1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides loop vectorization legality analysis. Original code 11 // resided in LoopVectorize.cpp for a long time. 12 // 13 // At this point, it is implemented as a utility class, not as an analysis 14 // pass. It should be easy to create an analysis pass around it if there 15 // is a need (but D45420 needs to happen first). 16 // 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 21 using namespace llvm; 22 23 #define LV_NAME "loop-vectorize" 24 #define DEBUG_TYPE LV_NAME 25 26 static cl::opt<bool> 27 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 28 cl::desc("Enable if-conversion during vectorization.")); 29 30 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 31 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 32 cl::desc("The maximum allowed number of runtime memory checks with a " 33 "vectorize(enable) pragma.")); 34 35 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 36 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 37 cl::desc("The maximum number of SCEV checks allowed.")); 38 39 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 40 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 41 cl::desc("The maximum number of SCEV checks allowed with a " 42 "vectorize(enable) pragma")); 43 44 /// Maximum vectorization interleave count. 45 static const unsigned MaxInterleaveFactor = 16; 46 47 namespace llvm { 48 49 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, 50 StringRef RemarkName, 51 Loop *TheLoop, 52 Instruction *I) { 53 Value *CodeRegion = TheLoop->getHeader(); 54 DebugLoc DL = TheLoop->getStartLoc(); 55 56 if (I) { 57 CodeRegion = I->getParent(); 58 // If there is no debug location attached to the instruction, revert back to 59 // using the loop's. 60 if (I->getDebugLoc()) 61 DL = I->getDebugLoc(); 62 } 63 64 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 65 R << "loop not vectorized: "; 66 return R; 67 } 68 69 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 70 switch (Kind) { 71 case HK_WIDTH: 72 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 73 case HK_UNROLL: 74 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 75 case HK_FORCE: 76 return (Val <= 1); 77 case HK_ISVECTORIZED: 78 return (Val == 0 || Val == 1); 79 } 80 return false; 81 } 82 83 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 84 bool InterleaveOnlyWhenForced, 85 OptimizationRemarkEmitter &ORE) 86 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 87 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), 88 Force("vectorize.enable", FK_Undefined, HK_FORCE), 89 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 90 // Populate values with existing loop metadata. 91 getHintsFromMetadata(); 92 93 // force-vector-interleave overrides DisableInterleaving. 94 if (VectorizerParams::isInterleaveForced()) 95 Interleave.Value = VectorizerParams::VectorizationInterleave; 96 97 if (IsVectorized.Value != 1) 98 // If the vectorization width and interleaving count are both 1 then 99 // consider the loop to have been already vectorized because there's 100 // nothing more that we can do. 101 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 102 LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() 103 << "LV: Interleaving disabled by the pass manager\n"); 104 } 105 106 bool LoopVectorizeHints::allowVectorization( 107 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 108 if (getForce() == LoopVectorizeHints::FK_Disabled) { 109 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 110 emitRemarkWithHints(); 111 return false; 112 } 113 114 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 115 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 116 emitRemarkWithHints(); 117 return false; 118 } 119 120 if (getIsVectorized() == 1) { 121 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 122 // FIXME: Add interleave.disable metadata. This will allow 123 // vectorize.disable to be used without disabling the pass and errors 124 // to differentiate between disabled vectorization and a width of 1. 125 ORE.emit([&]() { 126 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 127 "AllDisabled", L->getStartLoc(), 128 L->getHeader()) 129 << "loop not vectorized: vectorization and interleaving are " 130 "explicitly disabled, or the loop has already been " 131 "vectorized"; 132 }); 133 return false; 134 } 135 136 return true; 137 } 138 139 void LoopVectorizeHints::emitRemarkWithHints() const { 140 using namespace ore; 141 142 ORE.emit([&]() { 143 if (Force.Value == LoopVectorizeHints::FK_Disabled) 144 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 145 TheLoop->getStartLoc(), 146 TheLoop->getHeader()) 147 << "loop not vectorized: vectorization is explicitly disabled"; 148 else { 149 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 150 TheLoop->getStartLoc(), TheLoop->getHeader()); 151 R << "loop not vectorized"; 152 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 153 R << " (Force=" << NV("Force", true); 154 if (Width.Value != 0) 155 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 156 if (Interleave.Value != 0) 157 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 158 R << ")"; 159 } 160 return R; 161 } 162 }); 163 } 164 165 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 166 if (getWidth() == 1) 167 return LV_NAME; 168 if (getForce() == LoopVectorizeHints::FK_Disabled) 169 return LV_NAME; 170 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 171 return LV_NAME; 172 return OptimizationRemarkAnalysis::AlwaysPrint; 173 } 174 175 void LoopVectorizeHints::getHintsFromMetadata() { 176 MDNode *LoopID = TheLoop->getLoopID(); 177 if (!LoopID) 178 return; 179 180 // First operand should refer to the loop id itself. 