1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass merges loads/stores to/from sequential memory addresses into vector 11 // loads/stores. Although there's nothing GPU-specific in here, this pass is 12 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 13 // 14 // (For simplicity below we talk about loads only, but everything also applies 15 // to stores.) 16 // 17 // This pass is intended to be run late in the pipeline, after other 18 // vectorization opportunities have been exploited. So the assumption here is 19 // that immediately following our new vector load we'll need to extract out the 20 // individual elements of the load, so we can operate on them individually. 21 // 22 // On CPUs this transformation is usually not beneficial, because extracting the 23 // elements of a vector register is expensive on most architectures. It's 24 // usually better just to load each element individually into its own scalar 25 // register. 26 // 27 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 28 // "vector load" loads directly into a series of scalar registers. In effect, 29 // extracting the elements of the vector is free. It's therefore always 30 // beneficial to vectorize a sequence of loads on these architectures. 31 // 32 // Vectorizing (perhaps a better name might be "coalescing") loads can have 33 // large performance impacts on GPU kernels, and opportunities for vectorizing 34 // are common in GPU code. This pass tries very hard to find such 35 // opportunities; its runtime is quadratic in the number of loads in a BB. 36 // 37 // Some CPU architectures, such as ARM, have instructions that load into 38 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 39 // could use this pass (with some modifications), but currently it implements 40 // its own pass to do something similar to what we do here. 41 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/PostOrderIterator.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/iterator_range.h" 51 #include "llvm/Analysis/AliasAnalysis.h" 52 #include "llvm/Analysis/MemoryLocation.h" 53 #include "llvm/Analysis/OrderedBasicBlock.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/TargetTransformInfo.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Analysis/ValueTracking.h" 58 #include "llvm/Analysis/VectorUtils.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/InstrTypes.h" 68 #include "llvm/IR/Instruction.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/KnownBits.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Transforms/Vectorize.h" 82 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstdlib> 86 #include <tuple> 87 #include <utility> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "load-store-vectorizer" 92 93 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 94 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 95 96 // FIXME: Assuming stack alignment of 4 is always good enough 97 static const unsigned StackAdjustedAlignment = 4; 98 99 namespace { 100 101 /// ChainID is an arbitrary token that is allowed to be different only for the 102 /// accesses that are guaranteed to be considered non-consecutive by 103 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions 104 /// together and reducing the number of instructions the main search operates on 105 /// at a time, i.e. this is to reduce compile time and nothing else as the main 106 /// search has O(n^2) time complexity. The underlying type of ChainID should not 107 /// be relied upon. 108 using ChainID = const Value *; 109 using InstrList = SmallVector<Instruction *, 8>; 110 using InstrListMap = MapVector<ChainID, InstrList>; 111 112 class Vectorizer { 113 Function &F; 114 AliasAnalysis &AA; 115 DominatorTree &DT; 116 ScalarEvolution &SE; 117 TargetTransformInfo &TTI; 118 const DataLayout &DL; 119 IRBuilder<> Builder; 120 121 public: 122 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 123 ScalarEvolution &SE, TargetTransformInfo &TTI) 124 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 125 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 126 127 bool run(); 128 129 private: 130 unsigned getPointerAddressSpace(Value *I); 131 132 unsigned getAlignment(LoadInst *LI) const { 133 unsigned Align = LI->getAlignment(); 134 if (Align != 0) 135 return Align; 136 137 return DL.getABITypeAlignment(LI->getType()); 138 } 139 140 unsigned getAlignment(StoreInst *SI) const { 141 unsigned Align = SI->getAlignment(); 142 if (Align != 0) 143 return Align; 144 145 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 146 } 147 148 static const unsigned MaxDepth = 3; 149 150 bool isConsecutiveAccess(Value *A, Value *B); 151 bool areConsecutivePointers(Value *PtrA, Value *PtrB, const APInt &PtrDelta, 152 unsigned Depth = 0) const; 153 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, 154 unsigned Depth) const; 155 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, 156 unsigned Depth) const; 157 158 /// After vectorization, reorder the instructions that I depends on 159 /// (the instructions defining its operands), to ensure they dominate I. 160 void reorder(Instruction *I); 161 162 /// Returns the first and the last instructions in Chain. 163 std::pair<BasicBlock::iterator, BasicBlock::iterator> 164 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 165 166 /// Erases the original instructions after vectorizing. 