5592 for (auto *BB : TheLoop->blocks()) 5593 for (auto &I : *BB) { 5594 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5595 evaluatePtrUse(Load, Load->getPointerOperand()); 5596 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5597 evaluatePtrUse(Store, Store->getPointerOperand()); 5598 evaluatePtrUse(Store, Store->getValueOperand()); 5599 } 5600 } 5601 for (auto *I : ScalarPtrs) 5602 if (!PossibleNonScalarPtrs.count(I)) { 5603 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5604 Worklist.insert(I); 5605 } 5606 5607 // (3) Add to the worklist all pointer induction variables and their update 5608 // instructions. 5609 // 5610 // TODO: Once we are able to vectorize pointer induction variables we should 5611 // no longer insert them into the worklist here. 5612 auto *Latch = TheLoop->getLoopLatch(); 5613 for (auto &Induction : *Legal->getInductionVars()) { 5614 auto *Ind = Induction.first; 5615 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5616 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5617 continue; 5618 Worklist.insert(Ind); 5619 Worklist.insert(IndUpdate); 5620 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5621 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5622 } 5623 5624 // Expand the worklist by looking through any bitcasts and getelementptr 5625 // instructions we've already identified as scalar. This is similar to the 5626 // expansion step in collectLoopUniforms(); however, here we're only 5627 // expanding to include additional bitcasts and getelementptr instructions. 5628 unsigned Idx = 0; 5629 while (Idx != Worklist.size()) { 5630 Instruction *Dst = Worklist[Idx++]; 5631 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5632 continue; 5633 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5634 if (all_of(Src->users(), [&](User *U) -> bool { 5635 auto *J = cast<Instruction>(U); 5636 return !TheLoop->contains(J) || Worklist.count(J) || 5637 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5638 isScalarUse(J, Src)); 5639 })) { 5640 Worklist.insert(Src); 5641 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5642 } 5643 } 5644 5645 // An induction variable will remain scalar if all users of the induction 5646 // variable and induction variable update remain scalar. 5647 for (auto &Induction : *Legal->getInductionVars()) { 5648 auto *Ind = Induction.first; 5649 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5650 5651 // We already considered pointer induction variables, so there's no reason 5652 // to look at their users again. 5653 // 5654 // TODO: Once we are able to vectorize pointer induction variables we 5655 // should no longer skip over them here. 5656 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5657 continue; 5658 5659 // Determine if all users of the induction variable are scalar after 5660 // vectorization. 5661 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5662 auto *I = cast<Instruction>(U); 5663 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5664 }); 5665 if (!ScalarInd) 5666 continue; 5667 5668 // Determine if all users of the induction variable update instruction are 5669 // scalar after vectorization. 5670 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5671 auto *I = cast<Instruction>(U); 5672 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5673 }); 5674 if (!ScalarIndUpdate) 5675 continue; 5676 5677 // The induction variable and its update instruction will remain scalar. 5678 Worklist.insert(Ind); 5679 Worklist.insert(IndUpdate); 5680 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5681 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5682 } 5683 5684 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5685 } 5686 5687 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5688 if (!blockNeedsPredication(I->getParent())) 5689 return false; 5690 switch(I->getOpcode()) { 5691 default: 5692 break; 5693 case Instruction::Store: 5694 return !isMaskRequired(I); 5695 case Instruction::UDiv: 5696 case Instruction::SDiv: 5697 case Instruction::SRem: 5698 case Instruction::URem: 5699 return mayDivideByZero(*I); 5700 } 5701 return false; 5702 } 5703 5704 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5705 unsigned VF) { 5706 // Get and ensure we have a valid memory instruction. 5707 LoadInst *LI = dyn_cast<LoadInst>(I); 5708 StoreInst *SI = dyn_cast<StoreInst>(I); 5709 assert((LI || SI) && "Invalid memory instruction"); 5710 5711 auto *Ptr = getPointerOperand(I); 5712 5713 // In order to be widened, the pointer should be consecutive, first of all. 5714 if (!isConsecutivePtr(Ptr)) 5715 return false; 5716 5717 // If the instruction is a store located in a predicated block, it will be 5718 // scalarized. 5719 if (isScalarWithPredication(I)) 5720 return false; 5721 5722 // If the instruction's allocated size doesn't equal it's type size, it 5723 // requires padding and will be scalarized. 5724 auto &DL = I->getModule()->getDataLayout(); 5725 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5726 if (hasIrregularType(ScalarTy, DL, VF)) 5727 return false; 5728 5729 return true; 5730 } 5731 5732 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5733 5734 // We should not collect Uniforms more than once per VF. Right now, 5735 // this function is called from collectUniformsAndScalars(), which 5736 // already does this check. Collecting Uniforms for VF=1 does not make any 5737 // sense. 5738 5739 assert(VF >= 2 && !Uniforms.count(VF) && 5740 "This function should not be visited twice for the same VF"); 5741 5742 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5743 // not analyze again. Uniforms.count(VF) will return 1. 5744 Uniforms[VF].clear(); 5745 5746 // We now know that the loop is vectorizable! 5747 // Collect instructions inside the loop that will remain uniform after 5748 // vectorization. 5749 5750 // Global values, params and instructions outside of current loop are out of 5751 // scope. 5752 auto isOutOfScope = [&](Value *V) -> bool { 5753 Instruction *I = dyn_cast<Instruction>(V); 5754 return (!I || !TheLoop->contains(I)); 5755 }; 5756 5757 SetVector<Instruction *> Worklist; 5758 BasicBlock *Latch = TheLoop->getLoopLatch(); 5759 5760 // Start with the conditional branch. If the branch condition is an 5761 // instruction contained in the loop that is only used by the branch, it is 5762 // uniform. 5763 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5764 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5765 Worklist.insert(Cmp); 5766 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5767 } 5768 5769 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5770 // are pointers that are treated like consecutive pointers during 5771 // vectorization. The pointer operands of interleaved accesses are an 5772 // example. 5773 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5774 5775 // Holds pointer operands of instructions that are possibly non-uniform. 5776 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5777 5778 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5779 InstWidening WideningDecision = getWideningDecision(I, VF); 5780 assert(WideningDecision != CM_Unknown && 5781 "Widening decision should be ready at this moment"); 5782 5783 return (WideningDecision == CM_Widen || 5784 WideningDecision == CM_Interleave); 5785 }; 5786 // Iterate over the instructions in the loop, and collect all 5787 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5788 // that a consecutive-like pointer operand will be scalarized, we collect it 5789 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5790 // getelementptr instruction can be used by both vectorized and scalarized 5791 // memory instructions. For example, if a loop loads and stores from the same 5792 // location, but the store is conditional, the store will be scalarized, and 5793 // the getelementptr won't remain uniform. 5794 for (auto *BB : TheLoop->blocks()) 5795 for (auto &I : *BB) { 5796 5797 // If there's no pointer operand, there's nothing to do. 5798 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5799 if (!Ptr) 5800 continue; 5801 5802 // True if all users of Ptr are memory accesses that have Ptr as their 5803 // pointer operand. 5804 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5805 return getPointerOperand(U) == Ptr; 5806 }); 5807 5808 // Ensure the memory instruction will not be scalarized or used by 5809 // gather/scatter, making its pointer operand non-uniform. If the pointer 5810 // operand is used by any instruction other than a memory access, we 5811 // conservatively assume the pointer operand may be non-uniform. 5812 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5813 PossibleNonUniformPtrs.insert(Ptr); 5814 5815 // If the memory instruction will be vectorized and its pointer operand 5816 // is consecutive-like, or interleaving - the pointer operand should 5817 // remain uniform. 5818 else 5819 ConsecutiveLikePtrs.insert(Ptr); 5820 } 5821 5822 // Add to the Worklist all consecutive and consecutive-like pointers that 5823 // aren't also identified as possibly non-uniform. 5824 for (auto *V : ConsecutiveLikePtrs) 5825 if (!PossibleNonUniformPtrs.count(V)) { 5826 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5827 Worklist.insert(V); 5828 } 5829 5830 // Expand Worklist in topological order: whenever a new instruction 5831 // is added , its users should be either already inside Worklist, or 5832 // out of scope. It ensures a uniform instruction will only be used 5833 // by uniform instructions or out of scope instructions. 5834 unsigned idx = 0; 5835 while (idx != Worklist.size()) { 5836 Instruction *I = Worklist[idx++]; 5837 5838 for (auto OV : I->operand_values()) { 5839 if (isOutOfScope(OV)) 5840 continue; 5841 auto *OI = cast<Instruction>(OV); 5842 if (all_of(OI->users(), [&](User *U) -> bool { 5843 auto *J = cast<Instruction>(U); 5844 return !TheLoop->contains(J) || Worklist.count(J) || 5845 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5846 })) { 5847 Worklist.insert(OI); 5848 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5849 } 5850 } 5851 } 5852 5853 // Returns true if Ptr is the pointer operand of a memory access instruction 5854 // I, and I is known to not require scalarization. 5855 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5856 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5857 }; 5858 5859 // For an instruction to be added into Worklist above, all its users inside 5860 // the loop should also be in Worklist. However, this condition cannot be 5861 // true for phi nodes that form a cyclic dependence. We must process phi 5862 // nodes separately. An induction variable will remain uniform if all users 5863 // of the induction variable and induction variable update remain uniform. 5864 // The code below handles both pointer and non-pointer induction variables. 5865 for (auto &Induction : *Legal->getInductionVars()) { 5866 auto *Ind = Induction.first; 5867 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5868 5869 // Determine if all users of the induction variable are uniform after 5870 // vectorization. 5871 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5872 auto *I = cast<Instruction>(U); 5873 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5874 isVectorizedMemAccessUse(I, Ind); 5875 }); 5876 if (!UniformInd) 5877 continue; 5878 5879 // Determine if all users of the induction variable update instruction are 5880 // uniform after vectorization. 5881 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5882 auto *I = cast<Instruction>(U); 5883 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5884 isVectorizedMemAccessUse(I, IndUpdate); 5885 }); 5886 if (!UniformIndUpdate) 5887 continue; 5888 5889 // The induction variable and its update instruction will remain uniform. 