1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Target/TargetLibraryInfo.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 41 cl::desc("Treat error-reporting calls as cold")); 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc::Func Func) { 55 switch (Func) { 56 case LibFunc::abs: 57 case LibFunc::labs: 58 case LibFunc::llabs: 59 case LibFunc::strlen: 60 return true; 61 default: 62 return false; 63 } 64 llvm_unreachable("All cases should be covered in the switch."); 65 } 66 67 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 68 /// value is equal or not-equal to zero. 69 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 70 for (User *U : V->users()) { 71 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 72 if (IC->isEquality()) 73 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 74 if (C->isNullValue()) 75 continue; 76 // Unknown instruction. 77 return false; 78 } 79 return true; 80 } 81 82 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality 83 /// comparisons with With. 84 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 85 for (User *U : V->users()) { 86 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 87 if (IC->isEquality() && IC->getOperand(1) == With) 88 continue; 89 // Unknown instruction. 90 return false; 91 } 92 return true; 93 } 94 95 static bool callHasFloatingPointArgument(const CallInst *CI) { 96 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); 97 it != e; ++it) { 98 if ((*it)->getType()->isFloatingPointTy()) 99 return true; 100 } 101 return false; 102 } 103 104 /// \brief Check whether the overloaded unary floating point function 105 /// corresponing to \a Ty is available. 106 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 107 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 108 LibFunc::Func LongDoubleFn) { 109 switch (Ty->getTypeID()) { 110 case Type::FloatTyID: 111 return TLI->has(FloatFn); 112 case Type::DoubleTyID: 113 return TLI->has(DoubleFn); 114 default: 115 return TLI->has(LongDoubleFn); 116 } 117 } 118 119 /// \brief Returns whether \p F matches the signature expected for the 120 /// string/memory copying library function \p Func. 121 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset. 122 /// Their fortified (_chk) counterparts are also accepted. 123 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func, 124 const DataLayout *DL) { 125 FunctionType *FT = F->getFunctionType(); 126 LLVMContext &Context = F->getContext(); 127 Type *PCharTy = Type::getInt8PtrTy(Context); 128 Type *SizeTTy = DL ? DL->getIntPtrType(Context) : nullptr; 129 unsigned NumParams = FT->getNumParams(); 130 131 // All string libfuncs return the same type as the first parameter. 132 if (FT->getReturnType() != FT->getParamType(0)) 133 return false; 134 135 switch (Func) { 136 default: 137 llvm_unreachable("Can't check signature for non-string-copy libfunc."); 138 case LibFunc::stpncpy_chk: 139 case LibFunc::strncpy_chk: 140 --NumParams; // fallthrough 141 case LibFunc::stpncpy: 142 case LibFunc::strncpy: { 143 if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) || 144 FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy()) 145 return false; 146 break; 147 } 148 case LibFunc::strcpy_chk: 149 case LibFunc::stpcpy_chk: 150 --NumParams; // fallthrough 151 case LibFunc::stpcpy: 152 case LibFunc::strcpy: { 153 if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) || 154 FT->getParamType(0) != PCharTy) 155 return false; 156 break; 157 } 158 case LibFunc::memmove_chk: 159 case LibFunc::memcpy_chk: 160 --NumParams; // fallthrough 161 case LibFunc::memmove: 162 case LibFunc::memcpy: { 163 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 164 !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy) 165 return false; 166 break; 167 } 168 case LibFunc::memset_chk: 169 --NumParams; // fallthrough 170 case LibFunc::memset: { 171 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 172 !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy) 173 return false; 174 break; 175 } 176 } 177 // If this is a fortified libcall, the last parameter is a size_t. 178 if (NumParams == FT->getNumParams() - 1) 179 return FT->getParamType(FT->getNumParams() - 1) == SizeTTy; 180 return true; 181 } 182 183 //===----------------------------------------------------------------------===// 184 // String and Memory Library Call Optimizations 185 //===----------------------------------------------------------------------===// 186 187 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 188 Function *Callee = CI->getCalledFunction(); 189 // Verify the "strcat" function prototype. 190 FunctionType *FT = Callee->getFunctionType(); 191 if (FT->getNumParams() != 2|| 192 FT->getReturnType() != B.getInt8PtrTy() || 193 FT->getParamType(0) != FT->getReturnType() || 194 FT->getParamType(1) != FT->getReturnType()) 195 return nullptr; 196 197 // Extract some information from the instruction 198 Value *Dst = CI->getArgOperand(0); 199 Value *Src = CI->getArgOperand(1); 200 201 // See if we can get the length of the input string. 202 uint64_t Len = GetStringLength(Src); 203 if (Len == 0) 204 return nullptr; 205 --Len; // Unbias length. 206 207 // Handle the simple, do-nothing case: strcat(x, "") -> x 208 if (Len == 0) 209 return Dst; 210 211 // These optimizations require DataLayout. 212 if (!DL) 213 return nullptr; 214 215 return emitStrLenMemCpy(Src, Dst, Len, B); 216 } 217 218 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 219 IRBuilder<> &B) { 220 // We need to find the end of the destination string. That's where the 221 // memory is to be moved to. We just generate a call to strlen. 222 Value *DstLen = EmitStrLen(Dst, B, DL, TLI); 223 if (!DstLen) 224 return nullptr; 225 226 // Now that we have the destination's length, we must index into the 227 // destination's pointer to get the actual memcpy destination (end of 228 // the string .. we're concatenating). 229 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); 230 231 // We have enough information to now generate the memcpy call to do the 232 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 233 B.CreateMemCpy( 234 CpyDst, Src, 235 ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1); 236 return Dst; 237 } 238 239 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 240 Function *Callee = CI->getCalledFunction(); 241 // Verify the "strncat" function prototype. 242 FunctionType *FT = Callee->getFunctionType(); 243 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 244 FT->getParamType(0) != FT->getReturnType() || 245 FT->getParamType(1) != FT->getReturnType() || 246 !FT->getParamType(2)->isIntegerTy()) 247 return nullptr; 248 249 // Extract some information from the instruction 250 Value *Dst = CI->getArgOperand(0); 251 Value *Src = CI->getArgOperand(1); 252 uint64_t Len; 253 254 // We don't do anything if length is not constant 255 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 256 Len = LengthArg->getZExtValue(); 257 else 258 return nullptr; 259 260 // See if we can get the length of the input string. 261 uint64_t SrcLen = GetStringLength(Src); 262 if (SrcLen == 0) 263 return nullptr; 264 --SrcLen; // Unbias length. 265 266 // Handle the simple, do-nothing cases: 267 // strncat(x, "", c) -> x 268 // strncat(x, c, 0) -> x 269 if (SrcLen == 0 || Len == 0) 270 return Dst; 271 272 // These optimizations require DataLayout. 273 if (!DL) 274 return nullptr; 275 276 // We don't optimize this case 277 if (Len < SrcLen) 278 return nullptr; 279 280 // strncat(x, s, c) -> strcat(x, s) 281 // s is constant so the strcat can be optimized further 282 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 283 } 284 285 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 286 Function *Callee = CI->getCalledFunction(); 287 // Verify the "strchr" function prototype. 288 FunctionType *FT = Callee->getFunctionType(); 289 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 290 FT->getParamType(0) != FT->getReturnType() || 291 !FT->getParamType(1)->isIntegerTy(32)) 292 return nullptr; 293 294 Value *SrcStr = CI->getArgOperand(0); 295 296 // If the second operand is non-constant, see if we can compute the length 297 // of the input string and turn this into memchr. 298 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 299 if (!CharC) { 300 // These optimizations require DataLayout. 301 if (!DL) 302 return nullptr; 303 304 uint64_t Len = GetStringLength(SrcStr); 305 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 306 return nullptr; 307 308 return EmitMemChr( 309 SrcStr, CI->getArgOperand(1), // include nul. 310 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI); 311 } 312 313 // Otherwise, the character is a constant, see if the first argument is 314 // a string literal. If so, we can constant fold. 315 StringRef Str; 316 if (!getConstantStringInfo(SrcStr, Str)) { 317 if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 318 return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); 319 return nullptr; 320 } 321 322 // Compute the offset, make sure to handle the case when we're searching for 323 // zero (a weird way to spell strlen). 324 size_t I = (0xFF & CharC->getSExtValue()) == 0 325 ? Str.size() 326 : Str.find(CharC->getSExtValue()); 327 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 328 return Constant::getNullValue(CI->getType()); 329 330 // strchr(s+n,c) -> gep(s+n+i,c) 331 return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); 332 } 333 334 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 335 Function *Callee = CI->getCalledFunction(); 336 // Verify the "strrchr" function prototype. 