181 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 182 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 183 184 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 185 const MDString *S = nullptr; 186 SmallVector<Metadata *, 4> Args; 187 188 // The expected hint is either a MDString or a MDNode with the first 189 // operand a MDString. 190 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 191 if (!MD || MD->getNumOperands() == 0) 192 continue; 193 S = dyn_cast<MDString>(MD->getOperand(0)); 194 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 195 Args.push_back(MD->getOperand(i)); 196 } else { 197 S = dyn_cast<MDString>(LoopID->getOperand(i)); 198 assert(Args.size() == 0 && "too many arguments for MDString"); 199 } 200 201 if (!S) 202 continue; 203 204 // Check if the hint starts with the loop metadata prefix. 205 StringRef Name = S->getString(); 206 if (Args.size() == 1) 207 setHint(Name, Args[0]); 208 } 209 } 210 211 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 212 if (!Name.startswith(Prefix())) 213 return; 214 Name = Name.substr(Prefix().size(), StringRef::npos); 215 216 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 217 if (!C) 218 return; 219 unsigned Val = C->getZExtValue(); 220 221 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 222 for (auto H : Hints) { 223 if (Name == H->Name) { 224 if (H->validate(Val)) 225 H->Value = Val; 226 else 227 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 228 break; 229 } 230 } 231 } 232 233 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name, 234 unsigned V) const { 235 LLVMContext &Context = TheLoop->getHeader()->getContext(); 236 Metadata *MDs[] = { 237 MDString::get(Context, Name), 238 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 239 return MDNode::get(Context, MDs); 240 } 241 242 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node, 243 ArrayRef<Hint> HintTypes) { 244 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 245 if (!Name) 246 return false; 247 248 for (auto H : HintTypes) 249 if (Name->getString().endswith(H.Name)) 250 return true; 251 return false; 252 } 253 254 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 255 if (HintTypes.empty()) 256 return; 257 258 // Reserve the first element to LoopID (see below). 259 SmallVector<Metadata *, 4> MDs(1); 260 // If the loop already has metadata, then ignore the existing operands. 261 MDNode *LoopID = TheLoop->getLoopID(); 262 if (LoopID) { 263 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 264 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 265 // If node in update list, ignore old value. 266 if (!matchesHintMetadataName(Node, HintTypes)) 267 MDs.push_back(Node); 268 } 269 } 270 271 // Now, add the missing hints. 272 for (auto H : HintTypes) 273 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 274 275 // Replace current metadata node with new one. 276 LLVMContext &Context = TheLoop->getHeader()->getContext(); 277 MDNode *NewLoopID = MDNode::get(Context, MDs); 278 // Set operand 0 to refer to the loop id itself. 279 NewLoopID->replaceOperandWith(0, NewLoopID); 280 281 TheLoop->setLoopID(NewLoopID); 282 } 283 284 bool LoopVectorizationRequirements::doesNotMeet( 285 Function *F, Loop *L, const LoopVectorizeHints &Hints) { 286 const char *PassName = Hints.vectorizeAnalysisPassName(); 287 bool Failed = false; 288 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 289 ORE.emit([&]() { 290 return OptimizationRemarkAnalysisFPCommute( 291 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 292 UnsafeAlgebraInst->getParent()) 293 << "loop not vectorized: cannot prove it is safe to reorder " 294 "floating-point operations"; 295 }); 296 Failed = true; 297 } 298 299 // Test if runtime memcheck thresholds are exceeded. 300 bool PragmaThresholdReached = 301 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 302 bool ThresholdReached = 303 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 304 if ((ThresholdReached && !Hints.allowReordering()) || 305 PragmaThresholdReached) { 306 ORE.emit([&]() { 307 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 308 L->getStartLoc(), 309 L->getHeader()) 310 << "loop not vectorized: cannot prove it is safe to reorder " 311 "memory operations"; 312 }); 313 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 314 Failed = true; 315 } 316 317 return Failed; 318 } 319 320 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 321 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 322 // executing the inner loop will execute the same iterations). This check is 323 // very constrained for now but it will be relaxed in the future. \p Lp is 324 // considered uniform if it meets all the following conditions: 325 // 1) it has a canonical IV (starting from 0 and with stride 1), 326 // 2) its latch terminator is a conditional branch and, 327 // 3) its latch condition is a compare instruction whose operands are the 328 // canonical IV and an OuterLp invariant. 