1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the library calls simplifier. It does not implement 11 // any pass, but can't be used by other passes to do simplifications. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Transforms/Utils/BuildLibCalls.h" 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 static cl::opt<bool> 43 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 44 cl::init(false), 45 cl::desc("Enable unsafe double to float " 46 "shrinking for math lib calls")); 47 48 49 //===----------------------------------------------------------------------===// 50 // Helper Functions 51 //===----------------------------------------------------------------------===// 52 53 static bool ignoreCallingConv(LibFunc Func) { 54 return Func == LibFunc_abs || Func == LibFunc_labs || 55 Func == LibFunc_llabs || Func == LibFunc_strlen; 56 } 57 58 static bool isCallingConvCCompatible(CallInst *CI) { 59 switch(CI->getCallingConv()) { 60 default: 61 return false; 62 case llvm::CallingConv::C: 63 return true; 64 case llvm::CallingConv::ARM_APCS: 65 case llvm::CallingConv::ARM_AAPCS: 66 case llvm::CallingConv::ARM_AAPCS_VFP: { 67 68 // The iOS ABI diverges from the standard in some cases, so for now don't 69 // try to simplify those calls. 70 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 71 return false; 72 73 auto *FuncTy = CI->getFunctionType(); 74 75 if (!FuncTy->getReturnType()->isPointerTy() && 76 !FuncTy->getReturnType()->isIntegerTy() && 77 !FuncTy->getReturnType()->isVoidTy()) 78 return false; 79 80 for (auto Param : FuncTy->params()) { 81 if (!Param->isPointerTy() && !Param->isIntegerTy()) 82 return false; 83 } 84 return true; 85 } 86 } 87 return false; 88 } 89 90 /// Return true if it is only used in equality comparisons with With. 91 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 92 for (User *U : V->users()) { 93 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 94 if (IC->isEquality() && IC->getOperand(1) == With) 95 continue; 96 // Unknown instruction. 97 return false; 98 } 99 return true; 100 } 101 102 static bool callHasFloatingPointArgument(const CallInst *CI) { 103 return any_of(CI->operands(), [](const Use &OI) { 104 return OI->getType()->isFloatingPointTy(); 105 }); 106 } 107 108 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 109 if (Base < 2 || Base > 36) 110 // handle special zero base 111 if (Base != 0) 112 return nullptr; 113 114 char *End; 115 std::string nptr = Str.str(); 116 errno = 0; 117 long long int Result = strtoll(nptr.c_str(), &End, Base); 118 if (errno) 119 return nullptr; 120 121 // if we assume all possible target locales are ASCII supersets, 122 // then if strtoll successfully parses a number on the host, 123 // it will also successfully parse the same way on the target 124 if (*End != '\0') 125 return nullptr; 126 127 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 128 return nullptr; 129 130 return ConstantInt::get(CI->getType(), Result); 131 } 132 133 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 134 const TargetLibraryInfo *TLI) { 135 CallInst *FOpen = dyn_cast<CallInst>(File); 136 if (!FOpen) 137 return false; 138 139 Function *InnerCallee = FOpen->getCalledFunction(); 140 if (!InnerCallee) 141 return false; 142 143 LibFunc Func; 144 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 145 Func != LibFunc_fopen) 146 return false; 147 148 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 149 if (PointerMayBeCaptured(File, true, true)) 150 return false; 151 152 return true; 153 } 154 155 static bool isOnlyUsedInComparisonWithZero(Value *V) { 156 for (User *U : V->users()) { 157 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 158 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 159 if (C->isNullValue()) 160 continue; 161 // Unknown instruction. 162 return false; 163 } 164 return true; 165 } 166 167 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 168 const DataLayout &DL) { 169 if (!isOnlyUsedInComparisonWithZero(CI)) 170 return false; 171 172 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 173 return false; 174 175 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 176 return false; 177 178 return true; 179 } 180 181 //===----------------------------------------------------------------------===// 182 // String and Memory Library Call Optimizations 183 //===----------------------------------------------------------------------===// 184 185 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 186 // Extract some information from the instruction 187 Value *Dst = CI->getArgOperand(0); 188 Value *Src = CI->getArgOperand(1); 189 190 // See if we can get the length of the input string. 191 uint64_t Len = GetStringLength(Src); 192 if (Len == 0) 193 return nullptr; 194 --Len; // Unbias length. 195 196 // Handle the simple, do-nothing case: strcat(x, "") -> x 197 if (Len == 0) 198 return Dst; 199 200 return emitStrLenMemCpy(Src, Dst, Len, B); 201 } 202 203 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 204 IRBuilder<> &B) { 205 // We need to find the end of the destination string. That's where the 206 // memory is to be moved to. We just generate a call to strlen. 207 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 208 if (!DstLen) 209 return nullptr; 210 211 // Now that we have the destination's length, we must index into the 212 // destination's pointer to get the actual memcpy destination (end of 213 // the string .. we're concatenating). 214 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 215 216 // We have enough information to now generate the memcpy call to do the 217 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 218 B.CreateMemCpy(CpyDst, 1, Src, 1, 219 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 220 return Dst; 221 } 222 223 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 224 // Extract some information from the instruction. 225 Value *Dst = CI->getArgOperand(0); 226 Value *Src = CI->getArgOperand(1); 227 uint64_t Len; 228 229 // We don't do anything if length is not constant. 230 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 231 Len = LengthArg->getZExtValue(); 232 else 233 return nullptr; 234 235 // See if we can get the length of the input string. 236 uint64_t SrcLen = GetStringLength(Src); 237 if (SrcLen == 0) 238 return nullptr; 239 --SrcLen; // Unbias length. 240 241 // Handle the simple, do-nothing cases: 242 // strncat(x, "", c) -> x 243 // strncat(x, c, 0) -> x 244 if (SrcLen == 0 || Len == 0) 245 return Dst; 246 247 // We don't optimize this case. 248 if (Len < SrcLen) 249 return nullptr; 250 251 // strncat(x, s, c) -> strcat(x, s) 252 // s is constant so the strcat can be optimized further. 253 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 254 } 255 256 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 257 Function *Callee = CI->getCalledFunction(); 258 FunctionType *FT = Callee->getFunctionType(); 259 Value *SrcStr = CI->getArgOperand(0); 260 261 // If the second operand is non-constant, see if we can compute the length 262 // of the input string and turn this into memchr. 263 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 264 if (!CharC) { 265 uint64_t Len = GetStringLength(SrcStr); 266 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 267 return nullptr; 268 269 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 270 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 271 B, DL, TLI); 272 } 273 274 // Otherwise, the character is a constant, see if the first argument is 275 // a string literal. If so, we can constant fold. 276 StringRef Str; 277 if (!getConstantStringInfo(SrcStr, Str)) { 278 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 279 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 280 "strchr"); 281 return nullptr; 282 } 283 284 // Compute the offset, make sure to handle the case when we're searching for 285 // zero (a weird way to spell strlen). 286 size_t I = (0xFF & CharC->getSExtValue()) == 0 287 ? Str.size() 288 : Str.find(CharC->getSExtValue()); 289 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 290 return Constant::getNullValue(CI->getType()); 291 292 // strchr(s+n,c) -> gep(s+n+i,c) 293 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 294 } 295 296 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 297 Value *SrcStr = CI->getArgOperand(0); 298 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 299 300 // Cannot fold anything if we're not looking for a constant. 301 if (!CharC) 302 return nullptr; 303 304 StringRef Str; 305 if (!getConstantStringInfo(SrcStr, Str)) { 306 // strrchr(s, 0) -> strchr(s, 0) 307 if (CharC->isZero()) 308 return emitStrChr(SrcStr, '\0', B, TLI); 309 return nullptr; 310 } 311 312 // Compute the offset. 313 size_t I = (0xFF & CharC->getSExtValue()) == 0 314 ? Str.size() 315 : Str.rfind(CharC->getSExtValue()); 316 if (I == StringRef::npos) // Didn't find the char. Return null. 317 return Constant::getNullValue(CI->getType()); 318 319 // strrchr(s+n,c) -> gep(s+n+i,c) 320 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 321 } 322 323 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 324 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 325 if (Str1P == Str2P) // strcmp(x,x) -> 0 326 return ConstantInt::get(CI->getType(), 0); 327 328 StringRef Str1, Str2; 329 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 330 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 331 332 // strcmp(x, y) -> cnst (if both x and y are constant strings) 333 if (HasStr1 && HasStr2) 334 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 335 336 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 337 return B.CreateNeg( 338 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 339 340 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 341 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 342 343 // strcmp(P, "x") -> memcmp(P, "x", 2) 344 uint64_t Len1 = GetStringLength(Str1P); 345 uint64_t Len2 = GetStringLength(Str2P); 346 if (Len1 && Len2) { 347 return emitMemCmp(Str1P, Str2P, 348 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 349 std::min(Len1, Len2)), 350 B, DL, TLI); 351 } 352 353 // strcmp to memcmp 354 if (!HasStr1 && HasStr2) { 355 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 356 return emitMemCmp( 357 Str1P, Str2P, 358 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 359 TLI); 360 } else if (HasStr1 && !HasStr2) { 361 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 362 return emitMemCmp( 363 Str1P, Str2P, 364 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 365 TLI); 366 } 367 368 return nullptr; 369 } 370 371 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 372 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 373 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 374 return ConstantInt::get(CI->getType(), 0); 375 376 // Get the length argument if it is constant. 377 uint64_t Length; 378 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 379 Length = LengthArg->getZExtValue(); 380 else 381 return nullptr; 382 383 if (Length == 0) // strncmp(x,y,0) -> 0 384 return ConstantInt::get(CI->getType(), 0); 385 386 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 387 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 388 389 StringRef Str1, Str2; 390 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 391 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 392 393 // strncmp(x, y) -> cnst (if both x and y are constant strings) 394 if (HasStr1 && HasStr2) { 395 StringRef SubStr1 = Str1.substr(0, Length); 396 StringRef SubStr2 = Str2.substr(0, Length); 397 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 398 } 399 400 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 401 return B.CreateNeg( 402 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 403 404 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 405 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 406 407 uint64_t Len1 = GetStringLength(Str1P); 408 uint64_t Len2 = GetStringLength(Str2P); 409 410 // strncmp to memcmp 411 if (!HasStr1 && HasStr2) { 412 Len2 = std::min(Len2, Length); 413 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 414 return emitMemCmp( 415 Str1P, Str2P, 416 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 417 TLI); 418 } else if (HasStr1 && !HasStr2) { 419 Len1 = std::min(Len1, Length); 420 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 421 return emitMemCmp( 422 Str1P, Str2P, 423 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 424 TLI); 425 } 426 427 return nullptr; 428 } 429 430 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 431 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 432 if (Dst == Src) // strcpy(x,x) -> x 433 return Src; 434 435 // See if we can get the length of the input string. 