337 FunctionType *FT = Callee->getFunctionType(); 338 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 339 FT->getParamType(0) != FT->getReturnType() || 340 !FT->getParamType(1)->isIntegerTy(32)) 341 return nullptr; 342 343 Value *SrcStr = CI->getArgOperand(0); 344 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 345 346 // Cannot fold anything if we're not looking for a constant. 347 if (!CharC) 348 return nullptr; 349 350 StringRef Str; 351 if (!getConstantStringInfo(SrcStr, Str)) { 352 // strrchr(s, 0) -> strchr(s, 0) 353 if (DL && CharC->isZero()) 354 return EmitStrChr(SrcStr, '\0', B, DL, TLI); 355 return nullptr; 356 } 357 358 // Compute the offset. 359 size_t I = (0xFF & CharC->getSExtValue()) == 0 360 ? Str.size() 361 : Str.rfind(CharC->getSExtValue()); 362 if (I == StringRef::npos) // Didn't find the char. Return null. 363 return Constant::getNullValue(CI->getType()); 364 365 // strrchr(s+n,c) -> gep(s+n+i,c) 366 return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); 367 } 368 369 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 370 Function *Callee = CI->getCalledFunction(); 371 // Verify the "strcmp" function prototype. 372 FunctionType *FT = Callee->getFunctionType(); 373 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 374 FT->getParamType(0) != FT->getParamType(1) || 375 FT->getParamType(0) != B.getInt8PtrTy()) 376 return nullptr; 377 378 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 379 if (Str1P == Str2P) // strcmp(x,x) -> 0 380 return ConstantInt::get(CI->getType(), 0); 381 382 StringRef Str1, Str2; 383 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 384 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 385 386 // strcmp(x, y) -> cnst (if both x and y are constant strings) 387 if (HasStr1 && HasStr2) 388 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 389 390 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 391 return B.CreateNeg( 392 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 393 394 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 395 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 396 397 // strcmp(P, "x") -> memcmp(P, "x", 2) 398 uint64_t Len1 = GetStringLength(Str1P); 399 uint64_t Len2 = GetStringLength(Str2P); 400 if (Len1 && Len2) { 401 // These optimizations require DataLayout. 402 if (!DL) 403 return nullptr; 404 405 return EmitMemCmp(Str1P, Str2P, 406 ConstantInt::get(DL->getIntPtrType(CI->getContext()), 407 std::min(Len1, Len2)), 408 B, DL, TLI); 409 } 410 411 return nullptr; 412 } 413 414 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 415 Function *Callee = CI->getCalledFunction(); 416 // Verify the "strncmp" function prototype. 417 FunctionType *FT = Callee->getFunctionType(); 418 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 419 FT->getParamType(0) != FT->getParamType(1) || 420 FT->getParamType(0) != B.getInt8PtrTy() || 421 !FT->getParamType(2)->isIntegerTy()) 422 return nullptr; 423 424 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 425 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 426 return ConstantInt::get(CI->getType(), 0); 427 428 // Get the length argument if it is constant. 429 uint64_t Length; 430 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 431 Length = LengthArg->getZExtValue(); 432 else 433 return nullptr; 434 435 if (Length == 0) // strncmp(x,y,0) -> 0 436 return ConstantInt::get(CI->getType(), 0); 437 438 if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 439 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 440 441 StringRef Str1, Str2; 442 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 443 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 444 445 // strncmp(x, y) -> cnst (if both x and y are constant strings) 446 if (HasStr1 && HasStr2) { 447 StringRef SubStr1 = Str1.substr(0, Length); 448 StringRef SubStr2 = Str2.substr(0, Length); 449 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 450 } 451 452 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 453 return B.CreateNeg( 454 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 455 456 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 457 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 458 459 return nullptr; 460 } 461 462 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 463 Function *Callee = CI->getCalledFunction(); 464 465 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy, DL)) 466 return nullptr; 467 468 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 469 if (Dst == Src) // strcpy(x,x) -> x 470 return Src; 471 472 // These optimizations require DataLayout. 473 if (!DL) 474 return nullptr; 475 476 // See if we can get the length of the input string. 477 uint64_t Len = GetStringLength(Src); 478 if (Len == 0) 479 return nullptr; 480 481 // We have enough information to now generate the memcpy call to do the 482 // copy for us. Make a memcpy to copy the nul byte with align = 1. 483 B.CreateMemCpy(Dst, Src, 484 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1); 485 return Dst; 486 } 487 488 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 489 Function *Callee = CI->getCalledFunction(); 490 // Verify the "stpcpy" function prototype. 491 FunctionType *FT = Callee->getFunctionType(); 492 493 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy, DL)) 494 return nullptr; 495 496 // These optimizations require DataLayout. 497 if (!DL) 498 return nullptr; 499 500 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 501 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 502 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 503 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; 504 } 505 506 // See if we can get the length of the input string. 507 uint64_t Len = GetStringLength(Src); 508 if (Len == 0) 509 return nullptr; 510 511 Type *PT = FT->getParamType(0); 512 Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); 513 Value *DstEnd = 514 B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); 515 516 // We have enough information to now generate the memcpy call to do the 517 // copy for us. Make a memcpy to copy the nul byte with align = 1. 518 B.CreateMemCpy(Dst, Src, LenV, 1); 519 return DstEnd; 520 } 521 522 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 523 Function *Callee = CI->getCalledFunction(); 524 FunctionType *FT = Callee->getFunctionType(); 525 526 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy, DL)) 527 return nullptr; 528 529 Value *Dst = CI->getArgOperand(0); 530 Value *Src = CI->getArgOperand(1); 531 Value *LenOp = CI->getArgOperand(2); 532 533 // See if we can get the length of the input string. 534 uint64_t SrcLen = GetStringLength(Src); 535 if (SrcLen == 0) 536 return nullptr; 537 --SrcLen; 538 539 if (SrcLen == 0) { 540 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 541 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 542 return Dst; 543 } 544 545 uint64_t Len; 546 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 547 Len = LengthArg->getZExtValue(); 548 else 549 return nullptr; 550 551 if (Len == 0) 552 return Dst; // strncpy(x, y, 0) -> x 553 554 // These optimizations require DataLayout. 555 if (!DL) 556 return nullptr; 557 558 // Let strncpy handle the zero padding 559 if (Len > SrcLen + 1) 560 return nullptr; 561 562 Type *PT = FT->getParamType(0); 563 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 564 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1); 565 566 return Dst; 567 } 568 569 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 570 Function *Callee = CI->getCalledFunction(); 571 FunctionType *FT = Callee->getFunctionType(); 572 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 573 !FT->getReturnType()->isIntegerTy()) 574 return nullptr; 575 576 Value *Src = CI->getArgOperand(0); 577 578 // Constant folding: strlen("xyz") -> 3 579 if (uint64_t Len = GetStringLength(Src)) 580 return ConstantInt::get(CI->getType(), Len - 1); 581 582 // strlen(x?"foo":"bars") --> x ? 3 : 4 583 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 584 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 585 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 586 if (LenTrue && LenFalse) { 587 Function *Caller = CI->getParent()->getParent(); 588 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 589 SI->getDebugLoc(), 590 "folded strlen(select) to select of constants"); 591 return B.CreateSelect(SI->getCondition(), 592 ConstantInt::get(CI->getType(), LenTrue - 1), 593 ConstantInt::get(CI->getType(), LenFalse - 1)); 594 } 595 } 596 597 // strlen(x) != 0 --> *x != 0 598 // strlen(x) == 0 --> *x == 0 599 if (isOnlyUsedInZeroEqualityComparison(CI)) 600 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 601 602 return nullptr; 603 } 604 605 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 606 Function *Callee = CI->getCalledFunction(); 607 FunctionType *FT = Callee->getFunctionType(); 608 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 609 FT->getParamType(1) != FT->getParamType(0) || 610 FT->getReturnType() != FT->getParamType(0)) 611 return nullptr; 612 613 StringRef S1, S2; 614 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 615 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 616 617 // strpbrk(s, "") -> nullptr 618 // strpbrk("", s) -> nullptr 619 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 620 return Constant::getNullValue(CI->getType()); 621 622 // Constant folding. 623 if (HasS1 && HasS2) { 624 size_t I = S1.find_first_of(S2); 625 if (I == StringRef::npos) // No match. 