5890 Worklist.insert(Ind); 5891 Worklist.insert(IndUpdate); 5892 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5893 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5894 } 5895 5896 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5897 } 5898 5899 bool LoopVectorizationLegality::canVectorizeMemory() { 5900 LAI = &(*GetLAA)(*TheLoop); 5901 InterleaveInfo.setLAI(LAI); 5902 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5903 if (LAR) { 5904 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5905 "loop not vectorized: ", *LAR); 5906 ORE->emit(VR); 5907 } 5908 if (!LAI->canVectorizeMemory()) 5909 return false; 5910 5911 if (LAI->hasStoreToLoopInvariantAddress()) { 5912 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5913 << "write to a loop invariant address could not be vectorized"); 5914 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5915 return false; 5916 } 5917 5918 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5919 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5920 5921 return true; 5922 } 5923 5924 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5925 Value *In0 = const_cast<Value *>(V); 5926 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5927 if (!PN) 5928 return false; 5929 5930 return Inductions.count(PN); 5931 } 5932 5933 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5934 return FirstOrderRecurrences.count(Phi); 5935 } 5936 5937 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5938 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5939 } 5940 5941 bool LoopVectorizationLegality::blockCanBePredicated( 5942 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5943 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5944 5945 for (Instruction &I : *BB) { 5946 // Check that we don't have a constant expression that can trap as operand. 5947 for (Value *Operand : I.operands()) { 5948 if (auto *C = dyn_cast<Constant>(Operand)) 5949 if (C->canTrap()) 5950 return false; 5951 } 5952 // We might be able to hoist the load. 5953 if (I.mayReadFromMemory()) { 5954 auto *LI = dyn_cast<LoadInst>(&I); 5955 if (!LI) 5956 return false; 5957 if (!SafePtrs.count(LI->getPointerOperand())) { 5958 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5959 isLegalMaskedGather(LI->getType())) { 5960 MaskedOp.insert(LI); 5961 continue; 5962 } 5963 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5964 if (IsAnnotatedParallel) 5965 continue; 5966 return false; 5967 } 5968 } 5969 5970 if (I.mayWriteToMemory()) { 5971 auto *SI = dyn_cast<StoreInst>(&I); 5972 // We only support predication of stores in basic blocks with one 5973 // predecessor. 5974 if (!SI) 5975 return false; 5976 5977 // Build a masked store if it is legal for the target. 5978 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5979 SI->getPointerOperand()) || 5980 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5981 MaskedOp.insert(SI); 5982 continue; 5983 } 5984 5985 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5986 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5987 5988 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5989 !isSinglePredecessor) 5990 return false; 5991 } 5992 if (I.mayThrow()) 5993 return false; 5994 } 5995 5996 return true; 5997 } 5998 5999 void InterleavedAccessInfo::collectConstStrideAccesses( 6000 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 6001 const ValueToValueMap &Strides) { 6002 6003 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 6004 6005 // Since it's desired that the load/store instructions be maintained in 6006 // "program order" for the interleaved access analysis, we have to visit the 6007 // blocks in the loop in reverse postorder (i.e., in a topological order). 6008 // Such an ordering will ensure that any load/store that may be executed 6009 // before a second load/store will precede the second load/store in 6010 // AccessStrideInfo. 6011 LoopBlocksDFS DFS(TheLoop); 6012 DFS.perform(LI); 6013 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 6014 for (auto &I : *BB) { 6015 auto *LI = dyn_cast<LoadInst>(&I); 6016 auto *SI = dyn_cast<StoreInst>(&I); 6017 if (!LI && !SI) 6018 continue; 6019 6020 Value *Ptr = getPointerOperand(&I); 6021 // We don't check wrapping here because we don't know yet if Ptr will be 6022 // part of a full group or a group with gaps. Checking wrapping for all 6023 // pointers (even those that end up in groups with no gaps) will be overly 6024 // conservative. For full groups, wrapping should be ok since if we would 6025 // wrap around the address space we would do a memory access at nullptr 6026 // even without the transformation. The wrapping checks are therefore 6027 // deferred until after we've formed the interleaved groups. 6028 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 6029 /*Assume=*/true, /*ShouldCheckWrap=*/false); 6030 6031 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 6032 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6033 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6034 6035 // An alignment of 0 means target ABI alignment. 6036 unsigned Align = getMemInstAlignment(&I); 6037 if (!Align) 6038 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6039 6040 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6041 } 6042 } 6043 6044 // Analyze interleaved accesses and collect them into interleaved load and 6045 // store groups. 6046 // 6047 // When generating code for an interleaved load group, we effectively hoist all 6048 // loads in the group to the location of the first load in program order. When 6049 // generating code for an interleaved store group, we sink all stores to the 6050 // location of the last store. This code motion can change the order of load 6051 // and store instructions and may break dependences. 6052 // 6053 // The code generation strategy mentioned above ensures that we won't violate 6054 // any write-after-read (WAR) dependences. 6055 // 6056 // E.g., for the WAR dependence: a = A[i]; // (1) 6057 // A[i] = b; // (2) 6058 // 6059 // The store group of (2) is always inserted at or below (2), and the load 6060 // group of (1) is always inserted at or above (1). Thus, the instructions will 6061 // never be reordered. All other dependences are checked to ensure the 6062 // correctness of the instruction reordering. 6063 // 6064 // The algorithm visits all memory accesses in the loop in bottom-up program 6065 // order. Program order is established by traversing the blocks in the loop in 6066 // reverse postorder when collecting the accesses. 6067 // 6068 // We visit the memory accesses in bottom-up order because it can simplify the 6069 // construction of store groups in the presence of write-after-write (WAW) 6070 // dependences. 6071 // 6072 // E.g., for the WAW dependence: A[i] = a; // (1) 6073 // A[i] = b; // (2) 6074 // A[i + 1] = c; // (3) 6075 // 6076 // We will first create a store group with (3) and (2). (1) can't be added to 6077 // this group because it and (2) are dependent. However, (1) can be grouped 6078 // with other accesses that may precede it in program order. Note that a 6079 // bottom-up order does not imply that WAW dependences should not be checked. 6080 void InterleavedAccessInfo::analyzeInterleaving( 6081 const ValueToValueMap &Strides) { 6082 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6083 6084 // Holds all accesses with a constant stride. 6085 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6086 collectConstStrideAccesses(AccessStrideInfo, Strides); 6087 6088 if (AccessStrideInfo.empty()) 6089 return; 6090 6091 // Collect the dependences in the loop. 6092 collectDependences(); 6093 6094 // Holds all interleaved store groups temporarily. 6095 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6096 // Holds all interleaved load groups temporarily. 6097 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6098 6099 // Search in bottom-up program order for pairs of accesses (A and B) that can 6100 // form interleaved load or store groups. In the algorithm below, access A 6101 // precedes access B in program order. We initialize a group for B in the 6102 // outer loop of the algorithm, and then in the inner loop, we attempt to 6103 // insert each A into B's group if: 6104 // 6105 // 1. A and B have the same stride, 6106 // 2. A and B have the same memory object size, and 6107 // 3. A belongs in B's group according to its distance from B. 6108 // 6109 // Special care is taken to ensure group formation will not break any 6110 // dependences. 6111 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6112 BI != E; ++BI) { 6113 Instruction *B = BI->first; 6114 StrideDescriptor DesB = BI->second; 6115 6116 // Initialize a group for B if it has an allowable stride. Even if we don't 6117 // create a group for B, we continue with the bottom-up algorithm to ensure 6118 // we don't break any of B's dependences. 6119 InterleaveGroup *Group = nullptr; 6120 if (isStrided(DesB.Stride)) { 6121 Group = getInterleaveGroup(B); 6122 if (!Group) { 6123 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6124 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6125 } 6126 if (B->mayWriteToMemory()) 6127 StoreGroups.insert(Group); 6128 else 6129 LoadGroups.insert(Group); 6130 } 6131 6132 for (auto AI = std::next(BI); AI != E; ++AI) { 6133 Instruction *A = AI->first; 6134 StrideDescriptor DesA = AI->second; 6135 6136 // Our code motion strategy implies that we can't have dependences 6137 // between accesses in an interleaved group and other accesses located 6138 // between the first and last member of the group. Note that this also 6139 // means that a group can't have more than one member at a given offset. 6140 // The accesses in a group can have dependences with other accesses, but 6141 // we must ensure we don't extend the boundaries of the group such that 6142 // we encompass those dependent accesses. 6143 // 6144 // For example, assume we have the sequence of accesses shown below in a 6145 // stride-2 loop: 6146 // 6147 // (1, 2) is a group | A[i] = a; // (1) 6148 // | A[i-1] = b; // (2) | 6149 // A[i-3] = c; // (3) 6150 // A[i] = d; // (4) | (2, 4) is not a group 6151 // 6152 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6153 // but not with (4). If we did, the dependent access (3) would be within 6154 // the boundaries of the (2, 4) group. 6155 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6156 6157 // If a dependence exists and A is already in a group, we know that A 6158 // must be a store since A precedes B and WAR dependences are allowed. 6159 // Thus, A would be sunk below B. We release A's group to prevent this 6160 // illegal code motion. A will then be free to form another group with 6161 // instructions that precede it. 6162 if (isInterleaved(A)) { 6163 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6164 StoreGroups.remove(StoreGroup); 6165 releaseGroup(StoreGroup); 6166 } 6167 6168 // If a dependence exists and A is not already in a group (or it was 6169 // and we just released it), B might be hoisted above A (if B is a 6170 // load) or another store might be sunk below A (if B is a store). In 6171 // either case, we can't add additional instructions to B's group. B 6172 // will only form a group with instructions that it precedes. 