167 void eraseInstructions(ArrayRef<Instruction *> Chain); 168 169 /// "Legalize" the vector type that would be produced by combining \p 170 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 171 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 172 /// expected to have more than 4 elements. 173 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 174 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 175 176 /// Finds the largest prefix of Chain that's vectorizable, checking for 177 /// intervening instructions which may affect the memory accessed by the 178 /// instructions within Chain. 179 /// 180 /// The elements of \p Chain must be all loads or all stores and must be in 181 /// address order. 182 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 183 184 /// Collects load and store instructions to vectorize. 185 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 186 187 /// Processes the collected instructions, the \p Map. The values of \p Map 188 /// should be all loads or all stores. 189 bool vectorizeChains(InstrListMap &Map); 190 191 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 192 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 193 194 /// Vectorizes the load instructions in Chain. 195 bool 196 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 197 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 198 199 /// Vectorizes the store instructions in Chain. 200 bool 201 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 202 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 203 204 /// Check if this load/store access is misaligned accesses. 205 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 206 unsigned Alignment); 207 }; 208 209 class LoadStoreVectorizerLegacyPass : public FunctionPass { 210 public: 211 static char ID; 212 213 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { 214 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry()); 215 } 216 217 bool runOnFunction(Function &F) override; 218 219 StringRef getPassName() const override { 220 return "GPU Load and Store Vectorizer"; 221 } 222 223 void getAnalysisUsage(AnalysisUsage &AU) const override { 224 AU.addRequired<AAResultsWrapperPass>(); 225 AU.addRequired<ScalarEvolutionWrapperPass>(); 226 AU.addRequired<DominatorTreeWrapperPass>(); 227 AU.addRequired<TargetTransformInfoWrapperPass>(); 228 AU.setPreservesCFG(); 229 } 230 }; 231 232 } // end anonymous namespace 233 234 char LoadStoreVectorizerLegacyPass::ID = 0; 235 236 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 237 "Vectorize load and Store instructions", false, false) 238 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 239 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 240 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 241 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 242 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 243 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 244 "Vectorize load and store instructions", false, false) 245 246 Pass *llvm::createLoadStoreVectorizerPass() { 247 return new LoadStoreVectorizerLegacyPass(); 248 } 249 250 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { 251 // Don't vectorize when the attribute NoImplicitFloat is used. 252 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 253 return false; 254 255 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 256 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 257 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 258 TargetTransformInfo &TTI = 259 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 260 261 Vectorizer V(F, AA, DT, SE, TTI); 262 return V.run(); 263 } 264 265 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 266 // Don't vectorize when the attribute NoImplicitFloat is used. 267 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 268 return PreservedAnalyses::all(); 269 270 AliasAnalysis &AA = AM.getResult<AAManager>(F); 271 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 272 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 273 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 274 275 Vectorizer V(F, AA, DT, SE, TTI); 276 bool Changed = V.run(); 277 PreservedAnalyses PA; 278 PA.preserveSet<CFGAnalyses>(); 279 return Changed ? PA : PreservedAnalyses::all(); 280 } 281 282 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 283 // vectors of Instructions. 284 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 285 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 286 propagateMetadata(I, VL); 287 } 288 289 // Vectorizer Implementation 290 bool Vectorizer::run() { 291 bool Changed = false; 292 293 // Scan the blocks in the function in post order. 294 for (BasicBlock *BB : post_order(&F)) { 295 InstrListMap LoadRefs, StoreRefs; 296 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 297 Changed |= vectorizeChains(LoadRefs); 298 Changed |= vectorizeChains(StoreRefs); 299 } 300 301 return Changed; 302 } 303 304 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 305 if (LoadInst *L = dyn_cast<LoadInst>(I)) 306 return L->getPointerAddressSpace(); 307 if (StoreInst *S = dyn_cast<StoreInst>(I)) 308 return S->getPointerAddressSpace(); 309 return -1; 310 } 311 312 // FIXME: Merge with llvm::isConsecutiveAccess 313 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 314 Value *PtrA = getLoadStorePointerOperand(A); 315 Value *PtrB = getLoadStorePointerOperand(B); 316 unsigned ASA = getPointerAddressSpace(A); 317 unsigned ASB = getPointerAddressSpace(B); 318 319 // Check that the address spaces match and that the pointers are valid. 