626 return Constant::getNullValue(CI->getType()); 627 628 return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 629 } 630 631 // strpbrk(s, "a") -> strchr(s, 'a') 632 if (DL && HasS2 && S2.size() == 1) 633 return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI); 634 635 return nullptr; 636 } 637 638 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 639 Function *Callee = CI->getCalledFunction(); 640 FunctionType *FT = Callee->getFunctionType(); 641 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 642 !FT->getParamType(0)->isPointerTy() || 643 !FT->getParamType(1)->isPointerTy()) 644 return nullptr; 645 646 Value *EndPtr = CI->getArgOperand(1); 647 if (isa<ConstantPointerNull>(EndPtr)) { 648 // With a null EndPtr, this function won't capture the main argument. 649 // It would be readonly too, except that it still may write to errno. 650 CI->addAttribute(1, Attribute::NoCapture); 651 } 652 653 return nullptr; 654 } 655 656 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 657 Function *Callee = CI->getCalledFunction(); 658 FunctionType *FT = Callee->getFunctionType(); 659 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 660 FT->getParamType(1) != FT->getParamType(0) || 661 !FT->getReturnType()->isIntegerTy()) 662 return nullptr; 663 664 StringRef S1, S2; 665 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 666 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 667 668 // strspn(s, "") -> 0 669 // strspn("", s) -> 0 670 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 671 return Constant::getNullValue(CI->getType()); 672 673 // Constant folding. 674 if (HasS1 && HasS2) { 675 size_t Pos = S1.find_first_not_of(S2); 676 if (Pos == StringRef::npos) 677 Pos = S1.size(); 678 return ConstantInt::get(CI->getType(), Pos); 679 } 680 681 return nullptr; 682 } 683 684 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 685 Function *Callee = CI->getCalledFunction(); 686 FunctionType *FT = Callee->getFunctionType(); 687 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 688 FT->getParamType(1) != FT->getParamType(0) || 689 !FT->getReturnType()->isIntegerTy()) 690 return nullptr; 691 692 StringRef S1, S2; 693 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 694 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 695 696 // strcspn("", s) -> 0 697 if (HasS1 && S1.empty()) 698 return Constant::getNullValue(CI->getType()); 699 700 // Constant folding. 701 if (HasS1 && HasS2) { 702 size_t Pos = S1.find_first_of(S2); 703 if (Pos == StringRef::npos) 704 Pos = S1.size(); 705 return ConstantInt::get(CI->getType(), Pos); 706 } 707 708 // strcspn(s, "") -> strlen(s) 709 if (DL && HasS2 && S2.empty()) 710 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); 711 712 return nullptr; 713 } 714 715 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 716 Function *Callee = CI->getCalledFunction(); 717 FunctionType *FT = Callee->getFunctionType(); 718 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 719 !FT->getParamType(1)->isPointerTy() || 720 !FT->getReturnType()->isPointerTy()) 721 return nullptr; 722 723 // fold strstr(x, x) -> x. 724 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 725 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 726 727 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 728 if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 729 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); 730 if (!StrLen) 731 return nullptr; 732 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 733 StrLen, B, DL, TLI); 734 if (!StrNCmp) 735 return nullptr; 736 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 737 ICmpInst *Old = cast<ICmpInst>(*UI++); 738 Value *Cmp = 739 B.CreateICmp(Old->getPredicate(), StrNCmp, 740 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 741 replaceAllUsesWith(Old, Cmp); 742 } 743 return CI; 744 } 745 746 // See if either input string is a constant string. 747 StringRef SearchStr, ToFindStr; 748 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 749 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 750 751 // fold strstr(x, "") -> x. 752 if (HasStr2 && ToFindStr.empty()) 753 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 754 755 // If both strings are known, constant fold it. 756 if (HasStr1 && HasStr2) { 757 size_t Offset = SearchStr.find(ToFindStr); 758 759 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 760 return Constant::getNullValue(CI->getType()); 761 762 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 763 Value *Result = CastToCStr(CI->getArgOperand(0), B); 764 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 765 return B.CreateBitCast(Result, CI->getType()); 766 } 767 768 // fold strstr(x, "y") -> strchr(x, 'y'). 769 if (HasStr2 && ToFindStr.size() == 1) { 770 Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI); 771 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 772 } 773 return nullptr; 774 } 775 776 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 777 Function *Callee = CI->getCalledFunction(); 778 FunctionType *FT = Callee->getFunctionType(); 779 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 780 !FT->getParamType(1)->isPointerTy() || 781 !FT->getReturnType()->isIntegerTy(32)) 782 return nullptr; 783 784 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 785 786 if (LHS == RHS) // memcmp(s,s,x) -> 0 787 return Constant::getNullValue(CI->getType()); 788 789 // Make sure we have a constant length. 790 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 791 if (!LenC) 792 return nullptr; 793 uint64_t Len = LenC->getZExtValue(); 794 795 if (Len == 0) // memcmp(s1,s2,0) -> 0 796 return Constant::getNullValue(CI->getType()); 797 798 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 799 if (Len == 1) { 800 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 801 CI->getType(), "lhsv"); 802 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 803 CI->getType(), "rhsv"); 804 return B.CreateSub(LHSV, RHSV, "chardiff"); 805 } 806 807 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 808 StringRef LHSStr, RHSStr; 809 if (getConstantStringInfo(LHS, LHSStr) && 810 getConstantStringInfo(RHS, RHSStr)) { 811 // Make sure we're not reading out-of-bounds memory. 812 if (Len > LHSStr.size() || Len > RHSStr.size()) 813 return nullptr; 814 // Fold the memcmp and normalize the result. This way we get consistent 815 // results across multiple platforms. 816 uint64_t Ret = 0; 817 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 818 if (Cmp < 0) 819 Ret = -1; 820 else if (Cmp > 0) 821 Ret = 1; 822 return ConstantInt::get(CI->getType(), Ret); 823 } 824 825 return nullptr; 826 } 827 828 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 829 Function *Callee = CI->getCalledFunction(); 830 // These optimizations require DataLayout. 831 if (!DL) 832 return nullptr; 833 834 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy, DL)) 835 return nullptr; 836 837 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 838 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 839 CI->getArgOperand(2), 1); 840 return CI->getArgOperand(0); 841 } 842 843 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 844 Function *Callee = CI->getCalledFunction(); 845 // These optimizations require DataLayout. 846 if (!DL) 847 return nullptr; 848 849 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove, DL)) 850 return nullptr; 851 852 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 853 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 854 CI->getArgOperand(2), 1); 855 return CI->getArgOperand(0); 856 } 857 858 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 859 Function *Callee = CI->getCalledFunction(); 860 // These optimizations require DataLayout. 861 if (!DL) 862 return nullptr; 863 864 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset, DL)) 865 return nullptr; 866 867 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 868 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 869 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 870 return CI->getArgOperand(0); 871 } 872 873 //===----------------------------------------------------------------------===// 874 // Math Library Optimizations 875 //===----------------------------------------------------------------------===// 876 877 /// Return a variant of Val with float type. 878 /// Currently this works in two cases: If Val is an FPExtension of a float 879 /// value to something bigger, simply return the operand. 880 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 881 /// loss of precision do so. 882 static Value *valueHasFloatPrecision(Value *Val) { 883 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 884 Value *Op = Cast->getOperand(0); 885 if (Op->getType()->isFloatTy()) 886 return Op; 887 } 888 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 889 APFloat F = Const->getValueAPF(); 890 bool losesInfo; 891 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 892 &losesInfo); 893 if (!losesInfo) 894 return ConstantFP::get(Const->getContext(), F); 895 } 896 return nullptr; 897 } 898 899 //===----------------------------------------------------------------------===// 900 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 901 902 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 903 bool CheckRetType) { 904 Function *Callee = CI->getCalledFunction(); 905 FunctionType *FT = Callee->getFunctionType(); 906 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 907 !FT->getParamType(0)->isDoubleTy()) 908 return nullptr; 909 910 if (CheckRetType) { 911 // Check if all the uses for function like 'sin' are converted to float. 912 for (User *U : CI->users()) { 913 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 914 if (!Cast || !Cast->getType()->isFloatTy()) 915 return nullptr; 916 } 917 } 918 919 // If this is something like 'floor((double)floatval)', convert to floorf. 920 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 921 if (V == nullptr) 922 return nullptr; 923 924 // floor((double)floatval) -> (double)floorf(floatval) 925 if (Callee->isIntrinsic()) { 926 Module *M = CI->getParent()->getParent()->getParent(); 927 Intrinsic::ID IID = (Intrinsic::ID) Callee->getIntrinsicID(); 928 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 929 V = B.CreateCall(F, V); 930 } else { 931 // The call is a library call rather than an intrinsic. 