1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/IVUsers.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "indvars" 36 37 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 38 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 39 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 40 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 41 42 namespace { 43 /// This is a utility for simplifying induction variables 44 /// based on ScalarEvolution. It is the primary instrument of the 45 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 46 /// other loop passes that preserve SCEV. 47 class SimplifyIndvar { 48 Loop *L; 49 LoopInfo *LI; 50 ScalarEvolution *SE; 51 const DataLayout *DL; // May be NULL 52 53 SmallVectorImpl<WeakVH> &DeadInsts; 54 55 bool Changed; 56 57 public: 58 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM, 59 SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = nullptr) : 60 L(Loop), 61 LI(LPM->getAnalysisIfAvailable<LoopInfo>()), 62 SE(SE), 63 DeadInsts(Dead), 64 Changed(false) { 65 DataLayoutPass *DLP = LPM->getAnalysisIfAvailable<DataLayoutPass>(); 66 DL = DLP ? &DLP->getDataLayout() : nullptr; 67 assert(LI && "IV simplification requires LoopInfo"); 68 } 69 70 bool hasChanged() const { return Changed; } 71 72 /// Iteratively perform simplification on a worklist of users of the 73 /// specified induction variable. This is the top-level driver that applies 74 /// all simplicitions to users of an IV. 75 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 76 77 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 78 79 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 80 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 81 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 82 bool IsSigned); 83 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 84 85 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 86 const DominatorTree *DT); 87 }; 88 } 89 90 /// Fold an IV operand into its use. This removes increments of an 91 /// aligned IV when used by a instruction that ignores the low bits. 92 /// 93 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 94 /// 95 /// Return the operand of IVOperand for this induction variable if IVOperand can 96 /// be folded (in case more folding opportunities have been exposed). 97 /// Otherwise return null. 98 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 99 Value *IVSrc = nullptr; 100 unsigned OperIdx = 0; 101 const SCEV *FoldedExpr = nullptr; 102 switch (UseInst->getOpcode()) { 103 default: 104 return nullptr; 105 case Instruction::UDiv: 106 case Instruction::LShr: 107 // We're only interested in the case where we know something about 108 // the numerator and have a constant denominator. 109 if (IVOperand != UseInst->getOperand(OperIdx) || 110 !isa<ConstantInt>(UseInst->getOperand(1))) 111 return nullptr; 112 113 // Attempt to fold a binary operator with constant operand. 114 // e.g. ((I + 1) >> 2) => I >> 2 115 if (!isa<BinaryOperator>(IVOperand) 116 || !isa<ConstantInt>(IVOperand->getOperand(1))) 117 return nullptr; 118 119 IVSrc = IVOperand->getOperand(0); 120 // IVSrc must be the (SCEVable) IV, since the other operand is const. 121 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 122 123 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 124 if (UseInst->getOpcode() == Instruction::LShr) { 125 // Get a constant for the divisor. See createSCEV. 126 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 127 if (D->getValue().uge(BitWidth)) 128 return nullptr; 129 130 D = ConstantInt::get(UseInst->getContext(), 131 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 132 } 133 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 134 } 135 // We have something that might fold it's operand. Compare SCEVs. 136 if (!SE->isSCEVable(UseInst->getType())) 137 return nullptr; 138 139 // Bypass the operand if SCEV can prove it has no effect. 140 if (SE->getSCEV(UseInst) != FoldedExpr) 141 return nullptr; 142 143 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 144 << " -> " << *UseInst << '\n'); 145 146 UseInst->setOperand(OperIdx, IVSrc); 147 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 148 149 ++NumElimOperand; 150 Changed = true; 151 if (IVOperand->use_empty()) 152 DeadInsts.push_back(IVOperand); 153 return IVSrc; 154 } 155 156 /// SimplifyIVUsers helper for eliminating useless 157 /// comparisons against an induction variable. 158 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 159 unsigned IVOperIdx = 0; 160 ICmpInst::Predicate Pred = ICmp->getPredicate(); 161 if (IVOperand != ICmp->getOperand(0)) { 162 // Swapped 163 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 164 IVOperIdx = 1; 165 Pred = ICmpInst::getSwappedPredicate(Pred); 166 } 167 168 // Get the SCEVs for the ICmp operands. 