329 // This check doesn't take into account the uniformity of other conditions not 330 // related to the loop latch because they don't affect the loop uniformity. 331 // 332 // NOTE: We decided to keep all these checks and its associated documentation 333 // together so that we can easily have a picture of the current supported loop 334 // nests. However, some of the current checks don't depend on \p OuterLp and 335 // would be redundantly executed for each \p Lp if we invoked this function for 336 // different candidate outer loops. This is not the case for now because we 337 // don't currently have the infrastructure to evaluate multiple candidate outer 338 // loops and \p OuterLp will be a fixed parameter while we only support explicit 339 // outer loop vectorization. It's also very likely that these checks go away 340 // before introducing the aforementioned infrastructure. However, if this is not 341 // the case, we should move the \p OuterLp independent checks to a separate 342 // function that is only executed once for each \p Lp. 343 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 344 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 345 346 // If Lp is the outer loop, it's uniform by definition. 347 if (Lp == OuterLp) 348 return true; 349 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 350 351 // 1. 352 PHINode *IV = Lp->getCanonicalInductionVariable(); 353 if (!IV) { 354 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 355 return false; 356 } 357 358 // 2. 359 BasicBlock *Latch = Lp->getLoopLatch(); 360 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 361 if (!LatchBr || LatchBr->isUnconditional()) { 362 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 363 return false; 364 } 365 366 // 3. 367 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 368 if (!LatchCmp) { 369 LLVM_DEBUG( 370 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 371 return false; 372 } 373 374 Value *CondOp0 = LatchCmp->getOperand(0); 375 Value *CondOp1 = LatchCmp->getOperand(1); 376 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 377 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 378 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 379 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 380 return false; 381 } 382 383 return true; 384 } 385 386 // Return true if \p Lp and all its nested loops are uniform with regard to \p 387 // OuterLp. 388 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 389 if (!isUniformLoop(Lp, OuterLp)) 390 return false; 391 392 // Check if nested loops are uniform. 393 for (Loop *SubLp : *Lp) 394 if (!isUniformLoopNest(SubLp, OuterLp)) 395 return false; 396 397 return true; 398 } 399 400 /// Check whether it is safe to if-convert this phi node. 401 /// 402 /// Phi nodes with constant expressions that can trap are not safe to if 403 /// convert. 404 static bool canIfConvertPHINodes(BasicBlock *BB) { 405 for (PHINode &Phi : BB->phis()) { 406 for (Value *V : Phi.incoming_values()) 407 if (auto *C = dyn_cast<Constant>(V)) 408 if (C->canTrap()) 409 return false; 410 } 411 return true; 412 } 413 414 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 415 if (Ty->isPointerTy()) 416 return DL.getIntPtrType(Ty); 417 418 // It is possible that char's or short's overflow when we ask for the loop's 419 // trip count, work around this by changing the type size. 420 if (Ty->getScalarSizeInBits() < 32) 421 return Type::getInt32Ty(Ty->getContext()); 422 423 return Ty; 424 } 425 426 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 427 Ty0 = convertPointerToIntegerType(DL, Ty0); 428 Ty1 = convertPointerToIntegerType(DL, Ty1); 429 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 430 return Ty0; 431 return Ty1; 432 } 433 434 /// Check that the instruction has outside loop users and is not an 435 /// identified reduction variable. 436 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 437 SmallPtrSetImpl<Value *> &AllowedExit) { 438 // Reductions, Inductions and non-header phis are allowed to have exit users. All 439 // other instructions must not have external users. 440 if (!AllowedExit.count(Inst)) 441 // Check that all of the users of the loop are inside the BB. 442 for (User *U : Inst->users()) { 443 Instruction *UI = cast<Instruction>(U); 444 // This user may be a reduction exit value. 