932 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 933 } 934 935 return B.CreateFPExt(V, B.getDoubleTy()); 936 } 937 938 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' 939 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 940 Function *Callee = CI->getCalledFunction(); 941 FunctionType *FT = Callee->getFunctionType(); 942 // Just make sure this has 2 arguments of the same FP type, which match the 943 // result type. 944 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 945 FT->getParamType(0) != FT->getParamType(1) || 946 !FT->getParamType(0)->isFloatingPointTy()) 947 return nullptr; 948 949 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 950 // or fmin(1.0, (double)floatval), then we convert it to fminf. 951 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 952 if (V1 == nullptr) 953 return nullptr; 954 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 955 if (V2 == nullptr) 956 return nullptr; 957 958 // fmin((double)floatval1, (double)floatval2) 959 // -> (double)fminf(floatval1, floatval2) 960 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 961 Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 962 Callee->getAttributes()); 963 return B.CreateFPExt(V, B.getDoubleTy()); 964 } 965 966 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 967 Function *Callee = CI->getCalledFunction(); 968 Value *Ret = nullptr; 969 if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) { 970 Ret = optimizeUnaryDoubleFP(CI, B, true); 971 } 972 973 FunctionType *FT = Callee->getFunctionType(); 974 // Just make sure this has 1 argument of FP type, which matches the 975 // result type. 976 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 977 !FT->getParamType(0)->isFloatingPointTy()) 978 return Ret; 979 980 // cos(-x) -> cos(x) 981 Value *Op1 = CI->getArgOperand(0); 982 if (BinaryOperator::isFNeg(Op1)) { 983 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 984 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 985 } 986 return Ret; 987 } 988 989 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 990 Function *Callee = CI->getCalledFunction(); 991 992 Value *Ret = nullptr; 993 if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) { 994 Ret = optimizeUnaryDoubleFP(CI, B, true); 995 } 996 997 FunctionType *FT = Callee->getFunctionType(); 998 // Just make sure this has 2 arguments of the same FP type, which match the 999 // result type. 1000 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1001 FT->getParamType(0) != FT->getParamType(1) || 1002 !FT->getParamType(0)->isFloatingPointTy()) 1003 return Ret; 1004 1005 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1006 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1007 // pow(1.0, x) -> 1.0 1008 if (Op1C->isExactlyValue(1.0)) 1009 return Op1C; 1010 // pow(2.0, x) -> exp2(x) 1011 if (Op1C->isExactlyValue(2.0) && 1012 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1013 LibFunc::exp2l)) 1014 return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); 1015 // pow(10.0, x) -> exp10(x) 1016 if (Op1C->isExactlyValue(10.0) && 1017 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1018 LibFunc::exp10l)) 1019 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1020 Callee->getAttributes()); 1021 } 1022 1023 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1024 if (!Op2C) 1025 return Ret; 1026 1027 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1028 return ConstantFP::get(CI->getType(), 1.0); 1029 1030 if (Op2C->isExactlyValue(0.5) && 1031 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1032 LibFunc::sqrtl) && 1033 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1034 LibFunc::fabsl)) { 1035 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1036 // This is faster than calling pow, and still handles negative zero 1037 // and negative infinity correctly. 1038 // TODO: In fast-math mode, this could be just sqrt(x). 1039 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1040 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1041 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1042 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1043 Value *FAbs = 1044 EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1045 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1046 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1047 return Sel; 1048 } 1049 1050 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1051 return Op1; 1052 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1053 return B.CreateFMul(Op1, Op1, "pow2"); 1054 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1055 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1056 return nullptr; 1057 } 1058 1059 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1060 Function *Callee = CI->getCalledFunction(); 1061 Function *Caller = CI->getParent()->getParent(); 1062 1063 Value *Ret = nullptr; 1064 if (UnsafeFPShrink && Callee->getName() == "exp2" && 1065 TLI->has(LibFunc::exp2f)) { 1066 Ret = optimizeUnaryDoubleFP(CI, B, true); 1067 } 1068 1069 FunctionType *FT = Callee->getFunctionType(); 1070 // Just make sure this has 1 argument of FP type, which matches the 1071 // result type. 1072 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1073 !FT->getParamType(0)->isFloatingPointTy()) 1074 return Ret; 1075 1076 Value *Op = CI->getArgOperand(0); 1077 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1078 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1079 LibFunc::Func LdExp = LibFunc::ldexpl; 1080 if (Op->getType()->isFloatTy()) 1081 LdExp = LibFunc::ldexpf; 1082 else if (Op->getType()->isDoubleTy()) 1083 LdExp = LibFunc::ldexp; 1084 1085 if (TLI->has(LdExp)) { 1086 Value *LdExpArg = nullptr; 1087 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1088 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1089 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1090 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1091 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1092 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1093 } 1094 1095 if (LdExpArg) { 1096 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1097 if (!Op->getType()->isFloatTy()) 1098 One = ConstantExpr::getFPExtend(One, Op->getType()); 1099 1100 Module *M = Caller->getParent(); 1101 Value *Callee = 1102 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1103 Op->getType(), B.getInt32Ty(), nullptr); 1104 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); 1105 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1106 CI->setCallingConv(F->getCallingConv()); 1107 1108 return CI; 1109 } 1110 } 1111 return Ret; 1112 } 1113 1114 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1115 Function *Callee = CI->getCalledFunction(); 1116 1117 Value *Ret = nullptr; 1118 if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) { 1119 Ret = optimizeUnaryDoubleFP(CI, B, false); 1120 } 1121 1122 FunctionType *FT = Callee->getFunctionType(); 1123 // Make sure this has 1 argument of FP type which matches the result type. 1124 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1125 !FT->getParamType(0)->isFloatingPointTy()) 1126 return Ret; 1127 1128 Value *Op = CI->getArgOperand(0); 1129 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1130 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1131 if (I->getOpcode() == Instruction::FMul) 1132 if (I->getOperand(0) == I->getOperand(1)) 1133 return Op; 1134 } 1135 return Ret; 1136 } 1137 1138 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1139 Function *Callee = CI->getCalledFunction(); 1140 1141 Value *Ret = nullptr; 1142 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1143 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1144 Ret = optimizeUnaryDoubleFP(CI, B, true); 1145 1146 // FIXME: For finer-grain optimization, we need intrinsics to have the same 1147 // fast-math flag decorations that are applied to FP instructions. For now, 1148 // we have to rely on the function-level unsafe-fp-math attribute to do this 1149 // optimization because there's no other way to express that the sqrt can be 1150 // reassociated. 1151 Function *F = CI->getParent()->getParent(); 1152 if (F->hasFnAttribute("unsafe-fp-math")) { 1153 // Check for unsafe-fp-math = true. 1154 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 1155 if (Attr.getValueAsString() != "true") 1156 return Ret; 1157 } 1158 Value *Op = CI->getArgOperand(0); 1159 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1160 if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) { 1161 // We're looking for a repeated factor in a multiplication tree, 1162 // so we can do this fold: sqrt(x * x) -> fabs(x); 1163 // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y). 1164 Value *Op0 = I->getOperand(0); 1165 Value *Op1 = I->getOperand(1); 1166 Value *RepeatOp = nullptr; 1167 Value *OtherOp = nullptr; 1168 if (Op0 == Op1) { 1169 // Simple match: the operands of the multiply are identical. 1170 RepeatOp = Op0; 1171 } else { 1172 // Look for a more complicated pattern: one of the operands is itself 1173 // a multiply, so search for a common factor in that multiply. 1174 // Note: We don't bother looking any deeper than this first level or for 1175 // variations of this pattern because instcombine's visitFMUL and/or the 1176 // reassociation pass should give us this form. 1177 Value *OtherMul0, *OtherMul1; 1178 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1179 // Pattern: sqrt((x * y) * z) 1180 if (OtherMul0 == OtherMul1) { 1181 // Matched: sqrt((x * x) * z) 1182 RepeatOp = OtherMul0; 1183 OtherOp = Op1; 1184 } 1185 } 1186 } 1187 if (RepeatOp) { 1188 // Fast math flags for any created instructions should match the sqrt 1189 // and multiply. 