1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/IVUsers.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "indvars" 36 37 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 38 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 39 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 40 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 41 42 namespace { 43 /// This is a utility for simplifying induction variables 44 /// based on ScalarEvolution. It is the primary instrument of the 45 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 46 /// other loop passes that preserve SCEV. 47 class SimplifyIndvar { 48 Loop *L; 49 LoopInfo *LI; 50 ScalarEvolution *SE; 51 const DataLayout *DL; // May be NULL 52 53 SmallVectorImpl<WeakVH> &DeadInsts; 54 55 bool Changed; 56 57 public: 58 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM, 59 SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = nullptr) : 60 L(Loop), 61 LI(LPM->getAnalysisIfAvailable<LoopInfo>()), 62 SE(SE), 63 DeadInsts(Dead), 64 Changed(false) { 65 DataLayoutPass *DLP = LPM->getAnalysisIfAvailable<DataLayoutPass>(); 66 DL = DLP ? &DLP->getDataLayout() : nullptr; 67 assert(LI && "IV simplification requires LoopInfo"); 68 } 69 70 bool hasChanged() const { return Changed; } 71 72 /// Iteratively perform simplification on a worklist of users of the 73 /// specified induction variable. This is the top-level driver that applies 74 /// all simplicitions to users of an IV. 75 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 76 77 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 78 79 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 80 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 81 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 82 bool IsSigned); 83 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 84 85 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 86 const DominatorTree *DT); 87 }; 88 } 89 90 /// Fold an IV operand into its use. This removes increments of an 91 /// aligned IV when used by a instruction that ignores the low bits. 92 /// 93 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 94 /// 95 /// Return the operand of IVOperand for this induction variable if IVOperand can 96 /// be folded (in case more folding opportunities have been exposed). 97 /// Otherwise return null. 98 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 99 Value *IVSrc = nullptr; 100 unsigned OperIdx = 0; 101 const SCEV *FoldedExpr = nullptr; 102 switch (UseInst->getOpcode()) { 103 default: 104 return nullptr; 105 case Instruction::UDiv: 106 case Instruction::LShr: 107 // We're only interested in the case where we know something about 108 // the numerator and have a constant denominator. 109 if (IVOperand != UseInst->getOperand(OperIdx) || 110 !isa<ConstantInt>(UseInst->getOperand(1))) 111 return nullptr; 112 113 // Attempt to fold a binary operator with constant operand. 114 // e.g. ((I + 1) >> 2) => I >> 2 115 if (!isa<BinaryOperator>(IVOperand) 116 || !isa<ConstantInt>(IVOperand->getOperand(1))) 117 return nullptr; 118 119 IVSrc = IVOperand->getOperand(0); 120 // IVSrc must be the (SCEVable) IV, since the other operand is const. 121 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 122 123 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 124 if (UseInst->getOpcode() == Instruction::LShr) { 125 // Get a constant for the divisor. See createSCEV. 126 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 127 if (D->getValue().uge(BitWidth)) 128 return nullptr; 129 130 D = ConstantInt::get(UseInst->getContext(), 131 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 132 } 133 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 134 } 135 // We have something that might fold it's operand. Compare SCEVs. 136 if (!SE->isSCEVable(UseInst->getType())) 137 return nullptr; 138 139 // Bypass the operand if SCEV can prove it has no effect. 140 if (SE->getSCEV(UseInst) != FoldedExpr) 141 return nullptr; 142 143 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 144 << " -> " << *UseInst << '\n'); 145 146 UseInst->setOperand(OperIdx, IVSrc); 147 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 148 149 ++NumElimOperand; 150 Changed = true; 151 if (IVOperand->use_empty()) 152 DeadInsts.push_back(IVOperand); 153 return IVSrc; 154 } 155 156 /// SimplifyIVUsers helper for eliminating useless 157 /// comparisons against an induction variable. 158 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 159 unsigned IVOperIdx = 0; 160 ICmpInst::Predicate Pred = ICmp->getPredicate(); 161 if (IVOperand != ICmp->getOperand(0)) { 162 // Swapped 163 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 164 IVOperIdx = 1; 165 Pred = ICmpInst::getSwappedPredicate(Pred); 166 } 167 168 // Get the SCEVs for the ICmp operands. 