445 if (!TheLoop->contains(UI)) { 446 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 447 return true; 448 } 449 } 450 return false; 451 } 452 453 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 454 const ValueToValueMap &Strides = 455 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 456 457 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 458 if (Stride == 1 || Stride == -1) 459 return Stride; 460 return 0; 461 } 462 463 bool LoopVectorizationLegality::isUniform(Value *V) { 464 return LAI->isUniform(V); 465 } 466 467 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 468 assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); 469 // Store the result and return it at the end instead of exiting early, in case 470 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 471 bool Result = true; 472 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 473 474 for (BasicBlock *BB : TheLoop->blocks()) { 475 // Check whether the BB terminator is a BranchInst. Any other terminator is 476 // not supported yet. 477 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 478 if (!Br) { 479 LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n"); 480 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 481 << "loop control flow is not understood by vectorizer"); 482 if (DoExtraAnalysis) 483 Result = false; 484 else 485 return false; 486 } 487 488 // Check whether the BranchInst is a supported one. Only unconditional 489 // branches, conditional branches with an outer loop invariant condition or 490 // backedges are supported. 491 if (Br && Br->isConditional() && 492 !TheLoop->isLoopInvariant(Br->getCondition()) && 493 !LI->isLoopHeader(Br->getSuccessor(0)) && 494 !LI->isLoopHeader(Br->getSuccessor(1))) { 495 LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n"); 496 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 497 << "loop control flow is not understood by vectorizer"); 498 if (DoExtraAnalysis) 499 Result = false; 500 else 501 return false; 502 } 503 } 504 505 // Check whether inner loops are uniform. At this point, we only support 506 // simple outer loops scenarios with uniform nested loops. 507 if (!isUniformLoopNest(TheLoop /*loop nest*/, 508 TheLoop /*context outer loop*/)) { 509 LLVM_DEBUG( 510 dbgs() 511 << "LV: Not vectorizing: Outer loop contains divergent loops.\n"); 512 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 513 << "loop control flow is not understood by vectorizer"); 514 if (DoExtraAnalysis) 515 Result = false; 516 else 517 return false; 518 } 519 520 // Check whether we are able to set up outer loop induction. 521 if (!setupOuterLoopInductions()) { 522 LLVM_DEBUG( 523 dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n"); 524 ORE->emit(createMissedAnalysis("UnsupportedPhi") 525 << "Unsupported outer loop Phi(s)"); 526 if (DoExtraAnalysis) 527 Result = false; 528 else 529 return false; 530 } 531 532 return Result; 533 } 534 535 void LoopVectorizationLegality::addInductionPhi( 536 PHINode *Phi, const InductionDescriptor &ID, 537 SmallPtrSetImpl<Value *> &AllowedExit) { 538 Inductions[Phi] = ID; 539 540 // In case this induction also comes with casts that we know we can ignore 541 // in the vectorized loop body, record them here. All casts could be recorded 542 // here for ignoring, but suffices to record only the first (as it is the 543 // only one that may bw used outside the cast sequence). 544 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 545 if (!Casts.empty()) 546 InductionCastsToIgnore.insert(*Casts.begin()); 547 548 Type *PhiTy = Phi->getType(); 549 const DataLayout &DL = Phi->getModule()->getDataLayout(); 550 551 // Get the widest type. 552 if (!PhiTy->isFloatingPointTy()) { 553 if (!WidestIndTy) 554 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 555 else 556 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 557 } 558 559 // Int inductions are special because we only allow one IV. 560 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 561 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 562 isa<Constant>(ID.getStartValue()) && 563 cast<Constant>(ID.getStartValue())->isNullValue()) { 564 565 // Use the phi node with the widest type as induction. Use the last 566 // one if there are multiple (no good reason for doing this other 567 // than it is expedient). We've checked that it begins at zero and 568 // steps by one, so this is a canonical induction variable. 569 if (!PrimaryInduction || PhiTy == WidestIndTy) 570 PrimaryInduction = Phi; 571 } 572 573 // Both the PHI node itself, and the "post-increment" value feeding 574 // back into the PHI node may have external users. 575 // We can allow those uses, except if the SCEVs we have for them rely 576 // on predicates that only hold within the loop, since allowing the exit 577 // currently means re-using this SCEV outside the loop (see PR33706 for more 578 // details). 579 if (PSE.getUnionPredicate().isAlwaysTrue()) { 580 AllowedExit.insert(Phi); 581 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 582 } 583 584 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 585 } 586 587 bool LoopVectorizationLegality::setupOuterLoopInductions() { 588 BasicBlock *Header = TheLoop->getHeader(); 589 590 // Returns true if a given Phi is a supported induction. 591 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 592 InductionDescriptor ID; 593 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 594 ID.getKind() == InductionDescriptor::IK_IntInduction) { 595 addInductionPhi(&Phi, ID, AllowedExit); 596 return true; 597 } else { 598 // Bail out for any Phi in the outer loop header that is not a supported 599 // induction. 