320 if (!PtrA || !PtrB || (ASA != ASB)) 321 return false; 322 323 // Make sure that A and B are different pointers of the same size type. 324 Type *PtrATy = PtrA->getType()->getPointerElementType(); 325 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 326 if (PtrA == PtrB || 327 PtrATy->isVectorTy() != PtrBTy->isVectorTy() || 328 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 329 DL.getTypeStoreSize(PtrATy->getScalarType()) != 330 DL.getTypeStoreSize(PtrBTy->getScalarType())) 331 return false; 332 333 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 334 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 335 336 return areConsecutivePointers(PtrA, PtrB, Size); 337 } 338 339 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB, 340 const APInt &PtrDelta, 341 unsigned Depth) const { 342 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType()); 343 APInt OffsetA(PtrBitWidth, 0); 344 APInt OffsetB(PtrBitWidth, 0); 345 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 346 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 347 348 APInt OffsetDelta = OffsetB - OffsetA; 349 350 // Check if they are based on the same pointer. That makes the offsets 351 // sufficient. 352 if (PtrA == PtrB) 353 return OffsetDelta == PtrDelta; 354 355 // Compute the necessary base pointer delta to have the necessary final delta 356 // equal to the pointer delta requested. 357 APInt BaseDelta = PtrDelta - OffsetDelta; 358 359 // Compute the distance with SCEV between the base pointers. 360 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 361 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 362 const SCEV *C = SE.getConstant(BaseDelta); 363 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 364 if (X == PtrSCEVB) 365 return true; 366 367 // The above check will not catch the cases where one of the pointers is 368 // factorized but the other one is not, such as (C + (S * (A + B))) vs 369 // (AS + BS). Get the minus scev. That will allow re-combining the expresions 370 // and getting the simplified difference. 371 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA); 372 if (C == Dist) 373 return true; 374 375 // Sometimes even this doesn't work, because SCEV can't always see through 376 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 377 // things the hard way. 378 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth); 379 } 380 381 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB, 382 APInt PtrDelta, 383 unsigned Depth) const { 384 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); 385 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); 386 if (!GEPA || !GEPB) 387 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth); 388 389 // Look through GEPs after checking they're the same except for the last 390 // index. 391 if (GEPA->getNumOperands() != GEPB->getNumOperands() || 392 GEPA->getPointerOperand() != GEPB->getPointerOperand()) 393 return false; 394 gep_type_iterator GTIA = gep_type_begin(GEPA); 395 gep_type_iterator GTIB = gep_type_begin(GEPB); 396 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { 397 if (GTIA.getOperand() != GTIB.getOperand()) 398 return false; 399 ++GTIA; 400 ++GTIB; 401 } 402 403 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); 404 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); 405 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 406 OpA->getType() != OpB->getType()) 407 return false; 408 409 if (PtrDelta.isNegative()) { 410 if (PtrDelta.isMinSignedValue()) 411 return false; 412 PtrDelta.negate(); 413 std::swap(OpA, OpB); 414 } 415 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); 416 if (PtrDelta.urem(Stride) != 0) 417 return false; 418 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits(); 419 APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth); 420 421 // Only look through a ZExt/SExt. 422 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 423 return false; 424 425 bool Signed = isa<SExtInst>(OpA); 426 427 // At this point A could be a function parameter, i.e. not an instruction 428 Value *ValA = OpA->getOperand(0); 429 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 430 if (!OpB || ValA->getType() != OpB->getType()) 431 return false; 432 433 // Now we need to prove that adding IdxDiff to ValA won't overflow. 434 bool Safe = false; 435 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to 436 // ValA, we're okay. 437 if (OpB->getOpcode() == Instruction::Add && 438 isa<ConstantInt>(OpB->getOperand(1)) && 439 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) { 440 if (Signed) 441 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 442 else 443 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 444 } 445 446 unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); 447 448 // Second attempt: 449 // If all set bits of IdxDiff or any higher order bit other than the sign bit 450 // are known to be zero in ValA, we can add Diff to it while guaranteeing no 451 // overflow of any sort. 452 if (!Safe) { 453 OpA = dyn_cast<Instruction>(ValA); 454 if (!OpA) 455 return false; 456 KnownBits Known(BitWidth); 457 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); 