1190 // FIXME: We're not checking the sqrt because it doesn't have 1191 // fast-math-flags (see earlier comment). 1192 IRBuilder<true, ConstantFolder, 1193 IRBuilderDefaultInserter<true> >::FastMathFlagGuard Guard(B); 1194 B.SetFastMathFlags(I->getFastMathFlags()); 1195 // If we found a repeated factor, hoist it out of the square root and 1196 // replace it with the fabs of that factor. 1197 Module *M = Callee->getParent(); 1198 Type *ArgType = Op->getType(); 1199 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1200 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1201 if (OtherOp) { 1202 // If we found a non-repeated factor, we still need to get its square 1203 // root. We then multiply that by the value that was simplified out 1204 // of the square root calculation. 1205 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1206 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1207 return B.CreateFMul(FabsCall, SqrtCall); 1208 } 1209 return FabsCall; 1210 } 1211 } 1212 } 1213 return Ret; 1214 } 1215 1216 static bool isTrigLibCall(CallInst *CI); 1217 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1218 bool UseFloat, Value *&Sin, Value *&Cos, 1219 Value *&SinCos); 1220 1221 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1222 1223 // Make sure the prototype is as expected, otherwise the rest of the 1224 // function is probably invalid and likely to abort. 1225 if (!isTrigLibCall(CI)) 1226 return nullptr; 1227 1228 Value *Arg = CI->getArgOperand(0); 1229 SmallVector<CallInst *, 1> SinCalls; 1230 SmallVector<CallInst *, 1> CosCalls; 1231 SmallVector<CallInst *, 1> SinCosCalls; 1232 1233 bool IsFloat = Arg->getType()->isFloatTy(); 1234 1235 // Look for all compatible sinpi, cospi and sincospi calls with the same 1236 // argument. If there are enough (in some sense) we can make the 1237 // substitution. 1238 for (User *U : Arg->users()) 1239 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, 1240 SinCosCalls); 1241 1242 // It's only worthwhile if both sinpi and cospi are actually used. 1243 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1244 return nullptr; 1245 1246 Value *Sin, *Cos, *SinCos; 1247 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1248 1249 replaceTrigInsts(SinCalls, Sin); 1250 replaceTrigInsts(CosCalls, Cos); 1251 replaceTrigInsts(SinCosCalls, SinCos); 1252 1253 return nullptr; 1254 } 1255 1256 static bool isTrigLibCall(CallInst *CI) { 1257 Function *Callee = CI->getCalledFunction(); 1258 FunctionType *FT = Callee->getFunctionType(); 1259 1260 // We can only hope to do anything useful if we can ignore things like errno 1261 // and floating-point exceptions. 1262 bool AttributesSafe = 1263 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1264 1265 // Other than that we need float(float) or double(double) 1266 return AttributesSafe && FT->getNumParams() == 1 && 1267 FT->getReturnType() == FT->getParamType(0) && 1268 (FT->getParamType(0)->isFloatTy() || 1269 FT->getParamType(0)->isDoubleTy()); 1270 } 1271 1272 void 1273 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, 1274 SmallVectorImpl<CallInst *> &SinCalls, 1275 SmallVectorImpl<CallInst *> &CosCalls, 1276 SmallVectorImpl<CallInst *> &SinCosCalls) { 1277 CallInst *CI = dyn_cast<CallInst>(Val); 1278 1279 if (!CI) 1280 return; 1281 1282 Function *Callee = CI->getCalledFunction(); 1283 StringRef FuncName = Callee->getName(); 1284 LibFunc::Func Func; 1285 if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) 1286 return; 1287 1288 if (IsFloat) { 1289 if (Func == LibFunc::sinpif) 1290 SinCalls.push_back(CI); 1291 else if (Func == LibFunc::cospif) 1292 CosCalls.push_back(CI); 1293 else if (Func == LibFunc::sincospif_stret) 1294 SinCosCalls.push_back(CI); 1295 } else { 1296 if (Func == LibFunc::sinpi) 1297 SinCalls.push_back(CI); 1298 else if (Func == LibFunc::cospi) 1299 CosCalls.push_back(CI); 1300 else if (Func == LibFunc::sincospi_stret) 1301 SinCosCalls.push_back(CI); 1302 } 1303 } 1304 1305 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1306 Value *Res) { 1307 for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end(); 1308 I != E; ++I) { 1309 replaceAllUsesWith(*I, Res); 1310 } 1311 } 1312 1313 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1314 bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { 1315 Type *ArgTy = Arg->getType(); 1316 Type *ResTy; 1317 StringRef Name; 1318 1319 Triple T(OrigCallee->getParent()->getTargetTriple()); 1320 if (UseFloat) { 1321 Name = "__sincospif_stret"; 1322 1323 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1324 // x86_64 can't use {float, float} since that would be returned in both 1325 // xmm0 and xmm1, which isn't what a real struct would do. 1326 ResTy = T.getArch() == Triple::x86_64 1327 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1328 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1329 } else { 1330 Name = "__sincospi_stret"; 1331 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1332 } 1333 1334 Module *M = OrigCallee->getParent(); 1335 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1336 ResTy, ArgTy, nullptr); 1337 1338 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1339 // If the argument is an instruction, it must dominate all uses so put our 1340 // sincos call there. 1341 BasicBlock::iterator Loc = ArgInst; 1342 B.SetInsertPoint(ArgInst->getParent(), ++Loc); 1343 } else { 1344 // Otherwise (e.g. for a constant) the beginning of the function is as 1345 // good a place as any. 1346 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1347 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1348 } 1349 1350 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1351 1352 if (SinCos->getType()->isStructTy()) { 1353 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1354 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1355 } else { 1356 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1357 "sinpi"); 1358 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1359 "cospi"); 1360 } 1361 } 1362 1363 //===----------------------------------------------------------------------===// 1364 // Integer Library Call Optimizations 1365 //===----------------------------------------------------------------------===// 1366 1367 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1368 Function *Callee = CI->getCalledFunction(); 1369 FunctionType *FT = Callee->getFunctionType(); 1370 // Just make sure this has 2 arguments of the same FP type, which match the 1371 // result type. 1372 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) || 1373 !FT->getParamType(0)->isIntegerTy()) 1374 return nullptr; 1375 1376 Value *Op = CI->getArgOperand(0); 1377 1378 // Constant fold. 1379 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1380 if (CI->isZero()) // ffs(0) -> 0. 1381 return B.getInt32(0); 1382 // ffs(c) -> cttz(c)+1 1383 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1384 } 1385 1386 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1387 Type *ArgType = Op->getType(); 1388 Value *F = 1389 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1390 Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); 1391 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1392 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1393 1394 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1395 return B.CreateSelect(Cond, V, B.getInt32(0)); 1396 } 1397 1398 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1399 Function *Callee = CI->getCalledFunction(); 1400 FunctionType *FT = Callee->getFunctionType(); 1401 // We require integer(integer) where the types agree. 1402 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1403 FT->getParamType(0) != FT->getReturnType()) 1404 return nullptr; 1405 1406 // abs(x) -> x >s -1 ? x : -x 1407 Value *Op = CI->getArgOperand(0); 1408 Value *Pos = 1409 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1410 Value *Neg = B.CreateNeg(Op, "neg"); 1411 return B.CreateSelect(Pos, Op, Neg); 1412 } 1413 1414 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1415 Function *Callee = CI->getCalledFunction(); 1416 FunctionType *FT = Callee->getFunctionType(); 1417 // We require integer(i32) 1418 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1419 !FT->getParamType(0)->isIntegerTy(32)) 1420 return nullptr; 1421 1422 // isdigit(c) -> (c-'0') <u 10 1423 Value *Op = CI->getArgOperand(0); 1424 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1425 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1426 return B.CreateZExt(Op, CI->getType()); 1427 } 1428 1429 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1430 Function *Callee = CI->getCalledFunction(); 1431 FunctionType *FT = Callee->getFunctionType(); 1432 // We require integer(i32) 1433 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1434 !FT->getParamType(0)->isIntegerTy(32)) 1435 return nullptr; 1436 1437 // isascii(c) -> c <u 128 1438 Value *Op = CI->getArgOperand(0); 1439 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1440 return B.CreateZExt(Op, CI->getType()); 1441 } 1442 1443 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1444 Function *Callee = CI->getCalledFunction(); 1445 FunctionType *FT = Callee->getFunctionType(); 1446 // We require i32(i32) 1447 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1448 !FT->getParamType(0)->isIntegerTy(32)) 1449 return nullptr; 1450 1451 // toascii(c) -> c & 0x7f 1452 return B.CreateAnd(CI->getArgOperand(0), 1453 ConstantInt::get(CI->getType(), 0x7F)); 1454 } 1455 1456 //===----------------------------------------------------------------------===// 1457 // Formatting and IO Library Call Optimizations 1458 //===----------------------------------------------------------------------===// 1459 1460 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1461 1462 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1463 int StreamArg) { 1464 // Error reporting calls should be cold, mark them as such. 1465 // This applies even to non-builtin calls: it is only a hint and applies to 1466 // functions that the frontend might not understand as builtins. 