169 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 170 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 171 172 // Simplify unnecessary loops away. 173 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 174 S = SE->getSCEVAtScope(S, ICmpLoop); 175 X = SE->getSCEVAtScope(X, ICmpLoop); 176 177 // If the condition is always true or always false, replace it with 178 // a constant value. 179 if (SE->isKnownPredicate(Pred, S, X)) 180 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 181 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 182 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 183 else 184 return; 185 186 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 187 ++NumElimCmp; 188 Changed = true; 189 DeadInsts.push_back(ICmp); 190 } 191 192 /// SimplifyIVUsers helper for eliminating useless 193 /// remainder operations operating on an induction variable. 194 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 195 Value *IVOperand, 196 bool IsSigned) { 197 // We're only interested in the case where we know something about 198 // the numerator. 199 if (IVOperand != Rem->getOperand(0)) 200 return; 201 202 // Get the SCEVs for the ICmp operands. 203 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 204 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 205 206 // Simplify unnecessary loops away. 207 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 208 S = SE->getSCEVAtScope(S, ICmpLoop); 209 X = SE->getSCEVAtScope(X, ICmpLoop); 210 211 // i % n --> i if i is in [0,n). 212 if ((!IsSigned || SE->isKnownNonNegative(S)) && 213 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 214 S, X)) 215 Rem->replaceAllUsesWith(Rem->getOperand(0)); 216 else { 217 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 218 const SCEV *LessOne = 219 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 220 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 221 return; 222 223 if (!SE->isKnownPredicate(IsSigned ? 224 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 225 LessOne, X)) 226 return; 227 228 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 229 Rem->getOperand(0), Rem->getOperand(1)); 230 SelectInst *Sel = 231 SelectInst::Create(ICmp, 232 ConstantInt::get(Rem->getType(), 0), 233 Rem->getOperand(0), "tmp", Rem); 234 Rem->replaceAllUsesWith(Sel); 235 } 236 237 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 238 ++NumElimRem; 239 Changed = true; 240 DeadInsts.push_back(Rem); 241 } 242 243 /// Eliminate an operation that consumes a simple IV and has 244 /// no observable side-effect given the range of IV values. 245 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 246 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 247 Instruction *IVOperand) { 248 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 249 eliminateIVComparison(ICmp, IVOperand); 250 return true; 251 } 252 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 253 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 254 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 255 eliminateIVRemainder(Rem, IVOperand, IsSigned); 256 return true; 257 } 258 } 259 260 // Eliminate any operation that SCEV can prove is an identity function. 261 if (!SE->isSCEVable(UseInst->getType()) || 262 (UseInst->getType() != IVOperand->getType()) || 263 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 264 return false; 265 266 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 267 268 UseInst->replaceAllUsesWith(IVOperand); 269 ++NumElimIdentity; 270 Changed = true; 271 DeadInsts.push_back(UseInst); 272 return true; 273 } 274 275 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 276 /// unsigned-overflow. Returns true if anything changed, false otherwise. 277 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 278 Value *IVOperand) { 279 280 // Currently we only handle instructions of the form "add <indvar> <value>" 281 unsigned Op = BO->getOpcode(); 282 if (Op != Instruction::Add) 283 return false; 284 285 // If BO is already both nuw and nsw then there is nothing left to do 286 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 287 return false; 288 289 IntegerType *IT = cast<IntegerType>(IVOperand->getType()); 290 Value *OtherOperand = nullptr; 291 int OtherOperandIdx = -1; 292 if (BO->getOperand(0) == IVOperand) { 293 OtherOperand = BO->getOperand(1); 294 OtherOperandIdx = 1; 295 } else { 296 assert(BO->getOperand(1) == IVOperand && "only other use!"); 297 OtherOperand = BO->getOperand(0); 298 OtherOperandIdx = 0; 299 } 300 301 bool Changed = false; 302 const SCEV *OtherOpSCEV = SE->getSCEV(OtherOperand); 303 if (OtherOpSCEV == SE->getCouldNotCompute()) 304 return false; 305 306 const SCEV *IVOpSCEV = SE->getSCEV(IVOperand); 307 const SCEV *ZeroSCEV = SE->getConstant(IVOpSCEV->getType(), 0); 308 309 if (!BO->hasNoSignedWrap()) { 310 // Upgrade the add to an "add nsw" if we can prove that it will never 311 // sign-overflow or sign-underflow. 