6173 break; 6174 } 6175 6176 // At this point, we've checked for illegal code motion. If either A or B 6177 // isn't strided, there's nothing left to do. 6178 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6179 continue; 6180 6181 // Ignore A if it's already in a group or isn't the same kind of memory 6182 // operation as B. 6183 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6184 continue; 6185 6186 // Check rules 1 and 2. Ignore A if its stride or size is different from 6187 // that of B. 6188 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6189 continue; 6190 6191 // Ignore A if the memory object of A and B don't belong to the same 6192 // address space 6193 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6194 continue; 6195 6196 // Calculate the distance from A to B. 6197 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6198 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6199 if (!DistToB) 6200 continue; 6201 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6202 6203 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6204 // size. 6205 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6206 continue; 6207 6208 // Ignore A if either A or B is in a predicated block. Although we 6209 // currently prevent group formation for predicated accesses, we may be 6210 // able to relax this limitation in the future once we handle more 6211 // complicated blocks. 6212 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6213 continue; 6214 6215 // The index of A is the index of B plus A's distance to B in multiples 6216 // of the size. 6217 int IndexA = 6218 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6219 6220 // Try to insert A into B's group. 6221 if (Group->insertMember(A, IndexA, DesA.Align)) { 6222 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6223 << " into the interleave group with" << *B << '\n'); 6224 InterleaveGroupMap[A] = Group; 6225 6226 // Set the first load in program order as the insert position. 6227 if (A->mayReadFromMemory()) 6228 Group->setInsertPos(A); 6229 } 6230 } // Iteration over A accesses. 6231 } // Iteration over B accesses. 6232 6233 // Remove interleaved store groups with gaps. 6234 for (InterleaveGroup *Group : StoreGroups) 6235 if (Group->getNumMembers() != Group->getFactor()) 6236 releaseGroup(Group); 6237 6238 // Remove interleaved groups with gaps (currently only loads) whose memory 6239 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6240 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6241 // not check wrapping (see documentation there). 6242 // FORNOW we use Assume=false; 6243 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6244 // of runtime SCEV assumptions checks (thereby potentially failing to 6245 // vectorize altogether). 6246 // Additional optional optimizations: 6247 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6248 // wrap then we can deduce that all pointers in the group don't wrap. 6249 // This means that we can forcefully peel the loop in order to only have to 6250 // check the first pointer for no-wrap. When we'll change to use Assume=true 6251 // we'll only need at most one runtime check per interleaved group. 6252 // 6253 for (InterleaveGroup *Group : LoadGroups) { 6254 6255 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6256 // load would wrap around the address space we would do a memory access at 6257 // nullptr even without the transformation. 6258 if (Group->getNumMembers() == Group->getFactor()) 6259 continue; 6260 6261 // Case 2: If first and last members of the group don't wrap this implies 6262 // that all the pointers in the group don't wrap. 6263 // So we check only group member 0 (which is always guaranteed to exist), 6264 // and group member Factor - 1; If the latter doesn't exist we rely on 6265 // peeling (if it is a non-reveresed accsess -- see Case 3). 6266 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6267 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6268 /*ShouldCheckWrap=*/true)) { 6269 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6270 "first group member potentially pointer-wrapping.\n"); 6271 releaseGroup(Group); 6272 continue; 6273 } 6274 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6275 if (LastMember) { 6276 Value *LastMemberPtr = getPointerOperand(LastMember); 6277 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6278 /*ShouldCheckWrap=*/true)) { 6279 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6280 "last group member potentially pointer-wrapping.\n"); 6281 releaseGroup(Group); 6282 } 6283 } else { 6284 // Case 3: A non-reversed interleaved load group with gaps: We need 6285 // to execute at least one scalar epilogue iteration. This will ensure 6286 // we don't speculatively access memory out-of-bounds. We only need 6287 // to look for a member at index factor - 1, since every group must have 6288 // a member at index zero. 6289 if (Group->isReverse()) { 6290 releaseGroup(Group); 6291 continue; 6292 } 6293 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6294 RequiresScalarEpilogue = true; 6295 } 6296 } 6297 } 6298 6299 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6300 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6301 ORE->emit(createMissedAnalysis("ConditionalStore") 6302 << "store that is conditionally executed prevents vectorization"); 6303 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6304 return None; 6305 } 6306 6307 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6308 return computeFeasibleMaxVF(OptForSize); 6309 6310 if (Legal->getRuntimePointerChecking()->Need) { 6311 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6312 << "runtime pointer checks needed. Enable vectorization of this " 6313 "loop with '#pragma clang loop vectorize(enable)' when " 6314 "compiling with -Os/-Oz"); 6315 DEBUG(dbgs() 6316 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6317 return None; 6318 } 6319 6320 // If we optimize the program for size, avoid creating the tail loop. 6321 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6322 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6323 6324 // If we don't know the precise trip count, don't try to vectorize. 6325 if (TC < 2) { 6326 ORE->emit( 6327 createMissedAnalysis("UnknownLoopCountComplexCFG") 6328 << "unable to calculate the loop count due to complex control flow"); 6329 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6330 return None; 6331 } 6332 6333 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6334 6335 if (TC % MaxVF != 0) { 6336 // If the trip count that we found modulo the vectorization factor is not 6337 // zero then we require a tail. 6338 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6339 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6340 // smaller MaxVF that does not require a scalar epilog. 6341 6342 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6343 << "cannot optimize for size and vectorize at the " 6344 "same time. Enable vectorization of this loop " 6345 "with '#pragma clang loop vectorize(enable)' " 6346 "when compiling with -Os/-Oz"); 6347 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6348 return None; 6349 } 6350 6351 return MaxVF; 6352 } 6353 6354 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6355 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6356 unsigned SmallestType, WidestType; 6357 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6358 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6359 unsigned MaxSafeDepDist = -1U; 6360 6361 // Get the maximum safe dependence distance in bits computed by LAA. If the 6362 // loop contains any interleaved accesses, we divide the dependence distance 6363 // by the maximum interleave factor of all interleaved groups. Note that 6364 // although the division ensures correctness, this is a fairly conservative 6365 // computation because the maximum distance computed by LAA may not involve 6366 // any of the interleaved accesses. 6367 if (Legal->getMaxSafeDepDistBytes() != -1U) 6368 MaxSafeDepDist = 6369 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6370 6371 WidestRegister = 6372 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6373 unsigned MaxVectorSize = WidestRegister / WidestType; 6374 6375 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6376 << WidestType << " bits.\n"); 6377 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6378 << " bits.\n"); 6379 6380 if (MaxVectorSize == 0) { 6381 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6382 MaxVectorSize = 1; 6383 } 6384 6385 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6386 " into one vector!"); 6387 6388 unsigned MaxVF = MaxVectorSize; 6389 if (MaximizeBandwidth && !OptForSize) { 6390 // Collect all viable vectorization factors. 6391 SmallVector<unsigned, 8> VFs; 6392 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6393 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6394 VFs.push_back(VS); 6395 6396 // For each VF calculate its register usage. 6397 auto RUs = calculateRegisterUsage(VFs); 6398 6399 // Select the largest VF which doesn't require more registers than existing 6400 // ones. 6401 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6402 for (int i = RUs.size() - 1; i >= 0; --i) { 6403 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6404 MaxVF = VFs[i]; 6405 break; 6406 } 6407 } 6408 } 6409 return MaxVF; 6410 } 6411 6412 LoopVectorizationCostModel::VectorizationFactor 6413 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6414 float Cost = expectedCost(1).first; 6415 #ifndef NDEBUG 6416 const float ScalarCost = Cost; 6417 #endif /* NDEBUG */ 6418 unsigned Width = 1; 6419 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6420 6421 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6422 // Ignore scalar width, because the user explicitly wants vectorization. 6423 if (ForceVectorization && MaxVF > 1) { 6424 Width = 2; 6425 Cost = expectedCost(Width).first / (float)Width; 6426 } 6427 6428 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6429 // Notice that the vector loop needs to be executed less times, so 6430 // we need to divide the cost of the vector loops by the width of 6431 // the vector elements. 6432 VectorizationCostTy C = expectedCost(i); 6433 float VectorCost = C.first / (float)i; 6434 DEBUG(dbgs() << "LV: Vector loop of width " << i 6435 << " costs: " << (int)VectorCost << ".\n"); 6436 if (!C.second && !ForceVectorization) { 6437 DEBUG( 6438 dbgs() << "LV: Not considering vector loop of width " << i 6439 << " because it will not generate any vector instructions.\n"); 6440 continue; 6441 } 6442 if (VectorCost < Cost) { 6443 Cost = VectorCost; 6444 Width = i; 6445 } 6446 } 6447 6448 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6449 << "LV: Vectorization seems to be not beneficial, " 6450 << "but was forced by a user.\n"); 6451 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6452 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6453 return Factor; 6454 } 6455 6456 std::pair<unsigned, unsigned> 6457 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6458 unsigned MinWidth = -1U; 6459 unsigned MaxWidth = 8; 6460 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6461 6462 // For each block. 6463 for (BasicBlock *BB : TheLoop->blocks()) { 6464 // For each instruction in the loop. 6465 for (Instruction &I : *BB) { 6466 Type *T = I.getType(); 6467 6468 // Skip ignored values. 6469 if (ValuesToIgnore.count(&I)) 6470 continue; 6471 6472 // Only examine Loads, Stores and PHINodes. 6473 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6474 continue; 6475 6476 // Examine PHI nodes that are reduction variables. Update the type to 6477 // account for the recurrence type. 6478 if (auto *PN = dyn_cast<PHINode>(&I)) { 6479 if (!Legal->isReductionVariable(PN)) 6480 continue; 6481 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6482 T = RdxDesc.getRecurrenceType(); 6483 } 6484 6485 // Examine the stored values. 