169 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 170 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 171 172 // Simplify unnecessary loops away. 173 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 174 S = SE->getSCEVAtScope(S, ICmpLoop); 175 X = SE->getSCEVAtScope(X, ICmpLoop); 176 177 // If the condition is always true or always false, replace it with 178 // a constant value. 179 if (SE->isKnownPredicate(Pred, S, X)) 180 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 181 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 182 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 183 else 184 return; 185 186 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 187 ++NumElimCmp; 188 Changed = true; 189 DeadInsts.push_back(ICmp); 190 } 191 192 /// SimplifyIVUsers helper for eliminating useless 193 /// remainder operations operating on an induction variable. 194 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 195 Value *IVOperand, 196 bool IsSigned) { 197 // We're only interested in the case where we know something about 198 // the numerator. 199 if (IVOperand != Rem->getOperand(0)) 200 return; 201 202 // Get the SCEVs for the ICmp operands. 203 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 204 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 205 206 // Simplify unnecessary loops away. 207 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 208 S = SE->getSCEVAtScope(S, ICmpLoop); 209 X = SE->getSCEVAtScope(X, ICmpLoop); 210 211 // i % n --> i if i is in [0,n). 212 if ((!IsSigned || SE->isKnownNonNegative(S)) && 213 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 214 S, X)) 215 Rem->replaceAllUsesWith(Rem->getOperand(0)); 216 else { 217 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 218 const SCEV *LessOne = 219 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 220 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 221 return; 222 223 if (!SE->isKnownPredicate(IsSigned ? 224 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 225 LessOne, X)) 226 return; 227 228 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 229 Rem->getOperand(0), Rem->getOperand(1)); 230 SelectInst *Sel = 231 SelectInst::Create(ICmp, 232 ConstantInt::get(Rem->getType(), 0), 233 Rem->getOperand(0), "tmp", Rem); 234 Rem->replaceAllUsesWith(Sel); 235 } 236 237 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 238 ++NumElimRem; 239 Changed = true; 240 DeadInsts.push_back(Rem); 241 } 242 243 /// Eliminate an operation that consumes a simple IV and has 244 /// no observable side-effect given the range of IV values. 245 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 246 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 247 Instruction *IVOperand) { 248 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 249 eliminateIVComparison(ICmp, IVOperand); 250 return true; 251 } 252 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 253 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 254 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 255 eliminateIVRemainder(Rem, IVOperand, IsSigned); 256 return true; 257 } 258 } 259 260 // Eliminate any operation that SCEV can prove is an identity function. 261 if (!SE->isSCEVable(UseInst->getType()) || 262 (UseInst->getType() != IVOperand->getType()) || 263 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 264 return false; 265 266 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 267 268 UseInst->replaceAllUsesWith(IVOperand); 269 ++NumElimIdentity; 270 Changed = true; 271 DeadInsts.push_back(UseInst); 272 return true; 273 } 274 275 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 276 /// unsigned-overflow. Returns true if anything changed, false otherwise. 277 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 278 Value *IVOperand) { 279 280 // Currently we only handle instructions of the form "add <indvar> <value>" 281 unsigned Op = BO->getOpcode(); 282 if (Op != Instruction::Add) 283 return false; 284 285 // If BO is already both nuw and nsw then there is nothing left to do 286 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 287 return false; 288 289 IntegerType *IT = cast<IntegerType>(IVOperand->getType()); 290 Value *OtherOperand = nullptr; 291 if (BO->getOperand(0) == IVOperand) { 292 OtherOperand = BO->getOperand(1); 293 } else { 294 assert(BO->getOperand(1) == IVOperand && "only other use!"); 295 OtherOperand = BO->getOperand(0); 296 } 297 298 bool Changed = false; 299 const SCEV *OtherOpSCEV = SE->getSCEV(OtherOperand); 300 if (OtherOpSCEV == SE->getCouldNotCompute()) 301 return false; 302 303 const SCEV *IVOpSCEV = SE->getSCEV(IVOperand); 304 const SCEV *ZeroSCEV = SE->getConstant(IVOpSCEV->getType(), 0); 305 306 if (!BO->hasNoSignedWrap()) { 307 // Upgrade the add to an "add nsw" if we can prove that it will never 308 // sign-overflow or sign-underflow. 