436 uint64_t Len = GetStringLength(Src); 437 if (Len == 0) 438 return nullptr; 439 440 // We have enough information to now generate the memcpy call to do the 441 // copy for us. Make a memcpy to copy the nul byte with align = 1. 442 B.CreateMemCpy(Dst, 1, Src, 1, 443 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 444 return Dst; 445 } 446 447 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 448 Function *Callee = CI->getCalledFunction(); 449 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 450 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 451 Value *StrLen = emitStrLen(Src, B, DL, TLI); 452 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 453 } 454 455 // See if we can get the length of the input string. 456 uint64_t Len = GetStringLength(Src); 457 if (Len == 0) 458 return nullptr; 459 460 Type *PT = Callee->getFunctionType()->getParamType(0); 461 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 462 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 463 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 464 465 // We have enough information to now generate the memcpy call to do the 466 // copy for us. Make a memcpy to copy the nul byte with align = 1. 467 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 468 return DstEnd; 469 } 470 471 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 472 Function *Callee = CI->getCalledFunction(); 473 Value *Dst = CI->getArgOperand(0); 474 Value *Src = CI->getArgOperand(1); 475 Value *LenOp = CI->getArgOperand(2); 476 477 // See if we can get the length of the input string. 478 uint64_t SrcLen = GetStringLength(Src); 479 if (SrcLen == 0) 480 return nullptr; 481 --SrcLen; 482 483 if (SrcLen == 0) { 484 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 485 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 486 return Dst; 487 } 488 489 uint64_t Len; 490 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 491 Len = LengthArg->getZExtValue(); 492 else 493 return nullptr; 494 495 if (Len == 0) 496 return Dst; // strncpy(x, y, 0) -> x 497 498 // Let strncpy handle the zero padding 499 if (Len > SrcLen + 1) 500 return nullptr; 501 502 Type *PT = Callee->getFunctionType()->getParamType(0); 503 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 504 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 505 506 return Dst; 507 } 508 509 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 510 unsigned CharSize) { 511 Value *Src = CI->getArgOperand(0); 512 513 // Constant folding: strlen("xyz") -> 3 514 if (uint64_t Len = GetStringLength(Src, CharSize)) 515 return ConstantInt::get(CI->getType(), Len - 1); 516 517 // If s is a constant pointer pointing to a string literal, we can fold 518 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 519 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 520 // We only try to simplify strlen when the pointer s points to an array 521 // of i8. Otherwise, we would need to scale the offset x before doing the 522 // subtraction. This will make the optimization more complex, and it's not 523 // very useful because calling strlen for a pointer of other types is 524 // very uncommon. 525 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 526 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 527 return nullptr; 528 529 ConstantDataArraySlice Slice; 530 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 531 uint64_t NullTermIdx; 532 if (Slice.Array == nullptr) { 533 NullTermIdx = 0; 534 } else { 535 NullTermIdx = ~((uint64_t)0); 536 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 537 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 538 NullTermIdx = I; 539 break; 540 } 541 } 542 // If the string does not have '\0', leave it to strlen to compute 543 // its length. 544 if (NullTermIdx == ~((uint64_t)0)) 545 return nullptr; 546 } 547 548 Value *Offset = GEP->getOperand(2); 549 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 550 Known.Zero.flipAllBits(); 551 uint64_t ArrSize = 552 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 553 554 // KnownZero's bits are flipped, so zeros in KnownZero now represent 555 // bits known to be zeros in Offset, and ones in KnowZero represent 556 // bits unknown in Offset. Therefore, Offset is known to be in range 557 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 558 // unsigned-less-than NullTermIdx. 559 // 560 // If Offset is not provably in the range [0, NullTermIdx], we can still 561 // optimize if we can prove that the program has undefined behavior when 562 // Offset is outside that range. That is the case when GEP->getOperand(0) 563 // is a pointer to an object whose memory extent is NullTermIdx+1. 564 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 565 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 566 NullTermIdx == ArrSize - 1)) { 567 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 568 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 569 Offset); 570 } 571 } 572 573 return nullptr; 574 } 575 576 // strlen(x?"foo":"bars") --> x ? 3 : 4 577 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 578 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 579 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 580 if (LenTrue && LenFalse) { 581 ORE.emit([&]() { 582 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 583 << "folded strlen(select) to select of constants"; 584 }); 585 return B.CreateSelect(SI->getCondition(), 586 ConstantInt::get(CI->getType(), LenTrue - 1), 587 ConstantInt::get(CI->getType(), LenFalse - 1)); 588 } 589 } 590 591 // strlen(x) != 0 --> *x != 0 592 // strlen(x) == 0 --> *x == 0 593 if (isOnlyUsedInZeroEqualityComparison(CI)) 594 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 595 596 return nullptr; 597 } 598 599 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 600 return optimizeStringLength(CI, B, 8); 601 } 602 603 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 604 Module &M = *CI->getModule(); 605 unsigned WCharSize = TLI->getWCharSize(M) * 8; 606 // We cannot perform this optimization without wchar_size metadata. 607 if (WCharSize == 0) 608 return nullptr; 609 610 return optimizeStringLength(CI, B, WCharSize); 611 } 612 613 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 614 StringRef S1, S2; 615 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 616 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 617 618 // strpbrk(s, "") -> nullptr 619 // strpbrk("", s) -> nullptr 620 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 621 return Constant::getNullValue(CI->getType()); 622 623 // Constant folding. 624 if (HasS1 && HasS2) { 625 size_t I = S1.find_first_of(S2); 626 if (I == StringRef::npos) // No match. 627 return Constant::getNullValue(CI->getType()); 628 629 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 630 "strpbrk"); 631 } 632 633 // strpbrk(s, "a") -> strchr(s, 'a') 634 if (HasS2 && S2.size() == 1) 635 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 636 637 return nullptr; 638 } 639 640 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 641 Value *EndPtr = CI->getArgOperand(1); 642 if (isa<ConstantPointerNull>(EndPtr)) { 643 // With a null EndPtr, this function won't capture the main argument. 644 // It would be readonly too, except that it still may write to errno. 645 CI->addParamAttr(0, Attribute::NoCapture); 646 } 647 648 return nullptr; 649 } 650 651 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 652 StringRef S1, S2; 653 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 654 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 655 656 // strspn(s, "") -> 0 657 // strspn("", s) -> 0 658 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 659 return Constant::getNullValue(CI->getType()); 660 661 // Constant folding. 662 if (HasS1 && HasS2) { 663 size_t Pos = S1.find_first_not_of(S2); 664 if (Pos == StringRef::npos) 665 Pos = S1.size(); 666 return ConstantInt::get(CI->getType(), Pos); 667 } 668 669 return nullptr; 670 } 671 672 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 673 StringRef S1, S2; 674 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 675 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 676 677 // strcspn("", s) -> 0 678 if (HasS1 && S1.empty()) 679 return Constant::getNullValue(CI->getType()); 680 681 // Constant folding. 682 if (HasS1 && HasS2) { 683 size_t Pos = S1.find_first_of(S2); 684 if (Pos == StringRef::npos) 685 Pos = S1.size(); 686 return ConstantInt::get(CI->getType(), Pos); 687 } 688 689 // strcspn(s, "") -> strlen(s) 690 if (HasS2 && S2.empty()) 691 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 692 693 return nullptr; 694 } 695 696 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 697 // fold strstr(x, x) -> x. 698 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 699 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 700 701 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 702 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 703 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 704 if (!StrLen) 705 return nullptr; 706 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 707 StrLen, B, DL, TLI); 708 if (!StrNCmp) 709 return nullptr; 710 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 711 ICmpInst *Old = cast<ICmpInst>(*UI++); 712 Value *Cmp = 713 B.CreateICmp(Old->getPredicate(), StrNCmp, 714 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 715 replaceAllUsesWith(Old, Cmp); 716 } 717 return CI; 718 } 719 720 // See if either input string is a constant string. 721 StringRef SearchStr, ToFindStr; 722 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 723 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 724 725 // fold strstr(x, "") -> x. 726 if (HasStr2 && ToFindStr.empty()) 727 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 728 729 // If both strings are known, constant fold it. 730 if (HasStr1 && HasStr2) { 731 size_t Offset = SearchStr.find(ToFindStr); 732 733 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 734 return Constant::getNullValue(CI->getType()); 735 736 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 737 Value *Result = castToCStr(CI->getArgOperand(0), B); 738 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 739 return B.CreateBitCast(Result, CI->getType()); 740 } 741 742 // fold strstr(x, "y") -> strchr(x, 'y'). 743 if (HasStr2 && ToFindStr.size() == 1) { 744 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 745 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 746 } 747 return nullptr; 748 } 749 750 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 751 Value *SrcStr = CI->getArgOperand(0); 752 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 753 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 754 755 // memchr(x, y, 0) -> null 756 if (LenC && LenC->isZero()) 757 return Constant::getNullValue(CI->getType()); 758 759 // From now on we need at least constant length and string. 760 StringRef Str; 761 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 762 return nullptr; 763 764 // Truncate the string to LenC. If Str is smaller than LenC we will still only 765 // scan the string, as reading past the end of it is undefined and we can just 766 // return null if we don't find the char. 767 Str = Str.substr(0, LenC->getZExtValue()); 768 769 // If the char is variable but the input str and length are not we can turn 770 // this memchr call into a simple bit field test. Of course this only works 771 // when the return value is only checked against null. 772 // 773 // It would be really nice to reuse switch lowering here but we can't change 774 // the CFG at this point. 775 // 776 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 777 // after bounds check. 778 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 779 unsigned char Max = 780 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 781 reinterpret_cast<const unsigned char *>(Str.end())); 782 783 // Make sure the bit field we're about to create fits in a register on the 784 // target. 