458 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); 459 if (Signed) 460 BitsAllowedToBeSet.clearBit(BitWidth - 1); 461 if (BitsAllowedToBeSet.ult(IdxDiff)) 462 return false; 463 } 464 465 const SCEV *OffsetSCEVA = SE.getSCEV(ValA); 466 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 467 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth)); 468 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C); 469 return X == OffsetSCEVB; 470 } 471 472 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB, 473 const APInt &PtrDelta, 474 unsigned Depth) const { 475 if (Depth++ == MaxDepth) 476 return false; 477 478 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { 479 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { 480 return SelectA->getCondition() == SelectB->getCondition() && 481 areConsecutivePointers(SelectA->getTrueValue(), 482 SelectB->getTrueValue(), PtrDelta, Depth) && 483 areConsecutivePointers(SelectA->getFalseValue(), 484 SelectB->getFalseValue(), PtrDelta, Depth); 485 } 486 } 487 return false; 488 } 489 490 void Vectorizer::reorder(Instruction *I) { 491 OrderedBasicBlock OBB(I->getParent()); 492 SmallPtrSet<Instruction *, 16> InstructionsToMove; 493 SmallVector<Instruction *, 16> Worklist; 494 495 Worklist.push_back(I); 496 while (!Worklist.empty()) { 497 Instruction *IW = Worklist.pop_back_val(); 498 int NumOperands = IW->getNumOperands(); 499 for (int i = 0; i < NumOperands; i++) { 500 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 501 if (!IM || IM->getOpcode() == Instruction::PHI) 502 continue; 503 504 // If IM is in another BB, no need to move it, because this pass only 505 // vectorizes instructions within one BB. 506 if (IM->getParent() != I->getParent()) 507 continue; 508 509 if (!OBB.dominates(IM, I)) { 510 InstructionsToMove.insert(IM); 511 Worklist.push_back(IM); 512 } 513 } 514 } 515 516 // All instructions to move should follow I. Start from I, not from begin(). 517 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 518 ++BBI) { 519 if (!InstructionsToMove.count(&*BBI)) 520 continue; 521 Instruction *IM = &*BBI; 522 --BBI; 523 IM->removeFromParent(); 524 IM->insertBefore(I); 525 } 526 } 527 528 std::pair<BasicBlock::iterator, BasicBlock::iterator> 529 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 530 Instruction *C0 = Chain[0]; 531 BasicBlock::iterator FirstInstr = C0->getIterator(); 532 BasicBlock::iterator LastInstr = C0->getIterator(); 533 534 BasicBlock *BB = C0->getParent(); 535 unsigned NumFound = 0; 536 for (Instruction &I : *BB) { 537 if (!is_contained(Chain, &I)) 538 continue; 539 540 ++NumFound; 541 if (NumFound == 1) { 542 FirstInstr = I.getIterator(); 543 } 544 if (NumFound == Chain.size()) { 545 LastInstr = I.getIterator(); 546 break; 547 } 548 } 549 550 // Range is [first, last). 551 return std::make_pair(FirstInstr, ++LastInstr); 552 } 553 554 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 555 SmallVector<Instruction *, 16> Instrs; 556 for (Instruction *I : Chain) { 557 Value *PtrOperand = getLoadStorePointerOperand(I); 558 assert(PtrOperand && "Instruction must have a pointer operand."); 559 Instrs.push_back(I); 560 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 561 Instrs.push_back(GEP); 562 } 563 564 // Erase instructions. 565 for (Instruction *I : Instrs) 566 if (I->use_empty()) 567 I->eraseFromParent(); 568 } 569 570 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 571 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 572 unsigned ElementSizeBits) { 573 unsigned ElementSizeBytes = ElementSizeBits / 8; 574 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 575 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 576 if (NumLeft == Chain.size()) { 577 if ((NumLeft & 1) == 0) 578 NumLeft /= 2; // Split even in half 579 else 580 --NumLeft; // Split off last element 581 } else if (NumLeft == 0) 582 NumLeft = 1; 583 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 584 } 585 586 ArrayRef<Instruction *> 587 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 588 // These are in BB order, unlike Chain, which is in address order. 589 SmallVector<Instruction *, 16> MemoryInstrs; 590 SmallVector<Instruction *, 16> ChainInstrs; 591 592 bool IsLoadChain = isa<LoadInst>(Chain[0]); 593 LLVM_DEBUG({ 594 for (Instruction *I : Chain) { 595 if (IsLoadChain) 596 assert(isa<LoadInst>(I) && 597 "All elements of Chain must be loads, or all must be stores."); 598 else 599 assert(isa<StoreInst>(I) && 600 "All elements of Chain must be loads, or all must be stores."); 601 } 602 }); 603 604 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 605 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 606 if (!is_contained(Chain, &I)) 607 MemoryInstrs.push_back(&I); 608 else 609 ChainInstrs.push_back(&I); 610 } else if (isa<IntrinsicInst>(&I) && 611 cast<IntrinsicInst>(&I)->getIntrinsicID() == 612 Intrinsic::sideeffect) { 613 // Ignore llvm.sideeffect calls. 614 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 615 LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I 616 << '\n'); 617 break; 618 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 619 LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 620 << '\n'); 621 break; 622 } 623 } 624 625 OrderedBasicBlock OBB(Chain[0]->getParent()); 626 627 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 628 unsigned ChainInstrIdx = 0; 629 Instruction *BarrierMemoryInstr = nullptr; 630 631 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 632 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 633 634 // If a barrier memory instruction was found, chain instructions that follow 635 // will not be added to the valid prefix. 