6486 if (auto *ST = dyn_cast<StoreInst>(&I)) 6487 T = ST->getValueOperand()->getType(); 6488 6489 // Ignore loaded pointer types and stored pointer types that are not 6490 // vectorizable. 6491 // 6492 // FIXME: The check here attempts to predict whether a load or store will 6493 // be vectorized. We only know this for certain after a VF has 6494 // been selected. Here, we assume that if an access can be 6495 // vectorized, it will be. We should also look at extending this 6496 // optimization to non-pointer types. 6497 // 6498 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6499 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6500 continue; 6501 6502 MinWidth = std::min(MinWidth, 6503 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6504 MaxWidth = std::max(MaxWidth, 6505 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6506 } 6507 } 6508 6509 return {MinWidth, MaxWidth}; 6510 } 6511 6512 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6513 unsigned VF, 6514 unsigned LoopCost) { 6515 6516 // -- The interleave heuristics -- 6517 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6518 // There are many micro-architectural considerations that we can't predict 6519 // at this level. For example, frontend pressure (on decode or fetch) due to 6520 // code size, or the number and capabilities of the execution ports. 6521 // 6522 // We use the following heuristics to select the interleave count: 6523 // 1. If the code has reductions, then we interleave to break the cross 6524 // iteration dependency. 6525 // 2. If the loop is really small, then we interleave to reduce the loop 6526 // overhead. 6527 // 3. We don't interleave if we think that we will spill registers to memory 6528 // due to the increased register pressure. 6529 6530 // When we optimize for size, we don't interleave. 6531 if (OptForSize) 6532 return 1; 6533 6534 // We used the distance for the interleave count. 6535 if (Legal->getMaxSafeDepDistBytes() != -1U) 6536 return 1; 6537 6538 // Do not interleave loops with a relatively small trip count. 6539 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6540 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6541 return 1; 6542 6543 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6544 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6545 << " registers\n"); 6546 6547 if (VF == 1) { 6548 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6549 TargetNumRegisters = ForceTargetNumScalarRegs; 6550 } else { 6551 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6552 TargetNumRegisters = ForceTargetNumVectorRegs; 6553 } 6554 6555 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6556 // We divide by these constants so assume that we have at least one 6557 // instruction that uses at least one register. 6558 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6559 R.NumInstructions = std::max(R.NumInstructions, 1U); 6560 6561 // We calculate the interleave count using the following formula. 6562 // Subtract the number of loop invariants from the number of available 6563 // registers. These registers are used by all of the interleaved instances. 6564 // Next, divide the remaining registers by the number of registers that is 6565 // required by the loop, in order to estimate how many parallel instances 6566 // fit without causing spills. All of this is rounded down if necessary to be 6567 // a power of two. We want power of two interleave count to simplify any 6568 // addressing operations or alignment considerations. 6569 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6570 R.MaxLocalUsers); 6571 6572 // Don't count the induction variable as interleaved. 6573 if (EnableIndVarRegisterHeur) 6574 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6575 std::max(1U, (R.MaxLocalUsers - 1))); 6576 6577 // Clamp the interleave ranges to reasonable counts. 6578 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6579 6580 // Check if the user has overridden the max. 6581 if (VF == 1) { 6582 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6583 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6584 } else { 6585 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6586 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6587 } 6588 6589 // If we did not calculate the cost for VF (because the user selected the VF) 6590 // then we calculate the cost of VF here. 6591 if (LoopCost == 0) 6592 LoopCost = expectedCost(VF).first; 6593 6594 // Clamp the calculated IC to be between the 1 and the max interleave count 6595 // that the target allows. 6596 if (IC > MaxInterleaveCount) 6597 IC = MaxInterleaveCount; 6598 else if (IC < 1) 6599 IC = 1; 6600 6601 // Interleave if we vectorized this loop and there is a reduction that could 6602 // benefit from interleaving. 6603 if (VF > 1 && Legal->getReductionVars()->size()) { 6604 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6605 return IC; 6606 } 6607 6608 // Note that if we've already vectorized the loop we will have done the 6609 // runtime check and so interleaving won't require further checks. 6610 bool InterleavingRequiresRuntimePointerCheck = 6611 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6612 6613 // We want to interleave small loops in order to reduce the loop overhead and 6614 // potentially expose ILP opportunities. 6615 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6616 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6617 // We assume that the cost overhead is 1 and we use the cost model 6618 // to estimate the cost of the loop and interleave until the cost of the 6619 // loop overhead is about 5% of the cost of the loop. 6620 unsigned SmallIC = 6621 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6622 6623 // Interleave until store/load ports (estimated by max interleave count) are 6624 // saturated. 6625 unsigned NumStores = Legal->getNumStores(); 6626 unsigned NumLoads = Legal->getNumLoads(); 6627 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6628 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6629 6630 // If we have a scalar reduction (vector reductions are already dealt with 6631 // by this point), we can increase the critical path length if the loop 6632 // we're interleaving is inside another loop. Limit, by default to 2, so the 6633 // critical path only gets increased by one reduction operation. 6634 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6635 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6636 SmallIC = std::min(SmallIC, F); 6637 StoresIC = std::min(StoresIC, F); 6638 LoadsIC = std::min(LoadsIC, F); 6639 } 6640 6641 if (EnableLoadStoreRuntimeInterleave && 6642 std::max(StoresIC, LoadsIC) > SmallIC) { 6643 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6644 return std::max(StoresIC, LoadsIC); 6645 } 6646 6647 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6648 return SmallIC; 6649 } 6650 6651 // Interleave if this is a large loop (small loops are already dealt with by 6652 // this point) that could benefit from interleaving. 6653 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6654 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6655 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6656 return IC; 6657 } 6658 6659 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6660 return 1; 6661 } 6662 6663 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6664 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6665 // This function calculates the register usage by measuring the highest number 6666 // of values that are alive at a single location. Obviously, this is a very 6667 // rough estimation. We scan the loop in a topological order in order and 6668 // assign a number to each instruction. We use RPO to ensure that defs are 6669 // met before their users. We assume that each instruction that has in-loop 6670 // users starts an interval. We record every time that an in-loop value is 6671 // used, so we have a list of the first and last occurrences of each 6672 // instruction. Next, we transpose this data structure into a multi map that 6673 // holds the list of intervals that *end* at a specific location. This multi 6674 // map allows us to perform a linear search. We scan the instructions linearly 6675 // and record each time that a new interval starts, by placing it in a set. 6676 // If we find this value in the multi-map then we remove it from the set. 6677 // The max register usage is the maximum size of the set. 6678 // We also search for instructions that are defined outside the loop, but are 6679 // used inside the loop. We need this number separately from the max-interval 6680 // usage number because when we unroll, loop-invariant values do not take 6681 // more register. 6682 LoopBlocksDFS DFS(TheLoop); 6683 DFS.perform(LI); 6684 6685 RegisterUsage RU; 6686 RU.NumInstructions = 0; 6687 6688 // Each 'key' in the map opens a new interval. The values 6689 // of the map are the index of the 'last seen' usage of the 6690 // instruction that is the key. 6691 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6692 // Maps instruction to its index. 6693 DenseMap<unsigned, Instruction *> IdxToInstr; 6694 // Marks the end of each interval. 6695 IntervalMap EndPoint; 6696 // Saves the list of instruction indices that are used in the loop. 6697 SmallSet<Instruction *, 8> Ends; 6698 // Saves the list of values that are used in the loop but are 6699 // defined outside the loop, such as arguments and constants. 6700 SmallPtrSet<Value *, 8> LoopInvariants; 6701 6702 unsigned Index = 0; 6703 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6704 RU.NumInstructions += BB->size(); 6705 for (Instruction &I : *BB) { 6706 IdxToInstr[Index++] = &I; 6707 6708 // Save the end location of each USE. 6709 for (Value *U : I.operands()) { 6710 auto *Instr = dyn_cast<Instruction>(U); 6711 6712 // Ignore non-instruction values such as arguments, constants, etc. 6713 if (!Instr) 6714 continue; 6715 6716 // If this instruction is outside the loop then record it and continue. 6717 if (!TheLoop->contains(Instr)) { 6718 LoopInvariants.insert(Instr); 6719 continue; 6720 } 6721 6722 // Overwrite previous end points. 6723 EndPoint[Instr] = Index; 6724 Ends.insert(Instr); 6725 } 6726 } 6727 } 6728 6729 // Saves the list of intervals that end with the index in 'key'. 6730 typedef SmallVector<Instruction *, 2> InstrList; 6731 DenseMap<unsigned, InstrList> TransposeEnds; 6732 6733 // Transpose the EndPoints to a list of values that end at each index. 6734 for (auto &Interval : EndPoint) 6735 TransposeEnds[Interval.second].push_back(Interval.first); 6736 6737 SmallSet<Instruction *, 8> OpenIntervals; 6738 6739 // Get the size of the widest register. 6740 unsigned MaxSafeDepDist = -1U; 6741 if (Legal->getMaxSafeDepDistBytes() != -1U) 6742 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6743 unsigned WidestRegister = 6744 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6745 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6746 6747 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6748 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6749 6750 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6751 6752 // A lambda that gets the register usage for the given type and VF. 6753 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6754 if (Ty->isTokenTy()) 6755 return 0U; 6756 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6757 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6758 }; 6759 6760 for (unsigned int i = 0; i < Index; ++i) { 6761 Instruction *I = IdxToInstr[i]; 6762 6763 // Remove all of the instructions that end at this location. 