785 // FIXME: On a 64 bit architecture this prevents us from using the 786 // interesting range of alpha ascii chars. We could do better by emitting 787 // two bitfields or shifting the range by 64 if no lower chars are used. 788 if (!DL.fitsInLegalInteger(Max + 1)) 789 return nullptr; 790 791 // For the bit field use a power-of-2 type with at least 8 bits to avoid 792 // creating unnecessary illegal types. 793 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 794 795 // Now build the bit field. 796 APInt Bitfield(Width, 0); 797 for (char C : Str) 798 Bitfield.setBit((unsigned char)C); 799 Value *BitfieldC = B.getInt(Bitfield); 800 801 // Adjust width of "C" to the bitfield width, then mask off the high bits. 802 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 803 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 804 805 // First check that the bit field access is within bounds. 806 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 807 "memchr.bounds"); 808 809 // Create code that checks if the given bit is set in the field. 810 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 811 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 812 813 // Finally merge both checks and cast to pointer type. The inttoptr 814 // implicitly zexts the i1 to intptr type. 815 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 816 } 817 818 // Check if all arguments are constants. If so, we can constant fold. 819 if (!CharC) 820 return nullptr; 821 822 // Compute the offset. 823 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 824 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 825 return Constant::getNullValue(CI->getType()); 826 827 // memchr(s+n,c,l) -> gep(s+n+i,c) 828 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 829 } 830 831 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 832 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 833 834 if (LHS == RHS) // memcmp(s,s,x) -> 0 835 return Constant::getNullValue(CI->getType()); 836 837 // Make sure we have a constant length. 838 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 839 if (!LenC) 840 return nullptr; 841 842 uint64_t Len = LenC->getZExtValue(); 843 if (Len == 0) // memcmp(s1,s2,0) -> 0 844 return Constant::getNullValue(CI->getType()); 845 846 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 847 if (Len == 1) { 848 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 849 CI->getType(), "lhsv"); 850 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 851 CI->getType(), "rhsv"); 852 return B.CreateSub(LHSV, RHSV, "chardiff"); 853 } 854 855 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 856 // TODO: The case where both inputs are constants does not need to be limited 857 // to legal integers or equality comparison. See block below this. 858 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 859 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 860 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 861 862 // First, see if we can fold either argument to a constant. 863 Value *LHSV = nullptr; 864 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 865 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 866 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 867 } 868 Value *RHSV = nullptr; 869 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 870 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 871 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 872 } 873 874 // Don't generate unaligned loads. If either source is constant data, 875 // alignment doesn't matter for that source because there is no load. 876 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 877 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 878 if (!LHSV) { 879 Type *LHSPtrTy = 880 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 881 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 882 } 883 if (!RHSV) { 884 Type *RHSPtrTy = 885 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 886 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 887 } 888 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 889 } 890 } 891 892 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 893 // TODO: This is limited to i8 arrays. 894 StringRef LHSStr, RHSStr; 895 if (getConstantStringInfo(LHS, LHSStr) && 896 getConstantStringInfo(RHS, RHSStr)) { 897 // Make sure we're not reading out-of-bounds memory. 898 if (Len > LHSStr.size() || Len > RHSStr.size()) 899 return nullptr; 900 // Fold the memcmp and normalize the result. This way we get consistent 901 // results across multiple platforms. 902 uint64_t Ret = 0; 903 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 904 if (Cmp < 0) 905 Ret = -1; 906 else if (Cmp > 0) 907 Ret = 1; 908 return ConstantInt::get(CI->getType(), Ret); 909 } 910 911 return nullptr; 912 } 913 914 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 915 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 916 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 917 CI->getArgOperand(2)); 918 return CI->getArgOperand(0); 919 } 920 921 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 922 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 923 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 924 CI->getArgOperand(2)); 925 return CI->getArgOperand(0); 926 } 927 928 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 929 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 930 // This has to be a memset of zeros (bzero). 931 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 932 if (!FillValue || FillValue->getZExtValue() != 0) 933 return nullptr; 934 935 // TODO: We should handle the case where the malloc has more than one use. 936 // This is necessary to optimize common patterns such as when the result of 937 // the malloc is checked against null or when a memset intrinsic is used in 938 // place of a memset library call. 939 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 940 if (!Malloc || !Malloc->hasOneUse()) 941 return nullptr; 942 943 // Is the inner call really malloc()? 944 Function *InnerCallee = Malloc->getCalledFunction(); 945 if (!InnerCallee) 946 return nullptr; 947 948 LibFunc Func; 949 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 950 Func != LibFunc_malloc) 951 return nullptr; 952 953 // The memset must cover the same number of bytes that are malloc'd. 954 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 955 return nullptr; 956 957 // Replace the malloc with a calloc. We need the data layout to know what the 958 // actual size of a 'size_t' parameter is. 959 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 960 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 961 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 962 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 963 Malloc->getArgOperand(0), Malloc->getAttributes(), 964 B, *TLI); 965 if (!Calloc) 966 return nullptr; 967 968 Malloc->replaceAllUsesWith(Calloc); 969 eraseFromParent(Malloc); 970 971 return Calloc; 972 } 973 974 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 975 if (auto *Calloc = foldMallocMemset(CI, B)) 976 return Calloc; 977 978 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 979 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 980 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 981 return CI->getArgOperand(0); 982 } 983 984 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 985 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 986 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 987 988 return nullptr; 989 } 990 991 //===----------------------------------------------------------------------===// 992 // Math Library Optimizations 993 //===----------------------------------------------------------------------===// 994 995 // Replace a libcall \p CI with a call to intrinsic \p IID 996 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 997 // Propagate fast-math flags from the existing call to the new call. 998 IRBuilder<>::FastMathFlagGuard Guard(B); 999 B.setFastMathFlags(CI->getFastMathFlags()); 1000 1001 Module *M = CI->getModule(); 1002 Value *V = CI->getArgOperand(0); 1003 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1004 CallInst *NewCall = B.CreateCall(F, V); 1005 NewCall->takeName(CI); 1006 return NewCall; 1007 } 1008 1009 /// Return a variant of Val with float type. 1010 /// Currently this works in two cases: If Val is an FPExtension of a float 1011 /// value to something bigger, simply return the operand. 1012 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1013 /// loss of precision do so. 1014 static Value *valueHasFloatPrecision(Value *Val) { 1015 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1016 Value *Op = Cast->getOperand(0); 1017 if (Op->getType()->isFloatTy()) 1018 return Op; 1019 } 1020 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1021 APFloat F = Const->getValueAPF(); 1022 bool losesInfo; 1023 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1024 &losesInfo); 1025 if (!losesInfo) 1026 return ConstantFP::get(Const->getContext(), F); 1027 } 1028 return nullptr; 1029 } 1030 1031 /// Shrink double -> float functions. 1032 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1033 bool isBinary, bool isPrecise = false) { 1034 if (!CI->getType()->isDoubleTy()) 1035 return nullptr; 1036 1037 // If not all the uses of the function are converted to float, then bail out. 1038 // This matters if the precision of the result is more important than the 1039 // precision of the arguments. 1040 if (isPrecise) 1041 for (User *U : CI->users()) { 1042 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1043 if (!Cast || !Cast->getType()->isFloatTy()) 1044 return nullptr; 1045 } 1046 1047 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1048 Value *V[2]; 1049 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1050 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1051 if (!V[0] || (isBinary && !V[1])) 1052 return nullptr; 1053 1054 // If call isn't an intrinsic, check that it isn't within a function with the 1055 // same name as the float version of this call, otherwise the result is an 1056 // infinite loop. For example, from MinGW-w64: 1057 // 1058 // float expf(float val) { return (float) exp((double) val); } 1059 Function *CalleeFn = CI->getCalledFunction(); 1060 StringRef CalleeNm = CalleeFn->getName(); 1061 AttributeList CalleeAt = CalleeFn->getAttributes(); 1062 if (CalleeFn && !CalleeFn->isIntrinsic()) { 1063 const Function *Fn = CI->getFunction(); 1064 StringRef FnName = Fn->getName(); 1065 if (FnName.back() == 'f' && 1066 FnName.size() == (CalleeNm.size() + 1) && 1067 FnName.startswith(CalleeNm)) 1068 return nullptr; 1069 } 1070 1071 // Propagate the math semantics from the current function to the new function. 1072 IRBuilder<>::FastMathFlagGuard Guard(B); 1073 B.setFastMathFlags(CI->getFastMathFlags()); 1074 1075 // g((double) float) -> (double) gf(float) 1076 Value *R; 1077 if (CalleeFn->isIntrinsic()) { 1078 Module *M = CI->getModule(); 1079 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1080 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1081 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1082 } 1083 else 1084 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1085 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1086 1087 return B.CreateFPExt(R, B.getDoubleTy()); 1088 } 1089 1090 /// Shrink double -> float for unary functions. 1091 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1092 bool isPrecise = false) { 1093 return optimizeDoubleFP(CI, B, false, isPrecise); 1094 } 1095 1096 /// Shrink double -> float for binary functions. 1097 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1098 bool isPrecise = false) { 1099 return optimizeDoubleFP(CI, B, true, isPrecise); 1100 } 1101 1102 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1103 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1104 if (!CI->isFast()) 1105 return nullptr; 1106 1107 // Propagate fast-math flags from the existing call to new instructions. 