636 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) 637 break; 638 639 // Check (in BB order) if any instruction prevents ChainInstr from being 640 // vectorized. Find and store the first such "conflicting" instruction. 641 for (Instruction *MemInstr : MemoryInstrs) { 642 // If a barrier memory instruction was found, do not check past it. 643 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) 644 break; 645 646 auto *MemLoad = dyn_cast<LoadInst>(MemInstr); 647 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr); 648 if (MemLoad && ChainLoad) 649 continue; 650 651 // We can ignore the alias if the we have a load store pair and the load 652 // is known to be invariant. The load cannot be clobbered by the store. 653 auto IsInvariantLoad = [](const LoadInst *LI) -> bool { 654 return LI->getMetadata(LLVMContext::MD_invariant_load); 655 }; 656 657 // We can ignore the alias as long as the load comes before the store, 658 // because that means we won't be moving the load past the store to 659 // vectorize it (the vectorized load is inserted at the location of the 660 // first load in the chain). 661 if (isa<StoreInst>(MemInstr) && ChainLoad && 662 (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr))) 663 continue; 664 665 // Same case, but in reverse. 666 if (MemLoad && isa<StoreInst>(ChainInstr) && 667 (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr))) 668 continue; 669 670 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 671 MemoryLocation::get(ChainInstr))) { 672 LLVM_DEBUG({ 673 dbgs() << "LSV: Found alias:\n" 674 " Aliasing instruction and pointer:\n" 675 << " " << *MemInstr << '\n' 676 << " " << *getLoadStorePointerOperand(MemInstr) << '\n' 677 << " Aliased instruction and pointer:\n" 678 << " " << *ChainInstr << '\n' 679 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; 680 }); 681 // Save this aliasing memory instruction as a barrier, but allow other 682 // instructions that precede the barrier to be vectorized with this one. 683 BarrierMemoryInstr = MemInstr; 684 break; 685 } 686 } 687 // Continue the search only for store chains, since vectorizing stores that 688 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 689 // up to an aliasing store, but should not pull loads from further down in 690 // the basic block. 691 if (IsLoadChain && BarrierMemoryInstr) { 692 // The BarrierMemoryInstr is a store that precedes ChainInstr. 693 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); 694 break; 695 } 696 } 697 698 // Find the largest prefix of Chain whose elements are all in 699 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 700 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 701 // order.) 702 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 703 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 704 unsigned ChainIdx = 0; 705 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 706 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 707 break; 708 } 709 return Chain.slice(0, ChainIdx); 710 } 711 712 static ChainID getChainID(const Value *Ptr, const DataLayout &DL) { 713 const Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 714 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { 715 // The select's themselves are distinct instructions even if they share the 716 // same condition and evaluate to consecutive pointers for true and false 717 // values of the condition. Therefore using the select's themselves for 718 // grouping instructions would put consecutive accesses into different lists 719 // and they won't be even checked for being consecutive, and won't be 720 // vectorized. 721 return Sel->getCondition(); 722 } 723 return ObjPtr; 724 } 725 726 std::pair<InstrListMap, InstrListMap> 727 Vectorizer::collectInstructions(BasicBlock *BB) { 728 InstrListMap LoadRefs; 729 InstrListMap StoreRefs; 730 731 for (Instruction &I : *BB) { 732 if (!I.mayReadOrWriteMemory()) 733 continue; 734 735 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 736 if (!LI->isSimple()) 737 continue; 738 739 // Skip if it's not legal. 740 if (!TTI.isLegalToVectorizeLoad(LI)) 741 continue; 742 743 Type *Ty = LI->getType(); 744 if (!VectorType::isValidElementType(Ty->getScalarType())) 745 continue; 746 747 // Skip weird non-byte sizes. They probably aren't worth the effort of 748 // handling correctly. 749 unsigned TySize = DL.getTypeSizeInBits(Ty); 750 if ((TySize % 8) != 0) 751 continue; 752 753 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 754 // functions are currently using an integer type for the vectorized 755 // load/store, and does not support casting between the integer type and a 756 // vector of pointers (e.g. i64 to <2 x i16*>) 757 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 758 continue; 759 760 Value *Ptr = LI->getPointerOperand(); 761 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 762 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 763 764 unsigned VF = VecRegSize / TySize; 765 VectorType *VecTy = dyn_cast<VectorType>(Ty); 766 767 // No point in looking at these if they're too big to vectorize. 