6764 InstrList &List = TransposeEnds[i]; 6765 for (Instruction *ToRemove : List) 6766 OpenIntervals.erase(ToRemove); 6767 6768 // Ignore instructions that are never used within the loop. 6769 if (!Ends.count(I)) 6770 continue; 6771 6772 // Skip ignored values. 6773 if (ValuesToIgnore.count(I)) 6774 continue; 6775 6776 // For each VF find the maximum usage of registers. 6777 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6778 if (VFs[j] == 1) { 6779 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6780 continue; 6781 } 6782 collectUniformsAndScalars(VFs[j]); 6783 // Count the number of live intervals. 6784 unsigned RegUsage = 0; 6785 for (auto Inst : OpenIntervals) { 6786 // Skip ignored values for VF > 1. 6787 if (VecValuesToIgnore.count(Inst) || 6788 isScalarAfterVectorization(Inst, VFs[j])) 6789 continue; 6790 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6791 } 6792 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6793 } 6794 6795 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6796 << OpenIntervals.size() << '\n'); 6797 6798 // Add the current instruction to the list of open intervals. 6799 OpenIntervals.insert(I); 6800 } 6801 6802 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6803 unsigned Invariant = 0; 6804 if (VFs[i] == 1) 6805 Invariant = LoopInvariants.size(); 6806 else { 6807 for (auto Inst : LoopInvariants) 6808 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6809 } 6810 6811 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6812 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6813 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6814 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6815 6816 RU.LoopInvariantRegs = Invariant; 6817 RU.MaxLocalUsers = MaxUsages[i]; 6818 RUs[i] = RU; 6819 } 6820 6821 return RUs; 6822 } 6823 6824 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6825 6826 // If we aren't vectorizing the loop, or if we've already collected the 6827 // instructions to scalarize, there's nothing to do. Collection may already 6828 // have occurred if we have a user-selected VF and are now computing the 6829 // expected cost for interleaving. 6830 if (VF < 2 || InstsToScalarize.count(VF)) 6831 return; 6832 6833 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6834 // not profitable to scalarize any instructions, the presence of VF in the 6835 // map will indicate that we've analyzed it already. 6836 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6837 6838 // Find all the instructions that are scalar with predication in the loop and 6839 // determine if it would be better to not if-convert the blocks they are in. 6840 // If so, we also record the instructions to scalarize. 6841 for (BasicBlock *BB : TheLoop->blocks()) { 6842 if (!Legal->blockNeedsPredication(BB)) 6843 continue; 6844 for (Instruction &I : *BB) 6845 if (Legal->isScalarWithPredication(&I)) { 6846 ScalarCostsTy ScalarCosts; 6847 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6848 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6849 6850 // Remember that BB will remain after vectorization. 6851 PredicatedBBsAfterVectorization.insert(BB); 6852 } 6853 } 6854 } 6855 6856 int LoopVectorizationCostModel::computePredInstDiscount( 6857 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6858 unsigned VF) { 6859 6860 assert(!isUniformAfterVectorization(PredInst, VF) && 6861 "Instruction marked uniform-after-vectorization will be predicated"); 6862 6863 // Initialize the discount to zero, meaning that the scalar version and the 6864 // vector version cost the same. 6865 int Discount = 0; 6866 6867 // Holds instructions to analyze. The instructions we visit are mapped in 6868 // ScalarCosts. Those instructions are the ones that would be scalarized if 6869 // we find that the scalar version costs less. 6870 SmallVector<Instruction *, 8> Worklist; 6871 6872 // Returns true if the given instruction can be scalarized. 6873 auto canBeScalarized = [&](Instruction *I) -> bool { 6874 6875 // We only attempt to scalarize instructions forming a single-use chain 6876 // from the original predicated block that would otherwise be vectorized. 6877 // Although not strictly necessary, we give up on instructions we know will 6878 // already be scalar to avoid traversing chains that are unlikely to be 6879 // beneficial. 6880 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6881 isScalarAfterVectorization(I, VF)) 6882 return false; 6883 6884 // If the instruction is scalar with predication, it will be analyzed 6885 // separately. We ignore it within the context of PredInst. 6886 if (Legal->isScalarWithPredication(I)) 6887 return false; 6888 6889 // If any of the instruction's operands are uniform after vectorization, 6890 // the instruction cannot be scalarized. This prevents, for example, a 6891 // masked load from being scalarized. 6892 // 6893 // We assume we will only emit a value for lane zero of an instruction 6894 // marked uniform after vectorization, rather than VF identical values. 6895 // Thus, if we scalarize an instruction that uses a uniform, we would 6896 // create uses of values corresponding to the lanes we aren't emitting code 6897 // for. This behavior can be changed by allowing getScalarValue to clone 6898 // the lane zero values for uniforms rather than asserting. 6899 for (Use &U : I->operands()) 6900 if (auto *J = dyn_cast<Instruction>(U.get())) 6901 if (isUniformAfterVectorization(J, VF)) 6902 return false; 6903 6904 // Otherwise, we can scalarize the instruction. 6905 return true; 6906 }; 6907 6908 // Returns true if an operand that cannot be scalarized must be extracted 6909 // from a vector. We will account for this scalarization overhead below. Note 6910 // that the non-void predicated instructions are placed in their own blocks, 6911 // and their return values are inserted into vectors. Thus, an extract would 6912 // still be required. 6913 auto needsExtract = [&](Instruction *I) -> bool { 6914 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6915 }; 6916 6917 // Compute the expected cost discount from scalarizing the entire expression 6918 // feeding the predicated instruction. We currently only consider expressions 6919 // that are single-use instruction chains. 6920 Worklist.push_back(PredInst); 6921 while (!Worklist.empty()) { 6922 Instruction *I = Worklist.pop_back_val(); 6923 6924 // If we've already analyzed the instruction, there's nothing to do. 6925 if (ScalarCosts.count(I)) 6926 continue; 6927 6928 // Compute the cost of the vector instruction. Note that this cost already 6929 // includes the scalarization overhead of the predicated instruction. 6930 unsigned VectorCost = getInstructionCost(I, VF).first; 6931 6932 // Compute the cost of the scalarized instruction. This cost is the cost of 6933 // the instruction as if it wasn't if-converted and instead remained in the 6934 // predicated block. We will scale this cost by block probability after 6935 // computing the scalarization overhead. 6936 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6937 6938 // Compute the scalarization overhead of needed insertelement instructions 6939 // and phi nodes. 6940 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6941 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6942 true, false); 6943 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6944 } 6945 6946 // Compute the scalarization overhead of needed extractelement 6947 // instructions. For each of the instruction's operands, if the operand can 6948 // be scalarized, add it to the worklist; otherwise, account for the 6949 // overhead. 6950 for (Use &U : I->operands()) 6951 if (auto *J = dyn_cast<Instruction>(U.get())) { 6952 assert(VectorType::isValidElementType(J->getType()) && 6953 "Instruction has non-scalar type"); 6954 if (canBeScalarized(J)) 6955 Worklist.push_back(J); 6956 else if (needsExtract(J)) 6957 ScalarCost += TTI.getScalarizationOverhead( 6958 ToVectorTy(J->getType(),VF), false, true); 6959 } 6960 6961 // Scale the total scalar cost by block probability. 6962 ScalarCost /= getReciprocalPredBlockProb(); 6963 6964 // Compute the discount. A non-negative discount means the vector version 6965 // of the instruction costs more, and scalarizing would be beneficial. 6966 Discount += VectorCost - ScalarCost; 6967 ScalarCosts[I] = ScalarCost; 6968 } 6969 6970 return Discount; 6971 } 6972 6973 LoopVectorizationCostModel::VectorizationCostTy 6974 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6975 VectorizationCostTy Cost; 6976 6977 // Collect Uniform and Scalar instructions after vectorization with VF. 6978 collectUniformsAndScalars(VF); 6979 6980 // Collect the instructions (and their associated costs) that will be more 6981 // profitable to scalarize. 6982 collectInstsToScalarize(VF); 6983 6984 // For each block. 6985 for (BasicBlock *BB : TheLoop->blocks()) { 6986 VectorizationCostTy BlockCost; 6987 6988 // For each instruction in the old loop. 6989 for (Instruction &I : *BB) { 6990 // Skip dbg intrinsics. 6991 if (isa<DbgInfoIntrinsic>(I)) 6992 continue; 6993 6994 // Skip ignored values. 6995 if (ValuesToIgnore.count(&I)) 6996 continue; 6997 6998 VectorizationCostTy C = getInstructionCost(&I, VF); 6999 7000 // Check if we should override the cost. 7001 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 7002 C.first = ForceTargetInstructionCost; 7003 7004 BlockCost.first += C.first; 7005 BlockCost.second |= C.second; 7006 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 7007 << VF << " For instruction: " << I << '\n'); 7008 } 7009 7010 // If we are vectorizing a predicated block, it will have been 7011 // if-converted. This means that the block's instructions (aside from 7012 // stores and instructions that may divide by zero) will now be 7013 // unconditionally executed. For the scalar case, we may not always execute 7014 // the predicated block. Thus, scale the block's cost by the probability of 7015 // executing it. 7016 if (VF == 1 && Legal->blockNeedsPredication(BB)) 7017 BlockCost.first /= getReciprocalPredBlockProb(); 7018 7019 Cost.first += BlockCost.first; 7020 Cost.second |= BlockCost.second; 7021 } 7022 7023 return Cost; 7024 } 7025 7026 /// \brief Gets Address Access SCEV after verifying that the access pattern 7027 /// is loop invariant except the induction variable dependence. 7028 /// 7029 /// This SCEV can be sent to the Target in order to estimate the address 7030 /// calculation cost. 7031 static const SCEV *getAddressAccessSCEV( 7032 Value *Ptr, 7033 LoopVectorizationLegality *Legal, 7034 ScalarEvolution *SE, 7035 const Loop *TheLoop) { 7036 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7037 if (!Gep) 7038 return nullptr; 7039 7040 // We are looking for a gep with all loop invariant indices except for one 7041 // which should be an induction variable. 7042 unsigned NumOperands = Gep->getNumOperands(); 7043 for (unsigned i = 1; i < NumOperands; ++i) { 7044 Value *Opd = Gep->getOperand(i); 7045 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7046 !Legal->isInductionVariable(Opd)) 7047 return nullptr; 7048 } 7049 7050 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7051 return SE->getSCEV(Ptr); 7052 } 7053 7054 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7055 return Legal->hasStride(I->getOperand(0)) || 7056 Legal->hasStride(I->getOperand(1)); 7057 } 7058 7059 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7060 unsigned VF) { 7061 Type *ValTy = getMemInstValueType(I); 7062 auto SE = PSE.getSE(); 7063 7064 unsigned Alignment = getMemInstAlignment(I); 7065 unsigned AS = getMemInstAddressSpace(I); 7066 Value *Ptr = getPointerOperand(I); 7067 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7068 7069 // Figure out whether the access is strided and get the stride value 7070 // if it's known in compile time 7071 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7072 7073 // Get the cost of the scalar memory instruction and address computation. 