1108 IRBuilder<>::FastMathFlagGuard Guard(B); 1109 B.setFastMathFlags(CI->getFastMathFlags()); 1110 1111 Value *Real, *Imag; 1112 if (CI->getNumArgOperands() == 1) { 1113 Value *Op = CI->getArgOperand(0); 1114 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1115 Real = B.CreateExtractValue(Op, 0, "real"); 1116 Imag = B.CreateExtractValue(Op, 1, "imag"); 1117 } else { 1118 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1119 Real = CI->getArgOperand(0); 1120 Imag = CI->getArgOperand(1); 1121 } 1122 1123 Value *RealReal = B.CreateFMul(Real, Real); 1124 Value *ImagImag = B.CreateFMul(Imag, Imag); 1125 1126 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1127 CI->getType()); 1128 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1129 } 1130 1131 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1132 IRBuilder<> &B) { 1133 if (!isa<FPMathOperator>(Call)) 1134 return nullptr; 1135 1136 IRBuilder<>::FastMathFlagGuard Guard(B); 1137 B.setFastMathFlags(Call->getFastMathFlags()); 1138 1139 // TODO: Can this be shared to also handle LLVM intrinsics? 1140 Value *X; 1141 switch (Func) { 1142 case LibFunc_sin: 1143 case LibFunc_sinf: 1144 case LibFunc_sinl: 1145 case LibFunc_tan: 1146 case LibFunc_tanf: 1147 case LibFunc_tanl: 1148 // sin(-X) --> -sin(X) 1149 // tan(-X) --> -tan(X) 1150 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1151 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1152 break; 1153 case LibFunc_cos: 1154 case LibFunc_cosf: 1155 case LibFunc_cosl: 1156 // cos(-X) --> cos(X) 1157 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1158 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1159 break; 1160 default: 1161 break; 1162 } 1163 return nullptr; 1164 } 1165 1166 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1167 // Multiplications calculated using Addition Chains. 1168 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1169 1170 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1171 1172 if (InnerChain[Exp]) 1173 return InnerChain[Exp]; 1174 1175 static const unsigned AddChain[33][2] = { 1176 {0, 0}, // Unused. 1177 {0, 0}, // Unused (base case = pow1). 1178 {1, 1}, // Unused (pre-computed). 1179 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1180 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1181 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1182 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1183 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1184 }; 1185 1186 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1187 getPow(InnerChain, AddChain[Exp][1], B)); 1188 return InnerChain[Exp]; 1189 } 1190 1191 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1192 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). 1193 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1194 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1195 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1196 Module *Mod = Pow->getModule(); 1197 Type *Ty = Pow->getType(); 1198 bool Ignored; 1199 1200 // Evaluate special cases related to a nested function as the base. 1201 1202 // pow(exp(x), y) -> exp(x * y) 1203 // pow(exp2(x), y) -> exp2(x * y) 1204 // If exp{,2}() is used only once, it is better to fold two transcendental 1205 // math functions into one. If used again, exp{,2}() would still have to be 1206 // called with the original argument, then keep both original transcendental 1207 // functions. However, this transformation is only safe with fully relaxed 1208 // math semantics, since, besides rounding differences, it changes overflow 1209 // and underflow behavior quite dramatically. For example: 1210 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1211 // Whereas: 1212 // exp(1000 * 0.001) = exp(1) 1213 // TODO: Loosen the requirement for fully relaxed math semantics. 1214 // TODO: Handle exp10() when more targets have it available. 1215 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1216 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1217 LibFunc LibFn; 1218 1219 Function *CalleeFn = BaseFn->getCalledFunction(); 1220 if (CalleeFn && 1221 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1222 StringRef ExpName; 1223 Intrinsic::ID ID; 1224 Value *ExpFn; 1225 LibFunc LibFnFloat; 1226 LibFunc LibFnDouble; 1227 LibFunc LibFnLongDouble; 1228 1229 switch (LibFn) { 1230 default: 1231 return nullptr; 1232 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1233 ExpName = TLI->getName(LibFunc_exp); 1234 ID = Intrinsic::exp; 1235 LibFnFloat = LibFunc_expf; 1236 LibFnDouble = LibFunc_exp; 1237 LibFnLongDouble = LibFunc_expl; 1238 break; 1239 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1240 ExpName = TLI->getName(LibFunc_exp2); 1241 ID = Intrinsic::exp2; 1242 LibFnFloat = LibFunc_exp2f; 1243 LibFnDouble = LibFunc_exp2; 1244 LibFnLongDouble = LibFunc_exp2l; 1245 break; 1246 } 1247 1248 // Create new exp{,2}() with the product as its argument. 1249 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1250 ExpFn = BaseFn->doesNotAccessMemory() 1251 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1252 FMul, ExpName) 1253 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1254 LibFnLongDouble, B, 1255 BaseFn->getAttributes()); 1256 1257 // Since the new exp{,2}() is different from the original one, dead code 1258 // elimination cannot be trusted to remove it, since it may have side 1259 // effects (e.g., errno). When the only consumer for the original 1260 // exp{,2}() is pow(), then it has to be explicitly erased. 1261 BaseFn->replaceAllUsesWith(ExpFn); 1262 eraseFromParent(BaseFn); 1263 1264 return ExpFn; 1265 } 1266 } 1267 1268 // Evaluate special cases related to a constant base. 1269 1270 const APFloat *BaseF; 1271 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1272 return nullptr; 1273 1274 // pow(2.0 ** n, x) -> exp2(n * x) 1275 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1276 APFloat BaseR = APFloat(1.0); 1277 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1278 BaseR = BaseR / *BaseF; 1279 bool IsInteger = BaseF->isInteger(), 1280 IsReciprocal = BaseR.isInteger(); 1281 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1282 APSInt NI(64, false); 1283 if ((IsInteger || IsReciprocal) && 1284 !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && 1285 NI > 1 && NI.isPowerOf2()) { 1286 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1287 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1288 if (Pow->doesNotAccessMemory()) 1289 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1290 FMul, "exp2"); 1291 else 1292 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1293 LibFunc_exp2l, B, Attrs); 1294 } 1295 } 1296 1297 // pow(10.0, x) -> exp10(x) 1298 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1299 if (match(Base, m_SpecificFP(10.0)) && 1300 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1301 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1302 LibFunc_exp10l, B, Attrs); 1303 1304 return nullptr; 1305 } 1306 1307 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1308 Module *M, IRBuilder<> &B, 1309 const TargetLibraryInfo *TLI) { 1310 // If errno is never set, then use the intrinsic for sqrt(). 1311 if (NoErrno) { 1312 Function *SqrtFn = 1313 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1314 return B.CreateCall(SqrtFn, V, "sqrt"); 1315 } 1316 1317 // Otherwise, use the libcall for sqrt(). 1318 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1319 LibFunc_sqrtl)) 1320 // TODO: We also should check that the target can in fact lower the sqrt() 1321 // libcall. We currently have no way to ask this question, so we ask if 1322 // the target has a sqrt() libcall, which is not exactly the same. 1323 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1324 LibFunc_sqrtl, B, Attrs); 1325 1326 return nullptr; 1327 } 1328 1329 /// Use square root in place of pow(x, +/-0.5). 1330 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1331 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1332 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1333 Module *Mod = Pow->getModule(); 1334 Type *Ty = Pow->getType(); 1335 1336 const APFloat *ExpoF; 1337 if (!match(Expo, m_APFloat(ExpoF)) || 1338 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1339 return nullptr; 1340 1341 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1342 if (!Sqrt) 1343 return nullptr; 1344 1345 // Handle signed zero base by expanding to fabs(sqrt(x)). 1346 if (!Pow->hasNoSignedZeros()) { 1347 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1348 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1349 } 1350 1351 // Handle non finite base by expanding to 1352 // (x == -infinity ? +infinity : sqrt(x)). 1353 if (!Pow->hasNoInfs()) { 1354 Value *PosInf = ConstantFP::getInfinity(Ty), 1355 *NegInf = ConstantFP::getInfinity(Ty, true); 1356 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1357 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1358 } 1359 1360 // If the exponent is negative, then get the reciprocal. 1361 if (ExpoF->isNegative()) 1362 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1363 1364 return Sqrt; 1365 } 1366 1367 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1368 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1369 Function *Callee = Pow->getCalledFunction(); 1370 StringRef Name = Callee->getName(); 1371 Type *Ty = Pow->getType(); 1372 Value *Shrunk = nullptr; 1373 bool Ignored; 1374 1375 // Bail out if simplifying libcalls to pow() is disabled. 1376 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1377 return nullptr; 1378 1379 // Propagate the math semantics from the call to any created instructions. 1380 IRBuilder<>::FastMathFlagGuard Guard(B); 1381 B.setFastMathFlags(Pow->getFastMathFlags()); 1382 1383 // Shrink pow() to powf() if the arguments are single precision, 1384 // unless the result is expected to be double precision. 1385 if (UnsafeFPShrink && 1386 Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) 1387 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1388 1389 // Evaluate special cases related to the base. 1390 1391 // pow(1.0, x) -> 1.0 1392 if (match(Base, m_FPOne())) 1393 return Base; 1394 1395 if (Value *Exp = replacePowWithExp(Pow, B)) 1396 return Exp; 1397 1398 // Evaluate special cases related to the exponent. 1399 1400 // pow(x, -1.0) -> 1.0 / x 1401 if (match(Expo, m_SpecificFP(-1.0))) 1402 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1403 1404 // pow(x, 0.0) -> 1.0 1405 if (match(Expo, m_SpecificFP(0.0))) 1406 return ConstantFP::get(Ty, 1.0); 1407 1408 // pow(x, 1.0) -> x 1409 if (match(Expo, m_FPOne())) 1410 return Base; 1411 1412 // pow(x, 2.0) -> x * x 1413 if (match(Expo, m_SpecificFP(2.0))) 1414 return B.CreateFMul(Base, Base, "square"); 1415 1416 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1417 return Sqrt; 1418 1419 // pow(x, n) -> x * x * x * ... 1420 const APFloat *ExpoF; 1421 if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { 1422 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1423 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1424 // additional fmul. 1425 // TODO: This whole transformation should be backend specific (e.g. some 1426 // backends might prefer libcalls or the limit for the exponent might 1427 // be different) and it should also consider optimizing for size. 1428 APFloat LimF(ExpoF->getSemantics(), 33.0), 1429 ExpoA(abs(*ExpoF)); 1430 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1431 // This transformation applies to integer or integer+0.5 exponents only. 1432 // For integer+0.5, we create a sqrt(Base) call. 1433 Value *Sqrt = nullptr; 1434 if (!ExpoA.isInteger()) { 1435 APFloat Expo2 = ExpoA; 1436 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1437 // is no floating point exception and the result is an integer, then 1438 // ExpoA == integer + 0.5 1439 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1440 return nullptr; 1441 1442 if (!Expo2.isInteger()) 1443 return nullptr; 1444 1445 Sqrt = 1446 getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1447 Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); 1448 } 1449 1450 // We will memoize intermediate products of the Addition Chain. 1451 Value *InnerChain[33] = {nullptr}; 1452 InnerChain[1] = Base; 1453 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1454 1455 // We cannot readily convert a non-double type (like float) to a double. 1456 // So we first convert it to something which could be converted to double. 1457 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1458 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1459 1460 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1461 if (Sqrt) 1462 FMul = B.CreateFMul(FMul, Sqrt); 1463 1464 // If the exponent is negative, then get the reciprocal. 