600 LLVM_DEBUG( 601 dbgs() 602 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 603 return false; 604 } 605 }; 606 607 if (llvm::all_of(Header->phis(), isSupportedPhi)) 608 return true; 609 else 610 return false; 611 } 612 613 bool LoopVectorizationLegality::canVectorizeInstrs() { 614 BasicBlock *Header = TheLoop->getHeader(); 615 616 // Look for the attribute signaling the absence of NaNs. 617 Function &F = *Header->getParent(); 618 HasFunNoNaNAttr = 619 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 620 621 // For each block in the loop. 622 for (BasicBlock *BB : TheLoop->blocks()) { 623 // Scan the instructions in the block and look for hazards. 624 for (Instruction &I : *BB) { 625 if (auto *Phi = dyn_cast<PHINode>(&I)) { 626 Type *PhiTy = Phi->getType(); 627 // Check that this PHI type is allowed. 628 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 629 !PhiTy->isPointerTy()) { 630 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 631 << "loop control flow is not understood by vectorizer"); 632 LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 633 return false; 634 } 635 636 // If this PHINode is not in the header block, then we know that we 637 // can convert it to select during if-conversion. No need to check if 638 // the PHIs in this block are induction or reduction variables. 639 if (BB != Header) { 640 // Non-header phi nodes that have outside uses can be vectorized. Add 641 // them to the list of allowed exits. 642 // Unsafe cyclic dependencies with header phis are identified during 643 // legalization for reduction, induction and first order 644 // recurrences. 645 continue; 646 } 647 648 // We only allow if-converted PHIs with exactly two incoming values. 649 if (Phi->getNumIncomingValues() != 2) { 650 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 651 << "control flow not understood by vectorizer"); 652 LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 653 return false; 654 } 655 656 RecurrenceDescriptor RedDes; 657 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 658 DT)) { 659 if (RedDes.hasUnsafeAlgebra()) 660 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 661 AllowedExit.insert(RedDes.getLoopExitInstr()); 662 Reductions[Phi] = RedDes; 663 continue; 664 } 665 666 // TODO: Instead of recording the AllowedExit, it would be good to record the 667 // complementary set: NotAllowedExit. These include (but may not be 668 // limited to): 669 // 1. Reduction phis as they represent the one-before-last value, which 670 // is not available when vectorized 671 // 2. Induction phis and increment when SCEV predicates cannot be used 672 // outside the loop - see addInductionPhi 673 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 674 // outside the loop - see call to hasOutsideLoopUser in the non-phi 675 // handling below 676 // 4. FirstOrderRecurrence phis that can possibly be handled by 677 // extraction. 678 // By recording these, we can then reason about ways to vectorize each 679 // of these NotAllowedExit. 680 InductionDescriptor ID; 681 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 682 addInductionPhi(Phi, ID, AllowedExit); 683 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 684 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 685 continue; 686 } 687 688 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 689 SinkAfter, DT)) { 690 FirstOrderRecurrences.insert(Phi); 691 continue; 692 } 693 694 // As a last resort, coerce the PHI to a AddRec expression 695 // and re-try classifying it a an induction PHI. 696 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 697 addInductionPhi(Phi, ID, AllowedExit); 698 continue; 699 } 700 701 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 702 << "value that could not be identified as " 703 "reduction is used outside the loop"); 704 LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 705 return false; 706 } // end of PHI handling 707 708 // We handle calls that: 709 // * Are debug info intrinsics. 710 // * Have a mapping to an IR intrinsic. 711 // * Have a vector version available. 712 auto *CI = dyn_cast<CallInst>(&I); 713 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 714 !isa<DbgInfoIntrinsic>(CI) && 715 !(CI->getCalledFunction() && TLI && 716 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 717 // If the call is a recognized math libary call, it is likely that 718 // we can vectorize it given loosened floating-point constraints. 719 LibFunc Func; 720 bool IsMathLibCall = 721 TLI && CI->getCalledFunction() && 722 CI->getType()->isFloatingPointTy() && 723 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 724 TLI->hasOptimizedCodeGen(Func); 725 726 if (IsMathLibCall) { 727 // TODO: Ideally, we should not use clang-specific language here, 728 // but it's hard to provide meaningful yet generic advice. 729 // Also, should this be guarded by allowExtraAnalysis() and/or be part 730 // of the returned info from isFunctionVectorizable()? 731 ORE->emit(createMissedAnalysis("CantVectorizeLibcall", CI) 732 << "library call cannot be vectorized. " 733 "Try compiling with -fno-math-errno, -ffast-math, " 734 "or similar flags"); 735 } else { 736 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 737 << "call instruction cannot be vectorized"); 738 } 739 LLVM_DEBUG( 740 dbgs() << "LV: Found a non-intrinsic callsite.