309 310 const SCEV *SignedMax = 311 SE->getConstant(APInt::getSignedMaxValue(IT->getBitWidth())); 312 const SCEV *SignedMin = 313 SE->getConstant(APInt::getSignedMinValue(IT->getBitWidth())); 314 315 // The addition "IVOperand + OtherOp" does not sign-overflow if the result 316 // is sign-representable in 2's complement in the given bit-width. 317 // 318 // If OtherOp is SLT 0, then for an IVOperand in [SignedMin - OtherOp, 319 // SignedMax], "IVOperand + OtherOp" is in [SignedMin, SignedMax + OtherOp]. 320 // Everything in [SignedMin, SignedMax + OtherOp] is representable since 321 // SignedMax + OtherOp is at least -1. 322 // 323 // If OtherOp is SGE 0, then for an IVOperand in [SignedMin, SignedMax - 324 // OtherOp], "IVOperand + OtherOp" is in [SignedMin + OtherOp, SignedMax]. 325 // Everything in [SignedMin + OtherOp, SignedMax] is representable since 326 // SignedMin + OtherOp is at most -1. 327 // 328 // It follows that for all values of IVOperand in [SignedMin - smin(0, 329 // OtherOp), SignedMax - smax(0, OtherOp)] the result of the add is 330 // representable (i.e. there is no sign-overflow). 331 332 const SCEV *UpperDelta = SE->getSMaxExpr(ZeroSCEV, OtherOpSCEV); 333 const SCEV *UpperLimit = SE->getMinusSCEV(SignedMax, UpperDelta); 334 335 bool NeverSignedOverflows = 336 SE->isKnownPredicate(ICmpInst::ICMP_SLE, IVOpSCEV, UpperLimit); 337 338 if (NeverSignedOverflows) { 339 const SCEV *LowerDelta = SE->getSMinExpr(ZeroSCEV, OtherOpSCEV); 340 const SCEV *LowerLimit = SE->getMinusSCEV(SignedMin, LowerDelta); 341 342 bool NeverSignedUnderflows = 343 SE->isKnownPredicate(ICmpInst::ICMP_SGE, IVOpSCEV, LowerLimit); 344 if (NeverSignedUnderflows) { 345 BO->setHasNoSignedWrap(true); 346 Changed = true; 347 } 348 } 349 } 350 351 if (!BO->hasNoUnsignedWrap()) { 352 // Upgrade the add computing "IVOperand + OtherOp" to an "add nuw" if we can 353 // prove that it will never unsigned-overflow (i.e. the result will always 354 // be representable in the given bit-width). 355 // 356 // "IVOperand + OtherOp" is unsigned-representable in 2's complement iff it 357 // does not produce a carry. "IVOperand + OtherOp" produces no carry iff 358 // IVOperand ULE (UnsignedMax - OtherOp). 359 360 const SCEV *UnsignedMax = 361 SE->getConstant(APInt::getMaxValue(IT->getBitWidth())); 362 const SCEV *UpperLimit = SE->getMinusSCEV(UnsignedMax, OtherOpSCEV); 363 364 bool NeverUnsignedOverflows = 365 SE->isKnownPredicate(ICmpInst::ICMP_ULE, IVOpSCEV, UpperLimit); 366 367 if (NeverUnsignedOverflows) { 368 BO->setHasNoUnsignedWrap(true); 369 Changed = true; 370 } 371 } 372 373 return Changed; 374 } 375 376 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 377 /// analysis and optimization. 378 /// 379 /// \return A new value representing the non-overflowing add if possible, 380 /// otherwise return the original value. 381 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 382 const DominatorTree *DT) { 383 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 384 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 385 return IVUser; 386 387 // Find a branch guarded by the overflow check. 388 BranchInst *Branch = nullptr; 389 Instruction *AddVal = nullptr; 390 for (User *U : II->users()) { 391 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 392 if (ExtractInst->getNumIndices() != 1) 393 continue; 394 if (ExtractInst->getIndices()[0] == 0) 395 AddVal = ExtractInst; 396 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 397 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 398 } 399 } 400 if (!AddVal || !Branch) 401 return IVUser; 402 403 BasicBlock *ContinueBB = Branch->getSuccessor(1); 404 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 405 return IVUser; 406 407 // Check if all users of the add are provably NSW. 408 bool AllNSW = true; 409 for (Use &U : AddVal->uses()) { 410 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 411 BasicBlock *UseBB = UseInst->getParent(); 412 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 413 UseBB = PHI->getIncomingBlock(U); 414 if (!DT->dominates(ContinueBB, UseBB)) { 415 AllNSW = false; 416 break; 417 } 418 } 419 } 420 if (!AllNSW) 421 return IVUser; 422 423 // Go for it... 424 IRBuilder<> Builder(IVUser); 425 Instruction *AddInst = dyn_cast<Instruction>( 426 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 427 428 // The caller expects the new add to have the same form as the intrinsic. The 429 // IV operand position must be the same. 430 assert((AddInst->getOpcode() == Instruction::Add && 431 AddInst->getOperand(0) == II->getOperand(0)) && 432 "Bad add instruction created from overflow intrinsic."); 433 434 AddVal->replaceAllUsesWith(AddInst); 435 DeadInsts.push_back(AddVal); 436 return AddInst; 437 } 438 439 /// Add all uses of Def to the current IV's worklist. 