1465 if (ExpoF->isNegative()) 1466 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1467 1468 return FMul; 1469 } 1470 } 1471 1472 return Shrunk; 1473 } 1474 1475 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1476 Function *Callee = CI->getCalledFunction(); 1477 Value *Ret = nullptr; 1478 StringRef Name = Callee->getName(); 1479 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1480 Ret = optimizeUnaryDoubleFP(CI, B, true); 1481 1482 Value *Op = CI->getArgOperand(0); 1483 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1484 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1485 LibFunc LdExp = LibFunc_ldexpl; 1486 if (Op->getType()->isFloatTy()) 1487 LdExp = LibFunc_ldexpf; 1488 else if (Op->getType()->isDoubleTy()) 1489 LdExp = LibFunc_ldexp; 1490 1491 if (TLI->has(LdExp)) { 1492 Value *LdExpArg = nullptr; 1493 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1494 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1495 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1496 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1497 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1498 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1499 } 1500 1501 if (LdExpArg) { 1502 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1503 if (!Op->getType()->isFloatTy()) 1504 One = ConstantExpr::getFPExtend(One, Op->getType()); 1505 1506 Module *M = CI->getModule(); 1507 Value *NewCallee = 1508 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1509 Op->getType(), B.getInt32Ty()); 1510 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1511 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1512 CI->setCallingConv(F->getCallingConv()); 1513 1514 return CI; 1515 } 1516 } 1517 return Ret; 1518 } 1519 1520 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1521 Function *Callee = CI->getCalledFunction(); 1522 // If we can shrink the call to a float function rather than a double 1523 // function, do that first. 1524 StringRef Name = Callee->getName(); 1525 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1526 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1527 return Ret; 1528 1529 IRBuilder<>::FastMathFlagGuard Guard(B); 1530 FastMathFlags FMF; 1531 if (CI->isFast()) { 1532 // If the call is 'fast', then anything we create here will also be 'fast'. 1533 FMF.setFast(); 1534 } else { 1535 // At a minimum, no-nans-fp-math must be true. 1536 if (!CI->hasNoNaNs()) 1537 return nullptr; 1538 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1539 // "Ideally, fmax would be sensitive to the sign of zero, for example 1540 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1541 // might be impractical." 1542 FMF.setNoSignedZeros(); 1543 FMF.setNoNaNs(); 1544 } 1545 B.setFastMathFlags(FMF); 1546 1547 // We have a relaxed floating-point environment. We can ignore NaN-handling 1548 // and transform to a compare and select. We do not have to consider errno or 1549 // exceptions, because fmin/fmax do not have those. 1550 Value *Op0 = CI->getArgOperand(0); 1551 Value *Op1 = CI->getArgOperand(1); 1552 Value *Cmp = Callee->getName().startswith("fmin") ? 1553 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1554 return B.CreateSelect(Cmp, Op0, Op1); 1555 } 1556 1557 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1558 Function *Callee = CI->getCalledFunction(); 1559 Value *Ret = nullptr; 1560 StringRef Name = Callee->getName(); 1561 if (UnsafeFPShrink && hasFloatVersion(Name)) 1562 Ret = optimizeUnaryDoubleFP(CI, B, true); 1563 1564 if (!CI->isFast()) 1565 return Ret; 1566 Value *Op1 = CI->getArgOperand(0); 1567 auto *OpC = dyn_cast<CallInst>(Op1); 1568 1569 // The earlier call must also be 'fast' in order to do these transforms. 1570 if (!OpC || !OpC->isFast()) 1571 return Ret; 1572 1573 // log(pow(x,y)) -> y*log(x) 1574 // This is only applicable to log, log2, log10. 1575 if (Name != "log" && Name != "log2" && Name != "log10") 1576 return Ret; 1577 1578 IRBuilder<>::FastMathFlagGuard Guard(B); 1579 FastMathFlags FMF; 1580 FMF.setFast(); 1581 B.setFastMathFlags(FMF); 1582 1583 LibFunc Func; 1584 Function *F = OpC->getCalledFunction(); 1585 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1586 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1587 return B.CreateFMul(OpC->getArgOperand(1), 1588 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1589 Callee->getAttributes()), "mul"); 1590 1591 // log(exp2(y)) -> y*log(2) 1592 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1593 TLI->has(Func) && Func == LibFunc_exp2) 1594 return B.CreateFMul( 1595 OpC->getArgOperand(0), 1596 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1597 Callee->getName(), B, Callee->getAttributes()), 1598 "logmul"); 1599 return Ret; 1600 } 1601 1602 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1603 Function *Callee = CI->getCalledFunction(); 1604 Value *Ret = nullptr; 1605 // TODO: Once we have a way (other than checking for the existince of the 1606 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1607 // condition below. 1608 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1609 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1610 Ret = optimizeUnaryDoubleFP(CI, B, true); 1611 1612 if (!CI->isFast()) 1613 return Ret; 1614 1615 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1616 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1617 return Ret; 1618 1619 // We're looking for a repeated factor in a multiplication tree, 1620 // so we can do this fold: sqrt(x * x) -> fabs(x); 1621 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1622 Value *Op0 = I->getOperand(0); 1623 Value *Op1 = I->getOperand(1); 1624 Value *RepeatOp = nullptr; 1625 Value *OtherOp = nullptr; 1626 if (Op0 == Op1) { 1627 // Simple match: the operands of the multiply are identical. 1628 RepeatOp = Op0; 1629 } else { 1630 // Look for a more complicated pattern: one of the operands is itself 1631 // a multiply, so search for a common factor in that multiply. 1632 // Note: We don't bother looking any deeper than this first level or for 1633 // variations of this pattern because instcombine's visitFMUL and/or the 1634 // reassociation pass should give us this form. 1635 Value *OtherMul0, *OtherMul1; 1636 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1637 // Pattern: sqrt((x * y) * z) 1638 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1639 // Matched: sqrt((x * x) * z) 1640 RepeatOp = OtherMul0; 1641 OtherOp = Op1; 1642 } 1643 } 1644 } 1645 if (!RepeatOp) 1646 return Ret; 1647 1648 // Fast math flags for any created instructions should match the sqrt 1649 // and multiply. 1650 IRBuilder<>::FastMathFlagGuard Guard(B); 1651 B.setFastMathFlags(I->getFastMathFlags()); 1652 1653 // If we found a repeated factor, hoist it out of the square root and 1654 // replace it with the fabs of that factor. 1655 Module *M = Callee->getParent(); 1656 Type *ArgType = I->getType(); 1657 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1658 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1659 if (OtherOp) { 1660 // If we found a non-repeated factor, we still need to get its square 1661 // root. We then multiply that by the value that was simplified out 1662 // of the square root calculation. 1663 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1664 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1665 return B.CreateFMul(FabsCall, SqrtCall); 1666 } 1667 return FabsCall; 1668 } 1669 1670 // TODO: Generalize to handle any trig function and its inverse. 1671 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1672 Function *Callee = CI->getCalledFunction(); 1673 Value *Ret = nullptr; 1674 StringRef Name = Callee->getName(); 1675 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1676 Ret = optimizeUnaryDoubleFP(CI, B, true); 1677 1678 Value *Op1 = CI->getArgOperand(0); 1679 auto *OpC = dyn_cast<CallInst>(Op1); 1680 if (!OpC) 1681 return Ret; 1682 1683 // Both calls must be 'fast' in order to remove them. 1684 if (!CI->isFast() || !OpC->isFast()) 1685 return Ret; 1686 1687 // tan(atan(x)) -> x 1688 // tanf(atanf(x)) -> x 1689 // tanl(atanl(x)) -> x 1690 LibFunc Func; 1691 Function *F = OpC->getCalledFunction(); 1692 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1693 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1694 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1695 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1696 Ret = OpC->getArgOperand(0); 1697 return Ret; 1698 } 1699 1700 static bool isTrigLibCall(CallInst *CI) { 1701 // We can only hope to do anything useful if we can ignore things like errno 1702 // and floating-point exceptions. 1703 // We already checked the prototype. 1704 return CI->hasFnAttr(Attribute::NoUnwind) && 1705 CI->hasFnAttr(Attribute::ReadNone); 1706 } 1707 1708 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1709 bool UseFloat, Value *&Sin, Value *&Cos, 1710 Value *&SinCos) { 1711 Type *ArgTy = Arg->getType(); 1712 Type *ResTy; 1713 StringRef Name; 1714 1715 Triple T(OrigCallee->getParent()->getTargetTriple()); 1716 if (UseFloat) { 1717 Name = "__sincospif_stret"; 1718 1719 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1720 // x86_64 can't use {float, float} since that would be returned in both 1721 // xmm0 and xmm1, which isn't what a real struct would do. 1722 ResTy = T.getArch() == Triple::x86_64 1723 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1724 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1725 } else { 1726 Name = "__sincospi_stret"; 1727 ResTy = StructType::get(ArgTy, ArgTy); 1728 } 1729 1730 Module *M = OrigCallee->getParent(); 1731 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1732 ResTy, ArgTy); 1733 1734 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1735 // If the argument is an instruction, it must dominate all uses so put our 1736 // sincos call there. 1737 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1738 } else { 1739 // Otherwise (e.g. for a constant) the beginning of the function is as 1740 // good a place as any. 1741 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1742 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1743 } 1744 1745 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1746 1747 if (SinCos->getType()->isStructTy()) { 1748 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1749 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1750 } else { 1751 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1752 "sinpi"); 1753 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1754 "cospi"); 1755 } 1756 } 1757 1758 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1759 // Make sure the prototype is as expected, otherwise the rest of the 1760 // function is probably invalid and likely to abort. 1761 if (!isTrigLibCall(CI)) 1762 return nullptr; 1763 1764 Value *Arg = CI->getArgOperand(0); 1765 SmallVector<CallInst *, 1> SinCalls; 1766 SmallVector<CallInst *, 1> CosCalls; 1767 SmallVector<CallInst *, 1> SinCosCalls; 1768 1769 bool IsFloat = Arg->getType()->isFloatTy(); 1770 1771 // Look for all compatible sinpi, cospi and sincospi calls with the same 1772 // argument. If there are enough (in some sense) we can make the 1773 // substitution. 1774 Function *F = CI->getFunction(); 1775 for (User *U : Arg->users()) 1776 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1777 1778 // It's only worthwhile if both sinpi and cospi are actually used. 1779 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1780 return nullptr; 1781 1782 Value *Sin, *Cos, *SinCos; 1783 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1784 1785 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1786 Value *Res) { 1787 for (CallInst *C : Calls) 1788 replaceAllUsesWith(C, Res); 1789 }; 1790 1791 replaceTrigInsts(SinCalls, Sin); 1792 replaceTrigInsts(CosCalls, Cos); 1793 replaceTrigInsts(SinCosCalls, SinCos); 1794 1795 return nullptr; 1796 } 1797 1798 void LibCallSimplifier::classifyArgUse( 1799 Value *Val, Function *F, bool IsFloat, 1800 SmallVectorImpl<CallInst *> &SinCalls, 1801 SmallVectorImpl<CallInst *> &CosCalls, 1802 SmallVectorImpl<CallInst *> &SinCosCalls) { 1803 CallInst *CI = dyn_cast<CallInst>(Val); 1804 1805 if (!CI) 1806 return; 1807 1808 // Don't consider calls in other functions. 