\n"); 741 return false; 742 } 743 744 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 745 // second argument is the same (i.e. loop invariant) 746 if (CI && hasVectorInstrinsicScalarOpd( 747 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 748 auto *SE = PSE.getSE(); 749 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 750 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 751 << "intrinsic instruction cannot be vectorized"); 752 LLVM_DEBUG(dbgs() 753 << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 754 return false; 755 } 756 } 757 758 // Check that the instruction return type is vectorizable. 759 // Also, we can't vectorize extractelement instructions. 760 if ((!VectorType::isValidElementType(I.getType()) && 761 !I.getType()->isVoidTy()) || 762 isa<ExtractElementInst>(I)) { 763 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 764 << "instruction return type cannot be vectorized"); 765 LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 766 return false; 767 } 768 769 // Check that the stored type is vectorizable. 770 if (auto *ST = dyn_cast<StoreInst>(&I)) { 771 Type *T = ST->getValueOperand()->getType(); 772 if (!VectorType::isValidElementType(T)) { 773 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 774 << "store instruction cannot be vectorized"); 775 return false; 776 } 777 778 // FP instructions can allow unsafe algebra, thus vectorizable by 779 // non-IEEE-754 compliant SIMD units. 780 // This applies to floating-point math operations and calls, not memory 781 // operations, shuffles, or casts, as they don't change precision or 782 // semantics. 783 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 784 !I.isFast()) { 785 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 786 Hints->setPotentiallyUnsafe(); 787 } 788 789 // Reduction instructions are allowed to have exit users. 790 // All other instructions must not have external users. 791 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 792 // We can safely vectorize loops where instructions within the loop are 793 // used outside the loop only if the SCEV predicates within the loop is 794 // same as outside the loop. Allowing the exit means reusing the SCEV 795 // outside the loop. 796 if (PSE.getUnionPredicate().isAlwaysTrue()) { 797 AllowedExit.insert(&I); 798 continue; 799 } 800 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 801 << "value cannot be used outside the loop"); 802 return false; 803 } 804 } // next instr. 805 } 806 807 if (!PrimaryInduction) { 808 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 809 if (Inductions.empty()) { 810 ORE->emit(createMissedAnalysis("NoInductionVariable") 811 << "loop induction variable could not be identified"); 812 return false; 813 } else if (!WidestIndTy) { 814 ORE->emit(createMissedAnalysis("NoIntegerInductionVariable") 815 << "integer loop induction variable could not be identified"); 816 return false; 817 } 818 } 819 820 // Now we know the widest induction type, check if our found induction 821 // is the same size. If it's not, unset it here and InnerLoopVectorizer 822 // will create another. 823 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 824 PrimaryInduction = nullptr; 825 826 return true; 827 } 828 829 bool LoopVectorizationLegality::canVectorizeMemory() { 830 LAI = &(*GetLAA)(*TheLoop); 831 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 832 if (LAR) { 833 ORE->emit([&]() { 834 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 835 "loop not vectorized: ", *LAR); 836 }); 837 } 838 if (!LAI->canVectorizeMemory()) 839 return false; 840 841 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 842 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 843 << "write to a loop invariant address could not " 844 "be vectorized"); 845 LLVM_DEBUG( 846 dbgs() << "LV: Non vectorizable stores to a uniform address\n"); 847 return false; 848 } 849 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 850 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 851 852 return true; 853 } 854 855 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 856 Value *In0 = const_cast<Value *>(V); 857 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 858 if (!PN) 859 return false; 860 861 return Inductions.count(PN); 862 } 863 864 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 865 auto *Inst = dyn_cast<Instruction>(V); 866 return (Inst && InductionCastsToIgnore.count(Inst)); 867 } 868 869 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 870 return isInductionPhi(V) || isCastedInductionVariable(V); 871 } 872 873 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 874 return FirstOrderRecurrences.count(Phi); 875 } 876 877 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 878 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 879 } 880 881 bool LoopVectorizationLegality::blockCanBePredicated( 882 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 883 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 884 885 for (Instruction &I : *BB) { 886 // Check that we don't have a constant expression that can trap as operand. 887 for (Value *Operand : I.operands()) { 888 if (auto *C = dyn_cast<Constant>(Operand)) 889 if (C->canTrap()) 890 return false; 891 } 892 // We might be able to hoist the load. 893 if (I.mayReadFromMemory()) { 894 auto *LI = dyn_cast<LoadInst>(&I); 895 if (!LI) 896 return false; 897 if (!SafePtrs.count(LI->getPointerOperand())) { 898 // !llvm.mem.parallel_loop_access implies if-conversion safety. 