768 if (TySize > VecRegSize / 2 || 769 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 770 continue; 771 772 // Make sure all the users of a vector are constant-index extracts. 773 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 774 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 775 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 776 })) 777 continue; 778 779 // Save the load locations. 780 const ChainID ID = getChainID(Ptr, DL); 781 LoadRefs[ID].push_back(LI); 782 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 783 if (!SI->isSimple()) 784 continue; 785 786 // Skip if it's not legal. 787 if (!TTI.isLegalToVectorizeStore(SI)) 788 continue; 789 790 Type *Ty = SI->getValueOperand()->getType(); 791 if (!VectorType::isValidElementType(Ty->getScalarType())) 792 continue; 793 794 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 795 // functions are currently using an integer type for the vectorized 796 // load/store, and does not support casting between the integer type and a 797 // vector of pointers (e.g. i64 to <2 x i16*>) 798 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 799 continue; 800 801 // Skip weird non-byte sizes. They probably aren't worth the effort of 802 // handling correctly. 803 unsigned TySize = DL.getTypeSizeInBits(Ty); 804 if ((TySize % 8) != 0) 805 continue; 806 807 Value *Ptr = SI->getPointerOperand(); 808 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 809 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 810 811 unsigned VF = VecRegSize / TySize; 812 VectorType *VecTy = dyn_cast<VectorType>(Ty); 813 814 // No point in looking at these if they're too big to vectorize. 815 if (TySize > VecRegSize / 2 || 816 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 817 continue; 818 819 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 820 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 821 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 822 })) 823 continue; 824 825 // Save store location. 826 const ChainID ID = getChainID(Ptr, DL); 827 StoreRefs[ID].push_back(SI); 828 } 829 } 830 831 return {LoadRefs, StoreRefs}; 832 } 833 834 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 835 bool Changed = false; 836 837 for (const std::pair<ChainID, InstrList> &Chain : Map) { 838 unsigned Size = Chain.second.size(); 839 if (Size < 2) 840 continue; 841 842 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 843 844 // Process the stores in chunks of 64. 845 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 846 unsigned Len = std::min<unsigned>(CE - CI, 64); 847 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 848 Changed |= vectorizeInstructions(Chunk); 849 } 850 } 851 852 return Changed; 853 } 854 855 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 856 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() 857 << " instructions.\n"); 858 SmallVector<int, 16> Heads, Tails; 859 int ConsecutiveChain[64]; 860 861 // Do a quadratic search on all of the given loads/stores and find all of the 862 // pairs of loads/stores that follow each other. 863 for (int i = 0, e = Instrs.size(); i < e; ++i) { 864 ConsecutiveChain[i] = -1; 865 for (int j = e - 1; j >= 0; --j) { 866 if (i == j) 867 continue; 868 869 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 870 if (ConsecutiveChain[i] != -1) { 871 int CurDistance = std::abs(ConsecutiveChain[i] - i); 872 int NewDistance = std::abs(ConsecutiveChain[i] - j); 873 if (j < i || NewDistance > CurDistance) 874 continue; // Should not insert. 875 } 876 877 Tails.push_back(j); 878 Heads.push_back(i); 879 ConsecutiveChain[i] = j; 880 } 881 } 882 } 883 884 bool Changed = false; 885 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 886 887 for (int Head : Heads) { 888 if (InstructionsProcessed.count(Instrs[Head])) 889 continue; 890 bool LongerChainExists = false; 891 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 892 if (Head == Tails[TIt] && 893 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 894 LongerChainExists = true; 895 break; 896 } 897 if (LongerChainExists) 898 continue; 899 900 // We found an instr that starts a chain. Now follow the chain and try to 901 // vectorize it. 902 SmallVector<Instruction *, 16> Operands; 903 int I = Head; 904 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 905 if (InstructionsProcessed.count(Instrs[I])) 906 break; 907 908 Operands.push_back(Instrs[I]); 909 I = ConsecutiveChain[I]; 910 } 911 912 bool Vectorized = false; 913 if (isa<LoadInst>(*Operands.begin())) 914 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 915 else 916 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 917 918 Changed |= Vectorized; 919 } 920 921 return Changed; 922 } 923 924 bool Vectorizer::vectorizeStoreChain( 925 ArrayRef<Instruction *> Chain, 926 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 927 StoreInst *S0 = cast<StoreInst>(Chain[0]); 928 929 // If the vector has an int element, default to int for the whole store. 