1809 if (CI->getFunction() != F) 1810 return; 1811 1812 Function *Callee = CI->getCalledFunction(); 1813 LibFunc Func; 1814 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1815 !isTrigLibCall(CI)) 1816 return; 1817 1818 if (IsFloat) { 1819 if (Func == LibFunc_sinpif) 1820 SinCalls.push_back(CI); 1821 else if (Func == LibFunc_cospif) 1822 CosCalls.push_back(CI); 1823 else if (Func == LibFunc_sincospif_stret) 1824 SinCosCalls.push_back(CI); 1825 } else { 1826 if (Func == LibFunc_sinpi) 1827 SinCalls.push_back(CI); 1828 else if (Func == LibFunc_cospi) 1829 CosCalls.push_back(CI); 1830 else if (Func == LibFunc_sincospi_stret) 1831 SinCosCalls.push_back(CI); 1832 } 1833 } 1834 1835 //===----------------------------------------------------------------------===// 1836 // Integer Library Call Optimizations 1837 //===----------------------------------------------------------------------===// 1838 1839 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1840 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1841 Value *Op = CI->getArgOperand(0); 1842 Type *ArgType = Op->getType(); 1843 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1844 Intrinsic::cttz, ArgType); 1845 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1846 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1847 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1848 1849 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1850 return B.CreateSelect(Cond, V, B.getInt32(0)); 1851 } 1852 1853 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1854 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1855 Value *Op = CI->getArgOperand(0); 1856 Type *ArgType = Op->getType(); 1857 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1858 Intrinsic::ctlz, ArgType); 1859 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1860 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1861 V); 1862 return B.CreateIntCast(V, CI->getType(), false); 1863 } 1864 1865 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1866 // abs(x) -> x <s 0 ? -x : x 1867 // The negation has 'nsw' because abs of INT_MIN is undefined. 1868 Value *X = CI->getArgOperand(0); 1869 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1870 Value *NegX = B.CreateNSWNeg(X, "neg"); 1871 return B.CreateSelect(IsNeg, NegX, X); 1872 } 1873 1874 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1875 // isdigit(c) -> (c-'0') <u 10 1876 Value *Op = CI->getArgOperand(0); 1877 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1878 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1879 return B.CreateZExt(Op, CI->getType()); 1880 } 1881 1882 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1883 // isascii(c) -> c <u 128 1884 Value *Op = CI->getArgOperand(0); 1885 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1886 return B.CreateZExt(Op, CI->getType()); 1887 } 1888 1889 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1890 // toascii(c) -> c & 0x7f 1891 return B.CreateAnd(CI->getArgOperand(0), 1892 ConstantInt::get(CI->getType(), 0x7F)); 1893 } 1894 1895 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1896 StringRef Str; 1897 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1898 return nullptr; 1899 1900 return convertStrToNumber(CI, Str, 10); 1901 } 1902 1903 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1904 StringRef Str; 1905 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1906 return nullptr; 1907 1908 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1909 return nullptr; 1910 1911 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1912 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1913 } 1914 1915 return nullptr; 1916 } 1917 1918 //===----------------------------------------------------------------------===// 1919 // Formatting and IO Library Call Optimizations 1920 //===----------------------------------------------------------------------===// 1921 1922 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1923 1924 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1925 int StreamArg) { 1926 Function *Callee = CI->getCalledFunction(); 1927 // Error reporting calls should be cold, mark them as such. 1928 // This applies even to non-builtin calls: it is only a hint and applies to 1929 // functions that the frontend might not understand as builtins. 1930 1931 // This heuristic was suggested in: 1932 // Improving Static Branch Prediction in a Compiler 1933 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1934 // Proceedings of PACT'98, Oct. 1998, IEEE 1935 if (!CI->hasFnAttr(Attribute::Cold) && 1936 isReportingError(Callee, CI, StreamArg)) { 1937 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1938 } 1939 1940 return nullptr; 1941 } 1942 1943 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1944 if (!Callee || !Callee->isDeclaration()) 1945 return false; 1946 1947 if (StreamArg < 0) 1948 return true; 1949 1950 // These functions might be considered cold, but only if their stream 1951 // argument is stderr. 1952 1953 if (StreamArg >= (int)CI->getNumArgOperands()) 1954 return false; 1955 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1956 if (!LI) 1957 return false; 1958 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1959 if (!GV || !GV->isDeclaration()) 1960 return false; 1961 return GV->getName() == "stderr"; 1962 } 1963 1964 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1965 // Check for a fixed format string. 1966 StringRef FormatStr; 1967 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1968 return nullptr; 1969 1970 // Empty format string -> noop. 1971 if (FormatStr.empty()) // Tolerate printf's declared void. 1972 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1973 1974 // Do not do any of the following transformations if the printf return value 1975 // is used, in general the printf return value is not compatible with either 1976 // putchar() or puts(). 1977 if (!CI->use_empty()) 1978 return nullptr; 1979 1980 // printf("x") -> putchar('x'), even for "%" and "%%". 1981 if (FormatStr.size() == 1 || FormatStr == "%%") 1982 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1983 1984 // printf("%s", "a") --> putchar('a') 1985 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1986 StringRef ChrStr; 1987 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1988 return nullptr; 1989 if (ChrStr.size() != 1) 1990 return nullptr; 1991 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1992 } 1993 1994 // printf("foo\n") --> puts("foo") 1995 if (FormatStr[FormatStr.size() - 1] == '\n' && 1996 FormatStr.find('%') == StringRef::npos) { // No format characters. 1997 // Create a string literal with no \n on it. We expect the constant merge 1998 // pass to be run after this pass, to merge duplicate strings. 1999 FormatStr = FormatStr.drop_back(); 2000 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2001 return emitPutS(GV, B, TLI); 2002 } 2003 2004 // Optimize specific format strings. 2005 // printf("%c", chr) --> putchar(chr) 2006 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2007 CI->getArgOperand(1)->getType()->isIntegerTy()) 2008 return emitPutChar(CI->getArgOperand(1), B, TLI); 2009 2010 // printf("%s\n", str) --> puts(str) 2011 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2012 CI->getArgOperand(1)->getType()->isPointerTy()) 2013 return emitPutS(CI->getArgOperand(1), B, TLI); 2014 return nullptr; 2015 } 2016 2017 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2018 2019 Function *Callee = CI->getCalledFunction(); 2020 FunctionType *FT = Callee->getFunctionType(); 2021 if (Value *V = optimizePrintFString(CI, B)) { 2022 return V; 2023 } 2024 2025 // printf(format, ...) -> iprintf(format, ...) if no floating point 2026 // arguments. 2027 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2028 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2029 Constant *IPrintFFn = 2030 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2031 CallInst *New = cast<CallInst>(CI->clone()); 2032 New->setCalledFunction(IPrintFFn); 2033 B.Insert(New); 2034 return New; 2035 } 2036 return nullptr; 2037 } 2038 2039 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2040 // Check for a fixed format string. 2041 StringRef FormatStr; 2042 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2043 return nullptr; 2044 2045 // If we just have a format string (nothing else crazy) transform it. 2046 if (CI->getNumArgOperands() == 2) { 2047 // Make sure there's no % in the constant array. We could try to handle 2048 // %% -> % in the future if we cared. 2049 if (FormatStr.find('%') != StringRef::npos) 2050 return nullptr; // we found a format specifier, bail out. 2051 2052 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2053 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2054 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2055 FormatStr.size() + 1)); // Copy the null byte. 2056 return ConstantInt::get(CI->getType(), FormatStr.size()); 2057 } 2058 2059 // The remaining optimizations require the format string to be "%s" or "%c" 2060 // and have an extra operand. 2061 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2062 CI->getNumArgOperands() < 3) 2063 return nullptr; 2064 2065 // Decode the second character of the format string. 2066 if (FormatStr[1] == 'c') { 2067 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2068 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2069 return nullptr; 2070 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2071 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2072 B.CreateStore(V, Ptr); 2073 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2074 B.CreateStore(B.getInt8(0), Ptr); 2075 2076 return ConstantInt::get(CI->getType(), 1); 2077 } 2078 2079 if (FormatStr[1] == 's') { 2080 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 2081 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2082 return nullptr; 2083 2084 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2085 if (!Len) 2086 return nullptr; 2087 Value *IncLen = 2088 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2089 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2090 2091 // The sprintf result is the unincremented number of bytes in the string. 2092 return B.CreateIntCast(Len, CI->getType(), false); 2093 } 2094 return nullptr; 2095 } 2096 2097 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2098 Function *Callee = CI->getCalledFunction(); 2099 FunctionType *FT = Callee->getFunctionType(); 2100 if (Value *V = optimizeSPrintFString(CI, B)) { 2101 return V; 2102 } 2103 2104 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2105 // point arguments. 2106 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2107 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2108 Constant *SIPrintFFn = 2109 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2110 CallInst *New = cast<CallInst>(CI->clone()); 2111 New->setCalledFunction(SIPrintFFn); 2112 B.Insert(New); 2113 return New; 2114 } 2115 return nullptr; 2116 } 2117 2118 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2119 // Check for a fixed format string. 2120 StringRef FormatStr; 2121 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2122 return nullptr; 2123 2124 // Check for size 2125 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2126 if (!Size) 2127 return nullptr; 2128 2129 uint64_t N = Size->getZExtValue(); 2130 2131 // If we just have a format string (nothing else crazy) transform it. 2132 if (CI->getNumArgOperands() == 3) { 2133 // Make sure there's no % in the constant array. We could try to handle 2134 // %% -> % in the future if we cared. 2135 if (FormatStr.find('%') != StringRef::npos) 2136 return nullptr; // we found a format specifier, bail out. 2137 2138 if (N == 0) 2139 return ConstantInt::get(CI->getType(), FormatStr.size()); 2140 else if (N < FormatStr.size() + 1) 2141 return nullptr; 2142 2143 // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, 2144 // strlen(fmt)+1) 2145 B.CreateMemCpy( 2146 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2147 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2148 FormatStr.size() + 1)); // Copy the null byte. 2149 return ConstantInt::get(CI->getType(), FormatStr.size()); 2150 } 2151 2152 // The remaining optimizations require the format string to be "%s" or "%c" 2153 // and have an extra operand. 