312 313 const SCEV *SignedMax = 314 SE->getConstant(APInt::getSignedMaxValue(IT->getBitWidth())); 315 const SCEV *SignedMin = 316 SE->getConstant(APInt::getSignedMinValue(IT->getBitWidth())); 317 318 // The addition "IVOperand + OtherOp" does not sign-overflow if the result 319 // is sign-representable in 2's complement in the given bit-width. 320 // 321 // If OtherOp is SLT 0, then for an IVOperand in [SignedMin - OtherOp, 322 // SignedMax], "IVOperand + OtherOp" is in [SignedMin, SignedMax + OtherOp]. 323 // Everything in [SignedMin, SignedMax + OtherOp] is representable since 324 // SignedMax + OtherOp is at least -1. 325 // 326 // If OtherOp is SGE 0, then for an IVOperand in [SignedMin, SignedMax - 327 // OtherOp], "IVOperand + OtherOp" is in [SignedMin + OtherOp, SignedMax]. 328 // Everything in [SignedMin + OtherOp, SignedMax] is representable since 329 // SignedMin + OtherOp is at most -1. 330 // 331 // It follows that for all values of IVOperand in [SignedMin - smin(0, 332 // OtherOp), SignedMax - smax(0, OtherOp)] the result of the add is 333 // representable (i.e. there is no sign-overflow). 334 335 const SCEV *UpperDelta = SE->getSMaxExpr(ZeroSCEV, OtherOpSCEV); 336 const SCEV *UpperLimit = SE->getMinusSCEV(SignedMax, UpperDelta); 337 338 bool NeverSignedOverflows = 339 SE->isKnownPredicate(ICmpInst::ICMP_SLE, IVOpSCEV, UpperLimit); 340 341 if (NeverSignedOverflows) { 342 const SCEV *LowerDelta = SE->getSMinExpr(ZeroSCEV, OtherOpSCEV); 343 const SCEV *LowerLimit = SE->getMinusSCEV(SignedMin, LowerDelta); 344 345 bool NeverSignedUnderflows = 346 SE->isKnownPredicate(ICmpInst::ICMP_SGE, IVOpSCEV, LowerLimit); 347 if (NeverSignedUnderflows) { 348 BO->setHasNoSignedWrap(true); 349 Changed = true; 350 } 351 } 352 } 353 354 if (!BO->hasNoUnsignedWrap()) { 355 // Upgrade the add computing "IVOperand + OtherOp" to an "add nuw" if we can 356 // prove that it will never unsigned-overflow (i.e. the result will always 357 // be representable in the given bit-width). 358 // 359 // "IVOperand + OtherOp" is unsigned-representable in 2's complement iff it 360 // does not produce a carry. "IVOperand + OtherOp" produces no carry iff 361 // IVOperand ULE (UnsignedMax - OtherOp). 362 363 const SCEV *UnsignedMax = 364 SE->getConstant(APInt::getMaxValue(IT->getBitWidth())); 365 const SCEV *UpperLimit = SE->getMinusSCEV(UnsignedMax, OtherOpSCEV); 366 367 bool NeverUnsignedOverflows = 368 SE->isKnownPredicate(ICmpInst::ICMP_ULE, IVOpSCEV, UpperLimit); 369 370 if (NeverUnsignedOverflows) { 371 BO->setHasNoUnsignedWrap(true); 372 Changed = true; 373 } 374 } 375 376 return Changed; 377 } 378 379 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 380 /// analysis and optimization. 381 /// 382 /// \return A new value representing the non-overflowing add if possible, 383 /// otherwise return the original value. 384 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 385 const DominatorTree *DT) { 386 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 387 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 388 return IVUser; 389 390 // Find a branch guarded by the overflow check. 391 BranchInst *Branch = nullptr; 392 Instruction *AddVal = nullptr; 393 for (User *U : II->users()) { 394 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 395 if (ExtractInst->getNumIndices() != 1) 396 continue; 397 if (ExtractInst->getIndices()[0] == 0) 398 AddVal = ExtractInst; 399 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 400 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 401 } 402 } 403 if (!AddVal || !Branch) 404 return IVUser; 405 406 BasicBlock *ContinueBB = Branch->getSuccessor(1); 407 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 408 return IVUser; 409 410 // Check if all users of the add are provably NSW. 411 bool AllNSW = true; 412 for (Use &U : AddVal->uses()) { 413 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 414 BasicBlock *UseBB = UseInst->getParent(); 415 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 416 UseBB = PHI->getIncomingBlock(U); 417 if (!DT->dominates(ContinueBB, UseBB)) { 418 AllNSW = false; 419 break; 420 } 421 } 422 } 423 if (!AllNSW) 424 return IVUser; 425 426 // Go for it... 427 IRBuilder<> Builder(IVUser); 428 Instruction *AddInst = dyn_cast<Instruction>( 429 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 430 431 // The caller expects the new add to have the same form as the intrinsic. The 432 // IV operand position must be the same. 433 assert((AddInst->getOpcode() == Instruction::Add && 434 AddInst->getOperand(0) == II->getOperand(0)) && 435 "Bad add instruction created from overflow intrinsic."); 436 437 AddVal->replaceAllUsesWith(AddInst); 438 DeadInsts.push_back(AddVal); 439 return AddInst; 440 } 441 442 /// Add all uses of Def to the current IV's worklist. 