7074 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7075 7076 Cost += VF * 7077 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7078 AS, I); 7079 7080 // Get the overhead of the extractelement and insertelement instructions 7081 // we might create due to scalarization. 7082 Cost += getScalarizationOverhead(I, VF, TTI); 7083 7084 // If we have a predicated store, it may not be executed for each vector 7085 // lane. Scale the cost by the probability of executing the predicated 7086 // block. 7087 if (Legal->isScalarWithPredication(I)) 7088 Cost /= getReciprocalPredBlockProb(); 7089 7090 return Cost; 7091 } 7092 7093 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7094 unsigned VF) { 7095 Type *ValTy = getMemInstValueType(I); 7096 Type *VectorTy = ToVectorTy(ValTy, VF); 7097 unsigned Alignment = getMemInstAlignment(I); 7098 Value *Ptr = getPointerOperand(I); 7099 unsigned AS = getMemInstAddressSpace(I); 7100 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7101 7102 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7103 "Stride should be 1 or -1 for consecutive memory access"); 7104 unsigned Cost = 0; 7105 if (Legal->isMaskRequired(I)) 7106 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7107 else 7108 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7109 7110 bool Reverse = ConsecutiveStride < 0; 7111 if (Reverse) 7112 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7113 return Cost; 7114 } 7115 7116 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7117 unsigned VF) { 7118 LoadInst *LI = cast<LoadInst>(I); 7119 Type *ValTy = LI->getType(); 7120 Type *VectorTy = ToVectorTy(ValTy, VF); 7121 unsigned Alignment = LI->getAlignment(); 7122 unsigned AS = LI->getPointerAddressSpace(); 7123 7124 return TTI.getAddressComputationCost(ValTy) + 7125 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7126 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7127 } 7128 7129 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7130 unsigned VF) { 7131 Type *ValTy = getMemInstValueType(I); 7132 Type *VectorTy = ToVectorTy(ValTy, VF); 7133 unsigned Alignment = getMemInstAlignment(I); 7134 Value *Ptr = getPointerOperand(I); 7135 7136 return TTI.getAddressComputationCost(VectorTy) + 7137 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7138 Legal->isMaskRequired(I), Alignment); 7139 } 7140 7141 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7142 unsigned VF) { 7143 Type *ValTy = getMemInstValueType(I); 7144 Type *VectorTy = ToVectorTy(ValTy, VF); 7145 unsigned AS = getMemInstAddressSpace(I); 7146 7147 auto Group = Legal->getInterleavedAccessGroup(I); 7148 assert(Group && "Fail to get an interleaved access group."); 7149 7150 unsigned InterleaveFactor = Group->getFactor(); 7151 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7152 7153 // Holds the indices of existing members in an interleaved load group. 7154 // An interleaved store group doesn't need this as it doesn't allow gaps. 7155 SmallVector<unsigned, 4> Indices; 7156 if (isa<LoadInst>(I)) { 7157 for (unsigned i = 0; i < InterleaveFactor; i++) 7158 if (Group->getMember(i)) 7159 Indices.push_back(i); 7160 } 7161 7162 // Calculate the cost of the whole interleaved group. 7163 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7164 Group->getFactor(), Indices, 7165 Group->getAlignment(), AS); 7166 7167 if (Group->isReverse()) 7168 Cost += Group->getNumMembers() * 7169 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7170 return Cost; 7171 } 7172 7173 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7174 unsigned VF) { 7175 7176 // Calculate scalar cost only. Vectorization cost should be ready at this 7177 // moment. 7178 if (VF == 1) { 7179 Type *ValTy = getMemInstValueType(I); 7180 unsigned Alignment = getMemInstAlignment(I); 7181 unsigned AS = getMemInstAddressSpace(I); 7182 7183 return TTI.getAddressComputationCost(ValTy) + 7184 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7185 } 7186 return getWideningCost(I, VF); 7187 } 7188 7189 LoopVectorizationCostModel::VectorizationCostTy 7190 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7191 // If we know that this instruction will remain uniform, check the cost of 7192 // the scalar version. 7193 if (isUniformAfterVectorization(I, VF)) 7194 VF = 1; 7195 7196 if (VF > 1 && isProfitableToScalarize(I, VF)) 7197 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7198 7199 Type *VectorTy; 7200 unsigned C = getInstructionCost(I, VF, VectorTy); 7201 7202 bool TypeNotScalarized = 7203 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 7204 return VectorizationCostTy(C, TypeNotScalarized); 7205 } 7206 7207 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7208 if (VF == 1) 7209 return; 7210 for (BasicBlock *BB : TheLoop->blocks()) { 7211 // For each instruction in the old loop. 7212 for (Instruction &I : *BB) { 7213 Value *Ptr = getPointerOperand(&I); 7214 if (!Ptr) 7215 continue; 7216 7217 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7218 // Scalar load + broadcast 7219 unsigned Cost = getUniformMemOpCost(&I, VF); 7220 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7221 continue; 7222 } 7223 7224 // We assume that widening is the best solution when possible. 7225 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7226 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7227 setWideningDecision(&I, VF, CM_Widen, Cost); 7228 continue; 7229 } 7230 7231 // Choose between Interleaving, Gather/Scatter or Scalarization. 7232 unsigned InterleaveCost = UINT_MAX; 7233 unsigned NumAccesses = 1; 7234 if (Legal->isAccessInterleaved(&I)) { 7235 auto Group = Legal->getInterleavedAccessGroup(&I); 7236 assert(Group && "Fail to get an interleaved access group."); 7237 7238 // Make one decision for the whole group. 7239 if (getWideningDecision(&I, VF) != CM_Unknown) 7240 continue; 7241 7242 NumAccesses = Group->getNumMembers(); 7243 InterleaveCost = getInterleaveGroupCost(&I, VF); 7244 } 7245 7246 unsigned GatherScatterCost = 7247 Legal->isLegalGatherOrScatter(&I) 7248 ? getGatherScatterCost(&I, VF) * NumAccesses 7249 : UINT_MAX; 7250 7251 unsigned ScalarizationCost = 7252 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7253 7254 // Choose better solution for the current VF, 7255 // write down this decision and use it during vectorization. 7256 unsigned Cost; 7257 InstWidening Decision; 7258 if (InterleaveCost <= GatherScatterCost && 7259 InterleaveCost < ScalarizationCost) { 7260 Decision = CM_Interleave; 7261 Cost = InterleaveCost; 7262 } else if (GatherScatterCost < ScalarizationCost) { 7263 Decision = CM_GatherScatter; 7264 Cost = GatherScatterCost; 7265 } else { 7266 Decision = CM_Scalarize; 7267 Cost = ScalarizationCost; 7268 } 7269 // If the instructions belongs to an interleave group, the whole group 7270 // receives the same decision. The whole group receives the cost, but 7271 // the cost will actually be assigned to one instruction. 7272 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7273 setWideningDecision(Group, VF, Decision, Cost); 7274 else 7275 setWideningDecision(&I, VF, Decision, Cost); 7276 } 7277 } 7278 } 7279 7280 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7281 unsigned VF, 7282 Type *&VectorTy) { 7283 Type *RetTy = I->getType(); 7284 if (canTruncateToMinimalBitwidth(I, VF)) 7285 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7286 VectorTy = ToVectorTy(RetTy, VF); 7287 auto SE = PSE.getSE(); 7288 7289 // TODO: We need to estimate the cost of intrinsic calls. 7290 switch (I->getOpcode()) { 7291 case Instruction::GetElementPtr: 7292 // We mark this instruction as zero-cost because the cost of GEPs in 7293 // vectorized code depends on whether the corresponding memory instruction 7294 // is scalarized or not. Therefore, we handle GEPs with the memory 7295 // instruction cost. 7296 return 0; 7297 case Instruction::Br: { 7298 // In cases of scalarized and predicated instructions, there will be VF 7299 // predicated blocks in the vectorized loop. Each branch around these 7300 // blocks requires also an extract of its vector compare i1 element. 7301 bool ScalarPredicatedBB = false; 7302 BranchInst *BI = cast<BranchInst>(I); 7303 if (VF > 1 && BI->isConditional() && 7304 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7305 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7306 ScalarPredicatedBB = true; 7307 7308 if (ScalarPredicatedBB) { 7309 // Return cost for branches around scalarized and predicated blocks. 7310 Type *Vec_i1Ty = 7311 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7312 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7313 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7314 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7315 // The back-edge branch will remain, as will all scalar branches. 7316 return TTI.getCFInstrCost(Instruction::Br); 7317 else 7318 // This branch will be eliminated by if-conversion. 7319 return 0; 7320 // Note: We currently assume zero cost for an unconditional branch inside 7321 // a predicated block since it will become a fall-through, although we 7322 // may decide in the future to call TTI for all branches. 7323 } 7324 case Instruction::PHI: { 7325 auto *Phi = cast<PHINode>(I); 7326 7327 // First-order recurrences are replaced by vector shuffles inside the loop. 7328 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7329 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7330 VectorTy, VF - 1, VectorTy); 7331 7332 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7333 // converted into select instructions. We require N - 1 selects per phi 7334 // node, where N is the number of incoming values. 7335 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7336 return (Phi->getNumIncomingValues() - 1) * 7337 TTI.getCmpSelInstrCost( 7338 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7339 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7340 7341 return TTI.getCFInstrCost(Instruction::PHI); 7342 } 7343 case Instruction::UDiv: 7344 case Instruction::SDiv: 7345 case Instruction::URem: 7346 case Instruction::SRem: 7347 // If we have a predicated instruction, it may not be executed for each 7348 // vector lane. Get the scalarization cost and scale this amount by the 7349 // probability of executing the predicated block. If the instruction is not 7350 // predicated, we fall through to the next case. 7351 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7352 unsigned Cost = 0; 7353 7354 // These instructions have a non-void type, so account for the phi nodes 7355 // that we will create. This cost is likely to be zero. The phi node 7356 // cost, if any, should be scaled by the block probability because it 7357 // models a copy at the end of each predicated block. 7358 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7359 7360 // The cost of the non-predicated instruction. 7361 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7362 7363 // The cost of insertelement and extractelement instructions needed for 7364 // scalarization. 7365 Cost += getScalarizationOverhead(I, VF, TTI); 7366 7367 // Scale the cost by the probability of executing the predicated blocks. 7368 // This assumes the predicated block for each vector lane is equally 7369 // likely. 