2154 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2155 CI->getNumArgOperands() == 4) { 2156 2157 // Decode the second character of the format string. 2158 if (FormatStr[1] == 'c') { 2159 if (N == 0) 2160 return ConstantInt::get(CI->getType(), 1); 2161 else if (N == 1) 2162 return nullptr; 2163 2164 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2165 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2166 return nullptr; 2167 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2168 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2169 B.CreateStore(V, Ptr); 2170 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2171 B.CreateStore(B.getInt8(0), Ptr); 2172 2173 return ConstantInt::get(CI->getType(), 1); 2174 } 2175 2176 if (FormatStr[1] == 's') { 2177 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2178 StringRef Str; 2179 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2180 return nullptr; 2181 2182 if (N == 0) 2183 return ConstantInt::get(CI->getType(), Str.size()); 2184 else if (N < Str.size() + 1) 2185 return nullptr; 2186 2187 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2188 ConstantInt::get(CI->getType(), Str.size() + 1)); 2189 2190 // The snprintf result is the unincremented number of bytes in the string. 2191 return ConstantInt::get(CI->getType(), Str.size()); 2192 } 2193 } 2194 return nullptr; 2195 } 2196 2197 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2198 if (Value *V = optimizeSnPrintFString(CI, B)) { 2199 return V; 2200 } 2201 2202 return nullptr; 2203 } 2204 2205 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2206 optimizeErrorReporting(CI, B, 0); 2207 2208 // All the optimizations depend on the format string. 2209 StringRef FormatStr; 2210 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2211 return nullptr; 2212 2213 // Do not do any of the following transformations if the fprintf return 2214 // value is used, in general the fprintf return value is not compatible 2215 // with fwrite(), fputc() or fputs(). 2216 if (!CI->use_empty()) 2217 return nullptr; 2218 2219 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2220 if (CI->getNumArgOperands() == 2) { 2221 // Could handle %% -> % if we cared. 2222 if (FormatStr.find('%') != StringRef::npos) 2223 return nullptr; // We found a format specifier. 2224 2225 return emitFWrite( 2226 CI->getArgOperand(1), 2227 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2228 CI->getArgOperand(0), B, DL, TLI); 2229 } 2230 2231 // The remaining optimizations require the format string to be "%s" or "%c" 2232 // and have an extra operand. 2233 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2234 CI->getNumArgOperands() < 3) 2235 return nullptr; 2236 2237 // Decode the second character of the format string. 2238 if (FormatStr[1] == 'c') { 2239 // fprintf(F, "%c", chr) --> fputc(chr, F) 2240 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2241 return nullptr; 2242 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2243 } 2244 2245 if (FormatStr[1] == 's') { 2246 // fprintf(F, "%s", str) --> fputs(str, F) 2247 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2248 return nullptr; 2249 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2250 } 2251 return nullptr; 2252 } 2253 2254 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2255 Function *Callee = CI->getCalledFunction(); 2256 FunctionType *FT = Callee->getFunctionType(); 2257 if (Value *V = optimizeFPrintFString(CI, B)) { 2258 return V; 2259 } 2260 2261 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2262 // floating point arguments. 2263 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2264 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2265 Constant *FIPrintFFn = 2266 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2267 CallInst *New = cast<CallInst>(CI->clone()); 2268 New->setCalledFunction(FIPrintFFn); 2269 B.Insert(New); 2270 return New; 2271 } 2272 return nullptr; 2273 } 2274 2275 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2276 optimizeErrorReporting(CI, B, 3); 2277 2278 // Get the element size and count. 2279 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2280 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2281 if (SizeC && CountC) { 2282 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2283 2284 // If this is writing zero records, remove the call (it's a noop). 2285 if (Bytes == 0) 2286 return ConstantInt::get(CI->getType(), 0); 2287 2288 // If this is writing one byte, turn it into fputc. 2289 // This optimisation is only valid, if the return value is unused. 2290 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2291 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 2292 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2293 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2294 } 2295 } 2296 2297 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2298 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2299 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2300 TLI); 2301 2302 return nullptr; 2303 } 2304 2305 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2306 optimizeErrorReporting(CI, B, 1); 2307 2308 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2309 // requires more arguments and thus extra MOVs are required. 2310 if (CI->getFunction()->optForSize()) 2311 return nullptr; 2312 2313 // Check if has any use 2314 if (!CI->use_empty()) { 2315 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2316 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2317 TLI); 2318 else 2319 // We can't optimize if return value is used. 2320 return nullptr; 2321 } 2322 2323 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2324 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2325 if (!Len) 2326 return nullptr; 2327 2328 // Known to have no uses (see above). 2329 return emitFWrite( 2330 CI->getArgOperand(0), 2331 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2332 CI->getArgOperand(1), B, DL, TLI); 2333 } 2334 2335 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2336 optimizeErrorReporting(CI, B, 1); 2337 2338 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2339 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2340 TLI); 2341 2342 return nullptr; 2343 } 2344 2345 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2346 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2347 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2348 2349 return nullptr; 2350 } 2351 2352 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2353 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2354 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2355 CI->getArgOperand(2), B, TLI); 2356 2357 return nullptr; 2358 } 2359 2360 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2361 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2362 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2363 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2364 TLI); 2365 2366 return nullptr; 2367 } 2368 2369 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2370 // Check for a constant string. 2371 StringRef Str; 2372 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2373 return nullptr; 2374 2375 if (Str.empty() && CI->use_empty()) { 2376 // puts("") -> putchar('\n') 2377 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2378 if (CI->use_empty() || !Res) 2379 return Res; 2380 return B.CreateIntCast(Res, CI->getType(), true); 2381 } 2382 2383 return nullptr; 2384 } 2385 2386 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2387 LibFunc Func; 2388 SmallString<20> FloatFuncName = FuncName; 2389 FloatFuncName += 'f'; 2390 if (TLI->getLibFunc(FloatFuncName, Func)) 2391 return TLI->has(Func); 2392 return false; 2393 } 2394 2395 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2396 IRBuilder<> &Builder) { 2397 LibFunc Func; 2398 Function *Callee = CI->getCalledFunction(); 2399 // Check for string/memory library functions. 2400 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2401 // Make sure we never change the calling convention. 2402 assert((ignoreCallingConv(Func) || 2403 isCallingConvCCompatible(CI)) && 2404 "Optimizing string/memory libcall would change the calling convention"); 2405 switch (Func) { 2406 case LibFunc_strcat: 2407 return optimizeStrCat(CI, Builder); 2408 case LibFunc_strncat: 2409 return optimizeStrNCat(CI, Builder); 2410 case LibFunc_strchr: 2411 return optimizeStrChr(CI, Builder); 2412 case LibFunc_strrchr: 2413 return optimizeStrRChr(CI, Builder); 2414 case LibFunc_strcmp: 2415 return optimizeStrCmp(CI, Builder); 2416 case LibFunc_strncmp: 2417 return optimizeStrNCmp(CI, Builder); 2418 case LibFunc_strcpy: 2419 return optimizeStrCpy(CI, Builder); 2420 case LibFunc_stpcpy: 2421 return optimizeStpCpy(CI, Builder); 2422 case LibFunc_strncpy: 2423 return optimizeStrNCpy(CI, Builder); 2424 case LibFunc_strlen: 2425 return optimizeStrLen(CI, Builder); 2426 case LibFunc_strpbrk: 2427 return optimizeStrPBrk(CI, Builder); 2428 case LibFunc_strtol: 2429 case LibFunc_strtod: 2430 case LibFunc_strtof: 2431 case LibFunc_strtoul: 2432 case LibFunc_strtoll: 2433 case LibFunc_strtold: 2434 case LibFunc_strtoull: 2435 return optimizeStrTo(CI, Builder); 2436 case LibFunc_strspn: 2437 return optimizeStrSpn(CI, Builder); 2438 case LibFunc_strcspn: 2439 return optimizeStrCSpn(CI, Builder); 2440 case LibFunc_strstr: 2441 return optimizeStrStr(CI, Builder); 2442 case LibFunc_memchr: 2443 return optimizeMemChr(CI, Builder); 2444 case LibFunc_memcmp: 2445 return optimizeMemCmp(CI, Builder); 2446 case LibFunc_memcpy: 2447 return optimizeMemCpy(CI, Builder); 2448 case LibFunc_memmove: 2449 return optimizeMemMove(CI, Builder); 2450 case LibFunc_memset: 2451 return optimizeMemSet(CI, Builder); 2452 case LibFunc_realloc: 2453 return optimizeRealloc(CI, Builder); 2454 case LibFunc_wcslen: 2455 return optimizeWcslen(CI, Builder); 2456 default: 2457 break; 2458 } 2459 } 2460 return nullptr; 2461 } 2462 2463 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2464 LibFunc Func, 2465 IRBuilder<> &Builder) { 2466 // Don't optimize calls that require strict floating point semantics. 2467 if (CI->isStrictFP()) 2468 return nullptr; 2469 2470 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2471 return V; 2472 2473 switch (Func) { 2474 case LibFunc_sinpif: 2475 case LibFunc_sinpi: 2476 case LibFunc_cospif: 2477 case LibFunc_cospi: 2478 return optimizeSinCosPi(CI, Builder); 2479 case LibFunc_powf: 2480 case LibFunc_pow: 2481 case LibFunc_powl: 2482 return optimizePow(CI, Builder); 2483 case LibFunc_exp2l: 2484 case LibFunc_exp2: 2485 case LibFunc_exp2f: 2486 return optimizeExp2(CI, Builder); 2487 case LibFunc_fabsf: 2488 case LibFunc_fabs: 2489 case LibFunc_fabsl: 2490 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2491 case LibFunc_sqrtf: 2492 case LibFunc_sqrt: 2493 case LibFunc_sqrtl: 2494 return optimizeSqrt(CI, Builder); 2495 case LibFunc_log: 2496 case LibFunc_log10: 2497 case LibFunc_log1p: 2498 case LibFunc_log2: 2499 case LibFunc_logb: 2500 return optimizeLog(CI, Builder); 2501 case LibFunc_tan: 2502 case LibFunc_tanf: 2503 case LibFunc_tanl: 2504 return optimizeTan(CI, Builder); 2505 case LibFunc_ceil: 2506 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2507 case LibFunc_floor: 2508 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2509 case LibFunc_round: 2510 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2511 case LibFunc_nearbyint: 2512 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2513 case LibFunc_rint: 2514 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2515 case LibFunc_trunc: 2516 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2517 case LibFunc_acos: 2518 case LibFunc_acosh: 2519 case LibFunc_asin: 2520 case LibFunc_asinh: 2521 case LibFunc_atan: 2522 case LibFunc_atanh: 2523 case LibFunc_cbrt: 2524 case LibFunc_cosh: 2525 case LibFunc_exp: 2526 case LibFunc_exp10: 2527 case LibFunc_expm1: 2528 case LibFunc_cos: 2529 case LibFunc_sin: 2530 case LibFunc_sinh: 2531 case LibFunc_tanh: 2532 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2533 return optimizeUnaryDoubleFP(CI, Builder, true); 2534 return nullptr; 2535 case LibFunc_copysign: 2536 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2537 return optimizeBinaryDoubleFP(CI, Builder); 2538 return nullptr; 2539 case LibFunc_fminf: 2540 case LibFunc_fmin: 2541 case LibFunc_fminl: 2542 case LibFunc_fmaxf: 2543 case LibFunc_fmax: 2544 case LibFunc_fmaxl: 2545 return optimizeFMinFMax(CI, Builder); 2546 case LibFunc_cabs: 2547 case LibFunc_cabsf: 2548 case LibFunc_cabsl: 2549 return optimizeCAbs(CI, Builder); 2550 default: 2551 return nullptr; 2552 } 2553 } 2554 2555 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2556 // TODO: Split out the code below that operates on FP calls so that 2557 // we can all non-FP calls with the StrictFP attribute to be 2558 // optimized. 