899 // Otherwise, record that the load needs (real or emulated) masking 900 // and let the cost model decide. 901 if (!IsAnnotatedParallel) 902 MaskedOp.insert(LI); 903 continue; 904 } 905 } 906 907 if (I.mayWriteToMemory()) { 908 auto *SI = dyn_cast<StoreInst>(&I); 909 if (!SI) 910 return false; 911 // Predicated store requires some form of masking: 912 // 1) masked store HW instruction, 913 // 2) emulation via load-blend-store (only if safe and legal to do so, 914 // be aware on the race conditions), or 915 // 3) element-by-element predicate check and scalar store. 916 MaskedOp.insert(SI); 917 continue; 918 } 919 if (I.mayThrow()) 920 return false; 921 } 922 923 return true; 924 } 925 926 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 927 if (!EnableIfConversion) { 928 ORE->emit(createMissedAnalysis("IfConversionDisabled") 929 << "if-conversion is disabled"); 930 return false; 931 } 932 933 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 934 935 // A list of pointers that we can safely read and write to. 936 SmallPtrSet<Value *, 8> SafePointes; 937 938 // Collect safe addresses. 939 for (BasicBlock *BB : TheLoop->blocks()) { 940 if (blockNeedsPredication(BB)) 941 continue; 942 943 for (Instruction &I : *BB) 944 if (auto *Ptr = getLoadStorePointerOperand(&I)) 945 SafePointes.insert(Ptr); 946 } 947 948 // Collect the blocks that need predication. 949 BasicBlock *Header = TheLoop->getHeader(); 950 for (BasicBlock *BB : TheLoop->blocks()) { 951 // We don't support switch statements inside loops. 952 if (!isa<BranchInst>(BB->getTerminator())) { 953 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 954 << "loop contains a switch statement"); 955 return false; 956 } 957 958 // We must be able to predicate all blocks that need to be predicated. 959 if (blockNeedsPredication(BB)) { 960 if (!blockCanBePredicated(BB, SafePointes)) { 961 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 962 << "control flow cannot be substituted for a select"); 963 return false; 964 } 965 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 966 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 967 << "control flow cannot be substituted for a select"); 968 return false; 969 } 970 } 971 972 // We can if-convert this loop. 973 return true; 974 } 975 976 // Helper function to canVectorizeLoopNestCFG. 977 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 978 bool UseVPlanNativePath) { 979 assert((UseVPlanNativePath || Lp->empty()) && 980 "VPlan-native path is not enabled."); 981 982 // TODO: ORE should be improved to show more accurate information when an 983 // outer loop can't be vectorized because a nested loop is not understood or 984 // legal. Something like: "outer_loop_location: loop not vectorized: 985 // (inner_loop_location) loop control flow is not understood by vectorizer". 986 987 // Store the result and return it at the end instead of exiting early, in case 988 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 989 bool Result = true; 990 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 991 992 // We must have a loop in canonical form. Loops with indirectbr in them cannot 993 // be canonicalized. 994 if (!Lp->getLoopPreheader()) { 995 LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 996 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 997 << "loop control flow is not understood by vectorizer"); 998 if (DoExtraAnalysis) 999 Result = false; 1000 else 1001 return false; 1002 } 1003 1004 // We must have a single backedge. 1005 if (Lp->getNumBackEdges() != 1) { 1006 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1007 << "loop control flow is not understood by vectorizer"); 1008 if (DoExtraAnalysis) 1009 Result = false; 1010 else 1011 return false; 1012 } 1013 1014 // We must have a single exiting block. 1015 if (!Lp->getExitingBlock()) { 1016 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1017 << "loop control flow is not understood by vectorizer"); 1018 if (DoExtraAnalysis) 1019 Result = false; 1020 else 1021 return false; 1022 } 1023 1024 // We only handle bottom-tested loops, i.e. loop in which the condition is 1025 // checked at the end of each iteration. With that we can assume that all 1026 // instructions in the loop are executed the same number of times. 1027 if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 1028 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1029 << "loop control flow is not understood by vectorizer"); 1030 if (DoExtraAnalysis) 1031 Result = false; 1032 else 1033 return false; 1034 } 1035 1036 return Result; 1037 } 1038 1039 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1040 Loop *Lp, bool UseVPlanNativePath) { 1041 // Store the result and return it at the end instead of exiting early, in case 1042 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1043 bool Result = true; 1044 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1045 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1046 if (DoExtraAnalysis) 1047 Result = false; 1048 else 1049 return false; 1050 } 1051 1052 // Recursively check whether the loop control flow of nested loops is 1053 // understood. 