7370 return Cost / getReciprocalPredBlockProb(); 7371 } 7372 case Instruction::Add: 7373 case Instruction::FAdd: 7374 case Instruction::Sub: 7375 case Instruction::FSub: 7376 case Instruction::Mul: 7377 case Instruction::FMul: 7378 case Instruction::FDiv: 7379 case Instruction::FRem: 7380 case Instruction::Shl: 7381 case Instruction::LShr: 7382 case Instruction::AShr: 7383 case Instruction::And: 7384 case Instruction::Or: 7385 case Instruction::Xor: { 7386 // Since we will replace the stride by 1 the multiplication should go away. 7387 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7388 return 0; 7389 // Certain instructions can be cheaper to vectorize if they have a constant 7390 // second vector operand. One example of this are shifts on x86. 7391 TargetTransformInfo::OperandValueKind Op1VK = 7392 TargetTransformInfo::OK_AnyValue; 7393 TargetTransformInfo::OperandValueKind Op2VK = 7394 TargetTransformInfo::OK_AnyValue; 7395 TargetTransformInfo::OperandValueProperties Op1VP = 7396 TargetTransformInfo::OP_None; 7397 TargetTransformInfo::OperandValueProperties Op2VP = 7398 TargetTransformInfo::OP_None; 7399 Value *Op2 = I->getOperand(1); 7400 7401 // Check for a splat or for a non uniform vector of constants. 7402 if (isa<ConstantInt>(Op2)) { 7403 ConstantInt *CInt = cast<ConstantInt>(Op2); 7404 if (CInt && CInt->getValue().isPowerOf2()) 7405 Op2VP = TargetTransformInfo::OP_PowerOf2; 7406 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7407 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7408 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7409 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7410 if (SplatValue) { 7411 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7412 if (CInt && CInt->getValue().isPowerOf2()) 7413 Op2VP = TargetTransformInfo::OP_PowerOf2; 7414 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7415 } 7416 } else if (Legal->isUniform(Op2)) { 7417 Op2VK = TargetTransformInfo::OK_UniformValue; 7418 } 7419 SmallVector<const Value *, 4> Operands(I->operand_values()); 7420 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7421 Op2VK, Op1VP, Op2VP, Operands); 7422 } 7423 case Instruction::Select: { 7424 SelectInst *SI = cast<SelectInst>(I); 7425 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7426 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7427 Type *CondTy = SI->getCondition()->getType(); 7428 if (!ScalarCond) 7429 CondTy = VectorType::get(CondTy, VF); 7430 7431 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7432 } 7433 case Instruction::ICmp: 7434 case Instruction::FCmp: { 7435 Type *ValTy = I->getOperand(0)->getType(); 7436 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7437 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7438 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7439 VectorTy = ToVectorTy(ValTy, VF); 7440 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7441 } 7442 case Instruction::Store: 7443 case Instruction::Load: { 7444 VectorTy = ToVectorTy(getMemInstValueType(I), VF); 7445 return getMemoryInstructionCost(I, VF); 7446 } 7447 case Instruction::ZExt: 7448 case Instruction::SExt: 7449 case Instruction::FPToUI: 7450 case Instruction::FPToSI: 7451 case Instruction::FPExt: 7452 case Instruction::PtrToInt: 7453 case Instruction::IntToPtr: 7454 case Instruction::SIToFP: 7455 case Instruction::UIToFP: 7456 case Instruction::Trunc: 7457 case Instruction::FPTrunc: 7458 case Instruction::BitCast: { 7459 // We optimize the truncation of induction variables having constant 7460 // integer steps. The cost of these truncations is the same as the scalar 7461 // operation. 7462 if (isOptimizableIVTruncate(I, VF)) { 7463 auto *Trunc = cast<TruncInst>(I); 7464 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7465 Trunc->getSrcTy(), Trunc); 7466 } 7467 7468 Type *SrcScalarTy = I->getOperand(0)->getType(); 7469 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7470 if (canTruncateToMinimalBitwidth(I, VF)) { 7471 // This cast is going to be shrunk. This may remove the cast or it might 7472 // turn it into slightly different cast. For example, if MinBW == 16, 7473 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7474 // 7475 // Calculate the modified src and dest types. 7476 Type *MinVecTy = VectorTy; 7477 if (I->getOpcode() == Instruction::Trunc) { 7478 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7479 VectorTy = 7480 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7481 } else if (I->getOpcode() == Instruction::ZExt || 7482 I->getOpcode() == Instruction::SExt) { 7483 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7484 VectorTy = 7485 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7486 } 7487 } 7488 7489 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7490 } 7491 case Instruction::Call: { 7492 bool NeedToScalarize; 7493 CallInst *CI = cast<CallInst>(I); 7494 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7495 if (getVectorIntrinsicIDForCall(CI, TLI)) 7496 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7497 return CallCost; 7498 } 7499 default: 7500 // The cost of executing VF copies of the scalar instruction. This opcode 7501 // is unknown. Assume that it is the same as 'mul'. 7502 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7503 getScalarizationOverhead(I, VF, TTI); 7504 } // end of switch. 7505 } 7506 7507 char LoopVectorize::ID = 0; 7508 static const char lv_name[] = "Loop Vectorization"; 7509 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7510 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7511 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7512 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7513 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7515 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7516 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7517 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7518 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7519 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7520 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7521 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7522 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7523 7524 namespace llvm { 7525 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7526 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7527 } 7528 } 7529 7530 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7531 7532 // Check if the pointer operand of a load or store instruction is 7533 // consecutive. 7534 if (auto *Ptr = getPointerOperand(Inst)) 7535 return Legal->isConsecutivePtr(Ptr); 7536 return false; 7537 } 7538 7539 void LoopVectorizationCostModel::collectValuesToIgnore() { 7540 // Ignore ephemeral values. 7541 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7542 7543 // Ignore type-promoting instructions we identified during reduction 7544 // detection. 7545 for (auto &Reduction : *Legal->getReductionVars()) { 7546 RecurrenceDescriptor &RedDes = Reduction.second; 7547 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7548 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7549 } 7550 } 7551 7552 LoopVectorizationCostModel::VectorizationFactor 7553 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7554 7555 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7556 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7557 0U}; 7558 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7559 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7560 return NoVectorization; 7561 7562 if (UserVF) { 7563 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7564 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7565 // Collect the instructions (and their associated costs) that will be more 7566 // profitable to scalarize. 7567 CM.selectUserVectorizationFactor(UserVF); 7568 return {UserVF, 0}; 7569 } 7570 7571 unsigned MaxVF = MaybeMaxVF.getValue(); 7572 assert(MaxVF != 0 && "MaxVF is zero."); 7573 if (MaxVF == 1) 7574 return NoVectorization; 7575 7576 // Select the optimal vectorization factor. 7577 return CM.selectVectorizationFactor(MaxVF); 7578 } 7579 7580 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7581 auto *SI = dyn_cast<StoreInst>(Instr); 7582 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7583 7584 return scalarizeInstruction(Instr, IfPredicateInstr); 7585 } 7586 7587 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7588 7589 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7590 7591 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7592 Instruction::BinaryOps BinOp) { 7593 // When unrolling and the VF is 1, we only need to add a simple scalar. 7594 Type *Ty = Val->getType(); 7595 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7596 7597 if (Ty->isFloatingPointTy()) { 7598 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7599 7600 // Floating point operations had to be 'fast' to enable the unrolling. 7601 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7602 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7603 } 7604 Constant *C = ConstantInt::get(Ty, StartIdx); 7605 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7606 } 7607 7608 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7609 SmallVector<Metadata *, 4> MDs; 7610 // Reserve first location for self reference to the LoopID metadata node. 7611 MDs.push_back(nullptr); 7612 bool IsUnrollMetadata = false; 7613 MDNode *LoopID = L->getLoopID(); 7614 if (LoopID) { 7615 // First find existing loop unrolling disable metadata. 7616 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7617 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7618 if (MD) { 7619 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7620 IsUnrollMetadata = 7621 S && S->getString().startswith("llvm.loop.unroll.disable"); 7622 } 7623 MDs.push_back(LoopID->getOperand(i)); 7624 } 7625 } 7626 7627 if (!IsUnrollMetadata) { 7628 // Add runtime unroll disable metadata. 7629 LLVMContext &Context = L->getHeader()->getContext(); 7630 SmallVector<Metadata *, 1> DisableOperands; 7631 DisableOperands.push_back( 7632 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7633 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7634 MDs.push_back(DisableNode); 7635 MDNode *NewLoopID = MDNode::get(Context, MDs); 7636 // Set operand 0 to refer to the loop id itself. 7637 NewLoopID->replaceOperandWith(0, NewLoopID); 7638 L->setLoopID(NewLoopID); 7639 } 7640 } 7641 7642 bool LoopVectorizePass::processLoop(Loop *L) { 7643 assert(L->empty() && "Only process inner loops."); 7644 7645 #ifndef NDEBUG 7646 const std::string DebugLocStr = getDebugLocString(L); 7647 #endif /* NDEBUG */ 7648 7649 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7650 << L->getHeader()->getParent()->getName() << "\" from " 7651 << DebugLocStr << "\n"); 7652 7653 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7654 7655 DEBUG(dbgs() << "LV: Loop hints:" 7656 << " force=" 7657 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7658 ? "disabled" 7659 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7660 ? "enabled" 7661 : "?")) 7662 << " width=" << Hints.getWidth() 7663 << " unroll=" << Hints.getInterleave() << "\n"); 7664 7665 // Function containing loop 7666 Function *F = L->getHeader()->getParent(); 7667 7668 // Looking at the diagnostic output is the only way to determine if a loop 7669 // was vectorized (other than looking at the IR or machine code), so it 7670 // is important to generate an optimization remark for each loop. Most of 7671 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7672 // generated as OptimizationRemark and OptimizationRemarkMissed are 7673 // less verbose reporting vectorized loops and unvectorized loops that may 7674 // benefit from vectorization, respectively. 7675 7676 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7677 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7678 return false; 7679 } 7680 7681 // Check the loop for a trip count threshold: 7682 // do not vectorize loops with a tiny trip count. 