2559 if (CI->isNoBuiltin()) 2560 return nullptr; 2561 2562 LibFunc Func; 2563 Function *Callee = CI->getCalledFunction(); 2564 2565 SmallVector<OperandBundleDef, 2> OpBundles; 2566 CI->getOperandBundlesAsDefs(OpBundles); 2567 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2568 bool isCallingConvC = isCallingConvCCompatible(CI); 2569 2570 // Command-line parameter overrides instruction attribute. 2571 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2572 // used by the intrinsic optimizations. 2573 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2574 UnsafeFPShrink = EnableUnsafeFPShrink; 2575 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2576 UnsafeFPShrink = true; 2577 2578 // First, check for intrinsics. 2579 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2580 if (!isCallingConvC) 2581 return nullptr; 2582 // The FP intrinsics have corresponding constrained versions so we don't 2583 // need to check for the StrictFP attribute here. 2584 switch (II->getIntrinsicID()) { 2585 case Intrinsic::pow: 2586 return optimizePow(CI, Builder); 2587 case Intrinsic::exp2: 2588 return optimizeExp2(CI, Builder); 2589 case Intrinsic::log: 2590 return optimizeLog(CI, Builder); 2591 case Intrinsic::sqrt: 2592 return optimizeSqrt(CI, Builder); 2593 // TODO: Use foldMallocMemset() with memset intrinsic. 2594 default: 2595 return nullptr; 2596 } 2597 } 2598 2599 // Also try to simplify calls to fortified library functions. 2600 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2601 // Try to further simplify the result. 2602 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2603 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2604 // Use an IR Builder from SimplifiedCI if available instead of CI 2605 // to guarantee we reach all uses we might replace later on. 2606 IRBuilder<> TmpBuilder(SimplifiedCI); 2607 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2608 // If we were able to further simplify, remove the now redundant call. 2609 SimplifiedCI->replaceAllUsesWith(V); 2610 eraseFromParent(SimplifiedCI); 2611 return V; 2612 } 2613 } 2614 return SimplifiedFortifiedCI; 2615 } 2616 2617 // Then check for known library functions. 2618 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2619 // We never change the calling convention. 2620 if (!ignoreCallingConv(Func) && !isCallingConvC) 2621 return nullptr; 2622 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2623 return V; 2624 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2625 return V; 2626 switch (Func) { 2627 case LibFunc_ffs: 2628 case LibFunc_ffsl: 2629 case LibFunc_ffsll: 2630 return optimizeFFS(CI, Builder); 2631 case LibFunc_fls: 2632 case LibFunc_flsl: 2633 case LibFunc_flsll: 2634 return optimizeFls(CI, Builder); 2635 case LibFunc_abs: 2636 case LibFunc_labs: 2637 case LibFunc_llabs: 2638 return optimizeAbs(CI, Builder); 2639 case LibFunc_isdigit: 2640 return optimizeIsDigit(CI, Builder); 2641 case LibFunc_isascii: 2642 return optimizeIsAscii(CI, Builder); 2643 case LibFunc_toascii: 2644 return optimizeToAscii(CI, Builder); 2645 case LibFunc_atoi: 2646 case LibFunc_atol: 2647 case LibFunc_atoll: 2648 return optimizeAtoi(CI, Builder); 2649 case LibFunc_strtol: 2650 case LibFunc_strtoll: 2651 return optimizeStrtol(CI, Builder); 2652 case LibFunc_printf: 2653 return optimizePrintF(CI, Builder); 2654 case LibFunc_sprintf: 2655 return optimizeSPrintF(CI, Builder); 2656 case LibFunc_snprintf: 2657 return optimizeSnPrintF(CI, Builder); 2658 case LibFunc_fprintf: 2659 return optimizeFPrintF(CI, Builder); 2660 case LibFunc_fwrite: 2661 return optimizeFWrite(CI, Builder); 2662 case LibFunc_fread: 2663 return optimizeFRead(CI, Builder); 2664 case LibFunc_fputs: 2665 return optimizeFPuts(CI, Builder); 2666 case LibFunc_fgets: 2667 return optimizeFGets(CI, Builder); 2668 case LibFunc_fputc: 2669 return optimizeFPutc(CI, Builder); 2670 case LibFunc_fgetc: 2671 return optimizeFGetc(CI, Builder); 2672 case LibFunc_puts: 2673 return optimizePuts(CI, Builder); 2674 case LibFunc_perror: 2675 return optimizeErrorReporting(CI, Builder); 2676 case LibFunc_vfprintf: 2677 case LibFunc_fiprintf: 2678 return optimizeErrorReporting(CI, Builder, 0); 2679 default: 2680 return nullptr; 2681 } 2682 } 2683 return nullptr; 2684 } 2685 2686 LibCallSimplifier::LibCallSimplifier( 2687 const DataLayout &DL, const TargetLibraryInfo *TLI, 2688 OptimizationRemarkEmitter &ORE, 2689 function_ref<void(Instruction *, Value *)> Replacer, 2690 function_ref<void(Instruction *)> Eraser) 2691 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2692 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2693 2694 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2695 // Indirect through the replacer used in this instance. 2696 Replacer(I, With); 2697 } 2698 2699 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2700 Eraser(I); 2701 } 2702 2703 // TODO: 2704 // Additional cases that we need to add to this file: 2705 // 2706 // cbrt: 2707 // * cbrt(expN(X)) -> expN(x/3) 2708 // * cbrt(sqrt(x)) -> pow(x,1/6) 2709 // * cbrt(cbrt(x)) -> pow(x,1/9) 2710 // 2711 // exp, expf, expl: 2712 // * exp(log(x)) -> x 2713 // 2714 // log, logf, logl: 2715 // * log(exp(x)) -> x 2716 // * log(exp(y)) -> y*log(e) 2717 // * log(exp10(y)) -> y*log(10) 2718 // * log(sqrt(x)) -> 0.5*log(x) 2719 // 2720 // pow, powf, powl: 2721 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2722 // * pow(pow(x,y),z)-> pow(x,y*z) 2723 // 2724 // signbit: 2725 // * signbit(cnst) -> cnst' 2726 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2727 // 2728 // sqrt, sqrtf, sqrtl: 2729 // * sqrt(expN(x)) -> expN(x*0.5) 2730 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2731 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2732 // 2733 2734 //===----------------------------------------------------------------------===// 2735 // Fortified Library Call Optimizations 2736 //===----------------------------------------------------------------------===// 2737 2738 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2739 unsigned ObjSizeOp, 2740 unsigned SizeOp, 2741 bool isString) { 2742 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2743 return true; 2744 if (ConstantInt *ObjSizeCI = 2745 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2746 if (ObjSizeCI->isMinusOne()) 2747 return true; 2748 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2749 if (OnlyLowerUnknownSize) 2750 return false; 2751 if (isString) { 2752 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2753 // If the length is 0 we don't know how long it is and so we can't 2754 // remove the check. 2755 if (Len == 0) 2756 return false; 2757 return ObjSizeCI->getZExtValue() >= Len; 2758 } 2759 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2760 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2761 } 2762 return false; 2763 } 2764 2765 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2766 IRBuilder<> &B) { 2767 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2768 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2769 CI->getArgOperand(2)); 2770 return CI->getArgOperand(0); 2771 } 2772 return nullptr; 2773 } 2774 2775 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2776 IRBuilder<> &B) { 2777 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2778 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2779 CI->getArgOperand(2)); 2780 return CI->getArgOperand(0); 2781 } 2782 return nullptr; 2783 } 2784 2785 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2786 IRBuilder<> &B) { 2787 // TODO: Try foldMallocMemset() here. 2788 2789 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2790 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2791 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2792 return CI->getArgOperand(0); 2793 } 2794 return nullptr; 2795 } 2796 2797 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2798 IRBuilder<> &B, 2799 LibFunc Func) { 2800 Function *Callee = CI->getCalledFunction(); 2801 StringRef Name = Callee->getName(); 2802 const DataLayout &DL = CI->getModule()->getDataLayout(); 2803 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2804 *ObjSize = CI->getArgOperand(2); 2805 2806 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2807 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2808 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2809 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2810 } 2811 2812 // If a) we don't have any length information, or b) we know this will 2813 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2814 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2815 // TODO: It might be nice to get a maximum length out of the possible 2816 // string lengths for varying. 2817 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2818 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2819 2820 if (OnlyLowerUnknownSize) 2821 return nullptr; 2822 2823 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2824 uint64_t Len = GetStringLength(Src); 2825 if (Len == 0) 2826 return nullptr; 2827 2828 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2829 Value *LenV = ConstantInt::get(SizeTTy, Len); 2830 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2831 // If the function was an __stpcpy_chk, and we were able to fold it into 2832 // a __memcpy_chk, we still need to return the correct end pointer. 2833 if (Ret && Func == LibFunc_stpcpy_chk) 2834 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2835 return Ret; 2836 } 2837 2838 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2839 IRBuilder<> &B, 2840 LibFunc Func) { 2841 Function *Callee = CI->getCalledFunction(); 2842 StringRef Name = Callee->getName(); 2843 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2844 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2845 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2846 return Ret; 2847 } 2848 return nullptr; 2849 } 2850 2851 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2852 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2853 // Some clang users checked for _chk libcall availability using: 2854 // __has_builtin(__builtin___memcpy_chk) 2855 // When compiling with -fno-builtin, this is always true. 2856 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2857 // end up with fortified libcalls, which isn't acceptable in a freestanding 2858 // environment which only provides their non-fortified counterparts. 2859 // 2860 // Until we change clang and/or teach external users to check for availability 2861 // differently, disregard the "nobuiltin" attribute and TLI::has. 2862 // 2863 // PR23093. 2864 2865 LibFunc Func; 2866 Function *Callee = CI->getCalledFunction(); 2867 2868 SmallVector<OperandBundleDef, 2> OpBundles; 2869 CI->getOperandBundlesAsDefs(OpBundles); 2870 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2871 bool isCallingConvC = isCallingConvCCompatible(CI); 2872 2873 // First, check that this is a known library functions and that the prototype 2874 // is correct. 2875 if (!TLI->getLibFunc(*Callee, Func)) 2876 return nullptr; 2877 2878 // We never change the calling convention. 2879 if (!ignoreCallingConv(Func) && !isCallingConvC) 2880 return nullptr; 2881 2882 switch (Func) { 2883 case LibFunc_memcpy_chk: 2884 return optimizeMemCpyChk(CI, Builder); 2885 case LibFunc_memmove_chk: 2886 return optimizeMemMoveChk(CI, Builder); 2887 case LibFunc_memset_chk: 2888 return optimizeMemSetChk(CI, Builder); 2889 case LibFunc_stpcpy_chk: 2890 case LibFunc_strcpy_chk: 2891 return optimizeStrpCpyChk(CI, Builder, Func); 2892 case LibFunc_stpncpy_chk: 2893 case LibFunc_strncpy_chk: 2894 return optimizeStrpNCpyChk(CI, Builder, Func); 2895 default: 2896 break; 2897 } 2898 return nullptr; 2899 } 2900 2901 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2902 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2903 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2904