1467 1468 // This heuristic was suggested in: 1469 // Improving Static Branch Prediction in a Compiler 1470 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1471 // Proceedings of PACT'98, Oct. 1998, IEEE 1472 Function *Callee = CI->getCalledFunction(); 1473 1474 if (!CI->hasFnAttr(Attribute::Cold) && 1475 isReportingError(Callee, CI, StreamArg)) { 1476 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1477 } 1478 1479 return nullptr; 1480 } 1481 1482 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1483 if (!ColdErrorCalls) 1484 return false; 1485 1486 if (!Callee || !Callee->isDeclaration()) 1487 return false; 1488 1489 if (StreamArg < 0) 1490 return true; 1491 1492 // These functions might be considered cold, but only if their stream 1493 // argument is stderr. 1494 1495 if (StreamArg >= (int)CI->getNumArgOperands()) 1496 return false; 1497 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1498 if (!LI) 1499 return false; 1500 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1501 if (!GV || !GV->isDeclaration()) 1502 return false; 1503 return GV->getName() == "stderr"; 1504 } 1505 1506 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1507 // Check for a fixed format string. 1508 StringRef FormatStr; 1509 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1510 return nullptr; 1511 1512 // Empty format string -> noop. 1513 if (FormatStr.empty()) // Tolerate printf's declared void. 1514 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1515 1516 // Do not do any of the following transformations if the printf return value 1517 // is used, in general the printf return value is not compatible with either 1518 // putchar() or puts(). 1519 if (!CI->use_empty()) 1520 return nullptr; 1521 1522 // printf("x") -> putchar('x'), even for '%'. 1523 if (FormatStr.size() == 1) { 1524 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI); 1525 if (CI->use_empty() || !Res) 1526 return Res; 1527 return B.CreateIntCast(Res, CI->getType(), true); 1528 } 1529 1530 // printf("foo\n") --> puts("foo") 1531 if (FormatStr[FormatStr.size() - 1] == '\n' && 1532 FormatStr.find('%') == StringRef::npos) { // No format characters. 1533 // Create a string literal with no \n on it. We expect the constant merge 1534 // pass to be run after this pass, to merge duplicate strings. 1535 FormatStr = FormatStr.drop_back(); 1536 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1537 Value *NewCI = EmitPutS(GV, B, DL, TLI); 1538 return (CI->use_empty() || !NewCI) 1539 ? NewCI 1540 : ConstantInt::get(CI->getType(), FormatStr.size() + 1); 1541 } 1542 1543 // Optimize specific format strings. 1544 // printf("%c", chr) --> putchar(chr) 1545 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1546 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1547 Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI); 1548 1549 if (CI->use_empty() || !Res) 1550 return Res; 1551 return B.CreateIntCast(Res, CI->getType(), true); 1552 } 1553 1554 // printf("%s\n", str) --> puts(str) 1555 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1556 CI->getArgOperand(1)->getType()->isPointerTy()) { 1557 return EmitPutS(CI->getArgOperand(1), B, DL, TLI); 1558 } 1559 return nullptr; 1560 } 1561 1562 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1563 1564 Function *Callee = CI->getCalledFunction(); 1565 // Require one fixed pointer argument and an integer/void result. 1566 FunctionType *FT = Callee->getFunctionType(); 1567 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1568 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1569 return nullptr; 1570 1571 if (Value *V = optimizePrintFString(CI, B)) { 1572 return V; 1573 } 1574 1575 // printf(format, ...) -> iprintf(format, ...) if no floating point 1576 // arguments. 1577 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1578 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1579 Constant *IPrintFFn = 1580 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1581 CallInst *New = cast<CallInst>(CI->clone()); 1582 New->setCalledFunction(IPrintFFn); 1583 B.Insert(New); 1584 return New; 1585 } 1586 return nullptr; 1587 } 1588 1589 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1590 // Check for a fixed format string. 1591 StringRef FormatStr; 1592 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1593 return nullptr; 1594 1595 // If we just have a format string (nothing else crazy) transform it. 1596 if (CI->getNumArgOperands() == 2) { 1597 // Make sure there's no % in the constant array. We could try to handle 1598 // %% -> % in the future if we cared. 1599 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1600 if (FormatStr[i] == '%') 1601 return nullptr; // we found a format specifier, bail out. 1602 1603 // These optimizations require DataLayout. 1604 if (!DL) 1605 return nullptr; 1606 1607 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1608 B.CreateMemCpy( 1609 CI->getArgOperand(0), CI->getArgOperand(1), 1610 ConstantInt::get(DL->getIntPtrType(CI->getContext()), 1611 FormatStr.size() + 1), 1612 1); // Copy the null byte. 1613 return ConstantInt::get(CI->getType(), FormatStr.size()); 1614 } 1615 1616 // The remaining optimizations require the format string to be "%s" or "%c" 1617 // and have an extra operand. 1618 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1619 CI->getNumArgOperands() < 3) 1620 return nullptr; 1621 1622 // Decode the second character of the format string. 1623 if (FormatStr[1] == 'c') { 1624 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1625 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1626 return nullptr; 1627 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1628 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1629 B.CreateStore(V, Ptr); 1630 Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); 1631 B.CreateStore(B.getInt8(0), Ptr); 1632 1633 return ConstantInt::get(CI->getType(), 1); 1634 } 1635 1636 if (FormatStr[1] == 's') { 1637 // These optimizations require DataLayout. 1638 if (!DL) 1639 return nullptr; 1640 1641 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1642 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1643 return nullptr; 1644 1645 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); 1646 if (!Len) 1647 return nullptr; 1648 Value *IncLen = 1649 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1650 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1651 1652 // The sprintf result is the unincremented number of bytes in the string. 1653 return B.CreateIntCast(Len, CI->getType(), false); 1654 } 1655 return nullptr; 1656 } 1657 1658 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1659 Function *Callee = CI->getCalledFunction(); 1660 // Require two fixed pointer arguments and an integer result. 1661 FunctionType *FT = Callee->getFunctionType(); 1662 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1663 !FT->getParamType(1)->isPointerTy() || 1664 !FT->getReturnType()->isIntegerTy()) 1665 return nullptr; 1666 1667 if (Value *V = optimizeSPrintFString(CI, B)) { 1668 return V; 1669 } 1670 1671 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1672 // point arguments. 1673 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1674 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1675 Constant *SIPrintFFn = 1676 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1677 CallInst *New = cast<CallInst>(CI->clone()); 1678 New->setCalledFunction(SIPrintFFn); 1679 B.Insert(New); 1680 return New; 1681 } 1682 return nullptr; 1683 } 1684 1685 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1686 optimizeErrorReporting(CI, B, 0); 1687 1688 // All the optimizations depend on the format string. 1689 StringRef FormatStr; 1690 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1691 return nullptr; 1692 1693 // Do not do any of the following transformations if the fprintf return 1694 // value is used, in general the fprintf return value is not compatible 1695 // with fwrite(), fputc() or fputs(). 1696 if (!CI->use_empty()) 1697 return nullptr; 1698 1699 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1700 if (CI->getNumArgOperands() == 2) { 1701 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1702 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1703 return nullptr; // We found a format specifier. 1704 1705 // These optimizations require DataLayout. 1706 if (!DL) 1707 return nullptr; 1708 1709 return EmitFWrite( 1710 CI->getArgOperand(1), 1711 ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()), 1712 CI->getArgOperand(0), B, DL, TLI); 1713 } 1714 1715 // The remaining optimizations require the format string to be "%s" or "%c" 1716 // and have an extra operand. 1717 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1718 CI->getNumArgOperands() < 3) 1719 return nullptr; 1720 1721 // Decode the second character of the format string. 1722 if (FormatStr[1] == 'c') { 1723 // fprintf(F, "%c", chr) --> fputc(chr, F) 1724 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1725 return nullptr; 1726 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); 1727 } 1728 1729 if (FormatStr[1] == 's') { 1730 // fprintf(F, "%s", str) --> fputs(str, F) 1731 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1732 return nullptr; 1733 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); 1734 } 1735 return nullptr; 1736 } 1737 1738 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1739 Function *Callee = CI->getCalledFunction(); 1740 // Require two fixed paramters as pointers and integer result. 