7683 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7684 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7685 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7686 << "This loop is not worth vectorizing."); 7687 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7688 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7689 else { 7690 DEBUG(dbgs() << "\n"); 7691 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7692 "NotBeneficial", L) 7693 << "vectorization is not beneficial " 7694 "and is not explicitly forced"); 7695 return false; 7696 } 7697 } 7698 7699 PredicatedScalarEvolution PSE(*SE, *L); 7700 7701 // Check if it is legal to vectorize the loop. 7702 LoopVectorizationRequirements Requirements(*ORE); 7703 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7704 &Requirements, &Hints); 7705 if (!LVL.canVectorize()) { 7706 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7707 emitMissedWarning(F, L, Hints, ORE); 7708 return false; 7709 } 7710 7711 // Check the function attributes to find out if this function should be 7712 // optimized for size. 7713 bool OptForSize = 7714 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7715 7716 // Compute the weighted frequency of this loop being executed and see if it 7717 // is less than 20% of the function entry baseline frequency. Note that we 7718 // always have a canonical loop here because we think we *can* vectorize. 7719 // FIXME: This is hidden behind a flag due to pervasive problems with 7720 // exactly what block frequency models. 7721 if (LoopVectorizeWithBlockFrequency) { 7722 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7723 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7724 LoopEntryFreq < ColdEntryFreq) 7725 OptForSize = true; 7726 } 7727 7728 // Check the function attributes to see if implicit floats are allowed. 7729 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7730 // an integer loop and the vector instructions selected are purely integer 7731 // vector instructions? 7732 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7733 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7734 "attribute is used.\n"); 7735 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7736 "NoImplicitFloat", L) 7737 << "loop not vectorized due to NoImplicitFloat attribute"); 7738 emitMissedWarning(F, L, Hints, ORE); 7739 return false; 7740 } 7741 7742 // Check if the target supports potentially unsafe FP vectorization. 7743 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7744 // for the target we're vectorizing for, to make sure none of the 7745 // additional fp-math flags can help. 7746 if (Hints.isPotentiallyUnsafe() && 7747 TTI->isFPVectorizationPotentiallyUnsafe()) { 7748 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7749 ORE->emit( 7750 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7751 << "loop not vectorized due to unsafe FP support."); 7752 emitMissedWarning(F, L, Hints, ORE); 7753 return false; 7754 } 7755 7756 // Use the cost model. 7757 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7758 &Hints); 7759 CM.collectValuesToIgnore(); 7760 7761 // Use the planner for vectorization. 7762 LoopVectorizationPlanner LVP(CM); 7763 7764 // Get user vectorization factor. 7765 unsigned UserVF = Hints.getWidth(); 7766 7767 // Plan how to best vectorize, return the best VF and its cost. 7768 LoopVectorizationCostModel::VectorizationFactor VF = 7769 LVP.plan(OptForSize, UserVF); 7770 7771 // Select the interleave count. 7772 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7773 7774 // Get user interleave count. 7775 unsigned UserIC = Hints.getInterleave(); 7776 7777 // Identify the diagnostic messages that should be produced. 7778 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7779 bool VectorizeLoop = true, InterleaveLoop = true; 7780 if (Requirements.doesNotMeet(F, L, Hints)) { 7781 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7782 "requirements.\n"); 7783 emitMissedWarning(F, L, Hints, ORE); 7784 return false; 7785 } 7786 7787 if (VF.Width == 1) { 7788 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7789 VecDiagMsg = std::make_pair( 7790 "VectorizationNotBeneficial", 7791 "the cost-model indicates that vectorization is not beneficial"); 7792 VectorizeLoop = false; 7793 } 7794 7795 if (IC == 1 && UserIC <= 1) { 7796 // Tell the user interleaving is not beneficial. 7797 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7798 IntDiagMsg = std::make_pair( 7799 "InterleavingNotBeneficial", 7800 "the cost-model indicates that interleaving is not beneficial"); 7801 InterleaveLoop = false; 7802 if (UserIC == 1) { 7803 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7804 IntDiagMsg.second += 7805 " and is explicitly disabled or interleave count is set to 1"; 7806 } 7807 } else if (IC > 1 && UserIC == 1) { 7808 // Tell the user interleaving is beneficial, but it explicitly disabled. 7809 DEBUG(dbgs() 7810 << "LV: Interleaving is beneficial but is explicitly disabled."); 7811 IntDiagMsg = std::make_pair( 7812 "InterleavingBeneficialButDisabled", 7813 "the cost-model indicates that interleaving is beneficial " 7814 "but is explicitly disabled or interleave count is set to 1"); 7815 InterleaveLoop = false; 7816 } 7817 7818 // Override IC if user provided an interleave count. 7819 IC = UserIC > 0 ? UserIC : IC; 7820 7821 // Emit diagnostic messages, if any. 7822 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7823 if (!VectorizeLoop && !InterleaveLoop) { 7824 // Do not vectorize or interleaving the loop. 7825 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7826 L->getStartLoc(), L->getHeader()) 7827 << VecDiagMsg.second); 7828 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7829 L->getStartLoc(), L->getHeader()) 7830 << IntDiagMsg.second); 7831 return false; 7832 } else if (!VectorizeLoop && InterleaveLoop) { 7833 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7834 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7835 L->getStartLoc(), L->getHeader()) 7836 << VecDiagMsg.second); 7837 } else if (VectorizeLoop && !InterleaveLoop) { 7838 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7839 << DebugLocStr << '\n'); 7840 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7841 L->getStartLoc(), L->getHeader()) 7842 << IntDiagMsg.second); 7843 } else if (VectorizeLoop && InterleaveLoop) { 7844 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7845 << DebugLocStr << '\n'); 7846 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7847 } 7848 7849 using namespace ore; 7850 if (!VectorizeLoop) { 7851 assert(IC > 1 && "interleave count should not be 1 or 0"); 7852 // If we decided that it is not legal to vectorize the loop, then 7853 // interleave it. 7854 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7855 &CM); 7856 Unroller.vectorize(); 7857 7858 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7859 L->getHeader()) 7860 << "interleaved loop (interleaved count: " 7861 << NV("InterleaveCount", IC) << ")"); 7862 } else { 7863 // If we decided that it is *legal* to vectorize the loop, then do it. 7864 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7865 &LVL, &CM); 7866 LB.vectorize(); 7867 ++LoopsVectorized; 7868 7869 // Add metadata to disable runtime unrolling a scalar loop when there are 7870 // no runtime checks about strides and memory. A scalar loop that is 7871 // rarely used is not worth unrolling. 7872 if (!LB.areSafetyChecksAdded()) 7873 AddRuntimeUnrollDisableMetaData(L); 7874 7875 // Report the vectorization decision. 7876 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7877 L->getHeader()) 7878 << "vectorized loop (vectorization width: " 7879 << NV("VectorizationFactor", VF.Width) 7880 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7881 } 7882 7883 // Mark the loop as already vectorized to avoid vectorizing again. 7884 Hints.setAlreadyVectorized(); 7885 7886 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7887 return true; 7888 } 7889 7890 bool LoopVectorizePass::runImpl( 7891 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7892 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7893 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7894 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7895 OptimizationRemarkEmitter &ORE_) { 7896 7897 SE = &SE_; 7898 LI = &LI_; 7899 TTI = &TTI_; 7900 DT = &DT_; 7901 BFI = &BFI_; 7902 TLI = TLI_; 7903 AA = &AA_; 7904 AC = &AC_; 7905 GetLAA = &GetLAA_; 7906 DB = &DB_; 7907 ORE = &ORE_; 7908 7909 // Compute some weights outside of the loop over the loops. Compute this 7910 // using a BranchProbability to re-use its scaling math. 7911 const BranchProbability ColdProb(1, 5); // 20% 7912 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7913 7914 // Don't attempt if 7915 // 1. the target claims to have no vector registers, and 7916 // 2. interleaving won't help ILP. 7917 // 7918 // The second condition is necessary because, even if the target has no 7919 // vector registers, loop vectorization may still enable scalar 7920 // interleaving. 7921 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7922 return false; 7923 7924 bool Changed = false; 7925 7926 // The vectorizer requires loops to be in simplified form. 7927 // Since simplification may add new inner loops, it has to run before the 7928 // legality and profitability checks. This means running the loop vectorizer 7929 // will simplify all loops, regardless of whether anything end up being 7930 // vectorized. 7931 for (auto &L : *LI) 7932 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7933 7934 // Build up a worklist of inner-loops to vectorize. This is necessary as 7935 // the act of vectorizing or partially unrolling a loop creates new loops 7936 // and can invalidate iterators across the loops. 7937 SmallVector<Loop *, 8> Worklist; 7938 7939 for (Loop *L : *LI) 7940 addAcyclicInnerLoop(*L, Worklist); 7941 7942 LoopsAnalyzed += Worklist.size(); 7943 7944 // Now walk the identified inner loops. 7945 while (!Worklist.empty()) { 7946 Loop *L = Worklist.pop_back_val(); 7947 7948 // For the inner loops we actually process, form LCSSA to simplify the 7949 // transform. 7950 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7951 7952 Changed |= processLoop(L); 7953 } 7954 7955 // Process each loop nest in the function. 7956 return Changed; 7957 7958 } 7959 7960 7961 PreservedAnalyses LoopVectorizePass::run(Function &F, 7962 FunctionAnalysisManager &AM) { 7963 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7964 auto &LI = AM.getResult<LoopAnalysis>(F); 7965 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7966 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7967 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7968 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7969 auto &AA = AM.getResult<AAManager>(F); 7970 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7971 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7972 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7973 7974 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7975 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7976 [&](Loop &L) -> const LoopAccessInfo & { 7977 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7978 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7979 }; 7980 bool Changed = 7981 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7982 if (!Changed) 7983 return PreservedAnalyses::all(); 7984 PreservedAnalyses PA; 7985 PA.preserve<LoopAnalysis>(); 7986 PA.preserve<DominatorTreeAnalysis>(); 7987 PA.preserve<BasicAA>(); 7988 PA.preserve<GlobalsAA>(); 7989 return PA; 7990 } 7991