930 Type *StoreTy; 931 for (Instruction *I : Chain) { 932 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 933 if (StoreTy->isIntOrIntVectorTy()) 934 break; 935 936 if (StoreTy->isPtrOrPtrVectorTy()) { 937 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 938 DL.getTypeSizeInBits(StoreTy)); 939 break; 940 } 941 } 942 943 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 944 unsigned AS = S0->getPointerAddressSpace(); 945 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 946 unsigned VF = VecRegSize / Sz; 947 unsigned ChainSize = Chain.size(); 948 unsigned Alignment = getAlignment(S0); 949 950 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 951 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 952 return false; 953 } 954 955 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 956 if (NewChain.empty()) { 957 // No vectorization possible. 958 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 959 return false; 960 } 961 if (NewChain.size() == 1) { 962 // Failed after the first instruction. Discard it and try the smaller chain. 963 InstructionsProcessed->insert(NewChain.front()); 964 return false; 965 } 966 967 // Update Chain to the valid vectorizable subchain. 968 Chain = NewChain; 969 ChainSize = Chain.size(); 970 971 // Check if it's legal to vectorize this chain. If not, split the chain and 972 // try again. 973 unsigned EltSzInBytes = Sz / 8; 974 unsigned SzInBytes = EltSzInBytes * ChainSize; 975 976 VectorType *VecTy; 977 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 978 if (VecStoreTy) 979 VecTy = VectorType::get(StoreTy->getScalarType(), 980 Chain.size() * VecStoreTy->getNumElements()); 981 else 982 VecTy = VectorType::get(StoreTy, Chain.size()); 983 984 // If it's more than the max vector size or the target has a better 985 // vector factor, break it into two pieces. 986 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 987 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 988 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 989 " Creating two separate arrays.\n"); 990 return vectorizeStoreChain(Chain.slice(0, TargetVF), 991 InstructionsProcessed) | 992 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 993 } 994 995 LLVM_DEBUG({ 996 dbgs() << "LSV: Stores to vectorize:\n"; 997 for (Instruction *I : Chain) 998 dbgs() << " " << *I << "\n"; 999 }); 1000 1001 // We won't try again to vectorize the elements of the chain, regardless of 1002 // whether we succeed below. 1003 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1004 1005 // If the store is going to be misaligned, don't vectorize it. 1006 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1007 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1008 auto Chains = splitOddVectorElts(Chain, Sz); 1009 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1010 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1011 } 1012 1013 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 1014 StackAdjustedAlignment, 1015 DL, S0, nullptr, &DT); 1016 if (NewAlign != 0) 1017 Alignment = NewAlign; 1018 } 1019 1020 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { 1021 auto Chains = splitOddVectorElts(Chain, Sz); 1022 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1023 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1024 } 1025 1026 BasicBlock::iterator First, Last; 1027 std::tie(First, Last) = getBoundaryInstrs(Chain); 1028 Builder.SetInsertPoint(&*Last); 1029 1030 Value *Vec = UndefValue::get(VecTy); 1031 1032 if (VecStoreTy) { 1033 unsigned VecWidth = VecStoreTy->getNumElements(); 1034 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1035 StoreInst *Store = cast<StoreInst>(Chain[I]); 1036 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 1037 unsigned NewIdx = J + I * VecWidth; 1038 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 1039 Builder.getInt32(J)); 1040 if (Extract->getType() != StoreTy->getScalarType()) 1041 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 1042 1043 Value *Insert = 1044 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 1045 Vec = Insert; 1046 } 1047 } 1048 } else { 1049 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1050 StoreInst *Store = cast<StoreInst>(Chain[I]); 1051 Value *Extract = Store->getValueOperand(); 1052 if (Extract->getType() != StoreTy->getScalarType()) 1053 Extract = 1054 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 1055 1056 Value *Insert = 1057 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 1058 Vec = Insert; 1059 } 1060 } 1061 1062 StoreInst *SI = Builder.CreateAlignedStore( 1063 Vec, 1064 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)), 1065 Alignment); 1066 propagateMetadata(SI, Chain); 1067 1068 eraseInstructions(Chain); 1069 ++NumVectorInstructions; 1070 NumScalarsVectorized += Chain.size(); 1071 return true; 1072 } 1073 1074 bool Vectorizer::vectorizeLoadChain( 1075 ArrayRef<Instruction *> Chain, 1076 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 1077 LoadInst *L0 = cast<LoadInst>(Chain[0]); 1078 1079 // If the vector has an int element, default to int for the whole load. 1080 Type *LoadTy; 1081 for (const auto &V : Chain) { 1082 LoadTy = cast<LoadInst>(V)->getType(); 1083 if (LoadTy->isIntOrIntVectorTy()) 1084 break; 1085 1086 if (LoadTy->isPtrOrPtrVectorTy()) { 1087 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 1088 DL.getTypeSizeInBits(LoadTy)); 1089 break; 1090 } 1091 } 1092 1093 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 1094 unsigned AS = L0->getPointerAddressSpace(); 1095 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1096 unsigned VF = VecRegSize / Sz; 1097 unsigned ChainSize = Chain.size(); 1098 unsigned Alignment = getAlignment(L0); 1099 1100 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 1101 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1102 return false; 1103 } 1104 1105 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 1106 if (NewChain.empty()) { 1107 // No vectorization possible. 