440 static void pushIVUsers( 441 Instruction *Def, 442 SmallPtrSet<Instruction*,16> &Simplified, 443 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 444 445 for (User *U : Def->users()) { 446 Instruction *UI = cast<Instruction>(U); 447 448 // Avoid infinite or exponential worklist processing. 449 // Also ensure unique worklist users. 450 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 451 // self edges first. 452 if (UI != Def && Simplified.insert(UI).second) 453 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 454 } 455 } 456 457 /// Return true if this instruction generates a simple SCEV 458 /// expression in terms of that IV. 459 /// 460 /// This is similar to IVUsers' isInteresting() but processes each instruction 461 /// non-recursively when the operand is already known to be a simpleIVUser. 462 /// 463 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 464 if (!SE->isSCEVable(I->getType())) 465 return false; 466 467 // Get the symbolic expression for this instruction. 468 const SCEV *S = SE->getSCEV(I); 469 470 // Only consider affine recurrences. 471 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 472 if (AR && AR->getLoop() == L) 473 return true; 474 475 return false; 476 } 477 478 /// Iteratively perform simplification on a worklist of users 479 /// of the specified induction variable. Each successive simplification may push 480 /// more users which may themselves be candidates for simplification. 481 /// 482 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 483 /// instructions in-place during analysis. Rather than rewriting induction 484 /// variables bottom-up from their users, it transforms a chain of IVUsers 485 /// top-down, updating the IR only when it encouters a clear optimization 486 /// opportunitiy. 487 /// 488 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 489 /// 490 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 491 if (!SE->isSCEVable(CurrIV->getType())) 492 return; 493 494 // Instructions processed by SimplifyIndvar for CurrIV. 495 SmallPtrSet<Instruction*,16> Simplified; 496 497 // Use-def pairs if IV users waiting to be processed for CurrIV. 498 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 499 500 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 501 // called multiple times for the same LoopPhi. This is the proper thing to 502 // do for loop header phis that use each other. 503 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 504 505 while (!SimpleIVUsers.empty()) { 506 std::pair<Instruction*, Instruction*> UseOper = 507 SimpleIVUsers.pop_back_val(); 508 Instruction *UseInst = UseOper.first; 509 510 // Bypass back edges to avoid extra work. 511 if (UseInst == CurrIV) continue; 512 513 if (V && V->shouldSplitOverflowInstrinsics()) { 514 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 515 if (!UseInst) 516 continue; 517 } 518 519 Instruction *IVOperand = UseOper.second; 520 for (unsigned N = 0; IVOperand; ++N) { 521 assert(N <= Simplified.size() && "runaway iteration"); 522 523 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 524 if (!NewOper) 525 break; // done folding 526 IVOperand = dyn_cast<Instruction>(NewOper); 527 } 528 if (!IVOperand) 529 continue; 530 531 if (eliminateIVUser(UseOper.first, IVOperand)) { 532 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 533 continue; 534 } 535 536 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 537 if (isa<OverflowingBinaryOperator>(BO) && 538 strengthenOverflowingOperation(BO, IVOperand)) { 539 // re-queue uses of the now modified binary operator and fall 540 // through to the checks that remain. 541 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 542 } 543 } 544 545 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 546 if (V && Cast) { 547 V->visitCast(Cast); 548 continue; 549 } 550 if (isSimpleIVUser(UseOper.first, L, SE)) { 551 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 552 } 553 } 554 } 555 556 namespace llvm { 557 558 void IVVisitor::anchor() { } 559 560 /// Simplify instructions that use this induction variable 561 /// by using ScalarEvolution to analyze the IV's recurrence. 562 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, 563 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) 564 { 565 LoopInfo *LI = &LPM->getAnalysis<LoopInfo>(); 566 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead); 567 SIV.simplifyUsers(CurrIV, V); 568 return SIV.hasChanged(); 569 } 570 571 /// Simplify users of induction variables within this 572 /// loop. This does not actually change or add IVs. 573 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, 574 SmallVectorImpl<WeakVH> &Dead) { 575 bool Changed = false; 576 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 577 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); 578 } 579 return Changed; 580 } 581 582 } // namespace llvm 583