443 static void pushIVUsers( 444 Instruction *Def, 445 SmallPtrSet<Instruction*,16> &Simplified, 446 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 447 448 for (User *U : Def->users()) { 449 Instruction *UI = cast<Instruction>(U); 450 451 // Avoid infinite or exponential worklist processing. 452 // Also ensure unique worklist users. 453 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 454 // self edges first. 455 if (UI != Def && Simplified.insert(UI).second) 456 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 457 } 458 } 459 460 /// Return true if this instruction generates a simple SCEV 461 /// expression in terms of that IV. 462 /// 463 /// This is similar to IVUsers' isInteresting() but processes each instruction 464 /// non-recursively when the operand is already known to be a simpleIVUser. 465 /// 466 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 467 if (!SE->isSCEVable(I->getType())) 468 return false; 469 470 // Get the symbolic expression for this instruction. 471 const SCEV *S = SE->getSCEV(I); 472 473 // Only consider affine recurrences. 474 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 475 if (AR && AR->getLoop() == L) 476 return true; 477 478 return false; 479 } 480 481 /// Iteratively perform simplification on a worklist of users 482 /// of the specified induction variable. Each successive simplification may push 483 /// more users which may themselves be candidates for simplification. 484 /// 485 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 486 /// instructions in-place during analysis. Rather than rewriting induction 487 /// variables bottom-up from their users, it transforms a chain of IVUsers 488 /// top-down, updating the IR only when it encouters a clear optimization 489 /// opportunitiy. 490 /// 491 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 492 /// 493 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 494 if (!SE->isSCEVable(CurrIV->getType())) 495 return; 496 497 // Instructions processed by SimplifyIndvar for CurrIV. 498 SmallPtrSet<Instruction*,16> Simplified; 499 500 // Use-def pairs if IV users waiting to be processed for CurrIV. 501 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 502 503 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 504 // called multiple times for the same LoopPhi. This is the proper thing to 505 // do for loop header phis that use each other. 506 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 507 508 while (!SimpleIVUsers.empty()) { 509 std::pair<Instruction*, Instruction*> UseOper = 510 SimpleIVUsers.pop_back_val(); 511 Instruction *UseInst = UseOper.first; 512 513 // Bypass back edges to avoid extra work. 514 if (UseInst == CurrIV) continue; 515 516 if (V && V->shouldSplitOverflowInstrinsics()) { 517 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 518 if (!UseInst) 519 continue; 520 } 521 522 Instruction *IVOperand = UseOper.second; 523 for (unsigned N = 0; IVOperand; ++N) { 524 assert(N <= Simplified.size() && "runaway iteration"); 525 526 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 527 if (!NewOper) 528 break; // done folding 529 IVOperand = dyn_cast<Instruction>(NewOper); 530 } 531 if (!IVOperand) 532 continue; 533 534 if (eliminateIVUser(UseOper.first, IVOperand)) { 535 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 536 continue; 537 } 538 539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 540 if (isa<OverflowingBinaryOperator>(BO) && 541 strengthenOverflowingOperation(BO, IVOperand)) { 542 // re-queue uses of the now modified binary operator and fall 543 // through to the checks that remain. 544 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 545 } 546 } 547 548 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 549 if (V && Cast) { 550 V->visitCast(Cast); 551 continue; 552 } 553 if (isSimpleIVUser(UseOper.first, L, SE)) { 554 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 555 } 556 } 557 } 558 559 namespace llvm { 560 561 void IVVisitor::anchor() { } 562 563 /// Simplify instructions that use this induction variable 564 /// by using ScalarEvolution to analyze the IV's recurrence. 565 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, 566 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) 567 { 568 LoopInfo *LI = &LPM->getAnalysis<LoopInfo>(); 569 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead); 570 SIV.simplifyUsers(CurrIV, V); 571 return SIV.hasChanged(); 572 } 573 574 /// Simplify users of induction variables within this 575 /// loop. This does not actually change or add IVs. 576 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, 577 SmallVectorImpl<WeakVH> &Dead) { 578 bool Changed = false; 579 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 580 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); 581 } 582 return Changed; 583 } 584 585 } // namespace llvm 586