1741 FunctionType *FT = Callee->getFunctionType(); 1742 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1743 !FT->getParamType(1)->isPointerTy() || 1744 !FT->getReturnType()->isIntegerTy()) 1745 return nullptr; 1746 1747 if (Value *V = optimizeFPrintFString(CI, B)) { 1748 return V; 1749 } 1750 1751 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1752 // floating point arguments. 1753 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1754 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1755 Constant *FIPrintFFn = 1756 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1757 CallInst *New = cast<CallInst>(CI->clone()); 1758 New->setCalledFunction(FIPrintFFn); 1759 B.Insert(New); 1760 return New; 1761 } 1762 return nullptr; 1763 } 1764 1765 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1766 optimizeErrorReporting(CI, B, 3); 1767 1768 Function *Callee = CI->getCalledFunction(); 1769 // Require a pointer, an integer, an integer, a pointer, returning integer. 1770 FunctionType *FT = Callee->getFunctionType(); 1771 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 1772 !FT->getParamType(1)->isIntegerTy() || 1773 !FT->getParamType(2)->isIntegerTy() || 1774 !FT->getParamType(3)->isPointerTy() || 1775 !FT->getReturnType()->isIntegerTy()) 1776 return nullptr; 1777 1778 // Get the element size and count. 1779 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1780 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1781 if (!SizeC || !CountC) 1782 return nullptr; 1783 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1784 1785 // If this is writing zero records, remove the call (it's a noop). 1786 if (Bytes == 0) 1787 return ConstantInt::get(CI->getType(), 0); 1788 1789 // If this is writing one byte, turn it into fputc. 1790 // This optimisation is only valid, if the return value is unused. 1791 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1792 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 1793 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI); 1794 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1795 } 1796 1797 return nullptr; 1798 } 1799 1800 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1801 optimizeErrorReporting(CI, B, 1); 1802 1803 Function *Callee = CI->getCalledFunction(); 1804 1805 // These optimizations require DataLayout. 1806 if (!DL) 1807 return nullptr; 1808 1809 // Require two pointers. Also, we can't optimize if return value is used. 1810 FunctionType *FT = Callee->getFunctionType(); 1811 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1812 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 1813 return nullptr; 1814 1815 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1816 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1817 if (!Len) 1818 return nullptr; 1819 1820 // Known to have no uses (see above). 1821 return EmitFWrite( 1822 CI->getArgOperand(0), 1823 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1), 1824 CI->getArgOperand(1), B, DL, TLI); 1825 } 1826 1827 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1828 Function *Callee = CI->getCalledFunction(); 1829 // Require one fixed pointer argument and an integer/void result. 1830 FunctionType *FT = Callee->getFunctionType(); 1831 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1832 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1833 return nullptr; 1834 1835 // Check for a constant string. 1836 StringRef Str; 1837 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1838 return nullptr; 1839 1840 if (Str.empty() && CI->use_empty()) { 1841 // puts("") -> putchar('\n') 1842 Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI); 1843 if (CI->use_empty() || !Res) 1844 return Res; 1845 return B.CreateIntCast(Res, CI->getType(), true); 1846 } 1847 1848 return nullptr; 1849 } 1850 1851 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1852 LibFunc::Func Func; 1853 SmallString<20> FloatFuncName = FuncName; 1854 FloatFuncName += 'f'; 1855 if (TLI->getLibFunc(FloatFuncName, Func)) 1856 return TLI->has(Func); 1857 return false; 1858 } 1859 1860 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1861 IRBuilder<> &Builder) { 1862 LibFunc::Func Func; 1863 Function *Callee = CI->getCalledFunction(); 1864 StringRef FuncName = Callee->getName(); 1865 1866 // Check for string/memory library functions. 1867 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 1868 // Make sure we never change the calling convention. 1869 assert((ignoreCallingConv(Func) || 1870 CI->getCallingConv() == llvm::CallingConv::C) && 1871 "Optimizing string/memory libcall would change the calling convention"); 1872 switch (Func) { 1873 case LibFunc::strcat: 1874 return optimizeStrCat(CI, Builder); 1875 case LibFunc::strncat: 1876 return optimizeStrNCat(CI, Builder); 1877 case LibFunc::strchr: 1878 return optimizeStrChr(CI, Builder); 1879 case LibFunc::strrchr: 1880 return optimizeStrRChr(CI, Builder); 1881 case LibFunc::strcmp: 1882 return optimizeStrCmp(CI, Builder); 1883 case LibFunc::strncmp: 1884 return optimizeStrNCmp(CI, Builder); 1885 case LibFunc::strcpy: 1886 return optimizeStrCpy(CI, Builder); 1887 case LibFunc::stpcpy: 1888 return optimizeStpCpy(CI, Builder); 1889 case LibFunc::strncpy: 1890 return optimizeStrNCpy(CI, Builder); 1891 case LibFunc::strlen: 1892 return optimizeStrLen(CI, Builder); 1893 case LibFunc::strpbrk: 1894 return optimizeStrPBrk(CI, Builder); 1895 case LibFunc::strtol: 1896 case LibFunc::strtod: 1897 case LibFunc::strtof: 1898 case LibFunc::strtoul: 1899 case LibFunc::strtoll: 1900 case LibFunc::strtold: 1901 case LibFunc::strtoull: 1902 return optimizeStrTo(CI, Builder); 1903 case LibFunc::strspn: 1904 return optimizeStrSpn(CI, Builder); 1905 case LibFunc::strcspn: 1906 return optimizeStrCSpn(CI, Builder); 1907 case LibFunc::strstr: 1908 return optimizeStrStr(CI, Builder); 1909 case LibFunc::memcmp: 1910 return optimizeMemCmp(CI, Builder); 1911 case LibFunc::memcpy: 1912 return optimizeMemCpy(CI, Builder); 1913 case LibFunc::memmove: 1914 return optimizeMemMove(CI, Builder); 1915 case LibFunc::memset: 1916 return optimizeMemSet(CI, Builder); 1917 default: 1918 break; 1919 } 1920 } 1921 return nullptr; 1922 } 1923 1924 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 1925 if (CI->isNoBuiltin()) 1926 return nullptr; 1927 1928 LibFunc::Func Func; 1929 Function *Callee = CI->getCalledFunction(); 1930 StringRef FuncName = Callee->getName(); 1931 IRBuilder<> Builder(CI); 1932 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 1933 1934 // Command-line parameter overrides function attribute. 1935 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 1936 UnsafeFPShrink = EnableUnsafeFPShrink; 1937 else if (Callee->hasFnAttribute("unsafe-fp-math")) { 1938 // FIXME: This is the same problem as described in optimizeSqrt(). 1939 // If calls gain access to IR-level FMF, then use that instead of a 1940 // function attribute. 1941 1942 // Check for unsafe-fp-math = true. 1943 Attribute Attr = Callee->getFnAttribute("unsafe-fp-math"); 1944 if (Attr.getValueAsString() == "true") 1945 UnsafeFPShrink = true; 1946 } 1947 1948 // First, check for intrinsics. 1949 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1950 if (!isCallingConvC) 1951 return nullptr; 1952 switch (II->getIntrinsicID()) { 1953 case Intrinsic::pow: 1954 return optimizePow(CI, Builder); 1955 case Intrinsic::exp2: 1956 return optimizeExp2(CI, Builder); 1957 case Intrinsic::fabs: 1958 return optimizeFabs(CI, Builder); 1959 case Intrinsic::sqrt: 1960 return optimizeSqrt(CI, Builder); 1961 default: 1962 return nullptr; 1963 } 1964 } 1965 1966 // Also try to simplify calls to fortified library functions. 1967 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 1968 // Try to further simplify the result. 1969 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 1970 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) 1971 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 1972 // If we were able to further simplify, remove the now redundant call. 1973 SimplifiedCI->replaceAllUsesWith(V); 1974 SimplifiedCI->eraseFromParent(); 1975 return V; 1976 } 1977 return SimplifiedFortifiedCI; 1978 } 1979 1980 // Then check for known library functions. 1981 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 1982 // We never change the calling convention. 