1054 for (Loop *SubLp : *Lp) 1055 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1056 if (DoExtraAnalysis) 1057 Result = false; 1058 else 1059 return false; 1060 } 1061 1062 return Result; 1063 } 1064 1065 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1066 // Store the result and return it at the end instead of exiting early, in case 1067 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1068 bool Result = true; 1069 1070 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1071 // Check whether the loop-related control flow in the loop nest is expected by 1072 // vectorizer. 1073 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1074 if (DoExtraAnalysis) 1075 Result = false; 1076 else 1077 return false; 1078 } 1079 1080 // We need to have a loop header. 1081 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1082 << '\n'); 1083 1084 // Specific checks for outer loops. We skip the remaining legal checks at this 1085 // point because they don't support outer loops. 1086 if (!TheLoop->empty()) { 1087 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1088 1089 if (!canVectorizeOuterLoop()) { 1090 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n"); 1091 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1092 // outer loops. 1093 return false; 1094 } 1095 1096 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1097 return Result; 1098 } 1099 1100 assert(TheLoop->empty() && "Inner loop expected."); 1101 // Check if we can if-convert non-single-bb loops. 1102 unsigned NumBlocks = TheLoop->getNumBlocks(); 1103 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1104 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1105 if (DoExtraAnalysis) 1106 Result = false; 1107 else 1108 return false; 1109 } 1110 1111 // Check if we can vectorize the instructions and CFG in this loop. 1112 if (!canVectorizeInstrs()) { 1113 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1114 if (DoExtraAnalysis) 1115 Result = false; 1116 else 1117 return false; 1118 } 1119 1120 // Go over each instruction and look at memory deps. 1121 if (!canVectorizeMemory()) { 1122 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1123 if (DoExtraAnalysis) 1124 Result = false; 1125 else 1126 return false; 1127 } 1128 1129 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1130 << (LAI->getRuntimePointerChecking()->Need 1131 ? " (with a runtime bound check)" 1132 : "") 1133 << "!\n"); 1134 1135 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1136 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1137 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1138 1139 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1140 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 1141 << "Too many SCEV assumptions need to be made and checked " 1142 << "at runtime"); 1143 LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 1144 if (DoExtraAnalysis) 1145 Result = false; 1146 else 1147 return false; 1148 } 1149 1150 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1151 // we can vectorize, and at this point we don't have any other mem analysis 1152 // which may limit our maximum vectorization factor, so just return true with 1153 // no restrictions. 1154 return Result; 1155 } 1156 1157 bool LoopVectorizationLegality::canFoldTailByMasking() { 1158 1159 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1160 1161 if (!PrimaryInduction) { 1162 ORE->emit(createMissedAnalysis("NoPrimaryInduction") 1163 << "Missing a primary induction variable in the loop, which is " 1164 << "needed in order to fold tail by masking as required."); 1165 LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by " 1166 << "masking.\n"); 1167 return false; 1168 } 1169 1170 // TODO: handle reductions when tail is folded by masking. 1171 if (!Reductions.empty()) { 1172 ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking") 1173 << "Cannot fold tail by masking in the presence of reductions."); 1174 LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by " 1175 << "masking.\n"); 1176 return false; 1177 } 1178 1179 // TODO: handle outside users when tail is folded by masking. 1180 for (auto *AE : AllowedExit) { 1181 // Check that all users of allowed exit values are inside the loop. 1182 for (User *U : AE->users()) { 1183 Instruction *UI = cast<Instruction>(U); 1184 if (TheLoop->contains(UI)) 1185 continue; 1186 ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking") 1187 << "Cannot fold tail by masking in the presence of live outs."); 1188 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an " 1189 << "outside user for : " << *UI << '\n'); 1190 return false; 1191 } 1192 } 1193 1194 // The list of pointers that we can safely read and write to remains empty. 1195 SmallPtrSet<Value *, 8> SafePointers; 1196 1197 // Check and mark all blocks for predication, including those that ordinarily 1198 // do not need predication such as the header block. 1199 for (BasicBlock *BB : TheLoop->blocks()) { 1200 if (!blockCanBePredicated(BB, SafePointers)) { 1201 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 1202 << "control flow cannot be substituted for a select"); 1203 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n"); 1204 return false; 1205 } 1206 } 1207 1208 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1209 return true; 1210 } 1211 1212 } // namespace llvm 1213