1108 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1109 return false; 1110 } 1111 if (NewChain.size() == 1) { 1112 // Failed after the first instruction. Discard it and try the smaller chain. 1113 InstructionsProcessed->insert(NewChain.front()); 1114 return false; 1115 } 1116 1117 // Update Chain to the valid vectorizable subchain. 1118 Chain = NewChain; 1119 ChainSize = Chain.size(); 1120 1121 // Check if it's legal to vectorize this chain. If not, split the chain and 1122 // try again. 1123 unsigned EltSzInBytes = Sz / 8; 1124 unsigned SzInBytes = EltSzInBytes * ChainSize; 1125 VectorType *VecTy; 1126 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 1127 if (VecLoadTy) 1128 VecTy = VectorType::get(LoadTy->getScalarType(), 1129 Chain.size() * VecLoadTy->getNumElements()); 1130 else 1131 VecTy = VectorType::get(LoadTy, Chain.size()); 1132 1133 // If it's more than the max vector size or the target has a better 1134 // vector factor, break it into two pieces. 1135 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 1136 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1137 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1138 " Creating two separate arrays.\n"); 1139 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 1140 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 1141 } 1142 1143 // We won't try again to vectorize the elements of the chain, regardless of 1144 // whether we succeed below. 1145 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1146 1147 // If the load is going to be misaligned, don't vectorize it. 1148 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1149 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1150 auto Chains = splitOddVectorElts(Chain, Sz); 1151 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1152 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1153 } 1154 1155 unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 1156 StackAdjustedAlignment, 1157 DL, L0, nullptr, &DT); 1158 if (NewAlign != 0) 1159 Alignment = NewAlign; 1160 1161 Alignment = NewAlign; 1162 } 1163 1164 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { 1165 auto Chains = splitOddVectorElts(Chain, Sz); 1166 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1167 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1168 } 1169 1170 LLVM_DEBUG({ 1171 dbgs() << "LSV: Loads to vectorize:\n"; 1172 for (Instruction *I : Chain) 1173 I->dump(); 1174 }); 1175 1176 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1177 // Last may have changed since then, but the value of First won't have. If it 1178 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1179 BasicBlock::iterator First, Last; 1180 std::tie(First, Last) = getBoundaryInstrs(Chain); 1181 Builder.SetInsertPoint(&*First); 1182 1183 Value *Bitcast = 1184 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1185 LoadInst *LI = Builder.CreateAlignedLoad(Bitcast, Alignment); 1186 propagateMetadata(LI, Chain); 1187 1188 if (VecLoadTy) { 1189 SmallVector<Instruction *, 16> InstrsToErase; 1190 1191 unsigned VecWidth = VecLoadTy->getNumElements(); 1192 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1193 for (auto Use : Chain[I]->users()) { 1194 // All users of vector loads are ExtractElement instructions with 1195 // constant indices, otherwise we would have bailed before now. 1196 Instruction *UI = cast<Instruction>(Use); 1197 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1198 unsigned NewIdx = Idx + I * VecWidth; 1199 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1200 UI->getName()); 1201 if (V->getType() != UI->getType()) 1202 V = Builder.CreateBitCast(V, UI->getType()); 1203 1204 // Replace the old instruction. 1205 UI->replaceAllUsesWith(V); 1206 InstrsToErase.push_back(UI); 1207 } 1208 } 1209 1210 // Bitcast might not be an Instruction, if the value being loaded is a 1211 // constant. In that case, no need to reorder anything. 1212 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1213 reorder(BitcastInst); 1214 1215 for (auto I : InstrsToErase) 1216 I->eraseFromParent(); 1217 } else { 1218 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1219 Value *CV = Chain[I]; 1220 Value *V = 1221 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1222 if (V->getType() != CV->getType()) { 1223 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1224 } 1225 1226 // Replace the old instruction. 1227 CV->replaceAllUsesWith(V); 1228 } 1229 1230 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1231 reorder(BitcastInst); 1232 } 1233 1234 eraseInstructions(Chain); 1235 1236 ++NumVectorInstructions; 1237 NumScalarsVectorized += Chain.size(); 1238 return true; 1239 } 1240 1241 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1242 unsigned Alignment) { 1243 if (Alignment % SzInBytes == 0) 1244 return false; 1245 1246 bool Fast = false; 1247 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1248 SzInBytes * 8, AddressSpace, 1249 Alignment, &Fast); 1250 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1251 << " and fast? " << Fast << "\n";); 1252 return !Allows || !Fast; 1253 } 1254