1983 if (!ignoreCallingConv(Func) && !isCallingConvC) 1984 return nullptr; 1985 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 1986 return V; 1987 switch (Func) { 1988 case LibFunc::cosf: 1989 case LibFunc::cos: 1990 case LibFunc::cosl: 1991 return optimizeCos(CI, Builder); 1992 case LibFunc::sinpif: 1993 case LibFunc::sinpi: 1994 case LibFunc::cospif: 1995 case LibFunc::cospi: 1996 return optimizeSinCosPi(CI, Builder); 1997 case LibFunc::powf: 1998 case LibFunc::pow: 1999 case LibFunc::powl: 2000 return optimizePow(CI, Builder); 2001 case LibFunc::exp2l: 2002 case LibFunc::exp2: 2003 case LibFunc::exp2f: 2004 return optimizeExp2(CI, Builder); 2005 case LibFunc::fabsf: 2006 case LibFunc::fabs: 2007 case LibFunc::fabsl: 2008 return optimizeFabs(CI, Builder); 2009 case LibFunc::sqrtf: 2010 case LibFunc::sqrt: 2011 case LibFunc::sqrtl: 2012 return optimizeSqrt(CI, Builder); 2013 case LibFunc::ffs: 2014 case LibFunc::ffsl: 2015 case LibFunc::ffsll: 2016 return optimizeFFS(CI, Builder); 2017 case LibFunc::abs: 2018 case LibFunc::labs: 2019 case LibFunc::llabs: 2020 return optimizeAbs(CI, Builder); 2021 case LibFunc::isdigit: 2022 return optimizeIsDigit(CI, Builder); 2023 case LibFunc::isascii: 2024 return optimizeIsAscii(CI, Builder); 2025 case LibFunc::toascii: 2026 return optimizeToAscii(CI, Builder); 2027 case LibFunc::printf: 2028 return optimizePrintF(CI, Builder); 2029 case LibFunc::sprintf: 2030 return optimizeSPrintF(CI, Builder); 2031 case LibFunc::fprintf: 2032 return optimizeFPrintF(CI, Builder); 2033 case LibFunc::fwrite: 2034 return optimizeFWrite(CI, Builder); 2035 case LibFunc::fputs: 2036 return optimizeFPuts(CI, Builder); 2037 case LibFunc::puts: 2038 return optimizePuts(CI, Builder); 2039 case LibFunc::perror: 2040 return optimizeErrorReporting(CI, Builder); 2041 case LibFunc::vfprintf: 2042 case LibFunc::fiprintf: 2043 return optimizeErrorReporting(CI, Builder, 0); 2044 case LibFunc::fputc: 2045 return optimizeErrorReporting(CI, Builder, 1); 2046 case LibFunc::ceil: 2047 case LibFunc::floor: 2048 case LibFunc::rint: 2049 case LibFunc::round: 2050 case LibFunc::nearbyint: 2051 case LibFunc::trunc: 2052 if (hasFloatVersion(FuncName)) 2053 return optimizeUnaryDoubleFP(CI, Builder, false); 2054 return nullptr; 2055 case LibFunc::acos: 2056 case LibFunc::acosh: 2057 case LibFunc::asin: 2058 case LibFunc::asinh: 2059 case LibFunc::atan: 2060 case LibFunc::atanh: 2061 case LibFunc::cbrt: 2062 case LibFunc::cosh: 2063 case LibFunc::exp: 2064 case LibFunc::exp10: 2065 case LibFunc::expm1: 2066 case LibFunc::log: 2067 case LibFunc::log10: 2068 case LibFunc::log1p: 2069 case LibFunc::log2: 2070 case LibFunc::logb: 2071 case LibFunc::sin: 2072 case LibFunc::sinh: 2073 case LibFunc::tan: 2074 case LibFunc::tanh: 2075 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2076 return optimizeUnaryDoubleFP(CI, Builder, true); 2077 return nullptr; 2078 case LibFunc::copysign: 2079 case LibFunc::fmin: 2080 case LibFunc::fmax: 2081 if (hasFloatVersion(FuncName)) 2082 return optimizeBinaryDoubleFP(CI, Builder); 2083 return nullptr; 2084 default: 2085 return nullptr; 2086 } 2087 } 2088 return nullptr; 2089 } 2090 2091 LibCallSimplifier::LibCallSimplifier(const DataLayout *DL, 2092 const TargetLibraryInfo *TLI) : 2093 FortifiedSimplifier(DL, TLI), 2094 DL(DL), 2095 TLI(TLI), 2096 UnsafeFPShrink(false) { 2097 } 2098 2099 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { 2100 I->replaceAllUsesWith(With); 2101 I->eraseFromParent(); 2102 } 2103 2104 // TODO: 2105 // Additional cases that we need to add to this file: 2106 // 2107 // cbrt: 2108 // * cbrt(expN(X)) -> expN(x/3) 2109 // * cbrt(sqrt(x)) -> pow(x,1/6) 2110 // * cbrt(sqrt(x)) -> pow(x,1/9) 2111 // 2112 // exp, expf, expl: 2113 // * exp(log(x)) -> x 2114 // 2115 // log, logf, logl: 2116 // * log(exp(x)) -> x 2117 // * log(x**y) -> y*log(x) 2118 // * log(exp(y)) -> y*log(e) 2119 // * log(exp2(y)) -> y*log(2) 2120 // * log(exp10(y)) -> y*log(10) 2121 // * log(sqrt(x)) -> 0.5*log(x) 2122 // * log(pow(x,y)) -> y*log(x) 2123 // 2124 // lround, lroundf, lroundl: 2125 // * lround(cnst) -> cnst' 2126 // 2127 // pow, powf, powl: 2128 // * pow(exp(x),y) -> exp(x*y) 2129 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2130 // * pow(pow(x,y),z)-> pow(x,y*z) 2131 // 2132 // round, roundf, roundl: 2133 // * round(cnst) -> cnst' 2134 // 2135 // signbit: 2136 // * signbit(cnst) -> cnst' 2137 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2138 // 2139 // sqrt, sqrtf, sqrtl: 2140 // * sqrt(expN(x)) -> expN(x*0.5) 2141 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2142 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2143 // 2144 // tan, tanf, tanl: 2145 // * tan(atan(x)) -> x 2146 // 2147 // trunc, truncf, truncl: 2148 // * trunc(cnst) -> cnst' 2149 // 2150 // 2151 2152 //===----------------------------------------------------------------------===// 2153 // Fortified Library Call Optimizations 2154 //===----------------------------------------------------------------------===// 2155 2156 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2157 unsigned ObjSizeOp, 2158 unsigned SizeOp, 2159 bool isString) { 2160 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2161 return true; 2162 if (ConstantInt *ObjSizeCI = 2163 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2164 if (ObjSizeCI->isAllOnesValue()) 2165 return true; 2166 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2167 if (OnlyLowerUnknownSize) 2168 return false; 2169 if (isString) { 2170 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2171 // If the length is 0 we don't know how long it is and so we can't 2172 // remove the check. 2173 if (Len == 0) 2174 return false; 2175 return ObjSizeCI->getZExtValue() >= Len; 2176 } 2177 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2178 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2179 } 2180 return false; 2181 } 2182 2183 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { 2184 Function *Callee = CI->getCalledFunction(); 2185 2186 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk, DL)) 2187 return nullptr; 2188 2189 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2190 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2191 CI->getArgOperand(2), 1); 2192 return CI->getArgOperand(0); 2193 } 2194 return nullptr; 2195 } 2196 2197 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { 2198 Function *Callee = CI->getCalledFunction(); 2199 2200 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk, DL)) 2201 return nullptr; 2202 2203 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2204 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2205 CI->getArgOperand(2), 1); 2206 return CI->getArgOperand(0); 2207 } 2208 return nullptr; 2209 } 2210 2211 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { 2212 Function *Callee = CI->getCalledFunction(); 2213 2214 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk, DL)) 2215 return nullptr; 2216 2217 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2218 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2219 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2220 return CI->getArgOperand(0); 2221 } 2222 return nullptr; 2223 } 2224 2225 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2226 IRBuilder<> &B, 2227 LibFunc::Func Func) { 2228 Function *Callee = CI->getCalledFunction(); 2229 StringRef Name = Callee->getName(); 2230 2231 if (!checkStringCopyLibFuncSignature(Callee, Func, DL)) 2232 return nullptr; 2233 2234 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2235 *ObjSize = CI->getArgOperand(2); 2236 2237 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2238 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2239 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 2240 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; 2241 } 2242 2243 // If a) we don't have any length information, or b) we know this will 2244 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2245 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2246 // TODO: It might be nice to get a maximum length out of the possible 2247 // string lengths for varying. 2248 if (isFortifiedCallFoldable(CI, 2, 1, true)) { 2249 Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); 2250 return Ret; 2251 } else if (!OnlyLowerUnknownSize) { 2252 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2253 uint64_t Len = GetStringLength(Src); 2254 if (Len == 0) 2255 return nullptr; 2256 2257 // This optimization requires DataLayout. 2258 if (!DL) 2259 return nullptr; 2260 2261 Type *SizeTTy = DL->getIntPtrType(CI->getContext()); 2262 Value *LenV = ConstantInt::get(SizeTTy, Len); 2263 Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2264 // If the function was an __stpcpy_chk, and we were able to fold it into 2265 // a __memcpy_chk, we still need to return the correct end pointer. 2266 if (Ret && Func == LibFunc::stpcpy_chk) 2267 return B.CreateGEP(Dst, ConstantInt::get(SizeTTy, Len - 1)); 2268 return Ret; 2269 } 2270 return nullptr; 2271 } 2272 2273 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2274 IRBuilder<> &B, 2275 LibFunc::Func Func) { 2276 Function *Callee = CI->getCalledFunction(); 2277 StringRef Name = Callee->getName(); 2278 2279 if (!checkStringCopyLibFuncSignature(Callee, Func, DL)) 2280 return nullptr; 2281 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2282 Value *Ret = 2283 EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2284 CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7)); 2285 return Ret; 2286 } 2287 return nullptr; 2288 } 2289 2290 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2291 if (CI->isNoBuiltin()) 2292 return nullptr; 2293 2294 LibFunc::Func Func; 2295 Function *Callee = CI->getCalledFunction(); 2296 StringRef FuncName = Callee->getName(); 2297 IRBuilder<> Builder(CI); 2298 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2299 2300 // First, check that this is a known library functions. 2301 if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func)) 2302 return nullptr; 2303 2304 // We never change the calling convention. 2305 if (!ignoreCallingConv(Func) && !isCallingConvC) 2306 return nullptr; 2307 2308 switch (Func) { 2309 case LibFunc::memcpy_chk: 2310 return optimizeMemCpyChk(CI, Builder); 2311 case LibFunc::memmove_chk: 2312 return optimizeMemMoveChk(CI, Builder); 2313 case LibFunc::memset_chk: 2314 return optimizeMemSetChk(CI, Builder); 2315 case LibFunc::stpcpy_chk: 2316 case LibFunc::strcpy_chk: 2317 return optimizeStrpCpyChk(CI, Builder, Func); 2318 case LibFunc::stpncpy_chk: 2319 case LibFunc::strncpy_chk: 2320 return optimizeStrpNCpyChk(CI, Builder, Func); 2321 default: 2322 break; 2323 } 2324 return nullptr; 2325 } 2326 2327 FortifiedLibCallSimplifier:: 2328 FortifiedLibCallSimplifier(const DataLayout *DL, const TargetLibraryInfo *TLI, 2329 bool OnlyLowerUnknownSize) 2330 : DL(DL), TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) { 2331 } 2332